]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/mlock.c
Merge branch 'etnaviv/fixes' of https://git.pengutronix.de/git/lst/linux into drm...
[mirror_ubuntu-artful-kernel.git] / mm / mlock.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
c59ede7b 8#include <linux/capability.h>
1da177e4
LT
9#include <linux/mman.h>
10#include <linux/mm.h>
8703e8a4 11#include <linux/sched/user.h>
b291f000
NP
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/pagemap.h>
7225522b 15#include <linux/pagevec.h>
1da177e4
LT
16#include <linux/mempolicy.h>
17#include <linux/syscalls.h>
e8edc6e0 18#include <linux/sched.h>
b95f1b31 19#include <linux/export.h>
b291f000
NP
20#include <linux/rmap.h>
21#include <linux/mmzone.h>
22#include <linux/hugetlb.h>
7225522b
VB
23#include <linux/memcontrol.h>
24#include <linux/mm_inline.h>
b291f000
NP
25
26#include "internal.h"
1da177e4 27
7f43add4 28bool can_do_mlock(void)
e8edc6e0 29{
59e99e5b 30 if (rlimit(RLIMIT_MEMLOCK) != 0)
7f43add4 31 return true;
a5a6579d 32 if (capable(CAP_IPC_LOCK))
7f43add4
WX
33 return true;
34 return false;
e8edc6e0
AD
35}
36EXPORT_SYMBOL(can_do_mlock);
1da177e4 37
b291f000
NP
38/*
39 * Mlocked pages are marked with PageMlocked() flag for efficient testing
40 * in vmscan and, possibly, the fault path; and to support semi-accurate
41 * statistics.
42 *
43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
44 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45 * The unevictable list is an LRU sibling list to the [in]active lists.
46 * PageUnevictable is set to indicate the unevictable state.
47 *
48 * When lazy mlocking via vmscan, it is important to ensure that the
49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50 * may have mlocked a page that is being munlocked. So lazy mlock must take
51 * the mmap_sem for read, and verify that the vma really is locked
52 * (see mm/rmap.c).
53 */
54
55/*
56 * LRU accounting for clear_page_mlock()
57 */
e6c509f8 58void clear_page_mlock(struct page *page)
b291f000 59{
e6c509f8 60 if (!TestClearPageMlocked(page))
b291f000 61 return;
b291f000 62
8449d21f
DR
63 mod_zone_page_state(page_zone(page), NR_MLOCK,
64 -hpage_nr_pages(page));
5344b7e6 65 count_vm_event(UNEVICTABLE_PGCLEARED);
b291f000
NP
66 if (!isolate_lru_page(page)) {
67 putback_lru_page(page);
68 } else {
69 /*
8891d6da 70 * We lost the race. the page already moved to evictable list.
b291f000 71 */
8891d6da 72 if (PageUnevictable(page))
5344b7e6 73 count_vm_event(UNEVICTABLE_PGSTRANDED);
b291f000
NP
74 }
75}
76
77/*
78 * Mark page as mlocked if not already.
79 * If page on LRU, isolate and putback to move to unevictable list.
80 */
81void mlock_vma_page(struct page *page)
82{
57e68e9c 83 /* Serialize with page migration */
b291f000
NP
84 BUG_ON(!PageLocked(page));
85
e90309c9
KS
86 VM_BUG_ON_PAGE(PageTail(page), page);
87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88
5344b7e6 89 if (!TestSetPageMlocked(page)) {
8449d21f
DR
90 mod_zone_page_state(page_zone(page), NR_MLOCK,
91 hpage_nr_pages(page));
5344b7e6
NP
92 count_vm_event(UNEVICTABLE_PGMLOCKED);
93 if (!isolate_lru_page(page))
94 putback_lru_page(page);
95 }
b291f000
NP
96}
97
01cc2e58
VB
98/*
99 * Isolate a page from LRU with optional get_page() pin.
100 * Assumes lru_lock already held and page already pinned.
101 */
102static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103{
104 if (PageLRU(page)) {
105 struct lruvec *lruvec;
106
599d0c95 107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
01cc2e58
VB
108 if (getpage)
109 get_page(page);
110 ClearPageLRU(page);
111 del_page_from_lru_list(page, lruvec, page_lru(page));
112 return true;
113 }
114
115 return false;
116}
117
7225522b
VB
118/*
119 * Finish munlock after successful page isolation
120 *
121 * Page must be locked. This is a wrapper for try_to_munlock()
122 * and putback_lru_page() with munlock accounting.
