]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/migrate.c
mm: disable LRU pagevec during the migration temporarily
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
b20a3503 60/*
742755a1 61 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
b20a3503 64 */
236c32eb 65void migrate_prep(void)
b20a3503 66{
b20a3503
CL
67 /*
68 * Clear the LRU lists so pages can be isolated.
b20a3503 69 */
d479960e
MK
70 lru_cache_disable();
71}
72
73void migrate_finish(void)
74{
75 lru_cache_enable();
b20a3503
CL
76}
77
748446bb 78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
236c32eb 79void migrate_prep_local(void)
748446bb
MG
80{
81 lru_add_drain();
748446bb
MG
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 103 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 194 page_is_file_lru(page), -thp_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
244 else if (pte_swp_uffd_wp(*pvmw.pte))
245 pte = pte_mkuffd_wp(pte);
d3cb8bf6 246
6128763f
RC
247 if (unlikely(is_device_private_page(new))) {
248 entry = make_device_private_entry(new, pte_write(pte));
249 pte = swp_entry_to_pte(entry);
3d321bf8
RC
250 if (pte_swp_soft_dirty(*pvmw.pte))
251 pte = pte_swp_mksoft_dirty(pte);
6128763f
RC
252 if (pte_swp_uffd_wp(*pvmw.pte))
253 pte = pte_swp_mkuffd_wp(pte);
d2b2c6dd 254 }
a5430dda 255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
e125fe40
KS
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
3fe87967
KS
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
51afb12b 284
e4b82222 285 return true;
0697212a
CL
286}
287
04e62a29
CL
288/*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
e388466d 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 293{
051ac83a
JK
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
e388466d
KS
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
04e62a29
CL
303}
304
0697212a
CL
305/*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
0697212a 309 */
e66f17ff 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 311 spinlock_t *ptl)
0697212a 312{
30dad309 313 pte_t pte;
0697212a
CL
314 swp_entry_t entry;
315 struct page *page;
316
30dad309 317 spin_lock(ptl);
0697212a
CL
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
e286781d 328 /*
89eb946a 329 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
332 */
333 if (!get_page_unless_zero(page))
334 goto out;
0697212a 335 pte_unmap_unlock(ptep, ptl);
48054625 336 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
0697212a
CL
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
48054625 370 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
616b8371
ZY
371 return;
372unlock:
373 spin_unlock(ptl);
374}
375#endif
376
f900482d 377static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
378{
379 int expected_count = 1;
380
381 /*
f1f4f3ab 382 * Device private pages have an extra refcount as they are
0b3901b3
JK
383 * ZONE_DEVICE pages.
384 */
385 expected_count += is_device_private_page(page);
f900482d 386 if (mapping)
6c357848 387 expected_count += thp_nr_pages(page) + page_has_private(page);
0b3901b3
JK
388
389 return expected_count;
390}
391
b20a3503 392/*
c3fcf8a5 393 * Replace the page in the mapping.
5b5c7120
CL
394 *
395 * The number of remaining references must be:
396 * 1 for anonymous pages without a mapping
397 * 2 for pages with a mapping
266cf658 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 399 */
36bc08cc 400int migrate_page_move_mapping(struct address_space *mapping,
37109694 401 struct page *newpage, struct page *page, int extra_count)
b20a3503 402{
89eb946a 403 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
404 struct zone *oldzone, *newzone;
405 int dirty;
f900482d 406 int expected_count = expected_page_refs(mapping, page) + extra_count;
5c447d27 407 int nr = thp_nr_pages(page);
8763cb45 408
6c5240ae 409 if (!mapping) {
0e8c7d0f 410 /* Anonymous page without mapping */
8e321fef 411 if (page_count(page) != expected_count)
6c5240ae 412 return -EAGAIN;
cf4b769a
HD
413
414 /* No turning back from here */
cf4b769a
HD
415 newpage->index = page->index;
416 newpage->mapping = page->mapping;
417 if (PageSwapBacked(page))
fa9949da 418 __SetPageSwapBacked(newpage);
cf4b769a 419
78bd5209 420 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
421 }
422
42cb14b1
HD
423 oldzone = page_zone(page);
424 newzone = page_zone(newpage);
425
89eb946a 426 xas_lock_irq(&xas);
89eb946a
MW
427 if (page_count(page) != expected_count || xas_load(&xas) != page) {
428 xas_unlock_irq(&xas);
e23ca00b 429 return -EAGAIN;
b20a3503
CL
430 }
431
fe896d18 432 if (!page_ref_freeze(page, expected_count)) {
89eb946a 433 xas_unlock_irq(&xas);
e286781d
NP
434 return -EAGAIN;
435 }
436
b20a3503 437 /*
cf4b769a
HD
438 * Now we know that no one else is looking at the page:
439 * no turning back from here.
b20a3503 440 */
cf4b769a
HD
441 newpage->index = page->index;
442 newpage->mapping = page->mapping;
5c447d27 443 page_ref_add(newpage, nr); /* add cache reference */
6326fec1
NP
444 if (PageSwapBacked(page)) {
445 __SetPageSwapBacked(newpage);
446 if (PageSwapCache(page)) {
447 SetPageSwapCache(newpage);
448 set_page_private(newpage, page_private(page));
449 }
450 } else {
451 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
452 }
453
42cb14b1
HD
454 /* Move dirty while page refs frozen and newpage not yet exposed */
455 dirty = PageDirty(page);
456 if (dirty) {
457 ClearPageDirty(page);
458 SetPageDirty(newpage);
459 }
460
89eb946a 461 xas_store(&xas, newpage);
e71769ae
NH
462 if (PageTransHuge(page)) {
463 int i;
e71769ae 464
5c447d27 465 for (i = 1; i < nr; i++) {
89eb946a 466 xas_next(&xas);
4101196b 467 xas_store(&xas, newpage);
e71769ae 468 }
e71769ae 469 }
7cf9c2c7
NP
470
471 /*
937a94c9
JG
472 * Drop cache reference from old page by unfreezing
473 * to one less reference.
7cf9c2c7
NP
474 * We know this isn't the last reference.
475 */
5c447d27 476 page_ref_unfreeze(page, expected_count - nr);
7cf9c2c7 477
89eb946a 478 xas_unlock(&xas);
42cb14b1
HD
479 /* Leave irq disabled to prevent preemption while updating stats */
480
0e8c7d0f
CL
481 /*
482 * If moved to a different zone then also account
483 * the page for that zone. Other VM counters will be
484 * taken care of when we establish references to the
485 * new page and drop references to the old page.
486 *
487 * Note that anonymous pages are accounted for
4b9d0fab 488 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
489 * are mapped to swap space.
490 */
42cb14b1 491 if (newzone != oldzone) {
0d1c2072
JW
492 struct lruvec *old_lruvec, *new_lruvec;
493 struct mem_cgroup *memcg;
494
495 memcg = page_memcg(page);
496 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
497 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
498
5c447d27
SB
499 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
500 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
42cb14b1 501 if (PageSwapBacked(page) && !PageSwapCache(page)) {
5c447d27
SB
502 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
503 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
42cb14b1 504 }
b6038942
SB
505#ifdef CONFIG_SWAP
506 if (PageSwapCache(page)) {
507 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
508 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
509 }
510#endif
f56753ac 511 if (dirty && mapping_can_writeback(mapping)) {
5c447d27
SB
512 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
513 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
514 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
515 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
42cb14b1 516 }
4b02108a 517 }
42cb14b1 518 local_irq_enable();
b20a3503 519
78bd5209 520 return MIGRATEPAGE_SUCCESS;
b20a3503 521}
1118dce7 522EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 523
290408d4
NH
524/*
525 * The expected number of remaining references is the same as that
526 * of migrate_page_move_mapping().
527 */
528int migrate_huge_page_move_mapping(struct address_space *mapping,
529 struct page *newpage, struct page *page)
530{
89eb946a 531 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 532 int expected_count;
290408d4 533
89eb946a 534 xas_lock_irq(&xas);
290408d4 535 expected_count = 2 + page_has_private(page);
89eb946a
MW
536 if (page_count(page) != expected_count || xas_load(&xas) != page) {
537 xas_unlock_irq(&xas);
290408d4
NH
538 return -EAGAIN;
539 }
540
fe896d18 541 if (!page_ref_freeze(page, expected_count)) {
89eb946a 542 xas_unlock_irq(&xas);
290408d4
NH
543 return -EAGAIN;
544 }
545
cf4b769a
HD
546 newpage->index = page->index;
547 newpage->mapping = page->mapping;
6a93ca8f 548
290408d4
NH
549 get_page(newpage);
550
89eb946a 551 xas_store(&xas, newpage);
290408d4 552
fe896d18 553 page_ref_unfreeze(page, expected_count - 1);
290408d4 554
89eb946a 555 xas_unlock_irq(&xas);
6a93ca8f 556
78bd5209 557 return MIGRATEPAGE_SUCCESS;
290408d4
NH
558}
559
30b0a105
DH
560/*
561 * Gigantic pages are so large that we do not guarantee that page++ pointer
562 * arithmetic will work across the entire page. We need something more
563 * specialized.
564 */
565static void __copy_gigantic_page(struct page *dst, struct page *src,
566 int nr_pages)
567{
568 int i;
569 struct page *dst_base = dst;
570 struct page *src_base = src;
571
572 for (i = 0; i < nr_pages; ) {
573 cond_resched();
574 copy_highpage(dst, src);
575
576 i++;
577 dst = mem_map_next(dst, dst_base, i);
578 src = mem_map_next(src, src_base, i);
579 }
580}
581
582static void copy_huge_page(struct page *dst, struct page *src)
583{
584 int i;
585 int nr_pages;
586
587 if (PageHuge(src)) {
588 /* hugetlbfs page */
589 struct hstate *h = page_hstate(src);
590 nr_pages = pages_per_huge_page(h);
591
592 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
593 __copy_gigantic_page(dst, src, nr_pages);
594 return;
595 }
596 } else {
597 /* thp page */
598 BUG_ON(!PageTransHuge(src));
6c357848 599 nr_pages = thp_nr_pages(src);
30b0a105
DH
600 }
601
602 for (i = 0; i < nr_pages; i++) {
603 cond_resched();
604 copy_highpage(dst + i, src + i);
605 }
606}
607
b20a3503
CL
608/*
609 * Copy the page to its new location
610 */
2916ecc0 611void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 612{
7851a45c
RR
613 int cpupid;
614
b20a3503
CL
615 if (PageError(page))
616 SetPageError(newpage);
617 if (PageReferenced(page))
618 SetPageReferenced(newpage);
619 if (PageUptodate(page))
620 SetPageUptodate(newpage);
894bc310 621 if (TestClearPageActive(page)) {
309381fe 622 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 623 SetPageActive(newpage);
418b27ef
LS
624 } else if (TestClearPageUnevictable(page))
625 SetPageUnevictable(newpage);
1899ad18
JW
626 if (PageWorkingset(page))
627 SetPageWorkingset(newpage);
b20a3503
CL
628 if (PageChecked(page))
629 SetPageChecked(newpage);
630 if (PageMappedToDisk(page))
631 SetPageMappedToDisk(newpage);
632
42cb14b1
HD
633 /* Move dirty on pages not done by migrate_page_move_mapping() */
634 if (PageDirty(page))
635 SetPageDirty(newpage);
b20a3503 636
33c3fc71
VD
637 if (page_is_young(page))
638 set_page_young(newpage);
639 if (page_is_idle(page))
640 set_page_idle(newpage);
641
7851a45c
RR
642 /*
643 * Copy NUMA information to the new page, to prevent over-eager
644 * future migrations of this same page.
645 */
646 cpupid = page_cpupid_xchg_last(page, -1);
647 page_cpupid_xchg_last(newpage, cpupid);
648
e9995ef9 649 ksm_migrate_page(newpage, page);
c8d6553b
HD
650 /*
651 * Please do not reorder this without considering how mm/ksm.c's
652 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
653 */
b3b3a99c
NH
654 if (PageSwapCache(page))
655 ClearPageSwapCache(page);
b20a3503
CL
656 ClearPagePrivate(page);
657 set_page_private(page, 0);
b20a3503
CL
658
659 /*
660 * If any waiters have accumulated on the new page then
661 * wake them up.
