]>
Commit | Line | Data |
---|---|---|
b20a3503 CL |
1 | /* |
2 | * Memory Migration functionality - linux/mm/migration.c | |
3 | * | |
4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | |
5 | * | |
6 | * Page migration was first developed in the context of the memory hotplug | |
7 | * project. The main authors of the migration code are: | |
8 | * | |
9 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | |
10 | * Hirokazu Takahashi <taka@valinux.co.jp> | |
11 | * Dave Hansen <haveblue@us.ibm.com> | |
cde53535 | 12 | * Christoph Lameter |
b20a3503 CL |
13 | */ |
14 | ||
15 | #include <linux/migrate.h> | |
16 | #include <linux/module.h> | |
17 | #include <linux/swap.h> | |
0697212a | 18 | #include <linux/swapops.h> |
b20a3503 | 19 | #include <linux/pagemap.h> |
e23ca00b | 20 | #include <linux/buffer_head.h> |
b20a3503 | 21 | #include <linux/mm_inline.h> |
b488893a | 22 | #include <linux/nsproxy.h> |
b20a3503 CL |
23 | #include <linux/pagevec.h> |
24 | #include <linux/rmap.h> | |
25 | #include <linux/topology.h> | |
26 | #include <linux/cpu.h> | |
27 | #include <linux/cpuset.h> | |
04e62a29 | 28 | #include <linux/writeback.h> |
742755a1 CL |
29 | #include <linux/mempolicy.h> |
30 | #include <linux/vmalloc.h> | |
86c3a764 | 31 | #include <linux/security.h> |
8a9f3ccd | 32 | #include <linux/memcontrol.h> |
4f5ca265 | 33 | #include <linux/syscalls.h> |
b20a3503 CL |
34 | |
35 | #include "internal.h" | |
36 | ||
b20a3503 CL |
37 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
38 | ||
b20a3503 | 39 | /* |
742755a1 CL |
40 | * migrate_prep() needs to be called before we start compiling a list of pages |
41 | * to be migrated using isolate_lru_page(). | |
b20a3503 CL |
42 | */ |
43 | int migrate_prep(void) | |
44 | { | |
b20a3503 CL |
45 | /* |
46 | * Clear the LRU lists so pages can be isolated. | |
47 | * Note that pages may be moved off the LRU after we have | |
48 | * drained them. Those pages will fail to migrate like other | |
49 | * pages that may be busy. | |
50 | */ | |
51 | lru_add_drain_all(); | |
52 | ||
53 | return 0; | |
54 | } | |
55 | ||
b20a3503 | 56 | /* |
894bc310 LS |
57 | * Add isolated pages on the list back to the LRU under page lock |
58 | * to avoid leaking evictable pages back onto unevictable list. | |
b20a3503 CL |
59 | * |
60 | * returns the number of pages put back. | |
61 | */ | |
62 | int putback_lru_pages(struct list_head *l) | |
63 | { | |
64 | struct page *page; | |
65 | struct page *page2; | |
66 | int count = 0; | |
67 | ||
68 | list_for_each_entry_safe(page, page2, l, lru) { | |
e24f0b8f | 69 | list_del(&page->lru); |
894bc310 | 70 | putback_lru_page(page); |
b20a3503 CL |
71 | count++; |
72 | } | |
73 | return count; | |
74 | } | |
75 | ||
0697212a CL |
76 | /* |
77 | * Restore a potential migration pte to a working pte entry | |
78 | */ | |
04e62a29 | 79 | static void remove_migration_pte(struct vm_area_struct *vma, |
0697212a CL |
80 | struct page *old, struct page *new) |
81 | { | |
82 | struct mm_struct *mm = vma->vm_mm; | |
83 | swp_entry_t entry; | |
84 | pgd_t *pgd; | |
85 | pud_t *pud; | |
86 | pmd_t *pmd; | |
87 | pte_t *ptep, pte; | |
88 | spinlock_t *ptl; | |
04e62a29 CL |
89 | unsigned long addr = page_address_in_vma(new, vma); |
90 | ||
91 | if (addr == -EFAULT) | |
92 | return; | |
0697212a CL |
93 | |
94 | pgd = pgd_offset(mm, addr); | |
95 | if (!pgd_present(*pgd)) | |
96 | return; | |
97 | ||
98 | pud = pud_offset(pgd, addr); | |
99 | if (!pud_present(*pud)) | |
100 | return; | |
101 | ||
102 | pmd = pmd_offset(pud, addr); | |
103 | if (!pmd_present(*pmd)) | |
104 | return; | |
105 | ||
106 | ptep = pte_offset_map(pmd, addr); | |
107 | ||
108 | if (!is_swap_pte(*ptep)) { | |
109 | pte_unmap(ptep); | |
110 | return; | |
111 | } | |
112 | ||
113 | ptl = pte_lockptr(mm, pmd); | |
114 | spin_lock(ptl); | |
115 | pte = *ptep; | |
116 | if (!is_swap_pte(pte)) | |
117 | goto out; | |
118 | ||
119 | entry = pte_to_swp_entry(pte); | |
120 | ||
121 | if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) | |
122 | goto out; | |
123 | ||
98837c7f HD |
124 | /* |
125 | * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge. | |
126 | * Failure is not an option here: we're now expected to remove every | |
127 | * migration pte, and will cause crashes otherwise. Normally this | |
128 | * is not an issue: mem_cgroup_prepare_migration bumped up the old | |
129 | * page_cgroup count for safety, that's now attached to the new page, | |
130 | * so this charge should just be another incrementation of the count, | |
131 | * to keep in balance with rmap.c's mem_cgroup_uncharging. But if | |
