]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/mlock.c | |
3 | * | |
4 | * (C) Copyright 1995 Linus Torvalds | |
5 | * (C) Copyright 2002 Christoph Hellwig | |
6 | */ | |
7 | ||
c59ede7b | 8 | #include <linux/capability.h> |
1da177e4 LT |
9 | #include <linux/mman.h> |
10 | #include <linux/mm.h> | |
b291f000 NP |
11 | #include <linux/swap.h> |
12 | #include <linux/swapops.h> | |
13 | #include <linux/pagemap.h> | |
7225522b | 14 | #include <linux/pagevec.h> |
1da177e4 LT |
15 | #include <linux/mempolicy.h> |
16 | #include <linux/syscalls.h> | |
e8edc6e0 | 17 | #include <linux/sched.h> |
b95f1b31 | 18 | #include <linux/export.h> |
b291f000 NP |
19 | #include <linux/rmap.h> |
20 | #include <linux/mmzone.h> | |
21 | #include <linux/hugetlb.h> | |
7225522b VB |
22 | #include <linux/memcontrol.h> |
23 | #include <linux/mm_inline.h> | |
b291f000 NP |
24 | |
25 | #include "internal.h" | |
1da177e4 | 26 | |
7f43add4 | 27 | bool can_do_mlock(void) |
e8edc6e0 | 28 | { |
59e99e5b | 29 | if (rlimit(RLIMIT_MEMLOCK) != 0) |
7f43add4 | 30 | return true; |
a5a6579d | 31 | if (capable(CAP_IPC_LOCK)) |
7f43add4 WX |
32 | return true; |
33 | return false; | |
e8edc6e0 AD |
34 | } |
35 | EXPORT_SYMBOL(can_do_mlock); | |
1da177e4 | 36 | |
b291f000 NP |
37 | /* |
38 | * Mlocked pages are marked with PageMlocked() flag for efficient testing | |
39 | * in vmscan and, possibly, the fault path; and to support semi-accurate | |
40 | * statistics. | |
41 | * | |
42 | * An mlocked page [PageMlocked(page)] is unevictable. As such, it will | |
43 | * be placed on the LRU "unevictable" list, rather than the [in]active lists. | |
44 | * The unevictable list is an LRU sibling list to the [in]active lists. | |
45 | * PageUnevictable is set to indicate the unevictable state. | |
46 | * | |
47 | * When lazy mlocking via vmscan, it is important to ensure that the | |
48 | * vma's VM_LOCKED status is not concurrently being modified, otherwise we | |
49 | * may have mlocked a page that is being munlocked. So lazy mlock must take | |
50 | * the mmap_sem for read, and verify that the vma really is locked | |
51 | * (see mm/rmap.c). | |
52 | */ | |
53 | ||
54 | /* | |
55 | * LRU accounting for clear_page_mlock() | |
56 | */ | |
e6c509f8 | 57 | void clear_page_mlock(struct page *page) |
b291f000 | 58 | { |
e6c509f8 | 59 | if (!TestClearPageMlocked(page)) |
b291f000 | 60 | return; |
b291f000 | 61 | |
8449d21f DR |
62 | mod_zone_page_state(page_zone(page), NR_MLOCK, |
63 | -hpage_nr_pages(page)); | |
5344b7e6 | 64 | count_vm_event(UNEVICTABLE_PGCLEARED); |
b291f000 NP |
65 | if (!isolate_lru_page(page)) { |
66 | putback_lru_page(page); | |
67 | } else { | |
68 | /* | |
8891d6da | 69 | * We lost the race. the page already moved to evictable list. |
b291f000 | 70 | */ |
8891d6da | 71 | if (PageUnevictable(page)) |
5344b7e6 | 72 | count_vm_event(UNEVICTABLE_PGSTRANDED); |
b291f000 NP |
73 | } |
74 | } | |
75 | ||
76 | /* | |
77 | * Mark page as mlocked if not already. | |
78 | * If page on LRU, isolate and putback to move to unevictable list. | |
79 | */ | |
80 | void mlock_vma_page(struct page *page) | |
81 | { | |
57e68e9c | 82 | /* Serialize with page migration */ |
b291f000 NP |
83 | BUG_ON(!PageLocked(page)); |
84 | ||
e90309c9 KS |
85 | VM_BUG_ON_PAGE(PageTail(page), page); |
86 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); | |
87 | ||
5344b7e6 | 88 | if (!TestSetPageMlocked(page)) { |
8449d21f DR |
89 | mod_zone_page_state(page_zone(page), NR_MLOCK, |
90 | hpage_nr_pages(page)); | |
5344b7e6 NP |
91 | count_vm_event(UNEVICTABLE_PGMLOCKED); |
92 | if (!isolate_lru_page(page)) | |
93 | putback_lru_page(page); | |
94 | } | |
b291f000 NP |
95 | } |
96 | ||
01cc2e58 VB |
97 | /* |
98 | * Isolate a page from LRU with optional get_page() pin. | |
99 | * Assumes lru_lock already held and page already pinned. | |
100 | */ | |
101 | static bool __munlock_isolate_lru_page(struct page *page, bool getpage) | |
102 | { | |
103 | if (PageLRU(page)) { | |
104 | struct lruvec *lruvec; | |
105 | ||
599d0c95 | 106 | lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); |
01cc2e58 VB |
