]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/mlock.c
KVM: SVM: Modify 64 bit intercept field to two 32 bit vectors
[mirror_ubuntu-hirsute-kernel.git] / mm / mlock.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
c59ede7b 9#include <linux/capability.h>
1da177e4
LT
10#include <linux/mman.h>
11#include <linux/mm.h>
8703e8a4 12#include <linux/sched/user.h>
b291f000
NP
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/pagemap.h>
7225522b 16#include <linux/pagevec.h>
1da177e4
LT
17#include <linux/mempolicy.h>
18#include <linux/syscalls.h>
e8edc6e0 19#include <linux/sched.h>
b95f1b31 20#include <linux/export.h>
b291f000
NP
21#include <linux/rmap.h>
22#include <linux/mmzone.h>
23#include <linux/hugetlb.h>
7225522b
VB
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
b291f000
NP
26
27#include "internal.h"
1da177e4 28
7f43add4 29bool can_do_mlock(void)
e8edc6e0 30{
59e99e5b 31 if (rlimit(RLIMIT_MEMLOCK) != 0)
7f43add4 32 return true;
a5a6579d 33 if (capable(CAP_IPC_LOCK))
7f43add4
WX
34 return true;
35 return false;
e8edc6e0
AD
36}
37EXPORT_SYMBOL(can_do_mlock);
1da177e4 38
b291f000
NP
39/*
40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 * in vmscan and, possibly, the fault path; and to support semi-accurate
42 * statistics.
43 *
44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 * The unevictable list is an LRU sibling list to the [in]active lists.
47 * PageUnevictable is set to indicate the unevictable state.
48 *
49 * When lazy mlocking via vmscan, it is important to ensure that the
50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 * may have mlocked a page that is being munlocked. So lazy mlock must take
c1e8d7c6 52 * the mmap_lock for read, and verify that the vma really is locked
b291f000
NP
53 * (see mm/rmap.c).
54 */
55
56/*
57 * LRU accounting for clear_page_mlock()
58 */
e6c509f8 59void clear_page_mlock(struct page *page)
b291f000 60{
e6c509f8 61 if (!TestClearPageMlocked(page))
b291f000 62 return;
b291f000 63
6c357848 64 mod_zone_page_state(page_zone(page), NR_MLOCK, -thp_nr_pages(page));
5344b7e6 65 count_vm_event(UNEVICTABLE_PGCLEARED);
9c4e6b1a
SB
66 /*
67 * The previous TestClearPageMlocked() corresponds to the smp_mb()
68 * in __pagevec_lru_add_fn().
69 *
70 * See __pagevec_lru_add_fn for more explanation.
71 */
b291f000
NP
72 if (!isolate_lru_page(page)) {
73 putback_lru_page(page);
74 } else {
75 /*
8891d6da 76 * We lost the race. the page already moved to evictable list.
b291f000 77 */
8891d6da 78 if (PageUnevictable(page))
5344b7e6 79 count_vm_event(UNEVICTABLE_PGSTRANDED);
b291f000
NP
80 }
81}
82
83/*
84 * Mark page as mlocked if not already.
85 * If page on LRU, isolate and putback to move to unevictable list.
86 */
87void mlock_vma_page(struct page *page)
88{
57e68e9c 89 /* Serialize with page migration */
b291f000
NP
90 BUG_ON(!PageLocked(page));
91
e90309c9
KS
92 VM_BUG_ON_PAGE(PageTail(page), page);
93 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
94
5344b7e6 95 if (!TestSetPageMlocked(page)) {
8449d21f 96 mod_zone_page_state(page_zone(page), NR_MLOCK,
6c357848 97 thp_nr_pages(page));
5344b7e6
NP
98 count_vm_event(UNEVICTABLE_PGMLOCKED);
99 if (!isolate_lru_page(page))
100 putback_lru_page(page);
101 }
b291f000
NP
102}
103
01cc2e58
VB
104/*
105 * Isolate a page from LRU with optional get_page() pin.
