]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/migrate.c
fs/proc/page.c: add PageAnon check to surely detect thp
[mirror_ubuntu-artful-kernel.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
bf6bddf1 38#include <linux/balloon_compaction.h>
f714f4f2 39#include <linux/mmu_notifier.h>
b20a3503 40
0d1836c3
MN
41#include <asm/tlbflush.h>
42
7b2a2d4a
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/migrate.h>
45
b20a3503
CL
46#include "internal.h"
47
b20a3503 48/*
742755a1 49 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
b20a3503
CL
52 */
53int migrate_prep(void)
54{
b20a3503
CL
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64}
65
748446bb
MG
66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
67int migrate_prep_local(void)
68{
69 lru_add_drain();
70
71 return 0;
72}
73
5733c7d1
RA
74/*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
59c82b70
JK
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
5733c7d1
RA
81 */
82void putback_movable_pages(struct list_head *l)
83{
84 struct page *page;
85 struct page *page2;
86
b20a3503 87 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
e24f0b8f 92 list_del(&page->lru);
a731286d 93 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 94 page_is_file_cache(page));
117aad1e 95 if (unlikely(isolated_balloon_page(page)))
bf6bddf1
RA
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
b20a3503 99 }
b20a3503
CL
100}
101
0697212a
CL
102/*
103 * Restore a potential migration pte to a working pte entry
104 */
e9995ef9
HD
105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
0697212a
CL
107{
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
0697212a
CL
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
290408d4
NH
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
cb900f41 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
290408d4 119 } else {
6219049a
BL
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
290408d4 122 goto out;
500d65d4
AA
123 if (pmd_trans_huge(*pmd))
124 goto out;
0697212a 125
290408d4 126 ptep = pte_offset_map(pmd, addr);
0697212a 127
486cf46f
HD
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
290408d4
NH
132
133 ptl = pte_lockptr(mm, pmd);
134 }
0697212a 135
0697212a
CL
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
e9995ef9 139 goto unlock;
0697212a
CL
140
141 entry = pte_to_swp_entry(pte);
142
e9995ef9
HD
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
0697212a 146
0697212a
CL
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
c3d16e16
CG
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
0697212a
CL
151 if (is_write_migration_entry(entry))
152 pte = pte_mkwrite(pte);
3ef8fd7f 153#ifdef CONFIG_HUGETLB_PAGE
be7517d6 154 if (PageHuge(new)) {
290408d4 155 pte = pte_mkhuge(pte);
be7517d6
TL
156 pte = arch_make_huge_pte(pte, vma, new, 0);
157 }
3ef8fd7f 158#endif
c2cc499c 159 flush_dcache_page(new);
0697212a 160 set_pte_at(mm, addr, ptep, pte);
04e62a29 161
290408d4
NH
162 if (PageHuge(new)) {
163 if (PageAnon(new))
164 hugepage_add_anon_rmap(new, vma, addr);
165 else
166 page_dup_rmap(new);
167 } else if (PageAnon(new))
04e62a29
CL
168 page_add_anon_rmap(new, vma, addr);
169 else
170 page_add_file_rmap(new);
171
172 /* No need to invalidate - it was non-present before */
4b3073e1 173 update_mmu_cache(vma, addr, ptep);
e9995ef9 174unlock:
0697212a 175 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
176out:
177 return SWAP_AGAIN;
0697212a
CL
178}
179
04e62a29
CL
180/*
181 * Get rid of all migration entries and replace them by
182 * references to the indicated page.
183 */
184static void remove_migration_ptes(struct page *old, struct page *new)
185{
051ac83a
JK
186 struct rmap_walk_control rwc = {
187 .rmap_one = remove_migration_pte,
188 .arg = old,
189 };
190
191 rmap_walk(new, &rwc);
04e62a29
CL
192}
193
0697212a
CL
194/*
195 * Something used the pte of a page under migration. We need to
196 * get to the page and wait until migration is finished.
197 * When we return from this function the fault will be retried.
0697212a 198 */
30dad309
NH
199static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
200 spinlock_t *ptl)
0697212a 201{
30dad309 202 pte_t pte;
0697212a
CL
203 swp_entry_t entry;
204 struct page *page;
205
30dad309 206 spin_lock(ptl);
0697212a
CL
207 pte = *ptep;
208 if (!is_swap_pte(pte))
209 goto out;
210
211 entry = pte_to_swp_entry(pte);
212 if (!is_migration_entry(entry))
213 goto out;
214
215 page = migration_entry_to_page(entry);
216
e286781d
NP
217 /*
218 * Once radix-tree replacement of page migration started, page_count
219 * *must* be zero. And, we don't want to call wait_on_page_locked()
220 * against a page without get_page().
221 * So, we use get_page_unless_zero(), here. Even failed, page fault
222 * will occur again.
223 */
224 if (!get_page_unless_zero(page))
225 goto out;
0697212a
CL
226 pte_unmap_unlock(ptep, ptl);
227 wait_on_page_locked(page);
228 put_page(page);
229 return;
230out:
231 pte_unmap_unlock(ptep, ptl);
232}
233
30dad309
NH
234void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
235 unsigned long address)
236{
237 spinlock_t *ptl = pte_lockptr(mm, pmd);
238 pte_t *ptep = pte_offset_map(pmd, address);
239 __migration_entry_wait(mm, ptep, ptl);
240}
241
cb900f41
KS
242void migration_entry_wait_huge(struct vm_area_struct *vma,
243 struct mm_struct *mm, pte_t *pte)
30dad309 244{
cb900f41 245 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
246 __migration_entry_wait(mm, pte, ptl);
247}
248
b969c4ab
MG
249#ifdef CONFIG_BLOCK
250/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
251static bool buffer_migrate_lock_buffers(struct buffer_head *head,
252 enum migrate_mode mode)
b969c4ab
MG
253{
254 struct buffer_head *bh = head;
255
256 /* Simple case, sync compaction */
a6bc32b8 257 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
258 do {
259 get_bh(bh);
260 lock_buffer(bh);
261 bh = bh->b_this_page;
262
263 } while (bh != head);
264
265 return true;
266 }
267
268 /* async case, we cannot block on lock_buffer so use trylock_buffer */
269 do {
270 get_bh(bh);
271 if (!trylock_buffer(bh)) {
272 /*
273 * We failed to lock the buffer and cannot stall in
274 * async migration. Release the taken locks
275 */
276 struct buffer_head *failed_bh = bh;
277 put_bh(failed_bh);
278 bh = head;
279 while (bh != failed_bh) {
280 unlock_buffer(bh);
281 put_bh(bh);
282 bh = bh->b_this_page;
283 }
284 return false;
285 }
286
287 bh = bh->b_this_page;
288 } while (bh != head);
289 return true;
290}
291#else
292static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 293 enum migrate_mode mode)
b969c4ab
MG
294{
295 return true;
296}
297#endif /* CONFIG_BLOCK */
298
b20a3503 299/*
c3fcf8a5 300 * Replace the page in the mapping.
