]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page-writeback.c
UBUNTU: [Config] Sync config with master
[mirror_ubuntu-artful-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
90eec103 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
1da177e4 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
9fc3a43e 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 132#endif
2bc00aef 133 struct bdi_writeback *wb;
e9770b34 134 struct fprop_local_percpu *wb_completions;
eb608e3a 135
9fc3a43e 136 unsigned long avail; /* dirtyable */
2bc00aef
TH
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
970fb01a 143 unsigned long wb_bg_thresh;
daddfa3c
TH
144
145 unsigned long pos_ratio;
2bc00aef
TH
146};
147
eb608e3a
JK
148/*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 154
693108a8
TH
155#ifdef CONFIG_CGROUP_WRITEBACK
156
d60d1bdd
TH
157#define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
9fc3a43e 161#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
162
163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
c2aa723a
TH
167
168static bool mdtc_valid(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
e9f07dfd
TH
172
173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174{
175 return dtc->dom;
176}
177
9fc3a43e
TH
178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179{
180 return mdtc->gdtc;
181}
182
841710aa
TH
183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184{
185 return &wb->memcg_completions;
186}
187
693108a8
TH
188static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190{
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213}
214
215#else /* CONFIG_CGROUP_WRITEBACK */
216
d60d1bdd
TH
217#define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
9fc3a43e 219#define GDTC_INIT_NO_WB
c2aa723a
TH
220#define MDTC_INIT(__wb, __gdtc)
221
222static bool mdtc_valid(struct dirty_throttle_control *dtc)
223{
224 return false;
225}
e9f07dfd
TH
226
227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228{
229 return &global_wb_domain;
230}
231
9fc3a43e
TH
232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233{
234 return NULL;
235}
236
841710aa
TH
237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238{
239 return NULL;
240}
241
693108a8
TH
242static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244{
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247}
248
249#endif /* CONFIG_CGROUP_WRITEBACK */
250
a756cf59
JW
251/*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
a804552b
JW
269/**
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
272 *
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
275 */
276static unsigned long zone_dirtyable_memory(struct zone *zone)
277{
278 unsigned long nr_pages;
279
280 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282
a1c3bfb2
JW
283 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
285
286 return nr_pages;
287}
288
1edf2234
JW
289static unsigned long highmem_dirtyable_memory(unsigned long total)
290{
291#ifdef CONFIG_HIGHMEM
292 int node;
293 unsigned long x = 0;
294
295 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 296 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 297
a804552b 298 x += zone_dirtyable_memory(z);
1edf2234 299 }
c8b74c2f
SR
300 /*
301 * Unreclaimable memory (kernel memory or anonymous memory
302 * without swap) can bring down the dirtyable pages below
303 * the zone's dirty balance reserve and the above calculation
304 * will underflow. However we still want to add in nodes
305 * which are below threshold (negative values) to get a more
306 * accurate calculation but make sure that the total never
307 * underflows.
308 */
309 if ((long)x < 0)
310 x = 0;
311
1edf2234
JW
312 /*
313 * Make sure that the number of highmem pages is never larger
314 * than the number of the total dirtyable memory. This can only
315 * occur in very strange VM situations but we want to make sure
316 * that this does not occur.
317 */
318 return min(x, total);
319#else
320 return 0;
321#endif
322}
323
324/**
ccafa287 325 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 326 *
ccafa287
JW
327 * Returns the global number of pages potentially available for dirty
328 * page cache. This is the base value for the global dirty limits.
1edf2234 329 */
18cf8cf8 330static unsigned long global_dirtyable_memory(void)
1edf2234
JW
331{
332 unsigned long x;
333
a804552b 334 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 335 x -= min(x, dirty_balance_reserve);
1edf2234 336
a1c3bfb2
JW
337 x += global_page_state(NR_INACTIVE_FILE);
338 x += global_page_state(NR_ACTIVE_FILE);
a804552b 339
1edf2234
JW
340 if (!vm_highmem_is_dirtyable)
341 x -= highmem_dirtyable_memory(x);
342
343 return x + 1; /* Ensure that we never return 0 */
344}
345
9fc3a43e
TH
346/**
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
ccafa287 349 *
9fc3a43e
TH
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
354 * real-time tasks.
355 */
9fc3a43e 356static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 357{
9fc3a43e
TH
358 const unsigned long available_memory = dtc->avail;
359 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360 unsigned long bytes = vm_dirty_bytes;
361 unsigned long bg_bytes = dirty_background_bytes;
ef870867
TH
362 /* convert ratios to per-PAGE_SIZE for higher precision */
363 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
364 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
365 unsigned long thresh;
366 unsigned long bg_thresh;
ccafa287
JW
367 struct task_struct *tsk;
368
9fc3a43e
TH
369 /* gdtc is !NULL iff @dtc is for memcg domain */
370 if (gdtc) {
371 unsigned long global_avail = gdtc->avail;
372
373 /*
374 * The byte settings can't be applied directly to memcg
375 * domains. Convert them to ratios by scaling against
ef870867
TH
376 * globally available memory. As the ratios are in
377 * per-PAGE_SIZE, they can be obtained by dividing bytes by
378 * number of pages.
9fc3a43e
TH
379 */
380 if (bytes)
ef870867
TH
381 ratio = min(DIV_ROUND_UP(bytes, global_avail),
382 PAGE_SIZE);
9fc3a43e 383 if (bg_bytes)
ef870867
TH
384 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
385 PAGE_SIZE);
9fc3a43e
TH
386 bytes = bg_bytes = 0;
387 }
388
389 if (bytes)
390 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 391 else
ef870867 392 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 393
9fc3a43e
TH
394 if (bg_bytes)
395 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 396 else
ef870867 397 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 398
9fc3a43e
TH
399 if (bg_thresh >= thresh)
400 bg_thresh = thresh / 2;
ccafa287
JW
401 tsk = current;
402 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
9fc3a43e
TH
403 bg_thresh += bg_thresh / 4;
404 thresh += thresh / 4;
ccafa287 405 }
9fc3a43e
TH
406 dtc->thresh = thresh;
407 dtc->bg_thresh = bg_thresh;
408
409 /* we should eventually report the domain in the TP */
410 if (!gdtc)
411 trace_global_dirty_state(bg_thresh, thresh);
412}
413
414/**
415 * global_dirty_limits - background-writeback and dirty-throttling thresholds
416 * @pbackground: out parameter for bg_thresh
417 * @pdirty: out parameter for thresh
418 *
419 * Calculate bg_thresh and thresh for global_wb_domain. See
420 * domain_dirty_limits() for details.
421 */
422void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
423{
424 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
425
426 gdtc.avail = global_dirtyable_memory();
427 domain_dirty_limits(&gdtc);
428
429 *pbackground = gdtc.bg_thresh;
430 *pdirty = gdtc.thresh;
ccafa287
JW
431}
432
a756cf59
JW
433/**
434 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
435 * @zone: the zone
436 *
437 * Returns the maximum number of dirty pages allowed in a zone, based
438 * on the zone's dirtyable memory.
439 */
440static unsigned long zone_dirty_limit(struct zone *zone)
441{
442 unsigned long zone_memory = zone_dirtyable_memory(zone);
443 struct task_struct *tsk = current;
444 unsigned long dirty;
445
446 if (vm_dirty_bytes)
447 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
448 zone_memory / global_dirtyable_memory();
449 else
450 dirty = vm_dirty_ratio * zone_memory / 100;
451
452 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
453 dirty += dirty / 4;
454
455 return dirty;
456}
457
458/**
459 * zone_dirty_ok - tells whether a zone is within its dirty limits
460 * @zone: the zone to check
461 *
462 * Returns %true when the dirty pages in @zone are within the zone's
463 * dirty limit, %false if the limit is exceeded.
