]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/mlock.c
mm: munlock: remove redundant get_page/put_page pair on the fast path
[mirror_ubuntu-artful-kernel.git] / mm / mlock.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
c59ede7b 8#include <linux/capability.h>
1da177e4
LT
9#include <linux/mman.h>
10#include <linux/mm.h>
b291f000
NP
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/pagemap.h>
7225522b 14#include <linux/pagevec.h>
1da177e4
LT
15#include <linux/mempolicy.h>
16#include <linux/syscalls.h>
e8edc6e0 17#include <linux/sched.h>
b95f1b31 18#include <linux/export.h>
b291f000
NP
19#include <linux/rmap.h>
20#include <linux/mmzone.h>
21#include <linux/hugetlb.h>
7225522b
VB
22#include <linux/memcontrol.h>
23#include <linux/mm_inline.h>
b291f000
NP
24
25#include "internal.h"
1da177e4 26
e8edc6e0
AD
27int can_do_mlock(void)
28{
29 if (capable(CAP_IPC_LOCK))
30 return 1;
59e99e5b 31 if (rlimit(RLIMIT_MEMLOCK) != 0)
e8edc6e0
AD
32 return 1;
33 return 0;
34}
35EXPORT_SYMBOL(can_do_mlock);
1da177e4 36
b291f000
NP
37/*
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
41 *
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
46 *
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
52 */
53
54/*
55 * LRU accounting for clear_page_mlock()
56 */
e6c509f8 57void clear_page_mlock(struct page *page)
b291f000 58{
e6c509f8 59 if (!TestClearPageMlocked(page))
b291f000 60 return;
b291f000 61
8449d21f
DR
62 mod_zone_page_state(page_zone(page), NR_MLOCK,
63 -hpage_nr_pages(page));
5344b7e6 64 count_vm_event(UNEVICTABLE_PGCLEARED);
b291f000
NP
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
68 /*
8891d6da 69 * We lost the race. the page already moved to evictable list.
b291f000 70 */
8891d6da 71 if (PageUnevictable(page))
5344b7e6 72 count_vm_event(UNEVICTABLE_PGSTRANDED);
b291f000
NP
73 }
74}
75
76/*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80void mlock_vma_page(struct page *page)
81{
82 BUG_ON(!PageLocked(page));
83
5344b7e6 84 if (!TestSetPageMlocked(page)) {
8449d21f
DR
85 mod_zone_page_state(page_zone(page), NR_MLOCK,
86 hpage_nr_pages(page));
5344b7e6
NP
87 count_vm_event(UNEVICTABLE_PGMLOCKED);
88 if (!isolate_lru_page(page))
89 putback_lru_page(page);
90 }
b291f000
NP
91}
92
7225522b
VB
93/*
94 * Finish munlock after successful page isolation
95 *
96 * Page must be locked. This is a wrapper for try_to_munlock()
97 * and putback_lru_page() with munlock accounting.
98 */
99static void __munlock_isolated_page(struct page *page)
100{
101 int ret = SWAP_AGAIN;
102
103 /*
104 * Optimization: if the page was mapped just once, that's our mapping
105 * and we don't need to check all the other vmas.
106 */
107 if (page_mapcount(page) > 1)
108 ret = try_to_munlock(page);
109
110 /* Did try_to_unlock() succeed or punt? */
111 if (ret != SWAP_MLOCK)
112 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
113
114 putback_lru_page(page);
115}
116
117/*
118 * Accounting for page isolation fail during munlock
119 *
120 * Performs accounting when page isolation fails in munlock. There is nothing
121 * else to do because it means some other task has already removed the page
122 * from the LRU. putback_lru_page() will take care of removing the page from
123 * the unevictable list, if necessary. vmscan [page_referenced()] will move
124 * the page back to the unevictable list if some other vma has it mlocked.
125 */
126static void __munlock_isolation_failed(struct page *page)
127{
128 if (PageUnevictable(page))
129 count_vm_event(UNEVICTABLE_PGSTRANDED);
130 else
131 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
132}
133
6927c1dd
LS
134/**
135 * munlock_vma_page - munlock a vma page
136 * @page - page to be unlocked
b291f000 137 *
6927c1dd
LS
138 * called from munlock()/munmap() path with page supposedly on the LRU.