5b5c7120
CL
301 *
302 * The number of remaining references must be:
303 * 1 for anonymous pages without a mapping
304 * 2 for pages with a mapping
266cf658 305 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 306 */
36bc08cc 307int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 308 struct page *newpage, struct page *page,
8e321fef
BL
309 struct buffer_head *head, enum migrate_mode mode,
310 int extra_count)
b20a3503 311{
8e321fef 312 int expected_count = 1 + extra_count;
7cf9c2c7 313 void **pslot;
b20a3503 314
6c5240ae 315 if (!mapping) {
0e8c7d0f 316 /* Anonymous page without mapping */
8e321fef 317 if (page_count(page) != expected_count)
6c5240ae 318 return -EAGAIN;
78bd5209 319 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
320 }
321
19fd6231 322 spin_lock_irq(&mapping->tree_lock);
b20a3503 323
7cf9c2c7
NP
324 pslot = radix_tree_lookup_slot(&mapping->page_tree,
325 page_index(page));
b20a3503 326
8e321fef 327 expected_count += 1 + page_has_private(page);
e286781d 328 if (page_count(page) != expected_count ||
29c1f677 329 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 330 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 331 return -EAGAIN;
b20a3503
CL
332 }
333
e286781d 334 if (!page_freeze_refs(page, expected_count)) {
19fd6231 335 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
336 return -EAGAIN;
337 }
338
b969c4ab
MG
339 /*
340 * In the async migration case of moving a page with buffers, lock the
341 * buffers using trylock before the mapping is moved. If the mapping
342 * was moved, we later failed to lock the buffers and could not move
343 * the mapping back due to an elevated page count, we would have to
344 * block waiting on other references to be dropped.
345 */
a6bc32b8
MG
346 if (mode == MIGRATE_ASYNC && head &&
347 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
348 page_unfreeze_refs(page, expected_count);
349 spin_unlock_irq(&mapping->tree_lock);
350 return -EAGAIN;
351 }
352
b20a3503
CL
353 /*
354 * Now we know that no one else is looking at the page.
b20a3503 355 */
7cf9c2c7 356 get_page(newpage); /* add cache reference */
b20a3503
CL
357 if (PageSwapCache(page)) {
358 SetPageSwapCache(newpage);
359 set_page_private(newpage, page_private(page));
360 }
361
7cf9c2c7
NP
362 radix_tree_replace_slot(pslot, newpage);
363
364 /*
937a94c9
JG
365 * Drop cache reference from old page by unfreezing
366 * to one less reference.
7cf9c2c7
NP
367 * We know this isn't the last reference.
368 */
937a94c9 369 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 370
0e8c7d0f
CL
371 /*
372 * If moved to a different zone then also account
373 * the page for that zone. Other VM counters will be
374 * taken care of when we establish references to the
375 * new page and drop references to the old page.
376 *
377 * Note that anonymous pages are accounted for
378 * via NR_FILE_PAGES and NR_ANON_PAGES if they
379 * are mapped to swap space.
380 */
381 __dec_zone_page_state(page, NR_FILE_PAGES);
382 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 383 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
384 __dec_zone_page_state(page, NR_SHMEM);
385 __inc_zone_page_state(newpage, NR_SHMEM);
386 }
19fd6231 387 spin_unlock_irq(&mapping->tree_lock);
b20a3503 388
78bd5209 389 return MIGRATEPAGE_SUCCESS;
b20a3503 390}
b20a3503 391
290408d4
NH
392/*
393 * The expected number of remaining references is the same as that
394 * of migrate_page_move_mapping().
395 */
396int migrate_huge_page_move_mapping(struct address_space *mapping,
397 struct page *newpage, struct page *page)
398{
399 int expected_count;
400 void **pslot;
401
402 if (!mapping) {
403 if (page_count(page) != 1)
404 return -EAGAIN;
78bd5209 405 return MIGRATEPAGE_SUCCESS;
290408d4
NH
406 }
407
408 spin_lock_irq(&mapping->tree_lock);
409
410 pslot = radix_tree_lookup_slot(&mapping->page_tree,
411 page_index(page));
412
413 expected_count = 2 + page_has_private(page);
414 if (page_count(page) != expected_count ||
29c1f677 415 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
416 spin_unlock_irq(&mapping->tree_lock);
417 return -EAGAIN;
418 }
419
420 if (!page_freeze_refs(page, expected_count)) {
421 spin_unlock_irq(&mapping->tree_lock);
422 return -EAGAIN;
423 }
424
425 get_page(newpage);
426
427 radix_tree_replace_slot(pslot, newpage);
428
937a94c9 429 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
430
431 spin_unlock_irq(&mapping->tree_lock);
78bd5209 432 return MIGRATEPAGE_SUCCESS;
290408d4
NH
433}
434
30b0a105
DH
435/*
436 * Gigantic pages are so large that we do not guarantee that page++ pointer
437 * arithmetic will work across the entire page. We need something more
438 * specialized.
439 */
440static void __copy_gigantic_page(struct page *dst, struct page *src,
441 int nr_pages)
442{
443 int i;
444 struct page *dst_base = dst;
445 struct page *src_base = src;
446
447 for (i = 0; i < nr_pages; ) {
448 cond_resched();
449 copy_highpage(dst, src);
450
451 i++;
452 dst = mem_map_next(dst, dst_base, i);
453 src = mem_map_next(src, src_base, i);
454 }
455}
456
457static void copy_huge_page(struct page *dst, struct page *src)
458{
459 int i;
460 int nr_pages;
461
462 if (PageHuge(src)) {
463 /* hugetlbfs page */
464 struct hstate *h = page_hstate(src);
465 nr_pages = pages_per_huge_page(h);
466
467 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
468 __copy_gigantic_page(dst, src, nr_pages);
469 return;
470 }
471 } else {
472 /* thp page */
473 BUG_ON(!PageTransHuge(src));
474 nr_pages = hpage_nr_pages(src);
475 }
476
477 for (i = 0; i < nr_pages; i++) {
478 cond_resched();
479 copy_highpage(dst + i, src + i);
480 }
481}
482
b20a3503
CL
483/*
484 * Copy the page to its new location
485 */
290408d4 486void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 487{
7851a45c
RR
488 int cpupid;
489
b32967ff 490 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
491 copy_huge_page(newpage, page);
492 else
493 copy_highpage(newpage, page);
b20a3503
CL
494
495 if (PageError(page))
496 SetPageError(newpage);
497 if (PageReferenced(page))
498 SetPageReferenced(newpage);
499 if (PageUptodate(page))
500 SetPageUptodate(newpage);
894bc310
LS
501 if (TestClearPageActive(page)) {
502 VM_BUG_ON(PageUnevictable(page));
b20a3503 503 SetPageActive(newpage);
418b27ef
LS
504 } else if (TestClearPageUnevictable(page))
505 SetPageUnevictable(newpage);
b20a3503
CL
506 if (PageChecked(page))
507 SetPageChecked(newpage);
508 if (PageMappedToDisk(page))
509 SetPageMappedToDisk(newpage);
510
511 if (PageDirty(page)) {
512 clear_page_dirty_for_io(page);
3a902c5f
NP
513 /*
514 * Want to mark the page and the radix tree as dirty, and
515 * redo the accounting that clear_page_dirty_for_io undid,
516 * but we can't use set_page_dirty because that function
517 * is actually a signal that all of the page has become dirty.
25985edc 518 * Whereas only part of our page may be dirty.
3a902c5f 519 */
752dc185
HD
520 if (PageSwapBacked(page))
521 SetPageDirty(newpage);
522 else
523 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
524 }
525
7851a45c
RR
526 /*
527 * Copy NUMA information to the new page, to prevent over-eager
528 * future migrations of this same page.
529 */
530 cpupid = page_cpupid_xchg_last(page, -1);
531 page_cpupid_xchg_last(newpage, cpupid);
532
b291f000 533 mlock_migrate_page(newpage, page);
e9995ef9 534 ksm_migrate_page(newpage, page);
c8d6553b
HD
535 /*
536 * Please do not reorder this without considering how mm/ksm.c's
537 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
538 */
b20a3503 539 ClearPageSwapCache(page);
b20a3503
CL
540 ClearPagePrivate(page);
541 set_page_private(page, 0);
b20a3503
CL
542
543 /*
544 * If any waiters have accumulated on the new page then
545 * wake them up.
