]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/migrate.c
mm: migrate: support non-lru movable page migration
[mirror_ubuntu-zesty-kernel.git] / mm / migrate.c
CommitLineData
b20a3503 1/*
14e0f9bc 2 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
42cb14b1 33#include <linux/backing-dev.h>
bda807d4 34#include <linux/compaction.h>
4f5ca265 35#include <linux/syscalls.h>
290408d4 36#include <linux/hugetlb.h>
8e6ac7fa 37#include <linux/hugetlb_cgroup.h>
5a0e3ad6 38#include <linux/gfp.h>
bf6bddf1 39#include <linux/balloon_compaction.h>
f714f4f2 40#include <linux/mmu_notifier.h>
33c3fc71 41#include <linux/page_idle.h>
d435edca 42#include <linux/page_owner.h>
b20a3503 43
0d1836c3
MN
44#include <asm/tlbflush.h>
45
7b2a2d4a
MG
46#define CREATE_TRACE_POINTS
47#include <trace/events/migrate.h>
48
b20a3503
CL
49#include "internal.h"
50
b20a3503 51/*
742755a1 52 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
b20a3503
CL
55 */
56int migrate_prep(void)
57{
b20a3503
CL
58 /*
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
63 */
64 lru_add_drain_all();
65
66 return 0;
67}
68
748446bb
MG
69/* Do the necessary work of migrate_prep but not if it involves other CPUs */
70int migrate_prep_local(void)
71{
72 lru_add_drain();
73
74 return 0;
75}
76
bda807d4
MK
77bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78{
79 struct address_space *mapping;
80
81 /*
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
84 *
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
89 */
90 if (unlikely(!get_page_unless_zero(page)))
91 goto out;
92
93 /*
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
97 */
98 if (unlikely(!__PageMovable(page)))
99 goto out_putpage;
100 /*
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
104 *
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
110 */
111 if (unlikely(!trylock_page(page)))
112 goto out_putpage;
113
114 if (!PageMovable(page) || PageIsolated(page))
115 goto out_no_isolated;
116
117 mapping = page_mapping(page);
118 VM_BUG_ON_PAGE(!mapping, page);
119
120 if (!mapping->a_ops->isolate_page(page, mode))
121 goto out_no_isolated;
122
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page));
125 __SetPageIsolated(page);
126 unlock_page(page);
127
128 return true;
129
130out_no_isolated:
131 unlock_page(page);
132out_putpage:
133 put_page(page);
134out:
135 return false;
136}
137
138/* It should be called on page which is PG_movable */
139void putback_movable_page(struct page *page)
140{
141 struct address_space *mapping;
142
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageMovable(page), page);
145 VM_BUG_ON_PAGE(!PageIsolated(page), page);
146
147 mapping = page_mapping(page);
148 mapping->a_ops->putback_page(page);
149 __ClearPageIsolated(page);
150}
151
5733c7d1
RA
152/*
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
155 *
59c82b70
JK
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
5733c7d1
RA
159 */
160void putback_movable_pages(struct list_head *l)
161{
162 struct page *page;
163 struct page *page2;
164
b20a3503 165 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
166 if (unlikely(PageHuge(page))) {
167 putback_active_hugepage(page);
168 continue;
169 }
e24f0b8f 170 list_del(&page->lru);
a731286d 171 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 172 page_is_file_cache(page));
bda807d4 173 if (unlikely(isolated_balloon_page(page))) {
bf6bddf1 174 balloon_page_putback(page);
bda807d4
MK
175 /*
176 * We isolated non-lru movable page so here we can use
177 * __PageMovable because LRU page's mapping cannot have
178 * PAGE_MAPPING_MOVABLE.
179 */
180 } else if (unlikely(__PageMovable(page))) {
181 VM_BUG_ON_PAGE(!PageIsolated(page), page);
182 lock_page(page);
183 if (PageMovable(page))
184 putback_movable_page(page);
185 else
186 __ClearPageIsolated(page);
187 unlock_page(page);
188 put_page(page);
189 } else {
bf6bddf1 190 putback_lru_page(page);
bda807d4 191 }
b20a3503 192 }
b20a3503
CL
193}
194
0697212a
CL
195/*
196 * Restore a potential migration pte to a working pte entry
197 */
e9995ef9
HD
198static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
199 unsigned long addr, void *old)
0697212a
CL
200{
201 struct mm_struct *mm = vma->vm_mm;
202 swp_entry_t entry;
0697212a
CL
203 pmd_t *pmd;
204 pte_t *ptep, pte;
205 spinlock_t *ptl;
206
290408d4
NH
207 if (unlikely(PageHuge(new))) {
208 ptep = huge_pte_offset(mm, addr);
209 if (!ptep)
210 goto out;
cb900f41 211 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
290408d4 212 } else {
6219049a
BL
213 pmd = mm_find_pmd(mm, addr);
214 if (!pmd)
290408d4 215 goto out;
0697212a 216
290408d4 217 ptep = pte_offset_map(pmd, addr);
0697212a 218
486cf46f
HD
219 /*
220 * Peek to check is_swap_pte() before taking ptlock? No, we
221 * can race mremap's move_ptes(), which skips anon_vma lock.
222 */
290408d4
NH
223
224 ptl = pte_lockptr(mm, pmd);
225 }
0697212a 226
0697212a
CL
227 spin_lock(ptl);
228 pte = *ptep;
229 if (!is_swap_pte(pte))
e9995ef9 230 goto unlock;
0697212a
CL
231
232 entry = pte_to_swp_entry(pte);
233
e9995ef9
HD
234 if (!is_migration_entry(entry) ||
235 migration_entry_to_page(entry) != old)
236 goto unlock;
0697212a 237
0697212a
CL
238 get_page(new);
239 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
c3d16e16
CG
240 if (pte_swp_soft_dirty(*ptep))
241 pte = pte_mksoft_dirty(pte);
d3cb8bf6
MG
242
243 /* Recheck VMA as permissions can change since migration started */
0697212a 244 if (is_write_migration_entry(entry))
d3cb8bf6
MG
245 pte = maybe_mkwrite(pte, vma);
246
3ef8fd7f 247#ifdef CONFIG_HUGETLB_PAGE
be7517d6 248 if (PageHuge(new)) {
290408d4 249 pte = pte_mkhuge(pte);
be7517d6
TL
250 pte = arch_make_huge_pte(pte, vma, new, 0);
251 }
3ef8fd7f 252#endif
c2cc499c 253 flush_dcache_page(new);
0697212a 254 set_pte_at(mm, addr, ptep, pte);
04e62a29 255
290408d4
NH
256 if (PageHuge(new)) {
257 if (PageAnon(new))
258 hugepage_add_anon_rmap(new, vma, addr);
259 else
53f9263b 260 page_dup_rmap(new, true);
290408d4 261 } else if (PageAnon(new))
d281ee61 262 page_add_anon_rmap(new, vma, addr, false);
04e62a29
CL
263 else
264 page_add_file_rmap(new);
265
e388466d 266 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
51afb12b
HD
267 mlock_vma_page(new);
268
04e62a29 269 /* No need to invalidate - it was non-present before */
4b3073e1 270 update_mmu_cache(vma, addr, ptep);
e9995ef9 271unlock:
0697212a 272 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
273out:
274 return SWAP_AGAIN;
0697212a
CL
275}
276
04e62a29
CL
277/*
278 * Get rid of all migration entries and replace them by
279 * references to the indicated page.
280 */
e388466d 281void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 282{
051ac83a
JK
283 struct rmap_walk_control rwc = {
284 .rmap_one = remove_migration_pte,
285 .arg = old,
286 };
287
e388466d
KS
288 if (locked)
289 rmap_walk_locked(new, &rwc);
290 else
291 rmap_walk(new, &rwc);
04e62a29
CL
292}
293
0697212a
CL
294/*
295 * Something used the pte of a page under migration. We need to
296 * get to the page and wait until migration is finished.
297 * When we return from this function the fault will be retried.
0697212a 298 */
e66f17ff 299void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 300 spinlock_t *ptl)
0697212a 301{
30dad309 302 pte_t pte;
0697212a
CL
303 swp_entry_t entry;
304 struct page *page;
305
30dad309 306 spin_lock(ptl);
0697212a
CL
307 pte = *ptep;
308 if (!is_swap_pte(pte))
309 goto out;
310
311 entry = pte_to_swp_entry(pte);
312 if (!is_migration_entry(entry))
313 goto out;
314
315 page = migration_entry_to_page(entry);
316
e286781d
NP
317 /*
318 * Once radix-tree replacement of page migration started, page_count
319 * *must* be zero. And, we don't want to call wait_on_page_locked()
320 * against a page without get_page().