464 */
465bool zone_dirty_ok(struct zone *zone)
466{
467 unsigned long limit = zone_dirty_limit(zone);
468
469 return zone_page_state(zone, NR_FILE_DIRTY) +
470 zone_page_state(zone, NR_UNSTABLE_NFS) +
471 zone_page_state(zone, NR_WRITEBACK) <= limit;
472}
473
2da02997 474int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 475 void __user *buffer, size_t *lenp,
2da02997
DR
476 loff_t *ppos)
477{
478 int ret;
479
8d65af78 480 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
481 if (ret == 0 && write)
482 dirty_background_bytes = 0;
483 return ret;
484}
485
486int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 487 void __user *buffer, size_t *lenp,
2da02997
DR
488 loff_t *ppos)
489{
490 int ret;
491
8d65af78 492 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
493 if (ret == 0 && write)
494 dirty_background_ratio = 0;
495 return ret;
496}
497
04fbfdc1 498int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 499 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
500 loff_t *ppos)
501{
502 int old_ratio = vm_dirty_ratio;
2da02997
DR
503 int ret;
504
8d65af78 505 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 506 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 507 writeback_set_ratelimit();
2da02997
DR
508 vm_dirty_bytes = 0;
509 }
510 return ret;
511}
512
2da02997 513int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 514 void __user *buffer, size_t *lenp,
2da02997
DR
515 loff_t *ppos)
516{
fc3501d4 517 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
518 int ret;
519
8d65af78 520 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 521 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 522 writeback_set_ratelimit();
2da02997 523 vm_dirty_ratio = 0;
04fbfdc1
PZ
524 }
525 return ret;
526}
527
eb608e3a
JK
528static unsigned long wp_next_time(unsigned long cur_time)
529{
530 cur_time += VM_COMPLETIONS_PERIOD_LEN;
531 /* 0 has a special meaning... */
532 if (!cur_time)
533 return 1;
534 return cur_time;
535}
536
c7981433
TH
537static void wb_domain_writeout_inc(struct wb_domain *dom,
538 struct fprop_local_percpu *completions,
539 unsigned int max_prop_frac)
04fbfdc1 540{
c7981433
TH
541 __fprop_inc_percpu_max(&dom->completions, completions,
542 max_prop_frac);
eb608e3a 543 /* First event after period switching was turned off? */
380c27ca 544 if (!unlikely(dom->period_time)) {
eb608e3a
JK
545 /*
546 * We can race with other __bdi_writeout_inc calls here but
547 * it does not cause any harm since the resulting time when
548 * timer will fire and what is in writeout_period_time will be
549 * roughly the same.
550 */
380c27ca
TH
551 dom->period_time = wp_next_time(jiffies);
552 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 553 }
04fbfdc1
PZ
554}
555
c7981433
TH
556/*
557 * Increment @wb's writeout completion count and the global writeout
558 * completion count. Called from test_clear_page_writeback().
559 */
560static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 561{
841710aa 562 struct wb_domain *cgdom;
dd5656e5 563
c7981433
TH
564 __inc_wb_stat(wb, WB_WRITTEN);
565 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
566 wb->bdi->max_prop_frac);
841710aa
TH
567
568 cgdom = mem_cgroup_wb_domain(wb);
569 if (cgdom)
570 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
571 wb->bdi->max_prop_frac);
dd5656e5 572}
dd5656e5 573
93f78d88 574void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 575{
dd5656e5
MS
576 unsigned long flags;
577
578 local_irq_save(flags);
93f78d88 579 __wb_writeout_inc(wb);
dd5656e5 580 local_irq_restore(flags);
04fbfdc1 581}
93f78d88 582EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 583
eb608e3a
JK
584/*
585 * On idle system, we can be called long after we scheduled because we use
586 * deferred timers so count with missed periods.
587 */
588static void writeout_period(unsigned long t)
589{
380c27ca
TH
590 struct wb_domain *dom = (void *)t;
591 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
592 VM_COMPLETIONS_PERIOD_LEN;
593
380c27ca
TH
594 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
595 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 596 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 597 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
598 } else {
599 /*
600 * Aging has zeroed all fractions. Stop wasting CPU on period
601 * updates.
602 */
380c27ca 603 dom->period_time = 0;
eb608e3a
JK
604 }
605}
606
380c27ca
TH
607int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
608{
609 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
610
611 spin_lock_init(&dom->lock);
612
380c27ca
TH
613 init_timer_deferrable(&dom->period_timer);
614 dom->period_timer.function = writeout_period;
615 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
616
617 dom->dirty_limit_tstamp = jiffies;
618
380c27ca
TH
619 return fprop_global_init(&dom->completions, gfp);
620}
621
841710aa
TH
622#ifdef CONFIG_CGROUP_WRITEBACK
623void wb_domain_exit(struct wb_domain *dom)
624{
625 del_timer_sync(&dom->period_timer);
626 fprop_global_destroy(&dom->completions);
627}
628#endif
629
189d3c4a 630/*
d08c429b
JW
631 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
632 * registered backing devices, which, for obvious reasons, can not
633 * exceed 100%.
189d3c4a 634 */
189d3c4a
PZ
635static unsigned int bdi_min_ratio;
636
637int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
638{
639 int ret = 0;
189d3c4a 640
cfc4ba53 641 spin_lock_bh(&bdi_lock);
a42dde04 642 if (min_ratio > bdi->max_ratio) {
189d3c4a 643 ret = -EINVAL;
a42dde04
PZ
644 } else {
645 min_ratio -= bdi->min_ratio;
646 if (bdi_min_ratio + min_ratio < 100) {
647 bdi_min_ratio += min_ratio;
648 bdi->min_ratio += min_ratio;
649 } else {
650 ret = -EINVAL;
651 }
652 }
cfc4ba53 653 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
654
655 return ret;
656}
657
658int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
659{
a42dde04
PZ
660 int ret = 0;
661
662 if (max_ratio > 100)
663 return -EINVAL;
664
cfc4ba53 665 spin_lock_bh(&bdi_lock);
a42dde04
PZ
666 if (bdi->min_ratio > max_ratio) {
667 ret = -EINVAL;
668 } else {
669 bdi->max_ratio = max_ratio;
eb608e3a 670 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 671 }
cfc4ba53 672 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
673
674 return ret;
675}
a42dde04 676EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 677
6c14ae1e
WF
678static unsigned long dirty_freerun_ceiling(unsigned long thresh,
679 unsigned long bg_thresh)
680{
681 return (thresh + bg_thresh) / 2;
682}
683
c7981433
TH
684static unsigned long hard_dirty_limit(struct wb_domain *dom,
685 unsigned long thresh)
ffd1f609 686{
dcc25ae7 687 return max(thresh, dom->dirty_limit);
ffd1f609
WF
688}
689
c5edf9cd
TH
690/*
691 * Memory which can be further allocated to a memcg domain is capped by
692 * system-wide clean memory excluding the amount being used in the domain.
693 */
694static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
695 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
696{
697 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
698 unsigned long clean = filepages - min(filepages, mdtc->dirty);
699 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
700 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 701
c5edf9cd 702 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
703}
704
6f718656 705/**
b1cbc6d4
TH
706 * __wb_calc_thresh - @wb's share of dirty throttling threshold
707 * @dtc: dirty_throttle_context of interest
1babe183 708 *
a88a341a 709 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 710 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
711 *
712 * Note that balance_dirty_pages() will only seriously take it as a hard limit
713 * when sleeping max_pause per page is not enough to keep the dirty pages under
714 * control. For example, when the device is completely stalled due to some error
715 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
716 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 717 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 718 *
6f718656 719 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
720 * - starving fast devices
721 * - piling up dirty pages (that will take long time to sync) on slow devices
722 *
a88a341a 723 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
724 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
725 */
b1cbc6d4 726static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 727{
e9f07dfd 728 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 729 unsigned long thresh = dtc->thresh;
0d960a38 730 u64 wb_thresh;
16c4042f 731 long numerator, denominator;
693108a8 732 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 733
16c4042f 734 /*
0d960a38 735 * Calculate this BDI's share of the thresh ratio.
16c4042f 736 */
e9770b34 737 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 738 &numerator, &denominator);
04fbfdc1 739
0d960a38
TH
740 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
741 wb_thresh *= numerator;
742 do_div(wb_thresh, denominator);
04fbfdc1 743
b1cbc6d4 744 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 745
0d960a38
TH
746 wb_thresh += (thresh * wb_min_ratio) / 100;
747 if (wb_thresh > (thresh * wb_max_ratio) / 100)
748 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 749
0d960a38 750 return wb_thresh;
1da177e4
LT
751}
752
b1cbc6d4
TH
753unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
754{
755 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
756 .thresh = thresh };
757 return __wb_calc_thresh(&gdtc);
1da177e4
LT
758}
759
5a537485
MP
760/*
761 * setpoint - dirty 3
762 * f(dirty) := 1.0 + (----------------)
763 * limit - setpoint
764 *
765 * it's a 3rd order polynomial that subjects to
766 *
767 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
768 * (2) f(setpoint) = 1.0 => the balance point
769 * (3) f(limit) = 0 => the hard limit
770 * (4) df/dx <= 0 => negative feedback control
771 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
772 * => fast response on large errors; small oscillation near setpoint
773 */
d5c9fde3 774static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
775 unsigned long dirty,
776 unsigned long limit)
777{
778 long long pos_ratio;
779 long x;
780
d5c9fde3 781 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 782 (limit - setpoint) | 1);
5a537485
MP
783 pos_ratio = x;
784 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
785 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
786 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
787
788 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
789}
790
6c14ae1e
WF
791/*
792 * Dirty position control.
