]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/mlock.c
mm: munlock: bypass per-cpu pvec for putback_lru_page
[mirror_ubuntu-artful-kernel.git] / mm / mlock.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
c59ede7b 8#include <linux/capability.h>
1da177e4
LT
9#include <linux/mman.h>
10#include <linux/mm.h>
b291f000
NP
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/pagemap.h>
7225522b 14#include <linux/pagevec.h>
1da177e4
LT
15#include <linux/mempolicy.h>
16#include <linux/syscalls.h>
e8edc6e0 17#include <linux/sched.h>
b95f1b31 18#include <linux/export.h>
b291f000
NP
19#include <linux/rmap.h>
20#include <linux/mmzone.h>
21#include <linux/hugetlb.h>
7225522b
VB
22#include <linux/memcontrol.h>
23#include <linux/mm_inline.h>
b291f000
NP
24
25#include "internal.h"
1da177e4 26
e8edc6e0
AD
27int can_do_mlock(void)
28{
29 if (capable(CAP_IPC_LOCK))
30 return 1;
59e99e5b 31 if (rlimit(RLIMIT_MEMLOCK) != 0)
e8edc6e0
AD
32 return 1;
33 return 0;
34}
35EXPORT_SYMBOL(can_do_mlock);
1da177e4 36
b291f000
NP
37/*
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
41 *
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
46 *
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
52 */
53
54/*
55 * LRU accounting for clear_page_mlock()
56 */
e6c509f8 57void clear_page_mlock(struct page *page)
b291f000 58{
e6c509f8 59 if (!TestClearPageMlocked(page))
b291f000 60 return;
b291f000 61
8449d21f
DR
62 mod_zone_page_state(page_zone(page), NR_MLOCK,
63 -hpage_nr_pages(page));
5344b7e6 64 count_vm_event(UNEVICTABLE_PGCLEARED);
b291f000
NP
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
68 /*
8891d6da 69 * We lost the race. the page already moved to evictable list.
b291f000 70 */
8891d6da 71 if (PageUnevictable(page))
5344b7e6 72 count_vm_event(UNEVICTABLE_PGSTRANDED);
b291f000
NP
73 }
74}
75
76/*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80void mlock_vma_page(struct page *page)
81{
82 BUG_ON(!PageLocked(page));
83
5344b7e6 84 if (!TestSetPageMlocked(page)) {
8449d21f
DR
85 mod_zone_page_state(page_zone(page), NR_MLOCK,
86 hpage_nr_pages(page));
5344b7e6
NP
87 count_vm_event(UNEVICTABLE_PGMLOCKED);
88 if (!isolate_lru_page(page))
89 putback_lru_page(page);
90 }
b291f000
NP
91}
92
7225522b
VB
93/*
94 * Finish munlock after successful page isolation
95 *
96 * Page must be locked. This is a wrapper for try_to_munlock()
97 * and putback_lru_page() with munlock accounting.
98 */
99static void __munlock_isolated_page(struct page *page)
100{
101 int ret = SWAP_AGAIN;
102
103 /*
104 * Optimization: if the page was mapped just once, that's our mapping
105 * and we don't need to check all the other vmas.
106 */
107 if (page_mapcount(page) > 1)
108 ret = try_to_munlock(page);
109
110 /* Did try_to_unlock() succeed or punt? */
111 if (ret != SWAP_MLOCK)
112 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
113
114 putback_lru_page(page);
115}
116
117/*
118 * Accounting for page isolation fail during munlock
119 *
120 * Performs accounting when page isolation fails in munlock. There is nothing
121 * else to do because it means some other task has already removed the page
122 * from the LRU. putback_lru_page() will take care of removing the page from
123 * the unevictable list, if necessary. vmscan [page_referenced()] will move
124 * the page back to the unevictable list if some other vma has it mlocked.
125 */
126static void __munlock_isolation_failed(struct page *page)
127{
128 if (PageUnevictable(page))
129 count_vm_event(UNEVICTABLE_PGSTRANDED);
130 else
131 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
132}
133
6927c1dd
LS
134/**
135 * munlock_vma_page - munlock a vma page
136 * @page - page to be unlocked
b291f000 137 *
6927c1dd
LS
138 * called from munlock()/munmap() path with page supposedly on the LRU.