107 | if (getpage) |
108 | get_page(page); | |
109 | ClearPageLRU(page); | |
110 | del_page_from_lru_list(page, lruvec, page_lru(page)); | |
111 | return true; | |
112 | } | |
113 | ||
114 | return false; | |
115 | } | |
116 | ||
7225522b VB |
117 | /* |
118 | * Finish munlock after successful page isolation | |
119 | * | |
120 | * Page must be locked. This is a wrapper for try_to_munlock() | |
121 | * and putback_lru_page() with munlock accounting. | |
122 | */ | |
123 | static void __munlock_isolated_page(struct page *page) | |
124 | { | |
125 | int ret = SWAP_AGAIN; | |
126 | ||
127 | /* | |
128 | * Optimization: if the page was mapped just once, that's our mapping | |
129 | * and we don't need to check all the other vmas. | |
130 | */ | |
131 | if (page_mapcount(page) > 1) | |
132 | ret = try_to_munlock(page); | |
133 | ||
134 | /* Did try_to_unlock() succeed or punt? */ | |
135 | if (ret != SWAP_MLOCK) | |
136 | count_vm_event(UNEVICTABLE_PGMUNLOCKED); | |
137 | ||
138 | putback_lru_page(page); | |
139 | } | |
140 | ||
141 | /* | |
142 | * Accounting for page isolation fail during munlock | |
143 | * | |
144 | * Performs accounting when page isolation fails in munlock. There is nothing | |
145 | * else to do because it means some other task has already removed the page | |
146 | * from the LRU. putback_lru_page() will take care of removing the page from | |
147 | * the unevictable list, if necessary. vmscan [page_referenced()] will move | |
148 | * the page back to the unevictable list if some other vma has it mlocked. | |
149 | */ | |
150 | static void __munlock_isolation_failed(struct page *page) | |
151 | { | |
152 | if (PageUnevictable(page)) | |
01cc2e58 | 153 | __count_vm_event(UNEVICTABLE_PGSTRANDED); |
7225522b | 154 | else |
01cc2e58 | 155 | __count_vm_event(UNEVICTABLE_PGMUNLOCKED); |
7225522b VB |
156 | } |
157 | ||
6927c1dd LS |
158 | /** |
159 | * munlock_vma_page - munlock a vma page | |
c424be1c VB |
160 | * @page - page to be unlocked, either a normal page or THP page head |
161 | * | |
162 | * returns the size of the page as a page mask (0 for normal page, | |
163 | * HPAGE_PMD_NR - 1 for THP head page) | |
b291f000 | 164 | * |
6927c1dd LS |
165 | * called from munlock()/munmap() path with page supposedly on the LRU. |
166 | * When we munlock a page, because the vma where we found the page is being | |
167 | * munlock()ed or munmap()ed, we want to check whether other vmas hold the | |
168 | * page locked so that we can leave it on the unevictable lru list and not | |
169 | * bother vmscan with it. However, to walk the page's rmap list in | |
170 | * try_to_munlock() we must isolate the page from the LRU. If some other | |
171 | * task has removed the page from the LRU, we won't be able to do that. | |
172 | * So we clear the PageMlocked as we might not get another chance. If we | |
173 | * can't isolate the page, we leave it for putback_lru_page() and vmscan | |
174 | * [page_referenced()/try_to_unmap()] to deal with. | |
b291f000 | 175 | */ |
ff6a6da6 | 176 | unsigned int munlock_vma_page(struct page *page) |
b291f000 | 177 | { |
7162a1e8 | 178 | int nr_pages; |
01cc2e58 | 179 | struct zone *zone = page_zone(page); |
ff6a6da6 | 180 | |
57e68e9c | 181 | /* For try_to_munlock() and to serialize with page migration */ |
b291f000 NP |
182 | BUG_ON(!PageLocked(page)); |
183 | ||
e90309c9 KS |
184 | VM_BUG_ON_PAGE(PageTail(page), page); |
185 | ||
c424be1c | 186 | /* |
01cc2e58 VB |
187 | * Serialize with any parallel __split_huge_page_refcount() which |
188 | * might otherwise copy PageMlocked to part of the tail pages before | |
189 | * we clear it in the head page. It also stabilizes hpage_nr_pages(). | |
c424be1c | 190 | */ |
a52633d8 | 191 | spin_lock_irq(zone_lru_lock(zone)); |
01cc2e58 | 192 | |
655548bf KS |
193 | if (!TestClearPageMlocked(page)) { |
194 | /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ | |
195 | nr_pages = 1; | |
01cc2e58 | 196 | goto unlock_out; |
655548bf | 197 | } |
01cc2e58 | 198 | |
655548bf | 199 | nr_pages = hpage_nr_pages(page); |
01cc2e58 VB |
200 | __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); |