793 *
794 * (o) global/bdi setpoints
795 *
de1fff37 796 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
797 * When the number of dirty pages is higher/lower than the setpoint, the
798 * dirty position control ratio (and hence task dirty ratelimit) will be
799 * decreased/increased to bring the dirty pages back to the setpoint.
800 *
801 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
802 *
803 * if (dirty < setpoint) scale up pos_ratio
804 * if (dirty > setpoint) scale down pos_ratio
805 *
de1fff37
TH
806 * if (wb_dirty < wb_setpoint) scale up pos_ratio
807 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
808 *
809 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
810 *
811 * (o) global control line
812 *
813 * ^ pos_ratio
814 * |
815 * | |<===== global dirty control scope ======>|
816 * 2.0 .............*
817 * | .*
818 * | . *
819 * | . *
820 * | . *
821 * | . *
822 * | . *
823 * 1.0 ................................*
824 * | . . *
825 * | . . *
826 * | . . *
827 * | . . *
828 * | . . *
829 * 0 +------------.------------------.----------------------*------------->
830 * freerun^ setpoint^ limit^ dirty pages
831 *
de1fff37 832 * (o) wb control line
6c14ae1e
WF
833 *
834 * ^ pos_ratio
835 * |
836 * | *
837 * | *
838 * | *
839 * | *
840 * | * |<=========== span ============>|
841 * 1.0 .......................*
842 * | . *
843 * | . *
844 * | . *
845 * | . *
846 * | . *
847 * | . *
848 * | . *
849 * | . *
850 * | . *
851 * | . *
852 * | . *
853 * 1/4 ...............................................* * * * * * * * * * * *
854 * | . .
855 * | . .
856 * | . .
857 * 0 +----------------------.-------------------------------.------------->
de1fff37 858 * wb_setpoint^ x_intercept^
6c14ae1e 859 *
de1fff37 860 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
861 * be smoothly throttled down to normal if it starts high in situations like
862 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
863 * card's wb_dirty may rush to many times higher than wb_setpoint.
864 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 865 */
daddfa3c 866static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 867{
2bc00aef 868 struct bdi_writeback *wb = dtc->wb;
a88a341a 869 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 870 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 871 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 872 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
873 unsigned long x_intercept;
874 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 875 unsigned long wb_setpoint;
6c14ae1e
WF
876 unsigned long span;
877 long long pos_ratio; /* for scaling up/down the rate limit */
878 long x;
879
daddfa3c
TH
880 dtc->pos_ratio = 0;
881
2bc00aef 882 if (unlikely(dtc->dirty >= limit))
daddfa3c 883 return;
6c14ae1e
WF
884
885 /*
886 * global setpoint
887 *
5a537485
MP
888 * See comment for pos_ratio_polynom().
889 */
890 setpoint = (freerun + limit) / 2;
2bc00aef 891 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
892
893 /*
894 * The strictlimit feature is a tool preventing mistrusted filesystems
895 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
896 * such filesystems balance_dirty_pages always checks wb counters
897 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
898 * This is especially important for fuse which sets bdi->max_ratio to
899 * 1% by default. Without strictlimit feature, fuse writeback may
900 * consume arbitrary amount of RAM because it is accounted in
901 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 902 *
a88a341a 903 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 904 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
905 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
906 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 907 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 908 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 909 * about ~6K pages (as the average of background and throttle wb
5a537485 910 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 911 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 912 *
5a537485 913 * Note, that we cannot use global counters in these calculations
de1fff37 914 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
915 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
916 * in the example above).
6c14ae1e 917 */
a88a341a 918 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 919 long long wb_pos_ratio;
5a537485 920
daddfa3c
TH
921 if (dtc->wb_dirty < 8) {
922 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
923 2 << RATELIMIT_CALC_SHIFT);
924 return;
925 }
5a537485 926
2bc00aef 927 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 928 return;
5a537485 929
970fb01a
TH
930 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
931 dtc->wb_bg_thresh);
5a537485 932
de1fff37 933 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 934 return;
5a537485 935
2bc00aef 936 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 937 wb_thresh);
5a537485
MP
938
939 /*
de1fff37
TH
940 * Typically, for strictlimit case, wb_setpoint << setpoint
941 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 942 * state ("dirty") is not limiting factor and we have to
de1fff37 943 * make decision based on wb counters. But there is an
5a537485
MP
944 * important case when global pos_ratio should get precedence:
945 * global limits are exceeded (e.g. due to activities on other
de1fff37 946 * wb's) while given strictlimit wb is below limit.
5a537485 947 *
de1fff37 948 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 949 * but it would look too non-natural for the case of all
de1fff37 950 * activity in the system coming from a single strictlimit wb
5a537485
MP
951 * with bdi->max_ratio == 100%.
952 *
953 * Note that min() below somewhat changes the dynamics of the
954 * control system. Normally, pos_ratio value can be well over 3
de1fff37 955 * (when globally we are at freerun and wb is well below wb
5a537485
MP
956 * setpoint). Now the maximum pos_ratio in the same situation
957 * is 2. We might want to tweak this if we observe the control
958 * system is too slow to adapt.
959 */
daddfa3c
TH
960 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
961 return;
5a537485 962 }
6c14ae1e
WF
963
964 /*
965 * We have computed basic pos_ratio above based on global situation. If
de1fff37 966 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
967 * pos_ratio further down/up. That is done by the following mechanism.
968 */
969
970 /*
de1fff37 971 * wb setpoint
6c14ae1e 972 *
de1fff37 973 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 974 *
de1fff37 975 * x_intercept - wb_dirty
6c14ae1e 976 * := --------------------------
de1fff37 977 * x_intercept - wb_setpoint
6c14ae1e 978 *
de1fff37 979 * The main wb control line is a linear function that subjects to
6c14ae1e 980 *
de1fff37
TH
981 * (1) f(wb_setpoint) = 1.0
982 * (2) k = - 1 / (8 * write_bw) (in single wb case)
983 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 984 *
de1fff37 985 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 986 * regularly within range
de1fff37 987 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
988 * for various filesystems, where (2) can yield in a reasonable 12.5%
989 * fluctuation range for pos_ratio.
990 *
de1fff37 991 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 992 * own size, so move the slope over accordingly and choose a slope that
de1fff37 993 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 994 */
2bc00aef
TH
995 if (unlikely(wb_thresh > dtc->thresh))
996 wb_thresh = dtc->thresh;
aed21ad2 997 /*
de1fff37 998 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
999 * device is slow, but that it has remained inactive for long time.
1000 * Honour such devices a reasonable good (hopefully IO efficient)
1001 * threshold, so that the occasional writes won't be blocked and active
1002 * writes can rampup the threshold quickly.
1003 */
2bc00aef 1004 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1005 /*
de1fff37
TH
1006 * scale global setpoint to wb's:
1007 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1008 */
e4bc13ad 1009 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1010 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1011 /*
de1fff37
TH
1012 * Use span=(8*write_bw) in single wb case as indicated by
1013 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1014 *
de1fff37
TH
1015 * wb_thresh thresh - wb_thresh
1016 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1017 * thresh thresh
6c14ae1e 1018 */
2bc00aef 1019 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1020 x_intercept = wb_setpoint + span;
6c14ae1e 1021
2bc00aef
TH
1022 if (dtc->wb_dirty < x_intercept - span / 4) {
1023 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1024 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1025 } else
1026 pos_ratio /= 4;
1027
8927f66c 1028 /*
de1fff37 1029 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1030 * It may push the desired control point of global dirty pages higher
1031 * than setpoint.
1032 */
de1fff37 1033 x_intercept = wb_thresh / 2;
2bc00aef
TH
1034 if (dtc->wb_dirty < x_intercept) {
1035 if (dtc->wb_dirty > x_intercept / 8)
1036 pos_ratio = div_u64(pos_ratio * x_intercept,
1037 dtc->wb_dirty);
50657fc4 1038 else
8927f66c
WF
1039 pos_ratio *= 8;
1040 }
1041
daddfa3c 1042 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1043}
1044
a88a341a
TH
1045static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1046 unsigned long elapsed,
1047 unsigned long written)
e98be2d5
WF
1048{
1049 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1050 unsigned long avg = wb->avg_write_bandwidth;
1051 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1052 u64 bw;
1053
1054 /*
1055 * bw = written * HZ / elapsed
1056 *
1057 * bw * elapsed + write_bandwidth * (period - elapsed)
1058 * write_bandwidth = ---------------------------------------------------
1059 * period
c72efb65
TH
1060 *
1061 * @written may have decreased due to account_page_redirty().