123 */
124static void __munlock_isolated_page(struct page *page)
125{
7225522b
VB
126 /*
127 * Optimization: if the page was mapped just once, that's our mapping
128 * and we don't need to check all the other vmas.
129 */
130 if (page_mapcount(page) > 1)
192d7232 131 try_to_munlock(page);
7225522b
VB
132
133 /* Did try_to_unlock() succeed or punt? */
192d7232 134 if (!PageMlocked(page))
7225522b
VB
135 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
136
137 putback_lru_page(page);
138}
139
140/*
141 * Accounting for page isolation fail during munlock
142 *
143 * Performs accounting when page isolation fails in munlock. There is nothing
144 * else to do because it means some other task has already removed the page
145 * from the LRU. putback_lru_page() will take care of removing the page from
146 * the unevictable list, if necessary. vmscan [page_referenced()] will move
147 * the page back to the unevictable list if some other vma has it mlocked.
148 */
149static void __munlock_isolation_failed(struct page *page)
150{
151 if (PageUnevictable(page))
01cc2e58 152 __count_vm_event(UNEVICTABLE_PGSTRANDED);
7225522b 153 else
01cc2e58 154 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
7225522b
VB
155}
156
6927c1dd
LS
157/**
158 * munlock_vma_page - munlock a vma page
c424be1c
VB
159 * @page - page to be unlocked, either a normal page or THP page head
160 *
161 * returns the size of the page as a page mask (0 for normal page,
162 * HPAGE_PMD_NR - 1 for THP head page)
b291f000 163 *
6927c1dd
LS
164 * called from munlock()/munmap() path with page supposedly on the LRU.
165 * When we munlock a page, because the vma where we found the page is being
166 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
167 * page locked so that we can leave it on the unevictable lru list and not
168 * bother vmscan with it. However, to walk the page's rmap list in
169 * try_to_munlock() we must isolate the page from the LRU. If some other
170 * task has removed the page from the LRU, we won't be able to do that.
171 * So we clear the PageMlocked as we might not get another chance. If we
172 * can't isolate the page, we leave it for putback_lru_page() and vmscan
173 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 174 */
ff6a6da6 175unsigned int munlock_vma_page(struct page *page)
b291f000 176{
7162a1e8 177 int nr_pages;
01cc2e58 178 struct zone *zone = page_zone(page);
ff6a6da6 179
57e68e9c 180 /* For try_to_munlock() and to serialize with page migration */
b291f000
NP
181 BUG_ON(!PageLocked(page));
182
e90309c9
KS
183 VM_BUG_ON_PAGE(PageTail(page), page);
184
c424be1c 185 /*
01cc2e58
VB
186 * Serialize with any parallel __split_huge_page_refcount() which
187 * might otherwise copy PageMlocked to part of the tail pages before
188 * we clear it in the head page. It also stabilizes hpage_nr_pages().
c424be1c 189 */
a52633d8 190 spin_lock_irq(zone_lru_lock(zone));
01cc2e58 191
655548bf
KS
192 if (!TestClearPageMlocked(page)) {
193 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
194 nr_pages = 1;
01cc2e58 195 goto unlock_out;
655548bf 196 }
01cc2e58 197
655548bf 198 nr_pages = hpage_nr_pages(page);
01cc2e58
VB
199 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
200
201 if (__munlock_isolate_lru_page(page, true)) {
a52633d8 202 spin_unlock_irq(zone_lru_lock(zone));
01cc2e58
VB
203 __munlock_isolated_page(page);
204 goto out;
205 }
206 __munlock_isolation_failed(page);
207
208unlock_out:
a52633d8 209 spin_unlock_irq(zone_lru_lock(zone));
01cc2e58
VB
210
211out:
c424be1c 212 return nr_pages - 1;
b291f000
NP
213}
214
9978ad58
LS
215/*
216 * convert get_user_pages() return value to posix mlock() error
217 */
218static int __mlock_posix_error_return(long retval)
219{
220 if (retval == -EFAULT)
221 retval = -ENOMEM;
222 else if (retval == -ENOMEM)
223 retval = -EAGAIN;
224 return retval;
b291f000
NP
225}
226
56afe477
VB
227/*
228 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
229 *
230 * The fast path is available only for evictable pages with single mapping.