106 * Assumes lru_lock already held and page already pinned.
107 */
108static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
109{
110 if (PageLRU(page)) {
111 struct lruvec *lruvec;
112
599d0c95 113 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
01cc2e58
VB
114 if (getpage)
115 get_page(page);
116 ClearPageLRU(page);
117 del_page_from_lru_list(page, lruvec, page_lru(page));
118 return true;
119 }
120
121 return false;
122}
123
7225522b
VB
124/*
125 * Finish munlock after successful page isolation
126 *
127 * Page must be locked. This is a wrapper for try_to_munlock()
128 * and putback_lru_page() with munlock accounting.
129 */
130static void __munlock_isolated_page(struct page *page)
131{
7225522b
VB
132 /*
133 * Optimization: if the page was mapped just once, that's our mapping
134 * and we don't need to check all the other vmas.
135 */
136 if (page_mapcount(page) > 1)
192d7232 137 try_to_munlock(page);
7225522b
VB
138
139 /* Did try_to_unlock() succeed or punt? */
192d7232 140 if (!PageMlocked(page))
7225522b
VB
141 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142
143 putback_lru_page(page);
144}
145
146/*
147 * Accounting for page isolation fail during munlock
148 *
149 * Performs accounting when page isolation fails in munlock. There is nothing
150 * else to do because it means some other task has already removed the page
151 * from the LRU. putback_lru_page() will take care of removing the page from
152 * the unevictable list, if necessary. vmscan [page_referenced()] will move
153 * the page back to the unevictable list if some other vma has it mlocked.
154 */
155static void __munlock_isolation_failed(struct page *page)
156{
157 if (PageUnevictable(page))
01cc2e58 158 __count_vm_event(UNEVICTABLE_PGSTRANDED);
7225522b 159 else
01cc2e58 160 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
7225522b
VB
161}
162
6927c1dd
LS
163/**
164 * munlock_vma_page - munlock a vma page
b7701a5f 165 * @page: page to be unlocked, either a normal page or THP page head
c424be1c
VB
166 *
167 * returns the size of the page as a page mask (0 for normal page,
168 * HPAGE_PMD_NR - 1 for THP head page)
b291f000 169 *
6927c1dd
LS
170 * called from munlock()/munmap() path with page supposedly on the LRU.
171 * When we munlock a page, because the vma where we found the page is being
172 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
173 * page locked so that we can leave it on the unevictable lru list and not
174 * bother vmscan with it. However, to walk the page's rmap list in
175 * try_to_munlock() we must isolate the page from the LRU. If some other
176 * task has removed the page from the LRU, we won't be able to do that.
177 * So we clear the PageMlocked as we might not get another chance. If we
178 * can't isolate the page, we leave it for putback_lru_page() and vmscan
179 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 180 */
ff6a6da6 181unsigned int munlock_vma_page(struct page *page)
b291f000 182{
7162a1e8 183 int nr_pages;
f4b7e272 184 pg_data_t *pgdat = page_pgdat(page);
ff6a6da6 185
57e68e9c 186 /* For try_to_munlock() and to serialize with page migration */
b291f000
NP
187 BUG_ON(!PageLocked(page));
188
e90309c9
KS
189 VM_BUG_ON_PAGE(PageTail(page), page);
190
c424be1c 191 /*
01cc2e58
VB
192 * Serialize with any parallel __split_huge_page_refcount() which
193 * might otherwise copy PageMlocked to part of the tail pages before
6c357848 194 * we clear it in the head page. It also stabilizes thp_nr_pages().
