]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/mlock.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-bionic-kernel.git] / mm / mlock.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
c59ede7b 8#include <linux/capability.h>
1da177e4
LT
9#include <linux/mman.h>
10#include <linux/mm.h>
8703e8a4 11#include <linux/sched/user.h>
b291f000
NP
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/pagemap.h>
7225522b 15#include <linux/pagevec.h>
1da177e4
LT
16#include <linux/mempolicy.h>
17#include <linux/syscalls.h>
e8edc6e0 18#include <linux/sched.h>
b95f1b31 19#include <linux/export.h>
b291f000
NP
20#include <linux/rmap.h>
21#include <linux/mmzone.h>
22#include <linux/hugetlb.h>
7225522b
VB
23#include <linux/memcontrol.h>
24#include <linux/mm_inline.h>
b291f000
NP
25
26#include "internal.h"
1da177e4 27
7f43add4 28bool can_do_mlock(void)
e8edc6e0 29{
59e99e5b 30 if (rlimit(RLIMIT_MEMLOCK) != 0)
7f43add4 31 return true;
a5a6579d 32 if (capable(CAP_IPC_LOCK))
7f43add4
WX
33 return true;
34 return false;
e8edc6e0
AD
35}
36EXPORT_SYMBOL(can_do_mlock);
1da177e4 37
b291f000
NP
38/*
39 * Mlocked pages are marked with PageMlocked() flag for efficient testing
40 * in vmscan and, possibly, the fault path; and to support semi-accurate
41 * statistics.
42 *
43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
44 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45 * The unevictable list is an LRU sibling list to the [in]active lists.
46 * PageUnevictable is set to indicate the unevictable state.
47 *
48 * When lazy mlocking via vmscan, it is important to ensure that the
49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50 * may have mlocked a page that is being munlocked. So lazy mlock must take
51 * the mmap_sem for read, and verify that the vma really is locked
52 * (see mm/rmap.c).
53 */
54
55/*
56 * LRU accounting for clear_page_mlock()
57 */
e6c509f8 58void clear_page_mlock(struct page *page)
b291f000 59{
e6c509f8 60 if (!TestClearPageMlocked(page))
b291f000 61 return;
b291f000 62
8449d21f
DR
63 mod_zone_page_state(page_zone(page), NR_MLOCK,
64 -hpage_nr_pages(page));
5344b7e6 65 count_vm_event(UNEVICTABLE_PGCLEARED);
b291f000
NP
66 if (!isolate_lru_page(page)) {
67 putback_lru_page(page);
68 } else {
69 /*
8891d6da 70 * We lost the race. the page already moved to evictable list.
b291f000 71 */
8891d6da 72 if (PageUnevictable(page))
5344b7e6 73 count_vm_event(UNEVICTABLE_PGSTRANDED);
b291f000
NP
74 }
75}
76
77/*
78 * Mark page as mlocked if not already.
79 * If page on LRU, isolate and putback to move to unevictable list.
80 */
81void mlock_vma_page(struct page *page)
82{
57e68e9c 83 /* Serialize with page migration */
b291f000
NP
84 BUG_ON(!PageLocked(page));
85
e90309c9
KS
86 VM_BUG_ON_PAGE(PageTail(page), page);
87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88
5344b7e6 89 if (!TestSetPageMlocked(page)) {
8449d21f
DR
90 mod_zone_page_state(page_zone(page), NR_MLOCK,
91 hpage_nr_pages(page));
5344b7e6
NP
92 count_vm_event(UNEVICTABLE_PGMLOCKED);
93 if (!isolate_lru_page(page))
94 putback_lru_page(page);
95 }
b291f000
NP
96}
97
01cc2e58
VB
98/*
99 * Isolate a page from LRU with optional get_page() pin.
100 * Assumes lru_lock already held and page already pinned.
101 */
102static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103{
104 if (PageLRU(page)) {
105 struct lruvec *lruvec;
106
599d0c95 107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
01cc2e58
VB
108 if (getpage)
109 get_page(page);
110 ClearPageLRU(page);
111 del_page_from_lru_list(page, lruvec, page_lru(page));
112 return true;
113 }
114
115 return false;
116}
117
7225522b
VB
118/*
119 * Finish munlock after successful page isolation
120 *
121 * Page must be locked. This is a wrapper for try_to_munlock()
122 * and putback_lru_page() with munlock accounting.