1062 * Avoid underflowing @bw calculation.
e98be2d5 1063 */
a88a341a 1064 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1065 bw *= HZ;
1066 if (unlikely(elapsed > period)) {
1067 do_div(bw, elapsed);
1068 avg = bw;
1069 goto out;
1070 }
a88a341a 1071 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1072 bw >>= ilog2(period);
1073
1074 /*
1075 * one more level of smoothing, for filtering out sudden spikes
1076 */
1077 if (avg > old && old >= (unsigned long)bw)
1078 avg -= (avg - old) >> 3;
1079
1080 if (avg < old && old <= (unsigned long)bw)
1081 avg += (old - avg) >> 3;
1082
1083out:
95a46c65
TH
1084 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1085 avg = max(avg, 1LU);
1086 if (wb_has_dirty_io(wb)) {
1087 long delta = avg - wb->avg_write_bandwidth;
1088 WARN_ON_ONCE(atomic_long_add_return(delta,
1089 &wb->bdi->tot_write_bandwidth) <= 0);
1090 }
a88a341a
TH
1091 wb->write_bandwidth = bw;
1092 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1093}
1094
2bc00aef 1095static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1096{
e9f07dfd 1097 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1098 unsigned long thresh = dtc->thresh;
dcc25ae7 1099 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1100
1101 /*
1102 * Follow up in one step.
1103 */
1104 if (limit < thresh) {
1105 limit = thresh;
1106 goto update;
1107 }
1108
1109 /*
1110 * Follow down slowly. Use the higher one as the target, because thresh
1111 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1112 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1113 */
2bc00aef 1114 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1115 if (limit > thresh) {
1116 limit -= (limit - thresh) >> 5;
1117 goto update;
1118 }
1119 return;
1120update:
dcc25ae7 1121 dom->dirty_limit = limit;
c42843f2
WF
1122}
1123
e9f07dfd 1124static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1125 unsigned long now)
1126{
e9f07dfd 1127 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1128
1129 /*
1130 * check locklessly first to optimize away locking for the most time
1131 */
dcc25ae7 1132 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1133 return;
1134
dcc25ae7
TH
1135 spin_lock(&dom->lock);
1136 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1137 update_dirty_limit(dtc);
dcc25ae7 1138 dom->dirty_limit_tstamp = now;
c42843f2 1139 }
dcc25ae7 1140 spin_unlock(&dom->lock);
c42843f2
WF
1141}
1142
be3ffa27 1143/*
de1fff37 1144 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1145 *
de1fff37 1146 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1147 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1148 */
2bc00aef 1149static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1150 unsigned long dirtied,
1151 unsigned long elapsed)
be3ffa27 1152{
2bc00aef
TH
1153 struct bdi_writeback *wb = dtc->wb;
1154 unsigned long dirty = dtc->dirty;
1155 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1156 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1157 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1158 unsigned long write_bw = wb->avg_write_bandwidth;
1159 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1160 unsigned long dirty_rate;
1161 unsigned long task_ratelimit;
1162 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1163 unsigned long step;
1164 unsigned long x;
4ee2ecda 1165 unsigned long shift;
be3ffa27
WF
1166
1167 /*
1168 * The dirty rate will match the writeout rate in long term, except
1169 * when dirty pages are truncated by userspace or re-dirtied by FS.
1170 */
a88a341a 1171 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1172
be3ffa27
WF
1173 /*
1174 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1175 */
1176 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1177 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1178 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1179
1180 /*
1181 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1182 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1183 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1184 * formula will yield the balanced rate limit (write_bw / N).
1185 *
1186 * Note that the expanded form is not a pure rate feedback:
1187 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1188 * but also takes pos_ratio into account:
1189 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1190 *
1191 * (1) is not realistic because pos_ratio also takes part in balancing
1192 * the dirty rate. Consider the state
1193 * pos_ratio = 0.5 (3)
1194 * rate = 2 * (write_bw / N) (4)
1195 * If (1) is used, it will stuck in that state! Because each dd will
1196 * be throttled at
1197 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1198 * yielding
1199 * dirty_rate = N * task_ratelimit = write_bw (6)
1200 * put (6) into (1) we get
1201 * rate_(i+1) = rate_(i) (7)
1202 *
1203 * So we end up using (2) to always keep
1204 * rate_(i+1) ~= (write_bw / N) (8)
1205 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1206 * pos_ratio is able to drive itself to 1.0, which is not only where
1207 * the dirty count meet the setpoint, but also where the slope of
1208 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1209 */
1210 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1211 dirty_rate | 1);
bdaac490
WF
1212 /*
1213 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1214 */
1215 if (unlikely(balanced_dirty_ratelimit > write_bw))
1216 balanced_dirty_ratelimit = write_bw;
be3ffa27 1217
7381131c
WF
1218 /*
1219 * We could safely do this and return immediately:
1220 *
de1fff37 1221 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1222 *
1223 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1224 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1225 * limit the step size.
1226 *
1227 * The below code essentially only uses the relative value of
1228 *
1229 * task_ratelimit - dirty_ratelimit
1230 * = (pos_ratio - 1) * dirty_ratelimit
1231 *
1232 * which reflects the direction and size of dirty position error.
1233 */
1234
1235 /*
1236 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1237 * task_ratelimit is on the same side of dirty_ratelimit, too.
1238 * For example, when
1239 * - dirty_ratelimit > balanced_dirty_ratelimit
1240 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1241 * lowering dirty_ratelimit will help meet both the position and rate
1242 * control targets. Otherwise, don't update dirty_ratelimit if it will
1243 * only help meet the rate target. After all, what the users ultimately
1244 * feel and care are stable dirty rate and small position error.
1245 *
1246 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1247 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1248 * keeps jumping around randomly and can even leap far away at times
1249 * due to the small 200ms estimation period of dirty_rate (we want to
1250 * keep that period small to reduce time lags).
1251 */
1252 step = 0;
5a537485
MP
1253
1254 /*
de1fff37 1255 * For strictlimit case, calculations above were based on wb counters
a88a341a 1256 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1257 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1258 * Hence, to calculate "step" properly, we have to use wb_dirty as
1259 * "dirty" and wb_setpoint as "setpoint".
5a537485 1260 *
de1fff37
TH
1261 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1262 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1263 * of backing device.
5a537485 1264 */
a88a341a 1265 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1266 dirty = dtc->wb_dirty;
1267 if (dtc->wb_dirty < 8)
1268 setpoint = dtc->wb_dirty + 1;
5a537485 1269 else
970fb01a 1270 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1271 }
1272
7381131c 1273 if (dirty < setpoint) {
a88a341a 1274 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1275 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1276 if (dirty_ratelimit < x)
1277 step = x - dirty_ratelimit;
1278 } else {
a88a341a 1279 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1280 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1281 if (dirty_ratelimit > x)
1282 step = dirty_ratelimit - x;
1283 }
1284
1285 /*
1286 * Don't pursue 100% rate matching. It's impossible since the balanced
1287 * rate itself is constantly fluctuating. So decrease the track speed
1288 * when it gets close to the target. Helps eliminate pointless tremors.
1289 */
4ee2ecda
AR
1290 shift = dirty_ratelimit / (2 * step + 1);
1291 if (shift < BITS_PER_LONG)
1292 step = DIV_ROUND_UP(step >> shift, 8);
1293 else
1294 step = 0;
7381131c
WF
1295
1296 if (dirty_ratelimit < balanced_dirty_ratelimit)
1297 dirty_ratelimit += step;
1298 else
1299 dirty_ratelimit -= step;
1300
a88a341a
TH
1301 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1302 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1303
5634cc2a 1304 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1305}
1306
c2aa723a
TH
1307static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1308 struct dirty_throttle_control *mdtc,
8a731799
TH
1309 unsigned long start_time,
1310 bool update_ratelimit)
e98be2d5 1311{
c2aa723a 1312 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1313 unsigned long now = jiffies;
a88a341a 1314 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1315 unsigned long dirtied;
e98be2d5
WF
1316 unsigned long written;
1317
8a731799
TH
1318 lockdep_assert_held(&wb->list_lock);
1319
e98be2d5
WF
1320 /*
1321 * rate-limit, only update once every 200ms.
1322 */
1323 if (elapsed < BANDWIDTH_INTERVAL)
1324 return;
1325
a88a341a
TH
1326 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1327 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1328
1329 /*
1330 * Skip quiet periods when disk bandwidth is under-utilized.
1331 * (at least 1s idle time between two flusher runs)
1332 */
a88a341a 1333 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1334 goto snapshot;
1335
8a731799 1336 if (update_ratelimit) {
c2aa723a
TH
1337 domain_update_bandwidth(gdtc, now);
1338 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1339
1340 /*
1341 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1342 * compiler has no way to figure that out. Help it.