546 */
547 if (PageWriteback(newpage))
548 end_page_writeback(newpage);
549}
b20a3503 550
1d8b85cc
CL
551/************************************************************
552 * Migration functions
553 ***********************************************************/
554
b20a3503
CL
555/*
556 * Common logic to directly migrate a single page suitable for
266cf658 557 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
558 *
559 * Pages are locked upon entry and exit.
560 */
2d1db3b1 561int migrate_page(struct address_space *mapping,
a6bc32b8
MG
562 struct page *newpage, struct page *page,
563 enum migrate_mode mode)
b20a3503
CL
564{
565 int rc;
566
567 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
568
8e321fef 569 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 570
78bd5209 571 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
572 return rc;
573
574 migrate_page_copy(newpage, page);
78bd5209 575 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
576}
577EXPORT_SYMBOL(migrate_page);
578
9361401e 579#ifdef CONFIG_BLOCK
1d8b85cc
CL
580/*
581 * Migration function for pages with buffers. This function can only be used
582 * if the underlying filesystem guarantees that no other references to "page"
583 * exist.
584 */
2d1db3b1 585int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 586 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 587{
1d8b85cc
CL
588 struct buffer_head *bh, *head;
589 int rc;
590
1d8b85cc 591 if (!page_has_buffers(page))
a6bc32b8 592 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
593
594 head = page_buffers(page);
595
8e321fef 596 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 597
78bd5209 598 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
599 return rc;
600
b969c4ab
MG
601 /*
602 * In the async case, migrate_page_move_mapping locked the buffers
603 * with an IRQ-safe spinlock held. In the sync case, the buffers
604 * need to be locked now
605 */
a6bc32b8
MG
606 if (mode != MIGRATE_ASYNC)
607 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
608
609 ClearPagePrivate(page);
610 set_page_private(newpage, page_private(page));
611 set_page_private(page, 0);
612 put_page(page);
613 get_page(newpage);
614
615 bh = head;
616 do {
617 set_bh_page(bh, newpage, bh_offset(bh));
618 bh = bh->b_this_page;
619
620 } while (bh != head);
621
622 SetPagePrivate(newpage);
623
624 migrate_page_copy(newpage, page);
625
626 bh = head;
627 do {
628 unlock_buffer(bh);
629 put_bh(bh);
630 bh = bh->b_this_page;
631
632 } while (bh != head);
633
78bd5209 634 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
635}
636EXPORT_SYMBOL(buffer_migrate_page);
9361401e 637#endif
1d8b85cc 638
04e62a29
CL
639/*
640 * Writeback a page to clean the dirty state
641 */
642static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 643{
04e62a29
CL
644 struct writeback_control wbc = {
645 .sync_mode = WB_SYNC_NONE,
646 .nr_to_write = 1,
647 .range_start = 0,
648 .range_end = LLONG_MAX,
04e62a29
CL
649 .for_reclaim = 1
650 };
651 int rc;
652
653 if (!mapping->a_ops->writepage)
654 /* No write method for the address space */
655 return -EINVAL;
656
657 if (!clear_page_dirty_for_io(page))
658 /* Someone else already triggered a write */
659 return -EAGAIN;
660
8351a6e4 661 /*
04e62a29
CL
662 * A dirty page may imply that the underlying filesystem has
663 * the page on some queue. So the page must be clean for
664 * migration. Writeout may mean we loose the lock and the
665 * page state is no longer what we checked for earlier.
666 * At this point we know that the migration attempt cannot
667 * be successful.
8351a6e4 668 */
04e62a29 669 remove_migration_ptes(page, page);
8351a6e4 670
04e62a29 671 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 672
04e62a29
CL
673 if (rc != AOP_WRITEPAGE_ACTIVATE)
674 /* unlocked. Relock */
675 lock_page(page);
676
bda8550d 677 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
678}
679
680/*
681 * Default handling if a filesystem does not provide a migration function.
682 */
683static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 684 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 685{
b969c4ab 686 if (PageDirty(page)) {
a6bc32b8
MG
687 /* Only writeback pages in full synchronous migration */
688 if (mode != MIGRATE_SYNC)
b969c4ab 689 return -EBUSY;
04e62a29 690 return writeout(mapping, page);
b969c4ab 691 }
8351a6e4
CL
692
693 /*
694 * Buffers may be managed in a filesystem specific way.
695 * We must have no buffers or drop them.
696 */
266cf658 697 if (page_has_private(page) &&
8351a6e4
CL
698 !try_to_release_page(page, GFP_KERNEL))
699 return -EAGAIN;
700
a6bc32b8 701 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
702}
703
e24f0b8f
CL
704/*
705 * Move a page to a newly allocated page
706 * The page is locked and all ptes have been successfully removed.
707 *
708 * The new page will have replaced the old page if this function
709 * is successful.
894bc310
LS
710 *
711 * Return value:
712 * < 0 - error code
78bd5209 713 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 714 */
3fe2011f 715static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 716 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
717{
718 struct address_space *mapping;
719 int rc;
720
721 /*
722 * Block others from accessing the page when we get around to
723 * establishing additional references. We are the only one
724 * holding a reference to the new page at this point.
725 */
529ae9aa 726 if (!trylock_page(newpage))
e24f0b8f
CL
727 BUG();
728
729 /* Prepare mapping for the new page.*/
730 newpage->index = page->index;
731 newpage->mapping = page->mapping;
b2e18538
RR
732 if (PageSwapBacked(page))
733 SetPageSwapBacked(newpage);
e24f0b8f
CL
734
735 mapping = page_mapping(page);
736 if (!mapping)
a6bc32b8 737 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 738 else if (mapping->a_ops->migratepage)
e24f0b8f 739 /*
b969c4ab
MG
740 * Most pages have a mapping and most filesystems provide a
741 * migratepage callback. Anonymous pages are part of swap
742 * space which also has its own migratepage callback. This
743 * is the most common path for page migration.
e24f0b8f 744 */
b969c4ab 745 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 746 newpage, page, mode);
b969c4ab 747 else
a6bc32b8 748 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 749
78bd5209 750 if (rc != MIGRATEPAGE_SUCCESS) {
e24f0b8f 751 newpage->mapping = NULL;
3fe2011f
MG
752 } else {
753 if (remap_swapcache)
754 remove_migration_ptes(page, newpage);
35512eca 755 page->mapping = NULL;
3fe2011f 756 }
e24f0b8f
CL
757
758 unlock_page(newpage);
759
760 return rc;
761}
762
0dabec93 763static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 764 int force, enum migrate_mode mode)
e24f0b8f 765{
0dabec93 766 int rc = -EAGAIN;
3fe2011f 767 int remap_swapcache = 1;
56039efa 768 struct mem_cgroup *mem;
3f6c8272 769 struct anon_vma *anon_vma = NULL;
95a402c3 770
529ae9aa 771 if (!trylock_page(page)) {
a6bc32b8 772 if (!force || mode == MIGRATE_ASYNC)
0dabec93 773 goto out;
3e7d3449
MG
774
775 /*
776 * It's not safe for direct compaction to call lock_page.
777 * For example, during page readahead pages are added locked
778 * to the LRU. Later, when the IO completes the pages are
779 * marked uptodate and unlocked. However, the queueing
780 * could be merging multiple pages for one bio (e.g.
781 * mpage_readpages). If an allocation happens for the
782 * second or third page, the process can end up locking
783 * the same page twice and deadlocking. Rather than
784 * trying to be clever about what pages can be locked,
785 * avoid the use of lock_page for direct compaction
786 * altogether.