662 */
663 if (PageWriteback(newpage))
664 end_page_writeback(newpage);
d435edca 665
6aeff241
YS
666 /*
667 * PG_readahead shares the same bit with PG_reclaim. The above
668 * end_page_writeback() may clear PG_readahead mistakenly, so set the
669 * bit after that.
670 */
671 if (PageReadahead(page))
672 SetPageReadahead(newpage);
673
d435edca 674 copy_page_owner(page, newpage);
74485cf2 675
a333e3e7
HD
676 if (!PageHuge(page))
677 mem_cgroup_migrate(page, newpage);
b20a3503 678}
2916ecc0
JG
679EXPORT_SYMBOL(migrate_page_states);
680
681void migrate_page_copy(struct page *newpage, struct page *page)
682{
683 if (PageHuge(page) || PageTransHuge(page))
684 copy_huge_page(newpage, page);
685 else
686 copy_highpage(newpage, page);
687
688 migrate_page_states(newpage, page);
689}
1118dce7 690EXPORT_SYMBOL(migrate_page_copy);
b20a3503 691
1d8b85cc
CL
692/************************************************************
693 * Migration functions
694 ***********************************************************/
695
b20a3503 696/*
bda807d4 697 * Common logic to directly migrate a single LRU page suitable for
266cf658 698 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
699 *
700 * Pages are locked upon entry and exit.
701 */
2d1db3b1 702int migrate_page(struct address_space *mapping,
a6bc32b8
MG
703 struct page *newpage, struct page *page,
704 enum migrate_mode mode)
b20a3503
CL
705{
706 int rc;
707
708 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
709
37109694 710 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 711
78bd5209 712 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
713 return rc;
714
2916ecc0
JG
715 if (mode != MIGRATE_SYNC_NO_COPY)
716 migrate_page_copy(newpage, page);
717 else
718 migrate_page_states(newpage, page);
78bd5209 719 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
720}
721EXPORT_SYMBOL(migrate_page);
722
9361401e 723#ifdef CONFIG_BLOCK
84ade7c1
JK
724/* Returns true if all buffers are successfully locked */
725static bool buffer_migrate_lock_buffers(struct buffer_head *head,
726 enum migrate_mode mode)
727{
728 struct buffer_head *bh = head;
729
730 /* Simple case, sync compaction */
731 if (mode != MIGRATE_ASYNC) {
732 do {
84ade7c1
JK
733 lock_buffer(bh);
734 bh = bh->b_this_page;
735
736 } while (bh != head);
737
738 return true;
739 }
740
741 /* async case, we cannot block on lock_buffer so use trylock_buffer */
742 do {
84ade7c1
JK
743 if (!trylock_buffer(bh)) {
744 /*
745 * We failed to lock the buffer and cannot stall in
746 * async migration. Release the taken locks
747 */
748 struct buffer_head *failed_bh = bh;
84ade7c1
JK
749 bh = head;
750 while (bh != failed_bh) {
751 unlock_buffer(bh);
84ade7c1
JK
752 bh = bh->b_this_page;
753 }
754 return false;
755 }
756
757 bh = bh->b_this_page;
758 } while (bh != head);
759 return true;
760}
761
89cb0888
JK
762static int __buffer_migrate_page(struct address_space *mapping,
763 struct page *newpage, struct page *page, enum migrate_mode mode,
764 bool check_refs)
1d8b85cc 765{
1d8b85cc
CL
766 struct buffer_head *bh, *head;
767 int rc;
cc4f11e6 768 int expected_count;
1d8b85cc 769
1d8b85cc 770 if (!page_has_buffers(page))
a6bc32b8 771 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 772
cc4f11e6 773 /* Check whether page does not have extra refs before we do more work */
f900482d 774 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
775 if (page_count(page) != expected_count)
776 return -EAGAIN;
1d8b85cc 777
cc4f11e6
JK
778 head = page_buffers(page);
779 if (!buffer_migrate_lock_buffers(head, mode))
780 return -EAGAIN;
1d8b85cc 781
89cb0888
JK
782 if (check_refs) {
783 bool busy;
784 bool invalidated = false;
785
786recheck_buffers:
787 busy = false;
788 spin_lock(&mapping->private_lock);
789 bh = head;
790 do {
791 if (atomic_read(&bh->b_count)) {
792 busy = true;
793 break;
794 }
795 bh = bh->b_this_page;
796 } while (bh != head);
89cb0888
JK
797 if (busy) {
798 if (invalidated) {
799 rc = -EAGAIN;
800 goto unlock_buffers;
801 }
ebdf4de5 802 spin_unlock(&mapping->private_lock);
89cb0888
JK
803 invalidate_bh_lrus();
804 invalidated = true;
805 goto recheck_buffers;
806 }
807 }
808
37109694 809 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 810 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 811 goto unlock_buffers;
1d8b85cc 812
cd0f3715 813 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
814
815 bh = head;
816 do {
817 set_bh_page(bh, newpage, bh_offset(bh));
818 bh = bh->b_this_page;
819
820 } while (bh != head);
821
2916ecc0
JG
822 if (mode != MIGRATE_SYNC_NO_COPY)
823 migrate_page_copy(newpage, page);
824 else
825 migrate_page_states(newpage, page);
1d8b85cc 826
cc4f11e6
JK
827 rc = MIGRATEPAGE_SUCCESS;
828unlock_buffers:
ebdf4de5
JK
829 if (check_refs)
830 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
831 bh = head;
832 do {
833 unlock_buffer(bh);
1d8b85cc
CL
834 bh = bh->b_this_page;
835
836 } while (bh != head);
837
cc4f11e6 838 return rc;
1d8b85cc 839}
89cb0888
JK
840
841/*
842 * Migration function for pages with buffers. This function can only be used
843 * if the underlying filesystem guarantees that no other references to "page"
844 * exist. For example attached buffer heads are accessed only under page lock.
845 */
846int buffer_migrate_page(struct address_space *mapping,
847 struct page *newpage, struct page *page, enum migrate_mode mode)
848{
849 return __buffer_migrate_page(mapping, newpage, page, mode, false);
850}
1d8b85cc 851EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
852
853/*
854 * Same as above except that this variant is more careful and checks that there
855 * are also no buffer head references. This function is the right one for
856 * mappings where buffer heads are directly looked up and referenced (such as
857 * block device mappings).
858 */
859int buffer_migrate_page_norefs(struct address_space *mapping,
860 struct page *newpage, struct page *page, enum migrate_mode mode)
861{
862 return __buffer_migrate_page(mapping, newpage, page, mode, true);
863}
9361401e 864#endif
1d8b85cc 865
04e62a29
CL
866/*
867 * Writeback a page to clean the dirty state
868 */
869static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 870{
04e62a29
CL
871 struct writeback_control wbc = {
872 .sync_mode = WB_SYNC_NONE,
873 .nr_to_write = 1,
874 .range_start = 0,
875 .range_end = LLONG_MAX,
04e62a29
CL
876 .for_reclaim = 1
877 };
878 int rc;
879
880 if (!mapping->a_ops->writepage)
881 /* No write method for the address space */
882 return -EINVAL;
883
884 if (!clear_page_dirty_for_io(page))
885 /* Someone else already triggered a write */
886 return -EAGAIN;
887
8351a6e4 888 /*
04e62a29
CL
889 * A dirty page may imply that the underlying filesystem has
890 * the page on some queue. So the page must be clean for
891 * migration. Writeout may mean we loose the lock and the
892 * page state is no longer what we checked for earlier.
893 * At this point we know that the migration attempt cannot
894 * be successful.
8351a6e4 895 */
e388466d 896 remove_migration_ptes(page, page, false);
8351a6e4 897
04e62a29 898 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 899
04e62a29
CL
900 if (rc != AOP_WRITEPAGE_ACTIVATE)
901 /* unlocked. Relock */
902 lock_page(page);
903
bda8550d 904 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
905}
906
907/*
908 * Default handling if a filesystem does not provide a migration function.
909 */
910static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 911 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 912{
b969c4ab 913 if (PageDirty(page)) {
a6bc32b8 914 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
915 switch (mode) {
916 case MIGRATE_SYNC:
917 case MIGRATE_SYNC_NO_COPY:
918 break;
919 default:
b969c4ab 920 return -EBUSY;
2916ecc0 921 }
04e62a29 922 return writeout(mapping, page);
b969c4ab 923 }
8351a6e4
CL
924
925 /*
926 * Buffers may be managed in a filesystem specific way.
927 * We must have no buffers or drop them.
928 */
266cf658 929 if (page_has_private(page) &&
8351a6e4 930 !try_to_release_page(page, GFP_KERNEL))
806031bb 931 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 932
a6bc32b8 933 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
934}
935
e24f0b8f
CL
936/*
937 * Move a page to a newly allocated page
938 * The page is locked and all ptes have been successfully removed.
939 *
940 * The new page will have replaced the old page if this function
941 * is successful.
894bc310
LS
942 *
943 * Return value:
944 * < 0 - error code
78bd5209 945 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 946 */
3fe2011f 947static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 948 enum migrate_mode mode)
e24f0b8f
CL
949{
950 struct address_space *mapping;
bda807d4
MK
951 int rc = -EAGAIN;
952 bool is_lru = !__PageMovable(page);
e24f0b8f 953
7db7671f
HD
954 VM_BUG_ON_PAGE(!PageLocked(page), page);
955 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 956
e24f0b8f 957 mapping = page_mapping(page);
bda807d4
MK
958
959 if (likely(is_lru)) {
960 if (!mapping)
961 rc = migrate_page(mapping, newpage, page, mode);
962 else if (mapping->a_ops->migratepage)
963 /*
964 * Most pages have a mapping and most filesystems
965 * provide a migratepage callback. Anonymous pages
966 * are part of swap space which also has its own
967 * migratepage callback. This is the most common path
968 * for page migration.
969 */
970 rc = mapping->a_ops->migratepage(mapping, newpage,
971 page, mode);
972 else
973 rc = fallback_migrate_page(mapping, newpage,
974 page, mode);
975 } else {
e24f0b8f 976 /*
bda807d4
MK
977 * In case of non-lru page, it could be released after
978 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 979 */
bda807d4
MK
980 VM_BUG_ON_PAGE(!PageIsolated(page), page);
981 if (!PageMovable(page)) {
982 rc = MIGRATEPAGE_SUCCESS;
983 __ClearPageIsolated(page);
984 goto out;
985 }
986
987 rc = mapping->a_ops->migratepage(mapping, newpage,
988 page, mode);
989 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
990 !PageIsolated(page));
991 }
e24f0b8f 992
5c3f9a67
HD
993 /*
994 * When successful, old pagecache page->mapping must be cleared before
995 * page is freed; but stats require that PageAnon be left as PageAnon.
996 */
997 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
998 if (__PageMovable(page)) {
999 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1000
1001 /*
1002 * We clear PG_movable under page_lock so any compactor
1003 * cannot try to migrate this page.
1004 */
1005 __ClearPageIsolated(page);
1006 }
1007
1008 /*
c23a0c99 1009 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
1010 * free_pages_prepare so don't reset it here for keeping
1011 * the type to work PageAnon, for example.
1012 */
1013 if (!PageMappingFlags(page))
5c3f9a67 1014 page->mapping = NULL;
d2b2c6dd 1015
25b2995a 1016 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
1017 flush_dcache_page(newpage);
1018
3fe2011f 1019 }
bda807d4 1020out:
e24f0b8f
CL
1021 return rc;
1022}
1023
0dabec93 1024static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1025 int force, enum migrate_mode mode)
e24f0b8f 1026{
0dabec93 1027 int rc = -EAGAIN;
2ebba6b7 1028 int page_was_mapped = 0;
3f6c8272 1029 struct anon_vma *anon_vma = NULL;
bda807d4 1030 bool is_lru = !__PageMovable(page);
95a402c3 1031
529ae9aa 1032 if (!trylock_page(page)) {
a6bc32b8 1033 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1034 goto out;
3e7d3449
MG
1035
1036 /*
1037 * It's not safe for direct compaction to call lock_page.
1038 * For example, during page readahead pages are added locked
1039 * to the LRU. Later, when the IO completes the pages are
1040 * marked uptodate and unlocked. However, the queueing
1041 * could be merging multiple pages for one bio (e.g.
d4388340 1042 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1043 * second or third page, the process can end up locking
1044 * the same page twice and deadlocking. Rather than
1045 * trying to be clever about what pages can be locked,
1046 * avoid the use of lock_page for direct compaction
1047 * altogether.
