]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/migrate.c
mm: thp: refactor NUMA fault handling
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
9e5bcd61 60int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
61{
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 79 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
109 unlock_page(page);
110
9e5bcd61 111 return 0;
bda807d4
MK
112
113out_no_isolated:
114 unlock_page(page);
115out_putpage:
116 put_page(page);
117out:
9e5bcd61 118 return -EBUSY;
bda807d4
MK
119}
120
606a6f71 121static void putback_movable_page(struct page *page)
bda807d4
MK
122{
123 struct address_space *mapping;
124
bda807d4
MK
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
128}
129
5733c7d1
RA
130/*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
59c82b70
JK
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
5733c7d1
RA
137 */
138void putback_movable_pages(struct list_head *l)
139{
140 struct page *page;
141 struct page *page2;
142
b20a3503 143 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
e24f0b8f 148 list_del(&page->lru);
bda807d4
MK
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
b1123ea6 154 if (unlikely(__PageMovable(page))) {
bda807d4
MK
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 __ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
e8db67eb 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 165 page_is_file_lru(page), -thp_nr_pages(page));
fc280fe8 166 putback_lru_page(page);
bda807d4 167 }
b20a3503 168 }
b20a3503
CL
169}
170
0697212a
CL
171/*
172 * Restore a potential migration pte to a working pte entry
173 */
e4b82222 174static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 175 unsigned long addr, void *old)
0697212a 176{
3fe87967
KS
177 struct page_vma_mapped_walk pvmw = {
178 .page = old,
179 .vma = vma,
180 .address = addr,
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
182 };
183 struct page *new;
184 pte_t pte;
0697212a 185 swp_entry_t entry;
0697212a 186
3fe87967
KS
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
189 if (PageKsm(page))
190 new = page;
191 else
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
0697212a 194
616b8371
ZY
195#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
197 if (!pvmw.pte) {
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
200 continue;
201 }
202#endif
203
3fe87967
KS
204 get_page(new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
0697212a 208
3fe87967
KS
209 /*
210 * Recheck VMA as permissions can change since migration started
211 */
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_write_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
d3cb8bf6 217
6128763f
RC
218 if (unlikely(is_device_private_page(new))) {
219 entry = make_device_private_entry(new, pte_write(pte));
220 pte = swp_entry_to_pte(entry);
3d321bf8
RC
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_swp_mksoft_dirty(pte);
6128763f
RC
223 if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_swp_mkuffd_wp(pte);
d2b2c6dd 225 }
a5430dda 226
3ef8fd7f 227#ifdef CONFIG_HUGETLB_PAGE
3fe87967 228 if (PageHuge(new)) {
79c1c594
CL
229 unsigned int shift = huge_page_shift(hstate_vma(vma));
230
3fe87967 231 pte = pte_mkhuge(pte);
79c1c594 232 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
383321ab 233 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
234 if (PageAnon(new))
235 hugepage_add_anon_rmap(new, vma, pvmw.address);
236 else
237 page_dup_rmap(new, true);
383321ab
AK
238 } else
239#endif
240 {
241 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 242
383321ab
AK
243 if (PageAnon(new))
244 page_add_anon_rmap(new, vma, pvmw.address, false);
245 else
246 page_add_file_rmap(new, false);
247 }
3fe87967
KS
248 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
249 mlock_vma_page(new);
250
e125fe40
KS
251 if (PageTransHuge(page) && PageMlocked(page))
252 clear_page_mlock(page);
253
3fe87967
KS
254 /* No need to invalidate - it was non-present before */
255 update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 }
51afb12b 257
e4b82222 258 return true;
0697212a
CL
259}
260
04e62a29
CL
261/*
262 * Get rid of all migration entries and replace them by
263 * references to the indicated page.
264 */
e388466d 265void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 266{
051ac83a
JK
267 struct rmap_walk_control rwc = {
268 .rmap_one = remove_migration_pte,
269 .arg = old,
270 };
271
e388466d
KS
272 if (locked)
273 rmap_walk_locked(new, &rwc);
274 else
275 rmap_walk(new, &rwc);
04e62a29
CL
276}
277
0697212a
CL
278/*
279 * Something used the pte of a page under migration. We need to
280 * get to the page and wait until migration is finished.
281 * When we return from this function the fault will be retried.
0697212a 282 */
e66f17ff 283void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 284 spinlock_t *ptl)
0697212a 285{
30dad309 286 pte_t pte;
0697212a
CL
287 swp_entry_t entry;
288 struct page *page;
289
30dad309 290 spin_lock(ptl);
0697212a
CL
291 pte = *ptep;
292 if (!is_swap_pte(pte))
293 goto out;
294
295 entry = pte_to_swp_entry(pte);
296 if (!is_migration_entry(entry))
297 goto out;
298
299 page = migration_entry_to_page(entry);
ffc90cbb 300 page = compound_head(page);
0697212a 301
e286781d 302 /*
89eb946a 303 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
304 * is zero; but we must not call put_and_wait_on_page_locked() without
305 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
306 */
307 if (!get_page_unless_zero(page))
308 goto out;
0697212a 309 pte_unmap_unlock(ptep, ptl);
48054625 310 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
0697212a
CL
311 return;
312out:
313 pte_unmap_unlock(ptep, ptl);
314}
315
30dad309
NH
316void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
317 unsigned long address)
318{
319 spinlock_t *ptl = pte_lockptr(mm, pmd);
320 pte_t *ptep = pte_offset_map(pmd, address);
321 __migration_entry_wait(mm, ptep, ptl);
322}
323
cb900f41
KS
324void migration_entry_wait_huge(struct vm_area_struct *vma,
325 struct mm_struct *mm, pte_t *pte)
30dad309 326{
cb900f41 327 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
328 __migration_entry_wait(mm, pte, ptl);
329}
330
616b8371
ZY
331#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
332void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
333{
334 spinlock_t *ptl;
335 struct page *page;
336
337 ptl = pmd_lock(mm, pmd);
338 if (!is_pmd_migration_entry(*pmd))
339 goto unlock;
340 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
341 if (!get_page_unless_zero(page))
342 goto unlock;
343 spin_unlock(ptl);
48054625 344 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
616b8371
ZY
345 return;
346unlock:
347 spin_unlock(ptl);
348}
349#endif
350
f900482d 351static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
352{
353 int expected_count = 1;
354
355 /*
f1f4f3ab 356 * Device private pages have an extra refcount as they are
0b3901b3
JK
357 * ZONE_DEVICE pages.
358 */
359 expected_count += is_device_private_page(page);
f900482d 360 if (mapping)
6c357848 361 expected_count += thp_nr_pages(page) + page_has_private(page);
0b3901b3
JK
362
363 return expected_count;
364}
365
b20a3503 366/*
c3fcf8a5 367 * Replace the page in the mapping.
5b5c7120
CL
368 *
369 * The number of remaining references must be:
370 * 1 for anonymous pages without a mapping
371 * 2 for pages with a mapping
266cf658 372 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 373 */
36bc08cc 374int migrate_page_move_mapping(struct address_space *mapping,
37109694 375 struct page *newpage, struct page *page, int extra_count)
b20a3503 376{
89eb946a 377 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
378 struct zone *oldzone, *newzone;
379 int dirty;
f900482d 380 int expected_count = expected_page_refs(mapping, page) + extra_count;
5c447d27 381 int nr = thp_nr_pages(page);
8763cb45 382
6c5240ae 383 if (!mapping) {
0e8c7d0f 384 /* Anonymous page without mapping */
8e321fef 385 if (page_count(page) != expected_count)
6c5240ae 386 return -EAGAIN;
cf4b769a
HD
387
388 /* No turning back from here */
cf4b769a
HD
389 newpage->index = page->index;
390 newpage->mapping = page->mapping;
391 if (PageSwapBacked(page))
fa9949da 392 __SetPageSwapBacked(newpage);
cf4b769a 393
78bd5209 394 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
395 }
396
42cb14b1
HD
397 oldzone = page_zone(page);
398 newzone = page_zone(newpage);
399
89eb946a 400 xas_lock_irq(&xas);
89eb946a
MW
401 if (page_count(page) != expected_count || xas_load(&xas) != page) {
402 xas_unlock_irq(&xas);
e23ca00b 403 return -EAGAIN;
b20a3503
CL
404 }
405
fe896d18 406 if (!page_ref_freeze(page, expected_count)) {
89eb946a 407 xas_unlock_irq(&xas);
e286781d
NP
408 return -EAGAIN;
409 }
410
b20a3503 411 /*
cf4b769a
HD
412 * Now we know that no one else is looking at the page:
413 * no turning back from here.
b20a3503 414 */
cf4b769a
HD
415 newpage->index = page->index;
416 newpage->mapping = page->mapping;
5c447d27 417 page_ref_add(newpage, nr); /* add cache reference */
6326fec1
NP
418 if (PageSwapBacked(page)) {
419 __SetPageSwapBacked(newpage);
420 if (PageSwapCache(page)) {
421 SetPageSwapCache(newpage);
422 set_page_private(newpage, page_private(page));
423 }
424 } else {
425 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
426 }
427
42cb14b1
HD
428 /* Move dirty while page refs frozen and newpage not yet exposed */
429 dirty = PageDirty(page);
430 if (dirty) {
431 ClearPageDirty(page);
432 SetPageDirty(newpage);
433 }
434
89eb946a 435 xas_store(&xas, newpage);
e71769ae
NH
436 if (PageTransHuge(page)) {
437 int i;
e71769ae 438
5c447d27 439 for (i = 1; i < nr; i++) {
89eb946a 440 xas_next(&xas);
4101196b 441 xas_store(&xas, newpage);
e71769ae 442 }
e71769ae 443 }
7cf9c2c7
NP
444
445 /*
937a94c9
JG
446 * Drop cache reference from old page by unfreezing
447 * to one less reference.
7cf9c2c7
NP
448 * We know this isn't the last reference.
449 */
5c447d27 450 page_ref_unfreeze(page, expected_count - nr);
7cf9c2c7 451
89eb946a 452 xas_unlock(&xas);
42cb14b1
HD
453 /* Leave irq disabled to prevent preemption while updating stats */
454
0e8c7d0f
CL
455 /*
456 * If moved to a different zone then also account
457 * the page for that zone. Other VM counters will be
458 * taken care of when we establish references to the
459 * new page and drop references to the old page.
460 *
461 * Note that anonymous pages are accounted for
4b9d0fab 462 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
463 * are mapped to swap space.
464 */
42cb14b1 465 if (newzone != oldzone) {
0d1c2072
JW
466 struct lruvec *old_lruvec, *new_lruvec;
467 struct mem_cgroup *memcg;
468
469 memcg = page_memcg(page);
470 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
471 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
472
5c447d27
SB
473 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
474 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
42cb14b1 475 if (PageSwapBacked(page) && !PageSwapCache(page)) {
5c447d27
SB
476 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
477 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
42cb14b1 478 }
b6038942
SB
479#ifdef CONFIG_SWAP
480 if (PageSwapCache(page)) {
481 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
482 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
483 }
484#endif
f56753ac 485 if (dirty && mapping_can_writeback(mapping)) {
5c447d27
SB
486 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
487 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
488 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
489 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
42cb14b1 490 }
4b02108a 491 }
42cb14b1 492 local_irq_enable();
b20a3503 493
78bd5209 494 return MIGRATEPAGE_SUCCESS;
b20a3503 495}
1118dce7 496EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 497
290408d4
NH
498/*
499 * The expected number of remaining references is the same as that
500 * of migrate_page_move_mapping().
501 */
502int migrate_huge_page_move_mapping(struct address_space *mapping,
503 struct page *newpage, struct page *page)
504{
89eb946a 505 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 506 int expected_count;
290408d4 507
89eb946a 508 xas_lock_irq(&xas);
290408d4 509 expected_count = 2 + page_has_private(page);
89eb946a
MW
510 if (page_count(page) != expected_count || xas_load(&xas) != page) {
511 xas_unlock_irq(&xas);
290408d4
NH
512 return -EAGAIN;
513 }
514
fe896d18 515 if (!page_ref_freeze(page, expected_count)) {
89eb946a 516 xas_unlock_irq(&xas);
290408d4
NH
517 return -EAGAIN;
518 }
519
cf4b769a
HD
520 newpage->index = page->index;
521 newpage->mapping = page->mapping;
6a93ca8f 522
290408d4
NH
523 get_page(newpage);
524
89eb946a 525 xas_store(&xas, newpage);
290408d4 526
fe896d18 527 page_ref_unfreeze(page, expected_count - 1);
290408d4 528
89eb946a 529 xas_unlock_irq(&xas);
6a93ca8f 530
78bd5209 531 return MIGRATEPAGE_SUCCESS;
290408d4
NH
532}
533
30b0a105
DH
534/*
535 * Gigantic pages are so large that we do not guarantee that page++ pointer
536 * arithmetic will work across the entire page. We need something more
537 * specialized.