123 */
124static void __munlock_isolated_page(struct page *page)
125{
7225522b
VB
126 /*
127 * Optimization: if the page was mapped just once, that's our mapping
128 * and we don't need to check all the other vmas.
129 */
130 if (page_mapcount(page) > 1)
192d7232 131 try_to_munlock(page);
7225522b
VB
132
133 /* Did try_to_unlock() succeed or punt? */
192d7232 134 if (!PageMlocked(page))
7225522b
VB
135 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
136
137 putback_lru_page(page);
138}
139
140/*
141 * Accounting for page isolation fail during munlock
142 *
143 * Performs accounting when page isolation fails in munlock. There is nothing
144 * else to do because it means some other task has already removed the page
145 * from the LRU. putback_lru_page() will take care of removing the page from
146 * the unevictable list, if necessary. vmscan [page_referenced()] will move
147 * the page back to the unevictable list if some other vma has it mlocked.
148 */
149static void __munlock_isolation_failed(struct page *page)
150{
151 if (PageUnevictable(page))
01cc2e58 152 __count_vm_event(UNEVICTABLE_PGSTRANDED);
7225522b 153 else
01cc2e58 154 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
7225522b
VB
155}
156
6927c1dd
LS
157/**
158 * munlock_vma_page - munlock a vma page
c424be1c
VB
159 * @page - page to be unlocked, either a normal page or THP page head
160 *
161 * returns the size of the page as a page mask (0 for normal page,
162 * HPAGE_PMD_NR - 1 for THP head page)
b291f000 163 *
6927c1dd
LS
164 * called from munlock()/munmap() path with page supposedly on the LRU.
165 * When we munlock a page, because the vma where we found the page is being
166 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
167 * page locked so that we can leave it on the unevictable lru list and not
168 * bother vmscan with it. However, to walk the page's rmap list in
169 * try_to_munlock() we must isolate the page from the LRU. If some other
170 * task has removed the page from the LRU, we won't be able to do that.
171 * So we clear the PageMlocked as we might not get another chance. If we
172 * can't isolate the page, we leave it for putback_lru_page() and vmscan
173 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 174 */
ff6a6da6 175unsigned int munlock_vma_page(struct page *page)
b291f000 176{
7162a1e8 177 int nr_pages;
01cc2e58 178 struct zone *zone = page_zone(page);
ff6a6da6 179
57e68e9c 180 /* For try_to_munlock() and to serialize with page migration */
b291f000
NP
181 BUG_ON(!PageLocked(page));
182
e90309c9
KS
183 VM_BUG_ON_PAGE(PageTail(page), page);
184
c424be1c 185 /*
01cc2e58
VB
186 * Serialize with any parallel __split_huge_page_refcount() which
187 * might otherwise copy PageMlocked to part of the tail pages before
188 * we clear it in the head page. It also stabilizes hpage_nr_pages().
c424be1c 189 */
a52633d8 190 spin_lock_irq(zone_lru_lock(zone));
01cc2e58 191
655548bf
KS
192 if (!TestClearPageMlocked(page)) {
193 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
194 nr_pages = 1;
01cc2e58 195 goto unlock_out;
655548bf 196 }
01cc2e58 197
655548bf 198 nr_pages = hpage_nr_pages(page);
01cc2e58
VB
199 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
200
201 if (__munlock_isolate_lru_page(page, true)) {
a52633d8 202 spin_unlock_irq(zone_lru_lock(zone));
01cc2e58
VB
203 __munlock_isolated_page(page);
204 goto out;
205 }
206 __munlock_isolation_failed(page);
207
208unlock_out:
a52633d8 209 spin_unlock_irq(zone_lru_lock(zone));
01cc2e58
VB
210
211out:
c424be1c 212 return nr_pages - 1;
b291f000
NP
213}
214
9978ad58
LS
215/*
216 * convert get_user_pages() return value to posix mlock() error
217 */
218static int __mlock_posix_error_return(long retval)
219{
220 if (retval == -EFAULT)
221 retval = -ENOMEM;
222 else if (retval == -ENOMEM)
223 retval = -EAGAIN;
224 return retval;
b291f000
NP
225}
226
56afe477
VB
227/*
228 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
229 *
230 * The fast path is available only for evictable pages with single mapping.
231 * Then we can bypass the per-cpu pvec and get better performance.
232 * when mapcount > 1 we need try_to_munlock() which can fail.