139 * When we munlock a page, because the vma where we found the page is being
140 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
141 * page locked so that we can leave it on the unevictable lru list and not
142 * bother vmscan with it. However, to walk the page's rmap list in
143 * try_to_munlock() we must isolate the page from the LRU. If some other
144 * task has removed the page from the LRU, we won't be able to do that.
145 * So we clear the PageMlocked as we might not get another chance. If we
146 * can't isolate the page, we leave it for putback_lru_page() and vmscan
147 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 148 */
ff6a6da6 149unsigned int munlock_vma_page(struct page *page)
b291f000 150{
ff6a6da6
ML
151 unsigned int page_mask = 0;
152
b291f000
NP
153 BUG_ON(!PageLocked(page));
154
5344b7e6 155 if (TestClearPageMlocked(page)) {
ff6a6da6
ML
156 unsigned int nr_pages = hpage_nr_pages(page);
157 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
158 page_mask = nr_pages - 1;
7225522b
VB
159 if (!isolate_lru_page(page))
160 __munlock_isolated_page(page);
161 else
162 __munlock_isolation_failed(page);
b291f000 163 }
ff6a6da6
ML
164
165 return page_mask;
b291f000
NP
166}
167
ba470de4 168/**
408e82b7 169 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
ba470de4
RR
170 * @vma: target vma
171 * @start: start address
172 * @end: end address
ba470de4 173 *
408e82b7 174 * This takes care of making the pages present too.
b291f000 175 *
ba470de4 176 * return 0 on success, negative error code on error.
b291f000 177 *
ba470de4 178 * vma->vm_mm->mmap_sem must be held for at least read.
b291f000 179 */
cea10a19
ML
180long __mlock_vma_pages_range(struct vm_area_struct *vma,
181 unsigned long start, unsigned long end, int *nonblocking)
b291f000
NP
182{
183 struct mm_struct *mm = vma->vm_mm;
28a35716 184 unsigned long nr_pages = (end - start) / PAGE_SIZE;
408e82b7 185 int gup_flags;
ba470de4
RR
186
187 VM_BUG_ON(start & ~PAGE_MASK);
188 VM_BUG_ON(end & ~PAGE_MASK);
189 VM_BUG_ON(start < vma->vm_start);
190 VM_BUG_ON(end > vma->vm_end);
408e82b7 191 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
b291f000 192
a1fde08c 193 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
5ecfda04
ML
194 /*
195 * We want to touch writable mappings with a write fault in order
196 * to break COW, except for shared mappings because these don't COW
197 * and we would not want to dirty them for nothing.
198 */
199 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
58fa879e 200 gup_flags |= FOLL_WRITE;
b291f000 201
fdf4c587
ML
202 /*
203 * We want mlock to succeed for regions that have any permissions
204 * other than PROT_NONE.
205 */
206 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
207 gup_flags |= FOLL_FORCE;
208
4805b02e
JW
209 /*
210 * We made sure addr is within a VMA, so the following will
211 * not result in a stack expansion that recurses back here.
212 */
ff6a6da6 213 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
53a7706d 214 NULL, NULL, nonblocking);
9978ad58
LS
215}
216
217/*
218 * convert get_user_pages() return value to posix mlock() error
219 */
220static int __mlock_posix_error_return(long retval)
221{
222 if (retval == -EFAULT)
223 retval = -ENOMEM;
224 else if (retval == -ENOMEM)
225 retval = -EAGAIN;
226 return retval;
b291f000
NP
227}
228
56afe477
VB
229/*
230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
231 *
232 * The fast path is available only for evictable pages with single mapping.
233 * Then we can bypass the per-cpu pvec and get better performance.
234 * when mapcount > 1 we need try_to_munlock() which can fail.
235 * when !page_evictable(), we need the full redo logic of putback_lru_page to
236 * avoid leaving evictable page in unevictable list.
237 *
238 * In case of success, @page is added to @pvec and @pgrescued is incremented
239 * in case that the page was previously unevictable. @page is also unlocked.