538 */
539static void __copy_gigantic_page(struct page *dst, struct page *src,
540 int nr_pages)
541{
542 int i;
543 struct page *dst_base = dst;
544 struct page *src_base = src;
545
546 for (i = 0; i < nr_pages; ) {
547 cond_resched();
548 copy_highpage(dst, src);
549
550 i++;
551 dst = mem_map_next(dst, dst_base, i);
552 src = mem_map_next(src, src_base, i);
553 }
554}
555
8cc5fcbb 556void copy_huge_page(struct page *dst, struct page *src)
30b0a105
DH
557{
558 int i;
559 int nr_pages;
560
561 if (PageHuge(src)) {
562 /* hugetlbfs page */
563 struct hstate *h = page_hstate(src);
564 nr_pages = pages_per_huge_page(h);
565
566 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
567 __copy_gigantic_page(dst, src, nr_pages);
568 return;
569 }
570 } else {
571 /* thp page */
572 BUG_ON(!PageTransHuge(src));
6c357848 573 nr_pages = thp_nr_pages(src);
30b0a105
DH
574 }
575
576 for (i = 0; i < nr_pages; i++) {
577 cond_resched();
578 copy_highpage(dst + i, src + i);
579 }
580}
581
b20a3503
CL
582/*
583 * Copy the page to its new location
584 */
2916ecc0 585void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 586{
7851a45c
RR
587 int cpupid;
588
b20a3503
CL
589 if (PageError(page))
590 SetPageError(newpage);
591 if (PageReferenced(page))
592 SetPageReferenced(newpage);
593 if (PageUptodate(page))
594 SetPageUptodate(newpage);
894bc310 595 if (TestClearPageActive(page)) {
309381fe 596 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 597 SetPageActive(newpage);
418b27ef
LS
598 } else if (TestClearPageUnevictable(page))
599 SetPageUnevictable(newpage);
1899ad18
JW
600 if (PageWorkingset(page))
601 SetPageWorkingset(newpage);
b20a3503
CL
602 if (PageChecked(page))
603 SetPageChecked(newpage);
604 if (PageMappedToDisk(page))
605 SetPageMappedToDisk(newpage);
606
42cb14b1
HD
607 /* Move dirty on pages not done by migrate_page_move_mapping() */
608 if (PageDirty(page))
609 SetPageDirty(newpage);
b20a3503 610
33c3fc71
VD
611 if (page_is_young(page))
612 set_page_young(newpage);
613 if (page_is_idle(page))
614 set_page_idle(newpage);
615
7851a45c
RR
616 /*
617 * Copy NUMA information to the new page, to prevent over-eager
618 * future migrations of this same page.
619 */
620 cpupid = page_cpupid_xchg_last(page, -1);
621 page_cpupid_xchg_last(newpage, cpupid);
622
e9995ef9 623 ksm_migrate_page(newpage, page);
c8d6553b
HD
624 /*
625 * Please do not reorder this without considering how mm/ksm.c's
626 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
627 */
b3b3a99c
NH
628 if (PageSwapCache(page))
629 ClearPageSwapCache(page);
b20a3503 630 ClearPagePrivate(page);
ad2fa371
MS
631
632 /* page->private contains hugetlb specific flags */
633 if (!PageHuge(page))
634 set_page_private(page, 0);
b20a3503
CL
635
636 /*
637 * If any waiters have accumulated on the new page then
638 * wake them up.
639 */
640 if (PageWriteback(newpage))
641 end_page_writeback(newpage);
d435edca 642
6aeff241
YS
643 /*
644 * PG_readahead shares the same bit with PG_reclaim. The above
645 * end_page_writeback() may clear PG_readahead mistakenly, so set the
646 * bit after that.
647 */
648 if (PageReadahead(page))
649 SetPageReadahead(newpage);
650
d435edca 651 copy_page_owner(page, newpage);
74485cf2 652
a333e3e7
HD
653 if (!PageHuge(page))
654 mem_cgroup_migrate(page, newpage);
b20a3503 655}
2916ecc0
JG
656EXPORT_SYMBOL(migrate_page_states);
657
658void migrate_page_copy(struct page *newpage, struct page *page)
659{
660 if (PageHuge(page) || PageTransHuge(page))
661 copy_huge_page(newpage, page);
662 else
663 copy_highpage(newpage, page);
664
665 migrate_page_states(newpage, page);
666}
1118dce7 667EXPORT_SYMBOL(migrate_page_copy);
b20a3503 668
1d8b85cc
CL
669/************************************************************
670 * Migration functions
671 ***********************************************************/
672
b20a3503 673/*
bda807d4 674 * Common logic to directly migrate a single LRU page suitable for
266cf658 675 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
676 *
677 * Pages are locked upon entry and exit.
678 */
2d1db3b1 679int migrate_page(struct address_space *mapping,
a6bc32b8
MG
680 struct page *newpage, struct page *page,
681 enum migrate_mode mode)
b20a3503
CL
682{
683 int rc;
684
685 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
686
37109694 687 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 688
78bd5209 689 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
690 return rc;
691
2916ecc0
JG
692 if (mode != MIGRATE_SYNC_NO_COPY)
693 migrate_page_copy(newpage, page);
694 else
695 migrate_page_states(newpage, page);
78bd5209 696 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
697}
698EXPORT_SYMBOL(migrate_page);
699
9361401e 700#ifdef CONFIG_BLOCK
84ade7c1
JK
701/* Returns true if all buffers are successfully locked */
702static bool buffer_migrate_lock_buffers(struct buffer_head *head,
703 enum migrate_mode mode)
704{
705 struct buffer_head *bh = head;
706
707 /* Simple case, sync compaction */
708 if (mode != MIGRATE_ASYNC) {
709 do {
84ade7c1
JK
710 lock_buffer(bh);
711 bh = bh->b_this_page;
712
713 } while (bh != head);
714
715 return true;
716 }
717
718 /* async case, we cannot block on lock_buffer so use trylock_buffer */
719 do {
84ade7c1
JK
720 if (!trylock_buffer(bh)) {
721 /*
722 * We failed to lock the buffer and cannot stall in
723 * async migration. Release the taken locks
724 */
725 struct buffer_head *failed_bh = bh;
84ade7c1
JK
726 bh = head;
727 while (bh != failed_bh) {
728 unlock_buffer(bh);
84ade7c1
JK
729 bh = bh->b_this_page;
730 }
731 return false;
732 }
733
734 bh = bh->b_this_page;
735 } while (bh != head);
736 return true;
737}
738
89cb0888
JK
739static int __buffer_migrate_page(struct address_space *mapping,
740 struct page *newpage, struct page *page, enum migrate_mode mode,
741 bool check_refs)
1d8b85cc 742{
1d8b85cc
CL
743 struct buffer_head *bh, *head;
744 int rc;
cc4f11e6 745 int expected_count;
1d8b85cc 746
1d8b85cc 747 if (!page_has_buffers(page))
a6bc32b8 748 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 749
cc4f11e6 750 /* Check whether page does not have extra refs before we do more work */
f900482d 751 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
752 if (page_count(page) != expected_count)
753 return -EAGAIN;
1d8b85cc 754
cc4f11e6
JK
755 head = page_buffers(page);
756 if (!buffer_migrate_lock_buffers(head, mode))
757 return -EAGAIN;
1d8b85cc 758
89cb0888
JK
759 if (check_refs) {
760 bool busy;
761 bool invalidated = false;
762
763recheck_buffers:
764 busy = false;
765 spin_lock(&mapping->private_lock);
766 bh = head;
767 do {
768 if (atomic_read(&bh->b_count)) {
769 busy = true;
770 break;
771 }
772 bh = bh->b_this_page;
773 } while (bh != head);
89cb0888
JK
774 if (busy) {
775 if (invalidated) {
776 rc = -EAGAIN;
777 goto unlock_buffers;
778 }
ebdf4de5 779 spin_unlock(&mapping->private_lock);
89cb0888
JK
780 invalidate_bh_lrus();
781 invalidated = true;
782 goto recheck_buffers;
783 }
784 }
785
37109694 786 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 787 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 788 goto unlock_buffers;
1d8b85cc 789
cd0f3715 790 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
791
792 bh = head;
793 do {
794 set_bh_page(bh, newpage, bh_offset(bh));
795 bh = bh->b_this_page;
796
797 } while (bh != head);
798
2916ecc0
JG
799 if (mode != MIGRATE_SYNC_NO_COPY)
800 migrate_page_copy(newpage, page);
801 else
802 migrate_page_states(newpage, page);
1d8b85cc 803
cc4f11e6
JK
804 rc = MIGRATEPAGE_SUCCESS;
805unlock_buffers:
ebdf4de5
JK
806 if (check_refs)
807 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
808 bh = head;
809 do {
810 unlock_buffer(bh);
1d8b85cc
CL
811 bh = bh->b_this_page;
812
813 } while (bh != head);
814
cc4f11e6 815 return rc;
1d8b85cc 816}
89cb0888
JK
817
818/*
819 * Migration function for pages with buffers. This function can only be used
820 * if the underlying filesystem guarantees that no other references to "page"
821 * exist. For example attached buffer heads are accessed only under page lock.
822 */
823int buffer_migrate_page(struct address_space *mapping,
824 struct page *newpage, struct page *page, enum migrate_mode mode)
825{
826 return __buffer_migrate_page(mapping, newpage, page, mode, false);
827}
1d8b85cc 828EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
829
830/*
831 * Same as above except that this variant is more careful and checks that there
832 * are also no buffer head references. This function is the right one for
833 * mappings where buffer heads are directly looked up and referenced (such as
834 * block device mappings).
835 */
836int buffer_migrate_page_norefs(struct address_space *mapping,
837 struct page *newpage, struct page *page, enum migrate_mode mode)
838{
839 return __buffer_migrate_page(mapping, newpage, page, mode, true);
840}
9361401e 841#endif
1d8b85cc 842
04e62a29
CL
843/*
844 * Writeback a page to clean the dirty state
845 */
846static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 847{
04e62a29
CL
848 struct writeback_control wbc = {
849 .sync_mode = WB_SYNC_NONE,
850 .nr_to_write = 1,
851 .range_start = 0,
852 .range_end = LLONG_MAX,
04e62a29
CL
853 .for_reclaim = 1
854 };
855 int rc;
856
857 if (!mapping->a_ops->writepage)
858 /* No write method for the address space */
859 return -EINVAL;
860
861 if (!clear_page_dirty_for_io(page))
862 /* Someone else already triggered a write */
863 return -EAGAIN;
864
8351a6e4 865 /*
04e62a29
CL
866 * A dirty page may imply that the underlying filesystem has
867 * the page on some queue. So the page must be clean for
868 * migration. Writeout may mean we loose the lock and the
869 * page state is no longer what we checked for earlier.
870 * At this point we know that the migration attempt cannot
871 * be successful.
8351a6e4 872 */
e388466d 873 remove_migration_ptes(page, page, false);
8351a6e4 874
04e62a29 875 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 876
04e62a29
CL
877 if (rc != AOP_WRITEPAGE_ACTIVATE)
878 /* unlocked. Relock */
879 lock_page(page);
880
bda8550d 881 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
882}
883
884/*
885 * Default handling if a filesystem does not provide a migration function.
886 */
887static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 888 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 889{
b969c4ab 890 if (PageDirty(page)) {
a6bc32b8 891 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
892 switch (mode) {
893 case MIGRATE_SYNC:
894 case MIGRATE_SYNC_NO_COPY:
895 break;
896 default:
b969c4ab 897 return -EBUSY;
2916ecc0 898 }
04e62a29 899 return writeout(mapping, page);
b969c4ab 900 }
8351a6e4
CL
901
902 /*
903 * Buffers may be managed in a filesystem specific way.