233 * when !page_evictable(), we need the full redo logic of putback_lru_page to
234 * avoid leaving evictable page in unevictable list.
235 *
236 * In case of success, @page is added to @pvec and @pgrescued is incremented
237 * in case that the page was previously unevictable. @page is also unlocked.
238 */
239static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
240 int *pgrescued)
241{
309381fe
SL
242 VM_BUG_ON_PAGE(PageLRU(page), page);
243 VM_BUG_ON_PAGE(!PageLocked(page), page);
56afe477
VB
244
245 if (page_mapcount(page) <= 1 && page_evictable(page)) {
246 pagevec_add(pvec, page);
247 if (TestClearPageUnevictable(page))
248 (*pgrescued)++;
249 unlock_page(page);
250 return true;
251 }
252
253 return false;
254}
255
256/*
257 * Putback multiple evictable pages to the LRU
258 *
259 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
260 * the pages might have meanwhile become unevictable but that is OK.
261 */
262static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
263{
264 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
265 /*
266 *__pagevec_lru_add() calls release_pages() so we don't call
267 * put_page() explicitly
268 */
269 __pagevec_lru_add(pvec);
270 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
271}
272
7225522b
VB
273/*
274 * Munlock a batch of pages from the same zone
275 *
276 * The work is split to two main phases. First phase clears the Mlocked flag
277 * and attempts to isolate the pages, all under a single zone lru lock.
278 * The second phase finishes the munlock only for pages where isolation
279 * succeeded.
280 *
7a8010cd 281 * Note that the pagevec may be modified during the process.
7225522b
VB
282 */
283static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
284{
285 int i;
286 int nr = pagevec_count(pvec);
70feee0e 287 int delta_munlocked = -nr;
56afe477
VB
288 struct pagevec pvec_putback;
289 int pgrescued = 0;
7225522b 290
3b25df93
VB
291 pagevec_init(&pvec_putback, 0);
292
7225522b 293 /* Phase 1: page isolation */
a52633d8 294 spin_lock_irq(zone_lru_lock(zone));
7225522b
VB
295 for (i = 0; i < nr; i++) {
296 struct page *page = pvec->pages[i];
297
298 if (TestClearPageMlocked(page)) {
7225522b 299 /*
01cc2e58
VB
300 * We already have pin from follow_page_mask()
301 * so we can spare the get_page() here.
7225522b 302 */
01cc2e58
VB
303 if (__munlock_isolate_lru_page(page, false))
304 continue;
305 else
306 __munlock_isolation_failed(page);
70feee0e
YX
307 } else {
308 delta_munlocked++;
7225522b 309 }
01cc2e58
VB
310
311 /*
312 * We won't be munlocking this page in the next phase
313 * but we still need to release the follow_page_mask()
314 * pin. We cannot do it under lru_lock however. If it's
315 * the last pin, __page_cache_release() would deadlock.
316 */
317 pagevec_add(&pvec_putback, pvec->pages[i]);
318 pvec->pages[i] = NULL;
7225522b 319 }
1ebb7cc6 320 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
a52633d8 321 spin_unlock_irq(zone_lru_lock(zone));
7225522b 322
3b25df93
VB
323 /* Now we can release pins of pages that we are not munlocking */
324 pagevec_release(&pvec_putback);
325
56afe477 326 /* Phase 2: page munlock */
7225522b
VB
327 for (i = 0; i < nr; i++) {
328 struct page *page = pvec->pages[i];
329
330 if (page) {
331 lock_page(page);
56afe477
VB
332 if (!__putback_lru_fast_prepare(page, &pvec_putback,
333 &pgrescued)) {
5b40998a
VB
334 /*
335 * Slow path. We don't want to lose the last
336 * pin before unlock_page()
337 */
338 get_page(page); /* for putback_lru_page() */
56afe477
VB
339 __munlock_isolated_page(page);
340 unlock_page(page);
5b40998a 341 put_page(page); /* from follow_page_mask() */
56afe477 342 }
7225522b
VB
343 }
344 }
56afe477 345
5b40998a
VB
346 /*
347 * Phase 3: page putback for pages that qualified for the fast path
348 * This will also call put_page() to return pin from follow_page_mask()
349 */
56afe477
VB
350 if (pagevec_count(&pvec_putback))
351 __putback_lru_fast(&pvec_putback, pgrescued);
7a8010cd
VB
352}
353
354/*
355 * Fill up pagevec for __munlock_pagevec using pte walk
356 *
357 * The function expects that the struct page corresponding to @start address is
358 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
359 *
360 * The rest of @pvec is filled by subsequent pages within the same pmd and same
361 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
362 * pages also get pinned.