c424be1c 195 */
f4b7e272 196 spin_lock_irq(&pgdat->lru_lock);
01cc2e58 197
655548bf
KS
198 if (!TestClearPageMlocked(page)) {
199 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
200 nr_pages = 1;
01cc2e58 201 goto unlock_out;
655548bf 202 }
01cc2e58 203
6c357848 204 nr_pages = thp_nr_pages(page);
f4b7e272 205 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
01cc2e58
VB
206
207 if (__munlock_isolate_lru_page(page, true)) {
f4b7e272 208 spin_unlock_irq(&pgdat->lru_lock);
01cc2e58
VB
209 __munlock_isolated_page(page);
210 goto out;
211 }
212 __munlock_isolation_failed(page);
213
214unlock_out:
f4b7e272 215 spin_unlock_irq(&pgdat->lru_lock);
01cc2e58
VB
216
217out:
c424be1c 218 return nr_pages - 1;
b291f000
NP
219}
220
9978ad58
LS
221/*
222 * convert get_user_pages() return value to posix mlock() error
223 */
224static int __mlock_posix_error_return(long retval)
225{
226 if (retval == -EFAULT)
227 retval = -ENOMEM;
228 else if (retval == -ENOMEM)
229 retval = -EAGAIN;
230 return retval;
b291f000
NP
231}
232
56afe477
VB
233/*
234 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
235 *
236 * The fast path is available only for evictable pages with single mapping.
237 * Then we can bypass the per-cpu pvec and get better performance.
238 * when mapcount > 1 we need try_to_munlock() which can fail.
239 * when !page_evictable(), we need the full redo logic of putback_lru_page to
240 * avoid leaving evictable page in unevictable list.
241 *
242 * In case of success, @page is added to @pvec and @pgrescued is incremented
243 * in case that the page was previously unevictable. @page is also unlocked.
244 */
245static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
246 int *pgrescued)
247{
309381fe
SL
248 VM_BUG_ON_PAGE(PageLRU(page), page);
249 VM_BUG_ON_PAGE(!PageLocked(page), page);
56afe477
VB
250
251 if (page_mapcount(page) <= 1 && page_evictable(page)) {
252 pagevec_add(pvec, page);
253 if (TestClearPageUnevictable(page))
254 (*pgrescued)++;
255 unlock_page(page);
256 return true;
257 }
258
259 return false;
260}
261
262/*
263 * Putback multiple evictable pages to the LRU
264 *
265 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
266 * the pages might have meanwhile become unevictable but that is OK.
267 */
268static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
269{
270 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
271 /*
272 *__pagevec_lru_add() calls release_pages() so we don't call
273 * put_page() explicitly
274 */
275 __pagevec_lru_add(pvec);
276 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
277}
278
7225522b
VB
279/*
280 * Munlock a batch of pages from the same zone
281 *
282 * The work is split to two main phases. First phase clears the Mlocked flag
283 * and attempts to isolate the pages, all under a single zone lru lock.
284 * The second phase finishes the munlock only for pages where isolation
285 * succeeded.
286 *
7a8010cd 287 * Note that the pagevec may be modified during the process.
7225522b
VB
288 */
289static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
290{
291 int i;
292 int nr = pagevec_count(pvec);
70feee0e 293 int delta_munlocked = -nr;
56afe477
VB
294 struct pagevec pvec_putback;
295 int pgrescued = 0;
7225522b 296
86679820 297 pagevec_init(&pvec_putback);
3b25df93 298
7225522b 299 /* Phase 1: page isolation */
f4b7e272 300 spin_lock_irq(&zone->zone_pgdat->lru_lock);
7225522b
VB
301 for (i = 0; i < nr; i++) {
302 struct page *page = pvec->pages[i];
303
304 if (TestClearPageMlocked(page)) {
7225522b 305 /*
01cc2e58
VB
306 * We already have pin from follow_page_mask()
307 * so we can spare the get_page() here.