132 | * there's been a force_empty, those reference counts may no longer | |
133 | * be reliable, and this charge can actually fail: oh well, we don't | |
134 | * make the situation any worse by proceeding as if it had succeeded. | |
135 | */ | |
136 | mem_cgroup_charge(new, mm, GFP_ATOMIC); | |
137 | ||
0697212a CL |
138 | get_page(new); |
139 | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | |
140 | if (is_write_migration_entry(entry)) | |
141 | pte = pte_mkwrite(pte); | |
97ee0524 | 142 | flush_cache_page(vma, addr, pte_pfn(pte)); |
0697212a | 143 | set_pte_at(mm, addr, ptep, pte); |
04e62a29 CL |
144 | |
145 | if (PageAnon(new)) | |
146 | page_add_anon_rmap(new, vma, addr); | |
147 | else | |
148 | page_add_file_rmap(new); | |
149 | ||
150 | /* No need to invalidate - it was non-present before */ | |
151 | update_mmu_cache(vma, addr, pte); | |
04e62a29 | 152 | |
0697212a CL |
153 | out: |
154 | pte_unmap_unlock(ptep, ptl); | |
155 | } | |
156 | ||
157 | /* | |
04e62a29 CL |
158 | * Note that remove_file_migration_ptes will only work on regular mappings, |
159 | * Nonlinear mappings do not use migration entries. | |
160 | */ | |
161 | static void remove_file_migration_ptes(struct page *old, struct page *new) | |
162 | { | |
163 | struct vm_area_struct *vma; | |
164 | struct address_space *mapping = page_mapping(new); | |
165 | struct prio_tree_iter iter; | |
166 | pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
167 | ||
168 | if (!mapping) | |
169 | return; | |
170 | ||
171 | spin_lock(&mapping->i_mmap_lock); | |
172 | ||
173 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) | |
174 | remove_migration_pte(vma, old, new); | |
175 | ||
176 | spin_unlock(&mapping->i_mmap_lock); | |
177 | } | |
178 | ||
179 | /* | |
0697212a CL |
180 | * Must hold mmap_sem lock on at least one of the vmas containing |
181 | * the page so that the anon_vma cannot vanish. | |
182 | */ | |
04e62a29 | 183 | static void remove_anon_migration_ptes(struct page *old, struct page *new) |
0697212a CL |
184 | { |
185 | struct anon_vma *anon_vma; | |
186 | struct vm_area_struct *vma; | |
187 | unsigned long mapping; | |
188 | ||
189 | mapping = (unsigned long)new->mapping; | |
190 | ||
191 | if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) | |
192 | return; | |
193 | ||
194 | /* | |
195 | * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. | |
196 | */ | |
197 | anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); | |
198 | spin_lock(&anon_vma->lock); | |
199 | ||
200 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) | |
04e62a29 | 201 | remove_migration_pte(vma, old, new); |
0697212a CL |
202 | |
203 | spin_unlock(&anon_vma->lock); | |
204 | } | |
205 | ||
04e62a29 CL |
206 | /* |
207 | * Get rid of all migration entries and replace them by | |
208 | * references to the indicated page. | |
209 | */ | |
210 | static void remove_migration_ptes(struct page *old, struct page *new) | |
211 | { | |
212 | if (PageAnon(new)) | |
213 | remove_anon_migration_ptes(old, new); | |
214 | else | |
215 | remove_file_migration_ptes(old, new); | |
216 | } | |
217 | ||
0697212a CL |
218 | /* |
219 | * Something used the pte of a page under migration. We need to | |
220 | * get to the page and wait until migration is finished. | |
221 | * When we return from this function the fault will be retried. | |
222 | * | |
223 | * This function is called from do_swap_page(). | |
224 | */ | |
225 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | |
226 | unsigned long address) | |
227 | { | |
228 | pte_t *ptep, pte; | |
229 | spinlock_t *ptl; | |
230 | swp_entry_t entry; | |
231 | struct page *page; | |
232 | ||
233 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
234 | pte = *ptep; | |
235 | if (!is_swap_pte(pte)) | |
236 | goto out; | |
237 | ||
238 | entry = pte_to_swp_entry(pte); | |
239 | if (!is_migration_entry(entry)) | |
240 | goto out; | |
241 | ||
242 | page = migration_entry_to_page(entry); | |
243 | ||
e286781d NP |
244 | /* |
245 | * Once radix-tree replacement of page migration started, page_count | |
246 | * *must* be zero. And, we don't want to call wait_on_page_locked() | |
247 | * against a page without get_page(). | |
248 | * So, we use get_page_unless_zero(), here. Even failed, page fault | |
249 | * will occur again. | |
250 | */ | |
251 | if (!get_page_unless_zero(page)) | |
252 | goto out; | |
0697212a CL |
253 | pte_unmap_unlock(ptep, ptl); |
254 | wait_on_page_locked(page); | |
255 | put_page(page); | |
256 | return; | |
257 | out: | |
258 | pte_unmap_unlock(ptep, ptl); | |
259 | } | |
260 | ||
b20a3503 | 261 | /* |
c3fcf8a5 | 262 | * Replace the page in the mapping. |
5b5c7120 CL |