363 *
364 * Returns the address of the next page that should be scanned. This equals
365 * @start + PAGE_SIZE when no page could be added by the pte walk.
366 */
367static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
9472f23c
JK
368 struct vm_area_struct *vma, struct zone *zone,
369 unsigned long start, unsigned long end)
7a8010cd
VB
370{
371 pte_t *pte;
372 spinlock_t *ptl;
373
374 /*
375 * Initialize pte walk starting at the already pinned page where we
eadb41ae
VB
376 * are sure that there is a pte, as it was pinned under the same
377 * mmap_sem write op.
7a8010cd
VB
378 */
379 pte = get_locked_pte(vma->vm_mm, start, &ptl);
eadb41ae
VB
380 /* Make sure we do not cross the page table boundary */
381 end = pgd_addr_end(start, end);
c2febafc 382 end = p4d_addr_end(start, end);
eadb41ae
VB
383 end = pud_addr_end(start, end);
384 end = pmd_addr_end(start, end);
7a8010cd
VB
385
386 /* The page next to the pinned page is the first we will try to get */
387 start += PAGE_SIZE;
388 while (start < end) {
389 struct page *page = NULL;
390 pte++;
391 if (pte_present(*pte))
392 page = vm_normal_page(vma, start, *pte);
393 /*
394 * Break if page could not be obtained or the page's node+zone does not
395 * match
396 */
9472f23c 397 if (!page || page_zone(page) != zone)
7a8010cd 398 break;
56afe477 399
e90309c9
KS
400 /*
401 * Do not use pagevec for PTE-mapped THP,
402 * munlock_vma_pages_range() will handle them.
403 */
404 if (PageTransCompound(page))
405 break;
406
7a8010cd
VB
407 get_page(page);
408 /*
409 * Increase the address that will be returned *before* the
410 * eventual break due to pvec becoming full by adding the page
411 */
412 start += PAGE_SIZE;
413 if (pagevec_add(pvec, page) == 0)
414 break;
415 }
416 pte_unmap_unlock(pte, ptl);
417 return start;
7225522b
VB
418}
419
b291f000 420/*
ba470de4
RR
421 * munlock_vma_pages_range() - munlock all pages in the vma range.'
422 * @vma - vma containing range to be munlock()ed.
423 * @start - start address in @vma of the range
424 * @end - end of range in @vma.
425 *
426 * For mremap(), munmap() and exit().
427 *
428 * Called with @vma VM_LOCKED.
429 *
430 * Returns with VM_LOCKED cleared. Callers must be prepared to
431 * deal with this.
432 *
433 * We don't save and restore VM_LOCKED here because pages are
434 * still on lru. In unmap path, pages might be scanned by reclaim
435 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
436 * free them. This will result in freeing mlocked pages.
b291f000 437 */
ba470de4 438void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 439 unsigned long start, unsigned long end)
b291f000 440{
de60f5f1 441 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
408e82b7 442
ff6a6da6 443 while (start < end) {
ab7a5af7 444 struct page *page;
6ebb4a1b 445 unsigned int page_mask = 0;
c424be1c 446 unsigned long page_increm;
7a8010cd
VB
447 struct pagevec pvec;
448 struct zone *zone;
ff6a6da6 449
7a8010cd 450 pagevec_init(&pvec, 0);
6e919717
HD
451 /*
452 * Although FOLL_DUMP is intended for get_dump_page(),
453 * it just so happens that its special treatment of the
454 * ZERO_PAGE (returning an error instead of doing get_page)
455 * suits munlock very well (and if somehow an abnormal page
456 * has sneaked into the range, we won't oops here: great).