231 * Then we can bypass the per-cpu pvec and get better performance.
232 * when mapcount > 1 we need try_to_munlock() which can fail.
233 * when !page_evictable(), we need the full redo logic of putback_lru_page to
234 * avoid leaving evictable page in unevictable list.
235 *
236 * In case of success, @page is added to @pvec and @pgrescued is incremented
237 * in case that the page was previously unevictable. @page is also unlocked.
238 */
239static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
240 int *pgrescued)
241{
309381fe
SL
242 VM_BUG_ON_PAGE(PageLRU(page), page);
243 VM_BUG_ON_PAGE(!PageLocked(page), page);
56afe477
VB
244
245 if (page_mapcount(page) <= 1 && page_evictable(page)) {
246 pagevec_add(pvec, page);
247 if (TestClearPageUnevictable(page))
248 (*pgrescued)++;
249 unlock_page(page);
250 return true;
251 }
252
253 return false;
254}
255
256/*
257 * Putback multiple evictable pages to the LRU
258 *
259 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
260 * the pages might have meanwhile become unevictable but that is OK.
261 */
262static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
263{
264 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
265 /*
266 *__pagevec_lru_add() calls release_pages() so we don't call
267 * put_page() explicitly
268 */
269 __pagevec_lru_add(pvec);
270 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
271}
272
7225522b
VB
273/*
274 * Munlock a batch of pages from the same zone
275 *
276 * The work is split to two main phases. First phase clears the Mlocked flag
277 * and attempts to isolate the pages, all under a single zone lru lock.
278 * The second phase finishes the munlock only for pages where isolation
279 * succeeded.
280 *
7a8010cd 281 * Note that the pagevec may be modified during the process.
7225522b
VB
282 */
283static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
284{
285 int i;
286 int nr = pagevec_count(pvec);
3b25df93 287 int delta_munlocked;
56afe477
VB
288 struct pagevec pvec_putback;
289 int pgrescued = 0;
7225522b 290
3b25df93
VB
291 pagevec_init(&pvec_putback, 0);
292
7225522b 293 /* Phase 1: page isolation */
a52633d8 294 spin_lock_irq(zone_lru_lock(zone));
7225522b
VB
295 for (i = 0; i < nr; i++) {
296 struct page *page = pvec->pages[i];
297
298 if (TestClearPageMlocked(page)) {
7225522b 299 /*
01cc2e58
VB
300 * We already have pin from follow_page_mask()
301 * so we can spare the get_page() here.
7225522b 302 */
01cc2e58
VB
303 if (__munlock_isolate_lru_page(page, false))
304 continue;
305 else
306 __munlock_isolation_failed(page);
7225522b 307 }
01cc2e58
VB
308
309 /*
310 * We won't be munlocking this page in the next phase
311 * but we still need to release the follow_page_mask()
312 * pin. We cannot do it under lru_lock however. If it's
313 * the last pin, __page_cache_release() would deadlock.
314 */
315 pagevec_add(&pvec_putback, pvec->pages[i]);
316 pvec->pages[i] = NULL;
7225522b 317 }
3b25df93 318 delta_munlocked = -nr + pagevec_count(&pvec_putback);
1ebb7cc6 319 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
a52633d8 320 spin_unlock_irq(zone_lru_lock(zone));
7225522b 321
3b25df93
VB
322 /* Now we can release pins of pages that we are not munlocking */
323 pagevec_release(&pvec_putback);
324
56afe477 325 /* Phase 2: page munlock */
7225522b
VB
326 for (i = 0; i < nr; i++) {
327 struct page *page = pvec->pages[i];
328
329 if (page) {
330 lock_page(page);
56afe477
VB
331 if (!__putback_lru_fast_prepare(page, &pvec_putback,
332 &pgrescued)) {
5b40998a
VB
333 /*
334 * Slow path. We don't want to lose the last
335 * pin before unlock_page()
336 */
337 get_page(page); /* for putback_lru_page() */
56afe477
VB
338 __munlock_isolated_page(page);
339 unlock_page(page);
5b40998a 340 put_page(page); /* from follow_page_mask() */
56afe477 341 }
7225522b
VB
342 }
343 }
56afe477 344
5b40998a
VB
345 /*
346 * Phase 3: page putback for pages that qualified for the fast path
347 * This will also call put_page() to return pin from follow_page_mask()
348 */
56afe477
VB
349 if (pagevec_count(&pvec_putback))
350 __putback_lru_fast(&pvec_putback, pgrescued);
7a8010cd
VB
351}
352
353/*
354 * Fill up pagevec for __munlock_pagevec using pte walk
355 *
356 * The function expects that the struct page corresponding to @start address is
357 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
358 *
359 * The rest of @pvec is filled by subsequent pages within the same pmd and same
360 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
361 * pages also get pinned.
