]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
b20a3503 | 2 | /* |
14e0f9bc | 3 | * Memory Migration functionality - linux/mm/migrate.c |
b20a3503 CL |
4 | * |
5 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | |
6 | * | |
7 | * Page migration was first developed in the context of the memory hotplug | |
8 | * project. The main authors of the migration code are: | |
9 | * | |
10 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | |
11 | * Hirokazu Takahashi <taka@valinux.co.jp> | |
12 | * Dave Hansen <haveblue@us.ibm.com> | |
cde53535 | 13 | * Christoph Lameter |
b20a3503 CL |
14 | */ |
15 | ||
16 | #include <linux/migrate.h> | |
b95f1b31 | 17 | #include <linux/export.h> |
b20a3503 | 18 | #include <linux/swap.h> |
0697212a | 19 | #include <linux/swapops.h> |
b20a3503 | 20 | #include <linux/pagemap.h> |
e23ca00b | 21 | #include <linux/buffer_head.h> |
b20a3503 | 22 | #include <linux/mm_inline.h> |
b488893a | 23 | #include <linux/nsproxy.h> |
b20a3503 | 24 | #include <linux/pagevec.h> |
e9995ef9 | 25 | #include <linux/ksm.h> |
b20a3503 CL |
26 | #include <linux/rmap.h> |
27 | #include <linux/topology.h> | |
28 | #include <linux/cpu.h> | |
29 | #include <linux/cpuset.h> | |
04e62a29 | 30 | #include <linux/writeback.h> |
742755a1 CL |
31 | #include <linux/mempolicy.h> |
32 | #include <linux/vmalloc.h> | |
86c3a764 | 33 | #include <linux/security.h> |
42cb14b1 | 34 | #include <linux/backing-dev.h> |
bda807d4 | 35 | #include <linux/compaction.h> |
4f5ca265 | 36 | #include <linux/syscalls.h> |
7addf443 | 37 | #include <linux/compat.h> |
290408d4 | 38 | #include <linux/hugetlb.h> |
8e6ac7fa | 39 | #include <linux/hugetlb_cgroup.h> |
5a0e3ad6 | 40 | #include <linux/gfp.h> |
a520110e | 41 | #include <linux/pagewalk.h> |
df6ad698 | 42 | #include <linux/pfn_t.h> |
a5430dda | 43 | #include <linux/memremap.h> |
8315ada7 | 44 | #include <linux/userfaultfd_k.h> |
bf6bddf1 | 45 | #include <linux/balloon_compaction.h> |
f714f4f2 | 46 | #include <linux/mmu_notifier.h> |
33c3fc71 | 47 | #include <linux/page_idle.h> |
d435edca | 48 | #include <linux/page_owner.h> |
6e84f315 | 49 | #include <linux/sched/mm.h> |
197e7e52 | 50 | #include <linux/ptrace.h> |
34290e2c | 51 | #include <linux/oom.h> |
b20a3503 | 52 | |
0d1836c3 MN |
53 | #include <asm/tlbflush.h> |
54 | ||
7b2a2d4a MG |
55 | #define CREATE_TRACE_POINTS |
56 | #include <trace/events/migrate.h> | |
57 | ||
b20a3503 CL |
58 | #include "internal.h" |
59 | ||
b20a3503 | 60 | /* |
742755a1 | 61 | * migrate_prep() needs to be called before we start compiling a list of pages |
748446bb MG |
62 | * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is |
63 | * undesirable, use migrate_prep_local() | |
b20a3503 CL |
64 | */ |
65 | int migrate_prep(void) | |
66 | { | |
b20a3503 CL |
67 | /* |
68 | * Clear the LRU lists so pages can be isolated. | |
69 | * Note that pages may be moved off the LRU after we have | |
70 | * drained them. Those pages will fail to migrate like other | |
71 | * pages that may be busy. | |
72 | */ | |
73 | lru_add_drain_all(); | |
74 | ||
75 | return 0; | |
76 | } | |
77 | ||
748446bb MG |
78 | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ |
79 | int migrate_prep_local(void) | |
80 | { | |
81 | lru_add_drain(); | |
82 | ||
83 | return 0; | |
84 | } | |
85 | ||
9e5bcd61 | 86 | int isolate_movable_page(struct page *page, isolate_mode_t mode) |
bda807d4 MK |
87 | { |
88 | struct address_space *mapping; | |
89 | ||
90 | /* | |
91 | * Avoid burning cycles with pages that are yet under __free_pages(), | |
92 | * or just got freed under us. | |
93 | * | |
94 | * In case we 'win' a race for a movable page being freed under us and | |
95 | * raise its refcount preventing __free_pages() from doing its job | |
96 | * the put_page() at the end of this block will take care of | |
97 | * release this page, thus avoiding a nasty leakage. | |
98 | */ | |
99 | if (unlikely(!get_page_unless_zero(page))) | |
100 | goto out; | |
101 | ||
102 | /* | |
103 | * Check PageMovable before holding a PG_lock because page's owner | |
104 | * assumes anybody doesn't touch PG_lock of newly allocated page | |
8bb4e7a2 | 105 | * so unconditionally grabbing the lock ruins page's owner side. |
bda807d4 MK |
106 | */ |
107 | if (unlikely(!__PageMovable(page))) | |
108 | goto out_putpage; | |
109 | /* | |
110 | * As movable pages are not isolated from LRU lists, concurrent | |
111 | * compaction threads can race against page migration functions | |
112 | * as well as race against the releasing a page. | |
113 | * | |
114 | * In order to avoid having an already isolated movable page | |
115 | * being (wrongly) re-isolated while it is under migration, | |
116 | * or to avoid attempting to isolate pages being released, | |
117 | * lets be sure we have the page lock | |
118 | * before proceeding with the movable page isolation steps. | |
119 | */ | |
120 | if (unlikely(!trylock_page(page))) | |
121 | goto out_putpage; | |
122 | ||
123 | if (!PageMovable(page) || PageIsolated(page)) | |
124 | goto out_no_isolated; | |
125 | ||
126 | mapping = page_mapping(page); | |
127 | VM_BUG_ON_PAGE(!mapping, page); | |
128 | ||
129 | if (!mapping->a_ops->isolate_page(page, mode)) | |
130 | goto out_no_isolated; | |
131 | ||
132 | /* Driver shouldn't use PG_isolated bit of page->flags */ | |
133 | WARN_ON_ONCE(PageIsolated(page)); | |
134 | __SetPageIsolated(page); | |
135 | unlock_page(page); | |
136 | ||
9e5bcd61 | 137 | return 0; |
bda807d4 MK |
138 | |
139 | out_no_isolated: | |
140 | unlock_page(page); | |
141 | out_putpage: | |
142 | put_page(page); | |
143 | out: | |
9e5bcd61 | 144 | return -EBUSY; |
bda807d4 MK |
145 | } |
146 | ||
147 | /* It should be called on page which is PG_movable */ | |
148 | void putback_movable_page(struct page *page) | |
149 | { | |
150 | struct address_space *mapping; | |
151 | ||
152 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
153 | VM_BUG_ON_PAGE(!PageMovable(page), page); | |
154 | VM_BUG_ON_PAGE(!PageIsolated(page), page); | |
155 | ||
156 | mapping = page_mapping(page); | |
157 | mapping->a_ops->putback_page(page); | |
158 | __ClearPageIsolated(page); | |
159 | } | |
160 | ||
5733c7d1 RA |
161 | /* |
162 | * Put previously isolated pages back onto the appropriate lists | |
163 | * from where they were once taken off for compaction/migration. | |
164 | * | |
59c82b70 JK |
165 | * This function shall be used whenever the isolated pageset has been |
166 | * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() | |
167 | * and isolate_huge_page(). | |
5733c7d1 RA |
168 | */ |
169 | void putback_movable_pages(struct list_head *l) | |
170 | { | |
171 | struct page *page; | |
172 | struct page *page2; | |
173 | ||
b20a3503 | 174 | list_for_each_entry_safe(page, page2, l, lru) { |
31caf665 NH |
175 | if (unlikely(PageHuge(page))) { |
176 | putback_active_hugepage(page); | |
177 | continue; | |
178 | } | |
e24f0b8f | 179 | list_del(&page->lru); |
bda807d4 MK |
180 | /* |
181 | * We isolated non-lru movable page so here we can use | |
182 | * __PageMovable because LRU page's mapping cannot have | |
183 | * PAGE_MAPPING_MOVABLE. | |
184 | */ | |
b1123ea6 | 185 | if (unlikely(__PageMovable(page))) { |
bda807d4 MK |
186 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
187 | lock_page(page); | |
188 | if (PageMovable(page)) | |
189 | putback_movable_page(page); | |
190 | else | |
191 | __ClearPageIsolated(page); | |
192 | unlock_page(page); | |
193 | put_page(page); | |
194 | } else { | |
e8db67eb | 195 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
9de4f22a | 196 | page_is_file_lru(page), -hpage_nr_pages(page)); |
fc280fe8 | 197 | putback_lru_page(page); |
bda807d4 | 198 | } |
b20a3503 | 199 | } |
b20a3503 CL |
200 | } |
201 | ||
0697212a CL |
202 | /* |
203 | * Restore a potential migration pte to a working pte entry | |
204 | */ | |
e4b82222 | 205 | static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, |
e9995ef9 | 206 | unsigned long addr, void *old) |
0697212a | 207 | { |
3fe87967 KS |
208 | struct page_vma_mapped_walk pvmw = { |
209 | .page = old, | |
210 | .vma = vma, | |
211 | .address = addr, | |
212 | .flags = PVMW_SYNC | PVMW_MIGRATION, | |
213 | }; | |
214 | struct page *new; | |
215 | pte_t pte; | |
0697212a | 216 | swp_entry_t entry; |
0697212a | 217 | |
3fe87967 KS |
218 | VM_BUG_ON_PAGE(PageTail(page), page); |
219 | while (page_vma_mapped_walk(&pvmw)) { | |
4b0ece6f NH |
220 | if (PageKsm(page)) |
221 | new = page; | |
222 | else | |
223 | new = page - pvmw.page->index + | |
224 | linear_page_index(vma, pvmw.address); | |
0697212a | 225 | |
616b8371 ZY |
226 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
227 | /* PMD-mapped THP migration entry */ | |
228 | if (!pvmw.pte) { | |
229 | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | |
230 | remove_migration_pmd(&pvmw, new); | |
231 | continue; | |
232 | } | |
233 | #endif | |
234 | ||
3fe87967 KS |
235 | get_page(new); |
236 | pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); | |
237 | if (pte_swp_soft_dirty(*pvmw.pte)) | |
238 | pte = pte_mksoft_dirty(pte); | |
0697212a | 239 | |
3fe87967 KS |
240 | /* |
241 | * Recheck VMA as permissions can change since migration started | |
242 | */ | |
243 | entry = pte_to_swp_entry(*pvmw.pte); | |
244 | if (is_write_migration_entry(entry)) | |
245 | pte = maybe_mkwrite(pte, vma); | |
f45ec5ff PX |
246 | else if (pte_swp_uffd_wp(*pvmw.pte)) |
247 | pte = pte_mkuffd_wp(pte); | |
d3cb8bf6 | 248 | |
df6ad698 JG |
249 | if (unlikely(is_zone_device_page(new))) { |
250 | if (is_device_private_page(new)) { | |
251 | entry = make_device_private_entry(new, pte_write(pte)); | |
252 | pte = swp_entry_to_pte(entry); | |
f45ec5ff PX |
253 | if (pte_swp_uffd_wp(*pvmw.pte)) |
254 | pte = pte_mkuffd_wp(pte); | |
df6ad698 | 255 | } |
d2b2c6dd | 256 | } |
a5430dda | 257 | |
3ef8fd7f | 258 | #ifdef CONFIG_HUGETLB_PAGE |
3fe87967 KS |
259 | if (PageHuge(new)) { |
260 | pte = pte_mkhuge(pte); | |
261 | pte = arch_make_huge_pte(pte, vma, new, 0); | |
383321ab | 262 | set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); |
3fe87967 KS |
263 | if (PageAnon(new)) |
264 | hugepage_add_anon_rmap(new, vma, pvmw.address); | |
265 | else | |
266 | page_dup_rmap(new, true); | |
383321ab AK |
267 | } else |
268 | #endif | |
269 | { | |
270 | set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); | |
04e62a29 | 271 | |
383321ab AK |
272 | if (PageAnon(new)) |
273 | page_add_anon_rmap(new, vma, pvmw.address, false); | |
274 | else | |
275 | page_add_file_rmap(new, false); | |
276 | } | |
3fe87967 KS |
277 | if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) |
278 | mlock_vma_page(new); | |
279 | ||
e125fe40 KS |
280 | if (PageTransHuge(page) && PageMlocked(page)) |
281 | clear_page_mlock(page); | |
282 | ||
3fe87967 KS |
283 | /* No need to invalidate - it was non-present before */ |
284 | update_mmu_cache(vma, pvmw.address, pvmw.pte); | |
285 | } | |
51afb12b | 286 | |
e4b82222 | 287 | return true; |
0697212a CL |
288 | } |
289 | ||
04e62a29 CL |
290 | /* |
291 | * Get rid of all migration entries and replace them by | |
292 | * references to the indicated page. | |
293 | */ | |
e388466d | 294 | void remove_migration_ptes(struct page *old, struct page *new, bool locked) |
04e62a29 | 295 | { |
051ac83a JK |
296 | struct rmap_walk_control rwc = { |
297 | .rmap_one = remove_migration_pte, | |
298 | .arg = old, | |
299 | }; | |
300 | ||
e388466d KS |
301 | if (locked) |
302 | rmap_walk_locked(new, &rwc); | |
303 | else | |
304 | rmap_walk(new, &rwc); | |
04e62a29 CL |
305 | } |
306 | ||
0697212a CL |
307 | /* |
308 | * Something used the pte of a page under migration. We need to | |
309 | * get to the page and wait until migration is finished. | |
310 | * When we return from this function the fault will be retried. | |
0697212a | 311 | */ |
e66f17ff | 312 | void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, |
30dad309 | 313 | spinlock_t *ptl) |
0697212a | 314 | { |
30dad309 | 315 | pte_t pte; |
0697212a CL |
316 | swp_entry_t entry; |
317 | struct page *page; | |
318 | ||
30dad309 | 319 | spin_lock(ptl); |
0697212a CL |
320 | pte = *ptep; |
321 | if (!is_swap_pte(pte)) | |
322 | goto out; | |
323 | ||
324 | entry = pte_to_swp_entry(pte); | |
325 | if (!is_migration_entry(entry)) | |
326 | goto out; | |
327 | ||
328 | page = migration_entry_to_page(entry); | |
329 | ||
e286781d | 330 | /* |
89eb946a | 331 | * Once page cache replacement of page migration started, page_count |
9a1ea439 HD |
332 | * is zero; but we must not call put_and_wait_on_page_locked() without |
333 | * a ref. Use get_page_unless_zero(), and just fault again if it fails. | |
e286781d NP |
334 | */ |
335 | if (!get_page_unless_zero(page)) | |
336 | goto out; | |
0697212a | 337 | pte_unmap_unlock(ptep, ptl); |
9a1ea439 | 338 | put_and_wait_on_page_locked(page); |
0697212a CL |
339 | return; |
340 | out: | |
341 | pte_unmap_unlock(ptep, ptl); | |
342 | } | |
343 | ||
30dad309 NH |
344 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, |
345 | unsigned long address) | |
346 | { | |
347 | spinlock_t *ptl = pte_lockptr(mm, pmd); | |
348 | pte_t *ptep = pte_offset_map(pmd, address); | |
349 | __migration_entry_wait(mm, ptep, ptl); | |
350 | } | |
351 | ||
cb900f41 KS |
352 | void migration_entry_wait_huge(struct vm_area_struct *vma, |
353 | struct mm_struct *mm, pte_t *pte) | |
30dad309 | 354 | { |
cb900f41 | 355 | spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); |
30dad309 NH |
356 | __migration_entry_wait(mm, pte, ptl); |
357 | } | |
358 | ||
616b8371 ZY |
359 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
360 | void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) | |
361 | { | |
362 | spinlock_t *ptl; | |
363 | struct page *page; | |
364 | ||
365 | ptl = pmd_lock(mm, pmd); | |
366 | if (!is_pmd_migration_entry(*pmd)) | |
367 | goto unlock; | |
368 | page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); | |
369 | if (!get_page_unless_zero(page)) | |
370 | goto unlock; | |
371 | spin_unlock(ptl); | |
9a1ea439 | 372 | put_and_wait_on_page_locked(page); |
616b8371 ZY |
373 | return; |
374 | unlock: | |
375 | spin_unlock(ptl); | |
376 | } | |
377 | #endif | |
378 | ||
f900482d | 379 | static int expected_page_refs(struct address_space *mapping, struct page *page) |
0b3901b3 JK |
380 | { |
381 | int expected_count = 1; | |
382 | ||
383 | /* | |
384 | * Device public or private pages have an extra refcount as they are | |
385 | * ZONE_DEVICE pages. | |
386 | */ | |
387 | expected_count += is_device_private_page(page); | |