904 * We must have no buffers or drop them.
905 */
266cf658 906 if (page_has_private(page) &&
8351a6e4 907 !try_to_release_page(page, GFP_KERNEL))
806031bb 908 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 909
a6bc32b8 910 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
911}
912
e24f0b8f
CL
913/*
914 * Move a page to a newly allocated page
915 * The page is locked and all ptes have been successfully removed.
916 *
917 * The new page will have replaced the old page if this function
918 * is successful.
894bc310
LS
919 *
920 * Return value:
921 * < 0 - error code
78bd5209 922 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 923 */
3fe2011f 924static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 925 enum migrate_mode mode)
e24f0b8f
CL
926{
927 struct address_space *mapping;
bda807d4
MK
928 int rc = -EAGAIN;
929 bool is_lru = !__PageMovable(page);
e24f0b8f 930
7db7671f
HD
931 VM_BUG_ON_PAGE(!PageLocked(page), page);
932 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 933
e24f0b8f 934 mapping = page_mapping(page);
bda807d4
MK
935
936 if (likely(is_lru)) {
937 if (!mapping)
938 rc = migrate_page(mapping, newpage, page, mode);
939 else if (mapping->a_ops->migratepage)
940 /*
941 * Most pages have a mapping and most filesystems
942 * provide a migratepage callback. Anonymous pages
943 * are part of swap space which also has its own
944 * migratepage callback. This is the most common path
945 * for page migration.
946 */
947 rc = mapping->a_ops->migratepage(mapping, newpage,
948 page, mode);
949 else
950 rc = fallback_migrate_page(mapping, newpage,
951 page, mode);
952 } else {
e24f0b8f 953 /*
bda807d4
MK
954 * In case of non-lru page, it could be released after
955 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 956 */
bda807d4
MK
957 VM_BUG_ON_PAGE(!PageIsolated(page), page);
958 if (!PageMovable(page)) {
959 rc = MIGRATEPAGE_SUCCESS;
960 __ClearPageIsolated(page);
961 goto out;
962 }
963
964 rc = mapping->a_ops->migratepage(mapping, newpage,
965 page, mode);
966 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967 !PageIsolated(page));
968 }
e24f0b8f 969
5c3f9a67
HD
970 /*
971 * When successful, old pagecache page->mapping must be cleared before
972 * page is freed; but stats require that PageAnon be left as PageAnon.
973 */
974 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
975 if (__PageMovable(page)) {
976 VM_BUG_ON_PAGE(!PageIsolated(page), page);
977
978 /*
979 * We clear PG_movable under page_lock so any compactor
980 * cannot try to migrate this page.
981 */
982 __ClearPageIsolated(page);
983 }
984
985 /*
c23a0c99 986 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
987 * free_pages_prepare so don't reset it here for keeping
988 * the type to work PageAnon, for example.
989 */
990 if (!PageMappingFlags(page))
5c3f9a67 991 page->mapping = NULL;
d2b2c6dd 992
25b2995a 993 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
994 flush_dcache_page(newpage);
995
3fe2011f 996 }
bda807d4 997out:
e24f0b8f
CL
998 return rc;
999}
1000
0dabec93 1001static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1002 int force, enum migrate_mode mode)
e24f0b8f 1003{
0dabec93 1004 int rc = -EAGAIN;
2ebba6b7 1005 int page_was_mapped = 0;
3f6c8272 1006 struct anon_vma *anon_vma = NULL;
bda807d4 1007 bool is_lru = !__PageMovable(page);
95a402c3 1008
529ae9aa 1009 if (!trylock_page(page)) {
a6bc32b8 1010 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1011 goto out;
3e7d3449
MG
1012
1013 /*
1014 * It's not safe for direct compaction to call lock_page.
1015 * For example, during page readahead pages are added locked
1016 * to the LRU. Later, when the IO completes the pages are
1017 * marked uptodate and unlocked. However, the queueing
1018 * could be merging multiple pages for one bio (e.g.
d4388340 1019 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1020 * second or third page, the process can end up locking
1021 * the same page twice and deadlocking. Rather than
1022 * trying to be clever about what pages can be locked,
1023 * avoid the use of lock_page for direct compaction
1024 * altogether.
1025 */
1026 if (current->flags & PF_MEMALLOC)
0dabec93 1027 goto out;
3e7d3449 1028
e24f0b8f
CL
1029 lock_page(page);
1030 }
1031
1032 if (PageWriteback(page)) {
11bc82d6 1033 /*
fed5b64a 1034 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1035 * necessary to wait for PageWriteback. In the async case,
1036 * the retry loop is too short and in the sync-light case,
1037 * the overhead of stalling is too much
11bc82d6 1038 */
2916ecc0
JG
1039 switch (mode) {
1040 case MIGRATE_SYNC:
1041 case MIGRATE_SYNC_NO_COPY:
1042 break;
1043 default:
11bc82d6 1044 rc = -EBUSY;
0a31bc97 1045 goto out_unlock;
11bc82d6
AA
1046 }
1047 if (!force)
0a31bc97 1048 goto out_unlock;
e24f0b8f
CL
1049 wait_on_page_writeback(page);
1050 }
03f15c86 1051
e24f0b8f 1052 /*
dc386d4d
KH
1053 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1054 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1055 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1056 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1057 * File Caches may use write_page() or lock_page() in migration, then,
1058 * just care Anon page here.
03f15c86
HD
1059 *
1060 * Only page_get_anon_vma() understands the subtleties of
1061 * getting a hold on an anon_vma from outside one of its mms.
1062 * But if we cannot get anon_vma, then we won't need it anyway,
1063 * because that implies that the anon page is no longer mapped
1064 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1065 */
03f15c86 1066 if (PageAnon(page) && !PageKsm(page))
746b18d4 1067 anon_vma = page_get_anon_vma(page);
62e1c553 1068
7db7671f
HD
1069 /*
1070 * Block others from accessing the new page when we get around to
1071 * establishing additional references. We are usually the only one
1072 * holding a reference to newpage at this point. We used to have a BUG
1073 * here if trylock_page(newpage) fails, but would like to allow for
1074 * cases where there might be a race with the previous use of newpage.
1075 * This is much like races on refcount of oldpage: just don't BUG().
1076 */
1077 if (unlikely(!trylock_page(newpage)))
1078 goto out_unlock;
1079
bda807d4
MK
1080 if (unlikely(!is_lru)) {
1081 rc = move_to_new_page(newpage, page, mode);
1082 goto out_unlock_both;
1083 }
1084
dc386d4d 1085 /*
62e1c553
SL
1086 * Corner case handling:
1087 * 1. When a new swap-cache page is read into, it is added to the LRU
1088 * and treated as swapcache but it has no rmap yet.
1089 * Calling try_to_unmap() against a page->mapping==NULL page will
1090 * trigger a BUG. So handle it here.
d12b8951 1091 * 2. An orphaned page (see truncate_cleanup_page) might have
62e1c553
SL
1092 * fs-private metadata. The page can be picked up due to memory
1093 * offlining. Everywhere else except page reclaim, the page is
1094 * invisible to the vm, so the page can not be migrated. So try to
1095 * free the metadata, so the page can be freed.
e24f0b8f 1096 */
62e1c553 1097 if (!page->mapping) {
309381fe 1098 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1099 if (page_has_private(page)) {
62e1c553 1100 try_to_free_buffers(page);
7db7671f 1101 goto out_unlock_both;
62e1c553 1102 }
7db7671f
HD
1103 } else if (page_mapped(page)) {
1104 /* Establish migration ptes */
03f15c86
HD
1105 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1106 page);
013339df 1107 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
2ebba6b7
HD
1108 page_was_mapped = 1;
1109 }
dc386d4d 1110
e6a1530d 1111 if (!page_mapped(page))
5c3f9a67 1112 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1113
5c3f9a67
HD
1114 if (page_was_mapped)
1115 remove_migration_ptes(page,
e388466d 1116 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1117
7db7671f
HD
1118out_unlock_both:
1119 unlock_page(newpage);
1120out_unlock:
3f6c8272 1121 /* Drop an anon_vma reference if we took one */
76545066 1122 if (anon_vma)
9e60109f 1123 put_anon_vma(anon_vma);
e24f0b8f 1124 unlock_page(page);
0dabec93 1125out:
c6c919eb
MK
1126 /*
1127 * If migration is successful, decrease refcount of the newpage
1128 * which will not free the page because new page owner increased
1129 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1130 * list in here. Use the old state of the isolated source page to
1131 * determine if we migrated a LRU page. newpage was already unlocked
1132 * and possibly modified by its owner - don't rely on the page
1133 * state.
c6c919eb
MK
1134 */
1135 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1136 if (unlikely(!is_lru))
c6c919eb
MK
1137 put_page(newpage);
1138 else
1139 putback_lru_page(newpage);
1140 }
1141
0dabec93
MK
1142 return rc;
1143}
95a402c3 1144
0dabec93
MK
1145/*
1146 * Obtain the lock on page, remove all ptes and migrate the page
1147 * to the newly allocated page in newpage.
1148 */
6ec4476a 1149static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1150 free_page_t put_new_page,
1151 unsigned long private, struct page *page,
add05cec 1152 int force, enum migrate_mode mode,
dd4ae78a
YS
1153 enum migrate_reason reason,
1154 struct list_head *ret)
0dabec93 1155{
2def7424 1156 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1157 struct page *newpage = NULL;
0dabec93 1158
94723aaf 1159 if (!thp_migration_supported() && PageTransHuge(page))
d532e2e5 1160 return -ENOSYS;
94723aaf 1161
0dabec93
MK
1162 if (page_count(page) == 1) {
1163 /* page was freed from under us. So we are done. */
c6c919eb
MK
1164 ClearPageActive(page);
1165 ClearPageUnevictable(page);
bda807d4
MK
1166 if (unlikely(__PageMovable(page))) {
1167 lock_page(page);
1168 if (!PageMovable(page))
1169 __ClearPageIsolated(page);
1170 unlock_page(page);
1171 }
0dabec93
MK
1172 goto out;
1173 }
1174
74d4a579
YS
1175 newpage = get_new_page(page, private);
1176 if (!newpage)
1177 return -ENOMEM;
1178
9c620e2b 1179 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1180 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1181 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1182
0dabec93 1183out:
e24f0b8f 1184 if (rc != -EAGAIN) {
0dabec93
MK
1185 /*
1186 * A page that has been migrated has all references
1187 * removed and will be freed. A page that has not been
c23a0c99 1188 * migrated will have kept its references and be restored.
0dabec93
MK
1189 */
1190 list_del(&page->lru);
dd4ae78a 1191 }
6afcf8ef 1192
dd4ae78a
YS
1193 /*
1194 * If migration is successful, releases reference grabbed during
1195 * isolation. Otherwise, restore the page to right list unless
1196 * we want to retry.
1197 */
1198 if (rc == MIGRATEPAGE_SUCCESS) {
6afcf8ef
ML
1199 /*
1200 * Compaction can migrate also non-LRU pages which are
1201 * not accounted to NR_ISOLATED_*. They can be recognized
1202 * as __PageMovable
1203 */
1204 if (likely(!__PageMovable(page)))
e8db67eb 1205 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 1206 page_is_file_lru(page), -thp_nr_pages(page));
c6c919eb 1207
79f5f8fa 1208 if (reason != MR_MEMORY_FAILURE)
d7e69488 1209 /*
79f5f8fa 1210 * We release the page in page_handle_poison.
d7e69488 1211 */
79f5f8fa 1212 put_page(page);
c6c919eb 1213 } else {
dd4ae78a
YS
1214 if (rc != -EAGAIN)
1215 list_add_tail(&page->lru, ret);
bda807d4 1216
c6c919eb
MK
1217 if (put_new_page)
1218 put_new_page(newpage, private);
1219 else
1220 put_page(newpage);
e24f0b8f 1221 }
68711a74 1222
e24f0b8f
CL
1223 return rc;
1224}
1225
290408d4
NH
1226/*
1227 * Counterpart of unmap_and_move_page() for hugepage migration.
1228 *
1229 * This function doesn't wait the completion of hugepage I/O
1230 * because there is no race between I/O and migration for hugepage.