321 * So, we use get_page_unless_zero(), here. Even failed, page fault
322 * will occur again.
323 */
324 if (!get_page_unless_zero(page))
325 goto out;
0697212a
CL
326 pte_unmap_unlock(ptep, ptl);
327 wait_on_page_locked(page);
328 put_page(page);
329 return;
330out:
331 pte_unmap_unlock(ptep, ptl);
332}
333
30dad309
NH
334void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
335 unsigned long address)
336{
337 spinlock_t *ptl = pte_lockptr(mm, pmd);
338 pte_t *ptep = pte_offset_map(pmd, address);
339 __migration_entry_wait(mm, ptep, ptl);
340}
341
cb900f41
KS
342void migration_entry_wait_huge(struct vm_area_struct *vma,
343 struct mm_struct *mm, pte_t *pte)
30dad309 344{
cb900f41 345 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
346 __migration_entry_wait(mm, pte, ptl);
347}
348
b969c4ab
MG
349#ifdef CONFIG_BLOCK
350/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
351static bool buffer_migrate_lock_buffers(struct buffer_head *head,
352 enum migrate_mode mode)
b969c4ab
MG
353{
354 struct buffer_head *bh = head;
355
356 /* Simple case, sync compaction */
a6bc32b8 357 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
358 do {
359 get_bh(bh);
360 lock_buffer(bh);
361 bh = bh->b_this_page;
362
363 } while (bh != head);
364
365 return true;
366 }
367
368 /* async case, we cannot block on lock_buffer so use trylock_buffer */
369 do {
370 get_bh(bh);
371 if (!trylock_buffer(bh)) {
372 /*
373 * We failed to lock the buffer and cannot stall in
374 * async migration. Release the taken locks
375 */
376 struct buffer_head *failed_bh = bh;
377 put_bh(failed_bh);
378 bh = head;
379 while (bh != failed_bh) {
380 unlock_buffer(bh);
381 put_bh(bh);
382 bh = bh->b_this_page;
383 }
384 return false;
385 }
386
387 bh = bh->b_this_page;
388 } while (bh != head);
389 return true;
390}
391#else
392static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 393 enum migrate_mode mode)
b969c4ab
MG
394{
395 return true;
396}
397#endif /* CONFIG_BLOCK */
398
b20a3503 399/*
c3fcf8a5 400 * Replace the page in the mapping.
5b5c7120
CL
401 *
402 * The number of remaining references must be:
403 * 1 for anonymous pages without a mapping
404 * 2 for pages with a mapping
266cf658 405 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 406 */
36bc08cc 407int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 408 struct page *newpage, struct page *page,
8e321fef
BL
409 struct buffer_head *head, enum migrate_mode mode,
410 int extra_count)
b20a3503 411{
42cb14b1
HD
412 struct zone *oldzone, *newzone;
413 int dirty;
8e321fef 414 int expected_count = 1 + extra_count;
7cf9c2c7 415 void **pslot;
b20a3503 416
6c5240ae 417 if (!mapping) {
0e8c7d0f 418 /* Anonymous page without mapping */
8e321fef 419 if (page_count(page) != expected_count)
6c5240ae 420 return -EAGAIN;
cf4b769a
HD
421
422 /* No turning back from here */
cf4b769a
HD
423 newpage->index = page->index;
424 newpage->mapping = page->mapping;
425 if (PageSwapBacked(page))
fa9949da 426 __SetPageSwapBacked(newpage);
cf4b769a 427
78bd5209 428 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
429 }
430
42cb14b1
HD
431 oldzone = page_zone(page);
432 newzone = page_zone(newpage);
433
19fd6231 434 spin_lock_irq(&mapping->tree_lock);
b20a3503 435
7cf9c2c7
NP
436 pslot = radix_tree_lookup_slot(&mapping->page_tree,
437 page_index(page));
b20a3503 438
8e321fef 439 expected_count += 1 + page_has_private(page);
e286781d 440 if (page_count(page) != expected_count ||
29c1f677 441 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 442 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 443 return -EAGAIN;
b20a3503
CL
444 }
445
fe896d18 446 if (!page_ref_freeze(page, expected_count)) {
19fd6231 447 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
448 return -EAGAIN;
449 }
450
b969c4ab
MG
451 /*
452 * In the async migration case of moving a page with buffers, lock the
453 * buffers using trylock before the mapping is moved. If the mapping
454 * was moved, we later failed to lock the buffers and could not move
455 * the mapping back due to an elevated page count, we would have to
456 * block waiting on other references to be dropped.
457 */
a6bc32b8
MG
458 if (mode == MIGRATE_ASYNC && head &&
459 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 460 page_ref_unfreeze(page, expected_count);
b969c4ab
MG
461 spin_unlock_irq(&mapping->tree_lock);
462 return -EAGAIN;
463 }
464
b20a3503 465 /*
cf4b769a
HD
466 * Now we know that no one else is looking at the page:
467 * no turning back from here.
b20a3503 468 */
cf4b769a
HD
469 newpage->index = page->index;
470 newpage->mapping = page->mapping;
471 if (PageSwapBacked(page))
fa9949da 472 __SetPageSwapBacked(newpage);
cf4b769a 473
7cf9c2c7 474 get_page(newpage); /* add cache reference */
b20a3503
CL
475 if (PageSwapCache(page)) {
476 SetPageSwapCache(newpage);
477 set_page_private(newpage, page_private(page));
478 }
479
42cb14b1
HD
480 /* Move dirty while page refs frozen and newpage not yet exposed */
481 dirty = PageDirty(page);
482 if (dirty) {
483 ClearPageDirty(page);
484 SetPageDirty(newpage);
485 }
486
7cf9c2c7
NP
487 radix_tree_replace_slot(pslot, newpage);
488
489 /*
937a94c9
JG
490 * Drop cache reference from old page by unfreezing
491 * to one less reference.
7cf9c2c7
NP
492 * We know this isn't the last reference.
493 */
fe896d18 494 page_ref_unfreeze(page, expected_count - 1);
7cf9c2c7 495
42cb14b1
HD
496 spin_unlock(&mapping->tree_lock);
497 /* Leave irq disabled to prevent preemption while updating stats */
498
0e8c7d0f
CL
499 /*
500 * If moved to a different zone then also account
501 * the page for that zone. Other VM counters will be
502 * taken care of when we establish references to the
503 * new page and drop references to the old page.
504 *
505 * Note that anonymous pages are accounted for
506 * via NR_FILE_PAGES and NR_ANON_PAGES if they
507 * are mapped to swap space.
508 */
42cb14b1
HD
509 if (newzone != oldzone) {
510 __dec_zone_state(oldzone, NR_FILE_PAGES);
511 __inc_zone_state(newzone, NR_FILE_PAGES);
512 if (PageSwapBacked(page) && !PageSwapCache(page)) {
513 __dec_zone_state(oldzone, NR_SHMEM);
514 __inc_zone_state(newzone, NR_SHMEM);
515 }
516 if (dirty && mapping_cap_account_dirty(mapping)) {
517 __dec_zone_state(oldzone, NR_FILE_DIRTY);
518 __inc_zone_state(newzone, NR_FILE_DIRTY);
519 }
4b02108a 520 }
42cb14b1 521 local_irq_enable();
b20a3503 522
78bd5209 523 return MIGRATEPAGE_SUCCESS;
b20a3503 524}
1118dce7 525EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 526
290408d4
NH
527/*
528 * The expected number of remaining references is the same as that
529 * of migrate_page_move_mapping().
530 */
531int migrate_huge_page_move_mapping(struct address_space *mapping,
532 struct page *newpage, struct page *page)
533{
534 int expected_count;
535 void **pslot;
536
290408d4
NH
537 spin_lock_irq(&mapping->tree_lock);
538
539 pslot = radix_tree_lookup_slot(&mapping->page_tree,
540 page_index(page));
541
542 expected_count = 2 + page_has_private(page);
543 if (page_count(page) != expected_count ||
29c1f677 544 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
545 spin_unlock_irq(&mapping->tree_lock);
546 return -EAGAIN;
547 }
548
fe896d18 549 if (!page_ref_freeze(page, expected_count)) {
290408d4
NH
550 spin_unlock_irq(&mapping->tree_lock);
551 return -EAGAIN;
552 }
553
cf4b769a
HD
554 newpage->index = page->index;
555 newpage->mapping = page->mapping;
6a93ca8f 556
290408d4
NH
557 get_page(newpage);
558
559 radix_tree_replace_slot(pslot, newpage);
560
fe896d18 561 page_ref_unfreeze(page, expected_count - 1);
290408d4
NH
562
563 spin_unlock_irq(&mapping->tree_lock);
6a93ca8f 564
78bd5209 565 return MIGRATEPAGE_SUCCESS;
290408d4
NH
566}
567
30b0a105
DH
568/*
569 * Gigantic pages are so large that we do not guarantee that page++ pointer
570 * arithmetic will work across the entire page. We need something more
571 * specialized.