240 */
241static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
242 int *pgrescued)
243{
244 VM_BUG_ON(PageLRU(page));
245 VM_BUG_ON(!PageLocked(page));
246
247 if (page_mapcount(page) <= 1 && page_evictable(page)) {
248 pagevec_add(pvec, page);
249 if (TestClearPageUnevictable(page))
250 (*pgrescued)++;
251 unlock_page(page);
252 return true;
253 }
254
255 return false;
256}
257
258/*
259 * Putback multiple evictable pages to the LRU
260 *
261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
262 * the pages might have meanwhile become unevictable but that is OK.
263 */
264static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
265{
266 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
267 /*
268 *__pagevec_lru_add() calls release_pages() so we don't call
269 * put_page() explicitly
270 */
271 __pagevec_lru_add(pvec);
272 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
273}
274
7225522b
VB
275/*
276 * Munlock a batch of pages from the same zone
277 *
278 * The work is split to two main phases. First phase clears the Mlocked flag
279 * and attempts to isolate the pages, all under a single zone lru lock.
280 * The second phase finishes the munlock only for pages where isolation
281 * succeeded.
282 *
283 * Note that pvec is modified during the process. Before returning
284 * pagevec_reinit() is called on it.
285 */
286static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
287{
288 int i;
289 int nr = pagevec_count(pvec);
1ebb7cc6 290 int delta_munlocked = -nr;
56afe477
VB
291 struct pagevec pvec_putback;
292 int pgrescued = 0;
7225522b
VB
293
294 /* Phase 1: page isolation */
295 spin_lock_irq(&zone->lru_lock);
296 for (i = 0; i < nr; i++) {
297 struct page *page = pvec->pages[i];
298
299 if (TestClearPageMlocked(page)) {
300 struct lruvec *lruvec;
301 int lru;
302
7225522b
VB
303 if (PageLRU(page)) {
304 lruvec = mem_cgroup_page_lruvec(page, zone);
305 lru = page_lru(page);
306
307 get_page(page);
308 ClearPageLRU(page);
309 del_page_from_lru_list(page, lruvec, lru);
310 } else {
311 __munlock_isolation_failed(page);
312 goto skip_munlock;
313 }
314
315 } else {
316skip_munlock:
317 /*
318 * We won't be munlocking this page in the next phase
319 * but we still need to release the follow_page_mask()
320 * pin.
321 */
322 pvec->pages[i] = NULL;
323 put_page(page);
1ebb7cc6 324 delta_munlocked++;
7225522b
VB
325 }
326 }
1ebb7cc6 327 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
7225522b
VB
328 spin_unlock_irq(&zone->lru_lock);
329
56afe477
VB
330 /* Phase 2: page munlock */
331 pagevec_init(&pvec_putback, 0);
7225522b
VB
332 for (i = 0; i < nr; i++) {
333 struct page *page = pvec->pages[i];
334
335 if (page) {
336 lock_page(page);
56afe477
VB
337 if (!__putback_lru_fast_prepare(page, &pvec_putback,
338 &pgrescued)) {
339 /* Slow path */
340 __munlock_isolated_page(page);
341 unlock_page(page);
342 }
7225522b
VB
343 }
344 }
56afe477
VB
345
346 /* Phase 3: page putback for pages that qualified for the fast path */
347 if (pagevec_count(&pvec_putback))
348 __putback_lru_fast(&pvec_putback, pgrescued);
349
350 /* Phase 4: put_page to return pin from follow_page_mask() */
351 for (i = 0; i < nr; i++) {
352 struct page *page = pvec->pages[i];
353
354 if (page)
355 put_page(page);
356 }
357
7225522b
VB
358 pagevec_reinit(pvec);
359}
360
b291f000 361/*
ba470de4
RR
362 * munlock_vma_pages_range() - munlock all pages in the vma range.'
363 * @vma - vma containing range to be munlock()ed.
364 * @start - start address in @vma of the range
365 * @end - end of range in @vma.
366 *
367 * For mremap(), munmap() and exit().
368 *
369 * Called with @vma VM_LOCKED.
370 *
371 * Returns with VM_LOCKED cleared. Callers must be prepared to
372 * deal with this.