1231 * Note that currently hugepage I/O occurs only in direct I/O
1232 * where no lock is held and PG_writeback is irrelevant,
1233 * and writeback status of all subpages are counted in the reference
1234 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1235 * under direct I/O, the reference of the head page is 512 and a bit more.)
1236 * This means that when we try to migrate hugepage whose subpages are
1237 * doing direct I/O, some references remain after try_to_unmap() and
1238 * hugepage migration fails without data corruption.
1239 *
1240 * There is also no race when direct I/O is issued on the page under migration,
1241 * because then pte is replaced with migration swap entry and direct I/O code
1242 * will wait in the page fault for migration to complete.
1243 */
1244static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1245 free_page_t put_new_page, unsigned long private,
1246 struct page *hpage, int force,
dd4ae78a
YS
1247 enum migrate_mode mode, int reason,
1248 struct list_head *ret)
290408d4 1249{
2def7424 1250 int rc = -EAGAIN;
2ebba6b7 1251 int page_was_mapped = 0;
32665f2b 1252 struct page *new_hpage;
290408d4 1253 struct anon_vma *anon_vma = NULL;
c0d0381a 1254 struct address_space *mapping = NULL;
290408d4 1255
83467efb 1256 /*
7ed2c31d 1257 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1258 * This check is necessary because some callers of hugepage migration
1259 * like soft offline and memory hotremove don't walk through page
1260 * tables or check whether the hugepage is pmd-based or not before
1261 * kicking migration.
1262 */
100873d7 1263 if (!hugepage_migration_supported(page_hstate(hpage))) {
dd4ae78a 1264 list_move_tail(&hpage->lru, ret);
83467efb 1265 return -ENOSYS;
32665f2b 1266 }
83467efb 1267
71a64f61
MS
1268 if (page_count(hpage) == 1) {
1269 /* page was freed from under us. So we are done. */
1270 putback_active_hugepage(hpage);
1271 return MIGRATEPAGE_SUCCESS;
1272 }
1273
666feb21 1274 new_hpage = get_new_page(hpage, private);
290408d4
NH
1275 if (!new_hpage)
1276 return -ENOMEM;
1277
290408d4 1278 if (!trylock_page(hpage)) {
2916ecc0 1279 if (!force)
290408d4 1280 goto out;
2916ecc0
JG
1281 switch (mode) {
1282 case MIGRATE_SYNC:
1283 case MIGRATE_SYNC_NO_COPY:
1284 break;
1285 default:
1286 goto out;
1287 }
290408d4
NH
1288 lock_page(hpage);
1289 }
1290
cb6acd01
MK
1291 /*
1292 * Check for pages which are in the process of being freed. Without
1293 * page_mapping() set, hugetlbfs specific move page routine will not
1294 * be called and we could leak usage counts for subpools.
1295 */
6acfb5ba 1296 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
cb6acd01
MK
1297 rc = -EBUSY;
1298 goto out_unlock;
1299 }
1300
746b18d4
PZ
1301 if (PageAnon(hpage))
1302 anon_vma = page_get_anon_vma(hpage);
290408d4 1303
7db7671f
HD
1304 if (unlikely(!trylock_page(new_hpage)))
1305 goto put_anon;
1306
2ebba6b7 1307 if (page_mapped(hpage)) {
336bf30e 1308 bool mapping_locked = false;
013339df 1309 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
336bf30e
MK
1310
1311 if (!PageAnon(hpage)) {
1312 /*
1313 * In shared mappings, try_to_unmap could potentially
1314 * call huge_pmd_unshare. Because of this, take
1315 * semaphore in write mode here and set TTU_RMAP_LOCKED
1316 * to let lower levels know we have taken the lock.
1317 */
1318 mapping = hugetlb_page_mapping_lock_write(hpage);
1319 if (unlikely(!mapping))
1320 goto unlock_put_anon;
1321
1322 mapping_locked = true;
1323 ttu |= TTU_RMAP_LOCKED;
1324 }
c0d0381a 1325
336bf30e 1326 try_to_unmap(hpage, ttu);
2ebba6b7 1327 page_was_mapped = 1;
336bf30e
MK
1328
1329 if (mapping_locked)
1330 i_mmap_unlock_write(mapping);
2ebba6b7 1331 }
290408d4
NH
1332
1333 if (!page_mapped(hpage))
5c3f9a67 1334 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1335
336bf30e 1336 if (page_was_mapped)
5c3f9a67 1337 remove_migration_ptes(hpage,
336bf30e 1338 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1339
c0d0381a 1340unlock_put_anon:
7db7671f
HD
1341 unlock_page(new_hpage);
1342
1343put_anon:
fd4a4663 1344 if (anon_vma)
9e60109f 1345 put_anon_vma(anon_vma);
8e6ac7fa 1346
2def7424 1347 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1348 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1349 put_new_page = NULL;
1350 }
8e6ac7fa 1351
cb6acd01 1352out_unlock:
290408d4 1353 unlock_page(hpage);
09761333 1354out:
dd4ae78a 1355 if (rc == MIGRATEPAGE_SUCCESS)
b8ec1cee 1356 putback_active_hugepage(hpage);
a04840c6 1357 else if (rc != -EAGAIN)
dd4ae78a 1358 list_move_tail(&hpage->lru, ret);
68711a74
DR
1359
1360 /*
1361 * If migration was not successful and there's a freeing callback, use
1362 * it. Otherwise, put_page() will drop the reference grabbed during
1363 * isolation.
1364 */
2def7424 1365 if (put_new_page)
68711a74
DR
1366 put_new_page(new_hpage, private);
1367 else
3aaa76e1 1368 putback_active_hugepage(new_hpage);
68711a74 1369
290408d4
NH
1370 return rc;
1371}
1372
d532e2e5
YS
1373static inline int try_split_thp(struct page *page, struct page **page2,
1374 struct list_head *from)
1375{
1376 int rc = 0;
1377
1378 lock_page(page);
1379 rc = split_huge_page_to_list(page, from);
1380 unlock_page(page);
1381 if (!rc)
1382 list_safe_reset_next(page, *page2, lru);
1383
1384 return rc;
1385}
1386
b20a3503 1387/*
c73e5c9c
SB
1388 * migrate_pages - migrate the pages specified in a list, to the free pages
1389 * supplied as the target for the page migration
b20a3503 1390 *
c73e5c9c
SB
1391 * @from: The list of pages to be migrated.
1392 * @get_new_page: The function used to allocate free pages to be used
1393 * as the target of the page migration.
68711a74
DR
1394 * @put_new_page: The function used to free target pages if migration
1395 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1396 * @private: Private data to be passed on to get_new_page()
1397 * @mode: The migration mode that specifies the constraints for
1398 * page migration, if any.
1399 * @reason: The reason for page migration.
b20a3503 1400 *
c73e5c9c
SB
1401 * The function returns after 10 attempts or if no pages are movable any more
1402 * because the list has become empty or no retryable pages exist any more.
dd4ae78a
YS
1403 * It is caller's responsibility to call putback_movable_pages() to return pages
1404 * to the LRU or free list only if ret != 0.
b20a3503 1405 *
c73e5c9c 1406 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1407 */
9c620e2b 1408int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1409 free_page_t put_new_page, unsigned long private,
1410 enum migrate_mode mode, int reason)
b20a3503 1411{
e24f0b8f 1412 int retry = 1;
1a5bae25 1413 int thp_retry = 1;
b20a3503 1414 int nr_failed = 0;
5647bc29 1415 int nr_succeeded = 0;
1a5bae25
AK
1416 int nr_thp_succeeded = 0;
1417 int nr_thp_failed = 0;
1418 int nr_thp_split = 0;
b20a3503 1419 int pass = 0;
1a5bae25 1420 bool is_thp = false;
b20a3503
CL
1421 struct page *page;
1422 struct page *page2;
1423 int swapwrite = current->flags & PF_SWAPWRITE;
1a5bae25 1424 int rc, nr_subpages;
dd4ae78a 1425 LIST_HEAD(ret_pages);
b20a3503 1426
7bc1aec5
LM
1427 trace_mm_migrate_pages_start(mode, reason);
1428
b20a3503
CL
1429 if (!swapwrite)
1430 current->flags |= PF_SWAPWRITE;
1431
1a5bae25 1432 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
e24f0b8f 1433 retry = 0;
1a5bae25 1434 thp_retry = 0;
b20a3503 1435
e24f0b8f 1436 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1437retry:
1a5bae25
AK
1438 /*
1439 * THP statistics is based on the source huge page.
1440 * Capture required information that might get lost
1441 * during migration.
1442 */
6c5c7b9f 1443 is_thp = PageTransHuge(page) && !PageHuge(page);
6c357848 1444 nr_subpages = thp_nr_pages(page);
e24f0b8f 1445 cond_resched();
2d1db3b1 1446
31caf665
NH
1447 if (PageHuge(page))
1448 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1449 put_new_page, private, page,
dd4ae78a
YS
1450 pass > 2, mode, reason,
1451 &ret_pages);
31caf665 1452 else
68711a74 1453 rc = unmap_and_move(get_new_page, put_new_page,
add05cec 1454 private, page, pass > 2, mode,
dd4ae78a
YS
1455 reason, &ret_pages);
1456 /*
1457 * The rules are:
1458 * Success: non hugetlb page will be freed, hugetlb
1459 * page will be put back
1460 * -EAGAIN: stay on the from list
1461 * -ENOMEM: stay on the from list
1462 * Other errno: put on ret_pages list then splice to
1463 * from list
1464 */
e24f0b8f 1465 switch(rc) {
d532e2e5
YS
1466 /*
1467 * THP migration might be unsupported or the
1468 * allocation could've failed so we should
1469 * retry on the same page with the THP split
1470 * to base pages.
1471 *
1472 * Head page is retried immediately and tail
1473 * pages are added to the tail of the list so
1474 * we encounter them after the rest of the list
1475 * is processed.
1476 */
1477 case -ENOSYS:
1478 /* THP migration is unsupported */
1479 if (is_thp) {
1480 if (!try_split_thp(page, &page2, from)) {
1481 nr_thp_split++;
1482 goto retry;
1483 }
1484
1485 nr_thp_failed++;
1486 nr_failed += nr_subpages;
1487 break;
1488 }
1489
1490 /* Hugetlb migration is unsupported */
1491 nr_failed++;
1492 break;
95a402c3 1493 case -ENOMEM:
94723aaf 1494 /*
d532e2e5
YS
1495 * When memory is low, don't bother to try to migrate
1496 * other pages, just exit.
94723aaf 1497 */
6c5c7b9f 1498 if (is_thp) {
d532e2e5 1499 if (!try_split_thp(page, &page2, from)) {
1a5bae25 1500 nr_thp_split++;
94723aaf
MH
1501 goto retry;
1502 }
6c5c7b9f 1503
1a5bae25
AK
1504 nr_thp_failed++;
1505 nr_failed += nr_subpages;
1506 goto out;
1507 }
dfef2ef4 1508 nr_failed++;
95a402c3 1509 goto out;
e24f0b8f 1510 case -EAGAIN:
1a5bae25
AK
1511 if (is_thp) {
1512 thp_retry++;
1513 break;
1514 }
2d1db3b1 1515 retry++;
e24f0b8f 1516 break;
78bd5209 1517 case MIGRATEPAGE_SUCCESS:
1a5bae25
AK
1518 if (is_thp) {
1519 nr_thp_succeeded++;
1520 nr_succeeded += nr_subpages;
1521 break;
1522 }
5647bc29 1523 nr_succeeded++;
e24f0b8f
CL
1524 break;
1525 default:
354a3363 1526 /*
d532e2e5 1527 * Permanent failure (-EBUSY, etc.):
354a3363
NH
1528 * unlike -EAGAIN case, the failed page is
1529 * removed from migration page list and not
1530 * retried in the next outer loop.
1531 */
1a5bae25
AK
1532 if (is_thp) {
1533 nr_thp_failed++;
1534 nr_failed += nr_subpages;
1535 break;
1536 }
2d1db3b1 1537 nr_failed++;
e24f0b8f 1538 break;
2d1db3b1 1539 }
b20a3503
CL
1540 }
1541 }
1a5bae25
AK
1542 nr_failed += retry + thp_retry;
1543 nr_thp_failed += thp_retry;
f2f81fb2 1544 rc = nr_failed;
95a402c3 1545out:
dd4ae78a
YS
1546 /*
1547 * Put the permanent failure page back to migration list, they
1548 * will be put back to the right list by the caller.