1048 */
1049 if (current->flags & PF_MEMALLOC)
0dabec93 1050 goto out;
3e7d3449 1051
e24f0b8f
CL
1052 lock_page(page);
1053 }
1054
1055 if (PageWriteback(page)) {
11bc82d6 1056 /*
fed5b64a 1057 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1058 * necessary to wait for PageWriteback. In the async case,
1059 * the retry loop is too short and in the sync-light case,
1060 * the overhead of stalling is too much
11bc82d6 1061 */
2916ecc0
JG
1062 switch (mode) {
1063 case MIGRATE_SYNC:
1064 case MIGRATE_SYNC_NO_COPY:
1065 break;
1066 default:
11bc82d6 1067 rc = -EBUSY;
0a31bc97 1068 goto out_unlock;
11bc82d6
AA
1069 }
1070 if (!force)
0a31bc97 1071 goto out_unlock;
e24f0b8f
CL
1072 wait_on_page_writeback(page);
1073 }
03f15c86 1074
e24f0b8f 1075 /*
dc386d4d
KH
1076 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1077 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1078 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1079 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1080 * File Caches may use write_page() or lock_page() in migration, then,
1081 * just care Anon page here.
03f15c86
HD
1082 *
1083 * Only page_get_anon_vma() understands the subtleties of
1084 * getting a hold on an anon_vma from outside one of its mms.
1085 * But if we cannot get anon_vma, then we won't need it anyway,
1086 * because that implies that the anon page is no longer mapped
1087 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1088 */
03f15c86 1089 if (PageAnon(page) && !PageKsm(page))
746b18d4 1090 anon_vma = page_get_anon_vma(page);
62e1c553 1091
7db7671f
HD
1092 /*
1093 * Block others from accessing the new page when we get around to
1094 * establishing additional references. We are usually the only one
1095 * holding a reference to newpage at this point. We used to have a BUG
1096 * here if trylock_page(newpage) fails, but would like to allow for
1097 * cases where there might be a race with the previous use of newpage.
1098 * This is much like races on refcount of oldpage: just don't BUG().
1099 */
1100 if (unlikely(!trylock_page(newpage)))
1101 goto out_unlock;
1102
bda807d4
MK
1103 if (unlikely(!is_lru)) {
1104 rc = move_to_new_page(newpage, page, mode);
1105 goto out_unlock_both;
1106 }
1107
dc386d4d 1108 /*
62e1c553
SL
1109 * Corner case handling:
1110 * 1. When a new swap-cache page is read into, it is added to the LRU
1111 * and treated as swapcache but it has no rmap yet.
1112 * Calling try_to_unmap() against a page->mapping==NULL page will
1113 * trigger a BUG. So handle it here.
d12b8951 1114 * 2. An orphaned page (see truncate_cleanup_page) might have
62e1c553
SL
1115 * fs-private metadata. The page can be picked up due to memory
1116 * offlining. Everywhere else except page reclaim, the page is
1117 * invisible to the vm, so the page can not be migrated. So try to
1118 * free the metadata, so the page can be freed.
e24f0b8f 1119 */
62e1c553 1120 if (!page->mapping) {
309381fe 1121 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1122 if (page_has_private(page)) {
62e1c553 1123 try_to_free_buffers(page);
7db7671f 1124 goto out_unlock_both;
62e1c553 1125 }
7db7671f
HD
1126 } else if (page_mapped(page)) {
1127 /* Establish migration ptes */
03f15c86
HD
1128 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1129 page);
013339df 1130 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
2ebba6b7
HD
1131 page_was_mapped = 1;
1132 }
dc386d4d 1133
e6a1530d 1134 if (!page_mapped(page))
5c3f9a67 1135 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1136
5c3f9a67
HD
1137 if (page_was_mapped)
1138 remove_migration_ptes(page,
e388466d 1139 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1140
7db7671f
HD
1141out_unlock_both:
1142 unlock_page(newpage);
1143out_unlock:
3f6c8272 1144 /* Drop an anon_vma reference if we took one */
76545066 1145 if (anon_vma)
9e60109f 1146 put_anon_vma(anon_vma);
e24f0b8f 1147 unlock_page(page);
0dabec93 1148out:
c6c919eb
MK
1149 /*
1150 * If migration is successful, decrease refcount of the newpage
1151 * which will not free the page because new page owner increased
1152 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1153 * list in here. Use the old state of the isolated source page to
1154 * determine if we migrated a LRU page. newpage was already unlocked
1155 * and possibly modified by its owner - don't rely on the page
1156 * state.
c6c919eb
MK
1157 */
1158 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1159 if (unlikely(!is_lru))
c6c919eb
MK
1160 put_page(newpage);
1161 else
1162 putback_lru_page(newpage);
1163 }
1164
0dabec93
MK
1165 return rc;
1166}
95a402c3 1167
0dabec93
MK
1168/*
1169 * Obtain the lock on page, remove all ptes and migrate the page
1170 * to the newly allocated page in newpage.
1171 */
6ec4476a 1172static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1173 free_page_t put_new_page,
1174 unsigned long private, struct page *page,
add05cec 1175 int force, enum migrate_mode mode,
dd4ae78a
YS
1176 enum migrate_reason reason,
1177 struct list_head *ret)
0dabec93 1178{
2def7424 1179 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1180 struct page *newpage = NULL;
0dabec93 1181
94723aaf 1182 if (!thp_migration_supported() && PageTransHuge(page))
d532e2e5 1183 return -ENOSYS;
94723aaf 1184
0dabec93
MK
1185 if (page_count(page) == 1) {
1186 /* page was freed from under us. So we are done. */
c6c919eb
MK
1187 ClearPageActive(page);
1188 ClearPageUnevictable(page);
bda807d4
MK
1189 if (unlikely(__PageMovable(page))) {
1190 lock_page(page);
1191 if (!PageMovable(page))
1192 __ClearPageIsolated(page);
1193 unlock_page(page);
1194 }
0dabec93
MK
1195 goto out;
1196 }
1197
74d4a579
YS
1198 newpage = get_new_page(page, private);
1199 if (!newpage)
1200 return -ENOMEM;
1201
9c620e2b 1202 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1203 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1204 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1205
0dabec93 1206out:
e24f0b8f 1207 if (rc != -EAGAIN) {
0dabec93
MK
1208 /*
1209 * A page that has been migrated has all references
1210 * removed and will be freed. A page that has not been
c23a0c99 1211 * migrated will have kept its references and be restored.
0dabec93
MK
1212 */
1213 list_del(&page->lru);
dd4ae78a 1214 }
6afcf8ef 1215
dd4ae78a
YS
1216 /*
1217 * If migration is successful, releases reference grabbed during
1218 * isolation. Otherwise, restore the page to right list unless
1219 * we want to retry.
1220 */
1221 if (rc == MIGRATEPAGE_SUCCESS) {
6afcf8ef
ML
1222 /*
1223 * Compaction can migrate also non-LRU pages which are
1224 * not accounted to NR_ISOLATED_*. They can be recognized
1225 * as __PageMovable
1226 */
1227 if (likely(!__PageMovable(page)))
e8db67eb 1228 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 1229 page_is_file_lru(page), -thp_nr_pages(page));
c6c919eb 1230
79f5f8fa 1231 if (reason != MR_MEMORY_FAILURE)
d7e69488 1232 /*
79f5f8fa 1233 * We release the page in page_handle_poison.
d7e69488 1234 */
79f5f8fa 1235 put_page(page);
c6c919eb 1236 } else {
dd4ae78a
YS
1237 if (rc != -EAGAIN)
1238 list_add_tail(&page->lru, ret);
bda807d4 1239
c6c919eb
MK
1240 if (put_new_page)
1241 put_new_page(newpage, private);
1242 else
1243 put_page(newpage);
e24f0b8f 1244 }
68711a74 1245
e24f0b8f
CL
1246 return rc;
1247}
1248
290408d4
NH
1249/*
1250 * Counterpart of unmap_and_move_page() for hugepage migration.
1251 *
1252 * This function doesn't wait the completion of hugepage I/O
1253 * because there is no race between I/O and migration for hugepage.
1254 * Note that currently hugepage I/O occurs only in direct I/O
1255 * where no lock is held and PG_writeback is irrelevant,
1256 * and writeback status of all subpages are counted in the reference
1257 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1258 * under direct I/O, the reference of the head page is 512 and a bit more.)
1259 * This means that when we try to migrate hugepage whose subpages are
1260 * doing direct I/O, some references remain after try_to_unmap() and
1261 * hugepage migration fails without data corruption.
1262 *
1263 * There is also no race when direct I/O is issued on the page under migration,
1264 * because then pte is replaced with migration swap entry and direct I/O code
1265 * will wait in the page fault for migration to complete.
1266 */
1267static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1268 free_page_t put_new_page, unsigned long private,
1269 struct page *hpage, int force,
dd4ae78a
YS
1270 enum migrate_mode mode, int reason,
1271 struct list_head *ret)
290408d4 1272{
2def7424 1273 int rc = -EAGAIN;
2ebba6b7 1274 int page_was_mapped = 0;
32665f2b 1275 struct page *new_hpage;
290408d4 1276 struct anon_vma *anon_vma = NULL;
c0d0381a 1277 struct address_space *mapping = NULL;
290408d4 1278
83467efb 1279 /*
7ed2c31d 1280 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1281 * This check is necessary because some callers of hugepage migration
1282 * like soft offline and memory hotremove don't walk through page
1283 * tables or check whether the hugepage is pmd-based or not before
1284 * kicking migration.
1285 */
100873d7 1286 if (!hugepage_migration_supported(page_hstate(hpage))) {
dd4ae78a 1287 list_move_tail(&hpage->lru, ret);
83467efb 1288 return -ENOSYS;
32665f2b 1289 }
83467efb 1290
71a64f61
MS
1291 if (page_count(hpage) == 1) {
1292 /* page was freed from under us. So we are done. */
1293 putback_active_hugepage(hpage);
1294 return MIGRATEPAGE_SUCCESS;
1295 }
1296
666feb21 1297 new_hpage = get_new_page(hpage, private);
290408d4
NH
1298 if (!new_hpage)
1299 return -ENOMEM;
1300
290408d4 1301 if (!trylock_page(hpage)) {
2916ecc0 1302 if (!force)
290408d4 1303 goto out;
2916ecc0
JG
1304 switch (mode) {
1305 case MIGRATE_SYNC:
1306 case MIGRATE_SYNC_NO_COPY:
1307 break;
1308 default:
1309 goto out;
1310 }
290408d4
NH
1311 lock_page(hpage);
1312 }
1313
cb6acd01
MK
1314 /*
1315 * Check for pages which are in the process of being freed. Without
1316 * page_mapping() set, hugetlbfs specific move page routine will not
1317 * be called and we could leak usage counts for subpools.
1318 */
1319 if (page_private(hpage) && !page_mapping(hpage)) {
1320 rc = -EBUSY;
1321 goto out_unlock;
1322 }
1323
746b18d4
PZ
1324 if (PageAnon(hpage))
1325 anon_vma = page_get_anon_vma(hpage);
290408d4 1326
7db7671f
HD
1327 if (unlikely(!trylock_page(new_hpage)))
1328 goto put_anon;
1329
2ebba6b7 1330 if (page_mapped(hpage)) {
336bf30e 1331 bool mapping_locked = false;
013339df 1332 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
336bf30e
MK
1333
1334 if (!PageAnon(hpage)) {
1335 /*
1336 * In shared mappings, try_to_unmap could potentially
1337 * call huge_pmd_unshare. Because of this, take
1338 * semaphore in write mode here and set TTU_RMAP_LOCKED
1339 * to let lower levels know we have taken the lock.