7225522b 308 */
01cc2e58
VB
309 if (__munlock_isolate_lru_page(page, false))
310 continue;
311 else
312 __munlock_isolation_failed(page);
70feee0e
YX
313 } else {
314 delta_munlocked++;
7225522b 315 }
01cc2e58
VB
316
317 /*
318 * We won't be munlocking this page in the next phase
319 * but we still need to release the follow_page_mask()
320 * pin. We cannot do it under lru_lock however. If it's
321 * the last pin, __page_cache_release() would deadlock.
322 */
323 pagevec_add(&pvec_putback, pvec->pages[i]);
324 pvec->pages[i] = NULL;
7225522b 325 }
1ebb7cc6 326 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
f4b7e272 327 spin_unlock_irq(&zone->zone_pgdat->lru_lock);
7225522b 328
3b25df93
VB
329 /* Now we can release pins of pages that we are not munlocking */
330 pagevec_release(&pvec_putback);
331
56afe477 332 /* Phase 2: page munlock */
7225522b
VB
333 for (i = 0; i < nr; i++) {
334 struct page *page = pvec->pages[i];
335
336 if (page) {
337 lock_page(page);
56afe477
VB
338 if (!__putback_lru_fast_prepare(page, &pvec_putback,
339 &pgrescued)) {
5b40998a
VB
340 /*
341 * Slow path. We don't want to lose the last
342 * pin before unlock_page()
343 */
344 get_page(page); /* for putback_lru_page() */
56afe477
VB
345 __munlock_isolated_page(page);
346 unlock_page(page);
5b40998a 347 put_page(page); /* from follow_page_mask() */
56afe477 348 }
7225522b
VB
349 }
350 }
56afe477 351
5b40998a
VB
352 /*
353 * Phase 3: page putback for pages that qualified for the fast path
354 * This will also call put_page() to return pin from follow_page_mask()
355 */
56afe477
VB
356 if (pagevec_count(&pvec_putback))
357 __putback_lru_fast(&pvec_putback, pgrescued);
7a8010cd
VB
358}
359
360/*
361 * Fill up pagevec for __munlock_pagevec using pte walk
362 *
363 * The function expects that the struct page corresponding to @start address is
364 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
365 *
366 * The rest of @pvec is filled by subsequent pages within the same pmd and same
367 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
368 * pages also get pinned.
369 *
370 * Returns the address of the next page that should be scanned. This equals
371 * @start + PAGE_SIZE when no page could be added by the pte walk.
372 */
373static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
9472f23c
JK
374 struct vm_area_struct *vma, struct zone *zone,
375 unsigned long start, unsigned long end)
7a8010cd
VB
376{
377 pte_t *pte;
378 spinlock_t *ptl;
379
380 /*
381 * Initialize pte walk starting at the already pinned page where we
eadb41ae 382 * are sure that there is a pte, as it was pinned under the same
c1e8d7c6 383 * mmap_lock write op.
7a8010cd
VB
384 */
385 pte = get_locked_pte(vma->vm_mm, start, &ptl);
eadb41ae
VB
386 /* Make sure we do not cross the page table boundary */
387 end = pgd_addr_end(start, end);
c2febafc 388 end = p4d_addr_end(start, end);
eadb41ae
VB
389 end = pud_addr_end(start, end);
390 end = pmd_addr_end(start, end);
7a8010cd
VB
391
392 /* The page next to the pinned page is the first we will try to get */
393 start += PAGE_SIZE;
394 while (start < end) {
395 struct page *page = NULL;
396 pte++;
397 if (pte_present(*pte))
398 page = vm_normal_page(vma, start, *pte);
399 /*
400 * Break if page could not be obtained or the page's node+zone does not
401 * match
402 */
9472f23c 403 if (!page || page_zone(page) != zone)
7a8010cd 404 break;
56afe477 405
e90309c9
KS
406 /*
407 * Do not use pagevec for PTE-mapped THP,
408 * munlock_vma_pages_range() will handle them.