1549 */
1550 list_splice(&ret_pages, from);
1551
1a5bae25
AK
1552 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1553 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1554 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1555 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1556 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1557 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1558 nr_thp_failed, nr_thp_split, mode, reason);
7b2a2d4a 1559
b20a3503
CL
1560 if (!swapwrite)
1561 current->flags &= ~PF_SWAPWRITE;
1562
78bd5209 1563 return rc;
b20a3503 1564}
95a402c3 1565
19fc7bed 1566struct page *alloc_migration_target(struct page *page, unsigned long private)
b4b38223 1567{
19fc7bed
JK
1568 struct migration_target_control *mtc;
1569 gfp_t gfp_mask;
b4b38223
JK
1570 unsigned int order = 0;
1571 struct page *new_page = NULL;
19fc7bed
JK
1572 int nid;
1573 int zidx;
1574
1575 mtc = (struct migration_target_control *)private;
1576 gfp_mask = mtc->gfp_mask;
1577 nid = mtc->nid;
1578 if (nid == NUMA_NO_NODE)
1579 nid = page_to_nid(page);
b4b38223 1580
d92bbc27
JK
1581 if (PageHuge(page)) {
1582 struct hstate *h = page_hstate(compound_head(page));
1583
19fc7bed
JK
1584 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1585 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
d92bbc27 1586 }
b4b38223
JK
1587
1588 if (PageTransHuge(page)) {
9933a0c8
JK
1589 /*
1590 * clear __GFP_RECLAIM to make the migration callback
1591 * consistent with regular THP allocations.
1592 */
1593 gfp_mask &= ~__GFP_RECLAIM;
b4b38223
JK
1594 gfp_mask |= GFP_TRANSHUGE;
1595 order = HPAGE_PMD_ORDER;
1596 }
19fc7bed
JK
1597 zidx = zone_idx(page_zone(page));
1598 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
b4b38223
JK
1599 gfp_mask |= __GFP_HIGHMEM;
1600
84172f4b 1601 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
b4b38223
JK
1602
1603 if (new_page && PageTransHuge(new_page))
1604 prep_transhuge_page(new_page);
1605
1606 return new_page;
1607}
1608
742755a1 1609#ifdef CONFIG_NUMA
742755a1 1610
a49bd4d7 1611static int store_status(int __user *status, int start, int value, int nr)
742755a1 1612{
a49bd4d7
MH
1613 while (nr-- > 0) {
1614 if (put_user(value, status + start))
1615 return -EFAULT;
1616 start++;
1617 }
1618
1619 return 0;
1620}
1621
1622static int do_move_pages_to_node(struct mm_struct *mm,
1623 struct list_head *pagelist, int node)
1624{
1625 int err;
a0976311
JK
1626 struct migration_target_control mtc = {
1627 .nid = node,
1628 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1629 };
a49bd4d7 1630
a0976311
JK
1631 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1632 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
a49bd4d7
MH
1633 if (err)
1634 putback_movable_pages(pagelist);
1635 return err;
742755a1
CL
1636}
1637
1638/*
a49bd4d7
MH
1639 * Resolves the given address to a struct page, isolates it from the LRU and
1640 * puts it to the given pagelist.
e0153fc2
YS
1641 * Returns:
1642 * errno - if the page cannot be found/isolated
1643 * 0 - when it doesn't have to be migrated because it is already on the
1644 * target node
1645 * 1 - when it has been queued
742755a1 1646 */
a49bd4d7
MH
1647static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1648 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1649{
a49bd4d7
MH
1650 struct vm_area_struct *vma;
1651 struct page *page;
1652 unsigned int follflags;
742755a1 1653 int err;
742755a1 1654
d8ed45c5 1655 mmap_read_lock(mm);
a49bd4d7
MH
1656 err = -EFAULT;
1657 vma = find_vma(mm, addr);
1658 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1659 goto out;
742755a1 1660
a49bd4d7
MH
1661 /* FOLL_DUMP to ignore special (like zero) pages */
1662 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1663 page = follow_page(vma, addr, follflags);
89f5b7da 1664
a49bd4d7
MH
1665 err = PTR_ERR(page);
1666 if (IS_ERR(page))
1667 goto out;
89f5b7da 1668
a49bd4d7
MH
1669 err = -ENOENT;
1670 if (!page)
1671 goto out;
742755a1 1672
a49bd4d7
MH
1673 err = 0;
1674 if (page_to_nid(page) == node)
1675 goto out_putpage;
742755a1 1676
a49bd4d7
MH
1677 err = -EACCES;
1678 if (page_mapcount(page) > 1 && !migrate_all)
1679 goto out_putpage;
742755a1 1680
a49bd4d7
MH
1681 if (PageHuge(page)) {
1682 if (PageHead(page)) {
1683 isolate_huge_page(page, pagelist);
e0153fc2 1684 err = 1;
e632a938 1685 }
a49bd4d7
MH
1686 } else {
1687 struct page *head;
e632a938 1688
e8db67eb
NH
1689 head = compound_head(page);
1690 err = isolate_lru_page(head);
cf608ac1 1691 if (err)
a49bd4d7 1692 goto out_putpage;
742755a1 1693
e0153fc2 1694 err = 1;
a49bd4d7
MH
1695 list_add_tail(&head->lru, pagelist);
1696 mod_node_page_state(page_pgdat(head),
9de4f22a 1697 NR_ISOLATED_ANON + page_is_file_lru(head),
6c357848 1698 thp_nr_pages(head));
a49bd4d7
MH
1699 }
1700out_putpage:
1701 /*
1702 * Either remove the duplicate refcount from
1703 * isolate_lru_page() or drop the page ref if it was
1704 * not isolated.
1705 */
1706 put_page(page);
1707out:
d8ed45c5 1708 mmap_read_unlock(mm);
742755a1
CL
1709 return err;
1710}
1711
7ca8783a
WY
1712static int move_pages_and_store_status(struct mm_struct *mm, int node,
1713 struct list_head *pagelist, int __user *status,
1714 int start, int i, unsigned long nr_pages)
1715{
1716 int err;
1717
5d7ae891
WY
1718 if (list_empty(pagelist))
1719 return 0;
1720
7ca8783a
WY
1721 err = do_move_pages_to_node(mm, pagelist, node);
1722 if (err) {
1723 /*
1724 * Positive err means the number of failed
1725 * pages to migrate. Since we are going to
1726 * abort and return the number of non-migrated
ab9dd4f8 1727 * pages, so need to include the rest of the
7ca8783a
WY
1728 * nr_pages that have not been attempted as
1729 * well.
1730 */
1731 if (err > 0)
1732 err += nr_pages - i - 1;
1733 return err;
1734 }
1735 return store_status(status, start, node, i - start);
1736}
1737
5e9a0f02
BG
1738/*
1739 * Migrate an array of page address onto an array of nodes and fill
1740 * the corresponding array of status.
1741 */
3268c63e 1742static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1743 unsigned long nr_pages,
1744 const void __user * __user *pages,
1745 const int __user *nodes,
1746 int __user *status, int flags)
1747{
a49bd4d7
MH
1748 int current_node = NUMA_NO_NODE;
1749 LIST_HEAD(pagelist);
1750 int start, i;
1751 int err = 0, err1;
35282a2d 1752
361a2a22 1753 lru_cache_disable();
35282a2d 1754
a49bd4d7
MH
1755 for (i = start = 0; i < nr_pages; i++) {
1756 const void __user *p;
1757 unsigned long addr;
1758 int node;
3140a227 1759
a49bd4d7
MH
1760 err = -EFAULT;
1761 if (get_user(p, pages + i))
1762 goto out_flush;
1763 if (get_user(node, nodes + i))
1764 goto out_flush;
057d3389 1765 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1766
1767 err = -ENODEV;
1768 if (node < 0 || node >= MAX_NUMNODES)
1769 goto out_flush;
1770 if (!node_state(node, N_MEMORY))
1771 goto out_flush;
5e9a0f02 1772
a49bd4d7
MH
1773 err = -EACCES;
1774 if (!node_isset(node, task_nodes))
1775 goto out_flush;
1776
1777 if (current_node == NUMA_NO_NODE) {
1778 current_node = node;
1779 start = i;
1780 } else if (node != current_node) {
7ca8783a
WY
1781 err = move_pages_and_store_status(mm, current_node,
1782 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1783 if (err)
1784 goto out;
1785 start = i;
1786 current_node = node;
3140a227
BG
1787 }
1788
a49bd4d7
MH
1789 /*
1790 * Errors in the page lookup or isolation are not fatal and we simply
1791 * report them via status
1792 */
1793 err = add_page_for_migration(mm, addr, current_node,
1794 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1795
d08221a0 1796 if (err > 0) {
e0153fc2
YS
1797 /* The page is successfully queued for migration */
1798 continue;
1799 }
3140a227 1800
d08221a0
WY
1801 /*
1802 * If the page is already on the target node (!err), store the
1803 * node, otherwise, store the err.
1804 */
1805 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1806 if (err)
1807 goto out_flush;
5e9a0f02 1808
7ca8783a
WY
1809 err = move_pages_and_store_status(mm, current_node, &pagelist,
1810 status, start, i, nr_pages);
4afdacec
WY
1811 if (err)
1812 goto out;
a49bd4d7 1813 current_node = NUMA_NO_NODE;
3140a227 1814 }
a49bd4d7
MH
1815out_flush:
1816 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1817 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1818 status, start, i, nr_pages);
dfe9aa23 1819 if (err >= 0)
a49bd4d7 1820 err = err1;
5e9a0f02 1821out:
361a2a22 1822 lru_cache_enable();
5e9a0f02
BG
1823 return err;
1824}
1825
742755a1 1826/*
2f007e74 1827 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1828 */
80bba129
BG
1829static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1830 const void __user **pages, int *status)
742755a1 1831{
2f007e74 1832 unsigned long i;
2f007e74 1833
d8ed45c5 1834 mmap_read_lock(mm);
742755a1 1835
2f007e74 1836 for (i = 0; i < nr_pages; i++) {
80bba129 1837 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1838 struct vm_area_struct *vma;
1839 struct page *page;
c095adbc 1840 int err = -EFAULT;
2f007e74 1841
059b8b48
LH
1842 vma = vma_lookup(mm, addr);
1843 if (!vma)
742755a1
CL
1844 goto set_status;
1845
d899844e
KS
1846 /* FOLL_DUMP to ignore special (like zero) pages */
1847 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1848
1849 err = PTR_ERR(page);
1850 if (IS_ERR(page))
1851 goto set_status;
1852
d899844e 1853 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1854set_status:
80bba129
BG
1855 *status = err;
1856
1857 pages++;
1858 status++;
1859 }
1860
d8ed45c5 1861 mmap_read_unlock(mm);
80bba129
BG
1862}
1863
1864/*
1865 * Determine the nodes of a user array of pages and store it in
1866 * a user array of status.
1867 */
1868static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1869 const void __user * __user *pages,
1870 int __user *status)
1871{
1872#define DO_PAGES_STAT_CHUNK_NR 16
1873 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1874 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1875
87b8d1ad
PA
1876 while (nr_pages) {
1877 unsigned long chunk_nr;
80bba129 1878
87b8d1ad
PA
1879 chunk_nr = nr_pages;
1880 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1881 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1882
1883 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1884 break;
80bba129
BG
1885
1886 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1887
87b8d1ad
PA
1888 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1889 break;
742755a1 1890
87b8d1ad
PA
1891 pages += chunk_nr;
1892 status += chunk_nr;
1893 nr_pages -= chunk_nr;
1894 }
1895 return nr_pages ? -EFAULT : 0;
742755a1
CL
1896}
1897
4dc200ce 1898static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
742755a1 1899{
742755a1 1900 struct task_struct *task;
742755a1 1901 struct mm_struct *mm;
742755a1 1902
4dc200ce
ML
1903 /*
1904 * There is no need to check if current process has the right to modify
1905 * the specified process when they are same.