787 */
788 if (current->flags & PF_MEMALLOC)
0dabec93 789 goto out;
3e7d3449 790
e24f0b8f
CL
791 lock_page(page);
792 }
793
01b1ae63 794 /* charge against new page */
0030f535 795 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 796
e24f0b8f 797 if (PageWriteback(page)) {
11bc82d6 798 /*
fed5b64a 799 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
800 * necessary to wait for PageWriteback. In the async case,
801 * the retry loop is too short and in the sync-light case,
802 * the overhead of stalling is too much
11bc82d6 803 */
a6bc32b8 804 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
805 rc = -EBUSY;
806 goto uncharge;
807 }
808 if (!force)
01b1ae63 809 goto uncharge;
e24f0b8f
CL
810 wait_on_page_writeback(page);
811 }
e24f0b8f 812 /*
dc386d4d
KH
813 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
814 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 815 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 816 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
817 * File Caches may use write_page() or lock_page() in migration, then,
818 * just care Anon page here.
dc386d4d 819 */
b79bc0a0 820 if (PageAnon(page) && !PageKsm(page)) {
1ce82b69 821 /*
4fc3f1d6 822 * Only page_lock_anon_vma_read() understands the subtleties of
1ce82b69
HD
823 * getting a hold on an anon_vma from outside one of its mms.
824 */
746b18d4 825 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
826 if (anon_vma) {
827 /*
746b18d4 828 * Anon page
1ce82b69 829 */
1ce82b69 830 } else if (PageSwapCache(page)) {
3fe2011f
MG
831 /*
832 * We cannot be sure that the anon_vma of an unmapped
833 * swapcache page is safe to use because we don't
834 * know in advance if the VMA that this page belonged
835 * to still exists. If the VMA and others sharing the
836 * data have been freed, then the anon_vma could
837 * already be invalid.
838 *
839 * To avoid this possibility, swapcache pages get
840 * migrated but are not remapped when migration
841 * completes
842 */
843 remap_swapcache = 0;
844 } else {
1ce82b69 845 goto uncharge;
3fe2011f 846 }
989f89c5 847 }
62e1c553 848
bf6bddf1
RA
849 if (unlikely(balloon_page_movable(page))) {
850 /*
851 * A ballooned page does not need any special attention from
852 * physical to virtual reverse mapping procedures.
853 * Skip any attempt to unmap PTEs or to remap swap cache,
854 * in order to avoid burning cycles at rmap level, and perform
855 * the page migration right away (proteced by page lock).
856 */
857 rc = balloon_page_migrate(newpage, page, mode);
858 goto uncharge;
859 }
860
dc386d4d 861 /*
62e1c553
SL
862 * Corner case handling:
863 * 1. When a new swap-cache page is read into, it is added to the LRU
864 * and treated as swapcache but it has no rmap yet.
865 * Calling try_to_unmap() against a page->mapping==NULL page will
866 * trigger a BUG. So handle it here.
867 * 2. An orphaned page (see truncate_complete_page) might have
868 * fs-private metadata. The page can be picked up due to memory
869 * offlining. Everywhere else except page reclaim, the page is
870 * invisible to the vm, so the page can not be migrated. So try to
871 * free the metadata, so the page can be freed.
e24f0b8f 872 */
62e1c553 873 if (!page->mapping) {
1ce82b69
HD
874 VM_BUG_ON(PageAnon(page));
875 if (page_has_private(page)) {
62e1c553 876 try_to_free_buffers(page);
1ce82b69 877 goto uncharge;
62e1c553 878 }
abfc3488 879 goto skip_unmap;
62e1c553
SL
880 }
881
dc386d4d 882 /* Establish migration ptes or remove ptes */
14fa31b8 883 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 884
abfc3488 885skip_unmap:
e6a1530d 886 if (!page_mapped(page))
a6bc32b8 887 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 888
3fe2011f 889 if (rc && remap_swapcache)
e24f0b8f 890 remove_migration_ptes(page, page);
3f6c8272
MG
891
892 /* Drop an anon_vma reference if we took one */
76545066 893 if (anon_vma)
9e60109f 894 put_anon_vma(anon_vma);
3f6c8272 895
01b1ae63 896uncharge:
bf6bddf1
RA
897 mem_cgroup_end_migration(mem, page, newpage,
898 (rc == MIGRATEPAGE_SUCCESS ||
899 rc == MIGRATEPAGE_BALLOON_SUCCESS));
e24f0b8f 900 unlock_page(page);
0dabec93
MK
901out:
902 return rc;
903}
95a402c3 904
0dabec93
MK
905/*
906 * Obtain the lock on page, remove all ptes and migrate the page
907 * to the newly allocated page in newpage.
908 */
909static int unmap_and_move(new_page_t get_new_page, unsigned long private,
9c620e2b 910 struct page *page, int force, enum migrate_mode mode)
0dabec93
MK
911{
912 int rc = 0;
913 int *result = NULL;
914 struct page *newpage = get_new_page(page, private, &result);
915
916 if (!newpage)
917 return -ENOMEM;
918
919 if (page_count(page) == 1) {
920 /* page was freed from under us. So we are done. */
921 goto out;
922 }
923
924 if (unlikely(PageTransHuge(page)))
925 if (unlikely(split_huge_page(page)))
926 goto out;
927
9c620e2b 928 rc = __unmap_and_move(page, newpage, force, mode);
bf6bddf1
RA
929
930 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
931 /*
932 * A ballooned page has been migrated already.
933 * Now, it's the time to wrap-up counters,
934 * handle the page back to Buddy and return.
935 */
936 dec_zone_page_state(page, NR_ISOLATED_ANON +
937 page_is_file_cache(page));
938 balloon_page_free(page);
939 return MIGRATEPAGE_SUCCESS;
940 }
0dabec93 941out:
e24f0b8f 942 if (rc != -EAGAIN) {
0dabec93
MK
943 /*
944 * A page that has been migrated has all references
945 * removed and will be freed. A page that has not been
946 * migrated will have kepts its references and be
947 * restored.
948 */
949 list_del(&page->lru);
a731286d 950 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 951 page_is_file_cache(page));
894bc310 952 putback_lru_page(page);
e24f0b8f 953 }
95a402c3
CL
954 /*
955 * Move the new page to the LRU. If migration was not successful
956 * then this will free the page.
957 */
894bc310 958 putback_lru_page(newpage);
742755a1
CL
959 if (result) {
960 if (rc)
961 *result = rc;
962 else
963 *result = page_to_nid(newpage);
964 }
e24f0b8f
CL
965 return rc;
966}
967
290408d4
NH
968/*
969 * Counterpart of unmap_and_move_page() for hugepage migration.
970 *
971 * This function doesn't wait the completion of hugepage I/O
972 * because there is no race between I/O and migration for hugepage.
973 * Note that currently hugepage I/O occurs only in direct I/O
974 * where no lock is held and PG_writeback is irrelevant,
975 * and writeback status of all subpages are counted in the reference
976 * count of the head page (i.e. if all subpages of a 2MB hugepage are
977 * under direct I/O, the reference of the head page is 512 and a bit more.)
978 * This means that when we try to migrate hugepage whose subpages are
979 * doing direct I/O, some references remain after try_to_unmap() and
980 * hugepage migration fails without data corruption.
981 *
982 * There is also no race when direct I/O is issued on the page under migration,
983 * because then pte is replaced with migration swap entry and direct I/O code
984 * will wait in the page fault for migration to complete.