572 */
573static void __copy_gigantic_page(struct page *dst, struct page *src,
574 int nr_pages)
575{
576 int i;
577 struct page *dst_base = dst;
578 struct page *src_base = src;
579
580 for (i = 0; i < nr_pages; ) {
581 cond_resched();
582 copy_highpage(dst, src);
583
584 i++;
585 dst = mem_map_next(dst, dst_base, i);
586 src = mem_map_next(src, src_base, i);
587 }
588}
589
590static void copy_huge_page(struct page *dst, struct page *src)
591{
592 int i;
593 int nr_pages;
594
595 if (PageHuge(src)) {
596 /* hugetlbfs page */
597 struct hstate *h = page_hstate(src);
598 nr_pages = pages_per_huge_page(h);
599
600 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
601 __copy_gigantic_page(dst, src, nr_pages);
602 return;
603 }
604 } else {
605 /* thp page */
606 BUG_ON(!PageTransHuge(src));
607 nr_pages = hpage_nr_pages(src);
608 }
609
610 for (i = 0; i < nr_pages; i++) {
611 cond_resched();
612 copy_highpage(dst + i, src + i);
613 }
614}
615
b20a3503
CL
616/*
617 * Copy the page to its new location
618 */
290408d4 619void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 620{
7851a45c
RR
621 int cpupid;
622
b32967ff 623 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
624 copy_huge_page(newpage, page);
625 else
626 copy_highpage(newpage, page);
b20a3503
CL
627
628 if (PageError(page))
629 SetPageError(newpage);
630 if (PageReferenced(page))
631 SetPageReferenced(newpage);
632 if (PageUptodate(page))
633 SetPageUptodate(newpage);
894bc310 634 if (TestClearPageActive(page)) {
309381fe 635 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 636 SetPageActive(newpage);
418b27ef
LS
637 } else if (TestClearPageUnevictable(page))
638 SetPageUnevictable(newpage);
b20a3503
CL
639 if (PageChecked(page))
640 SetPageChecked(newpage);
641 if (PageMappedToDisk(page))
642 SetPageMappedToDisk(newpage);
643
42cb14b1
HD
644 /* Move dirty on pages not done by migrate_page_move_mapping() */
645 if (PageDirty(page))
646 SetPageDirty(newpage);
b20a3503 647
33c3fc71
VD
648 if (page_is_young(page))
649 set_page_young(newpage);
650 if (page_is_idle(page))
651 set_page_idle(newpage);
652
7851a45c
RR
653 /*
654 * Copy NUMA information to the new page, to prevent over-eager
655 * future migrations of this same page.
656 */
657 cpupid = page_cpupid_xchg_last(page, -1);
658 page_cpupid_xchg_last(newpage, cpupid);
659
e9995ef9 660 ksm_migrate_page(newpage, page);
c8d6553b
HD
661 /*
662 * Please do not reorder this without considering how mm/ksm.c's
663 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
664 */
b3b3a99c
NH
665 if (PageSwapCache(page))
666 ClearPageSwapCache(page);
b20a3503
CL
667 ClearPagePrivate(page);
668 set_page_private(page, 0);
b20a3503
CL
669
670 /*
671 * If any waiters have accumulated on the new page then
672 * wake them up.
673 */
674 if (PageWriteback(newpage))
675 end_page_writeback(newpage);
d435edca
VB
676
677 copy_page_owner(page, newpage);
74485cf2
JW
678
679 mem_cgroup_migrate(page, newpage);
b20a3503 680}
1118dce7 681EXPORT_SYMBOL(migrate_page_copy);
b20a3503 682
1d8b85cc
CL
683/************************************************************
684 * Migration functions
685 ***********************************************************/
686
b20a3503 687/*
bda807d4 688 * Common logic to directly migrate a single LRU page suitable for
266cf658 689 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
690 *
691 * Pages are locked upon entry and exit.
692 */
2d1db3b1 693int migrate_page(struct address_space *mapping,
a6bc32b8
MG
694 struct page *newpage, struct page *page,
695 enum migrate_mode mode)
b20a3503
CL
696{
697 int rc;
698
699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
700
8e321fef 701 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 702
78bd5209 703 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
704 return rc;
705
706 migrate_page_copy(newpage, page);
78bd5209 707 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
708}
709EXPORT_SYMBOL(migrate_page);
710
9361401e 711#ifdef CONFIG_BLOCK
1d8b85cc
CL
712/*
713 * Migration function for pages with buffers. This function can only be used
714 * if the underlying filesystem guarantees that no other references to "page"
715 * exist.
716 */
2d1db3b1 717int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 718 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 719{
1d8b85cc
CL
720 struct buffer_head *bh, *head;
721 int rc;
722
1d8b85cc 723 if (!page_has_buffers(page))
a6bc32b8 724 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
725
726 head = page_buffers(page);
727
8e321fef 728 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 729
78bd5209 730 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
731 return rc;
732
b969c4ab
MG
733 /*
734 * In the async case, migrate_page_move_mapping locked the buffers
735 * with an IRQ-safe spinlock held. In the sync case, the buffers
736 * need to be locked now
737 */
a6bc32b8
MG
738 if (mode != MIGRATE_ASYNC)
739 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
740
741 ClearPagePrivate(page);
742 set_page_private(newpage, page_private(page));
743 set_page_private(page, 0);
744 put_page(page);
745 get_page(newpage);
746
747 bh = head;
748 do {
749 set_bh_page(bh, newpage, bh_offset(bh));
750 bh = bh->b_this_page;
751
752 } while (bh != head);
753
754 SetPagePrivate(newpage);
755
756 migrate_page_copy(newpage, page);
757
758 bh = head;
759 do {
760 unlock_buffer(bh);
761 put_bh(bh);
762 bh = bh->b_this_page;
763
764 } while (bh != head);
765
78bd5209 766 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
767}
768EXPORT_SYMBOL(buffer_migrate_page);
9361401e 769#endif
1d8b85cc 770
04e62a29
CL
771/*
772 * Writeback a page to clean the dirty state
773 */
774static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 775{
04e62a29
CL
776 struct writeback_control wbc = {
777 .sync_mode = WB_SYNC_NONE,
778 .nr_to_write = 1,
779 .range_start = 0,
780 .range_end = LLONG_MAX,
04e62a29
CL
781 .for_reclaim = 1
782 };
783 int rc;
784
785 if (!mapping->a_ops->writepage)
786 /* No write method for the address space */
787 return -EINVAL;
788
789 if (!clear_page_dirty_for_io(page))
790 /* Someone else already triggered a write */
791 return -EAGAIN;
792
8351a6e4 793 /*
04e62a29
CL
794 * A dirty page may imply that the underlying filesystem has
795 * the page on some queue. So the page must be clean for
796 * migration. Writeout may mean we loose the lock and the
797 * page state is no longer what we checked for earlier.
798 * At this point we know that the migration attempt cannot
799 * be successful.
8351a6e4 800 */
e388466d 801 remove_migration_ptes(page, page, false);
8351a6e4 802
04e62a29 803 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 804
04e62a29
CL
805 if (rc != AOP_WRITEPAGE_ACTIVATE)
806 /* unlocked. Relock */
807 lock_page(page);
808
bda8550d 809 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
810}
811
812/*
813 * Default handling if a filesystem does not provide a migration function.
814 */
815static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 816 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 817{
b969c4ab 818 if (PageDirty(page)) {
a6bc32b8
MG
819 /* Only writeback pages in full synchronous migration */
820 if (mode != MIGRATE_SYNC)
b969c4ab 821 return -EBUSY;
04e62a29 822 return writeout(mapping, page);
b969c4ab 823 }
8351a6e4
CL
824
825 /*
826 * Buffers may be managed in a filesystem specific way.
827 * We must have no buffers or drop them.
828 */
266cf658 829 if (page_has_private(page) &&
8351a6e4
CL
830 !try_to_release_page(page, GFP_KERNEL))
831 return -EAGAIN;
832
a6bc32b8 833 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
834}
835
e24f0b8f
CL
836/*
837 * Move a page to a newly allocated page
838 * The page is locked and all ptes have been successfully removed.
839 *
840 * The new page will have replaced the old page if this function
841 * is successful.