1906 */
1907 if (!pid) {
1908 mmget(current->mm);
1909 *mem_nodes = cpuset_mems_allowed(current);
1910 return current->mm;
1911 }
742755a1
CL
1912
1913 /* Find the mm_struct */
a879bf58 1914 rcu_read_lock();
4dc200ce 1915 task = find_task_by_vpid(pid);
742755a1 1916 if (!task) {
a879bf58 1917 rcu_read_unlock();
4dc200ce 1918 return ERR_PTR(-ESRCH);
742755a1 1919 }
3268c63e 1920 get_task_struct(task);
742755a1
CL
1921
1922 /*
1923 * Check if this process has the right to modify the specified
197e7e52 1924 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1925 */
197e7e52 1926 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1927 rcu_read_unlock();
4dc200ce 1928 mm = ERR_PTR(-EPERM);
5e9a0f02 1929 goto out;
742755a1 1930 }
c69e8d9c 1931 rcu_read_unlock();
742755a1 1932
4dc200ce
ML
1933 mm = ERR_PTR(security_task_movememory(task));
1934 if (IS_ERR(mm))
5e9a0f02 1935 goto out;
4dc200ce 1936 *mem_nodes = cpuset_mems_allowed(task);
3268c63e 1937 mm = get_task_mm(task);
4dc200ce 1938out:
3268c63e 1939 put_task_struct(task);
6e8b09ea 1940 if (!mm)
4dc200ce
ML
1941 mm = ERR_PTR(-EINVAL);
1942 return mm;
1943}
1944
1945/*
1946 * Move a list of pages in the address space of the currently executing
1947 * process.
1948 */
1949static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1950 const void __user * __user *pages,
1951 const int __user *nodes,
1952 int __user *status, int flags)
1953{
1954 struct mm_struct *mm;
1955 int err;
1956 nodemask_t task_nodes;
1957
1958 /* Check flags */
1959 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
6e8b09ea
SL
1960 return -EINVAL;
1961
4dc200ce
ML
1962 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1963 return -EPERM;
1964
1965 mm = find_mm_struct(pid, &task_nodes);
1966 if (IS_ERR(mm))
1967 return PTR_ERR(mm);
1968
6e8b09ea
SL
1969 if (nodes)
1970 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1971 nodes, status, flags);
1972 else
1973 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1974
742755a1
CL
1975 mmput(mm);
1976 return err;
1977}
742755a1 1978
7addf443
DB
1979SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1980 const void __user * __user *, pages,
1981 const int __user *, nodes,
1982 int __user *, status, int, flags)
1983{
1984 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1985}
1986
1987#ifdef CONFIG_COMPAT
1988COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1989 compat_uptr_t __user *, pages32,
1990 const int __user *, nodes,
1991 int __user *, status,
1992 int, flags)
1993{
1994 const void __user * __user *pages;
1995 int i;
1996
1997 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1998 for (i = 0; i < nr_pages; i++) {
1999 compat_uptr_t p;
2000
2001 if (get_user(p, pages32 + i) ||
2002 put_user(compat_ptr(p), pages + i))
2003 return -EFAULT;
2004 }
2005 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2006}
2007#endif /* CONFIG_COMPAT */
2008
7039e1db
PZ
2009#ifdef CONFIG_NUMA_BALANCING
2010/*
2011 * Returns true if this is a safe migration target node for misplaced NUMA
2012 * pages. Currently it only checks the watermarks which crude
2013 */
2014static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 2015 unsigned long nr_migrate_pages)
7039e1db
PZ
2016{
2017 int z;
599d0c95 2018
7039e1db
PZ
2019 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2020 struct zone *zone = pgdat->node_zones + z;
2021
2022 if (!populated_zone(zone))
2023 continue;
2024
7039e1db
PZ
2025 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2026 if (!zone_watermark_ok(zone, 0,
2027 high_wmark_pages(zone) +
2028 nr_migrate_pages,
bfe9d006 2029 ZONE_MOVABLE, 0))
7039e1db
PZ
2030 continue;
2031 return true;
2032 }
2033 return false;
2034}
2035
2036static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 2037 unsigned long data)
7039e1db
PZ
2038{
2039 int nid = (int) data;
2040 struct page *newpage;
2041
96db800f 2042 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
2043 (GFP_HIGHUSER_MOVABLE |
2044 __GFP_THISNODE | __GFP_NOMEMALLOC |
2045 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 2046 ~__GFP_RECLAIM, 0);
bac0382c 2047
7039e1db
PZ
2048 return newpage;
2049}
2050
c5b5a3dd
YS
2051static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2052 unsigned long data)
2053{
2054 int nid = (int) data;
2055 struct page *newpage;
2056
2057 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2058 HPAGE_PMD_ORDER);
2059 if (!newpage)
2060 goto out;
2061
2062 prep_transhuge_page(newpage);
2063
2064out:
2065 return newpage;
2066}
2067
1c30e017 2068static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 2069{
340ef390 2070 int page_lru;
a8f60772 2071
309381fe 2072 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 2073
7039e1db 2074 /* Avoid migrating to a node that is nearly full */
d8c6546b 2075 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 2076 return 0;
7039e1db 2077
340ef390
HD
2078 if (isolate_lru_page(page))
2079 return 0;
7039e1db 2080
340ef390
HD
2081 /*
2082 * migrate_misplaced_transhuge_page() skips page migration's usual
2083 * check on page_count(), so we must do it here, now that the page
2084 * has been isolated: a GUP pin, or any other pin, prevents migration.
2085 * The expected page count is 3: 1 for page's mapcount and 1 for the
2086 * caller's pin and 1 for the reference taken by isolate_lru_page().
2087 */
2088 if (PageTransHuge(page) && page_count(page) != 3) {
2089 putback_lru_page(page);
2090 return 0;
7039e1db
PZ
2091 }
2092
9de4f22a 2093 page_lru = page_is_file_lru(page);
599d0c95 2094 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
6c357848 2095 thp_nr_pages(page));
340ef390 2096
149c33e1 2097 /*
340ef390
HD
2098 * Isolating the page has taken another reference, so the
2099 * caller's reference can be safely dropped without the page
2100 * disappearing underneath us during migration.
149c33e1
MG
2101 */
2102 put_page(page);
340ef390 2103 return 1;
b32967ff
MG
2104}
2105
2106/*
2107 * Attempt to migrate a misplaced page to the specified destination
2108 * node. Caller is expected to have an elevated reference count on
2109 * the page that will be dropped by this function before returning.
2110 */
1bc115d8
MG
2111int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2112 int node)
b32967ff
MG
2113{
2114 pg_data_t *pgdat = NODE_DATA(node);
340ef390 2115 int isolated;
b32967ff
MG
2116 int nr_remaining;
2117 LIST_HEAD(migratepages);
c5b5a3dd
YS
2118 new_page_t *new;
2119 bool compound;
2120
2121 /*
2122 * PTE mapped THP or HugeTLB page can't reach here so the page could
2123 * be either base page or THP. And it must be head page if it is
2124 * THP.
2125 */
2126 compound = PageTransHuge(page);
2127
2128 if (compound)
2129 new = alloc_misplaced_dst_page_thp;
2130 else
2131 new = alloc_misplaced_dst_page;
b32967ff
MG
2132
2133 /*
1bc115d8
MG
2134 * Don't migrate file pages that are mapped in multiple processes
2135 * with execute permissions as they are probably shared libraries.
b32967ff 2136 */
7ee820ee
ML
2137 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2138 (vma->vm_flags & VM_EXEC))
b32967ff 2139 goto out;
b32967ff 2140
09a913a7
MG
2141 /*
2142 * Also do not migrate dirty pages as not all filesystems can move
2143 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2144 */
9de4f22a 2145 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
2146 goto out;
2147
b32967ff
MG
2148 isolated = numamigrate_isolate_page(pgdat, page);
2149 if (!isolated)
2150 goto out;
2151
2152 list_add(&page->lru, &migratepages);
c5b5a3dd
YS
2153 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2154 MIGRATE_ASYNC, MR_NUMA_MISPLACED);
b32967ff 2155 if (nr_remaining) {
59c82b70
JK
2156 if (!list_empty(&migratepages)) {
2157 list_del(&page->lru);
599d0c95 2158 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2159 page_is_file_lru(page));
59c82b70
JK
2160 putback_lru_page(page);
2161 }
b32967ff
MG
2162 isolated = 0;
2163 } else
2164 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2165 BUG_ON(!list_empty(&migratepages));
7039e1db 2166 return isolated;
340ef390
HD
2167
2168out:
2169 put_page(page);
2170 return 0;
7039e1db 2171}
220018d3 2172#endif /* CONFIG_NUMA_BALANCING */
7039e1db 2173#endif /* CONFIG_NUMA */
8763cb45 2174
9b2ed9cb 2175#ifdef CONFIG_DEVICE_PRIVATE
843e1be1 2176static int migrate_vma_collect_skip(unsigned long start,
8763cb45
JG
2177 unsigned long end,
2178 struct mm_walk *walk)
2179{
2180 struct migrate_vma *migrate = walk->private;
2181 unsigned long addr;
2182
872ea707 2183 for (addr = start; addr < end; addr += PAGE_SIZE) {
8315ada7 2184 migrate->dst[migrate->npages] = 0;
843e1be1 2185 migrate->src[migrate->npages++] = 0;
8315ada7
JG
2186 }
2187
2188 return 0;
2189}
2190
843e1be1 2191static int migrate_vma_collect_hole(unsigned long start,
8315ada7 2192 unsigned long end,
843e1be1 2193 __always_unused int depth,
8315ada7
JG
2194 struct mm_walk *walk)
2195{
2196 struct migrate_vma *migrate = walk->private;
2197 unsigned long addr;
2198
843e1be1
ML
2199 /* Only allow populating anonymous memory. */
2200 if (!vma_is_anonymous(walk->vma))
2201 return migrate_vma_collect_skip(start, end, walk);
2202
872ea707 2203 for (addr = start; addr < end; addr += PAGE_SIZE) {
843e1be1 2204 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8763cb45 2205 migrate->dst[migrate->npages] = 0;
843e1be1
ML
2206 migrate->npages++;
2207 migrate->cpages++;
8763cb45
JG
2208 }
2209
2210 return 0;
2211}
2212
2213static int migrate_vma_collect_pmd(pmd_t *pmdp,
2214 unsigned long start,
2215 unsigned long end,
2216 struct mm_walk *walk)
2217{
2218 struct migrate_vma *migrate = walk->private;
2219 struct vm_area_struct *vma = walk->vma;
2220 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2221 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2222 spinlock_t *ptl;
2223 pte_t *ptep;
2224
2225again:
2226 if (pmd_none(*pmdp))
b7a16c7a 2227 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2228
2229 if (pmd_trans_huge(*pmdp)) {
2230 struct page *page;
2231
2232 ptl = pmd_lock(mm, pmdp);
2233 if (unlikely(!pmd_trans_huge(*pmdp))) {
2234 spin_unlock(ptl);
2235 goto again;
2236 }
2237
2238 page = pmd_page(*pmdp);
2239 if (is_huge_zero_page(page)) {
2240 spin_unlock(ptl);
2241 split_huge_pmd(vma, pmdp, addr);
2242 if (pmd_trans_unstable(pmdp))
8315ada7 2243 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2244 walk);
2245 } else {
2246 int ret;
2247
2248 get_page(page);
2249 spin_unlock(ptl);
2250 if (unlikely(!trylock_page(page)))
8315ada7 2251 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2252 walk);
2253 ret = split_huge_page(page);
2254 unlock_page(page);
2255 put_page(page);
8315ada7
JG
2256 if (ret)
2257 return migrate_vma_collect_skip(start, end,
2258 walk);
2259 if (pmd_none(*pmdp))
b7a16c7a 2260 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2261 walk);
2262 }
2263 }
2264
2265 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2266 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2267
2268 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2269 arch_enter_lazy_mmu_mode();
2270
8763cb45 2271 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2272 unsigned long mpfn = 0, pfn;
8763cb45 2273 struct page *page;
8c3328f1 2274 swp_entry_t entry;
8763cb45
JG
2275 pte_t pte;
2276
2277 pte = *ptep;
8763cb45 2278
a5430dda 2279 if (pte_none(pte)) {
0744f280
RC
2280 if (vma_is_anonymous(vma)) {
2281 mpfn = MIGRATE_PFN_MIGRATE;
2282 migrate->cpages++;
2283 }
8763cb45
JG
2284 goto next;
2285 }
2286
a5430dda 2287 if (!pte_present(pte)) {
a5430dda
JG
2288 /*
2289 * Only care about unaddressable device page special
2290 * page table entry. Other special swap entries are not
2291 * migratable, and we ignore regular swapped page.