373 *
374 * We don't save and restore VM_LOCKED here because pages are
375 * still on lru. In unmap path, pages might be scanned by reclaim
376 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
377 * free them. This will result in freeing mlocked pages.
b291f000 378 */
ba470de4 379void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 380 unsigned long start, unsigned long end)
b291f000 381{
7225522b
VB
382 struct pagevec pvec;
383 struct zone *zone = NULL;
384
385 pagevec_init(&pvec, 0);
b291f000 386 vma->vm_flags &= ~VM_LOCKED;
408e82b7 387
ff6a6da6 388 while (start < end) {
6e919717 389 struct page *page;
ff6a6da6 390 unsigned int page_mask, page_increm;
7225522b 391 struct zone *pagezone;
ff6a6da6 392
6e919717
HD
393 /*
394 * Although FOLL_DUMP is intended for get_dump_page(),
395 * it just so happens that its special treatment of the
396 * ZERO_PAGE (returning an error instead of doing get_page)
397 * suits munlock very well (and if somehow an abnormal page
398 * has sneaked into the range, we won't oops here: great).
399 */
ff6a6da6
ML
400 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
401 &page_mask);
6e919717 402 if (page && !IS_ERR(page)) {
7225522b
VB
403 pagezone = page_zone(page);
404 /* The whole pagevec must be in the same zone */
405 if (pagezone != zone) {
406 if (pagevec_count(&pvec))
407 __munlock_pagevec(&pvec, zone);
408 zone = pagezone;
409 }
410 if (PageTransHuge(page)) {
411 /*
412 * THP pages are not handled by pagevec due
413 * to their possible split (see below).
414 */
415 if (pagevec_count(&pvec))
416 __munlock_pagevec(&pvec, zone);
417 lock_page(page);
418 /*
419 * Any THP page found by follow_page_mask() may
420 * have gotten split before reaching
421 * munlock_vma_page(), so we need to recompute
422 * the page_mask here.
423 */
424 page_mask = munlock_vma_page(page);
425 unlock_page(page);
426 put_page(page); /* follow_page_mask() */
427 } else {
428 /*
429 * Non-huge pages are handled in batches
430 * via pagevec. The pin from
431 * follow_page_mask() prevents them from
432 * collapsing by THP.
433 */
434 if (pagevec_add(&pvec, page) == 0)
435 __munlock_pagevec(&pvec, zone);
436 }
408e82b7 437 }
ff6a6da6
ML
438 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
439 start += page_increm * PAGE_SIZE;
408e82b7
HD
440 cond_resched();
441 }
7225522b
VB
442 if (pagevec_count(&pvec))
443 __munlock_pagevec(&pvec, zone);
b291f000
NP
444}
445
446/*
447 * mlock_fixup - handle mlock[all]/munlock[all] requests.
448 *
449 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
450 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 451 * populate the ptes.
b291f000
NP
452 *
453 * For vmas that pass the filters, merge/split as appropriate.
454 */
1da177e4 455static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 456 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 457{
b291f000 458 struct mm_struct *mm = vma->vm_mm;
1da177e4 459 pgoff_t pgoff;
b291f000 460 int nr_pages;
1da177e4 461 int ret = 0;
ca16d140 462 int lock = !!(newflags & VM_LOCKED);
1da177e4 463
fed067da 464 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
31db58b3 465 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
b291f000
NP
466 goto out; /* don't set VM_LOCKED, don't count */
467
1da177e4
LT
468 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
469 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
470 vma->vm_file, pgoff, vma_policy(vma));
471 if (*prev) {
472 vma = *prev;
473 goto success;
474 }
475
1da177e4
LT
476 if (start != vma->vm_start) {
477 ret = split_vma(mm, vma, start, 1);
478 if (ret)
479 goto out;
480 }
481
482 if (end != vma->vm_end) {
483 ret = split_vma(mm, vma, end, 0);
484 if (ret)
485 goto out;
486 }
487
488success:
b291f000
NP
489 /*
490 * Keep track of amount of locked VM.
491 */
492 nr_pages = (end - start) >> PAGE_SHIFT;
493 if (!lock)
494 nr_pages = -nr_pages;
495 mm->locked_vm += nr_pages;
496
1da177e4
LT
497 /*
498 * vm_flags is protected by the mmap_sem held in write mode.