139 * When we munlock a page, because the vma where we found the page is being
140 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
141 * page locked so that we can leave it on the unevictable lru list and not
142 * bother vmscan with it. However, to walk the page's rmap list in
143 * try_to_munlock() we must isolate the page from the LRU. If some other
144 * task has removed the page from the LRU, we won't be able to do that.
145 * So we clear the PageMlocked as we might not get another chance. If we
146 * can't isolate the page, we leave it for putback_lru_page() and vmscan
147 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 148 */
ff6a6da6 149unsigned int munlock_vma_page(struct page *page)
b291f000 150{
ff6a6da6
ML
151 unsigned int page_mask = 0;
152
b291f000
NP
153 BUG_ON(!PageLocked(page));
154
5344b7e6 155 if (TestClearPageMlocked(page)) {
ff6a6da6
ML
156 unsigned int nr_pages = hpage_nr_pages(page);
157 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
158 page_mask = nr_pages - 1;
7225522b
VB
159 if (!isolate_lru_page(page))
160 __munlock_isolated_page(page);
161 else
162 __munlock_isolation_failed(page);
b291f000 163 }
ff6a6da6
ML
164
165 return page_mask;
b291f000
NP
166}
167
ba470de4 168/**
408e82b7 169 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
ba470de4
RR
170 * @vma: target vma
171 * @start: start address
172 * @end: end address
ba470de4 173 *
408e82b7 174 * This takes care of making the pages present too.
b291f000 175 *
ba470de4 176 * return 0 on success, negative error code on error.
b291f000 177 *
ba470de4 178 * vma->vm_mm->mmap_sem must be held for at least read.
b291f000 179 */
cea10a19
ML
180long __mlock_vma_pages_range(struct vm_area_struct *vma,
181 unsigned long start, unsigned long end, int *nonblocking)
b291f000
NP
182{
183 struct mm_struct *mm = vma->vm_mm;
28a35716 184 unsigned long nr_pages = (end - start) / PAGE_SIZE;
408e82b7 185 int gup_flags;
ba470de4
RR
186
187 VM_BUG_ON(start & ~PAGE_MASK);
188 VM_BUG_ON(end & ~PAGE_MASK);
189 VM_BUG_ON(start < vma->vm_start);
190 VM_BUG_ON(end > vma->vm_end);
408e82b7 191 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
b291f000 192
a1fde08c 193 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
5ecfda04
ML
194 /*
195 * We want to touch writable mappings with a write fault in order
196 * to break COW, except for shared mappings because these don't COW
197 * and we would not want to dirty them for nothing.
198 */
199 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
58fa879e 200 gup_flags |= FOLL_WRITE;
b291f000 201
fdf4c587
ML
202 /*
203 * We want mlock to succeed for regions that have any permissions
204 * other than PROT_NONE.
205 */
206 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
207 gup_flags |= FOLL_FORCE;
208
4805b02e
JW
209 /*
210 * We made sure addr is within a VMA, so the following will
211 * not result in a stack expansion that recurses back here.
212 */
ff6a6da6 213 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
53a7706d 214 NULL, NULL, nonblocking);
9978ad58
LS
215}
216
217/*
218 * convert get_user_pages() return value to posix mlock() error
219 */
220static int __mlock_posix_error_return(long retval)
221{
222 if (retval == -EFAULT)
223 retval = -ENOMEM;
224 else if (retval == -ENOMEM)
225 retval = -EAGAIN;
226 return retval;
b291f000
NP
227}
228
56afe477
VB
229/*
230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
231 *
232 * The fast path is available only for evictable pages with single mapping.
233 * Then we can bypass the per-cpu pvec and get better performance.
234 * when mapcount > 1 we need try_to_munlock() which can fail.
235 * when !page_evictable(), we need the full redo logic of putback_lru_page to
236 * avoid leaving evictable page in unevictable list.
237 *
238 * In case of success, @page is added to @pvec and @pgrescued is incremented
239 * in case that the page was previously unevictable. @page is also unlocked.