2292 */
2293 entry = pte_to_swp_entry(pte);
2294 if (!is_device_private_entry(entry))
2295 goto next;
2296
2297 page = device_private_entry_to_page(entry);
5143192c
RC
2298 if (!(migrate->flags &
2299 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2300 page->pgmap->owner != migrate->pgmap_owner)
800bb1c8
CH
2301 goto next;
2302
06d462be
CH
2303 mpfn = migrate_pfn(page_to_pfn(page)) |
2304 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2305 if (is_write_device_private_entry(entry))
2306 mpfn |= MIGRATE_PFN_WRITE;
2307 } else {
5143192c 2308 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
800bb1c8 2309 goto next;
276f756d 2310 pfn = pte_pfn(pte);
8315ada7
JG
2311 if (is_zero_pfn(pfn)) {
2312 mpfn = MIGRATE_PFN_MIGRATE;
2313 migrate->cpages++;
8315ada7
JG
2314 goto next;
2315 }
25b2995a 2316 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2317 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2318 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2319 }
2320
8763cb45 2321 /* FIXME support THP */
8763cb45 2322 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2323 mpfn = 0;
8763cb45
JG
2324 goto next;
2325 }
2326
2327 /*
2328 * By getting a reference on the page we pin it and that blocks
2329 * any kind of migration. Side effect is that it "freezes" the
2330 * pte.
2331 *
2332 * We drop this reference after isolating the page from the lru
2333 * for non device page (device page are not on the lru and thus
2334 * can't be dropped from it).
2335 */
2336 get_page(page);
2337 migrate->cpages++;
8763cb45 2338
8c3328f1
JG
2339 /*
2340 * Optimize for the common case where page is only mapped once
2341 * in one process. If we can lock the page, then we can safely
2342 * set up a special migration page table entry now.
2343 */
2344 if (trylock_page(page)) {
2345 pte_t swp_pte;
2346
2347 mpfn |= MIGRATE_PFN_LOCKED;
2348 ptep_get_and_clear(mm, addr, ptep);
2349
2350 /* Setup special migration page table entry */
07707125
RC
2351 entry = make_migration_entry(page, mpfn &
2352 MIGRATE_PFN_WRITE);
8c3328f1 2353 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
2354 if (pte_present(pte)) {
2355 if (pte_soft_dirty(pte))
2356 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2357 if (pte_uffd_wp(pte))
2358 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2359 } else {
2360 if (pte_swp_soft_dirty(pte))
2361 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2362 if (pte_swp_uffd_wp(pte))
2363 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2364 }
8c3328f1
JG
2365 set_pte_at(mm, addr, ptep, swp_pte);
2366
2367 /*
2368 * This is like regular unmap: we remove the rmap and
2369 * drop page refcount. Page won't be freed, as we took
2370 * a reference just above.
2371 */
2372 page_remove_rmap(page, false);
2373 put_page(page);
a5430dda
JG
2374
2375 if (pte_present(pte))
2376 unmapped++;
8c3328f1
JG
2377 }
2378
8763cb45 2379next:
a5430dda 2380 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2381 migrate->src[migrate->npages++] = mpfn;
2382 }
8c3328f1 2383 arch_leave_lazy_mmu_mode();
8763cb45
JG
2384 pte_unmap_unlock(ptep - 1, ptl);
2385
8c3328f1
JG
2386 /* Only flush the TLB if we actually modified any entries */
2387 if (unmapped)
2388 flush_tlb_range(walk->vma, start, end);
2389
8763cb45
JG
2390 return 0;
2391}
2392
7b86ac33
CH
2393static const struct mm_walk_ops migrate_vma_walk_ops = {
2394 .pmd_entry = migrate_vma_collect_pmd,
2395 .pte_hole = migrate_vma_collect_hole,
2396};
2397
8763cb45
JG
2398/*
2399 * migrate_vma_collect() - collect pages over a range of virtual addresses
2400 * @migrate: migrate struct containing all migration information
2401 *
2402 * This will walk the CPU page table. For each virtual address backed by a
2403 * valid page, it updates the src array and takes a reference on the page, in
2404 * order to pin the page until we lock it and unmap it.
2405 */
2406static void migrate_vma_collect(struct migrate_vma *migrate)
2407{
ac46d4f3 2408 struct mmu_notifier_range range;
8763cb45 2409
998427b3
RC
2410 /*
2411 * Note that the pgmap_owner is passed to the mmu notifier callback so
2412 * that the registered device driver can skip invalidating device
2413 * private page mappings that won't be migrated.
2414 */
c1a06df6
RC
2415 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2416 migrate->vma->vm_mm, migrate->start, migrate->end,
2417 migrate->pgmap_owner);
ac46d4f3 2418 mmu_notifier_invalidate_range_start(&range);
8763cb45 2419
7b86ac33
CH
2420 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2421 &migrate_vma_walk_ops, migrate);
2422
2423 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2424 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2425}
2426
2427/*
2428 * migrate_vma_check_page() - check if page is pinned or not
2429 * @page: struct page to check
2430 *
2431 * Pinned pages cannot be migrated. This is the same test as in
2432 * migrate_page_move_mapping(), except that here we allow migration of a
2433 * ZONE_DEVICE page.
2434 */
2435static bool migrate_vma_check_page(struct page *page)
2436{
2437 /*
2438 * One extra ref because caller holds an extra reference, either from
2439 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2440 * a device page.
2441 */
2442 int extra = 1;
2443
2444 /*
2445 * FIXME support THP (transparent huge page), it is bit more complex to
2446 * check them than regular pages, because they can be mapped with a pmd
2447 * or with a pte (split pte mapping).
2448 */
2449 if (PageCompound(page))
2450 return false;
2451
a5430dda
JG
2452 /* Page from ZONE_DEVICE have one extra reference */
2453 if (is_zone_device_page(page)) {
2454 /*
2455 * Private page can never be pin as they have no valid pte and
2456 * GUP will fail for those. Yet if there is a pending migration
2457 * a thread might try to wait on the pte migration entry and
2458 * will bump the page reference count. Sadly there is no way to
2459 * differentiate a regular pin from migration wait. Hence to
2460 * avoid 2 racing thread trying to migrate back to CPU to enter
8958b249 2461 * infinite loop (one stopping migration because the other is
a5430dda
JG
2462 * waiting on pte migration entry). We always return true here.
2463 *
2464 * FIXME proper solution is to rework migration_entry_wait() so
2465 * it does not need to take a reference on page.
2466 */
25b2995a 2467 return is_device_private_page(page);
a5430dda
JG
2468 }
2469
df6ad698
JG
2470 /* For file back page */
2471 if (page_mapping(page))
2472 extra += 1 + page_has_private(page);
2473
8763cb45
JG
2474 if ((page_count(page) - extra) > page_mapcount(page))
2475 return false;
2476
2477 return true;
2478}
2479
2480/*
2481 * migrate_vma_prepare() - lock pages and isolate them from the lru
2482 * @migrate: migrate struct containing all migration information
2483 *
2484 * This locks pages that have been collected by migrate_vma_collect(). Once each
2485 * page is locked it is isolated from the lru (for non-device pages). Finally,
2486 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2487 * migrated by concurrent kernel threads.
2488 */
2489static void migrate_vma_prepare(struct migrate_vma *migrate)
2490{
2491 const unsigned long npages = migrate->npages;
8c3328f1
JG
2492 const unsigned long start = migrate->start;
2493 unsigned long addr, i, restore = 0;
8763cb45 2494 bool allow_drain = true;
8763cb45
JG
2495
2496 lru_add_drain();
2497
2498 for (i = 0; (i < npages) && migrate->cpages; i++) {
2499 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2500 bool remap = true;
8763cb45
JG
2501
2502 if (!page)
2503 continue;
2504
8c3328f1
JG
2505 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2506 /*
2507 * Because we are migrating several pages there can be
2508 * a deadlock between 2 concurrent migration where each
2509 * are waiting on each other page lock.
2510 *
2511 * Make migrate_vma() a best effort thing and backoff
2512 * for any page we can not lock right away.
2513 */
2514 if (!trylock_page(page)) {
2515 migrate->src[i] = 0;
2516 migrate->cpages--;
2517 put_page(page);
2518 continue;
2519 }
2520 remap = false;
2521 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2522 }
8763cb45 2523
a5430dda
JG
2524 /* ZONE_DEVICE pages are not on LRU */
2525 if (!is_zone_device_page(page)) {
2526 if (!PageLRU(page) && allow_drain) {
2527 /* Drain CPU's pagevec */
2528 lru_add_drain_all();
2529 allow_drain = false;
2530 }
8763cb45 2531
a5430dda
JG
2532 if (isolate_lru_page(page)) {
2533 if (remap) {
2534 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2535 migrate->cpages--;
2536 restore++;
2537 } else {
2538 migrate->src[i] = 0;
2539 unlock_page(page);
2540 migrate->cpages--;
2541 put_page(page);
2542 }
2543 continue;
8c3328f1 2544 }
a5430dda
JG
2545
2546 /* Drop the reference we took in collect */
2547 put_page(page);
8763cb45
JG
2548 }
2549
2550 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2551 if (remap) {
2552 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2553 migrate->cpages--;
2554 restore++;
8763cb45 2555
a5430dda
JG
2556 if (!is_zone_device_page(page)) {
2557 get_page(page);
2558 putback_lru_page(page);
2559 }
8c3328f1
JG
2560 } else {
2561 migrate->src[i] = 0;
2562 unlock_page(page);
2563 migrate->cpages--;
2564
a5430dda
JG
2565 if (!is_zone_device_page(page))
2566 putback_lru_page(page);
2567 else
2568 put_page(page);
8c3328f1 2569 }
8763cb45
JG
2570 }
2571 }
8c3328f1
JG
2572
2573 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2574 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2575
2576 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2577 continue;
2578
2579 remove_migration_pte(page, migrate->vma, addr, page);
2580
2581 migrate->src[i] = 0;
2582 unlock_page(page);
2583 put_page(page);
2584 restore--;
2585 }
8763cb45
JG
2586}
2587
2588/*
2589 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2590 * @migrate: migrate struct containing all migration information
2591 *
2592 * Replace page mapping (CPU page table pte) with a special migration pte entry
2593 * and check again if it has been pinned. Pinned pages are restored because we
2594 * cannot migrate them.
2595 *
2596 * This is the last step before we call the device driver callback to allocate
2597 * destination memory and copy contents of original page over to new page.
2598 */
2599static void migrate_vma_unmap(struct migrate_vma *migrate)
2600{
013339df 2601 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
8763cb45
JG
2602 const unsigned long npages = migrate->npages;
2603 const unsigned long start = migrate->start;
2604 unsigned long addr, i, restore = 0;
2605
2606 for (i = 0; i < npages; i++) {
2607 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2608
2609 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2610 continue;
2611
8c3328f1
JG
2612 if (page_mapped(page)) {
2613 try_to_unmap(page, flags);
2614 if (page_mapped(page))
2615 goto restore;
8763cb45 2616 }
8c3328f1
JG
2617
2618 if (migrate_vma_check_page(page))
2619 continue;
2620
2621restore:
2622 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2623 migrate->cpages--;
2624 restore++;
8763cb45
JG
2625 }
2626
2627 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2628 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2629
2630 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2631 continue;
2632
2633 remove_migration_ptes(page, page, false);
2634
2635 migrate->src[i] = 0;
2636 unlock_page(page);
2637 restore--;
2638
a5430dda
JG
2639 if (is_zone_device_page(page))
2640 put_page(page);
2641 else
2642 putback_lru_page(page);
8763cb45
JG
2643 }
2644}
2645
a7d1f22b
CH
2646/**
2647 * migrate_vma_setup() - prepare to migrate a range of memory
eaf444de 2648 * @args: contains the vma, start, and pfns arrays for the migration
a7d1f22b
CH
2649 *
2650 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2651 * without an error.