263 | * |
264 | * The number of remaining references must be: | |
265 | * 1 for anonymous pages without a mapping | |
266 | * 2 for pages with a mapping | |
267 | * 3 for pages with a mapping and PagePrivate set. | |
b20a3503 | 268 | */ |
2d1db3b1 CL |
269 | static int migrate_page_move_mapping(struct address_space *mapping, |
270 | struct page *newpage, struct page *page) | |
b20a3503 | 271 | { |
e286781d | 272 | int expected_count; |
7cf9c2c7 | 273 | void **pslot; |
b20a3503 | 274 | |
6c5240ae | 275 | if (!mapping) { |
0e8c7d0f | 276 | /* Anonymous page without mapping */ |
6c5240ae CL |
277 | if (page_count(page) != 1) |
278 | return -EAGAIN; | |
279 | return 0; | |
280 | } | |
281 | ||
19fd6231 | 282 | spin_lock_irq(&mapping->tree_lock); |
b20a3503 | 283 | |
7cf9c2c7 NP |
284 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
285 | page_index(page)); | |
b20a3503 | 286 | |
e286781d NP |
287 | expected_count = 2 + !!PagePrivate(page); |
288 | if (page_count(page) != expected_count || | |
7cf9c2c7 | 289 | (struct page *)radix_tree_deref_slot(pslot) != page) { |
19fd6231 | 290 | spin_unlock_irq(&mapping->tree_lock); |
e23ca00b | 291 | return -EAGAIN; |
b20a3503 CL |
292 | } |
293 | ||
e286781d | 294 | if (!page_freeze_refs(page, expected_count)) { |
19fd6231 | 295 | spin_unlock_irq(&mapping->tree_lock); |
e286781d NP |
296 | return -EAGAIN; |
297 | } | |
298 | ||
b20a3503 CL |
299 | /* |
300 | * Now we know that no one else is looking at the page. | |
b20a3503 | 301 | */ |
7cf9c2c7 | 302 | get_page(newpage); /* add cache reference */ |
6c5240ae | 303 | #ifdef CONFIG_SWAP |
b20a3503 CL |
304 | if (PageSwapCache(page)) { |
305 | SetPageSwapCache(newpage); | |
306 | set_page_private(newpage, page_private(page)); | |
307 | } | |
6c5240ae | 308 | #endif |
b20a3503 | 309 | |
7cf9c2c7 NP |
310 | radix_tree_replace_slot(pslot, newpage); |
311 | ||
e286781d | 312 | page_unfreeze_refs(page, expected_count); |
7cf9c2c7 NP |
313 | /* |
314 | * Drop cache reference from old page. | |
315 | * We know this isn't the last reference. | |
316 | */ | |
b20a3503 | 317 | __put_page(page); |
7cf9c2c7 | 318 | |
0e8c7d0f CL |
319 | /* |
320 | * If moved to a different zone then also account | |
321 | * the page for that zone. Other VM counters will be | |
322 | * taken care of when we establish references to the | |
323 | * new page and drop references to the old page. | |
324 | * | |
325 | * Note that anonymous pages are accounted for | |
326 | * via NR_FILE_PAGES and NR_ANON_PAGES if they | |
327 | * are mapped to swap space. | |
328 | */ | |
329 | __dec_zone_page_state(page, NR_FILE_PAGES); | |
330 | __inc_zone_page_state(newpage, NR_FILE_PAGES); | |
331 | ||
19fd6231 NP |
332 | spin_unlock_irq(&mapping->tree_lock); |
333 | if (!PageSwapCache(newpage)) | |
69029cd5 | 334 | mem_cgroup_uncharge_cache_page(page); |
b20a3503 CL |
335 | |
336 | return 0; | |
337 | } | |
b20a3503 CL |
338 | |
339 | /* | |
340 | * Copy the page to its new location | |
341 | */ | |
e7340f73 | 342 | static void migrate_page_copy(struct page *newpage, struct page *page) |
b20a3503 CL |
343 | { |
344 | copy_highpage(newpage, page); | |
345 | ||
346 | if (PageError(page)) | |
347 | SetPageError(newpage); | |
348 | if (PageReferenced(page)) | |
349 | SetPageReferenced(newpage); | |
350 | if (PageUptodate(page)) | |
351 | SetPageUptodate(newpage); | |
894bc310 LS |
352 | if (TestClearPageActive(page)) { |
353 | VM_BUG_ON(PageUnevictable(page)); | |
b20a3503 | 354 | SetPageActive(newpage); |
894bc310 LS |
355 | } else |
356 | unevictable_migrate_page(newpage, page); | |
b20a3503 CL |
357 | if (PageChecked(page)) |
358 | SetPageChecked(newpage); | |
359 | if (PageMappedToDisk(page)) | |
360 | SetPageMappedToDisk(newpage); | |
361 | ||
362 | if (PageDirty(page)) { | |
363 | clear_page_dirty_for_io(page); | |
3a902c5f NP |
364 | /* |
365 | * Want to mark the page and the radix tree as dirty, and | |
366 | * redo the accounting that clear_page_dirty_for_io undid, | |
367 | * but we can't use set_page_dirty because that function | |
368 | * is actually a signal that all of the page has become dirty. | |
369 | * Wheras only part of our page may be dirty. | |
370 | */ | |
371 | __set_page_dirty_nobuffers(newpage); | |
b20a3503 CL |
372 | } |
373 | ||
b291f000 NP |
374 | mlock_migrate_page(newpage, page); |
375 | ||
6c5240ae | 376 | #ifdef CONFIG_SWAP |
b20a3503 | 377 | ClearPageSwapCache(page); |
6c5240ae | 378 | #endif |
b20a3503 CL |
379 | ClearPagePrivate(page); |
380 | set_page_private(page, 0); | |
381 | page->mapping = NULL; | |
382 | ||
383 | /* | |
384 | * If any waiters have accumulated on the new page then | |