201 | ||
202 | if (__munlock_isolate_lru_page(page, true)) { | |
a52633d8 | 203 | spin_unlock_irq(zone_lru_lock(zone)); |
01cc2e58 VB |
204 | __munlock_isolated_page(page); |
205 | goto out; | |
206 | } | |
207 | __munlock_isolation_failed(page); | |
208 | ||
209 | unlock_out: | |
a52633d8 | 210 | spin_unlock_irq(zone_lru_lock(zone)); |
01cc2e58 VB |
211 | |
212 | out: | |
c424be1c | 213 | return nr_pages - 1; |
b291f000 NP |
214 | } |
215 | ||
9978ad58 LS |
216 | /* |
217 | * convert get_user_pages() return value to posix mlock() error | |
218 | */ | |
219 | static int __mlock_posix_error_return(long retval) | |
220 | { | |
221 | if (retval == -EFAULT) | |
222 | retval = -ENOMEM; | |
223 | else if (retval == -ENOMEM) | |
224 | retval = -EAGAIN; | |
225 | return retval; | |
b291f000 NP |
226 | } |
227 | ||
56afe477 VB |
228 | /* |
229 | * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() | |
230 | * | |
231 | * The fast path is available only for evictable pages with single mapping. | |
232 | * Then we can bypass the per-cpu pvec and get better performance. | |
233 | * when mapcount > 1 we need try_to_munlock() which can fail. | |
234 | * when !page_evictable(), we need the full redo logic of putback_lru_page to | |
235 | * avoid leaving evictable page in unevictable list. | |
236 | * | |
237 | * In case of success, @page is added to @pvec and @pgrescued is incremented | |
238 | * in case that the page was previously unevictable. @page is also unlocked. | |
239 | */ | |
240 | static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, | |
241 | int *pgrescued) | |
242 | { | |
309381fe SL |
243 | VM_BUG_ON_PAGE(PageLRU(page), page); |
244 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
56afe477 VB |
245 | |
246 | if (page_mapcount(page) <= 1 && page_evictable(page)) { | |
247 | pagevec_add(pvec, page); | |
248 | if (TestClearPageUnevictable(page)) | |
249 | (*pgrescued)++; | |
250 | unlock_page(page); | |
251 | return true; | |
252 | } | |
253 | ||
254 | return false; | |
255 | } | |
256 | ||
257 | /* | |
258 | * Putback multiple evictable pages to the LRU | |
259 | * | |
260 | * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of | |
261 | * the pages might have meanwhile become unevictable but that is OK. | |
262 | */ | |
263 | static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) | |
264 | { | |
265 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); | |
266 | /* | |
267 | *__pagevec_lru_add() calls release_pages() so we don't call | |
268 | * put_page() explicitly | |
269 | */ | |
270 | __pagevec_lru_add(pvec); | |
271 | count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
272 | } | |
273 | ||
7225522b VB |
274 | /* |
275 | * Munlock a batch of pages from the same zone | |
276 | * | |
277 | * The work is split to two main phases. First phase clears the Mlocked flag | |
278 | * and attempts to isolate the pages, all under a single zone lru lock. | |
279 | * The second phase finishes the munlock only for pages where isolation | |
280 | * succeeded. | |
281 | * | |
7a8010cd | 282 | * Note that the pagevec may be modified during the process. |
7225522b VB |
283 | */ |
284 | static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) | |
285 | { | |
286 | int i; | |
287 | int nr = pagevec_count(pvec); | |
3b25df93 | 288 | int delta_munlocked; |
56afe477 VB |
289 | struct pagevec pvec_putback; |
290 | int pgrescued = 0; | |
7225522b | 291 | |
3b25df93 VB |
292 | pagevec_init(&pvec_putback, 0); |
293 | ||
7225522b | 294 | /* Phase 1: page isolation */ |
a52633d8 | 295 | spin_lock_irq(zone_lru_lock(zone)); |
7225522b VB |
296 | for (i = 0; i < nr; i++) { |
297 | struct page *page = pvec->pages[i]; | |
298 | ||
299 | if (TestClearPageMlocked(page)) { | |
7225522b | 300 | /* |
01cc2e58 VB |
301 | * We already have pin from follow_page_mask() |
302 | * so we can spare the get_page() here. | |
7225522b | 303 | */ |
01cc2e58 VB |
304 | if (__munlock_isolate_lru_page(page, false)) |
305 | continue; | |
306 | else | |
307 | __munlock_isolation_failed(page); | |
7225522b | 308 | } |
01cc2e58 VB |
309 | |