1343 */
1344 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1345 domain_update_bandwidth(mdtc, now);
1346 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1347 }
be3ffa27 1348 }
a88a341a 1349 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1350
1351snapshot:
a88a341a
TH
1352 wb->dirtied_stamp = dirtied;
1353 wb->written_stamp = written;
1354 wb->bw_time_stamp = now;
e98be2d5
WF
1355}
1356
8a731799 1357void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1358{
2bc00aef
TH
1359 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1360
c2aa723a 1361 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1362}
1363
9d823e8f 1364/*
d0e1d66b 1365 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1366 * will look to see if it needs to start dirty throttling.
1367 *
1368 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1369 * global_page_state() too often. So scale it near-sqrt to the safety margin
1370 * (the number of pages we may dirty without exceeding the dirty limits).
1371 */
1372static unsigned long dirty_poll_interval(unsigned long dirty,
1373 unsigned long thresh)
1374{
1375 if (thresh > dirty)
1376 return 1UL << (ilog2(thresh - dirty) >> 1);
1377
1378 return 1;
1379}
1380
a88a341a 1381static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1382 unsigned long wb_dirty)
c8462cc9 1383{
a88a341a 1384 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1385 unsigned long t;
c8462cc9 1386
7ccb9ad5
WF
1387 /*
1388 * Limit pause time for small memory systems. If sleeping for too long
1389 * time, a small pool of dirty/writeback pages may go empty and disk go
1390 * idle.
1391 *
1392 * 8 serves as the safety ratio.
1393 */
de1fff37 1394 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1395 t++;
1396
e3b6c655 1397 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1398}
1399
a88a341a
TH
1400static long wb_min_pause(struct bdi_writeback *wb,
1401 long max_pause,
1402 unsigned long task_ratelimit,
1403 unsigned long dirty_ratelimit,
1404 int *nr_dirtied_pause)
c8462cc9 1405{
a88a341a
TH
1406 long hi = ilog2(wb->avg_write_bandwidth);
1407 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1408 long t; /* target pause */
1409 long pause; /* estimated next pause */
1410 int pages; /* target nr_dirtied_pause */
c8462cc9 1411
7ccb9ad5
WF
1412 /* target for 10ms pause on 1-dd case */
1413 t = max(1, HZ / 100);
c8462cc9
WF
1414
1415 /*
1416 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1417 * overheads.
1418 *
7ccb9ad5 1419 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1420 */
1421 if (hi > lo)
7ccb9ad5 1422 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1423
1424 /*
7ccb9ad5
WF
1425 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1426 * on the much more stable dirty_ratelimit. However the next pause time
1427 * will be computed based on task_ratelimit and the two rate limits may
1428 * depart considerably at some time. Especially if task_ratelimit goes
1429 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1430 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1431 * result task_ratelimit won't be executed faithfully, which could
1432 * eventually bring down dirty_ratelimit.
c8462cc9 1433 *
7ccb9ad5
WF
1434 * We apply two rules to fix it up:
1435 * 1) try to estimate the next pause time and if necessary, use a lower
1436 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1437 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1438 * 2) limit the target pause time to max_pause/2, so that the normal
1439 * small fluctuations of task_ratelimit won't trigger rule (1) and
1440 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1441 */
7ccb9ad5
WF
1442 t = min(t, 1 + max_pause / 2);
1443 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1444
1445 /*
5b9b3574
WF
1446 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1447 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1448 * When the 16 consecutive reads are often interrupted by some dirty
1449 * throttling pause during the async writes, cfq will go into idles
1450 * (deadline is fine). So push nr_dirtied_pause as high as possible
1451 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1452 */
5b9b3574
WF
1453 if (pages < DIRTY_POLL_THRESH) {
1454 t = max_pause;
1455 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1456 if (pages > DIRTY_POLL_THRESH) {
1457 pages = DIRTY_POLL_THRESH;
1458 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1459 }
1460 }
1461
7ccb9ad5
WF
1462 pause = HZ * pages / (task_ratelimit + 1);
1463 if (pause > max_pause) {
1464 t = max_pause;
1465 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1466 }
c8462cc9 1467
7ccb9ad5 1468 *nr_dirtied_pause = pages;
c8462cc9 1469 /*
7ccb9ad5 1470 * The minimal pause time will normally be half the target pause time.
c8462cc9 1471 */
5b9b3574 1472 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1473}
1474
970fb01a 1475static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1476{
2bc00aef 1477 struct bdi_writeback *wb = dtc->wb;
93f78d88 1478 unsigned long wb_reclaimable;
5a537485
MP
1479
1480 /*
de1fff37 1481 * wb_thresh is not treated as some limiting factor as
5a537485 1482 * dirty_thresh, due to reasons
de1fff37 1483 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1484 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1485 * go into state (wb_dirty >> wb_thresh) either because
1486 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1487 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1488 * dirtiers for 100 seconds until wb_dirty drops under
1489 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1490 * wb_position_ratio() will let the dirtier task progress
de1fff37 1491 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1492 */
b1cbc6d4 1493 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1494 dtc->wb_bg_thresh = dtc->thresh ?
1495 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1496
1497 /*
1498 * In order to avoid the stacked BDI deadlock we need
1499 * to ensure we accurately count the 'dirty' pages when
1500 * the threshold is low.
1501 *
1502 * Otherwise it would be possible to get thresh+n pages
1503 * reported dirty, even though there are thresh-m pages
1504 * actually dirty; with m+n sitting in the percpu
1505 * deltas.
1506 */
2bc00aef 1507 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1508 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1509 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1510 } else {
93f78d88 1511 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1512 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1513 }
1514}
1515
1da177e4
LT
1516/*
1517 * balance_dirty_pages() must be called by processes which are generating dirty
1518 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1519 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1520 * If we're over `background_thresh' then the writeback threads are woken to
1521 * perform some writeout.
1da177e4 1522 */
3a2e9a5a 1523static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1524 struct bdi_writeback *wb,
143dfe86 1525 unsigned long pages_dirtied)
1da177e4 1526{
2bc00aef 1527 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1528 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1529 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1530 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1531 &mdtc_stor : NULL;
1532 struct dirty_throttle_control *sdtc;
143dfe86 1533 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1534 long period;
7ccb9ad5
WF
1535 long pause;
1536 long max_pause;
1537 long min_pause;
1538 int nr_dirtied_pause;
e50e3720 1539 bool dirty_exceeded = false;
143dfe86 1540 unsigned long task_ratelimit;
7ccb9ad5 1541 unsigned long dirty_ratelimit;
dfb8ae56 1542 struct backing_dev_info *bdi = wb->bdi;
5a537485 1543 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1544 unsigned long start_time = jiffies;
1da177e4
LT
1545
1546 for (;;) {
83712358 1547 unsigned long now = jiffies;
2bc00aef 1548 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1549 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1550 unsigned long m_thresh = 0;
1551 unsigned long m_bg_thresh = 0;
83712358 1552
143dfe86
WF
1553 /*
1554 * Unstable writes are a feature of certain networked
1555 * filesystems (i.e. NFS) in which data may have been
1556 * written to the server's write cache, but has not yet
1557 * been flushed to permanent storage.
1558 */
5fce25a9
PZ
1559 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1560 global_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1561 gdtc->avail = global_dirtyable_memory();
2bc00aef 1562 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1563
9fc3a43e 1564 domain_dirty_limits(gdtc);
16c4042f 1565
5a537485 1566 if (unlikely(strictlimit)) {
970fb01a 1567 wb_dirty_limits(gdtc);
5a537485 1568
2bc00aef
TH
1569 dirty = gdtc->wb_dirty;
1570 thresh = gdtc->wb_thresh;
970fb01a 1571 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1572 } else {
2bc00aef
TH
1573 dirty = gdtc->dirty;
1574 thresh = gdtc->thresh;
1575 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1576 }
1577
c2aa723a 1578 if (mdtc) {
c5edf9cd 1579 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1580
1581 /*
1582 * If @wb belongs to !root memcg, repeat the same
1583 * basic calculations for the memcg domain.
1584 */
c5edf9cd
TH
1585 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1586 &mdtc->dirty, &writeback);
c2aa723a 1587 mdtc->dirty += writeback;
c5edf9cd 1588 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1589
1590 domain_dirty_limits(mdtc);
1591
1592 if (unlikely(strictlimit)) {
1593 wb_dirty_limits(mdtc);
1594 m_dirty = mdtc->wb_dirty;
1595 m_thresh = mdtc->wb_thresh;
1596 m_bg_thresh = mdtc->wb_bg_thresh;
1597 } else {
1598 m_dirty = mdtc->dirty;
1599 m_thresh = mdtc->thresh;
1600 m_bg_thresh = mdtc->bg_thresh;
1601 }
5a537485
MP
1602 }
1603
16c4042f
WF
1604 /*
1605 * Throttle it only when the background writeback cannot
1606 * catch-up. This avoids (excessively) small writeouts
de1fff37 1607 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1608 *
de1fff37
TH
1609 * In strictlimit case make decision based on the wb counters
1610 * and limits. Small writeouts when the wb limits are ramping
5a537485 1611 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1612 *
1613 * If memcg domain is in effect, @dirty should be under
1614 * both global and memcg freerun ceilings.