457 */
6ebb4a1b 458 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
7a8010cd 459
e90309c9
KS
460 if (page && !IS_ERR(page)) {
461 if (PageTransTail(page)) {
462 VM_BUG_ON_PAGE(PageMlocked(page), page);
463 put_page(page); /* follow_page_mask() */
464 } else if (PageTransHuge(page)) {
465 lock_page(page);
466 /*
467 * Any THP page found by follow_page_mask() may
468 * have gotten split before reaching
6ebb4a1b
KS
469 * munlock_vma_page(), so we need to compute
470 * the page_mask here instead.
e90309c9
KS
471 */
472 page_mask = munlock_vma_page(page);
473 unlock_page(page);
474 put_page(page); /* follow_page_mask() */
475 } else {
476 /*
477 * Non-huge pages are handled in batches via
478 * pagevec. The pin from follow_page_mask()
479 * prevents them from collapsing by THP.
480 */
481 pagevec_add(&pvec, page);
482 zone = page_zone(page);
7a8010cd 483
e90309c9
KS
484 /*
485 * Try to fill the rest of pagevec using fast
486 * pte walk. This will also update start to
487 * the next page to process. Then munlock the
488 * pagevec.
489 */
490 start = __munlock_pagevec_fill(&pvec, vma,
9472f23c 491 zone, start, end);
e90309c9
KS
492 __munlock_pagevec(&pvec, zone);
493 goto next;
494 }
408e82b7 495 }
c424be1c 496 page_increm = 1 + page_mask;
ff6a6da6 497 start += page_increm * PAGE_SIZE;
7a8010cd 498next:
408e82b7
HD
499 cond_resched();
500 }
b291f000
NP
501}
502
503/*
504 * mlock_fixup - handle mlock[all]/munlock[all] requests.
505 *
506 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
507 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 508 * populate the ptes.
b291f000
NP
509 *
510 * For vmas that pass the filters, merge/split as appropriate.
511 */
1da177e4 512static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 513 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 514{
b291f000 515 struct mm_struct *mm = vma->vm_mm;
1da177e4 516 pgoff_t pgoff;
b291f000 517 int nr_pages;
1da177e4 518 int ret = 0;
ca16d140 519 int lock = !!(newflags & VM_LOCKED);
b155b4fd 520 vm_flags_t old_flags = vma->vm_flags;
1da177e4 521
fed067da 522 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
31db58b3 523 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
b0f205c2
EM
524 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
525 goto out;
b291f000 526
1da177e4
LT
527 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
528 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
19a809af
AA
529 vma->vm_file, pgoff, vma_policy(vma),
530 vma->vm_userfaultfd_ctx);
1da177e4
LT
531 if (*prev) {
532 vma = *prev;
533 goto success;
534 }
535
1da177e4
LT
536 if (start != vma->vm_start) {
537 ret = split_vma(mm, vma, start, 1);
538 if (ret)
539 goto out;
540 }
541
542 if (end != vma->vm_end) {
543 ret = split_vma(mm, vma, end, 0);
544 if (ret)
545 goto out;
546 }
547
548success:
b291f000
NP
549 /*
550 * Keep track of amount of locked VM.
551 */
552 nr_pages = (end - start) >> PAGE_SHIFT;
553 if (!lock)
554 nr_pages = -nr_pages;
b155b4fd
SG
555 else if (old_flags & VM_LOCKED)
556 nr_pages = 0;
b291f000
NP
557 mm->locked_vm += nr_pages;
558
1da177e4
LT
559 /*
560 * vm_flags is protected by the mmap_sem held in write mode.
561 * It's okay if try_to_unmap_one unmaps a page just after we
fc05f566 562 * set VM_LOCKED, populate_vma_page_range will bring it back.
1da177e4 563 */
1da177e4 564
fed067da 565 if (lock)
408e82b7 566 vma->vm_flags = newflags;
fed067da 567 else
408e82b7 568 munlock_vma_pages_range(vma, start, end);
1da177e4 569
1da177e4 570out:
b291f000 571 *prev = vma;
1da177e4
LT
572 return ret;
573}
574
1aab92ec
EM
575static int apply_vma_lock_flags(unsigned long start, size_t len,
576 vm_flags_t flags)
1da177e4
LT
577{
578 unsigned long nstart, end, tmp;
579 struct vm_area_struct * vma, * prev;
580 int error;
581
8fd9e488 582 VM_BUG_ON(offset_in_page(start));
fed067da 583 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
584 end = start + len;
585 if (end < start)
586 return -EINVAL;
587 if (end == start)
588 return 0;
097d5910 589 vma = find_vma(current->mm, start);
1da177e4
LT
590 if (!vma || vma->vm_start > start)
591 return -ENOMEM;
592
097d5910 593 prev = vma->vm_prev;
1da177e4
LT
594 if (start > vma->vm_start)
595 prev = vma;
596
597 for (nstart = start ; ; ) {
b0f205c2 598 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
1da177e4 599
1aab92ec 600 newflags |= flags;
1da177e4 601
1aab92ec 602 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
1da177e4
LT
603 tmp = vma->vm_end;
604 if (tmp > end)
605 tmp = end;
606 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
607 if (error)
608 break;
609 nstart = tmp;
610 if (nstart < prev->vm_end)
611 nstart = prev->vm_end;
612 if (nstart >= end)
613 break;
614
615 vma = prev->vm_next;
616 if (!vma || vma->vm_start != nstart) {
617 error = -ENOMEM;
618 break;
619 }
620 }
621 return error;
622}
623
0cf2f6f6
SG
624/*
625 * Go through vma areas and sum size of mlocked
626 * vma pages, as return value.