310 | /* | |
311 | * We won't be munlocking this page in the next phase | |
312 | * but we still need to release the follow_page_mask() | |
313 | * pin. We cannot do it under lru_lock however. If it's | |
314 | * the last pin, __page_cache_release() would deadlock. | |
315 | */ | |
316 | pagevec_add(&pvec_putback, pvec->pages[i]); | |
317 | pvec->pages[i] = NULL; | |
7225522b | 318 | } |
3b25df93 | 319 | delta_munlocked = -nr + pagevec_count(&pvec_putback); |
1ebb7cc6 | 320 | __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); |
a52633d8 | 321 | spin_unlock_irq(zone_lru_lock(zone)); |
7225522b | 322 | |
3b25df93 VB |
323 | /* Now we can release pins of pages that we are not munlocking */ |
324 | pagevec_release(&pvec_putback); | |
325 | ||
56afe477 | 326 | /* Phase 2: page munlock */ |
7225522b VB |
327 | for (i = 0; i < nr; i++) { |
328 | struct page *page = pvec->pages[i]; | |
329 | ||
330 | if (page) { | |
331 | lock_page(page); | |
56afe477 VB |
332 | if (!__putback_lru_fast_prepare(page, &pvec_putback, |
333 | &pgrescued)) { | |
5b40998a VB |
334 | /* |
335 | * Slow path. We don't want to lose the last | |
336 | * pin before unlock_page() | |
337 | */ | |
338 | get_page(page); /* for putback_lru_page() */ | |
56afe477 VB |
339 | __munlock_isolated_page(page); |
340 | unlock_page(page); | |
5b40998a | 341 | put_page(page); /* from follow_page_mask() */ |
56afe477 | 342 | } |
7225522b VB |
343 | } |
344 | } | |
56afe477 | 345 | |
5b40998a VB |
346 | /* |
347 | * Phase 3: page putback for pages that qualified for the fast path | |
348 | * This will also call put_page() to return pin from follow_page_mask() | |
349 | */ | |
56afe477 VB |
350 | if (pagevec_count(&pvec_putback)) |
351 | __putback_lru_fast(&pvec_putback, pgrescued); | |
7a8010cd VB |
352 | } |
353 | ||
354 | /* | |
355 | * Fill up pagevec for __munlock_pagevec using pte walk | |
356 | * | |
357 | * The function expects that the struct page corresponding to @start address is | |
358 | * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. | |
359 | * | |
360 | * The rest of @pvec is filled by subsequent pages within the same pmd and same | |
361 | * zone, as long as the pte's are present and vm_normal_page() succeeds. These | |
362 | * pages also get pinned. | |
363 | * | |
364 | * Returns the address of the next page that should be scanned. This equals | |
365 | * @start + PAGE_SIZE when no page could be added by the pte walk. | |
366 | */ | |
367 | static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, | |
368 | struct vm_area_struct *vma, int zoneid, unsigned long start, | |
369 | unsigned long end) | |
370 | { | |
371 | pte_t *pte; | |
372 | spinlock_t *ptl; | |
373 | ||
374 | /* | |
375 | * Initialize pte walk starting at the already pinned page where we | |
eadb41ae VB |
376 | * are sure that there is a pte, as it was pinned under the same |
377 | * mmap_sem write op. | |
7a8010cd VB |
378 | */ |
379 | pte = get_locked_pte(vma->vm_mm, start, &ptl); | |
eadb41ae VB |
380 | /* Make sure we do not cross the page table boundary */ |
381 | end = pgd_addr_end(start, end); | |
382 | end = pud_addr_end(start, end); | |
383 | end = pmd_addr_end(start, end); | |
7a8010cd VB |
384 | |
385 | /* The page next to the pinned page is the first we will try to get */ | |
386 | start += PAGE_SIZE; | |
387 | while (start < end) { | |
388 | struct page *page = NULL; | |
389 | pte++; | |
390 | if (pte_present(*pte)) | |
391 | page = vm_normal_page(vma, start, *pte); | |
392 | /* | |
393 | * Break if page could not be obtained or the page's node+zone does not | |
394 | * match | |
395 | */ | |
396 | if (!page || page_zone_id(page) != zoneid) | |
397 | break; | |
56afe477 | 398 | |
e90309c9 KS |
399 | /* |
400 | * Do not use pagevec for PTE-mapped THP, | |
401 | * munlock_vma_pages_range() will handle them. | |
402 | */ | |
403 | if (PageTransCompound(page)) | |
404 | break; | |
405 | ||
7a8010cd VB |
406 | get_page(page); |
407 | /* | |
408 | * Increase the address that will be returned *before* the | |
409 | * eventual break due to pvec becoming full by adding the page | |
410 | */ | |