16c4042f 1615 */
c2aa723a
TH
1616 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1617 (!mdtc ||
1618 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1619 unsigned long intv = dirty_poll_interval(dirty, thresh);
1620 unsigned long m_intv = ULONG_MAX;
1621
83712358
WF
1622 current->dirty_paused_when = now;
1623 current->nr_dirtied = 0;
c2aa723a
TH
1624 if (mdtc)
1625 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1626 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1627 break;
83712358 1628 }
16c4042f 1629
bc05873d 1630 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1631 wb_start_background_writeback(wb);
143dfe86 1632
c2aa723a
TH
1633 /*
1634 * Calculate global domain's pos_ratio and select the
1635 * global dtc by default.
1636 */
5a537485 1637 if (!strictlimit)
970fb01a 1638 wb_dirty_limits(gdtc);
5fce25a9 1639
2bc00aef
TH
1640 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1641 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1642
1643 wb_position_ratio(gdtc);
c2aa723a
TH
1644 sdtc = gdtc;
1645
1646 if (mdtc) {
1647 /*
1648 * If memcg domain is in effect, calculate its
1649 * pos_ratio. @wb should satisfy constraints from
1650 * both global and memcg domains. Choose the one
1651 * w/ lower pos_ratio.
1652 */
1653 if (!strictlimit)
1654 wb_dirty_limits(mdtc);
1655
1656 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1657 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1658
1659 wb_position_ratio(mdtc);
1660 if (mdtc->pos_ratio < gdtc->pos_ratio)
1661 sdtc = mdtc;
1662 }
daddfa3c 1663
a88a341a
TH
1664 if (dirty_exceeded && !wb->dirty_exceeded)
1665 wb->dirty_exceeded = 1;
1da177e4 1666
8a731799
TH
1667 if (time_is_before_jiffies(wb->bw_time_stamp +
1668 BANDWIDTH_INTERVAL)) {
1669 spin_lock(&wb->list_lock);
c2aa723a 1670 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1671 spin_unlock(&wb->list_lock);
1672 }
e98be2d5 1673
c2aa723a 1674 /* throttle according to the chosen dtc */
a88a341a 1675 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1676 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1677 RATELIMIT_CALC_SHIFT;
c2aa723a 1678 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1679 min_pause = wb_min_pause(wb, max_pause,
1680 task_ratelimit, dirty_ratelimit,
1681 &nr_dirtied_pause);
7ccb9ad5 1682
3a73dbbc 1683 if (unlikely(task_ratelimit == 0)) {
83712358 1684 period = max_pause;
c8462cc9 1685 pause = max_pause;
143dfe86 1686 goto pause;
04fbfdc1 1687 }
83712358
WF
1688 period = HZ * pages_dirtied / task_ratelimit;
1689 pause = period;
1690 if (current->dirty_paused_when)
1691 pause -= now - current->dirty_paused_when;
1692 /*
1693 * For less than 1s think time (ext3/4 may block the dirtier
1694 * for up to 800ms from time to time on 1-HDD; so does xfs,
1695 * however at much less frequency), try to compensate it in
1696 * future periods by updating the virtual time; otherwise just
1697 * do a reset, as it may be a light dirtier.
1698 */
7ccb9ad5 1699 if (pause < min_pause) {
5634cc2a 1700 trace_balance_dirty_pages(wb,
c2aa723a
TH
1701 sdtc->thresh,
1702 sdtc->bg_thresh,
1703 sdtc->dirty,
1704 sdtc->wb_thresh,
1705 sdtc->wb_dirty,
ece13ac3
WF
1706 dirty_ratelimit,
1707 task_ratelimit,
1708 pages_dirtied,
83712358 1709 period,
7ccb9ad5 1710 min(pause, 0L),
ece13ac3 1711 start_time);
83712358
WF
1712 if (pause < -HZ) {
1713 current->dirty_paused_when = now;
1714 current->nr_dirtied = 0;
1715 } else if (period) {
1716 current->dirty_paused_when += period;
1717 current->nr_dirtied = 0;
7ccb9ad5
WF
1718 } else if (current->nr_dirtied_pause <= pages_dirtied)
1719 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1720 break;
04fbfdc1 1721 }
7ccb9ad5
WF
1722 if (unlikely(pause > max_pause)) {
1723 /* for occasional dropped task_ratelimit */
1724 now += min(pause - max_pause, max_pause);
1725 pause = max_pause;
1726 }
143dfe86
WF
1727
1728pause:
5634cc2a 1729 trace_balance_dirty_pages(wb,
c2aa723a
TH
1730 sdtc->thresh,
1731 sdtc->bg_thresh,
1732 sdtc->dirty,
1733 sdtc->wb_thresh,
1734 sdtc->wb_dirty,
ece13ac3
WF
1735 dirty_ratelimit,
1736 task_ratelimit,
1737 pages_dirtied,
83712358 1738 period,
ece13ac3
WF
1739 pause,
1740 start_time);
499d05ec 1741 __set_current_state(TASK_KILLABLE);
d25105e8 1742 io_schedule_timeout(pause);
87c6a9b2 1743
83712358
WF
1744 current->dirty_paused_when = now + pause;
1745 current->nr_dirtied = 0;
7ccb9ad5 1746 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1747
ffd1f609 1748 /*
2bc00aef
TH
1749 * This is typically equal to (dirty < thresh) and can also
1750 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1751 */
1df64719 1752 if (task_ratelimit)
ffd1f609 1753 break;
499d05ec 1754
c5c6343c
WF
1755 /*
1756 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1757 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1758 * to go through, so that tasks on them still remain responsive.
1759 *
1760 * In theory 1 page is enough to keep the comsumer-producer
1761 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1762 * more page. However wb_dirty has accounting errors. So use
93f78d88 1763 * the larger and more IO friendly wb_stat_error.
c5c6343c 1764 */
c2aa723a 1765 if (sdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1766 break;
1767
499d05ec
JK
1768 if (fatal_signal_pending(current))
1769 break;
1da177e4
LT
1770 }
1771
a88a341a
TH
1772 if (!dirty_exceeded && wb->dirty_exceeded)
1773 wb->dirty_exceeded = 0;
1da177e4 1774
bc05873d 1775 if (writeback_in_progress(wb))
5b0830cb 1776 return;
1da177e4
LT
1777
1778 /*
1779 * In laptop mode, we wait until hitting the higher threshold before
1780 * starting background writeout, and then write out all the way down
1781 * to the lower threshold. So slow writers cause minimal disk activity.
1782 *
1783 * In normal mode, we start background writeout at the lower
1784 * background_thresh, to keep the amount of dirty memory low.
1785 */
143dfe86
WF
1786 if (laptop_mode)
1787 return;
1788
2bc00aef 1789 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1790 wb_start_background_writeback(wb);
1da177e4
LT
1791}
1792
9d823e8f 1793static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1794
54848d73
WF
1795/*
1796 * Normal tasks are throttled by
1797 * loop {
1798 * dirty tsk->nr_dirtied_pause pages;
1799 * take a snap in balance_dirty_pages();
1800 * }
1801 * However there is a worst case. If every task exit immediately when dirtied
1802 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1803 * called to throttle the page dirties. The solution is to save the not yet
1804 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1805 * randomly into the running tasks. This works well for the above worst case,
1806 * as the new task will pick up and accumulate the old task's leaked dirty
1807 * count and eventually get throttled.
1808 */
1809DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1810
1da177e4 1811/**
d0e1d66b 1812 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1813 * @mapping: address_space which was dirtied
1da177e4
LT
1814 *
1815 * Processes which are dirtying memory should call in here once for each page
1816 * which was newly dirtied. The function will periodically check the system's
1817 * dirty state and will initiate writeback if needed.
1818 *
1819 * On really big machines, get_writeback_state is expensive, so try to avoid
1820 * calling it too often (ratelimiting). But once we're over the dirty memory
1821 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1822 * from overshooting the limit by (ratelimit_pages) each.