1340 */
1341 mapping = hugetlb_page_mapping_lock_write(hpage);
1342 if (unlikely(!mapping))
1343 goto unlock_put_anon;
1344
1345 mapping_locked = true;
1346 ttu |= TTU_RMAP_LOCKED;
1347 }
c0d0381a 1348
336bf30e 1349 try_to_unmap(hpage, ttu);
2ebba6b7 1350 page_was_mapped = 1;
336bf30e
MK
1351
1352 if (mapping_locked)
1353 i_mmap_unlock_write(mapping);
2ebba6b7 1354 }
290408d4
NH
1355
1356 if (!page_mapped(hpage))
5c3f9a67 1357 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1358
336bf30e 1359 if (page_was_mapped)
5c3f9a67 1360 remove_migration_ptes(hpage,
336bf30e 1361 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1362
c0d0381a 1363unlock_put_anon:
7db7671f
HD
1364 unlock_page(new_hpage);
1365
1366put_anon:
fd4a4663 1367 if (anon_vma)
9e60109f 1368 put_anon_vma(anon_vma);
8e6ac7fa 1369
2def7424 1370 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1371 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1372 put_new_page = NULL;
1373 }
8e6ac7fa 1374
cb6acd01 1375out_unlock:
290408d4 1376 unlock_page(hpage);
09761333 1377out:
dd4ae78a 1378 if (rc == MIGRATEPAGE_SUCCESS)
b8ec1cee 1379 putback_active_hugepage(hpage);
dd4ae78a
YS
1380 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1381 list_move_tail(&hpage->lru, ret);
68711a74
DR
1382
1383 /*
1384 * If migration was not successful and there's a freeing callback, use
1385 * it. Otherwise, put_page() will drop the reference grabbed during
1386 * isolation.
1387 */
2def7424 1388 if (put_new_page)
68711a74
DR
1389 put_new_page(new_hpage, private);
1390 else
3aaa76e1 1391 putback_active_hugepage(new_hpage);
68711a74 1392
290408d4
NH
1393 return rc;
1394}
1395
d532e2e5
YS
1396static inline int try_split_thp(struct page *page, struct page **page2,
1397 struct list_head *from)
1398{
1399 int rc = 0;
1400
1401 lock_page(page);
1402 rc = split_huge_page_to_list(page, from);
1403 unlock_page(page);
1404 if (!rc)
1405 list_safe_reset_next(page, *page2, lru);
1406
1407 return rc;
1408}
1409
b20a3503 1410/*
c73e5c9c
SB
1411 * migrate_pages - migrate the pages specified in a list, to the free pages
1412 * supplied as the target for the page migration
b20a3503 1413 *
c73e5c9c
SB
1414 * @from: The list of pages to be migrated.
1415 * @get_new_page: The function used to allocate free pages to be used
1416 * as the target of the page migration.
68711a74
DR
1417 * @put_new_page: The function used to free target pages if migration
1418 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1419 * @private: Private data to be passed on to get_new_page()
1420 * @mode: The migration mode that specifies the constraints for
1421 * page migration, if any.
1422 * @reason: The reason for page migration.
b20a3503 1423 *
c73e5c9c
SB
1424 * The function returns after 10 attempts or if no pages are movable any more
1425 * because the list has become empty or no retryable pages exist any more.
dd4ae78a
YS
1426 * It is caller's responsibility to call putback_movable_pages() to return pages
1427 * to the LRU or free list only if ret != 0.
b20a3503 1428 *
c73e5c9c 1429 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1430 */
9c620e2b 1431int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1432 free_page_t put_new_page, unsigned long private,
1433 enum migrate_mode mode, int reason)
b20a3503 1434{
e24f0b8f 1435 int retry = 1;
1a5bae25 1436 int thp_retry = 1;
b20a3503 1437 int nr_failed = 0;
5647bc29 1438 int nr_succeeded = 0;
1a5bae25
AK
1439 int nr_thp_succeeded = 0;
1440 int nr_thp_failed = 0;
1441 int nr_thp_split = 0;
b20a3503 1442 int pass = 0;
1a5bae25 1443 bool is_thp = false;
b20a3503
CL
1444 struct page *page;
1445 struct page *page2;
1446 int swapwrite = current->flags & PF_SWAPWRITE;
1a5bae25 1447 int rc, nr_subpages;
dd4ae78a 1448 LIST_HEAD(ret_pages);
b20a3503
CL
1449
1450 if (!swapwrite)
1451 current->flags |= PF_SWAPWRITE;
1452
1a5bae25 1453 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
e24f0b8f 1454 retry = 0;
1a5bae25 1455 thp_retry = 0;
b20a3503 1456
e24f0b8f 1457 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1458retry:
1a5bae25
AK
1459 /*
1460 * THP statistics is based on the source huge page.
1461 * Capture required information that might get lost
1462 * during migration.
1463 */
6c5c7b9f 1464 is_thp = PageTransHuge(page) && !PageHuge(page);
6c357848 1465 nr_subpages = thp_nr_pages(page);
e24f0b8f 1466 cond_resched();
2d1db3b1 1467
31caf665
NH
1468 if (PageHuge(page))
1469 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1470 put_new_page, private, page,
dd4ae78a
YS
1471 pass > 2, mode, reason,
1472 &ret_pages);
31caf665 1473 else
68711a74 1474 rc = unmap_and_move(get_new_page, put_new_page,
add05cec 1475 private, page, pass > 2, mode,
dd4ae78a
YS
1476 reason, &ret_pages);
1477 /*
1478 * The rules are:
1479 * Success: non hugetlb page will be freed, hugetlb
1480 * page will be put back
1481 * -EAGAIN: stay on the from list
1482 * -ENOMEM: stay on the from list
1483 * Other errno: put on ret_pages list then splice to
1484 * from list
1485 */
e24f0b8f 1486 switch(rc) {
d532e2e5
YS
1487 /*
1488 * THP migration might be unsupported or the
1489 * allocation could've failed so we should
1490 * retry on the same page with the THP split
1491 * to base pages.
1492 *
1493 * Head page is retried immediately and tail
1494 * pages are added to the tail of the list so
1495 * we encounter them after the rest of the list
1496 * is processed.
1497 */
1498 case -ENOSYS:
1499 /* THP migration is unsupported */
1500 if (is_thp) {
1501 if (!try_split_thp(page, &page2, from)) {
1502 nr_thp_split++;
1503 goto retry;
1504 }
1505
1506 nr_thp_failed++;
1507 nr_failed += nr_subpages;
1508 break;
1509 }
1510
1511 /* Hugetlb migration is unsupported */
1512 nr_failed++;
1513 break;
95a402c3 1514 case -ENOMEM:
94723aaf 1515 /*
d532e2e5
YS
1516 * When memory is low, don't bother to try to migrate
1517 * other pages, just exit.
94723aaf 1518 */
6c5c7b9f 1519 if (is_thp) {
d532e2e5 1520 if (!try_split_thp(page, &page2, from)) {
1a5bae25 1521 nr_thp_split++;
94723aaf
MH
1522 goto retry;
1523 }
6c5c7b9f 1524
1a5bae25
AK
1525 nr_thp_failed++;
1526 nr_failed += nr_subpages;
1527 goto out;
1528 }
dfef2ef4 1529 nr_failed++;
95a402c3 1530 goto out;
e24f0b8f 1531 case -EAGAIN:
1a5bae25
AK
1532 if (is_thp) {
1533 thp_retry++;
1534 break;
1535 }
2d1db3b1 1536 retry++;
e24f0b8f 1537 break;
78bd5209 1538 case MIGRATEPAGE_SUCCESS:
1a5bae25
AK
1539 if (is_thp) {
1540 nr_thp_succeeded++;
1541 nr_succeeded += nr_subpages;
1542 break;
1543 }
5647bc29 1544 nr_succeeded++;
e24f0b8f
CL
1545 break;
1546 default:
354a3363 1547 /*
d532e2e5 1548 * Permanent failure (-EBUSY, etc.):
354a3363
NH
1549 * unlike -EAGAIN case, the failed page is
1550 * removed from migration page list and not
1551 * retried in the next outer loop.
1552 */
1a5bae25
AK
1553 if (is_thp) {
1554 nr_thp_failed++;
1555 nr_failed += nr_subpages;
1556 break;
1557 }
2d1db3b1 1558 nr_failed++;
e24f0b8f 1559 break;
2d1db3b1 1560 }
b20a3503
CL
1561 }
1562 }
1a5bae25
AK
1563 nr_failed += retry + thp_retry;
1564 nr_thp_failed += thp_retry;
f2f81fb2 1565 rc = nr_failed;
95a402c3 1566out:
dd4ae78a
YS
1567 /*
1568 * Put the permanent failure page back to migration list, they
1569 * will be put back to the right list by the caller.
1570 */
1571 list_splice(&ret_pages, from);
1572
1a5bae25
AK
1573 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1574 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1575 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1576 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1577 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1578 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1579 nr_thp_failed, nr_thp_split, mode, reason);
7b2a2d4a 1580
b20a3503
CL
1581 if (!swapwrite)
1582 current->flags &= ~PF_SWAPWRITE;
1583
78bd5209 1584 return rc;
b20a3503 1585}
95a402c3 1586
19fc7bed 1587struct page *alloc_migration_target(struct page *page, unsigned long private)
b4b38223 1588{
19fc7bed
JK
1589 struct migration_target_control *mtc;
1590 gfp_t gfp_mask;
b4b38223
JK
1591 unsigned int order = 0;
1592 struct page *new_page = NULL;
19fc7bed
JK
1593 int nid;
1594 int zidx;
1595
1596 mtc = (struct migration_target_control *)private;
1597 gfp_mask = mtc->gfp_mask;
1598 nid = mtc->nid;
1599 if (nid == NUMA_NO_NODE)
1600 nid = page_to_nid(page);
b4b38223 1601
d92bbc27
JK
1602 if (PageHuge(page)) {
1603 struct hstate *h = page_hstate(compound_head(page));
1604
19fc7bed
JK
1605 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1606 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
d92bbc27 1607 }
b4b38223
JK
1608
1609 if (PageTransHuge(page)) {
9933a0c8
JK
1610 /*
1611 * clear __GFP_RECLAIM to make the migration callback
1612 * consistent with regular THP allocations.
1613 */
1614 gfp_mask &= ~__GFP_RECLAIM;
b4b38223
JK
1615 gfp_mask |= GFP_TRANSHUGE;
1616 order = HPAGE_PMD_ORDER;
1617 }
19fc7bed
JK
1618 zidx = zone_idx(page_zone(page));
1619 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
b4b38223
JK
1620 gfp_mask |= __GFP_HIGHMEM;
1621
84172f4b 1622 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
b4b38223
JK
1623
1624 if (new_page && PageTransHuge(new_page))
1625 prep_transhuge_page(new_page);
1626
1627 return new_page;
1628}
1629
742755a1 1630#ifdef CONFIG_NUMA
742755a1 1631
a49bd4d7 1632static int store_status(int __user *status, int start, int value, int nr)
742755a1 1633{
a49bd4d7
MH
1634 while (nr-- > 0) {
1635 if (put_user(value, status + start))
1636 return -EFAULT;
1637 start++;
1638 }
1639
1640 return 0;
1641}
1642
1643static int do_move_pages_to_node(struct mm_struct *mm,
1644 struct list_head *pagelist, int node)
1645{
1646 int err;
a0976311
JK
1647 struct migration_target_control mtc = {
1648 .nid = node,
1649 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1650 };
a49bd4d7 1651
a0976311
JK
1652 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1653 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
a49bd4d7
MH
1654 if (err)
1655 putback_movable_pages(pagelist);
1656 return err;
742755a1
CL
1657}
1658
1659/*
a49bd4d7
MH
1660 * Resolves the given address to a struct page, isolates it from the LRU and
1661 * puts it to the given pagelist.
e0153fc2
YS
1662 * Returns:
1663 * errno - if the page cannot be found/isolated
1664 * 0 - when it doesn't have to be migrated because it is already on the
1665 * target node
1666 * 1 - when it has been queued
742755a1 1667 */
a49bd4d7
MH
1668static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1669 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1670{
a49bd4d7
MH
1671 struct vm_area_struct *vma;
1672 struct page *page;
1673 unsigned int follflags;
742755a1 1674 int err;
742755a1 1675
d8ed45c5 1676 mmap_read_lock(mm);
a49bd4d7
MH
1677 err = -EFAULT;
1678 vma = find_vma(mm, addr);
1679 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1680 goto out;
742755a1 1681
a49bd4d7
MH
1682 /* FOLL_DUMP to ignore special (like zero) pages */
1683 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1684 page = follow_page(vma, addr, follflags);
89f5b7da 1685
a49bd4d7
MH
1686 err = PTR_ERR(page);
1687 if (IS_ERR(page))
1688 goto out;
89f5b7da 1689
a49bd4d7
MH
1690 err = -ENOENT;
1691 if (!page)
1692 goto out;
742755a1 1693
a49bd4d7
MH
1694 err = 0;
1695 if (page_to_nid(page) == node)
1696 goto out_putpage;
742755a1 1697
a49bd4d7
MH
1698 err = -EACCES;
1699 if (page_mapcount(page) > 1 && !migrate_all)
1700 goto out_putpage;
742755a1 1701
a49bd4d7
MH
1702 if (PageHuge(page)) {
1703 if (PageHead(page)) {
1704 isolate_huge_page(page, pagelist);
e0153fc2 1705 err = 1;
e632a938 1706 }
a49bd4d7
MH
1707 } else {
1708 struct page *head;
e632a938 1709
e8db67eb
NH
1710 head = compound_head(page);
1711 err = isolate_lru_page(head);
cf608ac1 1712 if (err)
a49bd4d7 1713 goto out_putpage;
742755a1 1714
e0153fc2 1715 err = 1;
a49bd4d7
MH
1716 list_add_tail(&head->lru, pagelist);
1717 mod_node_page_state(page_pgdat(head),
9de4f22a 1718 NR_ISOLATED_ANON + page_is_file_lru(head),
6c357848 1719 thp_nr_pages(head));
a49bd4d7
MH
1720 }
1721out_putpage:
1722 /*
1723 * Either remove the duplicate refcount from
1724 * isolate_lru_page() or drop the page ref if it was
1725 * not isolated.