894bc310
LS
842 *
843 * Return value:
844 * < 0 - error code
78bd5209 845 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 846 */
3fe2011f 847static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 848 enum migrate_mode mode)
e24f0b8f
CL
849{
850 struct address_space *mapping;
bda807d4
MK
851 int rc = -EAGAIN;
852 bool is_lru = !__PageMovable(page);
e24f0b8f 853
7db7671f
HD
854 VM_BUG_ON_PAGE(!PageLocked(page), page);
855 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 856
e24f0b8f 857 mapping = page_mapping(page);
bda807d4
MK
858
859 if (likely(is_lru)) {
860 if (!mapping)
861 rc = migrate_page(mapping, newpage, page, mode);
862 else if (mapping->a_ops->migratepage)
863 /*
864 * Most pages have a mapping and most filesystems
865 * provide a migratepage callback. Anonymous pages
866 * are part of swap space which also has its own
867 * migratepage callback. This is the most common path
868 * for page migration.
869 */
870 rc = mapping->a_ops->migratepage(mapping, newpage,
871 page, mode);
872 else
873 rc = fallback_migrate_page(mapping, newpage,
874 page, mode);
875 } else {
e24f0b8f 876 /*
bda807d4
MK
877 * In case of non-lru page, it could be released after
878 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 879 */
bda807d4
MK
880 VM_BUG_ON_PAGE(!PageIsolated(page), page);
881 if (!PageMovable(page)) {
882 rc = MIGRATEPAGE_SUCCESS;
883 __ClearPageIsolated(page);
884 goto out;
885 }
886
887 rc = mapping->a_ops->migratepage(mapping, newpage,
888 page, mode);
889 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
890 !PageIsolated(page));
891 }
e24f0b8f 892
5c3f9a67
HD
893 /*
894 * When successful, old pagecache page->mapping must be cleared before
895 * page is freed; but stats require that PageAnon be left as PageAnon.
896 */
897 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
898 if (__PageMovable(page)) {
899 VM_BUG_ON_PAGE(!PageIsolated(page), page);
900
901 /*
902 * We clear PG_movable under page_lock so any compactor
903 * cannot try to migrate this page.
904 */
905 __ClearPageIsolated(page);
906 }
907
908 /*
909 * Anonymous and movable page->mapping will be cleard by
910 * free_pages_prepare so don't reset it here for keeping
911 * the type to work PageAnon, for example.
912 */
913 if (!PageMappingFlags(page))
5c3f9a67 914 page->mapping = NULL;
3fe2011f 915 }
bda807d4 916out:
e24f0b8f
CL
917 return rc;
918}
919
0dabec93 920static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 921 int force, enum migrate_mode mode)
e24f0b8f 922{
0dabec93 923 int rc = -EAGAIN;
2ebba6b7 924 int page_was_mapped = 0;
3f6c8272 925 struct anon_vma *anon_vma = NULL;
bda807d4 926 bool is_lru = !__PageMovable(page);
95a402c3 927
529ae9aa 928 if (!trylock_page(page)) {
a6bc32b8 929 if (!force || mode == MIGRATE_ASYNC)
0dabec93 930 goto out;
3e7d3449
MG
931
932 /*
933 * It's not safe for direct compaction to call lock_page.
934 * For example, during page readahead pages are added locked
935 * to the LRU. Later, when the IO completes the pages are
936 * marked uptodate and unlocked. However, the queueing
937 * could be merging multiple pages for one bio (e.g.
938 * mpage_readpages). If an allocation happens for the
939 * second or third page, the process can end up locking
940 * the same page twice and deadlocking. Rather than
941 * trying to be clever about what pages can be locked,
942 * avoid the use of lock_page for direct compaction
943 * altogether.
944 */
945 if (current->flags & PF_MEMALLOC)
0dabec93 946 goto out;
3e7d3449 947
e24f0b8f
CL
948 lock_page(page);
949 }
950
951 if (PageWriteback(page)) {
11bc82d6 952 /*
fed5b64a 953 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
954 * necessary to wait for PageWriteback. In the async case,
955 * the retry loop is too short and in the sync-light case,
956 * the overhead of stalling is too much
11bc82d6 957 */
a6bc32b8 958 if (mode != MIGRATE_SYNC) {
11bc82d6 959 rc = -EBUSY;
0a31bc97 960 goto out_unlock;
11bc82d6
AA
961 }
962 if (!force)
0a31bc97 963 goto out_unlock;
e24f0b8f
CL
964 wait_on_page_writeback(page);
965 }
03f15c86 966
e24f0b8f 967 /*
dc386d4d
KH
968 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
969 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 970 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 971 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
972 * File Caches may use write_page() or lock_page() in migration, then,
973 * just care Anon page here.
03f15c86
HD
974 *
975 * Only page_get_anon_vma() understands the subtleties of
976 * getting a hold on an anon_vma from outside one of its mms.
977 * But if we cannot get anon_vma, then we won't need it anyway,
978 * because that implies that the anon page is no longer mapped
979 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 980 */
03f15c86 981 if (PageAnon(page) && !PageKsm(page))
746b18d4 982 anon_vma = page_get_anon_vma(page);
62e1c553 983
7db7671f
HD
984 /*
985 * Block others from accessing the new page when we get around to
986 * establishing additional references. We are usually the only one
987 * holding a reference to newpage at this point. We used to have a BUG
988 * here if trylock_page(newpage) fails, but would like to allow for
989 * cases where there might be a race with the previous use of newpage.
990 * This is much like races on refcount of oldpage: just don't BUG().
991 */
992 if (unlikely(!trylock_page(newpage)))
993 goto out_unlock;
994
d6d86c0a 995 if (unlikely(isolated_balloon_page(page))) {
bf6bddf1
RA
996 /*
997 * A ballooned page does not need any special attention from
998 * physical to virtual reverse mapping procedures.
999 * Skip any attempt to unmap PTEs or to remap swap cache,
1000 * in order to avoid burning cycles at rmap level, and perform
1001 * the page migration right away (proteced by page lock).
1002 */
1003 rc = balloon_page_migrate(newpage, page, mode);
7db7671f 1004 goto out_unlock_both;
bf6bddf1
RA
1005 }
1006
bda807d4
MK
1007 if (unlikely(!is_lru)) {
1008 rc = move_to_new_page(newpage, page, mode);
1009 goto out_unlock_both;
1010 }
1011
dc386d4d 1012 /*
62e1c553
SL
1013 * Corner case handling:
1014 * 1. When a new swap-cache page is read into, it is added to the LRU
1015 * and treated as swapcache but it has no rmap yet.
1016 * Calling try_to_unmap() against a page->mapping==NULL page will
1017 * trigger a BUG. So handle it here.
1018 * 2. An orphaned page (see truncate_complete_page) might have
1019 * fs-private metadata. The page can be picked up due to memory
1020 * offlining. Everywhere else except page reclaim, the page is
1021 * invisible to the vm, so the page can not be migrated. So try to
1022 * free the metadata, so the page can be freed.
e24f0b8f 1023 */
62e1c553 1024 if (!page->mapping) {
309381fe 1025 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1026 if (page_has_private(page)) {
62e1c553 1027 try_to_free_buffers(page);
7db7671f 1028 goto out_unlock_both;
62e1c553 1029 }
7db7671f
HD
1030 } else if (page_mapped(page)) {
1031 /* Establish migration ptes */
03f15c86
HD
1032 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1033 page);
2ebba6b7 1034 try_to_unmap(page,
da1b13cc 1035 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1036 page_was_mapped = 1;
1037 }
dc386d4d 1038
e6a1530d 1039 if (!page_mapped(page))
5c3f9a67 1040 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1041
5c3f9a67
HD
1042 if (page_was_mapped)
1043 remove_migration_ptes(page,
e388466d 1044 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1045
7db7671f
HD
1046out_unlock_both:
1047 unlock_page(newpage);
1048out_unlock:
3f6c8272 1049 /* Drop an anon_vma reference if we took one */
76545066 1050 if (anon_vma)
9e60109f 1051 put_anon_vma(anon_vma);
e24f0b8f 1052 unlock_page(page);
0dabec93 1053out:
c6c919eb
MK
1054 /*
1055 * If migration is successful, decrease refcount of the newpage
1056 * which will not free the page because new page owner increased
1057 * refcounter. As well, if it is LRU page, add the page to LRU
1058 * list in here.
1059 */
1060 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
1061 if (unlikely(__is_movable_balloon_page(newpage) ||
1062 __PageMovable(newpage)))
c6c919eb
MK
1063 put_page(newpage);
1064 else
1065 putback_lru_page(newpage);
1066 }
1067
0dabec93
MK
1068 return rc;
1069}
95a402c3 1070
ef2a5153
GU
1071/*
1072 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1073 * around it.