1823 */
d0e1d66b 1824void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1825{
dfb8ae56
TH
1826 struct inode *inode = mapping->host;
1827 struct backing_dev_info *bdi = inode_to_bdi(inode);
1828 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1829 int ratelimit;
1830 int *p;
1da177e4 1831
36715cef
WF
1832 if (!bdi_cap_account_dirty(bdi))
1833 return;
1834
dfb8ae56
TH
1835 if (inode_cgwb_enabled(inode))
1836 wb = wb_get_create_current(bdi, GFP_KERNEL);
1837 if (!wb)
1838 wb = &bdi->wb;
1839
9d823e8f 1840 ratelimit = current->nr_dirtied_pause;
a88a341a 1841 if (wb->dirty_exceeded)
9d823e8f
WF
1842 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1843
9d823e8f 1844 preempt_disable();
1da177e4 1845 /*
9d823e8f
WF
1846 * This prevents one CPU to accumulate too many dirtied pages without
1847 * calling into balance_dirty_pages(), which can happen when there are
1848 * 1000+ tasks, all of them start dirtying pages at exactly the same
1849 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1850 */
7c8e0181 1851 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1852 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1853 *p = 0;
d3bc1fef
WF
1854 else if (unlikely(*p >= ratelimit_pages)) {
1855 *p = 0;
1856 ratelimit = 0;
1da177e4 1857 }
54848d73
WF
1858 /*
1859 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1860 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1861 * the dirty throttling and livelock other long-run dirtiers.
1862 */
7c8e0181 1863 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1864 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1865 unsigned long nr_pages_dirtied;
54848d73
WF
1866 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1867 *p -= nr_pages_dirtied;
1868 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1869 }
fa5a734e 1870 preempt_enable();
9d823e8f
WF
1871
1872 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1873 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1874
1875 wb_put(wb);
1da177e4 1876}
d0e1d66b 1877EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1878
aa661bbe
TH
1879/**
1880 * wb_over_bg_thresh - does @wb need to be written back?
1881 * @wb: bdi_writeback of interest
1882 *
1883 * Determines whether background writeback should keep writing @wb or it's
1884 * clean enough. Returns %true if writeback should continue.
1885 */
1886bool wb_over_bg_thresh(struct bdi_writeback *wb)
1887{
947e9762 1888 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1889 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1890 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1891 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1892 &mdtc_stor : NULL;
aa661bbe 1893
947e9762
TH
1894 /*
1895 * Similar to balance_dirty_pages() but ignores pages being written
1896 * as we're trying to decide whether to put more under writeback.
1897 */
1898 gdtc->avail = global_dirtyable_memory();
1899 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1900 global_page_state(NR_UNSTABLE_NFS);
1901 domain_dirty_limits(gdtc);
aa661bbe 1902
947e9762 1903 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1904 return true;
1905
a98eabd9
HC
1906 if (wb_stat(wb, WB_RECLAIMABLE) >
1907 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
aa661bbe
TH
1908 return true;
1909
c2aa723a 1910 if (mdtc) {
c5edf9cd 1911 unsigned long filepages, headroom, writeback;
c2aa723a 1912
c5edf9cd
TH
1913 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1914 &writeback);
1915 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1916 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1917
1918 if (mdtc->dirty > mdtc->bg_thresh)
1919 return true;
1920
a98eabd9
HC
1921 if (wb_stat(wb, WB_RECLAIMABLE) >
1922 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
c2aa723a
TH
1923 return true;
1924 }
1925
aa661bbe
TH
1926 return false;
1927}
1928
232ea4d6 1929void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1930{
364aeb28
DR
1931 unsigned long background_thresh;
1932 unsigned long dirty_thresh;
1da177e4
LT
1933
1934 for ( ; ; ) {
16c4042f 1935 global_dirty_limits(&background_thresh, &dirty_thresh);
c7981433 1936 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1da177e4
LT
1937
1938 /*
1939 * Boost the allowable dirty threshold a bit for page
1940 * allocators so they don't get DoS'ed by heavy writers
1941 */
1942 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1943
c24f21bd
CL
1944 if (global_page_state(NR_UNSTABLE_NFS) +
1945 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1946 break;
8aa7e847 1947 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1948
1949 /*
1950 * The caller might hold locks which can prevent IO completion
1951 * or progress in the filesystem. So we cannot just sit here
1952 * waiting for IO to complete.
1953 */
1954 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1955 break;
1da177e4
LT
1956 }
1957}
1958
1da177e4
LT
1959/*
1960 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1961 */
cccad5b9 1962int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1963 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1964{
8d65af78 1965 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1966 return 0;
1967}
1968
c2c4986e 1969#ifdef CONFIG_BLOCK
31373d09 1970void laptop_mode_timer_fn(unsigned long data)
1da177e4 1971{
31373d09
MG
1972 struct request_queue *q = (struct request_queue *)data;
1973 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1974 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1 1975 struct bdi_writeback *wb;
1da177e4 1976
31373d09
MG
1977 /*
1978 * We want to write everything out, not just down to the dirty
1979 * threshold
1980 */
f53624d5 1981 if (!bdi_has_dirty_io(q->backing_dev_info))
a06fd6b1
TH
1982 return;
1983
9ad18ab9 1984 rcu_read_lock();
f53624d5 1985 list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node)
a06fd6b1
TH
1986 if (wb_has_dirty_io(wb))
1987 wb_start_writeback(wb, nr_pages, true,
1988 WB_REASON_LAPTOP_TIMER);
9ad18ab9 1989 rcu_read_unlock();
1da177e4
LT
1990}
1991
1992/*
1993 * We've spun up the disk and we're in laptop mode: schedule writeback
1994 * of all dirty data a few seconds from now. If the flush is already scheduled
1995 * then push it back - the user is still using the disk.
1996 */
31373d09 1997void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1998{
31373d09 1999 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2000}
2001
2002/*
2003 * We're in laptop mode and we've just synced. The sync's writes will have
2004 * caused another writeback to be scheduled by laptop_io_completion.
2005 * Nothing needs to be written back anymore, so we unschedule the writeback.
2006 */
2007void laptop_sync_completion(void)
2008{
31373d09
MG
2009 struct backing_dev_info *bdi;
2010
2011 rcu_read_lock();
2012
2013 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2014 del_timer(&bdi->laptop_mode_wb_timer);
2015
2016 rcu_read_unlock();
1da177e4 2017}
c2c4986e 2018#endif
1da177e4
LT
2019
2020/*
2021 * If ratelimit_pages is too high then we can get into dirty-data overload
2022 * if a large number of processes all perform writes at the same time.
2023 * If it is too low then SMP machines will call the (expensive)
2024 * get_writeback_state too often.
2025 *
2026 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2027 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2028 * thresholds.
1da177e4
LT
2029 */
2030
2d1d43f6 2031void writeback_set_ratelimit(void)
1da177e4 2032{
dcc25ae7 2033 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2034 unsigned long background_thresh;
2035 unsigned long dirty_thresh;
dcc25ae7 2036
9d823e8f 2037 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2038 dom->dirty_limit = dirty_thresh;
9d823e8f 2039 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2040 if (ratelimit_pages < 16)
2041 ratelimit_pages = 16;
1da177e4
LT
2042}
2043
0db0628d 2044static int
2f60d628
SB
2045ratelimit_handler(struct notifier_block *self, unsigned long action,
2046 void *hcpu)
1da177e4 2047{
2f60d628
SB
2048
2049 switch (action & ~CPU_TASKS_FROZEN) {
2050 case CPU_ONLINE:
2051 case CPU_DEAD:
2052 writeback_set_ratelimit();
2053 return NOTIFY_OK;
2054 default:
2055 return NOTIFY_DONE;
2056 }
1da177e4
LT
2057}
2058
0db0628d 2059static struct notifier_block ratelimit_nb = {
1da177e4
LT
2060 .notifier_call = ratelimit_handler,
2061 .next = NULL,
2062};
2063
2064/*
dc6e29da
LT
2065 * Called early on to tune the page writeback dirty limits.
2066 *
2067 * We used to scale dirty pages according to how total memory
2068 * related to pages that could be allocated for buffers (by
2069 * comparing nr_free_buffer_pages() to vm_total_pages.
2070 *
2071 * However, that was when we used "dirty_ratio" to scale with
2072 * all memory, and we don't do that any more. "dirty_ratio"
2073 * is now applied to total non-HIGHPAGE memory (by subtracting
2074 * totalhigh_pages from vm_total_pages), and as such we can't
2075 * get into the old insane situation any more where we had
2076 * large amounts of dirty pages compared to a small amount of
2077 * non-HIGHMEM memory.
2078 *
2079 * But we might still want to scale the dirty_ratio by how
2080 * much memory the box has..
1da177e4
LT
2081 */
2082void __init page_writeback_init(void)
2083{
a50fcb51
RV
2084 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2085
2d1d43f6 2086 writeback_set_ratelimit();
1da177e4
LT
2087 register_cpu_notifier(&ratelimit_nb);
2088}
2089
f446daae
JK
2090/**
2091 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2092 * @mapping: address space structure to write
2093 * @start: starting page index
2094 * @end: ending page index (inclusive)
2095 *
2096 * This function scans the page range from @start to @end (inclusive) and tags
2097 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2098 * that write_cache_pages (or whoever calls this function) will then use
2099 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2100 * used to avoid livelocking of writeback by a process steadily creating new
2101 * dirty pages in the file (thus it is important for this function to be quick
2102 * so that it can tag pages faster than a dirtying process can create them).