985 */
986static int unmap_and_move_huge_page(new_page_t get_new_page,
987 unsigned long private, struct page *hpage,
9c620e2b 988 int force, enum migrate_mode mode)
290408d4
NH
989{
990 int rc = 0;
991 int *result = NULL;
32665f2b 992 struct page *new_hpage;
290408d4
NH
993 struct anon_vma *anon_vma = NULL;
994
83467efb
NH
995 /*
996 * Movability of hugepages depends on architectures and hugepage size.
997 * This check is necessary because some callers of hugepage migration
998 * like soft offline and memory hotremove don't walk through page
999 * tables or check whether the hugepage is pmd-based or not before
1000 * kicking migration.
1001 */
32665f2b
JK
1002 if (!hugepage_migration_support(page_hstate(hpage))) {
1003 putback_active_hugepage(hpage);
83467efb 1004 return -ENOSYS;
32665f2b 1005 }
83467efb 1006
32665f2b 1007 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1008 if (!new_hpage)
1009 return -ENOMEM;
1010
1011 rc = -EAGAIN;
1012
1013 if (!trylock_page(hpage)) {
a6bc32b8 1014 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
1015 goto out;
1016 lock_page(hpage);
1017 }
1018
746b18d4
PZ
1019 if (PageAnon(hpage))
1020 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
1021
1022 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1023
1024 if (!page_mapped(hpage))
a6bc32b8 1025 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
1026
1027 if (rc)
1028 remove_migration_ptes(hpage, hpage);
1029
fd4a4663 1030 if (anon_vma)
9e60109f 1031 put_anon_vma(anon_vma);
8e6ac7fa
AK
1032
1033 if (!rc)
1034 hugetlb_cgroup_migrate(hpage, new_hpage);
1035
290408d4 1036 unlock_page(hpage);
09761333 1037out:
b8ec1cee
NH
1038 if (rc != -EAGAIN)
1039 putback_active_hugepage(hpage);
290408d4 1040 put_page(new_hpage);
290408d4
NH
1041 if (result) {
1042 if (rc)
1043 *result = rc;
1044 else
1045 *result = page_to_nid(new_hpage);
1046 }
1047 return rc;
1048}
1049
b20a3503 1050/*
c73e5c9c
SB
1051 * migrate_pages - migrate the pages specified in a list, to the free pages
1052 * supplied as the target for the page migration
b20a3503 1053 *
c73e5c9c
SB
1054 * @from: The list of pages to be migrated.
1055 * @get_new_page: The function used to allocate free pages to be used
1056 * as the target of the page migration.
1057 * @private: Private data to be passed on to get_new_page()
1058 * @mode: The migration mode that specifies the constraints for
1059 * page migration, if any.
1060 * @reason: The reason for page migration.
b20a3503 1061 *
c73e5c9c
SB
1062 * The function returns after 10 attempts or if no pages are movable any more
1063 * because the list has become empty or no retryable pages exist any more.
1064 * The caller should call putback_lru_pages() to return pages to the LRU
28bd6578 1065 * or free list only if ret != 0.
b20a3503 1066 *
c73e5c9c 1067 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1068 */
9c620e2b
HD
1069int migrate_pages(struct list_head *from, new_page_t get_new_page,
1070 unsigned long private, enum migrate_mode mode, int reason)
b20a3503 1071{
e24f0b8f 1072 int retry = 1;
b20a3503 1073 int nr_failed = 0;
5647bc29 1074 int nr_succeeded = 0;
b20a3503
CL
1075 int pass = 0;
1076 struct page *page;
1077 struct page *page2;
1078 int swapwrite = current->flags & PF_SWAPWRITE;
1079 int rc;
1080
1081 if (!swapwrite)
1082 current->flags |= PF_SWAPWRITE;
1083
e24f0b8f
CL
1084 for(pass = 0; pass < 10 && retry; pass++) {
1085 retry = 0;
b20a3503 1086
e24f0b8f 1087 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1088 cond_resched();
2d1db3b1 1089
31caf665
NH
1090 if (PageHuge(page))
1091 rc = unmap_and_move_huge_page(get_new_page,
1092 private, page, pass > 2, mode);
1093 else
1094 rc = unmap_and_move(get_new_page, private,
9c620e2b 1095 page, pass > 2, mode);
2d1db3b1 1096
e24f0b8f 1097 switch(rc) {
95a402c3
CL
1098 case -ENOMEM:
1099 goto out;
e24f0b8f 1100 case -EAGAIN:
2d1db3b1 1101 retry++;
e24f0b8f 1102 break;
78bd5209 1103 case MIGRATEPAGE_SUCCESS:
5647bc29 1104 nr_succeeded++;
e24f0b8f
CL
1105 break;
1106 default:
354a3363
NH
1107 /*
1108 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1109 * unlike -EAGAIN case, the failed page is
1110 * removed from migration page list and not
1111 * retried in the next outer loop.
1112 */
2d1db3b1 1113 nr_failed++;
e24f0b8f 1114 break;
2d1db3b1 1115 }
b20a3503
CL
1116 }
1117 }
78bd5209 1118 rc = nr_failed + retry;
95a402c3 1119out:
5647bc29
MG
1120 if (nr_succeeded)
1121 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1122 if (nr_failed)
1123 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1124 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1125
b20a3503
CL
1126 if (!swapwrite)
1127 current->flags &= ~PF_SWAPWRITE;
1128
78bd5209 1129 return rc;
b20a3503 1130}
95a402c3 1131
742755a1
CL
1132#ifdef CONFIG_NUMA
1133/*
1134 * Move a list of individual pages
1135 */
1136struct page_to_node {
1137 unsigned long addr;
1138 struct page *page;
1139 int node;
1140 int status;
1141};
1142
1143static struct page *new_page_node(struct page *p, unsigned long private,
1144 int **result)
1145{
1146 struct page_to_node *pm = (struct page_to_node *)private;
1147
1148 while (pm->node != MAX_NUMNODES && pm->page != p)
1149 pm++;
1150
1151 if (pm->node == MAX_NUMNODES)
1152 return NULL;
1153
1154 *result = &pm->status;
1155
e632a938
NH
1156 if (PageHuge(p))
1157 return alloc_huge_page_node(page_hstate(compound_head(p)),
1158 pm->node);
1159 else
1160 return alloc_pages_exact_node(pm->node,
769848c0 1161 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1162}
1163
1164/*
1165 * Move a set of pages as indicated in the pm array. The addr
1166 * field must be set to the virtual address of the page to be moved
1167 * and the node number must contain a valid target node.
5e9a0f02 1168 * The pm array ends with node = MAX_NUMNODES.
742755a1 1169 */
5e9a0f02
BG
1170static int do_move_page_to_node_array(struct mm_struct *mm,
1171 struct page_to_node *pm,
1172 int migrate_all)
742755a1
CL
1173{
1174 int err;
1175 struct page_to_node *pp;
1176 LIST_HEAD(pagelist);
1177
1178 down_read(&mm->mmap_sem);
1179
1180 /*
1181 * Build a list of pages to migrate
1182 */
742755a1
CL
1183 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1184 struct vm_area_struct *vma;
1185 struct page *page;
1186
742755a1
CL
1187 err = -EFAULT;
1188 vma = find_vma(mm, pp->addr);
70384dc6 1189 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1190 goto set_status;
1191
500d65d4 1192 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1193
1194 err = PTR_ERR(page);
1195 if (IS_ERR(page))
1196 goto set_status;
1197
742755a1
CL
1198 err = -ENOENT;
1199 if (!page)
1200 goto set_status;
1201
62b61f61 1202 /* Use PageReserved to check for zero page */
b79bc0a0 1203 if (PageReserved(page))
742755a1
CL
1204 goto put_and_set;
1205
1206 pp->page = page;
1207 err = page_to_nid(page);
1208
1209 if (err == pp->node)
1210 /*
1211 * Node already in the right place
1212 */
1213 goto put_and_set;
1214
1215 err = -EACCES;
1216 if (page_mapcount(page) > 1 &&
1217 !migrate_all)
1218 goto put_and_set;
1219
e632a938
NH
1220 if (PageHuge(page)) {
1221 isolate_huge_page(page, &pagelist);
1222 goto put_and_set;
1223 }
1224
62695a84 1225 err = isolate_lru_page(page);
6d9c285a 1226 if (!err) {
62695a84 1227 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1228 inc_zone_page_state(page, NR_ISOLATED_ANON +
1229 page_is_file_cache(page));
1230 }
742755a1
CL
1231put_and_set:
1232 /*
1233 * Either remove the duplicate refcount from
1234 * isolate_lru_page() or drop the page ref if it was
1235 * not isolated.