499 * It's okay if try_to_unmap_one unmaps a page just after we
b291f000 500 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
1da177e4 501 */
1da177e4 502
fed067da 503 if (lock)
408e82b7 504 vma->vm_flags = newflags;
fed067da 505 else
408e82b7 506 munlock_vma_pages_range(vma, start, end);
1da177e4 507
1da177e4 508out:
b291f000 509 *prev = vma;
1da177e4
LT
510 return ret;
511}
512
513static int do_mlock(unsigned long start, size_t len, int on)
514{
515 unsigned long nstart, end, tmp;
516 struct vm_area_struct * vma, * prev;
517 int error;
518
fed067da
ML
519 VM_BUG_ON(start & ~PAGE_MASK);
520 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
521 end = start + len;
522 if (end < start)
523 return -EINVAL;
524 if (end == start)
525 return 0;
097d5910 526 vma = find_vma(current->mm, start);
1da177e4
LT
527 if (!vma || vma->vm_start > start)
528 return -ENOMEM;
529
097d5910 530 prev = vma->vm_prev;
1da177e4
LT
531 if (start > vma->vm_start)
532 prev = vma;
533
534 for (nstart = start ; ; ) {
ca16d140 535 vm_flags_t newflags;
1da177e4
LT
536
537 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
538
18693050
ML
539 newflags = vma->vm_flags & ~VM_LOCKED;
540 if (on)
09a9f1d2 541 newflags |= VM_LOCKED;
1da177e4
LT
542
543 tmp = vma->vm_end;
544 if (tmp > end)
545 tmp = end;
546 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
547 if (error)
548 break;
549 nstart = tmp;
550 if (nstart < prev->vm_end)
551 nstart = prev->vm_end;
552 if (nstart >= end)
553 break;
554
555 vma = prev->vm_next;
556 if (!vma || vma->vm_start != nstart) {
557 error = -ENOMEM;
558 break;
559 }
560 }
561 return error;
562}
563
bebeb3d6
ML
564/*
565 * __mm_populate - populate and/or mlock pages within a range of address space.
566 *
567 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
568 * flags. VMAs must be already marked with the desired vm_flags, and
569 * mmap_sem must not be held.
570 */
571int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
fed067da
ML
572{
573 struct mm_struct *mm = current->mm;
574 unsigned long end, nstart, nend;
575 struct vm_area_struct *vma = NULL;
53a7706d 576 int locked = 0;
28a35716 577 long ret = 0;
fed067da
ML
578
579 VM_BUG_ON(start & ~PAGE_MASK);
580 VM_BUG_ON(len != PAGE_ALIGN(len));
581 end = start + len;
582
fed067da
ML
583 for (nstart = start; nstart < end; nstart = nend) {
584 /*
585 * We want to fault in pages for [nstart; end) address range.
586 * Find first corresponding VMA.
587 */
53a7706d
ML
588 if (!locked) {
589 locked = 1;
590 down_read(&mm->mmap_sem);
fed067da 591 vma = find_vma(mm, nstart);
53a7706d 592 } else if (nstart >= vma->vm_end)
fed067da
ML
593 vma = vma->vm_next;
594 if (!vma || vma->vm_start >= end)
595 break;
596 /*
597 * Set [nstart; nend) to intersection of desired address
598 * range with the first VMA. Also, skip undesirable VMA types.
599 */
600 nend = min(end, vma->vm_end);
09a9f1d2 601 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
fed067da
ML
602 continue;
603 if (nstart < vma->vm_start)
604 nstart = vma->vm_start;
605 /*
53a7706d
ML
606 * Now fault in a range of pages. __mlock_vma_pages_range()
607 * double checks the vma flags, so that it won't mlock pages
608 * if the vma was already munlocked.