f900482d | 388 | if (mapping) |
0b3901b3 JK |
389 | expected_count += hpage_nr_pages(page) + page_has_private(page); |
390 | ||
391 | return expected_count; | |
392 | } | |
393 | ||
b20a3503 | 394 | /* |
c3fcf8a5 | 395 | * Replace the page in the mapping. |
5b5c7120 CL |
396 | * |
397 | * The number of remaining references must be: | |
398 | * 1 for anonymous pages without a mapping | |
399 | * 2 for pages with a mapping | |
266cf658 | 400 | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
b20a3503 | 401 | */ |
36bc08cc | 402 | int migrate_page_move_mapping(struct address_space *mapping, |
37109694 | 403 | struct page *newpage, struct page *page, int extra_count) |
b20a3503 | 404 | { |
89eb946a | 405 | XA_STATE(xas, &mapping->i_pages, page_index(page)); |
42cb14b1 HD |
406 | struct zone *oldzone, *newzone; |
407 | int dirty; | |
f900482d | 408 | int expected_count = expected_page_refs(mapping, page) + extra_count; |
8763cb45 | 409 | |
6c5240ae | 410 | if (!mapping) { |
0e8c7d0f | 411 | /* Anonymous page without mapping */ |
8e321fef | 412 | if (page_count(page) != expected_count) |
6c5240ae | 413 | return -EAGAIN; |
cf4b769a HD |
414 | |
415 | /* No turning back from here */ | |
cf4b769a HD |
416 | newpage->index = page->index; |
417 | newpage->mapping = page->mapping; | |
418 | if (PageSwapBacked(page)) | |
fa9949da | 419 | __SetPageSwapBacked(newpage); |
cf4b769a | 420 | |
78bd5209 | 421 | return MIGRATEPAGE_SUCCESS; |
6c5240ae CL |
422 | } |
423 | ||
42cb14b1 HD |
424 | oldzone = page_zone(page); |
425 | newzone = page_zone(newpage); | |
426 | ||
89eb946a | 427 | xas_lock_irq(&xas); |
89eb946a MW |
428 | if (page_count(page) != expected_count || xas_load(&xas) != page) { |
429 | xas_unlock_irq(&xas); | |
e23ca00b | 430 | return -EAGAIN; |
b20a3503 CL |
431 | } |
432 | ||
fe896d18 | 433 | if (!page_ref_freeze(page, expected_count)) { |
89eb946a | 434 | xas_unlock_irq(&xas); |
e286781d NP |
435 | return -EAGAIN; |
436 | } | |
437 | ||
b20a3503 | 438 | /* |
cf4b769a HD |
439 | * Now we know that no one else is looking at the page: |
440 | * no turning back from here. | |
b20a3503 | 441 | */ |
cf4b769a HD |
442 | newpage->index = page->index; |
443 | newpage->mapping = page->mapping; | |
e71769ae | 444 | page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ |
6326fec1 NP |
445 | if (PageSwapBacked(page)) { |
446 | __SetPageSwapBacked(newpage); | |
447 | if (PageSwapCache(page)) { | |
448 | SetPageSwapCache(newpage); | |
449 | set_page_private(newpage, page_private(page)); | |
450 | } | |
451 | } else { | |
452 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | |
b20a3503 CL |
453 | } |
454 | ||
42cb14b1 HD |
455 | /* Move dirty while page refs frozen and newpage not yet exposed */ |
456 | dirty = PageDirty(page); | |
457 | if (dirty) { | |
458 | ClearPageDirty(page); | |
459 | SetPageDirty(newpage); | |
460 | } | |
461 | ||
89eb946a | 462 | xas_store(&xas, newpage); |
e71769ae NH |
463 | if (PageTransHuge(page)) { |
464 | int i; | |
e71769ae | 465 | |
013567be | 466 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
89eb946a | 467 | xas_next(&xas); |
4101196b | 468 | xas_store(&xas, newpage); |
e71769ae | 469 | } |
e71769ae | 470 | } |
7cf9c2c7 NP |
471 | |
472 | /* | |
937a94c9 JG |
473 | * Drop cache reference from old page by unfreezing |
474 | * to one less reference. | |
7cf9c2c7 NP |
475 | * We know this isn't the last reference. |
476 | */ | |
e71769ae | 477 | page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); |
7cf9c2c7 | 478 | |
89eb946a | 479 | xas_unlock(&xas); |
42cb14b1 HD |
480 | /* Leave irq disabled to prevent preemption while updating stats */ |
481 | ||
0e8c7d0f CL |
482 | /* |
483 | * If moved to a different zone then also account | |
484 | * the page for that zone. Other VM counters will be | |
485 | * taken care of when we establish references to the | |
486 | * new page and drop references to the old page. | |
487 | * | |
488 | * Note that anonymous pages are accounted for | |
4b9d0fab | 489 | * via NR_FILE_PAGES and NR_ANON_MAPPED if they |
0e8c7d0f CL |
490 | * are mapped to swap space. |
491 | */ | |
42cb14b1 | 492 | if (newzone != oldzone) { |
0d1c2072 JW |
493 | struct lruvec *old_lruvec, *new_lruvec; |
494 | struct mem_cgroup *memcg; | |
495 | ||
496 | memcg = page_memcg(page); | |
497 | old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); | |
498 | new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); | |
499 | ||
500 | __dec_lruvec_state(old_lruvec, NR_FILE_PAGES); | |
501 | __inc_lruvec_state(new_lruvec, NR_FILE_PAGES); | |
42cb14b1 | 502 | if (PageSwapBacked(page) && !PageSwapCache(page)) { |
0d1c2072 JW |
503 | __dec_lruvec_state(old_lruvec, NR_SHMEM); |
504 | __inc_lruvec_state(new_lruvec, NR_SHMEM); | |
42cb14b1 HD |
505 | } |
506 | if (dirty && mapping_cap_account_dirty(mapping)) { | |
11fb9989 | 507 | __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); |
5a1c84b4 | 508 | __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); |
11fb9989 | 509 | __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); |
5a1c84b4 | 510 | __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); |
42cb14b1 | 511 | } |
4b02108a | 512 | } |
42cb14b1 | 513 | local_irq_enable(); |
b20a3503 | 514 | |
78bd5209 | 515 | return MIGRATEPAGE_SUCCESS; |
b20a3503 | 516 | } |
1118dce7 | 517 | EXPORT_SYMBOL(migrate_page_move_mapping); |
b20a3503 | 518 | |
290408d4 NH |
519 | /* |
520 | * The expected number of remaining references is the same as that | |
521 | * of migrate_page_move_mapping(). | |
522 | */ | |
523 | int migrate_huge_page_move_mapping(struct address_space *mapping, | |
524 | struct page *newpage, struct page *page) | |
525 | { | |
89eb946a | 526 | XA_STATE(xas, &mapping->i_pages, page_index(page)); |
290408d4 | 527 | int expected_count; |
290408d4 | 528 | |
89eb946a | 529 | xas_lock_irq(&xas); |
290408d4 | 530 | expected_count = 2 + page_has_private(page); |
89eb946a MW |
531 | if (page_count(page) != expected_count || xas_load(&xas) != page) { |
532 | xas_unlock_irq(&xas); | |
290408d4 NH |
533 | return -EAGAIN; |
534 | } | |
535 | ||
fe896d18 | 536 | if (!page_ref_freeze(page, expected_count)) { |
89eb946a | 537 | xas_unlock_irq(&xas); |
290408d4 NH |
538 | return -EAGAIN; |
539 | } | |
540 | ||
cf4b769a HD |
541 | newpage->index = page->index; |
542 | newpage->mapping = page->mapping; | |
6a93ca8f | 543 | |
290408d4 NH |
544 | get_page(newpage); |
545 | ||
89eb946a | 546 | xas_store(&xas, newpage); |
290408d4 | 547 | |
fe896d18 | 548 | page_ref_unfreeze(page, expected_count - 1); |
290408d4 | 549 | |
89eb946a | 550 | xas_unlock_irq(&xas); |
6a93ca8f | 551 | |
78bd5209 | 552 | return MIGRATEPAGE_SUCCESS; |
290408d4 NH |
553 | } |
554 | ||
30b0a105 DH |
555 | /* |
556 | * Gigantic pages are so large that we do not guarantee that page++ pointer | |
557 | * arithmetic will work across the entire page. We need something more | |
558 | * specialized. | |
559 | */ | |
560 | static void __copy_gigantic_page(struct page *dst, struct page *src, | |
561 | int nr_pages) | |
562 | { | |
563 | int i; | |
564 | struct page *dst_base = dst; | |
565 | struct page *src_base = src; | |
566 | ||
567 | for (i = 0; i < nr_pages; ) { | |
568 | cond_resched(); | |
569 | copy_highpage(dst, src); | |
570 | ||
571 | i++; | |
572 | dst = mem_map_next(dst, dst_base, i); | |
573 | src = mem_map_next(src, src_base, i); | |
574 | } | |
575 | } | |
576 | ||
577 | static void copy_huge_page(struct page *dst, struct page *src) | |
578 | { | |
579 | int i; | |
580 | int nr_pages; | |
581 | ||
582 | if (PageHuge(src)) { | |
583 | /* hugetlbfs page */ | |
584 | struct hstate *h = page_hstate(src); | |
585 | nr_pages = pages_per_huge_page(h); | |
586 | ||
587 | if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { | |
588 | __copy_gigantic_page(dst, src, nr_pages); | |
589 | return; | |
590 | } | |
591 | } else { | |
592 | /* thp page */ | |
593 | BUG_ON(!PageTransHuge(src)); | |
594 | nr_pages = hpage_nr_pages(src); | |
595 | } | |
596 | ||
597 | for (i = 0; i < nr_pages; i++) { | |
598 | cond_resched(); | |
599 | copy_highpage(dst + i, src + i); | |
600 | } | |
601 | } | |
602 | ||
b20a3503 CL |
603 | /* |
604 | * Copy the page to its new location | |
605 | */ | |
2916ecc0 | 606 | void migrate_page_states(struct page *newpage, struct page *page) |
b20a3503 | 607 | { |
7851a45c RR |
608 | int cpupid; |
609 | ||
b20a3503 CL |
610 | if (PageError(page)) |
611 | SetPageError(newpage); | |
612 | if (PageReferenced(page)) | |
613 | SetPageReferenced(newpage); | |
614 | if (PageUptodate(page)) | |
615 | SetPageUptodate(newpage); | |
894bc310 | 616 | if (TestClearPageActive(page)) { |
309381fe | 617 | VM_BUG_ON_PAGE(PageUnevictable(page), page); |
b20a3503 | 618 | SetPageActive(newpage); |
418b27ef LS |
619 | } else if (TestClearPageUnevictable(page)) |
620 | SetPageUnevictable(newpage); | |
1899ad18 JW |
621 | if (PageWorkingset(page)) |
622 | SetPageWorkingset(newpage); | |
b20a3503 CL |
623 | if (PageChecked(page)) |
624 | SetPageChecked(newpage); | |
625 | if (PageMappedToDisk(page)) | |
626 | SetPageMappedToDisk(newpage); | |
627 | ||
42cb14b1 HD |
628 | /* Move dirty on pages not done by migrate_page_move_mapping() */ |
629 | if (PageDirty(page)) | |
630 | SetPageDirty(newpage); | |
b20a3503 | 631 | |
33c3fc71 VD |
632 | if (page_is_young(page)) |
633 | set_page_young(newpage); | |
634 | if (page_is_idle(page)) | |
635 | set_page_idle(newpage); | |
636 | ||
7851a45c RR |
637 | /* |
638 | * Copy NUMA information to the new page, to prevent over-eager | |
639 | * future migrations of this same page. | |
640 | */ | |
641 | cpupid = page_cpupid_xchg_last(page, -1); | |
642 | page_cpupid_xchg_last(newpage, cpupid); | |
643 | ||
e9995ef9 | 644 | ksm_migrate_page(newpage, page); |
c8d6553b HD |
645 | /* |
646 | * Please do not reorder this without considering how mm/ksm.c's | |
647 | * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). | |
648 | */ | |
b3b3a99c NH |
649 | if (PageSwapCache(page)) |
650 | ClearPageSwapCache(page); | |
b20a3503 CL |
651 | ClearPagePrivate(page); |
652 | set_page_private(page, 0); | |
b20a3503 CL |
653 | |
654 | /* | |
655 | * If any waiters have accumulated on the new page then | |
656 | * wake them up. | |
657 | */ | |
658 | if (PageWriteback(newpage)) | |
659 | end_page_writeback(newpage); | |
d435edca | 660 | |
6aeff241 YS |
661 | /* |
662 | * PG_readahead shares the same bit with PG_reclaim. The above | |
663 | * end_page_writeback() may clear PG_readahead mistakenly, so set the | |
664 | * bit after that. | |
665 | */ | |
666 | if (PageReadahead(page)) | |
667 | SetPageReadahead(newpage); | |
668 | ||
d435edca | 669 | copy_page_owner(page, newpage); |
74485cf2 JW |
670 | |
671 | mem_cgroup_migrate(page, newpage); | |
b20a3503 | 672 | } |
2916ecc0 JG |
673 | EXPORT_SYMBOL(migrate_page_states); |
674 | ||
675 | void migrate_page_copy(struct page *newpage, struct page *page) | |
676 | { | |
677 | if (PageHuge(page) || PageTransHuge(page)) | |
678 | copy_huge_page(newpage, page); | |
679 | else | |
680 | copy_highpage(newpage, page); | |
681 | ||
682 | migrate_page_states(newpage, page); | |
683 | } | |
1118dce7 | 684 | EXPORT_SYMBOL(migrate_page_copy); |
b20a3503 | 685 | |
1d8b85cc CL |
686 | /************************************************************ |
687 | * Migration functions | |
688 | ***********************************************************/ | |
689 | ||
b20a3503 | 690 | /* |
bda807d4 | 691 | * Common logic to directly migrate a single LRU page suitable for |
266cf658 | 692 | * pages that do not use PagePrivate/PagePrivate2. |
b20a3503 CL |
693 | * |
694 | * Pages are locked upon entry and exit. | |
695 | */ | |
2d1db3b1 | 696 | int migrate_page(struct address_space *mapping, |
a6bc32b8 MG |
697 | struct page *newpage, struct page *page, |
698 | enum migrate_mode mode) | |
b20a3503 CL |
699 | { |
700 | int rc; | |
701 | ||
702 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | |
703 | ||
37109694 | 704 | rc = migrate_page_move_mapping(mapping, newpage, page, 0); |
b20a3503 | 705 | |
78bd5209 | 706 | if (rc != MIGRATEPAGE_SUCCESS) |
b20a3503 CL |
707 | return rc; |
708 | ||
2916ecc0 JG |
709 | if (mode != MIGRATE_SYNC_NO_COPY) |
710 | migrate_page_copy(newpage, page); | |
711 | else | |
712 | migrate_page_states(newpage, page); | |
78bd5209 | 713 | return MIGRATEPAGE_SUCCESS; |
b20a3503 CL |
714 | } |
715 | EXPORT_SYMBOL(migrate_page); | |
716 | ||
9361401e | 717 | #ifdef CONFIG_BLOCK |
84ade7c1 JK |
718 | /* Returns true if all buffers are successfully locked */ |
719 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, | |
720 | enum migrate_mode mode) | |
721 | { | |
722 | struct buffer_head *bh = head; | |
723 | ||
724 | /* Simple case, sync compaction */ | |
725 | if (mode != MIGRATE_ASYNC) { | |
726 | do { | |
84ade7c1 JK |
727 | lock_buffer(bh); |
728 | bh = bh->b_this_page; | |
729 | ||
730 | } while (bh != head); | |
731 | ||
732 | return true; | |
733 | } | |
734 | ||
735 | /* async case, we cannot block on lock_buffer so use trylock_buffer */ | |
736 | do { | |
84ade7c1 JK |
737 | if (!trylock_buffer(bh)) { |
738 | /* | |
739 | * We failed to lock the buffer and cannot stall in | |
740 | * async migration. Release the taken locks | |
741 | */ | |
742 | struct buffer_head *failed_bh = bh; | |
84ade7c1 JK |
743 | bh = head; |
744 | while (bh != failed_bh) { | |
745 | unlock_buffer(bh); | |
84ade7c1 JK |
746 | bh = bh->b_this_page; |
747 | } | |
748 | return false; | |
749 | } | |
750 | ||
751 | bh = bh->b_this_page; | |
752 | } while (bh != head); | |
753 | return true; | |
754 | } | |
755 | ||
89cb0888 JK |
756 | static int __buffer_migrate_page(struct address_space *mapping, |
757 | struct page *newpage, struct page *page, enum migrate_mode mode, | |
758 | bool check_refs) | |
1d8b85cc | 759 | { |
1d8b85cc CL |
760 | struct buffer_head *bh, *head; |
761 | int rc; | |
cc4f11e6 | 762 | int expected_count; |
1d8b85cc | 763 | |
1d8b85cc | 764 | if (!page_has_buffers(page)) |
a6bc32b8 | 765 | return migrate_page(mapping, newpage, page, mode); |
1d8b85cc | 766 | |
cc4f11e6 | 767 | /* Check whether page does not have extra refs before we do more work */ |
f900482d | 768 | expected_count = expected_page_refs(mapping, page); |
cc4f11e6 JK |
769 | if (page_count(page) != expected_count) |
770 | return -EAGAIN; | |
1d8b85cc | 771 | |
cc4f11e6 JK |
772 | head = page_buffers(page); |
773 | if (!buffer_migrate_lock_buffers(head, mode)) | |
774 | return -EAGAIN; | |
1d8b85cc | 775 | |
89cb0888 JK |
776 | if (check_refs) { |
777 | bool busy; | |