240 */
241static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
242 int *pgrescued)
243{
244 VM_BUG_ON(PageLRU(page));
245 VM_BUG_ON(!PageLocked(page));
246
247 if (page_mapcount(page) <= 1 && page_evictable(page)) {
248 pagevec_add(pvec, page);
249 if (TestClearPageUnevictable(page))
250 (*pgrescued)++;
251 unlock_page(page);
252 return true;
253 }
254
255 return false;
256}
257
258/*
259 * Putback multiple evictable pages to the LRU
260 *
261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
262 * the pages might have meanwhile become unevictable but that is OK.
263 */
264static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
265{
266 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
267 /*
268 *__pagevec_lru_add() calls release_pages() so we don't call
269 * put_page() explicitly
270 */
271 __pagevec_lru_add(pvec);
272 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
273}
274
7225522b
VB
275/*
276 * Munlock a batch of pages from the same zone
277 *
278 * The work is split to two main phases. First phase clears the Mlocked flag
279 * and attempts to isolate the pages, all under a single zone lru lock.
280 * The second phase finishes the munlock only for pages where isolation
281 * succeeded.
282 *
283 * Note that pvec is modified during the process. Before returning
284 * pagevec_reinit() is called on it.
285 */
286static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
287{
288 int i;
289 int nr = pagevec_count(pvec);
1ebb7cc6 290 int delta_munlocked = -nr;
56afe477
VB
291 struct pagevec pvec_putback;
292 int pgrescued = 0;
7225522b
VB
293
294 /* Phase 1: page isolation */
295 spin_lock_irq(&zone->lru_lock);
296 for (i = 0; i < nr; i++) {
297 struct page *page = pvec->pages[i];
298
299 if (TestClearPageMlocked(page)) {
300 struct lruvec *lruvec;
301 int lru;
302
7225522b
VB
303 if (PageLRU(page)) {
304 lruvec = mem_cgroup_page_lruvec(page, zone);
305 lru = page_lru(page);
5b40998a
VB
306 /*
307 * We already have pin from follow_page_mask()
308 * so we can spare the get_page() here.
309 */
7225522b
VB
310 ClearPageLRU(page);
311 del_page_from_lru_list(page, lruvec, lru);
312 } else {
313 __munlock_isolation_failed(page);
314 goto skip_munlock;
315 }
316
317 } else {
318skip_munlock:
319 /*
320 * We won't be munlocking this page in the next phase
321 * but we still need to release the follow_page_mask()
322 * pin.
323 */
324 pvec->pages[i] = NULL;
325 put_page(page);
1ebb7cc6 326 delta_munlocked++;
7225522b
VB
327 }
328 }
1ebb7cc6 329 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
7225522b
VB
330 spin_unlock_irq(&zone->lru_lock);
331
56afe477
VB
332 /* Phase 2: page munlock */
333 pagevec_init(&pvec_putback, 0);
7225522b
VB
334 for (i = 0; i < nr; i++) {
335 struct page *page = pvec->pages[i];
336
337 if (page) {
338 lock_page(page);
56afe477
VB
339 if (!__putback_lru_fast_prepare(page, &pvec_putback,
340 &pgrescued)) {
5b40998a
VB
341 /*
342 * Slow path. We don't want to lose the last
343 * pin before unlock_page()
344 */
345 get_page(page); /* for putback_lru_page() */
56afe477
VB
346 __munlock_isolated_page(page);
347 unlock_page(page);
5b40998a 348 put_page(page); /* from follow_page_mask() */
56afe477 349 }
7225522b
VB
350 }
351 }
56afe477 352
5b40998a
VB
353 /*
354 * Phase 3: page putback for pages that qualified for the fast path
355 * This will also call put_page() to return pin from follow_page_mask()
356 */
56afe477
VB
357 if (pagevec_count(&pvec_putback))
358 __putback_lru_fast(&pvec_putback, pgrescued);
359
7225522b
VB
360 pagevec_reinit(pvec);
361}
362
b291f000 363/*
ba470de4
RR
364 * munlock_vma_pages_range() - munlock all pages in the vma range.'
365 * @vma - vma containing range to be munlock()ed.
366 * @start - start address in @vma of the range
367 * @end - end of range in @vma.
368 *
369 * For mremap(), munmap() and exit().
370 *
371 * Called with @vma VM_LOCKED.
372 *
373 * Returns with VM_LOCKED cleared. Callers must be prepared to
374 * deal with this.