411 | start += PAGE_SIZE; | |
412 | if (pagevec_add(pvec, page) == 0) | |
413 | break; | |
414 | } | |
415 | pte_unmap_unlock(pte, ptl); | |
416 | return start; | |
7225522b VB |
417 | } |
418 | ||
b291f000 | 419 | /* |
ba470de4 RR |
420 | * munlock_vma_pages_range() - munlock all pages in the vma range.' |
421 | * @vma - vma containing range to be munlock()ed. | |
422 | * @start - start address in @vma of the range | |
423 | * @end - end of range in @vma. | |
424 | * | |
425 | * For mremap(), munmap() and exit(). | |
426 | * | |
427 | * Called with @vma VM_LOCKED. | |
428 | * | |
429 | * Returns with VM_LOCKED cleared. Callers must be prepared to | |
430 | * deal with this. | |
431 | * | |
432 | * We don't save and restore VM_LOCKED here because pages are | |
433 | * still on lru. In unmap path, pages might be scanned by reclaim | |
434 | * and re-mlocked by try_to_{munlock|unmap} before we unmap and | |
435 | * free them. This will result in freeing mlocked pages. | |
b291f000 | 436 | */ |
ba470de4 | 437 | void munlock_vma_pages_range(struct vm_area_struct *vma, |
408e82b7 | 438 | unsigned long start, unsigned long end) |
b291f000 | 439 | { |
de60f5f1 | 440 | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; |
408e82b7 | 441 | |
ff6a6da6 | 442 | while (start < end) { |
ab7a5af7 | 443 | struct page *page; |
c424be1c VB |
444 | unsigned int page_mask; |
445 | unsigned long page_increm; | |
7a8010cd VB |
446 | struct pagevec pvec; |
447 | struct zone *zone; | |
448 | int zoneid; | |
ff6a6da6 | 449 | |
7a8010cd | 450 | pagevec_init(&pvec, 0); |
6e919717 HD |
451 | /* |
452 | * Although FOLL_DUMP is intended for get_dump_page(), | |
453 | * it just so happens that its special treatment of the | |
454 | * ZERO_PAGE (returning an error instead of doing get_page) | |
455 | * suits munlock very well (and if somehow an abnormal page | |
456 | * has sneaked into the range, we won't oops here: great). | |
457 | */ | |
ff6a6da6 | 458 | page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, |
7a8010cd VB |
459 | &page_mask); |
460 | ||
e90309c9 KS |
461 | if (page && !IS_ERR(page)) { |
462 | if (PageTransTail(page)) { | |
463 | VM_BUG_ON_PAGE(PageMlocked(page), page); | |
464 | put_page(page); /* follow_page_mask() */ | |
465 | } else if (PageTransHuge(page)) { | |
466 | lock_page(page); | |
467 | /* | |
468 | * Any THP page found by follow_page_mask() may | |
469 | * have gotten split before reaching | |
470 | * munlock_vma_page(), so we need to recompute | |
471 | * the page_mask here. | |
472 | */ | |
473 | page_mask = munlock_vma_page(page); | |
474 | unlock_page(page); | |
475 | put_page(page); /* follow_page_mask() */ | |
476 | } else { | |
477 | /* | |
478 | * Non-huge pages are handled in batches via | |
479 | * pagevec. The pin from follow_page_mask() | |
480 | * prevents them from collapsing by THP. | |
481 | */ | |
482 | pagevec_add(&pvec, page); | |
483 | zone = page_zone(page); | |
484 | zoneid = page_zone_id(page); | |
7a8010cd | 485 | |
e90309c9 KS |
486 | /* |
487 | * Try to fill the rest of pagevec using fast | |
488 | * pte walk. This will also update start to | |
489 | * the next page to process. Then munlock the | |
490 | * pagevec. | |
491 | */ | |
492 | start = __munlock_pagevec_fill(&pvec, vma, | |
493 | zoneid, start, end); | |
494 | __munlock_pagevec(&pvec, zone); | |
495 | goto next; | |
496 | } | |
408e82b7 | 497 | } |
c424be1c | 498 | page_increm = 1 + page_mask; |
ff6a6da6 | 499 | start += page_increm * PAGE_SIZE; |
7a8010cd | 500 | next: |
408e82b7 HD |
501 | cond_resched(); |
502 | } | |
b291f000 NP |
503 | } |
504 | ||
505 | /* | |
506 | * mlock_fixup - handle mlock[all]/munlock[all] requests. | |
507 | * | |
508 | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and | |
509 | * munlock is a no-op. However, for some special vmas, we go ahead and | |
cea10a19 | 510 | * populate the ptes. |
b291f000 NP |
511 | * |
512 | * For vmas that pass the filters, merge/split as appropriate. | |
513 | */ | |
1da177e4 | 514 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, |
ca16d140 | 515 | unsigned long start, unsigned long end, vm_flags_t newflags) |