778 | bool invalidated = false; | |
779 | ||
780 | recheck_buffers: | |
781 | busy = false; | |
782 | spin_lock(&mapping->private_lock); | |
783 | bh = head; | |
784 | do { | |
785 | if (atomic_read(&bh->b_count)) { | |
786 | busy = true; | |
787 | break; | |
788 | } | |
789 | bh = bh->b_this_page; | |
790 | } while (bh != head); | |
89cb0888 JK |
791 | if (busy) { |
792 | if (invalidated) { | |
793 | rc = -EAGAIN; | |
794 | goto unlock_buffers; | |
795 | } | |
ebdf4de5 | 796 | spin_unlock(&mapping->private_lock); |
89cb0888 JK |
797 | invalidate_bh_lrus(); |
798 | invalidated = true; | |
799 | goto recheck_buffers; | |
800 | } | |
801 | } | |
802 | ||
37109694 | 803 | rc = migrate_page_move_mapping(mapping, newpage, page, 0); |
78bd5209 | 804 | if (rc != MIGRATEPAGE_SUCCESS) |
cc4f11e6 | 805 | goto unlock_buffers; |
1d8b85cc | 806 | |
cd0f3715 | 807 | attach_page_private(newpage, detach_page_private(page)); |
1d8b85cc CL |
808 | |
809 | bh = head; | |
810 | do { | |
811 | set_bh_page(bh, newpage, bh_offset(bh)); | |
812 | bh = bh->b_this_page; | |
813 | ||
814 | } while (bh != head); | |
815 | ||
2916ecc0 JG |
816 | if (mode != MIGRATE_SYNC_NO_COPY) |
817 | migrate_page_copy(newpage, page); | |
818 | else | |
819 | migrate_page_states(newpage, page); | |
1d8b85cc | 820 | |
cc4f11e6 JK |
821 | rc = MIGRATEPAGE_SUCCESS; |
822 | unlock_buffers: | |
ebdf4de5 JK |
823 | if (check_refs) |
824 | spin_unlock(&mapping->private_lock); | |
1d8b85cc CL |
825 | bh = head; |
826 | do { | |
827 | unlock_buffer(bh); | |
1d8b85cc CL |
828 | bh = bh->b_this_page; |
829 | ||
830 | } while (bh != head); | |
831 | ||
cc4f11e6 | 832 | return rc; |
1d8b85cc | 833 | } |
89cb0888 JK |
834 | |
835 | /* | |
836 | * Migration function for pages with buffers. This function can only be used | |
837 | * if the underlying filesystem guarantees that no other references to "page" | |
838 | * exist. For example attached buffer heads are accessed only under page lock. | |
839 | */ | |
840 | int buffer_migrate_page(struct address_space *mapping, | |
841 | struct page *newpage, struct page *page, enum migrate_mode mode) | |
842 | { | |
843 | return __buffer_migrate_page(mapping, newpage, page, mode, false); | |
844 | } | |
1d8b85cc | 845 | EXPORT_SYMBOL(buffer_migrate_page); |
89cb0888 JK |
846 | |
847 | /* | |
848 | * Same as above except that this variant is more careful and checks that there | |
849 | * are also no buffer head references. This function is the right one for | |
850 | * mappings where buffer heads are directly looked up and referenced (such as | |
851 | * block device mappings). | |
852 | */ | |
853 | int buffer_migrate_page_norefs(struct address_space *mapping, | |
854 | struct page *newpage, struct page *page, enum migrate_mode mode) | |
855 | { | |
856 | return __buffer_migrate_page(mapping, newpage, page, mode, true); | |
857 | } | |
9361401e | 858 | #endif |
1d8b85cc | 859 | |
04e62a29 CL |
860 | /* |
861 | * Writeback a page to clean the dirty state | |
862 | */ | |
863 | static int writeout(struct address_space *mapping, struct page *page) | |
8351a6e4 | 864 | { |
04e62a29 CL |
865 | struct writeback_control wbc = { |
866 | .sync_mode = WB_SYNC_NONE, | |
867 | .nr_to_write = 1, | |
868 | .range_start = 0, | |
869 | .range_end = LLONG_MAX, | |
04e62a29 CL |
870 | .for_reclaim = 1 |
871 | }; | |
872 | int rc; | |
873 | ||
874 | if (!mapping->a_ops->writepage) | |
875 | /* No write method for the address space */ | |
876 | return -EINVAL; | |
877 | ||
878 | if (!clear_page_dirty_for_io(page)) | |
879 | /* Someone else already triggered a write */ | |
880 | return -EAGAIN; | |
881 | ||
8351a6e4 | 882 | /* |
04e62a29 CL |
883 | * A dirty page may imply that the underlying filesystem has |
884 | * the page on some queue. So the page must be clean for | |
885 | * migration. Writeout may mean we loose the lock and the | |
886 | * page state is no longer what we checked for earlier. | |
887 | * At this point we know that the migration attempt cannot | |
888 | * be successful. | |
8351a6e4 | 889 | */ |
e388466d | 890 | remove_migration_ptes(page, page, false); |
8351a6e4 | 891 | |
04e62a29 | 892 | rc = mapping->a_ops->writepage(page, &wbc); |
8351a6e4 | 893 | |
04e62a29 CL |
894 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
895 | /* unlocked. Relock */ | |
896 | lock_page(page); | |
897 | ||
bda8550d | 898 | return (rc < 0) ? -EIO : -EAGAIN; |
04e62a29 CL |
899 | } |
900 | ||
901 | /* | |
902 | * Default handling if a filesystem does not provide a migration function. | |
903 | */ | |
904 | static int fallback_migrate_page(struct address_space *mapping, | |
a6bc32b8 | 905 | struct page *newpage, struct page *page, enum migrate_mode mode) |
04e62a29 | 906 | { |
b969c4ab | 907 | if (PageDirty(page)) { |
a6bc32b8 | 908 | /* Only writeback pages in full synchronous migration */ |
2916ecc0 JG |
909 | switch (mode) { |
910 | case MIGRATE_SYNC: | |
911 | case MIGRATE_SYNC_NO_COPY: | |
912 | break; | |
913 | default: | |
b969c4ab | 914 | return -EBUSY; |
2916ecc0 | 915 | } |
04e62a29 | 916 | return writeout(mapping, page); |
b969c4ab | 917 | } |
8351a6e4 CL |
918 | |
919 | /* | |
920 | * Buffers may be managed in a filesystem specific way. | |
921 | * We must have no buffers or drop them. | |
922 | */ | |
266cf658 | 923 | if (page_has_private(page) && |
8351a6e4 | 924 | !try_to_release_page(page, GFP_KERNEL)) |
806031bb | 925 | return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; |
8351a6e4 | 926 | |
a6bc32b8 | 927 | return migrate_page(mapping, newpage, page, mode); |
8351a6e4 CL |
928 | } |
929 | ||
e24f0b8f CL |
930 | /* |
931 | * Move a page to a newly allocated page | |
932 | * The page is locked and all ptes have been successfully removed. | |
933 | * | |
934 | * The new page will have replaced the old page if this function | |
935 | * is successful. | |
894bc310 LS |
936 | * |
937 | * Return value: | |
938 | * < 0 - error code | |
78bd5209 | 939 | * MIGRATEPAGE_SUCCESS - success |
e24f0b8f | 940 | */ |
3fe2011f | 941 | static int move_to_new_page(struct page *newpage, struct page *page, |
5c3f9a67 | 942 | enum migrate_mode mode) |
e24f0b8f CL |
943 | { |
944 | struct address_space *mapping; | |
bda807d4 MK |
945 | int rc = -EAGAIN; |
946 | bool is_lru = !__PageMovable(page); | |
e24f0b8f | 947 | |
7db7671f HD |
948 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
949 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
e24f0b8f | 950 | |
e24f0b8f | 951 | mapping = page_mapping(page); |
bda807d4 MK |
952 | |
953 | if (likely(is_lru)) { | |
954 | if (!mapping) | |
955 | rc = migrate_page(mapping, newpage, page, mode); | |
956 | else if (mapping->a_ops->migratepage) | |
957 | /* | |
958 | * Most pages have a mapping and most filesystems | |
959 | * provide a migratepage callback. Anonymous pages | |
960 | * are part of swap space which also has its own | |
961 | * migratepage callback. This is the most common path | |
962 | * for page migration. | |
963 | */ | |
964 | rc = mapping->a_ops->migratepage(mapping, newpage, | |
965 | page, mode); | |
966 | else | |
967 | rc = fallback_migrate_page(mapping, newpage, | |
968 | page, mode); | |
969 | } else { | |
e24f0b8f | 970 | /* |
bda807d4 MK |
971 | * In case of non-lru page, it could be released after |
972 | * isolation step. In that case, we shouldn't try migration. | |
e24f0b8f | 973 | */ |
bda807d4 MK |
974 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
975 | if (!PageMovable(page)) { | |
976 | rc = MIGRATEPAGE_SUCCESS; | |
977 | __ClearPageIsolated(page); | |
978 | goto out; | |
979 | } | |
980 | ||
981 | rc = mapping->a_ops->migratepage(mapping, newpage, | |
982 | page, mode); | |
983 | WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && | |
984 | !PageIsolated(page)); | |
985 | } | |
e24f0b8f | 986 | |
5c3f9a67 HD |
987 | /* |
988 | * When successful, old pagecache page->mapping must be cleared before | |
989 | * page is freed; but stats require that PageAnon be left as PageAnon. | |
990 | */ | |
991 | if (rc == MIGRATEPAGE_SUCCESS) { | |
bda807d4 MK |
992 | if (__PageMovable(page)) { |
993 | VM_BUG_ON_PAGE(!PageIsolated(page), page); | |
994 | ||
995 | /* | |
996 | * We clear PG_movable under page_lock so any compactor | |
997 | * cannot try to migrate this page. | |
998 | */ | |
999 | __ClearPageIsolated(page); | |
1000 | } | |
1001 | ||
1002 | /* | |
c23a0c99 | 1003 | * Anonymous and movable page->mapping will be cleared by |
bda807d4 MK |
1004 | * free_pages_prepare so don't reset it here for keeping |
1005 | * the type to work PageAnon, for example. | |
1006 | */ | |
1007 | if (!PageMappingFlags(page)) | |
5c3f9a67 | 1008 | page->mapping = NULL; |
d2b2c6dd | 1009 | |
25b2995a | 1010 | if (likely(!is_zone_device_page(newpage))) |
d2b2c6dd LP |
1011 | flush_dcache_page(newpage); |
1012 | ||
3fe2011f | 1013 | } |
bda807d4 | 1014 | out: |
e24f0b8f CL |
1015 | return rc; |
1016 | } | |
1017 | ||
0dabec93 | 1018 | static int __unmap_and_move(struct page *page, struct page *newpage, |
9c620e2b | 1019 | int force, enum migrate_mode mode) |
e24f0b8f | 1020 | { |
0dabec93 | 1021 | int rc = -EAGAIN; |
2ebba6b7 | 1022 | int page_was_mapped = 0; |
3f6c8272 | 1023 | struct anon_vma *anon_vma = NULL; |
bda807d4 | 1024 | bool is_lru = !__PageMovable(page); |
95a402c3 | 1025 | |
529ae9aa | 1026 | if (!trylock_page(page)) { |
a6bc32b8 | 1027 | if (!force || mode == MIGRATE_ASYNC) |
0dabec93 | 1028 | goto out; |
3e7d3449 MG |
1029 | |
1030 | /* | |
1031 | * It's not safe for direct compaction to call lock_page. | |
1032 | * For example, during page readahead pages are added locked | |
1033 | * to the LRU. Later, when the IO completes the pages are | |
1034 | * marked uptodate and unlocked. However, the queueing | |
1035 | * could be merging multiple pages for one bio (e.g. | |
d4388340 | 1036 | * mpage_readahead). If an allocation happens for the |
3e7d3449 MG |
1037 | * second or third page, the process can end up locking |
1038 | * the same page twice and deadlocking. Rather than | |
1039 | * trying to be clever about what pages can be locked, | |
1040 | * avoid the use of lock_page for direct compaction | |
1041 | * altogether. | |
1042 | */ | |
1043 | if (current->flags & PF_MEMALLOC) | |
0dabec93 | 1044 | goto out; |
3e7d3449 | 1045 | |
e24f0b8f CL |
1046 | lock_page(page); |
1047 | } | |
1048 | ||
1049 | if (PageWriteback(page)) { | |
11bc82d6 | 1050 | /* |
fed5b64a | 1051 | * Only in the case of a full synchronous migration is it |
a6bc32b8 MG |
1052 | * necessary to wait for PageWriteback. In the async case, |
1053 | * the retry loop is too short and in the sync-light case, | |
1054 | * the overhead of stalling is too much | |
11bc82d6 | 1055 | */ |
2916ecc0 JG |
1056 | switch (mode) { |
1057 | case MIGRATE_SYNC: | |
1058 | case MIGRATE_SYNC_NO_COPY: | |
1059 | break; | |
1060 | default: | |
11bc82d6 | 1061 | rc = -EBUSY; |
0a31bc97 | 1062 | goto out_unlock; |
11bc82d6 AA |
1063 | } |
1064 | if (!force) | |
0a31bc97 | 1065 | goto out_unlock; |
e24f0b8f CL |
1066 | wait_on_page_writeback(page); |
1067 | } | |
03f15c86 | 1068 | |
e24f0b8f | 1069 | /* |
dc386d4d KH |
1070 | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, |
1071 | * we cannot notice that anon_vma is freed while we migrates a page. | |
1ce82b69 | 1072 | * This get_anon_vma() delays freeing anon_vma pointer until the end |
dc386d4d | 1073 | * of migration. File cache pages are no problem because of page_lock() |
989f89c5 KH |
1074 | * File Caches may use write_page() or lock_page() in migration, then, |
1075 | * just care Anon page here. | |
03f15c86 HD |
1076 | * |
1077 | * Only page_get_anon_vma() understands the subtleties of | |
1078 | * getting a hold on an anon_vma from outside one of its mms. | |
1079 | * But if we cannot get anon_vma, then we won't need it anyway, | |
1080 | * because that implies that the anon page is no longer mapped | |
1081 | * (and cannot be remapped so long as we hold the page lock). | |
dc386d4d | 1082 | */ |
03f15c86 | 1083 | if (PageAnon(page) && !PageKsm(page)) |
746b18d4 | 1084 | anon_vma = page_get_anon_vma(page); |
62e1c553 | 1085 | |
7db7671f HD |
1086 | /* |
1087 | * Block others from accessing the new page when we get around to | |
1088 | * establishing additional references. We are usually the only one | |
1089 | * holding a reference to newpage at this point. We used to have a BUG | |
1090 | * here if trylock_page(newpage) fails, but would like to allow for | |
1091 | * cases where there might be a race with the previous use of newpage. | |
1092 | * This is much like races on refcount of oldpage: just don't BUG(). | |
1093 | */ | |
1094 | if (unlikely(!trylock_page(newpage))) | |
1095 | goto out_unlock; | |
1096 | ||
bda807d4 MK |
1097 | if (unlikely(!is_lru)) { |
1098 | rc = move_to_new_page(newpage, page, mode); | |
1099 | goto out_unlock_both; | |
1100 | } | |
1101 | ||
dc386d4d | 1102 | /* |
62e1c553 SL |
1103 | * Corner case handling: |
1104 | * 1. When a new swap-cache page is read into, it is added to the LRU | |
1105 | * and treated as swapcache but it has no rmap yet. | |
1106 | * Calling try_to_unmap() against a page->mapping==NULL page will | |
1107 | * trigger a BUG. So handle it here. | |
1108 | * 2. An orphaned page (see truncate_complete_page) might have | |
1109 | * fs-private metadata. The page can be picked up due to memory | |
1110 | * offlining. Everywhere else except page reclaim, the page is | |
1111 | * invisible to the vm, so the page can not be migrated. So try to | |
1112 | * free the metadata, so the page can be freed. | |
e24f0b8f | 1113 | */ |
62e1c553 | 1114 | if (!page->mapping) { |
309381fe | 1115 | VM_BUG_ON_PAGE(PageAnon(page), page); |
1ce82b69 | 1116 | if (page_has_private(page)) { |
62e1c553 | 1117 | try_to_free_buffers(page); |
7db7671f | 1118 | goto out_unlock_both; |
62e1c553 | 1119 | } |
7db7671f HD |
1120 | } else if (page_mapped(page)) { |
1121 | /* Establish migration ptes */ | |
03f15c86 HD |
1122 | VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, |
1123 | page); | |
2ebba6b7 | 1124 | try_to_unmap(page, |
da1b13cc | 1125 | TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); |
2ebba6b7 HD |
1126 | page_was_mapped = 1; |
1127 | } | |
dc386d4d | 1128 | |
e6a1530d | 1129 | if (!page_mapped(page)) |
5c3f9a67 | 1130 | rc = move_to_new_page(newpage, page, mode); |
e24f0b8f | 1131 | |
5c3f9a67 HD |
1132 | if (page_was_mapped) |
1133 | remove_migration_ptes(page, | |
e388466d | 1134 | rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); |
3f6c8272 | 1135 | |
7db7671f HD |
1136 | out_unlock_both: |