1074 */
1075#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1076#define ICE_noinline noinline
1077#else
1078#define ICE_noinline
1079#endif
1080
0dabec93
MK
1081/*
1082 * Obtain the lock on page, remove all ptes and migrate the page
1083 * to the newly allocated page in newpage.
1084 */
ef2a5153
GU
1085static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1086 free_page_t put_new_page,
1087 unsigned long private, struct page *page,
add05cec
NH
1088 int force, enum migrate_mode mode,
1089 enum migrate_reason reason)
0dabec93 1090{
2def7424 1091 int rc = MIGRATEPAGE_SUCCESS;
0dabec93 1092 int *result = NULL;
2def7424 1093 struct page *newpage;
0dabec93 1094
2def7424 1095 newpage = get_new_page(page, private, &result);
0dabec93
MK
1096 if (!newpage)
1097 return -ENOMEM;
1098
1099 if (page_count(page) == 1) {
1100 /* page was freed from under us. So we are done. */
c6c919eb
MK
1101 ClearPageActive(page);
1102 ClearPageUnevictable(page);
bda807d4
MK
1103 if (unlikely(__PageMovable(page))) {
1104 lock_page(page);
1105 if (!PageMovable(page))
1106 __ClearPageIsolated(page);
1107 unlock_page(page);
1108 }
c6c919eb
MK
1109 if (put_new_page)
1110 put_new_page(newpage, private);
1111 else
1112 put_page(newpage);
0dabec93
MK
1113 goto out;
1114 }
1115
4d2fa965
KS
1116 if (unlikely(PageTransHuge(page))) {
1117 lock_page(page);
1118 rc = split_huge_page(page);
1119 unlock_page(page);
1120 if (rc)
0dabec93 1121 goto out;
4d2fa965 1122 }
0dabec93 1123
9c620e2b 1124 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1125 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1126 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1127
0dabec93 1128out:
e24f0b8f 1129 if (rc != -EAGAIN) {
0dabec93
MK
1130 /*
1131 * A page that has been migrated has all references
1132 * removed and will be freed. A page that has not been
1133 * migrated will have kepts its references and be
1134 * restored.
1135 */
1136 list_del(&page->lru);
a731286d 1137 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 1138 page_is_file_cache(page));
c6c919eb
MK
1139 }
1140
1141 /*
1142 * If migration is successful, releases reference grabbed during
1143 * isolation. Otherwise, restore the page to right list unless
1144 * we want to retry.
1145 */
1146 if (rc == MIGRATEPAGE_SUCCESS) {
1147 put_page(page);
1148 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1149 /*
c6c919eb
MK
1150 * Set PG_HWPoison on just freed page
1151 * intentionally. Although it's rather weird,
1152 * it's how HWPoison flag works at the moment.
d7e69488 1153 */
da1b13cc
WL
1154 if (!test_set_page_hwpoison(page))
1155 num_poisoned_pages_inc();
c6c919eb
MK
1156 }
1157 } else {
bda807d4
MK
1158 if (rc != -EAGAIN) {
1159 if (likely(!__PageMovable(page))) {
1160 putback_lru_page(page);
1161 goto put_new;
1162 }
1163
1164 lock_page(page);
1165 if (PageMovable(page))
1166 putback_movable_page(page);
1167 else
1168 __ClearPageIsolated(page);
1169 unlock_page(page);
1170 put_page(page);
1171 }
1172put_new:
c6c919eb
MK
1173 if (put_new_page)
1174 put_new_page(newpage, private);
1175 else
1176 put_page(newpage);
e24f0b8f 1177 }
68711a74 1178
742755a1
CL
1179 if (result) {
1180 if (rc)
1181 *result = rc;
1182 else
1183 *result = page_to_nid(newpage);
1184 }
e24f0b8f
CL
1185 return rc;
1186}
1187
290408d4
NH
1188/*
1189 * Counterpart of unmap_and_move_page() for hugepage migration.
1190 *
1191 * This function doesn't wait the completion of hugepage I/O
1192 * because there is no race between I/O and migration for hugepage.
1193 * Note that currently hugepage I/O occurs only in direct I/O
1194 * where no lock is held and PG_writeback is irrelevant,
1195 * and writeback status of all subpages are counted in the reference
1196 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1197 * under direct I/O, the reference of the head page is 512 and a bit more.)
1198 * This means that when we try to migrate hugepage whose subpages are
1199 * doing direct I/O, some references remain after try_to_unmap() and
1200 * hugepage migration fails without data corruption.
1201 *
1202 * There is also no race when direct I/O is issued on the page under migration,
1203 * because then pte is replaced with migration swap entry and direct I/O code
1204 * will wait in the page fault for migration to complete.
1205 */
1206static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1207 free_page_t put_new_page, unsigned long private,
1208 struct page *hpage, int force,
7cd12b4a 1209 enum migrate_mode mode, int reason)
290408d4 1210{
2def7424 1211 int rc = -EAGAIN;
290408d4 1212 int *result = NULL;
2ebba6b7 1213 int page_was_mapped = 0;
32665f2b 1214 struct page *new_hpage;
290408d4
NH
1215 struct anon_vma *anon_vma = NULL;
1216
83467efb
NH
1217 /*
1218 * Movability of hugepages depends on architectures and hugepage size.
1219 * This check is necessary because some callers of hugepage migration
1220 * like soft offline and memory hotremove don't walk through page
1221 * tables or check whether the hugepage is pmd-based or not before
1222 * kicking migration.
1223 */
100873d7 1224 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1225 putback_active_hugepage(hpage);
83467efb 1226 return -ENOSYS;
32665f2b 1227 }
83467efb 1228
32665f2b 1229 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1230 if (!new_hpage)
1231 return -ENOMEM;
1232
290408d4 1233 if (!trylock_page(hpage)) {
a6bc32b8 1234 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
1235 goto out;
1236 lock_page(hpage);
1237 }
1238
746b18d4
PZ
1239 if (PageAnon(hpage))
1240 anon_vma = page_get_anon_vma(hpage);
290408d4 1241
7db7671f
HD
1242 if (unlikely(!trylock_page(new_hpage)))
1243 goto put_anon;
1244
2ebba6b7
HD
1245 if (page_mapped(hpage)) {
1246 try_to_unmap(hpage,
1247 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1248 page_was_mapped = 1;
1249 }
290408d4
NH
1250
1251 if (!page_mapped(hpage))
5c3f9a67 1252 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1253
5c3f9a67
HD
1254 if (page_was_mapped)
1255 remove_migration_ptes(hpage,
e388466d 1256 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1257
7db7671f
HD
1258 unlock_page(new_hpage);
1259
1260put_anon:
fd4a4663 1261 if (anon_vma)
9e60109f 1262 put_anon_vma(anon_vma);
8e6ac7fa 1263
2def7424 1264 if (rc == MIGRATEPAGE_SUCCESS) {
8e6ac7fa 1265 hugetlb_cgroup_migrate(hpage, new_hpage);
2def7424 1266 put_new_page = NULL;
7cd12b4a 1267 set_page_owner_migrate_reason(new_hpage, reason);
2def7424 1268 }
8e6ac7fa 1269
290408d4 1270 unlock_page(hpage);
09761333 1271out:
b8ec1cee
NH
1272 if (rc != -EAGAIN)
1273 putback_active_hugepage(hpage);
68711a74
DR
1274
1275 /*
1276 * If migration was not successful and there's a freeing callback, use
1277 * it. Otherwise, put_page() will drop the reference grabbed during
1278 * isolation.
1279 */
2def7424 1280 if (put_new_page)
68711a74
DR
1281 put_new_page(new_hpage, private);
1282 else
3aaa76e1 1283 putback_active_hugepage(new_hpage);
68711a74 1284
290408d4
NH
1285 if (result) {
1286 if (rc)
1287 *result = rc;
1288 else
1289 *result = page_to_nid(new_hpage);
1290 }
1291 return rc;
1292}
1293
b20a3503 1294/*
c73e5c9c
SB
1295 * migrate_pages - migrate the pages specified in a list, to the free pages
1296 * supplied as the target for the page migration
b20a3503 1297 *
c73e5c9c
SB
1298 * @from: The list of pages to be migrated.
1299 * @get_new_page: The function used to allocate free pages to be used
1300 * as the target of the page migration.
68711a74
DR
1301 * @put_new_page: The function used to free target pages if migration
1302 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1303 * @private: Private data to be passed on to get_new_page()
1304 * @mode: The migration mode that specifies the constraints for
1305 * page migration, if any.