1da177e4 | 516 | { |
b291f000 | 517 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 518 | pgoff_t pgoff; |
b291f000 | 519 | int nr_pages; |
1da177e4 | 520 | int ret = 0; |
ca16d140 | 521 | int lock = !!(newflags & VM_LOCKED); |
b155b4fd | 522 | vm_flags_t old_flags = vma->vm_flags; |
1da177e4 | 523 | |
fed067da | 524 | if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || |
31db58b3 | 525 | is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) |
b0f205c2 EM |
526 | /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ |
527 | goto out; | |
b291f000 | 528 | |
1da177e4 LT |
529 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
530 | *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, | |
19a809af AA |
531 | vma->vm_file, pgoff, vma_policy(vma), |
532 | vma->vm_userfaultfd_ctx); | |
1da177e4 LT |
533 | if (*prev) { |
534 | vma = *prev; | |
535 | goto success; | |
536 | } | |
537 | ||
1da177e4 LT |
538 | if (start != vma->vm_start) { |
539 | ret = split_vma(mm, vma, start, 1); | |
540 | if (ret) | |
541 | goto out; | |
542 | } | |
543 | ||
544 | if (end != vma->vm_end) { | |
545 | ret = split_vma(mm, vma, end, 0); | |
546 | if (ret) | |
547 | goto out; | |
548 | } | |
549 | ||
550 | success: | |
b291f000 NP |
551 | /* |
552 | * Keep track of amount of locked VM. | |
553 | */ | |
554 | nr_pages = (end - start) >> PAGE_SHIFT; | |
555 | if (!lock) | |
556 | nr_pages = -nr_pages; | |
b155b4fd SG |
557 | else if (old_flags & VM_LOCKED) |
558 | nr_pages = 0; | |
b291f000 NP |
559 | mm->locked_vm += nr_pages; |
560 | ||
1da177e4 LT |
561 | /* |
562 | * vm_flags is protected by the mmap_sem held in write mode. | |
563 | * It's okay if try_to_unmap_one unmaps a page just after we | |
fc05f566 | 564 | * set VM_LOCKED, populate_vma_page_range will bring it back. |
1da177e4 | 565 | */ |
1da177e4 | 566 | |
fed067da | 567 | if (lock) |
408e82b7 | 568 | vma->vm_flags = newflags; |
fed067da | 569 | else |
408e82b7 | 570 | munlock_vma_pages_range(vma, start, end); |
1da177e4 | 571 | |
1da177e4 | 572 | out: |
b291f000 | 573 | *prev = vma; |
1da177e4 LT |
574 | return ret; |
575 | } | |
576 | ||
1aab92ec EM |
577 | static int apply_vma_lock_flags(unsigned long start, size_t len, |
578 | vm_flags_t flags) | |
1da177e4 LT |
579 | { |
580 | unsigned long nstart, end, tmp; | |
581 | struct vm_area_struct * vma, * prev; | |
582 | int error; | |
583 | ||
8fd9e488 | 584 | VM_BUG_ON(offset_in_page(start)); |
fed067da | 585 | VM_BUG_ON(len != PAGE_ALIGN(len)); |
1da177e4 LT |
586 | end = start + len; |
587 | if (end < start) | |
588 | return -EINVAL; | |
589 | if (end == start) | |
590 | return 0; | |
097d5910 | 591 | vma = find_vma(current->mm, start); |
1da177e4 LT |
592 | if (!vma || vma->vm_start > start) |
593 | return -ENOMEM; | |
594 | ||
097d5910 | 595 | prev = vma->vm_prev; |
1da177e4 LT |
596 | if (start > vma->vm_start) |
597 | prev = vma; | |
598 | ||
599 | for (nstart = start ; ; ) { | |
b0f205c2 | 600 | vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
1da177e4 | 601 | |
1aab92ec | 602 | newflags |= flags; |
1da177e4 | 603 | |
1aab92ec | 604 | /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ |
1da177e4 LT |
605 | tmp = vma->vm_end; |
606 | if (tmp > end) | |
607 | tmp = end; | |
608 | error = mlock_fixup(vma, &prev, nstart, tmp, newflags); | |
609 | if (error) | |
610 | break; | |
611 | nstart = tmp; | |
612 | if (nstart < prev->vm_end) | |
613 | nstart = prev->vm_end; | |
614 | if (nstart >= end) | |
615 | break; | |
616 | ||
617 | vma = prev->vm_next; | |
618 | if (!vma || vma->vm_start != nstart) { | |
619 | error = -ENOMEM; | |
620 | break; | |
621 | } | |
622 | } | |
623 | return error; | |
624 | } | |
625 | ||
0cf2f6f6 SG |
626 | /* |
627 | * Go through vma areas and sum size of mlocked | |
628 | * vma pages, as return value. | |
629 | * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) | |
630 | * is also counted. | |
631 | * Return value: previously mlocked page counts | |
632 | */ | |
633 | static int count_mm_mlocked_page_nr(struct mm_struct *mm, | |
634 | unsigned long start, size_t len) | |