1137 | unlock_page(newpage); | |
1138 | out_unlock: | |
3f6c8272 | 1139 | /* Drop an anon_vma reference if we took one */ |
76545066 | 1140 | if (anon_vma) |
9e60109f | 1141 | put_anon_vma(anon_vma); |
e24f0b8f | 1142 | unlock_page(page); |
0dabec93 | 1143 | out: |
c6c919eb MK |
1144 | /* |
1145 | * If migration is successful, decrease refcount of the newpage | |
1146 | * which will not free the page because new page owner increased | |
1147 | * refcounter. As well, if it is LRU page, add the page to LRU | |
e0a352fa DH |
1148 | * list in here. Use the old state of the isolated source page to |
1149 | * determine if we migrated a LRU page. newpage was already unlocked | |
1150 | * and possibly modified by its owner - don't rely on the page | |
1151 | * state. | |
c6c919eb MK |
1152 | */ |
1153 | if (rc == MIGRATEPAGE_SUCCESS) { | |
e0a352fa | 1154 | if (unlikely(!is_lru)) |
c6c919eb MK |
1155 | put_page(newpage); |
1156 | else | |
1157 | putback_lru_page(newpage); | |
1158 | } | |
1159 | ||
0dabec93 MK |
1160 | return rc; |
1161 | } | |
95a402c3 | 1162 | |
0dabec93 MK |
1163 | /* |
1164 | * Obtain the lock on page, remove all ptes and migrate the page | |
1165 | * to the newly allocated page in newpage. | |
1166 | */ | |
6ec4476a | 1167 | static int unmap_and_move(new_page_t get_new_page, |
ef2a5153 GU |
1168 | free_page_t put_new_page, |
1169 | unsigned long private, struct page *page, | |
add05cec NH |
1170 | int force, enum migrate_mode mode, |
1171 | enum migrate_reason reason) | |
0dabec93 | 1172 | { |
2def7424 | 1173 | int rc = MIGRATEPAGE_SUCCESS; |
74d4a579 | 1174 | struct page *newpage = NULL; |
0dabec93 | 1175 | |
94723aaf MH |
1176 | if (!thp_migration_supported() && PageTransHuge(page)) |
1177 | return -ENOMEM; | |
1178 | ||
0dabec93 MK |
1179 | if (page_count(page) == 1) { |
1180 | /* page was freed from under us. So we are done. */ | |
c6c919eb MK |
1181 | ClearPageActive(page); |
1182 | ClearPageUnevictable(page); | |
bda807d4 MK |
1183 | if (unlikely(__PageMovable(page))) { |
1184 | lock_page(page); | |
1185 | if (!PageMovable(page)) | |
1186 | __ClearPageIsolated(page); | |
1187 | unlock_page(page); | |
1188 | } | |
0dabec93 MK |
1189 | goto out; |
1190 | } | |
1191 | ||
74d4a579 YS |
1192 | newpage = get_new_page(page, private); |
1193 | if (!newpage) | |
1194 | return -ENOMEM; | |
1195 | ||
9c620e2b | 1196 | rc = __unmap_and_move(page, newpage, force, mode); |
c6c919eb | 1197 | if (rc == MIGRATEPAGE_SUCCESS) |
7cd12b4a | 1198 | set_page_owner_migrate_reason(newpage, reason); |
bf6bddf1 | 1199 | |
0dabec93 | 1200 | out: |
e24f0b8f | 1201 | if (rc != -EAGAIN) { |
0dabec93 MK |
1202 | /* |
1203 | * A page that has been migrated has all references | |
1204 | * removed and will be freed. A page that has not been | |
c23a0c99 | 1205 | * migrated will have kept its references and be restored. |
0dabec93 MK |
1206 | */ |
1207 | list_del(&page->lru); | |
6afcf8ef ML |
1208 | |
1209 | /* | |
1210 | * Compaction can migrate also non-LRU pages which are | |
1211 | * not accounted to NR_ISOLATED_*. They can be recognized | |
1212 | * as __PageMovable | |
1213 | */ | |
1214 | if (likely(!__PageMovable(page))) | |
e8db67eb | 1215 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
9de4f22a | 1216 | page_is_file_lru(page), -hpage_nr_pages(page)); |
c6c919eb MK |
1217 | } |
1218 | ||
1219 | /* | |
1220 | * If migration is successful, releases reference grabbed during | |
1221 | * isolation. Otherwise, restore the page to right list unless | |
1222 | * we want to retry. | |
1223 | */ | |
1224 | if (rc == MIGRATEPAGE_SUCCESS) { | |
1225 | put_page(page); | |
1226 | if (reason == MR_MEMORY_FAILURE) { | |
d7e69488 | 1227 | /* |
c6c919eb MK |
1228 | * Set PG_HWPoison on just freed page |
1229 | * intentionally. Although it's rather weird, | |
1230 | * it's how HWPoison flag works at the moment. | |
d7e69488 | 1231 | */ |
d4ae9916 | 1232 | if (set_hwpoison_free_buddy_page(page)) |
da1b13cc | 1233 | num_poisoned_pages_inc(); |
c6c919eb MK |
1234 | } |
1235 | } else { | |
bda807d4 MK |
1236 | if (rc != -EAGAIN) { |
1237 | if (likely(!__PageMovable(page))) { | |
1238 | putback_lru_page(page); | |
1239 | goto put_new; | |
1240 | } | |
1241 | ||
1242 | lock_page(page); | |
1243 | if (PageMovable(page)) | |
1244 | putback_movable_page(page); | |
1245 | else | |
1246 | __ClearPageIsolated(page); | |
1247 | unlock_page(page); | |
1248 | put_page(page); | |
1249 | } | |
1250 | put_new: | |
c6c919eb MK |
1251 | if (put_new_page) |
1252 | put_new_page(newpage, private); | |
1253 | else | |
1254 | put_page(newpage); | |
e24f0b8f | 1255 | } |
68711a74 | 1256 | |
e24f0b8f CL |
1257 | return rc; |
1258 | } | |
1259 | ||
290408d4 NH |
1260 | /* |
1261 | * Counterpart of unmap_and_move_page() for hugepage migration. | |
1262 | * | |
1263 | * This function doesn't wait the completion of hugepage I/O | |
1264 | * because there is no race between I/O and migration for hugepage. | |
1265 | * Note that currently hugepage I/O occurs only in direct I/O | |
1266 | * where no lock is held and PG_writeback is irrelevant, | |
1267 | * and writeback status of all subpages are counted in the reference | |
1268 | * count of the head page (i.e. if all subpages of a 2MB hugepage are | |
1269 | * under direct I/O, the reference of the head page is 512 and a bit more.) | |
1270 | * This means that when we try to migrate hugepage whose subpages are | |
1271 | * doing direct I/O, some references remain after try_to_unmap() and | |
1272 | * hugepage migration fails without data corruption. | |
1273 | * | |
1274 | * There is also no race when direct I/O is issued on the page under migration, | |
1275 | * because then pte is replaced with migration swap entry and direct I/O code | |
1276 | * will wait in the page fault for migration to complete. | |
1277 | */ | |
1278 | static int unmap_and_move_huge_page(new_page_t get_new_page, | |
68711a74 DR |
1279 | free_page_t put_new_page, unsigned long private, |
1280 | struct page *hpage, int force, | |
7cd12b4a | 1281 | enum migrate_mode mode, int reason) |
290408d4 | 1282 | { |
2def7424 | 1283 | int rc = -EAGAIN; |
2ebba6b7 | 1284 | int page_was_mapped = 0; |
32665f2b | 1285 | struct page *new_hpage; |
290408d4 | 1286 | struct anon_vma *anon_vma = NULL; |
c0d0381a | 1287 | struct address_space *mapping = NULL; |
290408d4 | 1288 | |
83467efb | 1289 | /* |
7ed2c31d | 1290 | * Migratability of hugepages depends on architectures and their size. |
83467efb NH |
1291 | * This check is necessary because some callers of hugepage migration |
1292 | * like soft offline and memory hotremove don't walk through page | |
1293 | * tables or check whether the hugepage is pmd-based or not before | |
1294 | * kicking migration. | |
1295 | */ | |
100873d7 | 1296 | if (!hugepage_migration_supported(page_hstate(hpage))) { |
32665f2b | 1297 | putback_active_hugepage(hpage); |
83467efb | 1298 | return -ENOSYS; |
32665f2b | 1299 | } |
83467efb | 1300 | |
666feb21 | 1301 | new_hpage = get_new_page(hpage, private); |
290408d4 NH |
1302 | if (!new_hpage) |
1303 | return -ENOMEM; | |
1304 | ||
290408d4 | 1305 | if (!trylock_page(hpage)) { |
2916ecc0 | 1306 | if (!force) |
290408d4 | 1307 | goto out; |
2916ecc0 JG |
1308 | switch (mode) { |
1309 | case MIGRATE_SYNC: | |
1310 | case MIGRATE_SYNC_NO_COPY: | |
1311 | break; | |
1312 | default: | |
1313 | goto out; | |
1314 | } | |
290408d4 NH |
1315 | lock_page(hpage); |
1316 | } | |
1317 | ||
cb6acd01 MK |
1318 | /* |
1319 | * Check for pages which are in the process of being freed. Without | |
1320 | * page_mapping() set, hugetlbfs specific move page routine will not | |
1321 | * be called and we could leak usage counts for subpools. | |
1322 | */ | |
1323 | if (page_private(hpage) && !page_mapping(hpage)) { | |
1324 | rc = -EBUSY; | |
1325 | goto out_unlock; | |
1326 | } | |
1327 | ||
746b18d4 PZ |
1328 | if (PageAnon(hpage)) |
1329 | anon_vma = page_get_anon_vma(hpage); | |
290408d4 | 1330 | |
7db7671f HD |
1331 | if (unlikely(!trylock_page(new_hpage))) |
1332 | goto put_anon; | |
1333 | ||
2ebba6b7 | 1334 | if (page_mapped(hpage)) { |
c0d0381a MK |
1335 | /* |
1336 | * try_to_unmap could potentially call huge_pmd_unshare. | |
1337 | * Because of this, take semaphore in write mode here and | |
1338 | * set TTU_RMAP_LOCKED to let lower levels know we have | |
1339 | * taken the lock. | |
1340 | */ | |
1341 | mapping = hugetlb_page_mapping_lock_write(hpage); | |
1342 | if (unlikely(!mapping)) | |
1343 | goto unlock_put_anon; | |
1344 | ||
2ebba6b7 | 1345 | try_to_unmap(hpage, |
c0d0381a MK |
1346 | TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| |
1347 | TTU_RMAP_LOCKED); | |
2ebba6b7 | 1348 | page_was_mapped = 1; |
c0d0381a MK |
1349 | /* |
1350 | * Leave mapping locked until after subsequent call to | |
1351 | * remove_migration_ptes() | |
1352 | */ | |
2ebba6b7 | 1353 | } |
290408d4 NH |
1354 | |
1355 | if (!page_mapped(hpage)) | |
5c3f9a67 | 1356 | rc = move_to_new_page(new_hpage, hpage, mode); |
290408d4 | 1357 | |
c0d0381a | 1358 | if (page_was_mapped) { |
5c3f9a67 | 1359 | remove_migration_ptes(hpage, |
c0d0381a MK |
1360 | rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); |
1361 | i_mmap_unlock_write(mapping); | |
1362 | } | |
290408d4 | 1363 | |
c0d0381a | 1364 | unlock_put_anon: |
7db7671f HD |
1365 | unlock_page(new_hpage); |
1366 | ||
1367 | put_anon: | |
fd4a4663 | 1368 | if (anon_vma) |
9e60109f | 1369 | put_anon_vma(anon_vma); |
8e6ac7fa | 1370 | |
2def7424 | 1371 | if (rc == MIGRATEPAGE_SUCCESS) { |
ab5ac90a | 1372 | move_hugetlb_state(hpage, new_hpage, reason); |
2def7424 HD |
1373 | put_new_page = NULL; |
1374 | } | |
8e6ac7fa | 1375 | |
cb6acd01 | 1376 | out_unlock: |
290408d4 | 1377 | unlock_page(hpage); |
09761333 | 1378 | out: |
b8ec1cee NH |
1379 | if (rc != -EAGAIN) |
1380 | putback_active_hugepage(hpage); | |
68711a74 DR |
1381 | |
1382 | /* | |
1383 | * If migration was not successful and there's a freeing callback, use | |
1384 | * it. Otherwise, put_page() will drop the reference grabbed during | |
1385 | * isolation. | |
1386 | */ | |
2def7424 | 1387 | if (put_new_page) |
68711a74 DR |
1388 | put_new_page(new_hpage, private); |
1389 | else | |
3aaa76e1 | 1390 | putback_active_hugepage(new_hpage); |
68711a74 | 1391 | |
290408d4 NH |
1392 | return rc; |
1393 | } | |
1394 | ||
b20a3503 | 1395 | /* |
c73e5c9c SB |
1396 | * migrate_pages - migrate the pages specified in a list, to the free pages |
1397 | * supplied as the target for the page migration | |
b20a3503 | 1398 | * |
c73e5c9c SB |
1399 | * @from: The list of pages to be migrated. |
1400 | * @get_new_page: The function used to allocate free pages to be used | |
1401 | * as the target of the page migration. | |
68711a74 DR |
1402 | * @put_new_page: The function used to free target pages if migration |
1403 | * fails, or NULL if no special handling is necessary. | |
c73e5c9c SB |
1404 | * @private: Private data to be passed on to get_new_page() |
1405 | * @mode: The migration mode that specifies the constraints for | |
1406 | * page migration, if any. | |
1407 | * @reason: The reason for page migration. | |
b20a3503 | 1408 | * |
c73e5c9c SB |
1409 | * The function returns after 10 attempts or if no pages are movable any more |
1410 | * because the list has become empty or no retryable pages exist any more. | |
14e0f9bc | 1411 | * The caller should call putback_movable_pages() to return pages to the LRU |
28bd6578 | 1412 | * or free list only if ret != 0. |
b20a3503 | 1413 | * |
c73e5c9c | 1414 | * Returns the number of pages that were not migrated, or an error code. |
b20a3503 | 1415 | */ |
9c620e2b | 1416 | int migrate_pages(struct list_head *from, new_page_t get_new_page, |
68711a74 DR |
1417 | free_page_t put_new_page, unsigned long private, |
1418 | enum migrate_mode mode, int reason) | |
b20a3503 | 1419 | { |
e24f0b8f | 1420 | int retry = 1; |
b20a3503 | 1421 | int nr_failed = 0; |
5647bc29 | 1422 | int nr_succeeded = 0; |
b20a3503 CL |
1423 | int pass = 0; |
1424 | struct page *page; | |
1425 | struct page *page2; | |
1426 | int swapwrite = current->flags & PF_SWAPWRITE; | |
1427 | int rc; | |
1428 | ||
1429 | if (!swapwrite) | |
1430 | current->flags |= PF_SWAPWRITE; | |
1431 | ||
e24f0b8f CL |
1432 | for(pass = 0; pass < 10 && retry; pass++) { |
1433 | retry = 0; | |
b20a3503 | 1434 | |
e24f0b8f | 1435 | list_for_each_entry_safe(page, page2, from, lru) { |
94723aaf | 1436 | retry: |
e24f0b8f | 1437 | cond_resched(); |
2d1db3b1 | 1438 | |
31caf665 NH |
1439 | if (PageHuge(page)) |
1440 | rc = unmap_and_move_huge_page(get_new_page, | |
68711a74 | 1441 | put_new_page, private, page, |
7cd12b4a | 1442 | pass > 2, mode, reason); |
31caf665 | 1443 | else |
68711a74 | 1444 | rc = unmap_and_move(get_new_page, put_new_page, |
add05cec NH |
1445 | private, page, pass > 2, mode, |
1446 | reason); | |
2d1db3b1 | 1447 | |
e24f0b8f | 1448 | switch(rc) { |
95a402c3 | 1449 | case -ENOMEM: |
94723aaf MH |
1450 | /* |
1451 | * THP migration might be unsupported or the | |
1452 | * allocation could've failed so we should | |
1453 | * retry on the same page with the THP split | |
1454 | * to base pages. | |
1455 | * | |
1456 | * Head page is retried immediately and tail | |
1457 | * pages are added to the tail of the list so | |
1458 | * we encounter them after the rest of the list | |
1459 | * is processed. | |
1460 | */ | |
e6112fc3 | 1461 | if (PageTransHuge(page) && !PageHuge(page)) { |
94723aaf MH |
1462 | lock_page(page); |
1463 | rc = split_huge_page_to_list(page, from); | |
1464 | unlock_page(page); | |
1465 | if (!rc) { | |
1466 | list_safe_reset_next(page, page2, lru); | |
1467 | goto retry; | |
1468 | } | |
1469 | } | |
dfef2ef4 | 1470 | nr_failed++; |
95a402c3 | 1471 | goto out; |
e24f0b8f | 1472 | case -EAGAIN: |
2d1db3b1 | 1473 | retry++; |
e24f0b8f | 1474 | break; |
78bd5209 | 1475 | case MIGRATEPAGE_SUCCESS: |
5647bc29 | 1476 | nr_succeeded++; |
e24f0b8f CL |
1477 | break; |
1478 | default: | |
354a3363 NH |
1479 | /* |
1480 | * Permanent failure (-EBUSY, -ENOSYS, etc.): | |
1481 | * unlike -EAGAIN case, the failed page is | |
1482 | * removed from migration page list and not | |
1483 | * retried in the next outer loop. | |
1484 | */ | |
2d1db3b1 | 1485 | nr_failed++; |
e24f0b8f | 1486 | break; |
2d1db3b1 | 1487 | } |
b20a3503 CL |
1488 | } |
1489 | } | |
f2f81fb2 VB |
1490 | nr_failed += retry; |
1491 | rc = nr_failed; | |
95a402c3 | 1492 | out: |
5647bc29 MG |
1493 | if (nr_succeeded) |
1494 | count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); | |
1495 | if (nr_failed) | |