1236 */
1237 put_page(page);
1238set_status:
1239 pp->status = err;
1240 }
1241
e78bbfa8 1242 err = 0;
cf608ac1 1243 if (!list_empty(&pagelist)) {
742755a1 1244 err = migrate_pages(&pagelist, new_page_node,
9c620e2b 1245 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1246 if (err)
e632a938 1247 putback_movable_pages(&pagelist);
cf608ac1 1248 }
742755a1
CL
1249
1250 up_read(&mm->mmap_sem);
1251 return err;
1252}
1253
5e9a0f02
BG
1254/*
1255 * Migrate an array of page address onto an array of nodes and fill
1256 * the corresponding array of status.
1257 */
3268c63e 1258static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1259 unsigned long nr_pages,
1260 const void __user * __user *pages,
1261 const int __user *nodes,
1262 int __user *status, int flags)
1263{
3140a227 1264 struct page_to_node *pm;
3140a227
BG
1265 unsigned long chunk_nr_pages;
1266 unsigned long chunk_start;
1267 int err;
5e9a0f02 1268
3140a227
BG
1269 err = -ENOMEM;
1270 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1271 if (!pm)
5e9a0f02 1272 goto out;
35282a2d
BG
1273
1274 migrate_prep();
1275
5e9a0f02 1276 /*
3140a227
BG
1277 * Store a chunk of page_to_node array in a page,
1278 * but keep the last one as a marker
5e9a0f02 1279 */
3140a227 1280 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1281
3140a227
BG
1282 for (chunk_start = 0;
1283 chunk_start < nr_pages;
1284 chunk_start += chunk_nr_pages) {
1285 int j;
5e9a0f02 1286
3140a227
BG
1287 if (chunk_start + chunk_nr_pages > nr_pages)
1288 chunk_nr_pages = nr_pages - chunk_start;
1289
1290 /* fill the chunk pm with addrs and nodes from user-space */
1291 for (j = 0; j < chunk_nr_pages; j++) {
1292 const void __user *p;
5e9a0f02
BG
1293 int node;
1294
3140a227
BG
1295 err = -EFAULT;
1296 if (get_user(p, pages + j + chunk_start))
1297 goto out_pm;
1298 pm[j].addr = (unsigned long) p;
1299
1300 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1301 goto out_pm;
1302
1303 err = -ENODEV;
6f5a55f1
LT
1304 if (node < 0 || node >= MAX_NUMNODES)
1305 goto out_pm;
1306
389162c2 1307 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1308 goto out_pm;
1309
1310 err = -EACCES;
1311 if (!node_isset(node, task_nodes))
1312 goto out_pm;
1313
3140a227
BG
1314 pm[j].node = node;
1315 }
1316
1317 /* End marker for this chunk */
1318 pm[chunk_nr_pages].node = MAX_NUMNODES;
1319
1320 /* Migrate this chunk */
1321 err = do_move_page_to_node_array(mm, pm,
1322 flags & MPOL_MF_MOVE_ALL);
1323 if (err < 0)
1324 goto out_pm;
5e9a0f02 1325
5e9a0f02 1326 /* Return status information */
3140a227
BG
1327 for (j = 0; j < chunk_nr_pages; j++)
1328 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1329 err = -EFAULT;
3140a227
BG
1330 goto out_pm;
1331 }
1332 }
1333 err = 0;
5e9a0f02
BG
1334
1335out_pm:
3140a227 1336 free_page((unsigned long)pm);
5e9a0f02
BG
1337out:
1338 return err;
1339}
1340
742755a1 1341/*
2f007e74 1342 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1343 */
80bba129
BG
1344static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1345 const void __user **pages, int *status)
742755a1 1346{
2f007e74 1347 unsigned long i;
2f007e74 1348
742755a1
CL
1349 down_read(&mm->mmap_sem);
1350
2f007e74 1351 for (i = 0; i < nr_pages; i++) {
80bba129 1352 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1353 struct vm_area_struct *vma;
1354 struct page *page;
c095adbc 1355 int err = -EFAULT;
2f007e74
BG
1356
1357 vma = find_vma(mm, addr);
70384dc6 1358 if (!vma || addr < vma->vm_start)
742755a1
CL
1359 goto set_status;
1360
2f007e74 1361 page = follow_page(vma, addr, 0);
89f5b7da
LT
1362
1363 err = PTR_ERR(page);
1364 if (IS_ERR(page))
1365 goto set_status;
1366
742755a1
CL
1367 err = -ENOENT;
1368 /* Use PageReserved to check for zero page */
b79bc0a0 1369 if (!page || PageReserved(page))
742755a1
CL
1370 goto set_status;
1371
1372 err = page_to_nid(page);
1373set_status:
80bba129
BG
1374 *status = err;
1375
1376 pages++;
1377 status++;
1378 }
1379
1380 up_read(&mm->mmap_sem);
1381}
1382
1383/*
1384 * Determine the nodes of a user array of pages and store it in
1385 * a user array of status.
1386 */
1387static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1388 const void __user * __user *pages,
1389 int __user *status)
1390{
1391#define DO_PAGES_STAT_CHUNK_NR 16
1392 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1393 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1394
87b8d1ad
PA
1395 while (nr_pages) {
1396 unsigned long chunk_nr;
80bba129 1397
87b8d1ad
PA
1398 chunk_nr = nr_pages;
1399 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1400 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1401
1402 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1403 break;
80bba129
BG
1404
1405 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1406
87b8d1ad
PA
1407 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1408 break;
742755a1 1409
87b8d1ad
PA
1410 pages += chunk_nr;
1411 status += chunk_nr;
1412 nr_pages -= chunk_nr;
1413 }
1414 return nr_pages ? -EFAULT : 0;
742755a1
CL
1415}
1416
1417/*
1418 * Move a list of pages in the address space of the currently executing
1419 * process.
1420 */
938bb9f5
HC
1421SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1422 const void __user * __user *, pages,
1423 const int __user *, nodes,
1424 int __user *, status, int, flags)
742755a1 1425{
c69e8d9c 1426 const struct cred *cred = current_cred(), *tcred;
742755a1 1427 struct task_struct *task;
742755a1 1428 struct mm_struct *mm;
5e9a0f02 1429 int err;
3268c63e 1430 nodemask_t task_nodes;
742755a1
CL
1431
1432 /* Check flags */
1433 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1434 return -EINVAL;
1435
1436 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1437 return -EPERM;
1438
1439 /* Find the mm_struct */
a879bf58 1440 rcu_read_lock();
228ebcbe 1441 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1442 if (!task) {
a879bf58 1443 rcu_read_unlock();
742755a1
CL
1444 return -ESRCH;
1445 }
3268c63e 1446 get_task_struct(task);
742755a1
CL
1447
1448 /*
1449 * Check if this process has the right to modify the specified
1450 * process. The right exists if the process has administrative
1451 * capabilities, superuser privileges or the same
1452 * userid as the target process.