fed067da 609 */
53a7706d
ML
610 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
611 if (ret < 0) {
612 if (ignore_errors) {
613 ret = 0;
614 continue; /* continue at next VMA */
615 }
5fdb2002
ML
616 ret = __mlock_posix_error_return(ret);
617 break;
618 }
53a7706d
ML
619 nend = nstart + ret * PAGE_SIZE;
620 ret = 0;
fed067da 621 }
53a7706d
ML
622 if (locked)
623 up_read(&mm->mmap_sem);
fed067da
ML
624 return ret; /* 0 or negative error code */
625}
626
6a6160a7 627SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
1da177e4
LT
628{
629 unsigned long locked;
630 unsigned long lock_limit;
631 int error = -ENOMEM;
632
633 if (!can_do_mlock())
634 return -EPERM;
635
8891d6da
KM
636 lru_add_drain_all(); /* flush pagevec */
637
1da177e4
LT
638 down_write(&current->mm->mmap_sem);
639 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
640 start &= PAGE_MASK;
641
642 locked = len >> PAGE_SHIFT;
643 locked += current->mm->locked_vm;
644
59e99e5b 645 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
646 lock_limit >>= PAGE_SHIFT;
647
648 /* check against resource limits */
649 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
650 error = do_mlock(start, len, 1);
651 up_write(&current->mm->mmap_sem);
fed067da 652 if (!error)
bebeb3d6 653 error = __mm_populate(start, len, 0);
1da177e4
LT
654 return error;
655}
656
6a6160a7 657SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
658{
659 int ret;
660
661 down_write(&current->mm->mmap_sem);
662 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
663 start &= PAGE_MASK;
664 ret = do_mlock(start, len, 0);
665 up_write(&current->mm->mmap_sem);
666 return ret;
667}
668
669static int do_mlockall(int flags)
670{
671 struct vm_area_struct * vma, * prev = NULL;
1da177e4
LT
672
673 if (flags & MCL_FUTURE)
09a9f1d2 674 current->mm->def_flags |= VM_LOCKED;
9977f0f1 675 else
09a9f1d2 676 current->mm->def_flags &= ~VM_LOCKED;
1da177e4
LT
677 if (flags == MCL_FUTURE)
678 goto out;
679
680 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 681 vm_flags_t newflags;
1da177e4 682
18693050
ML
683 newflags = vma->vm_flags & ~VM_LOCKED;
684 if (flags & MCL_CURRENT)
09a9f1d2 685 newflags |= VM_LOCKED;
1da177e4
LT
686
687 /* Ignore errors */
688 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
689 }
690out:
691 return 0;
692}
693
3480b257 694SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
695{
696 unsigned long lock_limit;
697 int ret = -EINVAL;
698
699 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
700 goto out;
701
702 ret = -EPERM;
703 if (!can_do_mlock())
704 goto out;
705
df9d6985
CL
706 if (flags & MCL_CURRENT)
707 lru_add_drain_all(); /* flush pagevec */
8891d6da 708
1da177e4
LT
709 down_write(&current->mm->mmap_sem);
710
59e99e5b 711 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
712 lock_limit >>= PAGE_SHIFT;
713
714 ret = -ENOMEM;
715 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
716 capable(CAP_IPC_LOCK))
717 ret = do_mlockall(flags);
718 up_write(&current->mm->mmap_sem);
bebeb3d6
ML
719 if (!ret && (flags & MCL_CURRENT))
720 mm_populate(0, TASK_SIZE);
1da177e4
LT
721out:
722 return ret;
723}
724
3480b257 725SYSCALL_DEFINE0(munlockall)
1da177e4
LT
726{
727 int ret;
728
729 down_write(&current->mm->mmap_sem);
730 ret = do_mlockall(0);
731 up_write(&current->mm->mmap_sem);
732 return ret;
733}
734
735/*
736 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
737 * shm segments) get accounted against the user_struct instead.
738 */
739static DEFINE_SPINLOCK(shmlock_user_lock);
740
741int user_shm_lock(size_t size, struct user_struct *user)
742{
743 unsigned long lock_limit, locked;
744 int allowed = 0;
745
746 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 747 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
748 if (lock_limit == RLIM_INFINITY)
749 allowed = 1;
1da177e4
LT
750 lock_limit >>= PAGE_SHIFT;
751 spin_lock(&shmlock_user_lock);
5ed44a40
HB
752 if (!allowed &&
753 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
1da177e4
LT
754 goto out;
755 get_uid(user);
756 user->locked_shm += locked;
757 allowed = 1;
758out:
759 spin_unlock(&shmlock_user_lock);
760 return allowed;
761}
762
763void user_shm_unlock(size_t size, struct user_struct *user)
764{
765 spin_lock(&shmlock_user_lock);
766 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
767 spin_unlock(&shmlock_user_lock);
768 free_uid(user);
769}