375 *
376 * We don't save and restore VM_LOCKED here because pages are
377 * still on lru. In unmap path, pages might be scanned by reclaim
378 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
379 * free them. This will result in freeing mlocked pages.
b291f000 380 */
ba470de4 381void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 382 unsigned long start, unsigned long end)
b291f000 383{
7225522b
VB
384 struct pagevec pvec;
385 struct zone *zone = NULL;
386
387 pagevec_init(&pvec, 0);
b291f000 388 vma->vm_flags &= ~VM_LOCKED;
408e82b7 389
ff6a6da6 390 while (start < end) {
6e919717 391 struct page *page;
ff6a6da6 392 unsigned int page_mask, page_increm;
7225522b 393 struct zone *pagezone;
ff6a6da6 394
6e919717
HD
395 /*
396 * Although FOLL_DUMP is intended for get_dump_page(),
397 * it just so happens that its special treatment of the
398 * ZERO_PAGE (returning an error instead of doing get_page)
399 * suits munlock very well (and if somehow an abnormal page
400 * has sneaked into the range, we won't oops here: great).
401 */
ff6a6da6
ML
402 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
403 &page_mask);
6e919717 404 if (page && !IS_ERR(page)) {
7225522b
VB
405 pagezone = page_zone(page);
406 /* The whole pagevec must be in the same zone */
407 if (pagezone != zone) {
408 if (pagevec_count(&pvec))
409 __munlock_pagevec(&pvec, zone);
410 zone = pagezone;
411 }
412 if (PageTransHuge(page)) {
413 /*
414 * THP pages are not handled by pagevec due
415 * to their possible split (see below).
416 */
417 if (pagevec_count(&pvec))
418 __munlock_pagevec(&pvec, zone);
419 lock_page(page);
420 /*
421 * Any THP page found by follow_page_mask() may
422 * have gotten split before reaching
423 * munlock_vma_page(), so we need to recompute
424 * the page_mask here.
425 */
426 page_mask = munlock_vma_page(page);
427 unlock_page(page);
428 put_page(page); /* follow_page_mask() */
429 } else {
430 /*
431 * Non-huge pages are handled in batches
432 * via pagevec. The pin from
433 * follow_page_mask() prevents them from
434 * collapsing by THP.
435 */
436 if (pagevec_add(&pvec, page) == 0)
437 __munlock_pagevec(&pvec, zone);
438 }
408e82b7 439 }
ff6a6da6
ML
440 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
441 start += page_increm * PAGE_SIZE;
408e82b7
HD
442 cond_resched();
443 }
7225522b
VB
444 if (pagevec_count(&pvec))
445 __munlock_pagevec(&pvec, zone);
b291f000
NP
446}
447
448/*
449 * mlock_fixup - handle mlock[all]/munlock[all] requests.
450 *
451 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
452 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 453 * populate the ptes.
b291f000
NP
454 *
455 * For vmas that pass the filters, merge/split as appropriate.
456 */
1da177e4 457static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 458 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 459{
b291f000 460 struct mm_struct *mm = vma->vm_mm;
1da177e4 461 pgoff_t pgoff;
b291f000 462 int nr_pages;
1da177e4 463 int ret = 0;
ca16d140 464 int lock = !!(newflags & VM_LOCKED);
1da177e4 465
fed067da 466 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
31db58b3 467 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
b291f000
NP
468 goto out; /* don't set VM_LOCKED, don't count */
469
1da177e4
LT
470 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
471 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
472 vma->vm_file, pgoff, vma_policy(vma));
473 if (*prev) {
474 vma = *prev;
475 goto success;
476 }
477
1da177e4
LT
478 if (start != vma->vm_start) {
479 ret = split_vma(mm, vma, start, 1);
480 if (ret)
481 goto out;
482 }
483
484 if (end != vma->vm_end) {
485 ret = split_vma(mm, vma, end, 0);
486 if (ret)
487 goto out;
488 }
489
490success:
b291f000
NP
491 /*
492 * Keep track of amount of locked VM.
493 */
494 nr_pages = (end - start) >> PAGE_SHIFT;
495 if (!lock)
496 nr_pages = -nr_pages;
497 mm->locked_vm += nr_pages;
498
1da177e4
LT
499 /*
500 * vm_flags is protected by the mmap_sem held in write mode.