385 | * wake them up. | |
386 | */ | |
387 | if (PageWriteback(newpage)) | |
388 | end_page_writeback(newpage); | |
389 | } | |
b20a3503 | 390 | |
1d8b85cc CL |
391 | /************************************************************ |
392 | * Migration functions | |
393 | ***********************************************************/ | |
394 | ||
395 | /* Always fail migration. Used for mappings that are not movable */ | |
2d1db3b1 CL |
396 | int fail_migrate_page(struct address_space *mapping, |
397 | struct page *newpage, struct page *page) | |
1d8b85cc CL |
398 | { |
399 | return -EIO; | |
400 | } | |
401 | EXPORT_SYMBOL(fail_migrate_page); | |
402 | ||
b20a3503 CL |
403 | /* |
404 | * Common logic to directly migrate a single page suitable for | |
405 | * pages that do not use PagePrivate. | |
406 | * | |
407 | * Pages are locked upon entry and exit. | |
408 | */ | |
2d1db3b1 CL |
409 | int migrate_page(struct address_space *mapping, |
410 | struct page *newpage, struct page *page) | |
b20a3503 CL |
411 | { |
412 | int rc; | |
413 | ||
414 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | |
415 | ||
2d1db3b1 | 416 | rc = migrate_page_move_mapping(mapping, newpage, page); |
b20a3503 CL |
417 | |
418 | if (rc) | |
419 | return rc; | |
420 | ||
421 | migrate_page_copy(newpage, page); | |
b20a3503 CL |
422 | return 0; |
423 | } | |
424 | EXPORT_SYMBOL(migrate_page); | |
425 | ||
9361401e | 426 | #ifdef CONFIG_BLOCK |
1d8b85cc CL |
427 | /* |
428 | * Migration function for pages with buffers. This function can only be used | |
429 | * if the underlying filesystem guarantees that no other references to "page" | |
430 | * exist. | |
431 | */ | |
2d1db3b1 CL |
432 | int buffer_migrate_page(struct address_space *mapping, |
433 | struct page *newpage, struct page *page) | |
1d8b85cc | 434 | { |
1d8b85cc CL |
435 | struct buffer_head *bh, *head; |
436 | int rc; | |
437 | ||
1d8b85cc | 438 | if (!page_has_buffers(page)) |
2d1db3b1 | 439 | return migrate_page(mapping, newpage, page); |
1d8b85cc CL |
440 | |
441 | head = page_buffers(page); | |
442 | ||
2d1db3b1 | 443 | rc = migrate_page_move_mapping(mapping, newpage, page); |
1d8b85cc CL |
444 | |
445 | if (rc) | |
446 | return rc; | |
447 | ||
448 | bh = head; | |
449 | do { | |
450 | get_bh(bh); | |
451 | lock_buffer(bh); | |
452 | bh = bh->b_this_page; | |
453 | ||
454 | } while (bh != head); | |
455 | ||
456 | ClearPagePrivate(page); | |
457 | set_page_private(newpage, page_private(page)); | |
458 | set_page_private(page, 0); | |
459 | put_page(page); | |
460 | get_page(newpage); | |
461 | ||
462 | bh = head; | |
463 | do { | |
464 | set_bh_page(bh, newpage, bh_offset(bh)); | |
465 | bh = bh->b_this_page; | |
466 | ||
467 | } while (bh != head); | |
468 | ||
469 | SetPagePrivate(newpage); | |
470 | ||
471 | migrate_page_copy(newpage, page); | |
472 | ||
473 | bh = head; | |
474 | do { | |
475 | unlock_buffer(bh); | |
476 | put_bh(bh); | |
477 | bh = bh->b_this_page; | |
478 | ||
479 | } while (bh != head); | |
480 | ||
481 | return 0; | |
482 | } | |
483 | EXPORT_SYMBOL(buffer_migrate_page); | |
9361401e | 484 | #endif |
1d8b85cc | 485 | |
04e62a29 CL |
486 | /* |
487 | * Writeback a page to clean the dirty state | |
488 | */ | |
489 | static int writeout(struct address_space *mapping, struct page *page) | |
8351a6e4 | 490 | { |
04e62a29 CL |
491 | struct writeback_control wbc = { |
492 | .sync_mode = WB_SYNC_NONE, | |
493 | .nr_to_write = 1, | |
494 | .range_start = 0, | |
495 | .range_end = LLONG_MAX, | |
496 | .nonblocking = 1, | |
497 | .for_reclaim = 1 | |
498 | }; | |
499 | int rc; | |
500 | ||
501 | if (!mapping->a_ops->writepage) | |
502 | /* No write method for the address space */ | |
503 | return -EINVAL; | |
504 | ||
505 | if (!clear_page_dirty_for_io(page)) | |
506 | /* Someone else already triggered a write */ | |
507 | return -EAGAIN; | |
508 | ||
8351a6e4 | 509 | /* |
04e62a29 CL |
510 | * A dirty page may imply that the underlying filesystem has |
511 | * the page on some queue. So the page must be clean for | |
512 | * migration. Writeout may mean we loose the lock and the | |
513 | * page state is no longer what we checked for earlier. | |
514 | * At this point we know that the migration attempt cannot | |
515 | * be successful. | |
8351a6e4 | 516 | */ |
04e62a29 | 517 | remove_migration_ptes(page, page); |
8351a6e4 | 518 | |
04e62a29 CL |
519 | rc = mapping->a_ops->writepage(page, &wbc); |
520 | if (rc < 0) | |
521 | /* I/O Error writing */ | |
522 | return -EIO; | |
8351a6e4 | 523 | |
04e62a29 CL |
524 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
525 | /* unlocked. Relock */ | |