362 *
363 * Returns the address of the next page that should be scanned. This equals
364 * @start + PAGE_SIZE when no page could be added by the pte walk.
365 */
366static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
367 struct vm_area_struct *vma, int zoneid, unsigned long start,
368 unsigned long end)
369{
370 pte_t *pte;
371 spinlock_t *ptl;
372
373 /*
374 * Initialize pte walk starting at the already pinned page where we
eadb41ae
VB
375 * are sure that there is a pte, as it was pinned under the same
376 * mmap_sem write op.
7a8010cd
VB
377 */
378 pte = get_locked_pte(vma->vm_mm, start, &ptl);
eadb41ae
VB
379 /* Make sure we do not cross the page table boundary */
380 end = pgd_addr_end(start, end);
c2febafc 381 end = p4d_addr_end(start, end);
eadb41ae
VB
382 end = pud_addr_end(start, end);
383 end = pmd_addr_end(start, end);
7a8010cd
VB
384
385 /* The page next to the pinned page is the first we will try to get */
386 start += PAGE_SIZE;
387 while (start < end) {
388 struct page *page = NULL;
389 pte++;
390 if (pte_present(*pte))
391 page = vm_normal_page(vma, start, *pte);
392 /*
393 * Break if page could not be obtained or the page's node+zone does not
394 * match
395 */
396 if (!page || page_zone_id(page) != zoneid)
397 break;
56afe477 398
e90309c9
KS
399 /*
400 * Do not use pagevec for PTE-mapped THP,
401 * munlock_vma_pages_range() will handle them.
402 */
403 if (PageTransCompound(page))
404 break;
405
7a8010cd
VB
406 get_page(page);
407 /*
408 * Increase the address that will be returned *before* the
409 * eventual break due to pvec becoming full by adding the page
410 */
411 start += PAGE_SIZE;
412 if (pagevec_add(pvec, page) == 0)
413 break;
414 }
415 pte_unmap_unlock(pte, ptl);
416 return start;
7225522b
VB
417}
418
b291f000 419/*
ba470de4
RR
420 * munlock_vma_pages_range() - munlock all pages in the vma range.'
421 * @vma - vma containing range to be munlock()ed.
422 * @start - start address in @vma of the range
423 * @end - end of range in @vma.
424 *
425 * For mremap(), munmap() and exit().
426 *
427 * Called with @vma VM_LOCKED.
428 *
429 * Returns with VM_LOCKED cleared. Callers must be prepared to
430 * deal with this.
431 *
432 * We don't save and restore VM_LOCKED here because pages are
433 * still on lru. In unmap path, pages might be scanned by reclaim
434 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
435 * free them. This will result in freeing mlocked pages.
b291f000 436 */
ba470de4 437void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 438 unsigned long start, unsigned long end)
b291f000 439{
de60f5f1 440 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
408e82b7 441
ff6a6da6 442 while (start < end) {
ab7a5af7 443 struct page *page;
6ebb4a1b 444 unsigned int page_mask = 0;
c424be1c 445 unsigned long page_increm;
7a8010cd
VB
446 struct pagevec pvec;
447 struct zone *zone;
448 int zoneid;
ff6a6da6 449
7a8010cd 450 pagevec_init(&pvec, 0);
6e919717
HD
451 /*
452 * Although FOLL_DUMP is intended for get_dump_page(),
453 * it just so happens that its special treatment of the
454 * ZERO_PAGE (returning an error instead of doing get_page)
455 * suits munlock very well (and if somehow an abnormal page
456 * has sneaked into the range, we won't oops here: great).