501 * It's okay if try_to_unmap_one unmaps a page just after we
b291f000 502 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
1da177e4 503 */
1da177e4 504
fed067da 505 if (lock)
408e82b7 506 vma->vm_flags = newflags;
fed067da 507 else
408e82b7 508 munlock_vma_pages_range(vma, start, end);
1da177e4 509
1da177e4 510out:
b291f000 511 *prev = vma;
1da177e4
LT
512 return ret;
513}
514
515static int do_mlock(unsigned long start, size_t len, int on)
516{
517 unsigned long nstart, end, tmp;
518 struct vm_area_struct * vma, * prev;
519 int error;
520
fed067da
ML
521 VM_BUG_ON(start & ~PAGE_MASK);
522 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
523 end = start + len;
524 if (end < start)
525 return -EINVAL;
526 if (end == start)
527 return 0;
097d5910 528 vma = find_vma(current->mm, start);
1da177e4
LT
529 if (!vma || vma->vm_start > start)
530 return -ENOMEM;
531
097d5910 532 prev = vma->vm_prev;
1da177e4
LT
533 if (start > vma->vm_start)
534 prev = vma;
535
536 for (nstart = start ; ; ) {
ca16d140 537 vm_flags_t newflags;
1da177e4
LT
538
539 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
540
18693050
ML
541 newflags = vma->vm_flags & ~VM_LOCKED;
542 if (on)
09a9f1d2 543 newflags |= VM_LOCKED;
1da177e4
LT
544
545 tmp = vma->vm_end;
546 if (tmp > end)
547 tmp = end;
548 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
549 if (error)
550 break;
551 nstart = tmp;
552 if (nstart < prev->vm_end)
553 nstart = prev->vm_end;
554 if (nstart >= end)
555 break;
556
557 vma = prev->vm_next;
558 if (!vma || vma->vm_start != nstart) {
559 error = -ENOMEM;
560 break;
561 }
562 }
563 return error;
564}
565
bebeb3d6
ML
566/*
567 * __mm_populate - populate and/or mlock pages within a range of address space.
568 *
569 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
570 * flags. VMAs must be already marked with the desired vm_flags, and
571 * mmap_sem must not be held.
572 */
573int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
fed067da
ML
574{
575 struct mm_struct *mm = current->mm;
576 unsigned long end, nstart, nend;
577 struct vm_area_struct *vma = NULL;
53a7706d 578 int locked = 0;
28a35716 579 long ret = 0;
fed067da
ML
580
581 VM_BUG_ON(start & ~PAGE_MASK);
582 VM_BUG_ON(len != PAGE_ALIGN(len));
583 end = start + len;
584
fed067da
ML
585 for (nstart = start; nstart < end; nstart = nend) {
586 /*
587 * We want to fault in pages for [nstart; end) address range.
588 * Find first corresponding VMA.
589 */
53a7706d
ML
590 if (!locked) {
591 locked = 1;
592 down_read(&mm->mmap_sem);
fed067da 593 vma = find_vma(mm, nstart);
53a7706d 594 } else if (nstart >= vma->vm_end)
fed067da
ML
595 vma = vma->vm_next;
596 if (!vma || vma->vm_start >= end)
597 break;
598 /*
599 * Set [nstart; nend) to intersection of desired address
600 * range with the first VMA. Also, skip undesirable VMA types.
601 */
602 nend = min(end, vma->vm_end);
09a9f1d2 603 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
fed067da
ML
604 continue;
605 if (nstart < vma->vm_start)
606 nstart = vma->vm_start;
607 /*
53a7706d
ML
608 * Now fault in a range of pages. __mlock_vma_pages_range()
609 * double checks the vma flags, so that it won't mlock pages
610 * if the vma was already munlocked.