1496 | count_vm_events(PGMIGRATE_FAIL, nr_failed); | |
7b2a2d4a MG |
1497 | trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); |
1498 | ||
b20a3503 CL |
1499 | if (!swapwrite) |
1500 | current->flags &= ~PF_SWAPWRITE; | |
1501 | ||
78bd5209 | 1502 | return rc; |
b20a3503 | 1503 | } |
95a402c3 | 1504 | |
742755a1 | 1505 | #ifdef CONFIG_NUMA |
742755a1 | 1506 | |
a49bd4d7 | 1507 | static int store_status(int __user *status, int start, int value, int nr) |
742755a1 | 1508 | { |
a49bd4d7 MH |
1509 | while (nr-- > 0) { |
1510 | if (put_user(value, status + start)) | |
1511 | return -EFAULT; | |
1512 | start++; | |
1513 | } | |
1514 | ||
1515 | return 0; | |
1516 | } | |
1517 | ||
1518 | static int do_move_pages_to_node(struct mm_struct *mm, | |
1519 | struct list_head *pagelist, int node) | |
1520 | { | |
1521 | int err; | |
1522 | ||
a49bd4d7 MH |
1523 | err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, |
1524 | MIGRATE_SYNC, MR_SYSCALL); | |
1525 | if (err) | |
1526 | putback_movable_pages(pagelist); | |
1527 | return err; | |
742755a1 CL |
1528 | } |
1529 | ||
1530 | /* | |
a49bd4d7 MH |
1531 | * Resolves the given address to a struct page, isolates it from the LRU and |
1532 | * puts it to the given pagelist. | |
e0153fc2 YS |
1533 | * Returns: |
1534 | * errno - if the page cannot be found/isolated | |
1535 | * 0 - when it doesn't have to be migrated because it is already on the | |
1536 | * target node | |
1537 | * 1 - when it has been queued | |
742755a1 | 1538 | */ |
a49bd4d7 MH |
1539 | static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, |
1540 | int node, struct list_head *pagelist, bool migrate_all) | |
742755a1 | 1541 | { |
a49bd4d7 MH |
1542 | struct vm_area_struct *vma; |
1543 | struct page *page; | |
1544 | unsigned int follflags; | |
742755a1 | 1545 | int err; |
742755a1 | 1546 | |
d8ed45c5 | 1547 | mmap_read_lock(mm); |
a49bd4d7 MH |
1548 | err = -EFAULT; |
1549 | vma = find_vma(mm, addr); | |
1550 | if (!vma || addr < vma->vm_start || !vma_migratable(vma)) | |
1551 | goto out; | |
742755a1 | 1552 | |
a49bd4d7 MH |
1553 | /* FOLL_DUMP to ignore special (like zero) pages */ |
1554 | follflags = FOLL_GET | FOLL_DUMP; | |
a49bd4d7 | 1555 | page = follow_page(vma, addr, follflags); |
89f5b7da | 1556 | |
a49bd4d7 MH |
1557 | err = PTR_ERR(page); |
1558 | if (IS_ERR(page)) | |
1559 | goto out; | |
89f5b7da | 1560 | |
a49bd4d7 MH |
1561 | err = -ENOENT; |
1562 | if (!page) | |
1563 | goto out; | |
742755a1 | 1564 | |
a49bd4d7 MH |
1565 | err = 0; |
1566 | if (page_to_nid(page) == node) | |
1567 | goto out_putpage; | |
742755a1 | 1568 | |
a49bd4d7 MH |
1569 | err = -EACCES; |
1570 | if (page_mapcount(page) > 1 && !migrate_all) | |
1571 | goto out_putpage; | |
742755a1 | 1572 | |
a49bd4d7 MH |
1573 | if (PageHuge(page)) { |
1574 | if (PageHead(page)) { | |
1575 | isolate_huge_page(page, pagelist); | |
e0153fc2 | 1576 | err = 1; |
e632a938 | 1577 | } |
a49bd4d7 MH |
1578 | } else { |
1579 | struct page *head; | |
e632a938 | 1580 | |
e8db67eb NH |
1581 | head = compound_head(page); |
1582 | err = isolate_lru_page(head); | |
cf608ac1 | 1583 | if (err) |
a49bd4d7 | 1584 | goto out_putpage; |
742755a1 | 1585 | |
e0153fc2 | 1586 | err = 1; |
a49bd4d7 MH |
1587 | list_add_tail(&head->lru, pagelist); |
1588 | mod_node_page_state(page_pgdat(head), | |
9de4f22a | 1589 | NR_ISOLATED_ANON + page_is_file_lru(head), |
a49bd4d7 MH |
1590 | hpage_nr_pages(head)); |
1591 | } | |
1592 | out_putpage: | |
1593 | /* | |
1594 | * Either remove the duplicate refcount from | |
1595 | * isolate_lru_page() or drop the page ref if it was | |
1596 | * not isolated. | |
1597 | */ | |
1598 | put_page(page); | |
1599 | out: | |
d8ed45c5 | 1600 | mmap_read_unlock(mm); |
742755a1 CL |
1601 | return err; |
1602 | } | |
1603 | ||
7ca8783a WY |
1604 | static int move_pages_and_store_status(struct mm_struct *mm, int node, |
1605 | struct list_head *pagelist, int __user *status, | |
1606 | int start, int i, unsigned long nr_pages) | |
1607 | { | |
1608 | int err; | |
1609 | ||
5d7ae891 WY |
1610 | if (list_empty(pagelist)) |
1611 | return 0; | |
1612 | ||
7ca8783a WY |
1613 | err = do_move_pages_to_node(mm, pagelist, node); |
1614 | if (err) { | |
1615 | /* | |
1616 | * Positive err means the number of failed | |
1617 | * pages to migrate. Since we are going to | |
1618 | * abort and return the number of non-migrated | |
1619 | * pages, so need to incude the rest of the | |
1620 | * nr_pages that have not been attempted as | |
1621 | * well. | |
1622 | */ | |
1623 | if (err > 0) | |
1624 | err += nr_pages - i - 1; | |
1625 | return err; | |
1626 | } | |
1627 | return store_status(status, start, node, i - start); | |
1628 | } | |
1629 | ||
5e9a0f02 BG |
1630 | /* |
1631 | * Migrate an array of page address onto an array of nodes and fill | |
1632 | * the corresponding array of status. | |
1633 | */ | |
3268c63e | 1634 | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, |
5e9a0f02 BG |
1635 | unsigned long nr_pages, |
1636 | const void __user * __user *pages, | |
1637 | const int __user *nodes, | |
1638 | int __user *status, int flags) | |
1639 | { | |
a49bd4d7 MH |
1640 | int current_node = NUMA_NO_NODE; |
1641 | LIST_HEAD(pagelist); | |
1642 | int start, i; | |
1643 | int err = 0, err1; | |
35282a2d BG |
1644 | |
1645 | migrate_prep(); | |
1646 | ||
a49bd4d7 MH |
1647 | for (i = start = 0; i < nr_pages; i++) { |
1648 | const void __user *p; | |
1649 | unsigned long addr; | |
1650 | int node; | |
3140a227 | 1651 | |
a49bd4d7 MH |
1652 | err = -EFAULT; |
1653 | if (get_user(p, pages + i)) | |
1654 | goto out_flush; | |
1655 | if (get_user(node, nodes + i)) | |
1656 | goto out_flush; | |
057d3389 | 1657 | addr = (unsigned long)untagged_addr(p); |
a49bd4d7 MH |
1658 | |
1659 | err = -ENODEV; | |
1660 | if (node < 0 || node >= MAX_NUMNODES) | |
1661 | goto out_flush; | |
1662 | if (!node_state(node, N_MEMORY)) | |
1663 | goto out_flush; | |
5e9a0f02 | 1664 | |
a49bd4d7 MH |
1665 | err = -EACCES; |
1666 | if (!node_isset(node, task_nodes)) | |
1667 | goto out_flush; | |
1668 | ||
1669 | if (current_node == NUMA_NO_NODE) { | |
1670 | current_node = node; | |
1671 | start = i; | |
1672 | } else if (node != current_node) { | |
7ca8783a WY |
1673 | err = move_pages_and_store_status(mm, current_node, |
1674 | &pagelist, status, start, i, nr_pages); | |
a49bd4d7 MH |
1675 | if (err) |
1676 | goto out; | |
1677 | start = i; | |
1678 | current_node = node; | |
3140a227 BG |
1679 | } |
1680 | ||
a49bd4d7 MH |
1681 | /* |
1682 | * Errors in the page lookup or isolation are not fatal and we simply | |
1683 | * report them via status | |
1684 | */ | |
1685 | err = add_page_for_migration(mm, addr, current_node, | |
1686 | &pagelist, flags & MPOL_MF_MOVE_ALL); | |
e0153fc2 | 1687 | |
d08221a0 | 1688 | if (err > 0) { |
e0153fc2 YS |
1689 | /* The page is successfully queued for migration */ |
1690 | continue; | |
1691 | } | |
3140a227 | 1692 | |
d08221a0 WY |
1693 | /* |
1694 | * If the page is already on the target node (!err), store the | |
1695 | * node, otherwise, store the err. | |
1696 | */ | |
1697 | err = store_status(status, i, err ? : current_node, 1); | |
a49bd4d7 MH |
1698 | if (err) |
1699 | goto out_flush; | |
5e9a0f02 | 1700 | |
7ca8783a WY |
1701 | err = move_pages_and_store_status(mm, current_node, &pagelist, |
1702 | status, start, i, nr_pages); | |
4afdacec WY |
1703 | if (err) |
1704 | goto out; | |
a49bd4d7 | 1705 | current_node = NUMA_NO_NODE; |
3140a227 | 1706 | } |
a49bd4d7 MH |
1707 | out_flush: |
1708 | /* Make sure we do not overwrite the existing error */ | |
7ca8783a WY |
1709 | err1 = move_pages_and_store_status(mm, current_node, &pagelist, |
1710 | status, start, i, nr_pages); | |
dfe9aa23 | 1711 | if (err >= 0) |
a49bd4d7 | 1712 | err = err1; |
5e9a0f02 BG |
1713 | out: |
1714 | return err; | |
1715 | } | |
1716 | ||
742755a1 | 1717 | /* |
2f007e74 | 1718 | * Determine the nodes of an array of pages and store it in an array of status. |
742755a1 | 1719 | */ |
80bba129 BG |
1720 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, |
1721 | const void __user **pages, int *status) | |
742755a1 | 1722 | { |
2f007e74 | 1723 | unsigned long i; |
2f007e74 | 1724 | |
d8ed45c5 | 1725 | mmap_read_lock(mm); |
742755a1 | 1726 | |
2f007e74 | 1727 | for (i = 0; i < nr_pages; i++) { |
80bba129 | 1728 | unsigned long addr = (unsigned long)(*pages); |
742755a1 CL |
1729 | struct vm_area_struct *vma; |
1730 | struct page *page; | |
c095adbc | 1731 | int err = -EFAULT; |
2f007e74 BG |
1732 | |
1733 | vma = find_vma(mm, addr); | |
70384dc6 | 1734 | if (!vma || addr < vma->vm_start) |
742755a1 CL |
1735 | goto set_status; |
1736 | ||
d899844e KS |
1737 | /* FOLL_DUMP to ignore special (like zero) pages */ |
1738 | page = follow_page(vma, addr, FOLL_DUMP); | |
89f5b7da LT |
1739 | |
1740 | err = PTR_ERR(page); | |
1741 | if (IS_ERR(page)) | |
1742 | goto set_status; | |
1743 | ||
d899844e | 1744 | err = page ? page_to_nid(page) : -ENOENT; |
742755a1 | 1745 | set_status: |
80bba129 BG |
1746 | *status = err; |
1747 | ||
1748 | pages++; | |
1749 | status++; | |
1750 | } | |
1751 | ||
d8ed45c5 | 1752 | mmap_read_unlock(mm); |
80bba129 BG |
1753 | } |
1754 | ||
1755 | /* | |
1756 | * Determine the nodes of a user array of pages and store it in | |
1757 | * a user array of status. | |
1758 | */ | |
1759 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | |
1760 | const void __user * __user *pages, | |
1761 | int __user *status) | |
1762 | { | |
1763 | #define DO_PAGES_STAT_CHUNK_NR 16 | |
1764 | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | |
1765 | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | |
80bba129 | 1766 | |
87b8d1ad PA |
1767 | while (nr_pages) { |
1768 | unsigned long chunk_nr; | |
80bba129 | 1769 | |
87b8d1ad PA |
1770 | chunk_nr = nr_pages; |
1771 | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | |
1772 | chunk_nr = DO_PAGES_STAT_CHUNK_NR; | |
1773 | ||
1774 | if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) | |
1775 | break; | |
80bba129 BG |
1776 | |
1777 | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | |
1778 | ||
87b8d1ad PA |
1779 | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) |
1780 | break; | |
742755a1 | 1781 | |
87b8d1ad PA |
1782 | pages += chunk_nr; |
1783 | status += chunk_nr; | |
1784 | nr_pages -= chunk_nr; | |
1785 | } | |
1786 | return nr_pages ? -EFAULT : 0; | |
742755a1 CL |
1787 | } |
1788 | ||
1789 | /* | |
1790 | * Move a list of pages in the address space of the currently executing | |
1791 | * process. | |
1792 | */ | |
7addf443 DB |
1793 | static int kernel_move_pages(pid_t pid, unsigned long nr_pages, |
1794 | const void __user * __user *pages, | |
1795 | const int __user *nodes, | |
1796 | int __user *status, int flags) | |
742755a1 | 1797 | { |
742755a1 | 1798 | struct task_struct *task; |
742755a1 | 1799 | struct mm_struct *mm; |
5e9a0f02 | 1800 | int err; |
3268c63e | 1801 | nodemask_t task_nodes; |
742755a1 CL |
1802 | |
1803 | /* Check flags */ | |
1804 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | |
1805 | return -EINVAL; | |
1806 | ||
1807 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | |
1808 | return -EPERM; | |
1809 | ||
1810 | /* Find the mm_struct */ | |
a879bf58 | 1811 | rcu_read_lock(); |
228ebcbe | 1812 | task = pid ? find_task_by_vpid(pid) : current; |
742755a1 | 1813 | if (!task) { |
a879bf58 | 1814 | rcu_read_unlock(); |
742755a1 CL |
1815 | return -ESRCH; |
1816 | } | |
3268c63e | 1817 | get_task_struct(task); |
742755a1 CL |
1818 | |
1819 | /* | |
1820 | * Check if this process has the right to modify the specified | |
197e7e52 | 1821 | * process. Use the regular "ptrace_may_access()" checks. |
742755a1 | 1822 | */ |
197e7e52 | 1823 | if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { |
c69e8d9c | 1824 | rcu_read_unlock(); |
742755a1 | 1825 | err = -EPERM; |
5e9a0f02 | 1826 | goto out; |
742755a1 | 1827 | } |
c69e8d9c | 1828 | rcu_read_unlock(); |
742755a1 | 1829 | |
86c3a764 DQ |
1830 | err = security_task_movememory(task); |
1831 | if (err) | |
5e9a0f02 | 1832 | goto out; |
86c3a764 | 1833 | |
3268c63e CL |
1834 | task_nodes = cpuset_mems_allowed(task); |
1835 | mm = get_task_mm(task); | |
1836 | put_task_struct(task); | |
1837 | ||
6e8b09ea SL |
1838 | if (!mm) |
1839 | return -EINVAL; | |
1840 | ||
1841 | if (nodes) | |
1842 | err = do_pages_move(mm, task_nodes, nr_pages, pages, | |
1843 | nodes, status, flags); | |
1844 | else | |
1845 | err = do_pages_stat(mm, nr_pages, pages, status); | |
742755a1 | 1846 | |
742755a1 CL |
1847 | mmput(mm); |
1848 | return err; | |
3268c63e CL |
1849 | |
1850 | out: | |
1851 | put_task_struct(task); | |
1852 | return err; | |
742755a1 | 1853 | } |
742755a1 | 1854 | |
7addf443 DB |
1855 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, |
1856 | const void __user * __user *, pages, | |
1857 | const int __user *, nodes, | |
1858 | int __user *, status, int, flags) | |
1859 | { | |
1860 | return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); | |
1861 | } | |
1862 | ||
1863 | #ifdef CONFIG_COMPAT | |
1864 | COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, | |
1865 | compat_uptr_t __user *, pages32, | |
1866 | const int __user *, nodes, | |
1867 | int __user *, status, | |
1868 | int, flags) | |
1869 | { | |
1870 | const void __user * __user *pages; | |
1871 | int i; | |
1872 | ||
1873 | pages = compat_alloc_user_space(nr_pages * sizeof(void *)); | |
1874 | for (i = 0; i < nr_pages; i++) { | |
1875 | compat_uptr_t p; | |
1876 | ||
1877 | if (get_user(p, pages32 + i) || | |
1878 | put_user(compat_ptr(p), pages + i)) | |
1879 | return -EFAULT; | |
1880 | } | |
1881 | return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); | |
1882 | } | |
1883 | #endif /* CONFIG_COMPAT */ | |
1884 | ||
7039e1db PZ |
1885 | #ifdef CONFIG_NUMA_BALANCING |
1886 | /* | |
1887 | * Returns true if this is a safe migration target node for misplaced NUMA | |
1888 | * pages. Currently it only checks the watermarks which crude | |
1889 | */ | |
1890 | static bool migrate_balanced_pgdat(struct pglist_data *pgdat, | |
3abef4e6 | 1891 | unsigned long nr_migrate_pages) |
7039e1db PZ |
1892 | { |
1893 | int z; | |
599d0c95 | 1894 | |
7039e1db PZ |
1895 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { |
1896 | struct zone *zone = pgdat->node_zones + z; | |
1897 | ||
1898 | if (!populated_zone(zone)) | |
1899 | continue; | |
1900 | ||
7039e1db PZ |
1901 | /* Avoid waking kswapd by allocating pages_to_migrate pages. */ |
1902 | if (!zone_watermark_ok(zone, 0, | |