635 | { | |
636 | struct vm_area_struct *vma; | |
637 | int count = 0; | |
638 | ||
639 | if (mm == NULL) | |
640 | mm = current->mm; | |
641 | ||
642 | vma = find_vma(mm, start); | |
643 | if (vma == NULL) | |
644 | vma = mm->mmap; | |
645 | ||
646 | for (; vma ; vma = vma->vm_next) { | |
647 | if (start >= vma->vm_end) | |
648 | continue; | |
649 | if (start + len <= vma->vm_start) | |
650 | break; | |
651 | if (vma->vm_flags & VM_LOCKED) { | |
652 | if (start > vma->vm_start) | |
653 | count -= (start - vma->vm_start); | |
654 | if (start + len < vma->vm_end) { | |
655 | count += start + len - vma->vm_start; | |
656 | break; | |
657 | } | |
658 | count += vma->vm_end - vma->vm_start; | |
659 | } | |
660 | } | |
661 | ||
662 | return count >> PAGE_SHIFT; | |
663 | } | |
664 | ||
dc0ef0df | 665 | static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) |
1da177e4 LT |
666 | { |
667 | unsigned long locked; | |
668 | unsigned long lock_limit; | |
669 | int error = -ENOMEM; | |
670 | ||
671 | if (!can_do_mlock()) | |
672 | return -EPERM; | |
673 | ||
8891d6da KM |
674 | lru_add_drain_all(); /* flush pagevec */ |
675 | ||
8fd9e488 | 676 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
1da177e4 LT |
677 | start &= PAGE_MASK; |
678 | ||
59e99e5b | 679 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
1da177e4 | 680 | lock_limit >>= PAGE_SHIFT; |
1f1cd705 DB |
681 | locked = len >> PAGE_SHIFT; |
682 | ||
dc0ef0df MH |
683 | if (down_write_killable(¤t->mm->mmap_sem)) |
684 | return -EINTR; | |
1f1cd705 DB |
685 | |
686 | locked += current->mm->locked_vm; | |
0cf2f6f6 SG |
687 | if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { |
688 | /* | |
689 | * It is possible that the regions requested intersect with | |
690 | * previously mlocked areas, that part area in "mm->locked_vm" | |
691 | * should not be counted to new mlock increment count. So check | |
692 | * and adjust locked count if necessary. | |
693 | */ | |
694 | locked -= count_mm_mlocked_page_nr(current->mm, | |
695 | start, len); | |
696 | } | |
1da177e4 LT |
697 | |
698 | /* check against resource limits */ | |
699 | if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) | |
1aab92ec | 700 | error = apply_vma_lock_flags(start, len, flags); |
1f1cd705 | 701 | |
1da177e4 | 702 | up_write(¤t->mm->mmap_sem); |
c561259c KS |
703 | if (error) |
704 | return error; | |
705 | ||
706 | error = __mm_populate(start, len, 0); | |
707 | if (error) | |
708 | return __mlock_posix_error_return(error); | |
709 | return 0; | |
1da177e4 LT |
710 | } |
711 | ||
1aab92ec EM |
712 | SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) |
713 | { | |
714 | return do_mlock(start, len, VM_LOCKED); | |
715 | } | |
716 | ||
a8ca5d0e EM |
717 | SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) |
718 | { | |
b0f205c2 EM |
719 | vm_flags_t vm_flags = VM_LOCKED; |
720 | ||
721 | if (flags & ~MLOCK_ONFAULT) | |
a8ca5d0e EM |
722 | return -EINVAL; |
723 | ||
b0f205c2 EM |
724 | if (flags & MLOCK_ONFAULT) |
725 | vm_flags |= VM_LOCKONFAULT; | |
726 | ||
727 | return do_mlock(start, len, vm_flags); | |
a8ca5d0e EM |
728 | } |
729 | ||
6a6160a7 | 730 | SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) |
1da177e4 LT |
731 | { |
732 | int ret; | |
733 | ||
8fd9e488 | 734 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
1da177e4 | 735 | start &= PAGE_MASK; |
1f1cd705 | 736 | |
dc0ef0df MH |
737 | if (down_write_killable(¤t->mm->mmap_sem)) |
738 | return -EINTR; | |
1aab92ec | 739 | ret = apply_vma_lock_flags(start, len, 0); |
1da177e4 | 740 | up_write(¤t->mm->mmap_sem); |
1f1cd705 | 741 | |
1da177e4 LT |
742 | return ret; |
743 | } | |
744 | ||
b0f205c2 EM |
745 | /* |
746 | * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) | |
747 | * and translate into the appropriate modifications to mm->def_flags and/or the | |
748 | * flags for all current VMAs. | |
749 | * | |
750 | * There are a couple of subtleties with this. If mlockall() is called multiple | |
751 | * times with different flags, the values do not necessarily stack. If mlockall | |