409 */
410 if (PageTransCompound(page))
411 break;
412
7a8010cd
VB
413 get_page(page);
414 /*
415 * Increase the address that will be returned *before* the
416 * eventual break due to pvec becoming full by adding the page
417 */
418 start += PAGE_SIZE;
419 if (pagevec_add(pvec, page) == 0)
420 break;
421 }
422 pte_unmap_unlock(pte, ptl);
423 return start;
7225522b
VB
424}
425
b291f000 426/*
ba470de4
RR
427 * munlock_vma_pages_range() - munlock all pages in the vma range.'
428 * @vma - vma containing range to be munlock()ed.
429 * @start - start address in @vma of the range
430 * @end - end of range in @vma.
431 *
432 * For mremap(), munmap() and exit().
433 *
434 * Called with @vma VM_LOCKED.
435 *
436 * Returns with VM_LOCKED cleared. Callers must be prepared to
437 * deal with this.
438 *
439 * We don't save and restore VM_LOCKED here because pages are
440 * still on lru. In unmap path, pages might be scanned by reclaim
441 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
442 * free them. This will result in freeing mlocked pages.
b291f000 443 */
ba470de4 444void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 445 unsigned long start, unsigned long end)
b291f000 446{
de60f5f1 447 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
408e82b7 448
ff6a6da6 449 while (start < end) {
ab7a5af7 450 struct page *page;
6ebb4a1b 451 unsigned int page_mask = 0;
c424be1c 452 unsigned long page_increm;
7a8010cd
VB
453 struct pagevec pvec;
454 struct zone *zone;
ff6a6da6 455
86679820 456 pagevec_init(&pvec);
6e919717
HD
457 /*
458 * Although FOLL_DUMP is intended for get_dump_page(),
459 * it just so happens that its special treatment of the
460 * ZERO_PAGE (returning an error instead of doing get_page)
461 * suits munlock very well (and if somehow an abnormal page
462 * has sneaked into the range, we won't oops here: great).
463 */
6ebb4a1b 464 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
7a8010cd 465
e90309c9
KS
466 if (page && !IS_ERR(page)) {
467 if (PageTransTail(page)) {
468 VM_BUG_ON_PAGE(PageMlocked(page), page);
469 put_page(page); /* follow_page_mask() */
470 } else if (PageTransHuge(page)) {
471 lock_page(page);
472 /*
473 * Any THP page found by follow_page_mask() may
474 * have gotten split before reaching
6ebb4a1b
KS
475 * munlock_vma_page(), so we need to compute
476 * the page_mask here instead.
e90309c9
KS
477 */
478 page_mask = munlock_vma_page(page);
479 unlock_page(page);
480 put_page(page); /* follow_page_mask() */
481 } else {
482 /*
483 * Non-huge pages are handled in batches via
484 * pagevec. The pin from follow_page_mask()
485 * prevents them from collapsing by THP.
486 */
487 pagevec_add(&pvec, page);
488 zone = page_zone(page);
7a8010cd 489
e90309c9
KS
490 /*
491 * Try to fill the rest of pagevec using fast
492 * pte walk. This will also update start to
493 * the next page to process. Then munlock the
494 * pagevec.
495 */
496 start = __munlock_pagevec_fill(&pvec, vma,
9472f23c 497 zone, start, end);
e90309c9
KS
498 __munlock_pagevec(&pvec, zone);
499 goto next;
500 }
408e82b7 501 }
c424be1c 502 page_increm = 1 + page_mask;
ff6a6da6 503 start += page_increm * PAGE_SIZE;
7a8010cd 504next:
408e82b7
HD
505 cond_resched();
506 }
b291f000
NP
507}
508
509/*
510 * mlock_fixup - handle mlock[all]/munlock[all] requests.
511 *
512 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
513 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 514 * populate the ptes.
b291f000
NP
515 *
516 * For vmas that pass the filters, merge/split as appropriate.