1306 * @reason: The reason for page migration.
b20a3503 1307 *
c73e5c9c
SB
1308 * The function returns after 10 attempts or if no pages are movable any more
1309 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1310 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1311 * or free list only if ret != 0.
b20a3503 1312 *
c73e5c9c 1313 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1314 */
9c620e2b 1315int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1316 free_page_t put_new_page, unsigned long private,
1317 enum migrate_mode mode, int reason)
b20a3503 1318{
e24f0b8f 1319 int retry = 1;
b20a3503 1320 int nr_failed = 0;
5647bc29 1321 int nr_succeeded = 0;
b20a3503
CL
1322 int pass = 0;
1323 struct page *page;
1324 struct page *page2;
1325 int swapwrite = current->flags & PF_SWAPWRITE;
1326 int rc;
1327
1328 if (!swapwrite)
1329 current->flags |= PF_SWAPWRITE;
1330
e24f0b8f
CL
1331 for(pass = 0; pass < 10 && retry; pass++) {
1332 retry = 0;
b20a3503 1333
e24f0b8f 1334 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1335 cond_resched();
2d1db3b1 1336
31caf665
NH
1337 if (PageHuge(page))
1338 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1339 put_new_page, private, page,
7cd12b4a 1340 pass > 2, mode, reason);
31caf665 1341 else
68711a74 1342 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1343 private, page, pass > 2, mode,
1344 reason);
2d1db3b1 1345
e24f0b8f 1346 switch(rc) {
95a402c3 1347 case -ENOMEM:
dfef2ef4 1348 nr_failed++;
95a402c3 1349 goto out;
e24f0b8f 1350 case -EAGAIN:
2d1db3b1 1351 retry++;
e24f0b8f 1352 break;
78bd5209 1353 case MIGRATEPAGE_SUCCESS:
5647bc29 1354 nr_succeeded++;
e24f0b8f
CL
1355 break;
1356 default:
354a3363
NH
1357 /*
1358 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1359 * unlike -EAGAIN case, the failed page is
1360 * removed from migration page list and not
1361 * retried in the next outer loop.
1362 */
2d1db3b1 1363 nr_failed++;
e24f0b8f 1364 break;
2d1db3b1 1365 }
b20a3503
CL
1366 }
1367 }
f2f81fb2
VB
1368 nr_failed += retry;
1369 rc = nr_failed;
95a402c3 1370out:
5647bc29
MG
1371 if (nr_succeeded)
1372 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1373 if (nr_failed)
1374 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1375 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1376
b20a3503
CL
1377 if (!swapwrite)
1378 current->flags &= ~PF_SWAPWRITE;
1379
78bd5209 1380 return rc;
b20a3503 1381}
95a402c3 1382
742755a1
CL
1383#ifdef CONFIG_NUMA
1384/*
1385 * Move a list of individual pages
1386 */
1387struct page_to_node {
1388 unsigned long addr;
1389 struct page *page;
1390 int node;
1391 int status;
1392};
1393
1394static struct page *new_page_node(struct page *p, unsigned long private,
1395 int **result)
1396{
1397 struct page_to_node *pm = (struct page_to_node *)private;
1398
1399 while (pm->node != MAX_NUMNODES && pm->page != p)
1400 pm++;
1401
1402 if (pm->node == MAX_NUMNODES)
1403 return NULL;
1404
1405 *result = &pm->status;
1406
e632a938
NH
1407 if (PageHuge(p))
1408 return alloc_huge_page_node(page_hstate(compound_head(p)),
1409 pm->node);
1410 else
96db800f 1411 return __alloc_pages_node(pm->node,
e97ca8e5 1412 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
742755a1
CL
1413}
1414
1415/*
1416 * Move a set of pages as indicated in the pm array. The addr
1417 * field must be set to the virtual address of the page to be moved
1418 * and the node number must contain a valid target node.
5e9a0f02 1419 * The pm array ends with node = MAX_NUMNODES.
742755a1 1420 */
5e9a0f02
BG
1421static int do_move_page_to_node_array(struct mm_struct *mm,
1422 struct page_to_node *pm,
1423 int migrate_all)
742755a1
CL
1424{
1425 int err;
1426 struct page_to_node *pp;
1427 LIST_HEAD(pagelist);
1428
1429 down_read(&mm->mmap_sem);
1430
1431 /*
1432 * Build a list of pages to migrate
1433 */
742755a1
CL
1434 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1435 struct vm_area_struct *vma;
1436 struct page *page;
1437
742755a1
CL
1438 err = -EFAULT;
1439 vma = find_vma(mm, pp->addr);
70384dc6 1440 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1441 goto set_status;
1442
d899844e
KS
1443 /* FOLL_DUMP to ignore special (like zero) pages */
1444 page = follow_page(vma, pp->addr,
1445 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
89f5b7da
LT
1446
1447 err = PTR_ERR(page);
1448 if (IS_ERR(page))
1449 goto set_status;
1450
742755a1
CL
1451 err = -ENOENT;
1452 if (!page)
1453 goto set_status;
1454
742755a1
CL
1455 pp->page = page;
1456 err = page_to_nid(page);
1457
1458 if (err == pp->node)
1459 /*
1460 * Node already in the right place
1461 */
1462 goto put_and_set;
1463
1464 err = -EACCES;
1465 if (page_mapcount(page) > 1 &&
1466 !migrate_all)
1467 goto put_and_set;
1468
e632a938 1469 if (PageHuge(page)) {
e66f17ff
NH
1470 if (PageHead(page))
1471 isolate_huge_page(page, &pagelist);
e632a938
NH
1472 goto put_and_set;
1473 }
1474
62695a84 1475 err = isolate_lru_page(page);
6d9c285a 1476 if (!err) {
62695a84 1477 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1478 inc_zone_page_state(page, NR_ISOLATED_ANON +
1479 page_is_file_cache(page));
1480 }
742755a1
CL
1481put_and_set:
1482 /*
1483 * Either remove the duplicate refcount from
1484 * isolate_lru_page() or drop the page ref if it was
1485 * not isolated.
1486 */
1487 put_page(page);
1488set_status:
1489 pp->status = err;
1490 }
1491
e78bbfa8 1492 err = 0;
cf608ac1 1493 if (!list_empty(&pagelist)) {
68711a74 1494 err = migrate_pages(&pagelist, new_page_node, NULL,
9c620e2b 1495 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1496 if (err)
e632a938 1497 putback_movable_pages(&pagelist);
cf608ac1 1498 }
742755a1
CL
1499
1500 up_read(&mm->mmap_sem);
1501 return err;
1502}
1503
5e9a0f02
BG
1504/*
1505 * Migrate an array of page address onto an array of nodes and fill
1506 * the corresponding array of status.