526 | lock_page(page); | |
527 | ||
528 | return -EAGAIN; | |
529 | } | |
530 | ||
531 | /* | |
532 | * Default handling if a filesystem does not provide a migration function. | |
533 | */ | |
534 | static int fallback_migrate_page(struct address_space *mapping, | |
535 | struct page *newpage, struct page *page) | |
536 | { | |
537 | if (PageDirty(page)) | |
538 | return writeout(mapping, page); | |
8351a6e4 CL |
539 | |
540 | /* | |
541 | * Buffers may be managed in a filesystem specific way. | |
542 | * We must have no buffers or drop them. | |
543 | */ | |
b398f6bf | 544 | if (PagePrivate(page) && |
8351a6e4 CL |
545 | !try_to_release_page(page, GFP_KERNEL)) |
546 | return -EAGAIN; | |
547 | ||
548 | return migrate_page(mapping, newpage, page); | |
549 | } | |
550 | ||
e24f0b8f CL |
551 | /* |
552 | * Move a page to a newly allocated page | |
553 | * The page is locked and all ptes have been successfully removed. | |
554 | * | |
555 | * The new page will have replaced the old page if this function | |
556 | * is successful. | |
894bc310 LS |
557 | * |
558 | * Return value: | |
559 | * < 0 - error code | |
560 | * == 0 - success | |
e24f0b8f CL |
561 | */ |
562 | static int move_to_new_page(struct page *newpage, struct page *page) | |
563 | { | |
564 | struct address_space *mapping; | |
565 | int rc; | |
566 | ||
567 | /* | |
568 | * Block others from accessing the page when we get around to | |
569 | * establishing additional references. We are the only one | |
570 | * holding a reference to the new page at this point. | |
571 | */ | |
529ae9aa | 572 | if (!trylock_page(newpage)) |
e24f0b8f CL |
573 | BUG(); |
574 | ||
575 | /* Prepare mapping for the new page.*/ | |
576 | newpage->index = page->index; | |
577 | newpage->mapping = page->mapping; | |
b2e18538 RR |
578 | if (PageSwapBacked(page)) |
579 | SetPageSwapBacked(newpage); | |
e24f0b8f CL |
580 | |
581 | mapping = page_mapping(page); | |
582 | if (!mapping) | |
583 | rc = migrate_page(mapping, newpage, page); | |
584 | else if (mapping->a_ops->migratepage) | |
585 | /* | |
586 | * Most pages have a mapping and most filesystems | |
587 | * should provide a migration function. Anonymous | |
588 | * pages are part of swap space which also has its | |
589 | * own migration function. This is the most common | |
590 | * path for page migration. | |
591 | */ | |
592 | rc = mapping->a_ops->migratepage(mapping, | |
593 | newpage, page); | |
594 | else | |
595 | rc = fallback_migrate_page(mapping, newpage, page); | |
596 | ||
ae41be37 | 597 | if (!rc) { |
e24f0b8f | 598 | remove_migration_ptes(page, newpage); |
ae41be37 | 599 | } else |
e24f0b8f CL |
600 | newpage->mapping = NULL; |
601 | ||
602 | unlock_page(newpage); | |
603 | ||
604 | return rc; | |
605 | } | |
606 | ||
607 | /* | |
608 | * Obtain the lock on page, remove all ptes and migrate the page | |
609 | * to the newly allocated page in newpage. | |
610 | */ | |
95a402c3 CL |
611 | static int unmap_and_move(new_page_t get_new_page, unsigned long private, |
612 | struct page *page, int force) | |
e24f0b8f CL |
613 | { |
614 | int rc = 0; | |
742755a1 CL |
615 | int *result = NULL; |
616 | struct page *newpage = get_new_page(page, private, &result); | |
989f89c5 | 617 | int rcu_locked = 0; |
ae41be37 | 618 | int charge = 0; |
95a402c3 CL |
619 | |
620 | if (!newpage) | |
621 | return -ENOMEM; | |
e24f0b8f | 622 | |
894bc310 | 623 | if (page_count(page) == 1) { |
e24f0b8f | 624 | /* page was freed from under us. So we are done. */ |
95a402c3 | 625 | goto move_newpage; |
894bc310 | 626 | } |
e24f0b8f | 627 | |
e8589cc1 KH |
628 | charge = mem_cgroup_prepare_migration(page, newpage); |
629 | if (charge == -ENOMEM) { | |
630 | rc = -ENOMEM; | |
631 | goto move_newpage; | |
632 | } | |
633 | /* prepare cgroup just returns 0 or -ENOMEM */ | |
634 | BUG_ON(charge); | |
635 | ||
e24f0b8f | 636 | rc = -EAGAIN; |
529ae9aa | 637 | if (!trylock_page(page)) { |
e24f0b8f | 638 | if (!force) |
95a402c3 | 639 | goto move_newpage; |
e24f0b8f CL |
640 | lock_page(page); |
641 | } | |
642 | ||
643 | if (PageWriteback(page)) { | |
644 | if (!force) | |
645 | goto unlock; | |
646 | wait_on_page_writeback(page); | |
647 | } | |
e24f0b8f | 648 | /* |
dc386d4d KH |
649 | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, |
650 | * we cannot notice that anon_vma is freed while we migrates a page. | |
651 | * This rcu_read_lock() delays freeing anon_vma pointer until the end | |
652 | * of migration. File cache pages are no problem because of page_lock() | |
989f89c5 KH |
653 | * File Caches may use write_page() or lock_page() in migration, then, |
654 | * just care Anon page here. | |