517 */
1da177e4 518static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 519 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 520{
b291f000 521 struct mm_struct *mm = vma->vm_mm;
1da177e4 522 pgoff_t pgoff;
b291f000 523 int nr_pages;
1da177e4 524 int ret = 0;
ca16d140 525 int lock = !!(newflags & VM_LOCKED);
b155b4fd 526 vm_flags_t old_flags = vma->vm_flags;
1da177e4 527
fed067da 528 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
e1fb4a08
DJ
529 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
530 vma_is_dax(vma))
b0f205c2
EM
531 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
532 goto out;
b291f000 533
1da177e4
LT
534 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
535 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
19a809af
AA
536 vma->vm_file, pgoff, vma_policy(vma),
537 vma->vm_userfaultfd_ctx);
1da177e4
LT
538 if (*prev) {
539 vma = *prev;
540 goto success;
541 }
542
1da177e4
LT
543 if (start != vma->vm_start) {
544 ret = split_vma(mm, vma, start, 1);
545 if (ret)
546 goto out;
547 }
548
549 if (end != vma->vm_end) {
550 ret = split_vma(mm, vma, end, 0);
551 if (ret)
552 goto out;
553 }
554
555success:
b291f000
NP
556 /*
557 * Keep track of amount of locked VM.
558 */
559 nr_pages = (end - start) >> PAGE_SHIFT;
560 if (!lock)
561 nr_pages = -nr_pages;
b155b4fd
SG
562 else if (old_flags & VM_LOCKED)
563 nr_pages = 0;
b291f000
NP
564 mm->locked_vm += nr_pages;
565
1da177e4 566 /*
c1e8d7c6 567 * vm_flags is protected by the mmap_lock held in write mode.
1da177e4 568 * It's okay if try_to_unmap_one unmaps a page just after we
fc05f566 569 * set VM_LOCKED, populate_vma_page_range will bring it back.
1da177e4 570 */
1da177e4 571
fed067da 572 if (lock)
408e82b7 573 vma->vm_flags = newflags;
fed067da 574 else
408e82b7 575 munlock_vma_pages_range(vma, start, end);
1da177e4 576
1da177e4 577out:
b291f000 578 *prev = vma;
1da177e4
LT
579 return ret;
580}
581
1aab92ec
EM
582static int apply_vma_lock_flags(unsigned long start, size_t len,
583 vm_flags_t flags)
1da177e4
LT
584{
585 unsigned long nstart, end, tmp;
586 struct vm_area_struct * vma, * prev;
587 int error;
588
8fd9e488 589 VM_BUG_ON(offset_in_page(start));
fed067da 590 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
591 end = start + len;
592 if (end < start)
593 return -EINVAL;
594 if (end == start)
595 return 0;
097d5910 596 vma = find_vma(current->mm, start);
1da177e4
LT
597 if (!vma || vma->vm_start > start)
598 return -ENOMEM;
599
097d5910 600 prev = vma->vm_prev;
1da177e4
LT
601 if (start > vma->vm_start)
602 prev = vma;
603
604 for (nstart = start ; ; ) {
b0f205c2 605 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
1da177e4 606
1aab92ec 607 newflags |= flags;
1da177e4 608
1aab92ec 609 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
1da177e4
LT
610 tmp = vma->vm_end;
611 if (tmp > end)
612 tmp = end;
613 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
614 if (error)
615 break;
616 nstart = tmp;
617 if (nstart < prev->vm_end)
618 nstart = prev->vm_end;
619 if (nstart >= end)
620 break;
621
622 vma = prev->vm_next;
623 if (!vma || vma->vm_start != nstart) {
624 error = -ENOMEM;
625 break;
626 }
627 }
628 return error;
629}
630
0cf2f6f6
SG
631/*
632 * Go through vma areas and sum size of mlocked
633 * vma pages, as return value.
634 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
635 * is also counted.