627 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
628 * is also counted.
629 * Return value: previously mlocked page counts
630 */
631static int count_mm_mlocked_page_nr(struct mm_struct *mm,
632 unsigned long start, size_t len)
633{
634 struct vm_area_struct *vma;
635 int count = 0;
636
637 if (mm == NULL)
638 mm = current->mm;
639
640 vma = find_vma(mm, start);
641 if (vma == NULL)
642 vma = mm->mmap;
643
644 for (; vma ; vma = vma->vm_next) {
645 if (start >= vma->vm_end)
646 continue;
647 if (start + len <= vma->vm_start)
648 break;
649 if (vma->vm_flags & VM_LOCKED) {
650 if (start > vma->vm_start)
651 count -= (start - vma->vm_start);
652 if (start + len < vma->vm_end) {
653 count += start + len - vma->vm_start;
654 break;
655 }
656 count += vma->vm_end - vma->vm_start;
657 }
658 }
659
660 return count >> PAGE_SHIFT;
661}
662
dc0ef0df 663static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
1da177e4
LT
664{
665 unsigned long locked;
666 unsigned long lock_limit;
667 int error = -ENOMEM;
668
669 if (!can_do_mlock())
670 return -EPERM;
671
8891d6da
KM
672 lru_add_drain_all(); /* flush pagevec */
673
8fd9e488 674 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4
LT
675 start &= PAGE_MASK;
676
59e99e5b 677 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4 678 lock_limit >>= PAGE_SHIFT;
1f1cd705
DB
679 locked = len >> PAGE_SHIFT;
680
dc0ef0df
MH
681 if (down_write_killable(&current->mm->mmap_sem))
682 return -EINTR;
1f1cd705
DB
683
684 locked += current->mm->locked_vm;
0cf2f6f6
SG
685 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
686 /*
687 * It is possible that the regions requested intersect with
688 * previously mlocked areas, that part area in "mm->locked_vm"
689 * should not be counted to new mlock increment count. So check
690 * and adjust locked count if necessary.
691 */
692 locked -= count_mm_mlocked_page_nr(current->mm,
693 start, len);
694 }
1da177e4
LT
695
696 /* check against resource limits */
697 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
1aab92ec 698 error = apply_vma_lock_flags(start, len, flags);
1f1cd705 699
1da177e4 700 up_write(&current->mm->mmap_sem);
c561259c
KS
701 if (error)
702 return error;
703
704 error = __mm_populate(start, len, 0);
705 if (error)
706 return __mlock_posix_error_return(error);
707 return 0;
1da177e4
LT
708}
709
1aab92ec
EM
710SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
711{
712 return do_mlock(start, len, VM_LOCKED);
713}
714
a8ca5d0e
EM
715SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
716{
b0f205c2
EM
717 vm_flags_t vm_flags = VM_LOCKED;
718
719 if (flags & ~MLOCK_ONFAULT)
a8ca5d0e
EM
720 return -EINVAL;
721
b0f205c2
EM
722 if (flags & MLOCK_ONFAULT)
723 vm_flags |= VM_LOCKONFAULT;
724
725 return do_mlock(start, len, vm_flags);
a8ca5d0e
EM
726}
727
6a6160a7 728SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
729{
730 int ret;
731
8fd9e488 732 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4 733 start &= PAGE_MASK;
1f1cd705 734
dc0ef0df
MH
735 if (down_write_killable(&current->mm->mmap_sem))
736 return -EINTR;
1aab92ec 737 ret = apply_vma_lock_flags(start, len, 0);
1da177e4 738 up_write(&current->mm->mmap_sem);
1f1cd705 739
1da177e4
LT
740 return ret;
741}
742
b0f205c2
EM
743/*
744 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
745 * and translate into the appropriate modifications to mm->def_flags and/or the
746 * flags for all current VMAs.