1453 */
c69e8d9c 1454 tcred = __task_cred(task);
b38a86eb
EB
1455 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1456 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1457 !capable(CAP_SYS_NICE)) {
c69e8d9c 1458 rcu_read_unlock();
742755a1 1459 err = -EPERM;
5e9a0f02 1460 goto out;
742755a1 1461 }
c69e8d9c 1462 rcu_read_unlock();
742755a1 1463
86c3a764
DQ
1464 err = security_task_movememory(task);
1465 if (err)
5e9a0f02 1466 goto out;
86c3a764 1467
3268c63e
CL
1468 task_nodes = cpuset_mems_allowed(task);
1469 mm = get_task_mm(task);
1470 put_task_struct(task);
1471
6e8b09ea
SL
1472 if (!mm)
1473 return -EINVAL;
1474
1475 if (nodes)
1476 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1477 nodes, status, flags);
1478 else
1479 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1480
742755a1
CL
1481 mmput(mm);
1482 return err;
3268c63e
CL
1483
1484out:
1485 put_task_struct(task);
1486 return err;
742755a1 1487}
742755a1 1488
7b2259b3
CL
1489/*
1490 * Call migration functions in the vma_ops that may prepare
1491 * memory in a vm for migration. migration functions may perform
1492 * the migration for vmas that do not have an underlying page struct.
1493 */
1494int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1495 const nodemask_t *from, unsigned long flags)
1496{
1497 struct vm_area_struct *vma;
1498 int err = 0;
1499
1001c9fb 1500 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1501 if (vma->vm_ops && vma->vm_ops->migrate) {
1502 err = vma->vm_ops->migrate(vma, to, from, flags);
1503 if (err)
1504 break;
1505 }
1506 }
1507 return err;
1508}
7039e1db
PZ
1509
1510#ifdef CONFIG_NUMA_BALANCING
1511/*
1512 * Returns true if this is a safe migration target node for misplaced NUMA
1513 * pages. Currently it only checks the watermarks which crude
1514 */
1515static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1516 unsigned long nr_migrate_pages)
7039e1db
PZ
1517{
1518 int z;
1519 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1520 struct zone *zone = pgdat->node_zones + z;
1521
1522 if (!populated_zone(zone))
1523 continue;
1524
6e543d57 1525 if (!zone_reclaimable(zone))
7039e1db
PZ
1526 continue;
1527
1528 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1529 if (!zone_watermark_ok(zone, 0,
1530 high_wmark_pages(zone) +
1531 nr_migrate_pages,
1532 0, 0))
1533 continue;
1534 return true;
1535 }
1536 return false;
1537}
1538
1539static struct page *alloc_misplaced_dst_page(struct page *page,
1540 unsigned long data,
1541 int **result)
1542{
1543 int nid = (int) data;
1544 struct page *newpage;
1545
1546 newpage = alloc_pages_exact_node(nid,
1547 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1548 __GFP_NOMEMALLOC | __GFP_NORETRY |
1549 __GFP_NOWARN) &
1550 ~GFP_IOFS, 0);
bac0382c 1551 if (newpage)
90572890 1552 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
bac0382c 1553
7039e1db
PZ
1554 return newpage;
1555}
1556
a8f60772
MG
1557/*
1558 * page migration rate limiting control.
1559 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1560 * window of time. Default here says do not migrate more than 1280M per second.
e14808b4
MG
1561 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1562 * as it is faults that reset the window, pte updates will happen unconditionally
1563 * if there has not been a fault since @pteupdate_interval_millisecs after the
1564 * throttle window closed.
a8f60772
MG
1565 */
1566static unsigned int migrate_interval_millisecs __read_mostly = 100;
e14808b4 1567static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
a8f60772
MG
1568static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1569
e14808b4
MG
1570/* Returns true if NUMA migration is currently rate limited */
1571bool migrate_ratelimited(int node)
1572{
1573 pg_data_t *pgdat = NODE_DATA(node);
1574
1575 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1576 msecs_to_jiffies(pteupdate_interval_millisecs)))
1577 return false;
1578
1579 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1580 return false;
1581
1582 return true;
1583}
1584
b32967ff 1585/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1586static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1587 unsigned long nr_pages)
7039e1db 1588{
a8f60772
MG
1589 /*
1590 * Rate-limit the amount of data that is being migrated to a node.
1591 * Optimal placement is no good if the memory bus is saturated and
1592 * all the time is being spent migrating!
1593 */
a8f60772 1594 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1595 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1596 pgdat->numabalancing_migrate_nr_pages = 0;
1597 pgdat->numabalancing_migrate_next_window = jiffies +
1598 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1599 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1600 }
af1839d7
MG
1601 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1602 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1603 nr_pages);
1c5e9c27 1604 return true;
af1839d7 1605 }
1c5e9c27
MG
1606
1607 /*
1608 * This is an unlocked non-atomic update so errors are possible.
1609 * The consequences are failing to migrate when we potentiall should
1610 * have which is not severe enough to warrant locking. If it is ever
1611 * a problem, it can be converted to a per-cpu counter.
1612 */
1613 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1614 return false;
b32967ff
MG
1615}
1616
1c30e017 1617static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1618{
340ef390 1619 int page_lru;
a8f60772 1620
3abef4e6
MG
1621 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1622
7039e1db 1623 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1624 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1625 return 0;
7039e1db 1626
340ef390
HD
1627 if (isolate_lru_page(page))
1628 return 0;
7039e1db 1629
340ef390
HD
1630 /*
1631 * migrate_misplaced_transhuge_page() skips page migration's usual
1632 * check on page_count(), so we must do it here, now that the page
1633 * has been isolated: a GUP pin, or any other pin, prevents migration.
1634 * The expected page count is 3: 1 for page's mapcount and 1 for the
1635 * caller's pin and 1 for the reference taken by isolate_lru_page().
1636 */
1637 if (PageTransHuge(page) && page_count(page) != 3) {
1638 putback_lru_page(page);
1639 return 0;
7039e1db
PZ
1640 }
1641
340ef390
HD
1642 page_lru = page_is_file_cache(page);
1643 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1644 hpage_nr_pages(page));
1645
149c33e1 1646 /*
340ef390
HD
1647 * Isolating the page has taken another reference, so the
1648 * caller's reference can be safely dropped without the page
1649 * disappearing underneath us during migration.
149c33e1
MG
1650 */
1651 put_page(page);
340ef390 1652 return 1;
b32967ff
MG
1653}
1654
de466bd6
MG
1655bool pmd_trans_migrating(pmd_t pmd)
1656{
1657 struct page *page = pmd_page(pmd);
1658 return PageLocked(page);
1659}
1660
1661void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1662{
1663 struct page *page = pmd_page(*pmd);
1664 wait_on_page_locked(page);
1665}
1666
b32967ff
MG
1667/*
1668 * Attempt to migrate a misplaced page to the specified destination
1669 * node. Caller is expected to have an elevated reference count on
1670 * the page that will be dropped by this function before returning.