636 * Return value: previously mlocked page counts
637 */
0874bb49 638static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
0cf2f6f6
SG
639 unsigned long start, size_t len)
640{
641 struct vm_area_struct *vma;
0874bb49 642 unsigned long count = 0;
0cf2f6f6
SG
643
644 if (mm == NULL)
645 mm = current->mm;
646
647 vma = find_vma(mm, start);
648 if (vma == NULL)
649 vma = mm->mmap;
650
651 for (; vma ; vma = vma->vm_next) {
652 if (start >= vma->vm_end)
653 continue;
654 if (start + len <= vma->vm_start)
655 break;
656 if (vma->vm_flags & VM_LOCKED) {
657 if (start > vma->vm_start)
658 count -= (start - vma->vm_start);
659 if (start + len < vma->vm_end) {
660 count += start + len - vma->vm_start;
661 break;
662 }
663 count += vma->vm_end - vma->vm_start;
664 }
665 }
666
667 return count >> PAGE_SHIFT;
668}
669
dc0ef0df 670static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
1da177e4
LT
671{
672 unsigned long locked;
673 unsigned long lock_limit;
674 int error = -ENOMEM;
675
057d3389
AK
676 start = untagged_addr(start);
677
1da177e4
LT
678 if (!can_do_mlock())
679 return -EPERM;
680
8fd9e488 681 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4
LT
682 start &= PAGE_MASK;
683
59e99e5b 684 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4 685 lock_limit >>= PAGE_SHIFT;
1f1cd705
DB
686 locked = len >> PAGE_SHIFT;
687
d8ed45c5 688 if (mmap_write_lock_killable(current->mm))
dc0ef0df 689 return -EINTR;
1f1cd705
DB
690
691 locked += current->mm->locked_vm;
0cf2f6f6
SG
692 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
693 /*
694 * It is possible that the regions requested intersect with
695 * previously mlocked areas, that part area in "mm->locked_vm"
696 * should not be counted to new mlock increment count. So check
697 * and adjust locked count if necessary.
698 */
699 locked -= count_mm_mlocked_page_nr(current->mm,
700 start, len);
701 }
1da177e4
LT
702
703 /* check against resource limits */
704 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
1aab92ec 705 error = apply_vma_lock_flags(start, len, flags);
1f1cd705 706
d8ed45c5 707 mmap_write_unlock(current->mm);
c561259c
KS
708 if (error)
709 return error;
710
711 error = __mm_populate(start, len, 0);
712 if (error)
713 return __mlock_posix_error_return(error);
714 return 0;
1da177e4
LT
715}
716
1aab92ec
EM
717SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
718{
719 return do_mlock(start, len, VM_LOCKED);
720}
721
a8ca5d0e
EM
722SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
723{
b0f205c2
EM
724 vm_flags_t vm_flags = VM_LOCKED;
725
726 if (flags & ~MLOCK_ONFAULT)
a8ca5d0e
EM
727 return -EINVAL;
728
b0f205c2
EM
729 if (flags & MLOCK_ONFAULT)
730 vm_flags |= VM_LOCKONFAULT;
731
732 return do_mlock(start, len, vm_flags);
a8ca5d0e
EM
733}
734
6a6160a7 735SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
736{
737 int ret;
738
057d3389
AK
739 start = untagged_addr(start);
740
8fd9e488 741 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4 742 start &= PAGE_MASK;
1f1cd705 743
d8ed45c5 744 if (mmap_write_lock_killable(current->mm))
dc0ef0df 745 return -EINTR;
1aab92ec 746 ret = apply_vma_lock_flags(start, len, 0);
d8ed45c5 747 mmap_write_unlock(current->mm);
1f1cd705 748
1da177e4
LT
749 return ret;
750}
751
b0f205c2
EM
752/*
753 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
754 * and translate into the appropriate modifications to mm->def_flags and/or the
755 * flags for all current VMAs.