1726 */
1727 put_page(page);
1728out:
d8ed45c5 1729 mmap_read_unlock(mm);
742755a1
CL
1730 return err;
1731}
1732
7ca8783a
WY
1733static int move_pages_and_store_status(struct mm_struct *mm, int node,
1734 struct list_head *pagelist, int __user *status,
1735 int start, int i, unsigned long nr_pages)
1736{
1737 int err;
1738
5d7ae891
WY
1739 if (list_empty(pagelist))
1740 return 0;
1741
7ca8783a
WY
1742 err = do_move_pages_to_node(mm, pagelist, node);
1743 if (err) {
1744 /*
1745 * Positive err means the number of failed
1746 * pages to migrate. Since we are going to
1747 * abort and return the number of non-migrated
ab9dd4f8 1748 * pages, so need to include the rest of the
7ca8783a
WY
1749 * nr_pages that have not been attempted as
1750 * well.
1751 */
1752 if (err > 0)
1753 err += nr_pages - i - 1;
1754 return err;
1755 }
1756 return store_status(status, start, node, i - start);
1757}
1758
5e9a0f02
BG
1759/*
1760 * Migrate an array of page address onto an array of nodes and fill
1761 * the corresponding array of status.
1762 */
3268c63e 1763static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1764 unsigned long nr_pages,
1765 const void __user * __user *pages,
1766 const int __user *nodes,
1767 int __user *status, int flags)
1768{
a49bd4d7
MH
1769 int current_node = NUMA_NO_NODE;
1770 LIST_HEAD(pagelist);
1771 int start, i;
1772 int err = 0, err1;
35282a2d
BG
1773
1774 migrate_prep();
1775
a49bd4d7
MH
1776 for (i = start = 0; i < nr_pages; i++) {
1777 const void __user *p;
1778 unsigned long addr;
1779 int node;
3140a227 1780
a49bd4d7
MH
1781 err = -EFAULT;
1782 if (get_user(p, pages + i))
1783 goto out_flush;
1784 if (get_user(node, nodes + i))
1785 goto out_flush;
057d3389 1786 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1787
1788 err = -ENODEV;
1789 if (node < 0 || node >= MAX_NUMNODES)
1790 goto out_flush;
1791 if (!node_state(node, N_MEMORY))
1792 goto out_flush;
5e9a0f02 1793
a49bd4d7
MH
1794 err = -EACCES;
1795 if (!node_isset(node, task_nodes))
1796 goto out_flush;
1797
1798 if (current_node == NUMA_NO_NODE) {
1799 current_node = node;
1800 start = i;
1801 } else if (node != current_node) {
7ca8783a
WY
1802 err = move_pages_and_store_status(mm, current_node,
1803 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1804 if (err)
1805 goto out;
1806 start = i;
1807 current_node = node;
3140a227
BG
1808 }
1809
a49bd4d7
MH
1810 /*
1811 * Errors in the page lookup or isolation are not fatal and we simply
1812 * report them via status
1813 */
1814 err = add_page_for_migration(mm, addr, current_node,
1815 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1816
d08221a0 1817 if (err > 0) {
e0153fc2
YS
1818 /* The page is successfully queued for migration */
1819 continue;
1820 }
3140a227 1821
d08221a0
WY
1822 /*
1823 * If the page is already on the target node (!err), store the
1824 * node, otherwise, store the err.
1825 */
1826 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1827 if (err)
1828 goto out_flush;
5e9a0f02 1829
7ca8783a
WY
1830 err = move_pages_and_store_status(mm, current_node, &pagelist,
1831 status, start, i, nr_pages);
4afdacec
WY
1832 if (err)
1833 goto out;
a49bd4d7 1834 current_node = NUMA_NO_NODE;
3140a227 1835 }
a49bd4d7
MH
1836out_flush:
1837 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1838 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1839 status, start, i, nr_pages);
dfe9aa23 1840 if (err >= 0)
a49bd4d7 1841 err = err1;
5e9a0f02 1842out:
d479960e 1843 migrate_finish();
5e9a0f02
BG
1844 return err;
1845}
1846
742755a1 1847/*
2f007e74 1848 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1849 */
80bba129
BG
1850static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1851 const void __user **pages, int *status)
742755a1 1852{
2f007e74 1853 unsigned long i;
2f007e74 1854
d8ed45c5 1855 mmap_read_lock(mm);
742755a1 1856
2f007e74 1857 for (i = 0; i < nr_pages; i++) {
80bba129 1858 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1859 struct vm_area_struct *vma;
1860 struct page *page;
c095adbc 1861 int err = -EFAULT;
2f007e74
BG
1862
1863 vma = find_vma(mm, addr);
70384dc6 1864 if (!vma || addr < vma->vm_start)
742755a1
CL
1865 goto set_status;
1866
d899844e
KS
1867 /* FOLL_DUMP to ignore special (like zero) pages */
1868 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1869
1870 err = PTR_ERR(page);
1871 if (IS_ERR(page))
1872 goto set_status;
1873
d899844e 1874 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1875set_status:
80bba129
BG
1876 *status = err;
1877
1878 pages++;
1879 status++;
1880 }
1881
d8ed45c5 1882 mmap_read_unlock(mm);
80bba129
BG
1883}
1884
1885/*
1886 * Determine the nodes of a user array of pages and store it in
1887 * a user array of status.
1888 */
1889static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1890 const void __user * __user *pages,
1891 int __user *status)
1892{
1893#define DO_PAGES_STAT_CHUNK_NR 16
1894 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1895 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1896
87b8d1ad
PA
1897 while (nr_pages) {
1898 unsigned long chunk_nr;
80bba129 1899
87b8d1ad
PA
1900 chunk_nr = nr_pages;
1901 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1902 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1903
1904 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1905 break;
80bba129
BG
1906
1907 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1908
87b8d1ad
PA
1909 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1910 break;
742755a1 1911
87b8d1ad
PA
1912 pages += chunk_nr;
1913 status += chunk_nr;
1914 nr_pages -= chunk_nr;
1915 }
1916 return nr_pages ? -EFAULT : 0;
742755a1
CL
1917}
1918
4dc200ce 1919static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
742755a1 1920{
742755a1 1921 struct task_struct *task;
742755a1 1922 struct mm_struct *mm;
742755a1 1923
4dc200ce
ML
1924 /*
1925 * There is no need to check if current process has the right to modify
1926 * the specified process when they are same.
1927 */
1928 if (!pid) {
1929 mmget(current->mm);
1930 *mem_nodes = cpuset_mems_allowed(current);
1931 return current->mm;
1932 }
742755a1
CL
1933
1934 /* Find the mm_struct */
a879bf58 1935 rcu_read_lock();
4dc200ce 1936 task = find_task_by_vpid(pid);
742755a1 1937 if (!task) {
a879bf58 1938 rcu_read_unlock();
4dc200ce 1939 return ERR_PTR(-ESRCH);
742755a1 1940 }
3268c63e 1941 get_task_struct(task);
742755a1
CL
1942
1943 /*
1944 * Check if this process has the right to modify the specified
197e7e52 1945 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1946 */
197e7e52 1947 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1948 rcu_read_unlock();
4dc200ce 1949 mm = ERR_PTR(-EPERM);
5e9a0f02 1950 goto out;
742755a1 1951 }
c69e8d9c 1952 rcu_read_unlock();
742755a1 1953
4dc200ce
ML
1954 mm = ERR_PTR(security_task_movememory(task));
1955 if (IS_ERR(mm))
5e9a0f02 1956 goto out;
4dc200ce 1957 *mem_nodes = cpuset_mems_allowed(task);
3268c63e 1958 mm = get_task_mm(task);
4dc200ce 1959out:
3268c63e 1960 put_task_struct(task);
6e8b09ea 1961 if (!mm)
4dc200ce
ML
1962 mm = ERR_PTR(-EINVAL);
1963 return mm;
1964}
1965
1966/*
1967 * Move a list of pages in the address space of the currently executing
1968 * process.
1969 */
1970static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1971 const void __user * __user *pages,
1972 const int __user *nodes,
1973 int __user *status, int flags)
1974{
1975 struct mm_struct *mm;
1976 int err;
1977 nodemask_t task_nodes;
1978
1979 /* Check flags */
1980 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
6e8b09ea
SL
1981 return -EINVAL;
1982
4dc200ce
ML
1983 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1984 return -EPERM;
1985
1986 mm = find_mm_struct(pid, &task_nodes);
1987 if (IS_ERR(mm))
1988 return PTR_ERR(mm);
1989
6e8b09ea
SL
1990 if (nodes)
1991 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1992 nodes, status, flags);
1993 else
1994 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1995
742755a1
CL
1996 mmput(mm);
1997 return err;
1998}
742755a1 1999
7addf443
DB
2000SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2001 const void __user * __user *, pages,
2002 const int __user *, nodes,
2003 int __user *, status, int, flags)
2004{
2005 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2006}
2007
2008#ifdef CONFIG_COMPAT
2009COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2010 compat_uptr_t __user *, pages32,
2011 const int __user *, nodes,
2012 int __user *, status,
2013 int, flags)
2014{
2015 const void __user * __user *pages;
2016 int i;
2017
2018 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2019 for (i = 0; i < nr_pages; i++) {
2020 compat_uptr_t p;
2021
2022 if (get_user(p, pages32 + i) ||
2023 put_user(compat_ptr(p), pages + i))
2024 return -EFAULT;
2025 }
2026 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2027}
2028#endif /* CONFIG_COMPAT */
2029
7039e1db
PZ
2030#ifdef CONFIG_NUMA_BALANCING
2031/*
2032 * Returns true if this is a safe migration target node for misplaced NUMA
2033 * pages. Currently it only checks the watermarks which crude
2034 */
2035static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 2036 unsigned long nr_migrate_pages)
7039e1db
PZ
2037{
2038 int z;
599d0c95 2039
7039e1db
PZ
2040 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2041 struct zone *zone = pgdat->node_zones + z;
2042
2043 if (!populated_zone(zone))
2044 continue;
2045
7039e1db
PZ
2046 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2047 if (!zone_watermark_ok(zone, 0,
2048 high_wmark_pages(zone) +
2049 nr_migrate_pages,
bfe9d006 2050 ZONE_MOVABLE, 0))
7039e1db
PZ
2051 continue;
2052 return true;
2053 }
2054 return false;
2055}
2056
2057static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 2058 unsigned long data)
7039e1db
PZ
2059{
2060 int nid = (int) data;
2061 struct page *newpage;
2062
96db800f 2063 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
2064 (GFP_HIGHUSER_MOVABLE |
2065 __GFP_THISNODE | __GFP_NOMEMALLOC |
2066 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 2067 ~__GFP_RECLAIM, 0);
bac0382c 2068
7039e1db
PZ
2069 return newpage;
2070}
2071
1c30e017 2072static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 2073{
340ef390 2074 int page_lru;
a8f60772 2075
309381fe 2076 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 2077
7039e1db 2078 /* Avoid migrating to a node that is nearly full */
d8c6546b 2079 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 2080 return 0;
7039e1db 2081
340ef390
HD
2082 if (isolate_lru_page(page))
2083 return 0;
7039e1db 2084
340ef390
HD
2085 /*
2086 * migrate_misplaced_transhuge_page() skips page migration's usual
2087 * check on page_count(), so we must do it here, now that the page
2088 * has been isolated: a GUP pin, or any other pin, prevents migration.