752 | * is called once including the MCL_FUTURE flag and then a second time without | |
753 | * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. | |
754 | */ | |
1aab92ec | 755 | static int apply_mlockall_flags(int flags) |
1da177e4 LT |
756 | { |
757 | struct vm_area_struct * vma, * prev = NULL; | |
b0f205c2 | 758 | vm_flags_t to_add = 0; |
1da177e4 | 759 | |
b0f205c2 EM |
760 | current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; |
761 | if (flags & MCL_FUTURE) { | |
09a9f1d2 | 762 | current->mm->def_flags |= VM_LOCKED; |
1aab92ec | 763 | |
b0f205c2 EM |
764 | if (flags & MCL_ONFAULT) |
765 | current->mm->def_flags |= VM_LOCKONFAULT; | |
766 | ||
767 | if (!(flags & MCL_CURRENT)) | |
768 | goto out; | |
769 | } | |
770 | ||
771 | if (flags & MCL_CURRENT) { | |
772 | to_add |= VM_LOCKED; | |
773 | if (flags & MCL_ONFAULT) | |
774 | to_add |= VM_LOCKONFAULT; | |
775 | } | |
1da177e4 LT |
776 | |
777 | for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { | |
ca16d140 | 778 | vm_flags_t newflags; |
1da177e4 | 779 | |
b0f205c2 EM |
780 | newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
781 | newflags |= to_add; | |
1da177e4 LT |
782 | |
783 | /* Ignore errors */ | |
784 | mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); | |
bde6c3aa | 785 | cond_resched_rcu_qs(); |
1da177e4 LT |
786 | } |
787 | out: | |
788 | return 0; | |
789 | } | |
790 | ||
3480b257 | 791 | SYSCALL_DEFINE1(mlockall, int, flags) |
1da177e4 LT |
792 | { |
793 | unsigned long lock_limit; | |
86d2adcc | 794 | int ret; |
1da177e4 | 795 | |
b0f205c2 | 796 | if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) |
86d2adcc | 797 | return -EINVAL; |
1da177e4 | 798 | |
1da177e4 | 799 | if (!can_do_mlock()) |
86d2adcc | 800 | return -EPERM; |
1da177e4 | 801 | |
df9d6985 CL |
802 | if (flags & MCL_CURRENT) |
803 | lru_add_drain_all(); /* flush pagevec */ | |
8891d6da | 804 | |
59e99e5b | 805 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
1da177e4 LT |
806 | lock_limit >>= PAGE_SHIFT; |
807 | ||
dc0ef0df MH |
808 | if (down_write_killable(¤t->mm->mmap_sem)) |
809 | return -EINTR; | |
1f1cd705 | 810 | |
dc0ef0df | 811 | ret = -ENOMEM; |
1da177e4 LT |
812 | if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || |
813 | capable(CAP_IPC_LOCK)) | |
1aab92ec | 814 | ret = apply_mlockall_flags(flags); |
1da177e4 | 815 | up_write(¤t->mm->mmap_sem); |
bebeb3d6 ML |
816 | if (!ret && (flags & MCL_CURRENT)) |
817 | mm_populate(0, TASK_SIZE); | |
86d2adcc | 818 | |
1da177e4 LT |
819 | return ret; |
820 | } | |
821 | ||
3480b257 | 822 | SYSCALL_DEFINE0(munlockall) |
1da177e4 LT |
823 | { |
824 | int ret; | |
825 | ||
dc0ef0df MH |
826 | if (down_write_killable(¤t->mm->mmap_sem)) |
827 | return -EINTR; | |
1aab92ec | 828 | ret = apply_mlockall_flags(0); |
1da177e4 LT |
829 | up_write(¤t->mm->mmap_sem); |
830 | return ret; | |
831 | } | |
832 | ||
833 | /* | |
834 | * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB | |
835 | * shm segments) get accounted against the user_struct instead. | |
836 | */ | |
837 | static DEFINE_SPINLOCK(shmlock_user_lock); | |
838 | ||
839 | int user_shm_lock(size_t size, struct user_struct *user) | |
840 | { | |
841 | unsigned long lock_limit, locked; | |
842 | int allowed = 0; | |
843 | ||
844 | locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
59e99e5b | 845 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
5ed44a40 HB |
846 | if (lock_limit == RLIM_INFINITY) |
847 | allowed = 1; | |
1da177e4 LT |
848 | lock_limit >>= PAGE_SHIFT; |
849 | spin_lock(&shmlock_user_lock); | |
5ed44a40 HB |
850 | if (!allowed && |
851 | locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) | |
1da177e4 LT |
852 | goto out; |
853 | get_uid(user); | |
854 | user->locked_shm += locked; | |
855 | allowed = 1; | |
856 | out: | |
857 | spin_unlock(&shmlock_user_lock); | |
858 | return allowed; | |
859 | } | |
860 | ||
861 | void user_shm_unlock(size_t size, struct user_struct *user) | |
862 | { | |
863 | spin_lock(&shmlock_user_lock); | |
864 | user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
865 | spin_unlock(&shmlock_user_lock); | |
866 | free_uid(user); | |
867 | } |