1903 | high_wmark_pages(zone) + | |
1904 | nr_migrate_pages, | |
bfe9d006 | 1905 | ZONE_MOVABLE, 0)) |
7039e1db PZ |
1906 | continue; |
1907 | return true; | |
1908 | } | |
1909 | return false; | |
1910 | } | |
1911 | ||
1912 | static struct page *alloc_misplaced_dst_page(struct page *page, | |
666feb21 | 1913 | unsigned long data) |
7039e1db PZ |
1914 | { |
1915 | int nid = (int) data; | |
1916 | struct page *newpage; | |
1917 | ||
96db800f | 1918 | newpage = __alloc_pages_node(nid, |
e97ca8e5 JW |
1919 | (GFP_HIGHUSER_MOVABLE | |
1920 | __GFP_THISNODE | __GFP_NOMEMALLOC | | |
1921 | __GFP_NORETRY | __GFP_NOWARN) & | |
8479eba7 | 1922 | ~__GFP_RECLAIM, 0); |
bac0382c | 1923 | |
7039e1db PZ |
1924 | return newpage; |
1925 | } | |
1926 | ||
1c30e017 | 1927 | static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) |
b32967ff | 1928 | { |
340ef390 | 1929 | int page_lru; |
a8f60772 | 1930 | |
309381fe | 1931 | VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); |
3abef4e6 | 1932 | |
7039e1db | 1933 | /* Avoid migrating to a node that is nearly full */ |
d8c6546b | 1934 | if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) |
340ef390 | 1935 | return 0; |
7039e1db | 1936 | |
340ef390 HD |
1937 | if (isolate_lru_page(page)) |
1938 | return 0; | |
7039e1db | 1939 | |
340ef390 HD |
1940 | /* |
1941 | * migrate_misplaced_transhuge_page() skips page migration's usual | |
1942 | * check on page_count(), so we must do it here, now that the page | |
1943 | * has been isolated: a GUP pin, or any other pin, prevents migration. | |
1944 | * The expected page count is 3: 1 for page's mapcount and 1 for the | |
1945 | * caller's pin and 1 for the reference taken by isolate_lru_page(). | |
1946 | */ | |
1947 | if (PageTransHuge(page) && page_count(page) != 3) { | |
1948 | putback_lru_page(page); | |
1949 | return 0; | |
7039e1db PZ |
1950 | } |
1951 | ||
9de4f22a | 1952 | page_lru = page_is_file_lru(page); |
599d0c95 | 1953 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, |
340ef390 HD |
1954 | hpage_nr_pages(page)); |
1955 | ||
149c33e1 | 1956 | /* |
340ef390 HD |
1957 | * Isolating the page has taken another reference, so the |
1958 | * caller's reference can be safely dropped without the page | |
1959 | * disappearing underneath us during migration. | |
149c33e1 MG |
1960 | */ |
1961 | put_page(page); | |
340ef390 | 1962 | return 1; |
b32967ff MG |
1963 | } |
1964 | ||
de466bd6 MG |
1965 | bool pmd_trans_migrating(pmd_t pmd) |
1966 | { | |
1967 | struct page *page = pmd_page(pmd); | |
1968 | return PageLocked(page); | |
1969 | } | |
1970 | ||
b32967ff MG |
1971 | /* |
1972 | * Attempt to migrate a misplaced page to the specified destination | |
1973 | * node. Caller is expected to have an elevated reference count on | |
1974 | * the page that will be dropped by this function before returning. | |
1975 | */ | |
1bc115d8 MG |
1976 | int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, |
1977 | int node) | |
b32967ff MG |
1978 | { |
1979 | pg_data_t *pgdat = NODE_DATA(node); | |
340ef390 | 1980 | int isolated; |
b32967ff MG |
1981 | int nr_remaining; |
1982 | LIST_HEAD(migratepages); | |
1983 | ||
1984 | /* | |
1bc115d8 MG |
1985 | * Don't migrate file pages that are mapped in multiple processes |
1986 | * with execute permissions as they are probably shared libraries. | |
b32967ff | 1987 | */ |
9de4f22a | 1988 | if (page_mapcount(page) != 1 && page_is_file_lru(page) && |
1bc115d8 | 1989 | (vma->vm_flags & VM_EXEC)) |
b32967ff | 1990 | goto out; |
b32967ff | 1991 | |
09a913a7 MG |
1992 | /* |
1993 | * Also do not migrate dirty pages as not all filesystems can move | |
1994 | * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. | |
1995 | */ | |
9de4f22a | 1996 | if (page_is_file_lru(page) && PageDirty(page)) |
09a913a7 MG |
1997 | goto out; |
1998 | ||
b32967ff MG |
1999 | isolated = numamigrate_isolate_page(pgdat, page); |
2000 | if (!isolated) | |
2001 | goto out; | |
2002 | ||
2003 | list_add(&page->lru, &migratepages); | |
9c620e2b | 2004 | nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, |
68711a74 DR |
2005 | NULL, node, MIGRATE_ASYNC, |
2006 | MR_NUMA_MISPLACED); | |
b32967ff | 2007 | if (nr_remaining) { |
59c82b70 JK |
2008 | if (!list_empty(&migratepages)) { |
2009 | list_del(&page->lru); | |
599d0c95 | 2010 | dec_node_page_state(page, NR_ISOLATED_ANON + |
9de4f22a | 2011 | page_is_file_lru(page)); |
59c82b70 JK |
2012 | putback_lru_page(page); |
2013 | } | |
b32967ff MG |
2014 | isolated = 0; |
2015 | } else | |
2016 | count_vm_numa_event(NUMA_PAGE_MIGRATE); | |
7039e1db | 2017 | BUG_ON(!list_empty(&migratepages)); |
7039e1db | 2018 | return isolated; |
340ef390 HD |
2019 | |
2020 | out: | |
2021 | put_page(page); | |
2022 | return 0; | |
7039e1db | 2023 | } |
220018d3 | 2024 | #endif /* CONFIG_NUMA_BALANCING */ |
b32967ff | 2025 | |
220018d3 | 2026 | #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
340ef390 HD |
2027 | /* |
2028 | * Migrates a THP to a given target node. page must be locked and is unlocked | |
2029 | * before returning. | |
2030 | */ | |
b32967ff MG |
2031 | int migrate_misplaced_transhuge_page(struct mm_struct *mm, |
2032 | struct vm_area_struct *vma, | |
2033 | pmd_t *pmd, pmd_t entry, | |
2034 | unsigned long address, | |
2035 | struct page *page, int node) | |
2036 | { | |
c4088ebd | 2037 | spinlock_t *ptl; |
b32967ff MG |
2038 | pg_data_t *pgdat = NODE_DATA(node); |
2039 | int isolated = 0; | |
2040 | struct page *new_page = NULL; | |
9de4f22a | 2041 | int page_lru = page_is_file_lru(page); |
7066f0f9 | 2042 | unsigned long start = address & HPAGE_PMD_MASK; |
b32967ff | 2043 | |
b32967ff | 2044 | new_page = alloc_pages_node(node, |
25160354 | 2045 | (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), |
e97ca8e5 | 2046 | HPAGE_PMD_ORDER); |
340ef390 HD |
2047 | if (!new_page) |
2048 | goto out_fail; | |
9a982250 | 2049 | prep_transhuge_page(new_page); |
340ef390 | 2050 | |
b32967ff | 2051 | isolated = numamigrate_isolate_page(pgdat, page); |
340ef390 | 2052 | if (!isolated) { |
b32967ff | 2053 | put_page(new_page); |
340ef390 | 2054 | goto out_fail; |
b32967ff | 2055 | } |
b0943d61 | 2056 | |
b32967ff | 2057 | /* Prepare a page as a migration target */ |
48c935ad | 2058 | __SetPageLocked(new_page); |
d44d363f SL |
2059 | if (PageSwapBacked(page)) |
2060 | __SetPageSwapBacked(new_page); | |
b32967ff MG |
2061 | |
2062 | /* anon mapping, we can simply copy page->mapping to the new page: */ | |
2063 | new_page->mapping = page->mapping; | |
2064 | new_page->index = page->index; | |
7eef5f97 AA |
2065 | /* flush the cache before copying using the kernel virtual address */ |
2066 | flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); | |
b32967ff MG |
2067 | migrate_page_copy(new_page, page); |
2068 | WARN_ON(PageLRU(new_page)); | |
2069 | ||
2070 | /* Recheck the target PMD */ | |
c4088ebd | 2071 | ptl = pmd_lock(mm, pmd); |
f4e177d1 | 2072 | if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { |
c4088ebd | 2073 | spin_unlock(ptl); |
b32967ff MG |
2074 | |
2075 | /* Reverse changes made by migrate_page_copy() */ | |
2076 | if (TestClearPageActive(new_page)) | |
2077 | SetPageActive(page); | |
2078 | if (TestClearPageUnevictable(new_page)) | |
2079 | SetPageUnevictable(page); | |
b32967ff MG |
2080 | |
2081 | unlock_page(new_page); | |
2082 | put_page(new_page); /* Free it */ | |
2083 | ||
a54a407f MG |
2084 | /* Retake the callers reference and putback on LRU */ |
2085 | get_page(page); | |
b32967ff | 2086 | putback_lru_page(page); |
599d0c95 | 2087 | mod_node_page_state(page_pgdat(page), |
a54a407f | 2088 | NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); |
eb4489f6 MG |
2089 | |
2090 | goto out_unlock; | |
b32967ff MG |
2091 | } |
2092 | ||
10102459 | 2093 | entry = mk_huge_pmd(new_page, vma->vm_page_prot); |
f55e1014 | 2094 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
b32967ff | 2095 | |
2b4847e7 | 2096 | /* |
d7c33934 AA |
2097 | * Overwrite the old entry under pagetable lock and establish |
2098 | * the new PTE. Any parallel GUP will either observe the old | |
2099 | * page blocking on the page lock, block on the page table | |
2100 | * lock or observe the new page. The SetPageUptodate on the | |
2101 | * new page and page_add_new_anon_rmap guarantee the copy is | |
2102 | * visible before the pagetable update. | |
2b4847e7 | 2103 | */ |
7066f0f9 | 2104 | page_add_anon_rmap(new_page, vma, start, true); |
d7c33934 AA |
2105 | /* |
2106 | * At this point the pmd is numa/protnone (i.e. non present) and the TLB | |
2107 | * has already been flushed globally. So no TLB can be currently | |
2108 | * caching this non present pmd mapping. There's no need to clear the | |
2109 | * pmd before doing set_pmd_at(), nor to flush the TLB after | |
2110 | * set_pmd_at(). Clearing the pmd here would introduce a race | |
2111 | * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the | |
c1e8d7c6 | 2112 | * mmap_lock for reading. If the pmd is set to NULL at any given time, |
d7c33934 AA |
2113 | * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this |
2114 | * pmd. | |
2115 | */ | |
7066f0f9 | 2116 | set_pmd_at(mm, start, pmd, entry); |
ce4a9cc5 | 2117 | update_mmu_cache_pmd(vma, address, &entry); |
2b4847e7 | 2118 | |
f4e177d1 | 2119 | page_ref_unfreeze(page, 2); |
51afb12b | 2120 | mlock_migrate_page(new_page, page); |
d281ee61 | 2121 | page_remove_rmap(page, true); |
7cd12b4a | 2122 | set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); |
2b4847e7 | 2123 | |
c4088ebd | 2124 | spin_unlock(ptl); |
b32967ff | 2125 | |
11de9927 MG |
2126 | /* Take an "isolate" reference and put new page on the LRU. */ |
2127 | get_page(new_page); | |
2128 | putback_lru_page(new_page); | |
2129 | ||
b32967ff MG |
2130 | unlock_page(new_page); |
2131 | unlock_page(page); | |
2132 | put_page(page); /* Drop the rmap reference */ | |
2133 | put_page(page); /* Drop the LRU isolation reference */ | |
2134 | ||
2135 | count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); | |
2136 | count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); | |
2137 | ||
599d0c95 | 2138 | mod_node_page_state(page_pgdat(page), |
b32967ff MG |
2139 | NR_ISOLATED_ANON + page_lru, |
2140 | -HPAGE_PMD_NR); | |
2141 | return isolated; | |
2142 | ||
340ef390 HD |
2143 | out_fail: |
2144 | count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); | |
2b4847e7 MG |
2145 | ptl = pmd_lock(mm, pmd); |
2146 | if (pmd_same(*pmd, entry)) { | |
4d942466 | 2147 | entry = pmd_modify(entry, vma->vm_page_prot); |
7066f0f9 | 2148 | set_pmd_at(mm, start, pmd, entry); |
2b4847e7 MG |
2149 | update_mmu_cache_pmd(vma, address, &entry); |
2150 | } | |
2151 | spin_unlock(ptl); | |
a54a407f | 2152 | |
eb4489f6 | 2153 | out_unlock: |
340ef390 | 2154 | unlock_page(page); |
b32967ff | 2155 | put_page(page); |
b32967ff MG |
2156 | return 0; |
2157 | } | |
7039e1db PZ |
2158 | #endif /* CONFIG_NUMA_BALANCING */ |
2159 | ||
2160 | #endif /* CONFIG_NUMA */ | |
8763cb45 | 2161 | |
9b2ed9cb | 2162 | #ifdef CONFIG_DEVICE_PRIVATE |
8763cb45 JG |
2163 | static int migrate_vma_collect_hole(unsigned long start, |
2164 | unsigned long end, | |
b7a16c7a | 2165 | __always_unused int depth, |
8763cb45 JG |
2166 | struct mm_walk *walk) |
2167 | { | |
2168 | struct migrate_vma *migrate = walk->private; | |
2169 | unsigned long addr; | |
2170 | ||
872ea707 | 2171 | for (addr = start; addr < end; addr += PAGE_SIZE) { |
e20d103b | 2172 | migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; |
8315ada7 | 2173 | migrate->dst[migrate->npages] = 0; |
e20d103b | 2174 | migrate->npages++; |
8315ada7 JG |
2175 | migrate->cpages++; |
2176 | } | |
2177 | ||
2178 | return 0; | |
2179 | } | |
2180 | ||
2181 | static int migrate_vma_collect_skip(unsigned long start, | |
2182 | unsigned long end, | |
2183 | struct mm_walk *walk) | |
2184 | { | |
2185 | struct migrate_vma *migrate = walk->private; | |
2186 | unsigned long addr; | |
2187 | ||
872ea707 | 2188 | for (addr = start; addr < end; addr += PAGE_SIZE) { |
8763cb45 JG |
2189 | migrate->dst[migrate->npages] = 0; |
2190 | migrate->src[migrate->npages++] = 0; | |
2191 | } | |
2192 | ||
2193 | return 0; | |
2194 | } | |
2195 | ||
2196 | static int migrate_vma_collect_pmd(pmd_t *pmdp, | |
2197 | unsigned long start, | |
2198 | unsigned long end, | |
2199 | struct mm_walk *walk) | |
2200 | { | |
2201 | struct migrate_vma *migrate = walk->private; | |
2202 | struct vm_area_struct *vma = walk->vma; | |
2203 | struct mm_struct *mm = vma->vm_mm; | |
8c3328f1 | 2204 | unsigned long addr = start, unmapped = 0; |
8763cb45 JG |
2205 | spinlock_t *ptl; |
2206 | pte_t *ptep; | |
2207 | ||
2208 | again: | |
2209 | if (pmd_none(*pmdp)) | |
b7a16c7a | 2210 | return migrate_vma_collect_hole(start, end, -1, walk); |
8763cb45 JG |
2211 | |
2212 | if (pmd_trans_huge(*pmdp)) { | |
2213 | struct page *page; | |
2214 | ||
2215 | ptl = pmd_lock(mm, pmdp); | |
2216 | if (unlikely(!pmd_trans_huge(*pmdp))) { | |
2217 | spin_unlock(ptl); | |
2218 | goto again; | |
2219 | } | |
2220 | ||
2221 | page = pmd_page(*pmdp); | |
2222 | if (is_huge_zero_page(page)) { | |
2223 | spin_unlock(ptl); | |
2224 | split_huge_pmd(vma, pmdp, addr); | |
2225 | if (pmd_trans_unstable(pmdp)) | |
8315ada7 | 2226 | return migrate_vma_collect_skip(start, end, |
8763cb45 JG |
2227 | walk); |
2228 | } else { | |
2229 | int ret; | |
2230 | ||
2231 | get_page(page); | |
2232 | spin_unlock(ptl); | |
2233 | if (unlikely(!trylock_page(page))) | |
8315ada7 | 2234 | return migrate_vma_collect_skip(start, end, |
8763cb45 JG |
2235 | walk); |
2236 | ret = split_huge_page(page); | |
2237 | unlock_page(page); | |
2238 | put_page(page); | |
8315ada7 JG |
2239 | if (ret) |
2240 | return migrate_vma_collect_skip(start, end, | |
2241 | walk); | |
2242 | if (pmd_none(*pmdp)) | |
b7a16c7a | 2243 | return migrate_vma_collect_hole(start, end, -1, |
8763cb45 JG |
2244 | walk); |
2245 | } | |
2246 | } | |
2247 | ||
2248 | if (unlikely(pmd_bad(*pmdp))) | |
8315ada7 | 2249 | return migrate_vma_collect_skip(start, end, walk); |
8763cb45 JG |
2250 | |
2251 | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | |
8c3328f1 JG |
2252 | arch_enter_lazy_mmu_mode(); |
2253 | ||
8763cb45 | 2254 | for (; addr < end; addr += PAGE_SIZE, ptep++) { |
800bb1c8 | 2255 | unsigned long mpfn = 0, pfn; |
8763cb45 | 2256 | struct page *page; |
8c3328f1 | 2257 | swp_entry_t entry; |
8763cb45 JG |
2258 | pte_t pte; |
2259 | ||
2260 | pte = *ptep; | |
8763cb45 | 2261 | |
a5430dda | 2262 | if (pte_none(pte)) { |
8315ada7 JG |
2263 | mpfn = MIGRATE_PFN_MIGRATE; |
2264 | migrate->cpages++; | |