457 */
6ebb4a1b 458 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
7a8010cd 459
e90309c9
KS
460 if (page && !IS_ERR(page)) {
461 if (PageTransTail(page)) {
462 VM_BUG_ON_PAGE(PageMlocked(page), page);
463 put_page(page); /* follow_page_mask() */
464 } else if (PageTransHuge(page)) {
465 lock_page(page);
466 /*
467 * Any THP page found by follow_page_mask() may
468 * have gotten split before reaching
6ebb4a1b
KS
469 * munlock_vma_page(), so we need to compute
470 * the page_mask here instead.
e90309c9
KS
471 */
472 page_mask = munlock_vma_page(page);
473 unlock_page(page);
474 put_page(page); /* follow_page_mask() */
475 } else {
476 /*
477 * Non-huge pages are handled in batches via
478 * pagevec. The pin from follow_page_mask()
479 * prevents them from collapsing by THP.
480 */
481 pagevec_add(&pvec, page);
482 zone = page_zone(page);
483 zoneid = page_zone_id(page);
7a8010cd 484
e90309c9
KS
485 /*
486 * Try to fill the rest of pagevec using fast
487 * pte walk. This will also update start to
488 * the next page to process. Then munlock the
489 * pagevec.
490 */
491 start = __munlock_pagevec_fill(&pvec, vma,
492 zoneid, start, end);
493 __munlock_pagevec(&pvec, zone);
494 goto next;
495 }
408e82b7 496 }
c424be1c 497 page_increm = 1 + page_mask;
ff6a6da6 498 start += page_increm * PAGE_SIZE;
7a8010cd 499next:
408e82b7
HD
500 cond_resched();
501 }
b291f000
NP
502}
503
504/*
505 * mlock_fixup - handle mlock[all]/munlock[all] requests.
506 *
507 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
508 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 509 * populate the ptes.
b291f000
NP
510 *
511 * For vmas that pass the filters, merge/split as appropriate.
512 */
1da177e4 513static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 514 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 515{
b291f000 516 struct mm_struct *mm = vma->vm_mm;
1da177e4 517 pgoff_t pgoff;
b291f000 518 int nr_pages;
1da177e4 519 int ret = 0;
ca16d140 520 int lock = !!(newflags & VM_LOCKED);
b155b4fd 521 vm_flags_t old_flags = vma->vm_flags;
1da177e4 522
fed067da 523 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
31db58b3 524 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
b0f205c2
EM
525 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
526 goto out;
b291f000 527
1da177e4
LT
528 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
529 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
19a809af
AA
530 vma->vm_file, pgoff, vma_policy(vma),
531 vma->vm_userfaultfd_ctx);
1da177e4
LT
532 if (*prev) {
533 vma = *prev;
534 goto success;
535 }
536
1da177e4
LT
537 if (start != vma->vm_start) {
538 ret = split_vma(mm, vma, start, 1);
539 if (ret)
540 goto out;
541 }
542
543 if (end != vma->vm_end) {
544 ret = split_vma(mm, vma, end, 0);
545 if (ret)
546 goto out;
547 }
548
549success:
b291f000
NP
550 /*
551 * Keep track of amount of locked VM.
552 */
553 nr_pages = (end - start) >> PAGE_SHIFT;
554 if (!lock)
555 nr_pages = -nr_pages;
b155b4fd
SG
556 else if (old_flags & VM_LOCKED)
557 nr_pages = 0;
b291f000
NP
558 mm->locked_vm += nr_pages;
559
1da177e4
LT
560 /*
561 * vm_flags is protected by the mmap_sem held in write mode.
562 * It's okay if try_to_unmap_one unmaps a page just after we
fc05f566 563 * set VM_LOCKED, populate_vma_page_range will bring it back.
1da177e4 564 */
1da177e4 565
fed067da 566 if (lock)
408e82b7 567 vma->vm_flags = newflags;
fed067da 568 else
408e82b7 569 munlock_vma_pages_range(vma, start, end);
1da177e4 570
1da177e4 571out:
b291f000 572 *prev = vma;
1da177e4
LT
573 return ret;
574}
575
1aab92ec
EM
576static int apply_vma_lock_flags(unsigned long start, size_t len,
577 vm_flags_t flags)
1da177e4
LT
578{
579 unsigned long nstart, end, tmp;
580 struct vm_area_struct * vma, * prev;
581 int error;
582
8fd9e488 583 VM_BUG_ON(offset_in_page(start));
fed067da 584 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
585 end = start + len;
586 if (end < start)
587 return -EINVAL;
588 if (end == start)
589 return 0;
097d5910 590 vma = find_vma(current->mm, start);
1da177e4
LT
591 if (!vma || vma->vm_start > start)
592 return -ENOMEM;
593
097d5910 594 prev = vma->vm_prev;
1da177e4
LT
595 if (start > vma->vm_start)
596 prev = vma;
597
598 for (nstart = start ; ; ) {
b0f205c2 599 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
1da177e4 600
1aab92ec 601 newflags |= flags;
1da177e4 602
1aab92ec 603 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
1da177e4
LT
604 tmp = vma->vm_end;
605 if (tmp > end)
606 tmp = end;
607 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
608 if (error)
609 break;
610 nstart = tmp;
611 if (nstart < prev->vm_end)
612 nstart = prev->vm_end;
613 if (nstart >= end)
614 break;
615
616 vma = prev->vm_next;
617 if (!vma || vma->vm_start != nstart) {
618 error = -ENOMEM;
619 break;
620 }
621 }
622 return error;
623}
624
0cf2f6f6
SG
625/*
626 * Go through vma areas and sum size of mlocked
627 * vma pages, as return value.