dc386d4d | 655 | */ |
989f89c5 KH |
656 | if (PageAnon(page)) { |
657 | rcu_read_lock(); | |
658 | rcu_locked = 1; | |
659 | } | |
62e1c553 | 660 | |
dc386d4d | 661 | /* |
62e1c553 SL |
662 | * Corner case handling: |
663 | * 1. When a new swap-cache page is read into, it is added to the LRU | |
664 | * and treated as swapcache but it has no rmap yet. | |
665 | * Calling try_to_unmap() against a page->mapping==NULL page will | |
666 | * trigger a BUG. So handle it here. | |
667 | * 2. An orphaned page (see truncate_complete_page) might have | |
668 | * fs-private metadata. The page can be picked up due to memory | |
669 | * offlining. Everywhere else except page reclaim, the page is | |
670 | * invisible to the vm, so the page can not be migrated. So try to | |
671 | * free the metadata, so the page can be freed. | |
e24f0b8f | 672 | */ |
62e1c553 SL |
673 | if (!page->mapping) { |
674 | if (!PageAnon(page) && PagePrivate(page)) { | |
675 | /* | |
676 | * Go direct to try_to_free_buffers() here because | |
677 | * a) that's what try_to_release_page() would do anyway | |
678 | * b) we may be under rcu_read_lock() here, so we can't | |
679 | * use GFP_KERNEL which is what try_to_release_page() | |
680 | * needs to be effective. | |
681 | */ | |
682 | try_to_free_buffers(page); | |
683 | } | |
dc386d4d | 684 | goto rcu_unlock; |
62e1c553 SL |
685 | } |
686 | ||
dc386d4d | 687 | /* Establish migration ptes or remove ptes */ |
e6a1530d | 688 | try_to_unmap(page, 1); |
dc386d4d | 689 | |
e6a1530d CL |
690 | if (!page_mapped(page)) |
691 | rc = move_to_new_page(newpage, page); | |
e24f0b8f | 692 | |
e8589cc1 | 693 | if (rc) |
e24f0b8f | 694 | remove_migration_ptes(page, page); |
dc386d4d | 695 | rcu_unlock: |
989f89c5 KH |
696 | if (rcu_locked) |
697 | rcu_read_unlock(); | |
e6a1530d | 698 | |
e24f0b8f CL |
699 | unlock: |
700 | unlock_page(page); | |
95a402c3 | 701 | |
e24f0b8f | 702 | if (rc != -EAGAIN) { |
aaa994b3 CL |
703 | /* |
704 | * A page that has been migrated has all references | |
705 | * removed and will be freed. A page that has not been | |
706 | * migrated will have kepts its references and be | |
707 | * restored. | |
708 | */ | |
709 | list_del(&page->lru); | |
894bc310 | 710 | putback_lru_page(page); |
e24f0b8f | 711 | } |
95a402c3 CL |
712 | |
713 | move_newpage: | |
e8589cc1 KH |
714 | if (!charge) |
715 | mem_cgroup_end_migration(newpage); | |
894bc310 | 716 | |
95a402c3 CL |
717 | /* |
718 | * Move the new page to the LRU. If migration was not successful | |
719 | * then this will free the page. | |
720 | */ | |
894bc310 LS |
721 | putback_lru_page(newpage); |
722 | ||
742755a1 CL |
723 | if (result) { |
724 | if (rc) | |
725 | *result = rc; | |
726 | else | |
727 | *result = page_to_nid(newpage); | |
728 | } | |
e24f0b8f CL |
729 | return rc; |
730 | } | |
731 | ||
b20a3503 CL |
732 | /* |
733 | * migrate_pages | |
734 | * | |
95a402c3 CL |
735 | * The function takes one list of pages to migrate and a function |
736 | * that determines from the page to be migrated and the private data | |
737 | * the target of the move and allocates the page. | |
b20a3503 CL |
738 | * |
739 | * The function returns after 10 attempts or if no pages | |
740 | * are movable anymore because to has become empty | |
aaa994b3 | 741 | * or no retryable pages exist anymore. All pages will be |
e9534b3f | 742 | * returned to the LRU or freed. |
b20a3503 | 743 | * |
95a402c3 | 744 | * Return: Number of pages not migrated or error code. |
b20a3503 | 745 | */ |
95a402c3 CL |
746 | int migrate_pages(struct list_head *from, |
747 | new_page_t get_new_page, unsigned long private) | |
b20a3503 | 748 | { |
e24f0b8f | 749 | int retry = 1; |
b20a3503 CL |
750 | int nr_failed = 0; |
751 | int pass = 0; | |
752 | struct page *page; | |
753 | struct page *page2; | |
754 | int swapwrite = current->flags & PF_SWAPWRITE; | |
755 | int rc; | |
756 | ||
757 | if (!swapwrite) | |
758 | current->flags |= PF_SWAPWRITE; | |
759 | ||
e24f0b8f CL |
760 | for(pass = 0; pass < 10 && retry; pass++) { |
761 | retry = 0; | |
b20a3503 | 762 | |
e24f0b8f | 763 | list_for_each_entry_safe(page, page2, from, lru) { |
e24f0b8f | 764 | cond_resched(); |
2d1db3b1 | 765 | |
95a402c3 CL |
766 | rc = unmap_and_move(get_new_page, private, |
767 | page, pass > 2); | |
2d1db3b1 | 768 | |
e24f0b8f | 769 | switch(rc) { |
95a402c3 CL |
770 | case -ENOMEM: |
771 | goto out; | |
e24f0b8f | 772 | case -EAGAIN: |
2d1db3b1 | 773 | retry++; |
e24f0b8f CL |
774 | break; |
775 | case 0: | |
e24f0b8f CL |
776 | break; |
777 | default: | |
2d1db3b1 | 778 | /* Permanent failure */ |
2d1db3b1 | 779 | nr_failed++; |
e24f0b8f | 780 | break; |