2089 * The expected page count is 3: 1 for page's mapcount and 1 for the
2090 * caller's pin and 1 for the reference taken by isolate_lru_page().
2091 */
2092 if (PageTransHuge(page) && page_count(page) != 3) {
2093 putback_lru_page(page);
2094 return 0;
7039e1db
PZ
2095 }
2096
9de4f22a 2097 page_lru = page_is_file_lru(page);
599d0c95 2098 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
6c357848 2099 thp_nr_pages(page));
340ef390 2100
149c33e1 2101 /*
340ef390
HD
2102 * Isolating the page has taken another reference, so the
2103 * caller's reference can be safely dropped without the page
2104 * disappearing underneath us during migration.
149c33e1
MG
2105 */
2106 put_page(page);
340ef390 2107 return 1;
b32967ff
MG
2108}
2109
de466bd6
MG
2110bool pmd_trans_migrating(pmd_t pmd)
2111{
2112 struct page *page = pmd_page(pmd);
2113 return PageLocked(page);
2114}
2115
c77c5cba
YS
2116static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2117 struct page *page)
2118{
2119 if (page_mapcount(page) != 1 &&
2120 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2121 (vma->vm_flags & VM_EXEC))
2122 return true;
2123
2124 return false;
2125}
2126
b32967ff
MG
2127/*
2128 * Attempt to migrate a misplaced page to the specified destination
2129 * node. Caller is expected to have an elevated reference count on
2130 * the page that will be dropped by this function before returning.
2131 */
1bc115d8
MG
2132int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2133 int node)
b32967ff
MG
2134{
2135 pg_data_t *pgdat = NODE_DATA(node);
340ef390 2136 int isolated;
b32967ff
MG
2137 int nr_remaining;
2138 LIST_HEAD(migratepages);
2139
2140 /*
1bc115d8
MG
2141 * Don't migrate file pages that are mapped in multiple processes
2142 * with execute permissions as they are probably shared libraries.
b32967ff 2143 */
c77c5cba 2144 if (is_shared_exec_page(vma, page))
b32967ff 2145 goto out;
b32967ff 2146
09a913a7
MG
2147 /*
2148 * Also do not migrate dirty pages as not all filesystems can move
2149 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2150 */
9de4f22a 2151 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
2152 goto out;
2153
b32967ff
MG
2154 isolated = numamigrate_isolate_page(pgdat, page);
2155 if (!isolated)
2156 goto out;
2157
2158 list_add(&page->lru, &migratepages);
9c620e2b 2159 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
2160 NULL, node, MIGRATE_ASYNC,
2161 MR_NUMA_MISPLACED);
b32967ff 2162 if (nr_remaining) {
59c82b70
JK
2163 if (!list_empty(&migratepages)) {
2164 list_del(&page->lru);
599d0c95 2165 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2166 page_is_file_lru(page));
59c82b70
JK
2167 putback_lru_page(page);
2168 }
b32967ff
MG
2169 isolated = 0;
2170 } else
2171 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2172 BUG_ON(!list_empty(&migratepages));
7039e1db 2173 return isolated;
340ef390
HD
2174
2175out:
2176 put_page(page);
2177 return 0;
7039e1db 2178}
220018d3 2179#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2180
220018d3 2181#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2182/*
2183 * Migrates a THP to a given target node. page must be locked and is unlocked
2184 * before returning.
2185 */
b32967ff
MG
2186int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2187 struct vm_area_struct *vma,
2188 pmd_t *pmd, pmd_t entry,
2189 unsigned long address,
2190 struct page *page, int node)
2191{
c4088ebd 2192 spinlock_t *ptl;
b32967ff
MG
2193 pg_data_t *pgdat = NODE_DATA(node);
2194 int isolated = 0;
2195 struct page *new_page = NULL;
9de4f22a 2196 int page_lru = page_is_file_lru(page);
7066f0f9 2197 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2198
c77c5cba
YS
2199 if (is_shared_exec_page(vma, page))
2200 goto out;
2201
b32967ff 2202 new_page = alloc_pages_node(node,
25160354 2203 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2204 HPAGE_PMD_ORDER);
340ef390
HD
2205 if (!new_page)
2206 goto out_fail;
9a982250 2207 prep_transhuge_page(new_page);
340ef390 2208
b32967ff 2209 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2210 if (!isolated) {
b32967ff 2211 put_page(new_page);
340ef390 2212 goto out_fail;
b32967ff 2213 }
b0943d61 2214
b32967ff 2215 /* Prepare a page as a migration target */
48c935ad 2216 __SetPageLocked(new_page);
d44d363f
SL
2217 if (PageSwapBacked(page))
2218 __SetPageSwapBacked(new_page);
b32967ff
MG
2219
2220 /* anon mapping, we can simply copy page->mapping to the new page: */
2221 new_page->mapping = page->mapping;
2222 new_page->index = page->index;
7eef5f97
AA
2223 /* flush the cache before copying using the kernel virtual address */
2224 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2225 migrate_page_copy(new_page, page);
2226 WARN_ON(PageLRU(new_page));
2227
2228 /* Recheck the target PMD */
c4088ebd 2229 ptl = pmd_lock(mm, pmd);
f4e177d1 2230 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2231 spin_unlock(ptl);
b32967ff
MG
2232
2233 /* Reverse changes made by migrate_page_copy() */
2234 if (TestClearPageActive(new_page))
2235 SetPageActive(page);
2236 if (TestClearPageUnevictable(new_page))
2237 SetPageUnevictable(page);
b32967ff
MG
2238
2239 unlock_page(new_page);
2240 put_page(new_page); /* Free it */
2241
a54a407f
MG
2242 /* Retake the callers reference and putback on LRU */
2243 get_page(page);
b32967ff 2244 putback_lru_page(page);
599d0c95 2245 mod_node_page_state(page_pgdat(page),
a54a407f 2246 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2247
2248 goto out_unlock;
b32967ff
MG
2249 }
2250
10102459 2251 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2252 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2253
2b4847e7 2254 /*
d7c33934
AA
2255 * Overwrite the old entry under pagetable lock and establish
2256 * the new PTE. Any parallel GUP will either observe the old
2257 * page blocking on the page lock, block on the page table
2258 * lock or observe the new page. The SetPageUptodate on the
2259 * new page and page_add_new_anon_rmap guarantee the copy is
2260 * visible before the pagetable update.
2b4847e7 2261 */
7066f0f9 2262 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2263 /*
2264 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2265 * has already been flushed globally. So no TLB can be currently
2266 * caching this non present pmd mapping. There's no need to clear the
2267 * pmd before doing set_pmd_at(), nor to flush the TLB after
2268 * set_pmd_at(). Clearing the pmd here would introduce a race
2269 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
c1e8d7c6 2270 * mmap_lock for reading. If the pmd is set to NULL at any given time,
d7c33934
AA
2271 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2272 * pmd.
2273 */
7066f0f9 2274 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2275 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2276
f4e177d1 2277 page_ref_unfreeze(page, 2);
51afb12b 2278 mlock_migrate_page(new_page, page);
d281ee61 2279 page_remove_rmap(page, true);
7cd12b4a 2280 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2281
c4088ebd 2282 spin_unlock(ptl);
b32967ff 2283
11de9927
MG
2284 /* Take an "isolate" reference and put new page on the LRU. */
2285 get_page(new_page);
2286 putback_lru_page(new_page);
2287
b32967ff
MG
2288 unlock_page(new_page);
2289 unlock_page(page);
2290 put_page(page); /* Drop the rmap reference */
2291 put_page(page); /* Drop the LRU isolation reference */
2292
2293 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2294 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2295
599d0c95 2296 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2297 NR_ISOLATED_ANON + page_lru,
2298 -HPAGE_PMD_NR);
2299 return isolated;
2300
340ef390
HD
2301out_fail:
2302 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2303 ptl = pmd_lock(mm, pmd);
2304 if (pmd_same(*pmd, entry)) {
4d942466 2305 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2306 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2307 update_mmu_cache_pmd(vma, address, &entry);
2308 }
2309 spin_unlock(ptl);
a54a407f 2310
eb4489f6 2311out_unlock:
340ef390 2312 unlock_page(page);
c77c5cba 2313out:
b32967ff 2314 put_page(page);
b32967ff
MG
2315 return 0;
2316}
7039e1db
PZ
2317#endif /* CONFIG_NUMA_BALANCING */
2318
2319#endif /* CONFIG_NUMA */
8763cb45 2320
9b2ed9cb 2321#ifdef CONFIG_DEVICE_PRIVATE
8763cb45
JG
2322static int migrate_vma_collect_hole(unsigned long start,
2323 unsigned long end,
b7a16c7a 2324 __always_unused int depth,
8763cb45
JG
2325 struct mm_walk *walk)
2326{
2327 struct migrate_vma *migrate = walk->private;
2328 unsigned long addr;
2329
0744f280
RC
2330 /* Only allow populating anonymous memory. */
2331 if (!vma_is_anonymous(walk->vma)) {
2332 for (addr = start; addr < end; addr += PAGE_SIZE) {
2333 migrate->src[migrate->npages] = 0;
2334 migrate->dst[migrate->npages] = 0;
2335 migrate->npages++;
2336 }
2337 return 0;
2338 }
2339
872ea707 2340 for (addr = start; addr < end; addr += PAGE_SIZE) {
e20d103b 2341 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2342 migrate->dst[migrate->npages] = 0;
e20d103b 2343 migrate->npages++;
8315ada7
JG
2344 migrate->cpages++;
2345 }
2346
2347 return 0;
2348}
2349
2350static int migrate_vma_collect_skip(unsigned long start,
2351 unsigned long end,
2352 struct mm_walk *walk)
2353{
2354 struct migrate_vma *migrate = walk->private;
2355 unsigned long addr;
2356
872ea707 2357 for (addr = start; addr < end; addr += PAGE_SIZE) {
8763cb45
JG
2358 migrate->dst[migrate->npages] = 0;
2359 migrate->src[migrate->npages++] = 0;
2360 }
2361
2362 return 0;
2363}
2364
2365static int migrate_vma_collect_pmd(pmd_t *pmdp,
2366 unsigned long start,
2367 unsigned long end,
2368 struct mm_walk *walk)
2369{
2370 struct migrate_vma *migrate = walk->private;
2371 struct vm_area_struct *vma = walk->vma;
2372 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2373 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2374 spinlock_t *ptl;
2375 pte_t *ptep;
2376
2377again:
2378 if (pmd_none(*pmdp))
b7a16c7a 2379 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2380
2381 if (pmd_trans_huge(*pmdp)) {
2382 struct page *page;
2383
2384 ptl = pmd_lock(mm, pmdp);
2385 if (unlikely(!pmd_trans_huge(*pmdp))) {
2386 spin_unlock(ptl);
2387 goto again;
2388 }
2389
2390 page = pmd_page(*pmdp);
2391 if (is_huge_zero_page(page)) {
2392 spin_unlock(ptl);
2393 split_huge_pmd(vma, pmdp, addr);
2394 if (pmd_trans_unstable(pmdp))
8315ada7 2395 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2396 walk);
2397 } else {
2398 int ret;
2399
2400 get_page(page);
2401 spin_unlock(ptl);
2402 if (unlikely(!trylock_page(page)))
8315ada7 2403 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2404 walk);
2405 ret = split_huge_page(page);
2406 unlock_page(page);
2407 put_page(page);
8315ada7
JG
2408 if (ret)
2409 return migrate_vma_collect_skip(start, end,
2410 walk);
2411 if (pmd_none(*pmdp))
b7a16c7a 2412 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2413 walk);
2414 }
2415 }
2416
2417 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2418 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2419
2420 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2421 arch_enter_lazy_mmu_mode();
2422
8763cb45 2423 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2424 unsigned long mpfn = 0, pfn;
8763cb45 2425 struct page *page;
8c3328f1 2426 swp_entry_t entry;
8763cb45
JG
2427 pte_t pte;
2428
2429 pte = *ptep;
8763cb45 2430
a5430dda 2431 if (pte_none(pte)) {
0744f280
RC
2432 if (vma_is_anonymous(vma)) {
2433 mpfn = MIGRATE_PFN_MIGRATE;
2434 migrate->cpages++;
2435 }
8763cb45
JG
2436 goto next;
2437 }
2438
a5430dda 2439 if (!pte_present(pte)) {
a5430dda
JG
2440 /*
2441 * Only care about unaddressable device page special
2442 * page table entry. Other special swap entries are not
2443 * migratable, and we ignore regular swapped page.