747 *
748 * There are a couple of subtleties with this. If mlockall() is called multiple
749 * times with different flags, the values do not necessarily stack. If mlockall
750 * is called once including the MCL_FUTURE flag and then a second time without
751 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
752 */
1aab92ec 753static int apply_mlockall_flags(int flags)
1da177e4
LT
754{
755 struct vm_area_struct * vma, * prev = NULL;
b0f205c2 756 vm_flags_t to_add = 0;
1da177e4 757
b0f205c2
EM
758 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
759 if (flags & MCL_FUTURE) {
09a9f1d2 760 current->mm->def_flags |= VM_LOCKED;
1aab92ec 761
b0f205c2
EM
762 if (flags & MCL_ONFAULT)
763 current->mm->def_flags |= VM_LOCKONFAULT;
764
765 if (!(flags & MCL_CURRENT))
766 goto out;
767 }
768
769 if (flags & MCL_CURRENT) {
770 to_add |= VM_LOCKED;
771 if (flags & MCL_ONFAULT)
772 to_add |= VM_LOCKONFAULT;
773 }
1da177e4
LT
774
775 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 776 vm_flags_t newflags;
1da177e4 777
b0f205c2
EM
778 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
779 newflags |= to_add;
1da177e4
LT
780
781 /* Ignore errors */
782 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
bde6c3aa 783 cond_resched_rcu_qs();
1da177e4
LT
784 }
785out:
786 return 0;
787}
788
3480b257 789SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
790{
791 unsigned long lock_limit;
86d2adcc 792 int ret;
1da177e4 793
b0f205c2 794 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
86d2adcc 795 return -EINVAL;
1da177e4 796
1da177e4 797 if (!can_do_mlock())
86d2adcc 798 return -EPERM;
1da177e4 799
df9d6985
CL
800 if (flags & MCL_CURRENT)
801 lru_add_drain_all(); /* flush pagevec */
8891d6da 802
59e99e5b 803 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
804 lock_limit >>= PAGE_SHIFT;
805
dc0ef0df
MH
806 if (down_write_killable(&current->mm->mmap_sem))
807 return -EINTR;
1f1cd705 808
dc0ef0df 809 ret = -ENOMEM;
1da177e4
LT
810 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
811 capable(CAP_IPC_LOCK))
1aab92ec 812 ret = apply_mlockall_flags(flags);
1da177e4 813 up_write(&current->mm->mmap_sem);
bebeb3d6
ML
814 if (!ret && (flags & MCL_CURRENT))
815 mm_populate(0, TASK_SIZE);
86d2adcc 816
1da177e4
LT
817 return ret;
818}
819
3480b257 820SYSCALL_DEFINE0(munlockall)
1da177e4
LT
821{
822 int ret;
823
dc0ef0df
MH
824 if (down_write_killable(&current->mm->mmap_sem))
825 return -EINTR;
1aab92ec 826 ret = apply_mlockall_flags(0);
1da177e4
LT
827 up_write(&current->mm->mmap_sem);
828 return ret;
829}
830
831/*
832 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
833 * shm segments) get accounted against the user_struct instead.
834 */
835static DEFINE_SPINLOCK(shmlock_user_lock);
836
837int user_shm_lock(size_t size, struct user_struct *user)
838{
839 unsigned long lock_limit, locked;
840 int allowed = 0;
841
842 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 843 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
844 if (lock_limit == RLIM_INFINITY)
845 allowed = 1;
1da177e4
LT
846 lock_limit >>= PAGE_SHIFT;
847 spin_lock(&shmlock_user_lock);
5ed44a40
HB
848 if (!allowed &&
849 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
1da177e4
LT
850 goto out;
851 get_uid(user);
852 user->locked_shm += locked;
853 allowed = 1;
854out:
855 spin_unlock(&shmlock_user_lock);
856 return allowed;
857}
858
859void user_shm_unlock(size_t size, struct user_struct *user)
860{
861 spin_lock(&shmlock_user_lock);
862 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
863 spin_unlock(&shmlock_user_lock);
864 free_uid(user);
865}