756 *
757 * There are a couple of subtleties with this. If mlockall() is called multiple
758 * times with different flags, the values do not necessarily stack. If mlockall
759 * is called once including the MCL_FUTURE flag and then a second time without
760 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
761 */
1aab92ec 762static int apply_mlockall_flags(int flags)
1da177e4
LT
763{
764 struct vm_area_struct * vma, * prev = NULL;
b0f205c2 765 vm_flags_t to_add = 0;
1da177e4 766
b0f205c2
EM
767 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
768 if (flags & MCL_FUTURE) {
09a9f1d2 769 current->mm->def_flags |= VM_LOCKED;
1aab92ec 770
b0f205c2
EM
771 if (flags & MCL_ONFAULT)
772 current->mm->def_flags |= VM_LOCKONFAULT;
773
774 if (!(flags & MCL_CURRENT))
775 goto out;
776 }
777
778 if (flags & MCL_CURRENT) {
779 to_add |= VM_LOCKED;
780 if (flags & MCL_ONFAULT)
781 to_add |= VM_LOCKONFAULT;
782 }
1da177e4
LT
783
784 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 785 vm_flags_t newflags;
1da177e4 786
b0f205c2
EM
787 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
788 newflags |= to_add;
1da177e4
LT
789
790 /* Ignore errors */
791 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
50d4fb78 792 cond_resched();
1da177e4
LT
793 }
794out:
795 return 0;
796}
797
3480b257 798SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
799{
800 unsigned long lock_limit;
86d2adcc 801 int ret;
1da177e4 802
dedca635
PS
803 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
804 flags == MCL_ONFAULT)
86d2adcc 805 return -EINVAL;
1da177e4 806
1da177e4 807 if (!can_do_mlock())
86d2adcc 808 return -EPERM;
1da177e4 809
59e99e5b 810 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
811 lock_limit >>= PAGE_SHIFT;
812
d8ed45c5 813 if (mmap_write_lock_killable(current->mm))
dc0ef0df 814 return -EINTR;
1f1cd705 815
dc0ef0df 816 ret = -ENOMEM;
1da177e4
LT
817 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
818 capable(CAP_IPC_LOCK))
1aab92ec 819 ret = apply_mlockall_flags(flags);
d8ed45c5 820 mmap_write_unlock(current->mm);
bebeb3d6
ML
821 if (!ret && (flags & MCL_CURRENT))
822 mm_populate(0, TASK_SIZE);
86d2adcc 823
1da177e4
LT
824 return ret;
825}
826
3480b257 827SYSCALL_DEFINE0(munlockall)
1da177e4
LT
828{
829 int ret;
830
d8ed45c5 831 if (mmap_write_lock_killable(current->mm))
dc0ef0df 832 return -EINTR;
1aab92ec 833 ret = apply_mlockall_flags(0);
d8ed45c5 834 mmap_write_unlock(current->mm);
1da177e4
LT
835 return ret;
836}
837
838/*
839 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
840 * shm segments) get accounted against the user_struct instead.
841 */
842static DEFINE_SPINLOCK(shmlock_user_lock);
843
844int user_shm_lock(size_t size, struct user_struct *user)
845{
846 unsigned long lock_limit, locked;
847 int allowed = 0;
848
849 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 850 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
851 if (lock_limit == RLIM_INFINITY)
852 allowed = 1;
1da177e4
LT
853 lock_limit >>= PAGE_SHIFT;
854 spin_lock(&shmlock_user_lock);
5ed44a40
HB
855 if (!allowed &&
856 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
1da177e4
LT
857 goto out;
858 get_uid(user);
859 user->locked_shm += locked;
860 allowed = 1;
861out:
862 spin_unlock(&shmlock_user_lock);
863 return allowed;
864}
865
866void user_shm_unlock(size_t size, struct user_struct *user)
867{
868 spin_lock(&shmlock_user_lock);
869 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
870 spin_unlock(&shmlock_user_lock);
871 free_uid(user);
872}