2444 */
2445 entry = pte_to_swp_entry(pte);
2446 if (!is_device_private_entry(entry))
2447 goto next;
2448
2449 page = device_private_entry_to_page(entry);
5143192c
RC
2450 if (!(migrate->flags &
2451 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2452 page->pgmap->owner != migrate->pgmap_owner)
800bb1c8
CH
2453 goto next;
2454
06d462be
CH
2455 mpfn = migrate_pfn(page_to_pfn(page)) |
2456 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2457 if (is_write_device_private_entry(entry))
2458 mpfn |= MIGRATE_PFN_WRITE;
2459 } else {
5143192c 2460 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
800bb1c8 2461 goto next;
276f756d 2462 pfn = pte_pfn(pte);
8315ada7
JG
2463 if (is_zero_pfn(pfn)) {
2464 mpfn = MIGRATE_PFN_MIGRATE;
2465 migrate->cpages++;
8315ada7
JG
2466 goto next;
2467 }
25b2995a 2468 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2469 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2470 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2471 }
2472
8763cb45 2473 /* FIXME support THP */
8763cb45 2474 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2475 mpfn = 0;
8763cb45
JG
2476 goto next;
2477 }
2478
2479 /*
2480 * By getting a reference on the page we pin it and that blocks
2481 * any kind of migration. Side effect is that it "freezes" the
2482 * pte.
2483 *
2484 * We drop this reference after isolating the page from the lru
2485 * for non device page (device page are not on the lru and thus
2486 * can't be dropped from it).
2487 */
2488 get_page(page);
2489 migrate->cpages++;
8763cb45 2490
8c3328f1
JG
2491 /*
2492 * Optimize for the common case where page is only mapped once
2493 * in one process. If we can lock the page, then we can safely
2494 * set up a special migration page table entry now.
2495 */
2496 if (trylock_page(page)) {
2497 pte_t swp_pte;
2498
2499 mpfn |= MIGRATE_PFN_LOCKED;
2500 ptep_get_and_clear(mm, addr, ptep);
2501
2502 /* Setup special migration page table entry */
07707125
RC
2503 entry = make_migration_entry(page, mpfn &
2504 MIGRATE_PFN_WRITE);
8c3328f1 2505 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
2506 if (pte_present(pte)) {
2507 if (pte_soft_dirty(pte))
2508 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2509 if (pte_uffd_wp(pte))
2510 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2511 } else {
2512 if (pte_swp_soft_dirty(pte))
2513 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2514 if (pte_swp_uffd_wp(pte))
2515 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2516 }
8c3328f1
JG
2517 set_pte_at(mm, addr, ptep, swp_pte);
2518
2519 /*
2520 * This is like regular unmap: we remove the rmap and
2521 * drop page refcount. Page won't be freed, as we took
2522 * a reference just above.
2523 */
2524 page_remove_rmap(page, false);
2525 put_page(page);
a5430dda
JG
2526
2527 if (pte_present(pte))
2528 unmapped++;
8c3328f1
JG
2529 }
2530
8763cb45 2531next:
a5430dda 2532 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2533 migrate->src[migrate->npages++] = mpfn;
2534 }
8c3328f1 2535 arch_leave_lazy_mmu_mode();
8763cb45
JG
2536 pte_unmap_unlock(ptep - 1, ptl);
2537
8c3328f1
JG
2538 /* Only flush the TLB if we actually modified any entries */
2539 if (unmapped)
2540 flush_tlb_range(walk->vma, start, end);
2541
8763cb45
JG
2542 return 0;
2543}
2544
7b86ac33
CH
2545static const struct mm_walk_ops migrate_vma_walk_ops = {
2546 .pmd_entry = migrate_vma_collect_pmd,
2547 .pte_hole = migrate_vma_collect_hole,
2548};
2549
8763cb45
JG
2550/*
2551 * migrate_vma_collect() - collect pages over a range of virtual addresses
2552 * @migrate: migrate struct containing all migration information
2553 *
2554 * This will walk the CPU page table. For each virtual address backed by a
2555 * valid page, it updates the src array and takes a reference on the page, in
2556 * order to pin the page until we lock it and unmap it.
2557 */
2558static void migrate_vma_collect(struct migrate_vma *migrate)
2559{
ac46d4f3 2560 struct mmu_notifier_range range;
8763cb45 2561
998427b3
RC
2562 /*
2563 * Note that the pgmap_owner is passed to the mmu notifier callback so
2564 * that the registered device driver can skip invalidating device
2565 * private page mappings that won't be migrated.
2566 */
c1a06df6
RC
2567 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2568 migrate->vma->vm_mm, migrate->start, migrate->end,
2569 migrate->pgmap_owner);
ac46d4f3 2570 mmu_notifier_invalidate_range_start(&range);
8763cb45 2571
7b86ac33
CH
2572 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2573 &migrate_vma_walk_ops, migrate);
2574
2575 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2576 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2577}
2578
2579/*
2580 * migrate_vma_check_page() - check if page is pinned or not
2581 * @page: struct page to check
2582 *
2583 * Pinned pages cannot be migrated. This is the same test as in
2584 * migrate_page_move_mapping(), except that here we allow migration of a
2585 * ZONE_DEVICE page.
2586 */
2587static bool migrate_vma_check_page(struct page *page)
2588{
2589 /*
2590 * One extra ref because caller holds an extra reference, either from
2591 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2592 * a device page.
2593 */
2594 int extra = 1;
2595
2596 /*
2597 * FIXME support THP (transparent huge page), it is bit more complex to
2598 * check them than regular pages, because they can be mapped with a pmd
2599 * or with a pte (split pte mapping).
2600 */
2601 if (PageCompound(page))
2602 return false;
2603
a5430dda
JG
2604 /* Page from ZONE_DEVICE have one extra reference */
2605 if (is_zone_device_page(page)) {
2606 /*
2607 * Private page can never be pin as they have no valid pte and
2608 * GUP will fail for those. Yet if there is a pending migration
2609 * a thread might try to wait on the pte migration entry and
2610 * will bump the page reference count. Sadly there is no way to
2611 * differentiate a regular pin from migration wait. Hence to
2612 * avoid 2 racing thread trying to migrate back to CPU to enter
8958b249 2613 * infinite loop (one stopping migration because the other is
a5430dda
JG
2614 * waiting on pte migration entry). We always return true here.
2615 *
2616 * FIXME proper solution is to rework migration_entry_wait() so
2617 * it does not need to take a reference on page.
2618 */
25b2995a 2619 return is_device_private_page(page);
a5430dda
JG
2620 }
2621
df6ad698
JG
2622 /* For file back page */
2623 if (page_mapping(page))
2624 extra += 1 + page_has_private(page);
2625
8763cb45
JG
2626 if ((page_count(page) - extra) > page_mapcount(page))
2627 return false;
2628
2629 return true;
2630}
2631
2632/*
2633 * migrate_vma_prepare() - lock pages and isolate them from the lru
2634 * @migrate: migrate struct containing all migration information
2635 *
2636 * This locks pages that have been collected by migrate_vma_collect(). Once each
2637 * page is locked it is isolated from the lru (for non-device pages). Finally,
2638 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2639 * migrated by concurrent kernel threads.
2640 */
2641static void migrate_vma_prepare(struct migrate_vma *migrate)
2642{
2643 const unsigned long npages = migrate->npages;
8c3328f1
JG
2644 const unsigned long start = migrate->start;
2645 unsigned long addr, i, restore = 0;
8763cb45 2646 bool allow_drain = true;
8763cb45
JG
2647
2648 lru_add_drain();
2649
2650 for (i = 0; (i < npages) && migrate->cpages; i++) {
2651 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2652 bool remap = true;
8763cb45
JG
2653
2654 if (!page)
2655 continue;
2656
8c3328f1
JG
2657 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2658 /*
2659 * Because we are migrating several pages there can be
2660 * a deadlock between 2 concurrent migration where each
2661 * are waiting on each other page lock.
2662 *
2663 * Make migrate_vma() a best effort thing and backoff
2664 * for any page we can not lock right away.
2665 */
2666 if (!trylock_page(page)) {
2667 migrate->src[i] = 0;
2668 migrate->cpages--;
2669 put_page(page);
2670 continue;
2671 }
2672 remap = false;
2673 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2674 }
8763cb45 2675
a5430dda
JG
2676 /* ZONE_DEVICE pages are not on LRU */
2677 if (!is_zone_device_page(page)) {
2678 if (!PageLRU(page) && allow_drain) {
2679 /* Drain CPU's pagevec */
2680 lru_add_drain_all();
2681 allow_drain = false;
2682 }
8763cb45 2683
a5430dda
JG
2684 if (isolate_lru_page(page)) {
2685 if (remap) {
2686 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2687 migrate->cpages--;
2688 restore++;
2689 } else {
2690 migrate->src[i] = 0;
2691 unlock_page(page);
2692 migrate->cpages--;
2693 put_page(page);
2694 }
2695 continue;
8c3328f1 2696 }
a5430dda
JG
2697
2698 /* Drop the reference we took in collect */
2699 put_page(page);
8763cb45
JG
2700 }
2701
2702 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2703 if (remap) {
2704 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2705 migrate->cpages--;
2706 restore++;
8763cb45 2707
a5430dda
JG
2708 if (!is_zone_device_page(page)) {
2709 get_page(page);
2710 putback_lru_page(page);
2711 }
8c3328f1
JG
2712 } else {
2713 migrate->src[i] = 0;
2714 unlock_page(page);
2715 migrate->cpages--;
2716
a5430dda
JG
2717 if (!is_zone_device_page(page))
2718 putback_lru_page(page);
2719 else
2720 put_page(page);
8c3328f1 2721 }
8763cb45
JG
2722 }
2723 }
8c3328f1
JG
2724
2725 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2726 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2727
2728 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2729 continue;
2730
2731 remove_migration_pte(page, migrate->vma, addr, page);
2732
2733 migrate->src[i] = 0;
2734 unlock_page(page);
2735 put_page(page);
2736 restore--;
2737 }
8763cb45
JG
2738}
2739
2740/*
2741 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2742 * @migrate: migrate struct containing all migration information
2743 *
2744 * Replace page mapping (CPU page table pte) with a special migration pte entry
2745 * and check again if it has been pinned. Pinned pages are restored because we
2746 * cannot migrate them.
2747 *
2748 * This is the last step before we call the device driver callback to allocate
2749 * destination memory and copy contents of original page over to new page.
2750 */
2751static void migrate_vma_unmap(struct migrate_vma *migrate)
2752{
013339df 2753 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
8763cb45
JG
2754 const unsigned long npages = migrate->npages;
2755 const unsigned long start = migrate->start;
2756 unsigned long addr, i, restore = 0;
2757
2758 for (i = 0; i < npages; i++) {
2759 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2760
2761 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2762 continue;
2763
8c3328f1
JG
2764 if (page_mapped(page)) {
2765 try_to_unmap(page, flags);
2766 if (page_mapped(page))
2767 goto restore;
8763cb45 2768 }
8c3328f1
JG
2769
2770 if (migrate_vma_check_page(page))
2771 continue;
2772
2773restore:
2774 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2775 migrate->cpages--;
2776 restore++;
8763cb45
JG
2777 }
2778
2779 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2780 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2781
2782 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2783 continue;
2784
2785 remove_migration_ptes(page, page, false);
2786
2787 migrate->src[i] = 0;
2788 unlock_page(page);
2789 restore--;
2790
a5430dda
JG
2791 if (is_zone_device_page(page))
2792 put_page(page);
2793 else
2794 putback_lru_page(page);
8763cb45
JG
2795 }
2796}
2797
a7d1f22b
CH
2798/**
2799 * migrate_vma_setup() - prepare to migrate a range of memory
eaf444de 2800 * @args: contains the vma, start, and pfns arrays for the migration
a7d1f22b
CH
2801 *
2802 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2803 * without an error.