1507 */
3268c63e 1508static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1509 unsigned long nr_pages,
1510 const void __user * __user *pages,
1511 const int __user *nodes,
1512 int __user *status, int flags)
1513{
3140a227 1514 struct page_to_node *pm;
3140a227
BG
1515 unsigned long chunk_nr_pages;
1516 unsigned long chunk_start;
1517 int err;
5e9a0f02 1518
3140a227
BG
1519 err = -ENOMEM;
1520 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1521 if (!pm)
5e9a0f02 1522 goto out;
35282a2d
BG
1523
1524 migrate_prep();
1525
5e9a0f02 1526 /*
3140a227
BG
1527 * Store a chunk of page_to_node array in a page,
1528 * but keep the last one as a marker
5e9a0f02 1529 */
3140a227 1530 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1531
3140a227
BG
1532 for (chunk_start = 0;
1533 chunk_start < nr_pages;
1534 chunk_start += chunk_nr_pages) {
1535 int j;
5e9a0f02 1536
3140a227
BG
1537 if (chunk_start + chunk_nr_pages > nr_pages)
1538 chunk_nr_pages = nr_pages - chunk_start;
1539
1540 /* fill the chunk pm with addrs and nodes from user-space */
1541 for (j = 0; j < chunk_nr_pages; j++) {
1542 const void __user *p;
5e9a0f02
BG
1543 int node;
1544
3140a227
BG
1545 err = -EFAULT;
1546 if (get_user(p, pages + j + chunk_start))
1547 goto out_pm;
1548 pm[j].addr = (unsigned long) p;
1549
1550 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1551 goto out_pm;
1552
1553 err = -ENODEV;
6f5a55f1
LT
1554 if (node < 0 || node >= MAX_NUMNODES)
1555 goto out_pm;
1556
389162c2 1557 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1558 goto out_pm;
1559
1560 err = -EACCES;
1561 if (!node_isset(node, task_nodes))
1562 goto out_pm;
1563
3140a227
BG
1564 pm[j].node = node;
1565 }
1566
1567 /* End marker for this chunk */
1568 pm[chunk_nr_pages].node = MAX_NUMNODES;
1569
1570 /* Migrate this chunk */
1571 err = do_move_page_to_node_array(mm, pm,
1572 flags & MPOL_MF_MOVE_ALL);
1573 if (err < 0)
1574 goto out_pm;
5e9a0f02 1575
5e9a0f02 1576 /* Return status information */
3140a227
BG
1577 for (j = 0; j < chunk_nr_pages; j++)
1578 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1579 err = -EFAULT;
3140a227
BG
1580 goto out_pm;
1581 }
1582 }
1583 err = 0;
5e9a0f02
BG
1584
1585out_pm:
3140a227 1586 free_page((unsigned long)pm);
5e9a0f02
BG
1587out:
1588 return err;
1589}
1590
742755a1 1591/*
2f007e74 1592 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1593 */
80bba129
BG
1594static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1595 const void __user **pages, int *status)
742755a1 1596{
2f007e74 1597 unsigned long i;
2f007e74 1598
742755a1
CL
1599 down_read(&mm->mmap_sem);
1600
2f007e74 1601 for (i = 0; i < nr_pages; i++) {
80bba129 1602 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1603 struct vm_area_struct *vma;
1604 struct page *page;
c095adbc 1605 int err = -EFAULT;
2f007e74
BG
1606
1607 vma = find_vma(mm, addr);
70384dc6 1608 if (!vma || addr < vma->vm_start)
742755a1
CL
1609 goto set_status;
1610
d899844e
KS
1611 /* FOLL_DUMP to ignore special (like zero) pages */
1612 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1613
1614 err = PTR_ERR(page);
1615 if (IS_ERR(page))
1616 goto set_status;
1617
d899844e 1618 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1619set_status:
80bba129
BG
1620 *status = err;
1621
1622 pages++;
1623 status++;
1624 }
1625
1626 up_read(&mm->mmap_sem);
1627}
1628
1629/*
1630 * Determine the nodes of a user array of pages and store it in
1631 * a user array of status.
1632 */
1633static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1634 const void __user * __user *pages,
1635 int __user *status)
1636{
1637#define DO_PAGES_STAT_CHUNK_NR 16
1638 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1639 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1640
87b8d1ad
PA
1641 while (nr_pages) {
1642 unsigned long chunk_nr;
80bba129 1643
87b8d1ad
PA
1644 chunk_nr = nr_pages;
1645 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1646 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1647
1648 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1649 break;
80bba129
BG
1650
1651 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1652
87b8d1ad
PA
1653 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1654 break;
742755a1 1655
87b8d1ad
PA
1656 pages += chunk_nr;
1657 status += chunk_nr;
1658 nr_pages -= chunk_nr;
1659 }
1660 return nr_pages ? -EFAULT : 0;
742755a1
CL
1661}
1662
1663/*
1664 * Move a list of pages in the address space of the currently executing
1665 * process.
1666 */
938bb9f5
HC
1667SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1668 const void __user * __user *, pages,
1669 const int __user *, nodes,
1670 int __user *, status, int, flags)
742755a1 1671{
c69e8d9c 1672 const struct cred *cred = current_cred(), *tcred;
742755a1 1673 struct task_struct *task;
742755a1 1674 struct mm_struct *mm;
5e9a0f02 1675 int err;
3268c63e 1676 nodemask_t task_nodes;
742755a1
CL
1677
1678 /* Check flags */
1679 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1680 return -EINVAL;
1681
1682 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1683 return -EPERM;
1684
1685 /* Find the mm_struct */
a879bf58 1686 rcu_read_lock();
228ebcbe 1687 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1688 if (!task) {
a879bf58 1689 rcu_read_unlock();
742755a1
CL
1690 return -ESRCH;
1691 }
3268c63e 1692 get_task_struct(task);
742755a1
CL
1693
1694 /*
1695 * Check if this process has the right to modify the specified
1696 * process. The right exists if the process has administrative
1697 * capabilities, superuser privileges or the same
1698 * userid as the target process.
1699 */
c69e8d9c 1700 tcred = __task_cred(task);
b38a86eb
EB
1701 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1702 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1703 !capable(CAP_SYS_NICE)) {
c69e8d9c 1704 rcu_read_unlock();
742755a1 1705 err = -EPERM;
5e9a0f02 1706 goto out;
742755a1 1707 }
c69e8d9c 1708 rcu_read_unlock();
742755a1 1709
86c3a764
DQ
1710 err = security_task_movememory(task);
1711 if (err)
5e9a0f02 1712 goto out;
86c3a764 1713
3268c63e
CL
1714 task_nodes = cpuset_mems_allowed(task);
1715 mm = get_task_mm(task);
1716 put_task_struct(task);
1717
6e8b09ea
SL
1718 if (!mm)
1719 return -EINVAL;
1720
1721 if (nodes)
1722 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1723 nodes, status, flags);
1724 else
1725 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1726
742755a1
CL
1727 mmput(mm);
1728 return err;
3268c63e
CL
1729
1730out:
1731 put_task_struct(task);
1732 return err;
742755a1 1733}
742755a1 1734
7039e1db
PZ
1735#ifdef CONFIG_NUMA_BALANCING
1736/*
1737 * Returns true if this is a safe migration target node for misplaced NUMA
1738 * pages. Currently it only checks the watermarks which crude
1739 */
1740static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1741 unsigned long nr_migrate_pages)
7039e1db
PZ
1742{
1743 int z;
1744 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745 struct zone *zone = pgdat->node_zones + z;
1746
1747 if (!populated_zone(zone))
1748 continue;
1749
6e543d57 1750 if (!zone_reclaimable(zone))
7039e1db
PZ
1751 continue;
1752
1753 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1754 if (!zone_watermark_ok(zone, 0,
1755 high_wmark_pages(zone) +
1756 nr_migrate_pages,
1757 0, 0))
1758 continue;
1759 return true;
1760 }
1761 return false;
1762}
1763
1764static struct page *alloc_misplaced_dst_page(struct page *page,
1765 unsigned long data,
1766 int **result)
1767{
1768 int nid = (int) data;
1769 struct page *newpage;
1770
96db800f 1771 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1772 (GFP_HIGHUSER_MOVABLE |
1773 __GFP_THISNODE | __GFP_NOMEMALLOC |
1774 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1775 ~__GFP_RECLAIM, 0);
bac0382c 1776
7039e1db
PZ
1777 return newpage;
1778}
1779
a8f60772
MG
1780/*
1781 * page migration rate limiting control.
1782 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1783 * window of time. Default here says do not migrate more than 1280M per second.
1784 */
1785static unsigned int migrate_interval_millisecs __read_mostly = 100;
1786static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1787
b32967ff 1788/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1789static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1790 unsigned long nr_pages)
7039e1db 1791{
a8f60772
MG
1792 /*
1793 * Rate-limit the amount of data that is being migrated to a node.
1794 * Optimal placement is no good if the memory bus is saturated and
1795 * all the time is being spent migrating!
1796 */
a8f60772 1797 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1798 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1799 pgdat->numabalancing_migrate_nr_pages = 0;
1800 pgdat->numabalancing_migrate_next_window = jiffies +
1801 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1802 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1803 }
af1839d7
MG
1804 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1805 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1806 nr_pages);
1c5e9c27 1807 return true;
af1839d7 1808 }
1c5e9c27
MG
1809
1810 /*
1811 * This is an unlocked non-atomic update so errors are possible.
1812 * The consequences are failing to migrate when we potentiall should
1813 * have which is not severe enough to warrant locking. If it is ever
1814 * a problem, it can be converted to a per-cpu counter.
1815 */
1816 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1817 return false;
b32967ff
MG
1818}
1819
1c30e017 1820static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1821{
340ef390 1822 int page_lru;
a8f60772 1823
309381fe 1824 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1825
7039e1db 1826 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1827 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1828 return 0;
7039e1db 1829
340ef390
HD
1830 if (isolate_lru_page(page))
1831 return 0;
7039e1db 1832
340ef390
HD
1833 /*
1834 * migrate_misplaced_transhuge_page() skips page migration's usual
1835 * check on page_count(), so we must do it here, now that the page
1836 * has been isolated: a GUP pin, or any other pin, prevents migration.
1837 * The expected page count is 3: 1 for page's mapcount and 1 for the
1838 * caller's pin and 1 for the reference taken by isolate_lru_page().