628 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
629 * is also counted.
630 * Return value: previously mlocked page counts
631 */
632static int count_mm_mlocked_page_nr(struct mm_struct *mm,
633 unsigned long start, size_t len)
634{
635 struct vm_area_struct *vma;
636 int count = 0;
637
638 if (mm == NULL)
639 mm = current->mm;
640
641 vma = find_vma(mm, start);
642 if (vma == NULL)
643 vma = mm->mmap;
644
645 for (; vma ; vma = vma->vm_next) {
646 if (start >= vma->vm_end)
647 continue;
648 if (start + len <= vma->vm_start)
649 break;
650 if (vma->vm_flags & VM_LOCKED) {
651 if (start > vma->vm_start)
652 count -= (start - vma->vm_start);
653 if (start + len < vma->vm_end) {
654 count += start + len - vma->vm_start;
655 break;
656 }
657 count += vma->vm_end - vma->vm_start;
658 }
659 }
660
661 return count >> PAGE_SHIFT;
662}
663
dc0ef0df 664static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
1da177e4
LT
665{
666 unsigned long locked;
667 unsigned long lock_limit;
668 int error = -ENOMEM;
669
670 if (!can_do_mlock())
671 return -EPERM;
672
8891d6da
KM
673 lru_add_drain_all(); /* flush pagevec */
674
8fd9e488 675 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4
LT
676 start &= PAGE_MASK;
677
59e99e5b 678 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4 679 lock_limit >>= PAGE_SHIFT;
1f1cd705
DB
680 locked = len >> PAGE_SHIFT;
681
dc0ef0df
MH
682 if (down_write_killable(&current->mm->mmap_sem))
683 return -EINTR;
1f1cd705
DB
684
685 locked += current->mm->locked_vm;
0cf2f6f6
SG
686 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
687 /*
688 * It is possible that the regions requested intersect with
689 * previously mlocked areas, that part area in "mm->locked_vm"
690 * should not be counted to new mlock increment count. So check
691 * and adjust locked count if necessary.
692 */
693 locked -= count_mm_mlocked_page_nr(current->mm,
694 start, len);
695 }
1da177e4
LT
696
697 /* check against resource limits */
698 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
1aab92ec 699 error = apply_vma_lock_flags(start, len, flags);
1f1cd705 700
1da177e4 701 up_write(&current->mm->mmap_sem);
c561259c
KS
702 if (error)
703 return error;
704
705 error = __mm_populate(start, len, 0);
706 if (error)
707 return __mlock_posix_error_return(error);
708 return 0;
1da177e4
LT
709}
710
1aab92ec
EM
711SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
712{
713 return do_mlock(start, len, VM_LOCKED);
714}
715
a8ca5d0e
EM
716SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
717{
b0f205c2
EM
718 vm_flags_t vm_flags = VM_LOCKED;
719
720 if (flags & ~MLOCK_ONFAULT)
a8ca5d0e
EM
721 return -EINVAL;
722
b0f205c2
EM
723 if (flags & MLOCK_ONFAULT)
724 vm_flags |= VM_LOCKONFAULT;
725
726 return do_mlock(start, len, vm_flags);
a8ca5d0e
EM
727}
728
6a6160a7 729SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
730{
731 int ret;
732
8fd9e488 733 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4 734 start &= PAGE_MASK;
1f1cd705 735
dc0ef0df
MH
736 if (down_write_killable(&current->mm->mmap_sem))
737 return -EINTR;
1aab92ec 738 ret = apply_vma_lock_flags(start, len, 0);
1da177e4 739 up_write(&current->mm->mmap_sem);
1f1cd705 740
1da177e4
LT
741 return ret;
742}
743
b0f205c2
EM
744/*
745 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
746 * and translate into the appropriate modifications to mm->def_flags and/or the
747 * flags for all current VMAs.