fed067da 611 */
53a7706d
ML
612 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
613 if (ret < 0) {
614 if (ignore_errors) {
615 ret = 0;
616 continue; /* continue at next VMA */
617 }
5fdb2002
ML
618 ret = __mlock_posix_error_return(ret);
619 break;
620 }
53a7706d
ML
621 nend = nstart + ret * PAGE_SIZE;
622 ret = 0;
fed067da 623 }
53a7706d
ML
624 if (locked)
625 up_read(&mm->mmap_sem);
fed067da
ML
626 return ret; /* 0 or negative error code */
627}
628
6a6160a7 629SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
1da177e4
LT
630{
631 unsigned long locked;
632 unsigned long lock_limit;
633 int error = -ENOMEM;
634
635 if (!can_do_mlock())
636 return -EPERM;
637
8891d6da
KM
638 lru_add_drain_all(); /* flush pagevec */
639
1da177e4
LT
640 down_write(&current->mm->mmap_sem);
641 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
642 start &= PAGE_MASK;
643
644 locked = len >> PAGE_SHIFT;
645 locked += current->mm->locked_vm;
646
59e99e5b 647 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
648 lock_limit >>= PAGE_SHIFT;
649
650 /* check against resource limits */
651 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
652 error = do_mlock(start, len, 1);
653 up_write(&current->mm->mmap_sem);
fed067da 654 if (!error)
bebeb3d6 655 error = __mm_populate(start, len, 0);
1da177e4
LT
656 return error;
657}
658
6a6160a7 659SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
660{
661 int ret;
662
663 down_write(&current->mm->mmap_sem);
664 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
665 start &= PAGE_MASK;
666 ret = do_mlock(start, len, 0);
667 up_write(&current->mm->mmap_sem);
668 return ret;
669}
670
671static int do_mlockall(int flags)
672{
673 struct vm_area_struct * vma, * prev = NULL;
1da177e4
LT
674
675 if (flags & MCL_FUTURE)
09a9f1d2 676 current->mm->def_flags |= VM_LOCKED;
9977f0f1 677 else
09a9f1d2 678 current->mm->def_flags &= ~VM_LOCKED;
1da177e4
LT
679 if (flags == MCL_FUTURE)
680 goto out;
681
682 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 683 vm_flags_t newflags;
1da177e4 684
18693050
ML
685 newflags = vma->vm_flags & ~VM_LOCKED;
686 if (flags & MCL_CURRENT)
09a9f1d2 687 newflags |= VM_LOCKED;
1da177e4
LT
688
689 /* Ignore errors */
690 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
691 }
692out:
693 return 0;
694}
695
3480b257 696SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
697{
698 unsigned long lock_limit;
699 int ret = -EINVAL;
700
701 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
702 goto out;
703
704 ret = -EPERM;
705 if (!can_do_mlock())
706 goto out;
707
df9d6985
CL
708 if (flags & MCL_CURRENT)
709 lru_add_drain_all(); /* flush pagevec */
8891d6da 710
1da177e4
LT
711 down_write(&current->mm->mmap_sem);
712
59e99e5b 713 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
714 lock_limit >>= PAGE_SHIFT;
715
716 ret = -ENOMEM;
717 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
718 capable(CAP_IPC_LOCK))
719 ret = do_mlockall(flags);
720 up_write(&current->mm->mmap_sem);
bebeb3d6
ML
721 if (!ret && (flags & MCL_CURRENT))
722 mm_populate(0, TASK_SIZE);
1da177e4
LT
723out:
724 return ret;
725}
726
3480b257 727SYSCALL_DEFINE0(munlockall)
1da177e4
LT
728{
729 int ret;
730
731 down_write(&current->mm->mmap_sem);
732 ret = do_mlockall(0);
733 up_write(&current->mm->mmap_sem);
734 return ret;
735}
736
737/*
738 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
739 * shm segments) get accounted against the user_struct instead.
740 */
741static DEFINE_SPINLOCK(shmlock_user_lock);
742
743int user_shm_lock(size_t size, struct user_struct *user)
744{
745 unsigned long lock_limit, locked;
746 int allowed = 0;
747
748 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 749 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
750 if (lock_limit == RLIM_INFINITY)
751 allowed = 1;
1da177e4
LT
752 lock_limit >>= PAGE_SHIFT;
753 spin_lock(&shmlock_user_lock);
5ed44a40
HB
754 if (!allowed &&
755 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
1da177e4
LT
756 goto out;
757 get_uid(user);
758 user->locked_shm += locked;
759 allowed = 1;
760out:
761 spin_unlock(&shmlock_user_lock);
762 return allowed;
763}
764
765void user_shm_unlock(size_t size, struct user_struct *user)
766{
767 spin_lock(&shmlock_user_lock);
768 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
769 spin_unlock(&shmlock_user_lock);
770 free_uid(user);
771}