8763cb45 JG |
2265 | goto next; |
2266 | } | |
2267 | ||
a5430dda | 2268 | if (!pte_present(pte)) { |
a5430dda JG |
2269 | /* |
2270 | * Only care about unaddressable device page special | |
2271 | * page table entry. Other special swap entries are not | |
2272 | * migratable, and we ignore regular swapped page. | |
2273 | */ | |
2274 | entry = pte_to_swp_entry(pte); | |
2275 | if (!is_device_private_entry(entry)) | |
2276 | goto next; | |
2277 | ||
2278 | page = device_private_entry_to_page(entry); | |
5143192c RC |
2279 | if (!(migrate->flags & |
2280 | MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || | |
2281 | page->pgmap->owner != migrate->pgmap_owner) | |
800bb1c8 CH |
2282 | goto next; |
2283 | ||
06d462be CH |
2284 | mpfn = migrate_pfn(page_to_pfn(page)) | |
2285 | MIGRATE_PFN_MIGRATE; | |
a5430dda JG |
2286 | if (is_write_device_private_entry(entry)) |
2287 | mpfn |= MIGRATE_PFN_WRITE; | |
2288 | } else { | |
5143192c | 2289 | if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) |
800bb1c8 | 2290 | goto next; |
276f756d | 2291 | pfn = pte_pfn(pte); |
8315ada7 JG |
2292 | if (is_zero_pfn(pfn)) { |
2293 | mpfn = MIGRATE_PFN_MIGRATE; | |
2294 | migrate->cpages++; | |
8315ada7 JG |
2295 | goto next; |
2296 | } | |
25b2995a | 2297 | page = vm_normal_page(migrate->vma, addr, pte); |
a5430dda JG |
2298 | mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; |
2299 | mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; | |
2300 | } | |
2301 | ||
8763cb45 | 2302 | /* FIXME support THP */ |
8763cb45 | 2303 | if (!page || !page->mapping || PageTransCompound(page)) { |
276f756d | 2304 | mpfn = 0; |
8763cb45 JG |
2305 | goto next; |
2306 | } | |
2307 | ||
2308 | /* | |
2309 | * By getting a reference on the page we pin it and that blocks | |
2310 | * any kind of migration. Side effect is that it "freezes" the | |
2311 | * pte. | |
2312 | * | |
2313 | * We drop this reference after isolating the page from the lru | |
2314 | * for non device page (device page are not on the lru and thus | |
2315 | * can't be dropped from it). | |
2316 | */ | |
2317 | get_page(page); | |
2318 | migrate->cpages++; | |
8763cb45 | 2319 | |
8c3328f1 JG |
2320 | /* |
2321 | * Optimize for the common case where page is only mapped once | |
2322 | * in one process. If we can lock the page, then we can safely | |
2323 | * set up a special migration page table entry now. | |
2324 | */ | |
2325 | if (trylock_page(page)) { | |
2326 | pte_t swp_pte; | |
2327 | ||
2328 | mpfn |= MIGRATE_PFN_LOCKED; | |
2329 | ptep_get_and_clear(mm, addr, ptep); | |
2330 | ||
2331 | /* Setup special migration page table entry */ | |
07707125 RC |
2332 | entry = make_migration_entry(page, mpfn & |
2333 | MIGRATE_PFN_WRITE); | |
8c3328f1 JG |
2334 | swp_pte = swp_entry_to_pte(entry); |
2335 | if (pte_soft_dirty(pte)) | |
2336 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
2337 | if (pte_uffd_wp(pte)) |
2338 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
8c3328f1 JG |
2339 | set_pte_at(mm, addr, ptep, swp_pte); |
2340 | ||
2341 | /* | |
2342 | * This is like regular unmap: we remove the rmap and | |
2343 | * drop page refcount. Page won't be freed, as we took | |
2344 | * a reference just above. | |
2345 | */ | |
2346 | page_remove_rmap(page, false); | |
2347 | put_page(page); | |
a5430dda JG |
2348 | |
2349 | if (pte_present(pte)) | |
2350 | unmapped++; | |
8c3328f1 JG |
2351 | } |
2352 | ||
8763cb45 | 2353 | next: |
a5430dda | 2354 | migrate->dst[migrate->npages] = 0; |
8763cb45 JG |
2355 | migrate->src[migrate->npages++] = mpfn; |
2356 | } | |
8c3328f1 | 2357 | arch_leave_lazy_mmu_mode(); |
8763cb45 JG |
2358 | pte_unmap_unlock(ptep - 1, ptl); |
2359 | ||
8c3328f1 JG |
2360 | /* Only flush the TLB if we actually modified any entries */ |
2361 | if (unmapped) | |
2362 | flush_tlb_range(walk->vma, start, end); | |
2363 | ||
8763cb45 JG |
2364 | return 0; |
2365 | } | |
2366 | ||
7b86ac33 CH |
2367 | static const struct mm_walk_ops migrate_vma_walk_ops = { |
2368 | .pmd_entry = migrate_vma_collect_pmd, | |
2369 | .pte_hole = migrate_vma_collect_hole, | |
2370 | }; | |
2371 | ||
8763cb45 JG |
2372 | /* |
2373 | * migrate_vma_collect() - collect pages over a range of virtual addresses | |
2374 | * @migrate: migrate struct containing all migration information | |
2375 | * | |
2376 | * This will walk the CPU page table. For each virtual address backed by a | |
2377 | * valid page, it updates the src array and takes a reference on the page, in | |
2378 | * order to pin the page until we lock it and unmap it. | |
2379 | */ | |
2380 | static void migrate_vma_collect(struct migrate_vma *migrate) | |
2381 | { | |
ac46d4f3 | 2382 | struct mmu_notifier_range range; |
8763cb45 | 2383 | |
998427b3 RC |
2384 | /* |
2385 | * Note that the pgmap_owner is passed to the mmu notifier callback so | |
2386 | * that the registered device driver can skip invalidating device | |
2387 | * private page mappings that won't be migrated. | |
2388 | */ | |
c1a06df6 RC |
2389 | mmu_notifier_range_init_migrate(&range, 0, migrate->vma, |
2390 | migrate->vma->vm_mm, migrate->start, migrate->end, | |
2391 | migrate->pgmap_owner); | |
ac46d4f3 | 2392 | mmu_notifier_invalidate_range_start(&range); |
8763cb45 | 2393 | |
7b86ac33 CH |
2394 | walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, |
2395 | &migrate_vma_walk_ops, migrate); | |
2396 | ||
2397 | mmu_notifier_invalidate_range_end(&range); | |
8763cb45 JG |
2398 | migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); |
2399 | } | |
2400 | ||
2401 | /* | |
2402 | * migrate_vma_check_page() - check if page is pinned or not | |
2403 | * @page: struct page to check | |
2404 | * | |
2405 | * Pinned pages cannot be migrated. This is the same test as in | |
2406 | * migrate_page_move_mapping(), except that here we allow migration of a | |
2407 | * ZONE_DEVICE page. | |
2408 | */ | |
2409 | static bool migrate_vma_check_page(struct page *page) | |
2410 | { | |
2411 | /* | |
2412 | * One extra ref because caller holds an extra reference, either from | |
2413 | * isolate_lru_page() for a regular page, or migrate_vma_collect() for | |
2414 | * a device page. | |
2415 | */ | |
2416 | int extra = 1; | |
2417 | ||
2418 | /* | |
2419 | * FIXME support THP (transparent huge page), it is bit more complex to | |
2420 | * check them than regular pages, because they can be mapped with a pmd | |
2421 | * or with a pte (split pte mapping). | |
2422 | */ | |
2423 | if (PageCompound(page)) | |
2424 | return false; | |
2425 | ||
a5430dda JG |
2426 | /* Page from ZONE_DEVICE have one extra reference */ |
2427 | if (is_zone_device_page(page)) { | |
2428 | /* | |
2429 | * Private page can never be pin as they have no valid pte and | |
2430 | * GUP will fail for those. Yet if there is a pending migration | |
2431 | * a thread might try to wait on the pte migration entry and | |
2432 | * will bump the page reference count. Sadly there is no way to | |
2433 | * differentiate a regular pin from migration wait. Hence to | |
2434 | * avoid 2 racing thread trying to migrate back to CPU to enter | |
2435 | * infinite loop (one stoping migration because the other is | |
2436 | * waiting on pte migration entry). We always return true here. | |
2437 | * | |
2438 | * FIXME proper solution is to rework migration_entry_wait() so | |
2439 | * it does not need to take a reference on page. | |
2440 | */ | |
25b2995a | 2441 | return is_device_private_page(page); |
a5430dda JG |
2442 | } |
2443 | ||
df6ad698 JG |
2444 | /* For file back page */ |
2445 | if (page_mapping(page)) | |
2446 | extra += 1 + page_has_private(page); | |
2447 | ||
8763cb45 JG |
2448 | if ((page_count(page) - extra) > page_mapcount(page)) |
2449 | return false; | |
2450 | ||
2451 | return true; | |
2452 | } | |
2453 | ||
2454 | /* | |
2455 | * migrate_vma_prepare() - lock pages and isolate them from the lru | |
2456 | * @migrate: migrate struct containing all migration information | |
2457 | * | |
2458 | * This locks pages that have been collected by migrate_vma_collect(). Once each | |
2459 | * page is locked it is isolated from the lru (for non-device pages). Finally, | |
2460 | * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be | |
2461 | * migrated by concurrent kernel threads. | |
2462 | */ | |
2463 | static void migrate_vma_prepare(struct migrate_vma *migrate) | |
2464 | { | |
2465 | const unsigned long npages = migrate->npages; | |
8c3328f1 JG |
2466 | const unsigned long start = migrate->start; |
2467 | unsigned long addr, i, restore = 0; | |
8763cb45 | 2468 | bool allow_drain = true; |
8763cb45 JG |
2469 | |
2470 | lru_add_drain(); | |
2471 | ||
2472 | for (i = 0; (i < npages) && migrate->cpages; i++) { | |
2473 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
8c3328f1 | 2474 | bool remap = true; |
8763cb45 JG |
2475 | |
2476 | if (!page) | |
2477 | continue; | |
2478 | ||
8c3328f1 JG |
2479 | if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { |
2480 | /* | |
2481 | * Because we are migrating several pages there can be | |
2482 | * a deadlock between 2 concurrent migration where each | |
2483 | * are waiting on each other page lock. | |
2484 | * | |
2485 | * Make migrate_vma() a best effort thing and backoff | |
2486 | * for any page we can not lock right away. | |
2487 | */ | |
2488 | if (!trylock_page(page)) { | |
2489 | migrate->src[i] = 0; | |
2490 | migrate->cpages--; | |
2491 | put_page(page); | |
2492 | continue; | |
2493 | } | |
2494 | remap = false; | |
2495 | migrate->src[i] |= MIGRATE_PFN_LOCKED; | |
8763cb45 | 2496 | } |
8763cb45 | 2497 | |
a5430dda JG |
2498 | /* ZONE_DEVICE pages are not on LRU */ |
2499 | if (!is_zone_device_page(page)) { | |
2500 | if (!PageLRU(page) && allow_drain) { | |
2501 | /* Drain CPU's pagevec */ | |
2502 | lru_add_drain_all(); | |
2503 | allow_drain = false; | |
2504 | } | |
8763cb45 | 2505 | |
a5430dda JG |
2506 | if (isolate_lru_page(page)) { |
2507 | if (remap) { | |
2508 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2509 | migrate->cpages--; | |
2510 | restore++; | |
2511 | } else { | |
2512 | migrate->src[i] = 0; | |
2513 | unlock_page(page); | |
2514 | migrate->cpages--; | |
2515 | put_page(page); | |
2516 | } | |
2517 | continue; | |
8c3328f1 | 2518 | } |
a5430dda JG |
2519 | |
2520 | /* Drop the reference we took in collect */ | |
2521 | put_page(page); | |
8763cb45 JG |
2522 | } |
2523 | ||
2524 | if (!migrate_vma_check_page(page)) { | |
8c3328f1 JG |
2525 | if (remap) { |
2526 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2527 | migrate->cpages--; | |
2528 | restore++; | |
8763cb45 | 2529 | |
a5430dda JG |
2530 | if (!is_zone_device_page(page)) { |
2531 | get_page(page); | |
2532 | putback_lru_page(page); | |
2533 | } | |
8c3328f1 JG |
2534 | } else { |
2535 | migrate->src[i] = 0; | |
2536 | unlock_page(page); | |
2537 | migrate->cpages--; | |
2538 | ||
a5430dda JG |
2539 | if (!is_zone_device_page(page)) |
2540 | putback_lru_page(page); | |
2541 | else | |
2542 | put_page(page); | |
8c3328f1 | 2543 | } |
8763cb45 JG |
2544 | } |
2545 | } | |
8c3328f1 JG |
2546 | |
2547 | for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { | |
2548 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2549 | ||
2550 | if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) | |
2551 | continue; | |
2552 | ||
2553 | remove_migration_pte(page, migrate->vma, addr, page); | |
2554 | ||
2555 | migrate->src[i] = 0; | |
2556 | unlock_page(page); | |
2557 | put_page(page); | |
2558 | restore--; | |
2559 | } | |
8763cb45 JG |
2560 | } |
2561 | ||
2562 | /* | |
2563 | * migrate_vma_unmap() - replace page mapping with special migration pte entry | |
2564 | * @migrate: migrate struct containing all migration information | |
2565 | * | |
2566 | * Replace page mapping (CPU page table pte) with a special migration pte entry | |
2567 | * and check again if it has been pinned. Pinned pages are restored because we | |
2568 | * cannot migrate them. | |
2569 | * | |
2570 | * This is the last step before we call the device driver callback to allocate | |
2571 | * destination memory and copy contents of original page over to new page. | |
2572 | */ | |
2573 | static void migrate_vma_unmap(struct migrate_vma *migrate) | |
2574 | { | |
2575 | int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | |
2576 | const unsigned long npages = migrate->npages; | |
2577 | const unsigned long start = migrate->start; | |
2578 | unsigned long addr, i, restore = 0; | |
2579 | ||
2580 | for (i = 0; i < npages; i++) { | |
2581 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2582 | ||
2583 | if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) | |
2584 | continue; | |
2585 | ||
8c3328f1 JG |
2586 | if (page_mapped(page)) { |
2587 | try_to_unmap(page, flags); | |
2588 | if (page_mapped(page)) | |
2589 | goto restore; | |
8763cb45 | 2590 | } |
8c3328f1 JG |
2591 | |
2592 | if (migrate_vma_check_page(page)) | |
2593 | continue; | |
2594 | ||
2595 | restore: | |
2596 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2597 | migrate->cpages--; | |
2598 | restore++; | |
8763cb45 JG |
2599 | } |
2600 | ||
2601 | for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { | |
2602 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2603 | ||
2604 | if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) | |
2605 | continue; | |
2606 | ||
2607 | remove_migration_ptes(page, page, false); | |
2608 | ||
2609 | migrate->src[i] = 0; | |
2610 | unlock_page(page); | |
2611 | restore--; | |
2612 | ||
a5430dda JG |
2613 | if (is_zone_device_page(page)) |
2614 | put_page(page); | |
2615 | else | |
2616 | putback_lru_page(page); | |
8763cb45 JG |
2617 | } |
2618 | } | |
2619 | ||
a7d1f22b CH |
2620 | /** |
2621 | * migrate_vma_setup() - prepare to migrate a range of memory | |
2622 | * @args: contains the vma, start, and and pfns arrays for the migration | |
2623 | * | |
2624 | * Returns: negative errno on failures, 0 when 0 or more pages were migrated | |
2625 | * without an error. | |
2626 | * | |
2627 | * Prepare to migrate a range of memory virtual address range by collecting all | |
2628 | * the pages backing each virtual address in the range, saving them inside the | |
2629 | * src array. Then lock those pages and unmap them. Once the pages are locked | |
2630 | * and unmapped, check whether each page is pinned or not. Pages that aren't | |
2631 | * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the | |
2632 | * corresponding src array entry. Then restores any pages that are pinned, by | |
2633 | * remapping and unlocking those pages. | |