748 *
749 * There are a couple of subtleties with this. If mlockall() is called multiple
750 * times with different flags, the values do not necessarily stack. If mlockall
751 * is called once including the MCL_FUTURE flag and then a second time without
752 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
753 */
1aab92ec 754static int apply_mlockall_flags(int flags)
1da177e4
LT
755{
756 struct vm_area_struct * vma, * prev = NULL;
b0f205c2 757 vm_flags_t to_add = 0;
1da177e4 758
b0f205c2
EM
759 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
760 if (flags & MCL_FUTURE) {
09a9f1d2 761 current->mm->def_flags |= VM_LOCKED;
1aab92ec 762
b0f205c2
EM
763 if (flags & MCL_ONFAULT)
764 current->mm->def_flags |= VM_LOCKONFAULT;
765
766 if (!(flags & MCL_CURRENT))
767 goto out;
768 }
769
770 if (flags & MCL_CURRENT) {
771 to_add |= VM_LOCKED;
772 if (flags & MCL_ONFAULT)
773 to_add |= VM_LOCKONFAULT;
774 }
1da177e4
LT
775
776 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 777 vm_flags_t newflags;
1da177e4 778
b0f205c2
EM
779 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
780 newflags |= to_add;
1da177e4
LT
781
782 /* Ignore errors */
783 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
bde6c3aa 784 cond_resched_rcu_qs();
1da177e4
LT
785 }
786out:
787 return 0;
788}
789
3480b257 790SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
791{
792 unsigned long lock_limit;
86d2adcc 793 int ret;
1da177e4 794
b0f205c2 795 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
86d2adcc 796 return -EINVAL;
1da177e4 797
1da177e4 798 if (!can_do_mlock())
86d2adcc 799 return -EPERM;
1da177e4 800
df9d6985
CL
801 if (flags & MCL_CURRENT)
802 lru_add_drain_all(); /* flush pagevec */
8891d6da 803
59e99e5b 804 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
805 lock_limit >>= PAGE_SHIFT;
806
dc0ef0df
MH
807 if (down_write_killable(&current->mm->mmap_sem))
808 return -EINTR;
1f1cd705 809
dc0ef0df 810 ret = -ENOMEM;
1da177e4
LT
811 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
812 capable(CAP_IPC_LOCK))
1aab92ec 813 ret = apply_mlockall_flags(flags);
1da177e4 814 up_write(&current->mm->mmap_sem);
bebeb3d6
ML
815 if (!ret && (flags & MCL_CURRENT))
816 mm_populate(0, TASK_SIZE);
86d2adcc 817
1da177e4
LT
818 return ret;
819}
820
3480b257 821SYSCALL_DEFINE0(munlockall)
1da177e4
LT
822{
823 int ret;
824
dc0ef0df
MH
825 if (down_write_killable(&current->mm->mmap_sem))
826 return -EINTR;
1aab92ec 827 ret = apply_mlockall_flags(0);
1da177e4
LT
828 up_write(&current->mm->mmap_sem);
829 return ret;
830}
831
832/*
833 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
834 * shm segments) get accounted against the user_struct instead.
835 */
836static DEFINE_SPINLOCK(shmlock_user_lock);
837
838int user_shm_lock(size_t size, struct user_struct *user)
839{
840 unsigned long lock_limit, locked;
841 int allowed = 0;
842
843 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 844 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
845 if (lock_limit == RLIM_INFINITY)
846 allowed = 1;
1da177e4
LT
847 lock_limit >>= PAGE_SHIFT;
848 spin_lock(&shmlock_user_lock);
5ed44a40
HB
849 if (!allowed &&
850 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
1da177e4
LT
851 goto out;
852 get_uid(user);
853 user->locked_shm += locked;
854 allowed = 1;
855out:
856 spin_unlock(&shmlock_user_lock);
857 return allowed;
858}
859
860void user_shm_unlock(size_t size, struct user_struct *user)
861{
862 spin_lock(&shmlock_user_lock);
863 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
864 spin_unlock(&shmlock_user_lock);
865 free_uid(user);
866}