2d1db3b1 | 781 | } |
b20a3503 CL |
782 | } |
783 | } | |
95a402c3 CL |
784 | rc = 0; |
785 | out: | |
b20a3503 CL |
786 | if (!swapwrite) |
787 | current->flags &= ~PF_SWAPWRITE; | |
788 | ||
aaa994b3 | 789 | putback_lru_pages(from); |
b20a3503 | 790 | |
95a402c3 CL |
791 | if (rc) |
792 | return rc; | |
b20a3503 | 793 | |
95a402c3 | 794 | return nr_failed + retry; |
b20a3503 | 795 | } |
95a402c3 | 796 | |
742755a1 CL |
797 | #ifdef CONFIG_NUMA |
798 | /* | |
799 | * Move a list of individual pages | |
800 | */ | |
801 | struct page_to_node { | |
802 | unsigned long addr; | |
803 | struct page *page; | |
804 | int node; | |
805 | int status; | |
806 | }; | |
807 | ||
808 | static struct page *new_page_node(struct page *p, unsigned long private, | |
809 | int **result) | |
810 | { | |
811 | struct page_to_node *pm = (struct page_to_node *)private; | |
812 | ||
813 | while (pm->node != MAX_NUMNODES && pm->page != p) | |
814 | pm++; | |
815 | ||
816 | if (pm->node == MAX_NUMNODES) | |
817 | return NULL; | |
818 | ||
819 | *result = &pm->status; | |
820 | ||
769848c0 MG |
821 | return alloc_pages_node(pm->node, |
822 | GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); | |
742755a1 CL |
823 | } |
824 | ||
825 | /* | |
826 | * Move a set of pages as indicated in the pm array. The addr | |
827 | * field must be set to the virtual address of the page to be moved | |
828 | * and the node number must contain a valid target node. | |
829 | */ | |
830 | static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, | |
831 | int migrate_all) | |
832 | { | |
833 | int err; | |
834 | struct page_to_node *pp; | |
835 | LIST_HEAD(pagelist); | |
836 | ||
837 | down_read(&mm->mmap_sem); | |
838 | ||
839 | /* | |
840 | * Build a list of pages to migrate | |
841 | */ | |
842 | migrate_prep(); | |
843 | for (pp = pm; pp->node != MAX_NUMNODES; pp++) { | |
844 | struct vm_area_struct *vma; | |
845 | struct page *page; | |
846 | ||
847 | /* | |
848 | * A valid page pointer that will not match any of the | |
849 | * pages that will be moved. | |
850 | */ | |
851 | pp->page = ZERO_PAGE(0); | |
852 | ||
853 | err = -EFAULT; | |
854 | vma = find_vma(mm, pp->addr); | |
0dc952dc | 855 | if (!vma || !vma_migratable(vma)) |
742755a1 CL |
856 | goto set_status; |
857 | ||
858 | page = follow_page(vma, pp->addr, FOLL_GET); | |
89f5b7da LT |
859 | |
860 | err = PTR_ERR(page); | |
861 | if (IS_ERR(page)) | |
862 | goto set_status; | |
863 | ||
742755a1 CL |
864 | err = -ENOENT; |
865 | if (!page) | |
866 | goto set_status; | |
867 | ||
868 | if (PageReserved(page)) /* Check for zero page */ | |
869 | goto put_and_set; | |
870 | ||
871 | pp->page = page; | |
872 | err = page_to_nid(page); | |
873 | ||
874 | if (err == pp->node) | |
875 | /* | |
876 | * Node already in the right place | |
877 | */ | |
878 | goto put_and_set; | |
879 | ||
880 | err = -EACCES; | |
881 | if (page_mapcount(page) > 1 && | |
882 | !migrate_all) | |
883 | goto put_and_set; | |
884 | ||
62695a84 NP |
885 | err = isolate_lru_page(page); |
886 | if (!err) | |
887 | list_add_tail(&page->lru, &pagelist); | |
742755a1 CL |
888 | put_and_set: |
889 | /* | |
890 | * Either remove the duplicate refcount from | |
891 | * isolate_lru_page() or drop the page ref if it was | |
892 | * not isolated. | |
893 | */ | |
894 | put_page(page); | |
895 | set_status: | |
896 | pp->status = err; | |
897 | } | |
898 | ||
e78bbfa8 | 899 | err = 0; |
742755a1 CL |
900 | if (!list_empty(&pagelist)) |
901 | err = migrate_pages(&pagelist, new_page_node, | |
902 | (unsigned long)pm); | |
742755a1 CL |
903 | |
904 | up_read(&mm->mmap_sem); | |
905 | return err; | |
906 | } | |
907 | ||
908 | /* | |
909 | * Determine the nodes of a list of pages. The addr in the pm array | |
910 | * must have been set to the virtual address of which we want to determine | |
911 | * the node number. | |
912 | */ | |
913 | static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) | |
914 | { | |
915 | down_read(&mm->mmap_sem); | |
916 | ||
917 | for ( ; pm->node != MAX_NUMNODES; pm++) { | |
918 | struct vm_area_struct *vma; | |
919 | struct page *page; | |
920 | int err; | |
921 | ||
922 | err = -EFAULT; | |
923 | vma = find_vma(mm, pm->addr); | |
924 | if (!vma) | |
925 | goto set_status; | |
926 | ||
927 | page = follow_page(vma, pm->addr, 0); | |
89f5b7da LT |
928 | |
929 | err = PTR_ERR(page); | |
930 | if (IS_ERR(page)) | |
931 | goto set_status; | |
932 | ||
742755a1 CL |
933 | err = -ENOENT; |
934 | /* Use PageReserved to check for zero page */ | |
935 | if (!page || PageReserved(page)) | |
936 | goto set_status; | |
937 | ||
938 | err = page_to_nid(page); | |