2652 *
2653 * Prepare to migrate a range of memory virtual address range by collecting all
2654 * the pages backing each virtual address in the range, saving them inside the
2655 * src array. Then lock those pages and unmap them. Once the pages are locked
2656 * and unmapped, check whether each page is pinned or not. Pages that aren't
2657 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2658 * corresponding src array entry. Then restores any pages that are pinned, by
2659 * remapping and unlocking those pages.
2660 *
2661 * The caller should then allocate destination memory and copy source memory to
2662 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2663 * flag set). Once these are allocated and copied, the caller must update each
2664 * corresponding entry in the dst array with the pfn value of the destination
2665 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2666 * (destination pages must have their struct pages locked, via lock_page()).
2667 *
2668 * Note that the caller does not have to migrate all the pages that are marked
2669 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2670 * device memory to system memory. If the caller cannot migrate a device page
2671 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2672 * consequences for the userspace process, so it must be avoided if at all
2673 * possible.
2674 *
2675 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2676 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
f0953a1b
IM
2677 * allowing the caller to allocate device memory for those unbacked virtual
2678 * addresses. For this the caller simply has to allocate device memory and
a7d1f22b 2679 * properly set the destination entry like for regular migration. Note that
f0953a1b
IM
2680 * this can still fail, and thus inside the device driver you must check if the
2681 * migration was successful for those entries after calling migrate_vma_pages(),
a7d1f22b
CH
2682 * just like for regular migration.
2683 *
2684 * After that, the callers must call migrate_vma_pages() to go over each entry
2685 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2686 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2687 * then migrate_vma_pages() to migrate struct page information from the source
2688 * struct page to the destination struct page. If it fails to migrate the
2689 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2690 * src array.
2691 *
2692 * At this point all successfully migrated pages have an entry in the src
2693 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2694 * array entry with MIGRATE_PFN_VALID flag set.
2695 *
2696 * Once migrate_vma_pages() returns the caller may inspect which pages were
2697 * successfully migrated, and which were not. Successfully migrated pages will
2698 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2699 *
2700 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2701 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2702 * in read mode (hence no one can unmap the range being migrated).
2703 *
2704 * Once the caller is done cleaning up things and updating its page table (if it
2705 * chose to do so, this is not an obligation) it finally calls
2706 * migrate_vma_finalize() to update the CPU page table to point to new pages
2707 * for successfully migrated pages or otherwise restore the CPU page table to
2708 * point to the original source pages.
2709 */
2710int migrate_vma_setup(struct migrate_vma *args)
2711{
2712 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2713
2714 args->start &= PAGE_MASK;
2715 args->end &= PAGE_MASK;
2716 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2717 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2718 return -EINVAL;
2719 if (nr_pages <= 0)
2720 return -EINVAL;
2721 if (args->start < args->vma->vm_start ||
2722 args->start >= args->vma->vm_end)
2723 return -EINVAL;
2724 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2725 return -EINVAL;
2726 if (!args->src || !args->dst)
2727 return -EINVAL;
2728
2729 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2730 args->cpages = 0;
2731 args->npages = 0;
2732
2733 migrate_vma_collect(args);
2734
2735 if (args->cpages)
2736 migrate_vma_prepare(args);
2737 if (args->cpages)
2738 migrate_vma_unmap(args);
2739
2740 /*
2741 * At this point pages are locked and unmapped, and thus they have
2742 * stable content and can safely be copied to destination memory that
2743 * is allocated by the drivers.
2744 */
2745 return 0;
2746
2747}
2748EXPORT_SYMBOL(migrate_vma_setup);
2749
34290e2c
RC
2750/*
2751 * This code closely matches the code in:
2752 * __handle_mm_fault()
2753 * handle_pte_fault()
2754 * do_anonymous_page()
2755 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2756 * private page.
2757 */
8315ada7
JG
2758static void migrate_vma_insert_page(struct migrate_vma *migrate,
2759 unsigned long addr,
2760 struct page *page,
d85c6db4 2761 unsigned long *src)
8315ada7
JG
2762{
2763 struct vm_area_struct *vma = migrate->vma;
2764 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2765 bool flush = false;
2766 spinlock_t *ptl;
2767 pte_t entry;
2768 pgd_t *pgdp;
2769 p4d_t *p4dp;
2770 pud_t *pudp;
2771 pmd_t *pmdp;
2772 pte_t *ptep;
2773
2774 /* Only allow populating anonymous memory */
2775 if (!vma_is_anonymous(vma))
2776 goto abort;
2777
2778 pgdp = pgd_offset(mm, addr);
2779 p4dp = p4d_alloc(mm, pgdp, addr);
2780 if (!p4dp)
2781 goto abort;
2782 pudp = pud_alloc(mm, p4dp, addr);
2783 if (!pudp)
2784 goto abort;
2785 pmdp = pmd_alloc(mm, pudp, addr);
2786 if (!pmdp)
2787 goto abort;
2788
2789 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2790 goto abort;
2791
2792 /*
2793 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2794 * pte_offset_map() on pmds where a huge pmd might be created
2795 * from a different thread.
2796 *
3e4e28c5 2797 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2798 * parallel threads are excluded by other means.
2799 *
3e4e28c5 2800 * Here we only have mmap_read_lock(mm).
8315ada7 2801 */
4cf58924 2802 if (pte_alloc(mm, pmdp))
8315ada7
JG
2803 goto abort;
2804
2805 /* See the comment in pte_alloc_one_map() */
2806 if (unlikely(pmd_trans_unstable(pmdp)))
2807 goto abort;
2808
2809 if (unlikely(anon_vma_prepare(vma)))
2810 goto abort;
d9eb1ea2 2811 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2812 goto abort;
2813
2814 /*
2815 * The memory barrier inside __SetPageUptodate makes sure that
2816 * preceding stores to the page contents become visible before
2817 * the set_pte_at() write.
2818 */
2819 __SetPageUptodate(page);
2820
df6ad698
JG
2821 if (is_zone_device_page(page)) {
2822 if (is_device_private_page(page)) {
2823 swp_entry_t swp_entry;
2824
2825 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2826 entry = swp_entry_to_pte(swp_entry);
34f5e9b9
ML
2827 } else {
2828 /*
2829 * For now we only support migrating to un-addressable
2830 * device memory.
2831 */
2832 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2833 goto abort;
df6ad698 2834 }
8315ada7
JG
2835 } else {
2836 entry = mk_pte(page, vma->vm_page_prot);
2837 if (vma->vm_flags & VM_WRITE)
2838 entry = pte_mkwrite(pte_mkdirty(entry));
2839 }
2840
2841 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2842
34290e2c
RC
2843 if (check_stable_address_space(mm))
2844 goto unlock_abort;
2845
8315ada7
JG
2846 if (pte_present(*ptep)) {
2847 unsigned long pfn = pte_pfn(*ptep);
2848
c23a0c99
RC
2849 if (!is_zero_pfn(pfn))
2850 goto unlock_abort;
8315ada7 2851 flush = true;
c23a0c99
RC
2852 } else if (!pte_none(*ptep))
2853 goto unlock_abort;
8315ada7
JG
2854
2855 /*
c23a0c99 2856 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2857 * just back off.
2858 */
c23a0c99
RC
2859 if (userfaultfd_missing(vma))
2860 goto unlock_abort;
8315ada7
JG
2861
2862 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 2863 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7 2864 if (!is_zone_device_page(page))
b518154e 2865 lru_cache_add_inactive_or_unevictable(page, vma);
8315ada7
JG
2866 get_page(page);
2867
2868 if (flush) {
2869 flush_cache_page(vma, addr, pte_pfn(*ptep));
2870 ptep_clear_flush_notify(vma, addr, ptep);
2871 set_pte_at_notify(mm, addr, ptep, entry);
2872 update_mmu_cache(vma, addr, ptep);
2873 } else {
2874 /* No need to invalidate - it was non-present before */
2875 set_pte_at(mm, addr, ptep, entry);
2876 update_mmu_cache(vma, addr, ptep);
2877 }
2878
2879 pte_unmap_unlock(ptep, ptl);
2880 *src = MIGRATE_PFN_MIGRATE;
2881 return;
2882
c23a0c99
RC
2883unlock_abort:
2884 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
2885abort:
2886 *src &= ~MIGRATE_PFN_MIGRATE;
2887}
2888
a7d1f22b 2889/**
8763cb45
JG
2890 * migrate_vma_pages() - migrate meta-data from src page to dst page
2891 * @migrate: migrate struct containing all migration information
2892 *
2893 * This migrates struct page meta-data from source struct page to destination
2894 * struct page. This effectively finishes the migration from source page to the
2895 * destination page.
2896 */
a7d1f22b 2897void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
2898{
2899 const unsigned long npages = migrate->npages;
2900 const unsigned long start = migrate->start;
ac46d4f3
JG
2901 struct mmu_notifier_range range;
2902 unsigned long addr, i;
8315ada7 2903 bool notified = false;
8763cb45
JG
2904
2905 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2906 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2907 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2908 struct address_space *mapping;
2909 int r;
2910
8315ada7
JG
2911 if (!newpage) {
2912 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2913 continue;
8315ada7
JG
2914 }
2915
2916 if (!page) {
c23a0c99 2917 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 2918 continue;
8315ada7 2919 if (!notified) {
8315ada7 2920 notified = true;
ac46d4f3 2921
5e5dda81
RC
2922 mmu_notifier_range_init_migrate(&range, 0,
2923 migrate->vma, migrate->vma->vm_mm,
2924 addr, migrate->end,
2925 migrate->pgmap_owner);
ac46d4f3 2926 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2927 }
2928 migrate_vma_insert_page(migrate, addr, newpage,
d85c6db4 2929 &migrate->src[i]);
8763cb45 2930 continue;
8315ada7 2931 }
8763cb45
JG
2932
2933 mapping = page_mapping(page);
2934
a5430dda
JG
2935 if (is_zone_device_page(newpage)) {
2936 if (is_device_private_page(newpage)) {
2937 /*
2938 * For now only support private anonymous when
2939 * migrating to un-addressable device memory.
2940 */
2941 if (mapping) {
2942 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2943 continue;
2944 }
25b2995a 2945 } else {
a5430dda
JG
2946 /*
2947 * Other types of ZONE_DEVICE page are not
2948 * supported.
2949 */
2950 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2951 continue;
2952 }
2953 }
2954
8763cb45
JG
2955 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2956 if (r != MIGRATEPAGE_SUCCESS)
2957 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2958 }
8315ada7 2959
4645b9fe
JG
2960 /*
2961 * No need to double call mmu_notifier->invalidate_range() callback as
2962 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2963 * did already call it.
2964 */
8315ada7 2965 if (notified)
ac46d4f3 2966 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 2967}
a7d1f22b 2968EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 2969
a7d1f22b 2970/**
8763cb45
JG
2971 * migrate_vma_finalize() - restore CPU page table entry
2972 * @migrate: migrate struct containing all migration information
2973 *
2974 * This replaces the special migration pte entry with either a mapping to the
2975 * new page if migration was successful for that page, or to the original page
2976 * otherwise.
2977 *
2978 * This also unlocks the pages and puts them back on the lru, or drops the extra
2979 * refcount, for device pages.
2980 */
a7d1f22b 2981void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
2982{
2983 const unsigned long npages = migrate->npages;
2984 unsigned long i;
2985
2986 for (i = 0; i < npages; i++) {
2987 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2988 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2989
8315ada7
JG
2990 if (!page) {
2991 if (newpage) {
2992 unlock_page(newpage);
2993 put_page(newpage);
2994 }
8763cb45 2995 continue;
8315ada7
JG
2996 }
2997
8763cb45
JG
2998 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2999 if (newpage) {
3000 unlock_page(newpage);
3001 put_page(newpage);
3002 }
3003 newpage = page;
3004 }
3005
3006 remove_migration_ptes(page, newpage, false);
3007 unlock_page(page);
8763cb45 3008
a5430dda
JG
3009 if (is_zone_device_page(page))
3010 put_page(page);
3011 else
3012 putback_lru_page(page);
8763cb45
JG
3013
3014 if (newpage != page) {
3015 unlock_page(newpage);
a5430dda
JG
3016 if (is_zone_device_page(newpage))
3017 put_page(newpage);
3018 else
3019 putback_lru_page(newpage);
8763cb45
JG
3020 }
3021 }
3022}
a7d1f22b 3023EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 3024#endif /* CONFIG_DEVICE_PRIVATE */