2634 | * | |
2635 | * The caller should then allocate destination memory and copy source memory to | |
2636 | * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE | |
2637 | * flag set). Once these are allocated and copied, the caller must update each | |
2638 | * corresponding entry in the dst array with the pfn value of the destination | |
2639 | * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set | |
2640 | * (destination pages must have their struct pages locked, via lock_page()). | |
2641 | * | |
2642 | * Note that the caller does not have to migrate all the pages that are marked | |
2643 | * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from | |
2644 | * device memory to system memory. If the caller cannot migrate a device page | |
2645 | * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe | |
2646 | * consequences for the userspace process, so it must be avoided if at all | |
2647 | * possible. | |
2648 | * | |
2649 | * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we | |
2650 | * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus | |
2651 | * allowing the caller to allocate device memory for those unback virtual | |
2652 | * address. For this the caller simply has to allocate device memory and | |
2653 | * properly set the destination entry like for regular migration. Note that | |
2654 | * this can still fails and thus inside the device driver must check if the | |
2655 | * migration was successful for those entries after calling migrate_vma_pages() | |
2656 | * just like for regular migration. | |
2657 | * | |
2658 | * After that, the callers must call migrate_vma_pages() to go over each entry | |
2659 | * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag | |
2660 | * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, | |
2661 | * then migrate_vma_pages() to migrate struct page information from the source | |
2662 | * struct page to the destination struct page. If it fails to migrate the | |
2663 | * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the | |
2664 | * src array. | |
2665 | * | |
2666 | * At this point all successfully migrated pages have an entry in the src | |
2667 | * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst | |
2668 | * array entry with MIGRATE_PFN_VALID flag set. | |
2669 | * | |
2670 | * Once migrate_vma_pages() returns the caller may inspect which pages were | |
2671 | * successfully migrated, and which were not. Successfully migrated pages will | |
2672 | * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. | |
2673 | * | |
2674 | * It is safe to update device page table after migrate_vma_pages() because | |
c1e8d7c6 | 2675 | * both destination and source page are still locked, and the mmap_lock is held |
a7d1f22b CH |
2676 | * in read mode (hence no one can unmap the range being migrated). |
2677 | * | |
2678 | * Once the caller is done cleaning up things and updating its page table (if it | |
2679 | * chose to do so, this is not an obligation) it finally calls | |
2680 | * migrate_vma_finalize() to update the CPU page table to point to new pages | |
2681 | * for successfully migrated pages or otherwise restore the CPU page table to | |
2682 | * point to the original source pages. | |
2683 | */ | |
2684 | int migrate_vma_setup(struct migrate_vma *args) | |
2685 | { | |
2686 | long nr_pages = (args->end - args->start) >> PAGE_SHIFT; | |
2687 | ||
2688 | args->start &= PAGE_MASK; | |
2689 | args->end &= PAGE_MASK; | |
2690 | if (!args->vma || is_vm_hugetlb_page(args->vma) || | |
2691 | (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) | |
2692 | return -EINVAL; | |
2693 | if (nr_pages <= 0) | |
2694 | return -EINVAL; | |
2695 | if (args->start < args->vma->vm_start || | |
2696 | args->start >= args->vma->vm_end) | |
2697 | return -EINVAL; | |
2698 | if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) | |
2699 | return -EINVAL; | |
2700 | if (!args->src || !args->dst) | |
2701 | return -EINVAL; | |
2702 | ||
2703 | memset(args->src, 0, sizeof(*args->src) * nr_pages); | |
2704 | args->cpages = 0; | |
2705 | args->npages = 0; | |
2706 | ||
2707 | migrate_vma_collect(args); | |
2708 | ||
2709 | if (args->cpages) | |
2710 | migrate_vma_prepare(args); | |
2711 | if (args->cpages) | |
2712 | migrate_vma_unmap(args); | |
2713 | ||
2714 | /* | |
2715 | * At this point pages are locked and unmapped, and thus they have | |
2716 | * stable content and can safely be copied to destination memory that | |
2717 | * is allocated by the drivers. | |
2718 | */ | |
2719 | return 0; | |
2720 | ||
2721 | } | |
2722 | EXPORT_SYMBOL(migrate_vma_setup); | |
2723 | ||
34290e2c RC |
2724 | /* |
2725 | * This code closely matches the code in: | |
2726 | * __handle_mm_fault() | |
2727 | * handle_pte_fault() | |
2728 | * do_anonymous_page() | |
2729 | * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE | |
2730 | * private page. | |
2731 | */ | |
8315ada7 JG |
2732 | static void migrate_vma_insert_page(struct migrate_vma *migrate, |
2733 | unsigned long addr, | |
2734 | struct page *page, | |
2735 | unsigned long *src, | |
2736 | unsigned long *dst) | |
2737 | { | |
2738 | struct vm_area_struct *vma = migrate->vma; | |
2739 | struct mm_struct *mm = vma->vm_mm; | |
8315ada7 JG |
2740 | bool flush = false; |
2741 | spinlock_t *ptl; | |
2742 | pte_t entry; | |
2743 | pgd_t *pgdp; | |
2744 | p4d_t *p4dp; | |
2745 | pud_t *pudp; | |
2746 | pmd_t *pmdp; | |
2747 | pte_t *ptep; | |
2748 | ||
2749 | /* Only allow populating anonymous memory */ | |
2750 | if (!vma_is_anonymous(vma)) | |
2751 | goto abort; | |
2752 | ||
2753 | pgdp = pgd_offset(mm, addr); | |
2754 | p4dp = p4d_alloc(mm, pgdp, addr); | |
2755 | if (!p4dp) | |
2756 | goto abort; | |
2757 | pudp = pud_alloc(mm, p4dp, addr); | |
2758 | if (!pudp) | |
2759 | goto abort; | |
2760 | pmdp = pmd_alloc(mm, pudp, addr); | |
2761 | if (!pmdp) | |
2762 | goto abort; | |
2763 | ||
2764 | if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) | |
2765 | goto abort; | |
2766 | ||
2767 | /* | |
2768 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
2769 | * pte_offset_map() on pmds where a huge pmd might be created | |
2770 | * from a different thread. | |
2771 | * | |
3e4e28c5 | 2772 | * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when |
8315ada7 JG |
2773 | * parallel threads are excluded by other means. |
2774 | * | |
3e4e28c5 | 2775 | * Here we only have mmap_read_lock(mm). |
8315ada7 | 2776 | */ |
4cf58924 | 2777 | if (pte_alloc(mm, pmdp)) |
8315ada7 JG |
2778 | goto abort; |
2779 | ||
2780 | /* See the comment in pte_alloc_one_map() */ | |
2781 | if (unlikely(pmd_trans_unstable(pmdp))) | |
2782 | goto abort; | |
2783 | ||
2784 | if (unlikely(anon_vma_prepare(vma))) | |
2785 | goto abort; | |
d9eb1ea2 | 2786 | if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) |
8315ada7 JG |
2787 | goto abort; |
2788 | ||
2789 | /* | |
2790 | * The memory barrier inside __SetPageUptodate makes sure that | |
2791 | * preceding stores to the page contents become visible before | |
2792 | * the set_pte_at() write. | |
2793 | */ | |
2794 | __SetPageUptodate(page); | |
2795 | ||
df6ad698 JG |
2796 | if (is_zone_device_page(page)) { |
2797 | if (is_device_private_page(page)) { | |
2798 | swp_entry_t swp_entry; | |
2799 | ||
2800 | swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); | |
2801 | entry = swp_entry_to_pte(swp_entry); | |
df6ad698 | 2802 | } |
8315ada7 JG |
2803 | } else { |
2804 | entry = mk_pte(page, vma->vm_page_prot); | |
2805 | if (vma->vm_flags & VM_WRITE) | |
2806 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
2807 | } | |
2808 | ||
2809 | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | |
2810 | ||
34290e2c RC |
2811 | if (check_stable_address_space(mm)) |
2812 | goto unlock_abort; | |
2813 | ||
8315ada7 JG |
2814 | if (pte_present(*ptep)) { |
2815 | unsigned long pfn = pte_pfn(*ptep); | |
2816 | ||
c23a0c99 RC |
2817 | if (!is_zero_pfn(pfn)) |
2818 | goto unlock_abort; | |
8315ada7 | 2819 | flush = true; |
c23a0c99 RC |
2820 | } else if (!pte_none(*ptep)) |
2821 | goto unlock_abort; | |
8315ada7 JG |
2822 | |
2823 | /* | |
c23a0c99 | 2824 | * Check for userfaultfd but do not deliver the fault. Instead, |
8315ada7 JG |
2825 | * just back off. |
2826 | */ | |
c23a0c99 RC |
2827 | if (userfaultfd_missing(vma)) |
2828 | goto unlock_abort; | |
8315ada7 JG |
2829 | |
2830 | inc_mm_counter(mm, MM_ANONPAGES); | |
be5d0a74 | 2831 | page_add_new_anon_rmap(page, vma, addr, false); |
8315ada7 JG |
2832 | if (!is_zone_device_page(page)) |
2833 | lru_cache_add_active_or_unevictable(page, vma); | |
2834 | get_page(page); | |
2835 | ||
2836 | if (flush) { | |
2837 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | |
2838 | ptep_clear_flush_notify(vma, addr, ptep); | |
2839 | set_pte_at_notify(mm, addr, ptep, entry); | |
2840 | update_mmu_cache(vma, addr, ptep); | |
2841 | } else { | |
2842 | /* No need to invalidate - it was non-present before */ | |
2843 | set_pte_at(mm, addr, ptep, entry); | |
2844 | update_mmu_cache(vma, addr, ptep); | |
2845 | } | |
2846 | ||
2847 | pte_unmap_unlock(ptep, ptl); | |
2848 | *src = MIGRATE_PFN_MIGRATE; | |
2849 | return; | |
2850 | ||
c23a0c99 RC |
2851 | unlock_abort: |
2852 | pte_unmap_unlock(ptep, ptl); | |
8315ada7 JG |
2853 | abort: |
2854 | *src &= ~MIGRATE_PFN_MIGRATE; | |
2855 | } | |
2856 | ||
a7d1f22b | 2857 | /** |
8763cb45 JG |
2858 | * migrate_vma_pages() - migrate meta-data from src page to dst page |
2859 | * @migrate: migrate struct containing all migration information | |
2860 | * | |
2861 | * This migrates struct page meta-data from source struct page to destination | |
2862 | * struct page. This effectively finishes the migration from source page to the | |
2863 | * destination page. | |
2864 | */ | |
a7d1f22b | 2865 | void migrate_vma_pages(struct migrate_vma *migrate) |
8763cb45 JG |
2866 | { |
2867 | const unsigned long npages = migrate->npages; | |
2868 | const unsigned long start = migrate->start; | |
ac46d4f3 JG |
2869 | struct mmu_notifier_range range; |
2870 | unsigned long addr, i; | |
8315ada7 | 2871 | bool notified = false; |
8763cb45 JG |
2872 | |
2873 | for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { | |
2874 | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); | |
2875 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2876 | struct address_space *mapping; | |
2877 | int r; | |
2878 | ||
8315ada7 JG |
2879 | if (!newpage) { |
2880 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
8763cb45 | 2881 | continue; |
8315ada7 JG |
2882 | } |
2883 | ||
2884 | if (!page) { | |
c23a0c99 | 2885 | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) |
8315ada7 | 2886 | continue; |
8315ada7 | 2887 | if (!notified) { |
8315ada7 | 2888 | notified = true; |
ac46d4f3 JG |
2889 | |
2890 | mmu_notifier_range_init(&range, | |
7269f999 | 2891 | MMU_NOTIFY_CLEAR, 0, |
6f4f13e8 | 2892 | NULL, |
ac46d4f3 JG |
2893 | migrate->vma->vm_mm, |
2894 | addr, migrate->end); | |
2895 | mmu_notifier_invalidate_range_start(&range); | |
8315ada7 JG |
2896 | } |
2897 | migrate_vma_insert_page(migrate, addr, newpage, | |
2898 | &migrate->src[i], | |
2899 | &migrate->dst[i]); | |
8763cb45 | 2900 | continue; |
8315ada7 | 2901 | } |
8763cb45 JG |
2902 | |
2903 | mapping = page_mapping(page); | |
2904 | ||
a5430dda JG |
2905 | if (is_zone_device_page(newpage)) { |
2906 | if (is_device_private_page(newpage)) { | |
2907 | /* | |
2908 | * For now only support private anonymous when | |
2909 | * migrating to un-addressable device memory. | |
2910 | */ | |
2911 | if (mapping) { | |
2912 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2913 | continue; | |
2914 | } | |
25b2995a | 2915 | } else { |
a5430dda JG |
2916 | /* |
2917 | * Other types of ZONE_DEVICE page are not | |
2918 | * supported. | |
2919 | */ | |
2920 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2921 | continue; | |
2922 | } | |
2923 | } | |
2924 | ||
8763cb45 JG |
2925 | r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); |
2926 | if (r != MIGRATEPAGE_SUCCESS) | |
2927 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2928 | } | |
8315ada7 | 2929 | |
4645b9fe JG |
2930 | /* |
2931 | * No need to double call mmu_notifier->invalidate_range() callback as | |
2932 | * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() | |
2933 | * did already call it. | |
2934 | */ | |
8315ada7 | 2935 | if (notified) |
ac46d4f3 | 2936 | mmu_notifier_invalidate_range_only_end(&range); |
8763cb45 | 2937 | } |
a7d1f22b | 2938 | EXPORT_SYMBOL(migrate_vma_pages); |
8763cb45 | 2939 | |
a7d1f22b | 2940 | /** |
8763cb45 JG |
2941 | * migrate_vma_finalize() - restore CPU page table entry |
2942 | * @migrate: migrate struct containing all migration information | |
2943 | * | |
2944 | * This replaces the special migration pte entry with either a mapping to the | |
2945 | * new page if migration was successful for that page, or to the original page | |
2946 | * otherwise. | |
2947 | * | |
2948 | * This also unlocks the pages and puts them back on the lru, or drops the extra | |
2949 | * refcount, for device pages. | |
2950 | */ | |
a7d1f22b | 2951 | void migrate_vma_finalize(struct migrate_vma *migrate) |
8763cb45 JG |
2952 | { |
2953 | const unsigned long npages = migrate->npages; | |
2954 | unsigned long i; | |
2955 | ||
2956 | for (i = 0; i < npages; i++) { | |
2957 | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); | |
2958 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2959 | ||
8315ada7 JG |
2960 | if (!page) { |
2961 | if (newpage) { | |
2962 | unlock_page(newpage); | |
2963 | put_page(newpage); | |
2964 | } | |
8763cb45 | 2965 | continue; |
8315ada7 JG |
2966 | } |
2967 | ||
8763cb45 JG |
2968 | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { |
2969 | if (newpage) { | |
2970 | unlock_page(newpage); | |
2971 | put_page(newpage); | |
2972 | } | |
2973 | newpage = page; | |
2974 | } | |
2975 | ||
2976 | remove_migration_ptes(page, newpage, false); | |
2977 | unlock_page(page); | |
2978 | migrate->cpages--; | |
2979 | ||
a5430dda JG |
2980 | if (is_zone_device_page(page)) |
2981 | put_page(page); | |
2982 | else | |
2983 | putback_lru_page(page); | |
8763cb45 JG |
2984 | |
2985 | if (newpage != page) { | |
2986 | unlock_page(newpage); | |
a5430dda JG |
2987 | if (is_zone_device_page(newpage)) |
2988 | put_page(newpage); | |
2989 | else | |
2990 | putback_lru_page(newpage); | |
8763cb45 JG |
2991 | } |
2992 | } | |
2993 | } | |
a7d1f22b | 2994 | EXPORT_SYMBOL(migrate_vma_finalize); |
9b2ed9cb | 2995 | #endif /* CONFIG_DEVICE_PRIVATE */ |