939 | set_status: | |
940 | pm->status = err; | |
941 | } | |
942 | ||
943 | up_read(&mm->mmap_sem); | |
944 | return 0; | |
945 | } | |
946 | ||
947 | /* | |
948 | * Move a list of pages in the address space of the currently executing | |
949 | * process. | |
950 | */ | |
951 | asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, | |
952 | const void __user * __user *pages, | |
953 | const int __user *nodes, | |
954 | int __user *status, int flags) | |
955 | { | |
956 | int err = 0; | |
957 | int i; | |
958 | struct task_struct *task; | |
959 | nodemask_t task_nodes; | |
960 | struct mm_struct *mm; | |
961 | struct page_to_node *pm = NULL; | |
962 | ||
963 | /* Check flags */ | |
964 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | |
965 | return -EINVAL; | |
966 | ||
967 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | |
968 | return -EPERM; | |
969 | ||
970 | /* Find the mm_struct */ | |
971 | read_lock(&tasklist_lock); | |
228ebcbe | 972 | task = pid ? find_task_by_vpid(pid) : current; |
742755a1 CL |
973 | if (!task) { |
974 | read_unlock(&tasklist_lock); | |
975 | return -ESRCH; | |
976 | } | |
977 | mm = get_task_mm(task); | |
978 | read_unlock(&tasklist_lock); | |
979 | ||
980 | if (!mm) | |
981 | return -EINVAL; | |
982 | ||
983 | /* | |
984 | * Check if this process has the right to modify the specified | |
985 | * process. The right exists if the process has administrative | |
986 | * capabilities, superuser privileges or the same | |
987 | * userid as the target process. | |
988 | */ | |
989 | if ((current->euid != task->suid) && (current->euid != task->uid) && | |
990 | (current->uid != task->suid) && (current->uid != task->uid) && | |
991 | !capable(CAP_SYS_NICE)) { | |
992 | err = -EPERM; | |
993 | goto out2; | |
994 | } | |
995 | ||
86c3a764 DQ |
996 | err = security_task_movememory(task); |
997 | if (err) | |
998 | goto out2; | |
999 | ||
1000 | ||
742755a1 CL |
1001 | task_nodes = cpuset_mems_allowed(task); |
1002 | ||
1003 | /* Limit nr_pages so that the multiplication may not overflow */ | |
1004 | if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { | |
1005 | err = -E2BIG; | |
1006 | goto out2; | |
1007 | } | |
1008 | ||
1009 | pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); | |
1010 | if (!pm) { | |
1011 | err = -ENOMEM; | |
1012 | goto out2; | |
1013 | } | |
1014 | ||
1015 | /* | |
1016 | * Get parameters from user space and initialize the pm | |
1017 | * array. Return various errors if the user did something wrong. | |
1018 | */ | |
1019 | for (i = 0; i < nr_pages; i++) { | |
9d966d49 | 1020 | const void __user *p; |
742755a1 CL |
1021 | |
1022 | err = -EFAULT; | |
1023 | if (get_user(p, pages + i)) | |
1024 | goto out; | |
1025 | ||
1026 | pm[i].addr = (unsigned long)p; | |
1027 | if (nodes) { | |
1028 | int node; | |
1029 | ||
1030 | if (get_user(node, nodes + i)) | |
1031 | goto out; | |
1032 | ||
1033 | err = -ENODEV; | |
56bbd65d | 1034 | if (!node_state(node, N_HIGH_MEMORY)) |
742755a1 CL |
1035 | goto out; |
1036 | ||
1037 | err = -EACCES; | |
1038 | if (!node_isset(node, task_nodes)) | |
1039 | goto out; | |
1040 | ||
1041 | pm[i].node = node; | |
8ce08464 SR |
1042 | } else |
1043 | pm[i].node = 0; /* anything to not match MAX_NUMNODES */ | |
742755a1 CL |
1044 | } |
1045 | /* End marker */ | |
1046 | pm[nr_pages].node = MAX_NUMNODES; | |
1047 | ||
1048 | if (nodes) | |
1049 | err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); | |
1050 | else | |
1051 | err = do_pages_stat(mm, pm); | |
1052 | ||
1053 | if (err >= 0) | |
1054 | /* Return status information */ | |
1055 | for (i = 0; i < nr_pages; i++) | |
1056 | if (put_user(pm[i].status, status + i)) | |
1057 | err = -EFAULT; | |
1058 | ||
1059 | out: | |
1060 | vfree(pm); | |
1061 | out2: | |
1062 | mmput(mm); | |
1063 | return err; | |
1064 | } | |
742755a1 | 1065 | |
7b2259b3 CL |
1066 | /* |
1067 | * Call migration functions in the vma_ops that may prepare | |
1068 | * memory in a vm for migration. migration functions may perform | |
1069 | * the migration for vmas that do not have an underlying page struct. | |
1070 | */ | |
1071 | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | |
1072 | const nodemask_t *from, unsigned long flags) | |
1073 | { | |
1074 | struct vm_area_struct *vma; | |
1075 | int err = 0; | |
1076 | ||
1077 | for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { | |
1078 | if (vma->vm_ops && vma->vm_ops->migrate) { | |
1079 | err = vma->vm_ops->migrate(vma, to, from, flags); | |
1080 | if (err) | |
1081 | break; | |
1082 | } | |
1083 | } | |
1084 | return err; | |
1085 | } | |
83d1674a | 1086 | #endif |