1839 */
1840 if (PageTransHuge(page) && page_count(page) != 3) {
1841 putback_lru_page(page);
1842 return 0;
7039e1db
PZ
1843 }
1844
340ef390
HD
1845 page_lru = page_is_file_cache(page);
1846 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1847 hpage_nr_pages(page));
1848
149c33e1 1849 /*
340ef390
HD
1850 * Isolating the page has taken another reference, so the
1851 * caller's reference can be safely dropped without the page
1852 * disappearing underneath us during migration.
149c33e1
MG
1853 */
1854 put_page(page);
340ef390 1855 return 1;
b32967ff
MG
1856}
1857
de466bd6
MG
1858bool pmd_trans_migrating(pmd_t pmd)
1859{
1860 struct page *page = pmd_page(pmd);
1861 return PageLocked(page);
1862}
1863
b32967ff
MG
1864/*
1865 * Attempt to migrate a misplaced page to the specified destination
1866 * node. Caller is expected to have an elevated reference count on
1867 * the page that will be dropped by this function before returning.
1868 */
1bc115d8
MG
1869int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1870 int node)
b32967ff
MG
1871{
1872 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1873 int isolated;
b32967ff
MG
1874 int nr_remaining;
1875 LIST_HEAD(migratepages);
1876
1877 /*
1bc115d8
MG
1878 * Don't migrate file pages that are mapped in multiple processes
1879 * with execute permissions as they are probably shared libraries.
b32967ff 1880 */
1bc115d8
MG
1881 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1882 (vma->vm_flags & VM_EXEC))
b32967ff 1883 goto out;
b32967ff
MG
1884
1885 /*
1886 * Rate-limit the amount of data that is being migrated to a node.
1887 * Optimal placement is no good if the memory bus is saturated and
1888 * all the time is being spent migrating!
1889 */
340ef390 1890 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1891 goto out;
b32967ff
MG
1892
1893 isolated = numamigrate_isolate_page(pgdat, page);
1894 if (!isolated)
1895 goto out;
1896
1897 list_add(&page->lru, &migratepages);
9c620e2b 1898 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1899 NULL, node, MIGRATE_ASYNC,
1900 MR_NUMA_MISPLACED);
b32967ff 1901 if (nr_remaining) {
59c82b70
JK
1902 if (!list_empty(&migratepages)) {
1903 list_del(&page->lru);
1904 dec_zone_page_state(page, NR_ISOLATED_ANON +
1905 page_is_file_cache(page));
1906 putback_lru_page(page);
1907 }
b32967ff
MG
1908 isolated = 0;
1909 } else
1910 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1911 BUG_ON(!list_empty(&migratepages));
7039e1db 1912 return isolated;
340ef390
HD
1913
1914out:
1915 put_page(page);
1916 return 0;
7039e1db 1917}
220018d3 1918#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1919
220018d3 1920#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1921/*
1922 * Migrates a THP to a given target node. page must be locked and is unlocked
1923 * before returning.
1924 */
b32967ff
MG
1925int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1926 struct vm_area_struct *vma,
1927 pmd_t *pmd, pmd_t entry,
1928 unsigned long address,
1929 struct page *page, int node)
1930{
c4088ebd 1931 spinlock_t *ptl;
b32967ff
MG
1932 pg_data_t *pgdat = NODE_DATA(node);
1933 int isolated = 0;
1934 struct page *new_page = NULL;
b32967ff 1935 int page_lru = page_is_file_cache(page);
f714f4f2
MG
1936 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1937 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2b4847e7 1938 pmd_t orig_entry;
b32967ff 1939
b32967ff
MG
1940 /*
1941 * Rate-limit the amount of data that is being migrated to a node.
1942 * Optimal placement is no good if the memory bus is saturated and
1943 * all the time is being spent migrating!
1944 */
d28d4335 1945 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1946 goto out_dropref;
1947
1948 new_page = alloc_pages_node(node,
71baba4b 1949 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
e97ca8e5 1950 HPAGE_PMD_ORDER);
340ef390
HD
1951 if (!new_page)
1952 goto out_fail;
9a982250 1953 prep_transhuge_page(new_page);
340ef390 1954
b32967ff 1955 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1956 if (!isolated) {
b32967ff 1957 put_page(new_page);
340ef390 1958 goto out_fail;
b32967ff 1959 }
458aa76d
AK
1960 /*
1961 * We are not sure a pending tlb flush here is for a huge page
1962 * mapping or not. Hence use the tlb range variant
1963 */
b0943d61
MG
1964 if (mm_tlb_flush_pending(mm))
1965 flush_tlb_range(vma, mmun_start, mmun_end);
1966
b32967ff 1967 /* Prepare a page as a migration target */
48c935ad 1968 __SetPageLocked(new_page);
fa9949da 1969 __SetPageSwapBacked(new_page);
b32967ff
MG
1970
1971 /* anon mapping, we can simply copy page->mapping to the new page: */
1972 new_page->mapping = page->mapping;
1973 new_page->index = page->index;
1974 migrate_page_copy(new_page, page);
1975 WARN_ON(PageLRU(new_page));
1976
1977 /* Recheck the target PMD */
f714f4f2 1978 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 1979 ptl = pmd_lock(mm, pmd);
2b4847e7
MG
1980 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1981fail_putback:
c4088ebd 1982 spin_unlock(ptl);
f714f4f2 1983 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1984
1985 /* Reverse changes made by migrate_page_copy() */
1986 if (TestClearPageActive(new_page))
1987 SetPageActive(page);
1988 if (TestClearPageUnevictable(new_page))
1989 SetPageUnevictable(page);
b32967ff
MG
1990
1991 unlock_page(new_page);
1992 put_page(new_page); /* Free it */
1993
a54a407f
MG
1994 /* Retake the callers reference and putback on LRU */
1995 get_page(page);
b32967ff 1996 putback_lru_page(page);
a54a407f
MG
1997 mod_zone_page_state(page_zone(page),
1998 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1999
2000 goto out_unlock;
b32967ff
MG
2001 }
2002
2b4847e7 2003 orig_entry = *pmd;
b32967ff 2004 entry = mk_pmd(new_page, vma->vm_page_prot);
b32967ff 2005 entry = pmd_mkhuge(entry);
2b4847e7 2006 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2007
2b4847e7
MG
2008 /*
2009 * Clear the old entry under pagetable lock and establish the new PTE.
2010 * Any parallel GUP will either observe the old page blocking on the
2011 * page lock, block on the page table lock or observe the new page.
2012 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2013 * guarantee the copy is visible before the pagetable update.
2014 */
f714f4f2 2015 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 2016 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 2017 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 2018 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 2019 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7
MG
2020
2021 if (page_count(page) != 2) {
f714f4f2 2022 set_pmd_at(mm, mmun_start, pmd, orig_entry);
458aa76d 2023 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
34ee645e 2024 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2b4847e7 2025 update_mmu_cache_pmd(vma, address, &entry);
d281ee61 2026 page_remove_rmap(new_page, true);
2b4847e7
MG
2027 goto fail_putback;
2028 }
2029
51afb12b 2030 mlock_migrate_page(new_page, page);
d281ee61 2031 page_remove_rmap(page, true);
7cd12b4a 2032 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2033
c4088ebd 2034 spin_unlock(ptl);
f714f4f2 2035 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff 2036
11de9927
MG
2037 /* Take an "isolate" reference and put new page on the LRU. */
2038 get_page(new_page);
2039 putback_lru_page(new_page);
2040
b32967ff
MG
2041 unlock_page(new_page);
2042 unlock_page(page);
2043 put_page(page); /* Drop the rmap reference */
2044 put_page(page); /* Drop the LRU isolation reference */
2045
2046 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2047 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2048
b32967ff
MG
2049 mod_zone_page_state(page_zone(page),
2050 NR_ISOLATED_ANON + page_lru,
2051 -HPAGE_PMD_NR);
2052 return isolated;
2053
340ef390
HD
2054out_fail:
2055 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2056out_dropref:
2b4847e7
MG
2057 ptl = pmd_lock(mm, pmd);
2058 if (pmd_same(*pmd, entry)) {
4d942466 2059 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2060 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2061 update_mmu_cache_pmd(vma, address, &entry);
2062 }
2063 spin_unlock(ptl);
a54a407f 2064
eb4489f6 2065out_unlock:
340ef390 2066 unlock_page(page);
b32967ff 2067 put_page(page);
b32967ff
MG
2068 return 0;
2069}
7039e1db
PZ
2070#endif /* CONFIG_NUMA_BALANCING */
2071
2072#endif /* CONFIG_NUMA */