1671 */
1bc115d8
MG
1672int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1673 int node)
b32967ff
MG
1674{
1675 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1676 int isolated;
b32967ff
MG
1677 int nr_remaining;
1678 LIST_HEAD(migratepages);
1679
1680 /*
1bc115d8
MG
1681 * Don't migrate file pages that are mapped in multiple processes
1682 * with execute permissions as they are probably shared libraries.
b32967ff 1683 */
1bc115d8
MG
1684 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1685 (vma->vm_flags & VM_EXEC))
b32967ff 1686 goto out;
b32967ff
MG
1687
1688 /*
1689 * Rate-limit the amount of data that is being migrated to a node.
1690 * Optimal placement is no good if the memory bus is saturated and
1691 * all the time is being spent migrating!
1692 */
340ef390 1693 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1694 goto out;
b32967ff
MG
1695
1696 isolated = numamigrate_isolate_page(pgdat, page);
1697 if (!isolated)
1698 goto out;
1699
1700 list_add(&page->lru, &migratepages);
9c620e2b
HD
1701 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1702 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
b32967ff 1703 if (nr_remaining) {
59c82b70
JK
1704 if (!list_empty(&migratepages)) {
1705 list_del(&page->lru);
1706 dec_zone_page_state(page, NR_ISOLATED_ANON +
1707 page_is_file_cache(page));
1708 putback_lru_page(page);
1709 }
b32967ff
MG
1710 isolated = 0;
1711 } else
1712 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1713 BUG_ON(!list_empty(&migratepages));
7039e1db 1714 return isolated;
340ef390
HD
1715
1716out:
1717 put_page(page);
1718 return 0;
7039e1db 1719}
220018d3 1720#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1721
220018d3 1722#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1723/*
1724 * Migrates a THP to a given target node. page must be locked and is unlocked
1725 * before returning.
1726 */
b32967ff
MG
1727int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1728 struct vm_area_struct *vma,
1729 pmd_t *pmd, pmd_t entry,
1730 unsigned long address,
1731 struct page *page, int node)
1732{
c4088ebd 1733 spinlock_t *ptl;
b32967ff
MG
1734 pg_data_t *pgdat = NODE_DATA(node);
1735 int isolated = 0;
1736 struct page *new_page = NULL;
1737 struct mem_cgroup *memcg = NULL;
1738 int page_lru = page_is_file_cache(page);
f714f4f2
MG
1739 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1740 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2b4847e7 1741 pmd_t orig_entry;
b32967ff 1742
b32967ff
MG
1743 /*
1744 * Rate-limit the amount of data that is being migrated to a node.
1745 * Optimal placement is no good if the memory bus is saturated and
1746 * all the time is being spent migrating!
1747 */
d28d4335 1748 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1749 goto out_dropref;
1750
1751 new_page = alloc_pages_node(node,
1752 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
340ef390
HD
1753 if (!new_page)
1754 goto out_fail;
1755
90572890 1756 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
b32967ff
MG
1757
1758 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1759 if (!isolated) {
b32967ff 1760 put_page(new_page);
340ef390 1761 goto out_fail;
b32967ff
MG
1762 }
1763
b0943d61
MG
1764 if (mm_tlb_flush_pending(mm))
1765 flush_tlb_range(vma, mmun_start, mmun_end);
1766
b32967ff
MG
1767 /* Prepare a page as a migration target */
1768 __set_page_locked(new_page);
1769 SetPageSwapBacked(new_page);
1770
1771 /* anon mapping, we can simply copy page->mapping to the new page: */
1772 new_page->mapping = page->mapping;
1773 new_page->index = page->index;
1774 migrate_page_copy(new_page, page);
1775 WARN_ON(PageLRU(new_page));
1776
1777 /* Recheck the target PMD */
f714f4f2 1778 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 1779 ptl = pmd_lock(mm, pmd);
2b4847e7
MG
1780 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1781fail_putback:
c4088ebd 1782 spin_unlock(ptl);
f714f4f2 1783 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1784
1785 /* Reverse changes made by migrate_page_copy() */
1786 if (TestClearPageActive(new_page))
1787 SetPageActive(page);
1788 if (TestClearPageUnevictable(new_page))
1789 SetPageUnevictable(page);
1790 mlock_migrate_page(page, new_page);
1791
1792 unlock_page(new_page);
1793 put_page(new_page); /* Free it */
1794
a54a407f
MG
1795 /* Retake the callers reference and putback on LRU */
1796 get_page(page);
b32967ff 1797 putback_lru_page(page);
a54a407f
MG
1798 mod_zone_page_state(page_zone(page),
1799 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1800
1801 goto out_unlock;
b32967ff
MG
1802 }
1803
1804 /*
1805 * Traditional migration needs to prepare the memcg charge
1806 * transaction early to prevent the old page from being
1807 * uncharged when installing migration entries. Here we can
1808 * save the potential rollback and start the charge transfer
1809 * only when migration is already known to end successfully.
1810 */
1811 mem_cgroup_prepare_migration(page, new_page, &memcg);
1812
2b4847e7 1813 orig_entry = *pmd;
b32967ff 1814 entry = mk_pmd(new_page, vma->vm_page_prot);
b32967ff 1815 entry = pmd_mkhuge(entry);
2b4847e7 1816 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 1817
2b4847e7
MG
1818 /*
1819 * Clear the old entry under pagetable lock and establish the new PTE.
1820 * Any parallel GUP will either observe the old page blocking on the
1821 * page lock, block on the page table lock or observe the new page.
1822 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1823 * guarantee the copy is visible before the pagetable update.
1824 */
f714f4f2
MG
1825 flush_cache_range(vma, mmun_start, mmun_end);
1826 page_add_new_anon_rmap(new_page, vma, mmun_start);
1827 pmdp_clear_flush(vma, mmun_start, pmd);
1828 set_pmd_at(mm, mmun_start, pmd, entry);
1829 flush_tlb_range(vma, mmun_start, mmun_end);
ce4a9cc5 1830 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7
MG
1831
1832 if (page_count(page) != 2) {
f714f4f2
MG
1833 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1834 flush_tlb_range(vma, mmun_start, mmun_end);
2b4847e7
MG
1835 update_mmu_cache_pmd(vma, address, &entry);
1836 page_remove_rmap(new_page);
1837 goto fail_putback;
1838 }
1839
b32967ff 1840 page_remove_rmap(page);
2b4847e7 1841
b32967ff
MG
1842 /*
1843 * Finish the charge transaction under the page table lock to
1844 * prevent split_huge_page() from dividing up the charge
1845 * before it's fully transferred to the new page.
1846 */
1847 mem_cgroup_end_migration(memcg, page, new_page, true);
c4088ebd 1848 spin_unlock(ptl);
f714f4f2 1849 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1850
1851 unlock_page(new_page);
1852 unlock_page(page);
1853 put_page(page); /* Drop the rmap reference */
1854 put_page(page); /* Drop the LRU isolation reference */
1855
1856 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1857 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1858
b32967ff
MG
1859 mod_zone_page_state(page_zone(page),
1860 NR_ISOLATED_ANON + page_lru,
1861 -HPAGE_PMD_NR);
1862 return isolated;
1863
340ef390
HD
1864out_fail:
1865 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1866out_dropref:
2b4847e7
MG
1867 ptl = pmd_lock(mm, pmd);
1868 if (pmd_same(*pmd, entry)) {
1869 entry = pmd_mknonnuma(entry);
f714f4f2 1870 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
1871 update_mmu_cache_pmd(vma, address, &entry);
1872 }
1873 spin_unlock(ptl);
a54a407f 1874
eb4489f6 1875out_unlock:
340ef390 1876 unlock_page(page);
b32967ff 1877 put_page(page);
b32967ff
MG
1878 return 0;
1879}
7039e1db
PZ
1880#endif /* CONFIG_NUMA_BALANCING */
1881
1882#endif /* CONFIG_NUMA */