2804 *
2805 * Prepare to migrate a range of memory virtual address range by collecting all
2806 * the pages backing each virtual address in the range, saving them inside the
2807 * src array. Then lock those pages and unmap them. Once the pages are locked
2808 * and unmapped, check whether each page is pinned or not. Pages that aren't
2809 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2810 * corresponding src array entry. Then restores any pages that are pinned, by
2811 * remapping and unlocking those pages.
2812 *
2813 * The caller should then allocate destination memory and copy source memory to
2814 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2815 * flag set). Once these are allocated and copied, the caller must update each
2816 * corresponding entry in the dst array with the pfn value of the destination
2817 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2818 * (destination pages must have their struct pages locked, via lock_page()).
2819 *
2820 * Note that the caller does not have to migrate all the pages that are marked
2821 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2822 * device memory to system memory. If the caller cannot migrate a device page
2823 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2824 * consequences for the userspace process, so it must be avoided if at all
2825 * possible.
2826 *
2827 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2828 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2829 * allowing the caller to allocate device memory for those unback virtual
2830 * address. For this the caller simply has to allocate device memory and
2831 * properly set the destination entry like for regular migration. Note that
2832 * this can still fails and thus inside the device driver must check if the
2833 * migration was successful for those entries after calling migrate_vma_pages()
2834 * just like for regular migration.
2835 *
2836 * After that, the callers must call migrate_vma_pages() to go over each entry
2837 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2838 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2839 * then migrate_vma_pages() to migrate struct page information from the source
2840 * struct page to the destination struct page. If it fails to migrate the
2841 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2842 * src array.
2843 *
2844 * At this point all successfully migrated pages have an entry in the src
2845 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2846 * array entry with MIGRATE_PFN_VALID flag set.
2847 *
2848 * Once migrate_vma_pages() returns the caller may inspect which pages were
2849 * successfully migrated, and which were not. Successfully migrated pages will
2850 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2851 *
2852 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2853 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2854 * in read mode (hence no one can unmap the range being migrated).
2855 *
2856 * Once the caller is done cleaning up things and updating its page table (if it
2857 * chose to do so, this is not an obligation) it finally calls
2858 * migrate_vma_finalize() to update the CPU page table to point to new pages
2859 * for successfully migrated pages or otherwise restore the CPU page table to
2860 * point to the original source pages.
2861 */
2862int migrate_vma_setup(struct migrate_vma *args)
2863{
2864 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2865
2866 args->start &= PAGE_MASK;
2867 args->end &= PAGE_MASK;
2868 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2869 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2870 return -EINVAL;
2871 if (nr_pages <= 0)
2872 return -EINVAL;
2873 if (args->start < args->vma->vm_start ||
2874 args->start >= args->vma->vm_end)
2875 return -EINVAL;
2876 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2877 return -EINVAL;
2878 if (!args->src || !args->dst)
2879 return -EINVAL;
2880
2881 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2882 args->cpages = 0;
2883 args->npages = 0;
2884
2885 migrate_vma_collect(args);
2886
2887 if (args->cpages)
2888 migrate_vma_prepare(args);
2889 if (args->cpages)
2890 migrate_vma_unmap(args);
2891
2892 /*
2893 * At this point pages are locked and unmapped, and thus they have
2894 * stable content and can safely be copied to destination memory that
2895 * is allocated by the drivers.
2896 */
2897 return 0;
2898
2899}
2900EXPORT_SYMBOL(migrate_vma_setup);
2901
34290e2c
RC
2902/*
2903 * This code closely matches the code in:
2904 * __handle_mm_fault()
2905 * handle_pte_fault()
2906 * do_anonymous_page()
2907 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2908 * private page.
2909 */
8315ada7
JG
2910static void migrate_vma_insert_page(struct migrate_vma *migrate,
2911 unsigned long addr,
2912 struct page *page,
d85c6db4 2913 unsigned long *src)
8315ada7
JG
2914{
2915 struct vm_area_struct *vma = migrate->vma;
2916 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2917 bool flush = false;
2918 spinlock_t *ptl;
2919 pte_t entry;
2920 pgd_t *pgdp;
2921 p4d_t *p4dp;
2922 pud_t *pudp;
2923 pmd_t *pmdp;
2924 pte_t *ptep;
2925
2926 /* Only allow populating anonymous memory */
2927 if (!vma_is_anonymous(vma))
2928 goto abort;
2929
2930 pgdp = pgd_offset(mm, addr);
2931 p4dp = p4d_alloc(mm, pgdp, addr);
2932 if (!p4dp)
2933 goto abort;
2934 pudp = pud_alloc(mm, p4dp, addr);
2935 if (!pudp)
2936 goto abort;
2937 pmdp = pmd_alloc(mm, pudp, addr);
2938 if (!pmdp)
2939 goto abort;
2940
2941 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2942 goto abort;
2943
2944 /*
2945 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2946 * pte_offset_map() on pmds where a huge pmd might be created
2947 * from a different thread.
2948 *
3e4e28c5 2949 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2950 * parallel threads are excluded by other means.
2951 *
3e4e28c5 2952 * Here we only have mmap_read_lock(mm).
8315ada7 2953 */
4cf58924 2954 if (pte_alloc(mm, pmdp))
8315ada7
JG
2955 goto abort;
2956
2957 /* See the comment in pte_alloc_one_map() */
2958 if (unlikely(pmd_trans_unstable(pmdp)))
2959 goto abort;
2960
2961 if (unlikely(anon_vma_prepare(vma)))
2962 goto abort;
d9eb1ea2 2963 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2964 goto abort;
2965
2966 /*
2967 * The memory barrier inside __SetPageUptodate makes sure that
2968 * preceding stores to the page contents become visible before
2969 * the set_pte_at() write.
2970 */
2971 __SetPageUptodate(page);
2972
df6ad698
JG
2973 if (is_zone_device_page(page)) {
2974 if (is_device_private_page(page)) {
2975 swp_entry_t swp_entry;
2976
2977 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2978 entry = swp_entry_to_pte(swp_entry);
df6ad698 2979 }
8315ada7
JG
2980 } else {
2981 entry = mk_pte(page, vma->vm_page_prot);
2982 if (vma->vm_flags & VM_WRITE)
2983 entry = pte_mkwrite(pte_mkdirty(entry));
2984 }
2985
2986 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2987
34290e2c
RC
2988 if (check_stable_address_space(mm))
2989 goto unlock_abort;
2990
8315ada7
JG
2991 if (pte_present(*ptep)) {
2992 unsigned long pfn = pte_pfn(*ptep);
2993
c23a0c99
RC
2994 if (!is_zero_pfn(pfn))
2995 goto unlock_abort;
8315ada7 2996 flush = true;
c23a0c99
RC
2997 } else if (!pte_none(*ptep))
2998 goto unlock_abort;
8315ada7
JG
2999
3000 /*
c23a0c99 3001 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
3002 * just back off.
3003 */
c23a0c99
RC
3004 if (userfaultfd_missing(vma))
3005 goto unlock_abort;
8315ada7
JG
3006
3007 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 3008 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7 3009 if (!is_zone_device_page(page))
b518154e 3010 lru_cache_add_inactive_or_unevictable(page, vma);
8315ada7
JG
3011 get_page(page);
3012
3013 if (flush) {
3014 flush_cache_page(vma, addr, pte_pfn(*ptep));
3015 ptep_clear_flush_notify(vma, addr, ptep);
3016 set_pte_at_notify(mm, addr, ptep, entry);
3017 update_mmu_cache(vma, addr, ptep);
3018 } else {
3019 /* No need to invalidate - it was non-present before */
3020 set_pte_at(mm, addr, ptep, entry);
3021 update_mmu_cache(vma, addr, ptep);
3022 }
3023
3024 pte_unmap_unlock(ptep, ptl);
3025 *src = MIGRATE_PFN_MIGRATE;
3026 return;
3027
c23a0c99
RC
3028unlock_abort:
3029 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
3030abort:
3031 *src &= ~MIGRATE_PFN_MIGRATE;
3032}
3033
a7d1f22b 3034/**
8763cb45
JG
3035 * migrate_vma_pages() - migrate meta-data from src page to dst page
3036 * @migrate: migrate struct containing all migration information
3037 *
3038 * This migrates struct page meta-data from source struct page to destination
3039 * struct page. This effectively finishes the migration from source page to the
3040 * destination page.
3041 */
a7d1f22b 3042void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
3043{
3044 const unsigned long npages = migrate->npages;
3045 const unsigned long start = migrate->start;
ac46d4f3
JG
3046 struct mmu_notifier_range range;
3047 unsigned long addr, i;
8315ada7 3048 bool notified = false;
8763cb45
JG
3049
3050 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3051 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3052 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3053 struct address_space *mapping;
3054 int r;
3055
8315ada7
JG
3056 if (!newpage) {
3057 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 3058 continue;
8315ada7
JG
3059 }
3060
3061 if (!page) {
c23a0c99 3062 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 3063 continue;
8315ada7 3064 if (!notified) {
8315ada7 3065 notified = true;
ac46d4f3 3066
5e5dda81
RC
3067 mmu_notifier_range_init_migrate(&range, 0,
3068 migrate->vma, migrate->vma->vm_mm,
3069 addr, migrate->end,
3070 migrate->pgmap_owner);
ac46d4f3 3071 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
3072 }
3073 migrate_vma_insert_page(migrate, addr, newpage,
d85c6db4 3074 &migrate->src[i]);
8763cb45 3075 continue;
8315ada7 3076 }
8763cb45
JG
3077
3078 mapping = page_mapping(page);
3079
a5430dda
JG
3080 if (is_zone_device_page(newpage)) {
3081 if (is_device_private_page(newpage)) {
3082 /*
3083 * For now only support private anonymous when
3084 * migrating to un-addressable device memory.
3085 */
3086 if (mapping) {
3087 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3088 continue;
3089 }
25b2995a 3090 } else {
a5430dda
JG
3091 /*
3092 * Other types of ZONE_DEVICE page are not
3093 * supported.
3094 */
3095 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3096 continue;
3097 }
3098 }
3099
8763cb45
JG
3100 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3101 if (r != MIGRATEPAGE_SUCCESS)
3102 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3103 }
8315ada7 3104
4645b9fe
JG
3105 /*
3106 * No need to double call mmu_notifier->invalidate_range() callback as
3107 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3108 * did already call it.
3109 */
8315ada7 3110 if (notified)
ac46d4f3 3111 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 3112}
a7d1f22b 3113EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 3114
a7d1f22b 3115/**
8763cb45
JG
3116 * migrate_vma_finalize() - restore CPU page table entry
3117 * @migrate: migrate struct containing all migration information
3118 *
3119 * This replaces the special migration pte entry with either a mapping to the
3120 * new page if migration was successful for that page, or to the original page
3121 * otherwise.
3122 *
3123 * This also unlocks the pages and puts them back on the lru, or drops the extra
3124 * refcount, for device pages.
3125 */
a7d1f22b 3126void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
3127{
3128 const unsigned long npages = migrate->npages;
3129 unsigned long i;
3130
3131 for (i = 0; i < npages; i++) {
3132 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3133 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3134
8315ada7
JG
3135 if (!page) {
3136 if (newpage) {
3137 unlock_page(newpage);
3138 put_page(newpage);
3139 }
8763cb45 3140 continue;
8315ada7
JG
3141 }
3142
8763cb45
JG
3143 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3144 if (newpage) {
3145 unlock_page(newpage);
3146 put_page(newpage);
3147 }
3148 newpage = page;
3149 }
3150
3151 remove_migration_ptes(page, newpage, false);
3152 unlock_page(page);
8763cb45 3153
a5430dda
JG
3154 if (is_zone_device_page(page))
3155 put_page(page);
3156 else
3157 putback_lru_page(page);
8763cb45
JG
3158
3159 if (newpage != page) {
3160 unlock_page(newpage);
a5430dda
JG
3161 if (is_zone_device_page(newpage))
3162 put_page(newpage);
3163 else
3164 putback_lru_page(newpage);
8763cb45
JG
3165 }
3166 }
3167}
a7d1f22b 3168EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 3169#endif /* CONFIG_DEVICE_PRIVATE */