2103 */
2104/*
2105 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2106 */
f446daae
JK
2107void tag_pages_for_writeback(struct address_space *mapping,
2108 pgoff_t start, pgoff_t end)
2109{
3c111a07 2110#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
2111 unsigned long tagged;
2112
2113 do {
2114 spin_lock_irq(&mapping->tree_lock);
2115 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2116 &start, end, WRITEBACK_TAG_BATCH,
2117 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2118 spin_unlock_irq(&mapping->tree_lock);
2119 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2120 cond_resched();
d5ed3a4a
JK
2121 /* We check 'start' to handle wrapping when end == ~0UL */
2122 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
2123}
2124EXPORT_SYMBOL(tag_pages_for_writeback);
2125
811d736f 2126/**
0ea97180 2127 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2128 * @mapping: address space structure to write
2129 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2130 * @writepage: function called for each page
2131 * @data: data passed to writepage function
811d736f 2132 *
0ea97180 2133 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2134 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2135 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2136 * and msync() need to guarantee that all the data which was dirty at the time
2137 * the call was made get new I/O started against them. If wbc->sync_mode is
2138 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2139 * existing IO to complete.
f446daae
JK
2140 *
2141 * To avoid livelocks (when other process dirties new pages), we first tag
2142 * pages which should be written back with TOWRITE tag and only then start
2143 * writing them. For data-integrity sync we have to be careful so that we do
2144 * not miss some pages (e.g., because some other process has cleared TOWRITE
2145 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2146 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 2147 */
0ea97180
MS
2148int write_cache_pages(struct address_space *mapping,
2149 struct writeback_control *wbc, writepage_t writepage,
2150 void *data)
811d736f 2151{
811d736f
DH
2152 int ret = 0;
2153 int done = 0;
811d736f
DH
2154 struct pagevec pvec;
2155 int nr_pages;
31a12666 2156 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2157 pgoff_t index;
2158 pgoff_t end; /* Inclusive */
bd19e012 2159 pgoff_t done_index;
31a12666 2160 int cycled;
811d736f 2161 int range_whole = 0;
f446daae 2162 int tag;
811d736f 2163
811d736f
DH
2164 pagevec_init(&pvec, 0);
2165 if (wbc->range_cyclic) {
31a12666
NP
2166 writeback_index = mapping->writeback_index; /* prev offset */
2167 index = writeback_index;
2168 if (index == 0)
2169 cycled = 1;
2170 else
2171 cycled = 0;
811d736f
DH
2172 end = -1;
2173 } else {
2174 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2175 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2176 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2177 range_whole = 1;
31a12666 2178 cycled = 1; /* ignore range_cyclic tests */
811d736f 2179 }
6e6938b6 2180 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2181 tag = PAGECACHE_TAG_TOWRITE;
2182 else
2183 tag = PAGECACHE_TAG_DIRTY;
811d736f 2184retry:
6e6938b6 2185 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2186 tag_pages_for_writeback(mapping, index, end);
bd19e012 2187 done_index = index;
5a3d5c98
NP
2188 while (!done && (index <= end)) {
2189 int i;
2190
f446daae 2191 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
2192 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2193 if (nr_pages == 0)
2194 break;
811d736f 2195
811d736f
DH
2196 for (i = 0; i < nr_pages; i++) {
2197 struct page *page = pvec.pages[i];
2198
2199 /*
d5482cdf
NP
2200 * At this point, the page may be truncated or
2201 * invalidated (changing page->mapping to NULL), or
2202 * even swizzled back from swapper_space to tmpfs file
2203 * mapping. However, page->index will not change
2204 * because we have a reference on the page.
811d736f 2205 */
d5482cdf
NP
2206 if (page->index > end) {
2207 /*
2208 * can't be range_cyclic (1st pass) because
2209 * end == -1 in that case.
2210 */
2211 done = 1;
2212 break;
2213 }
2214
cf15b07c 2215 done_index = page->index;
d5482cdf 2216
811d736f
DH
2217 lock_page(page);
2218
5a3d5c98
NP
2219 /*
2220 * Page truncated or invalidated. We can freely skip it
2221 * then, even for data integrity operations: the page
2222 * has disappeared concurrently, so there could be no
2223 * real expectation of this data interity operation
2224 * even if there is now a new, dirty page at the same
2225 * pagecache address.
2226 */
811d736f 2227 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2228continue_unlock:
811d736f
DH
2229 unlock_page(page);
2230 continue;
2231 }
2232
515f4a03
NP
2233 if (!PageDirty(page)) {
2234 /* someone wrote it for us */
2235 goto continue_unlock;
2236 }
2237
2238 if (PageWriteback(page)) {
2239 if (wbc->sync_mode != WB_SYNC_NONE)
2240 wait_on_page_writeback(page);
2241 else
2242 goto continue_unlock;
2243 }
811d736f 2244
515f4a03
NP
2245 BUG_ON(PageWriteback(page));
2246 if (!clear_page_dirty_for_io(page))
5a3d5c98 2247 goto continue_unlock;
811d736f 2248
de1414a6 2249 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2250 ret = (*writepage)(page, wbc, data);
00266770
NP
2251 if (unlikely(ret)) {
2252 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2253 unlock_page(page);
2254 ret = 0;
2255 } else {
2256 /*
2257 * done_index is set past this page,
2258 * so media errors will not choke
2259 * background writeout for the entire
2260 * file. This has consequences for
2261 * range_cyclic semantics (ie. it may
2262 * not be suitable for data integrity
2263 * writeout).
2264 */
cf15b07c 2265 done_index = page->index + 1;
00266770
NP
2266 done = 1;
2267 break;
2268 }
0b564927 2269 }
00266770 2270
546a1924
DC
2271 /*
2272 * We stop writing back only if we are not doing
2273 * integrity sync. In case of integrity sync we have to
2274 * keep going until we have written all the pages
2275 * we tagged for writeback prior to entering this loop.
2276 */
2277 if (--wbc->nr_to_write <= 0 &&
2278 wbc->sync_mode == WB_SYNC_NONE) {
2279 done = 1;
2280 break;
05fe478d 2281 }
811d736f
DH
2282 }
2283 pagevec_release(&pvec);
2284 cond_resched();
2285 }
3a4c6800 2286 if (!cycled && !done) {
811d736f 2287 /*
31a12666 2288 * range_cyclic:
811d736f
DH
2289 * We hit the last page and there is more work to be done: wrap
2290 * back to the start of the file
2291 */
31a12666 2292 cycled = 1;
811d736f 2293 index = 0;
31a12666 2294 end = writeback_index - 1;
811d736f
DH
2295 goto retry;
2296 }
0b564927
DC
2297 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2298 mapping->writeback_index = done_index;
06d6cf69 2299
811d736f
DH
2300 return ret;
2301}
0ea97180
MS
2302EXPORT_SYMBOL(write_cache_pages);
2303
2304/*
2305 * Function used by generic_writepages to call the real writepage
2306 * function and set the mapping flags on error
2307 */
2308static int __writepage(struct page *page, struct writeback_control *wbc,
2309 void *data)
2310{
2311 struct address_space *mapping = data;
2312 int ret = mapping->a_ops->writepage(page, wbc);
2313 mapping_set_error(mapping, ret);
2314 return ret;
2315}
2316
2317/**
2318 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2319 * @mapping: address space structure to write
2320 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2321 *
2322 * This is a library function, which implements the writepages()
2323 * address_space_operation.
2324 */
2325int generic_writepages(struct address_space *mapping,
2326 struct writeback_control *wbc)
2327{
9b6096a6
SL
2328 struct blk_plug plug;
2329 int ret;
2330
0ea97180
MS
2331 /* deal with chardevs and other special file */
2332 if (!mapping->a_ops->writepage)
2333 return 0;
2334
9b6096a6
SL
2335 blk_start_plug(&plug);
2336 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2337 blk_finish_plug(&plug);
2338 return ret;
0ea97180 2339}
811d736f
DH
2340
2341EXPORT_SYMBOL(generic_writepages);
2342
1da177e4
LT
2343int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2344{
22905f77
AM
2345 int ret;
2346
1da177e4
LT
2347 if (wbc->nr_to_write <= 0)
2348 return 0;
2349 if (mapping->a_ops->writepages)
d08b3851 2350 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2351 else
2352 ret = generic_writepages(mapping, wbc);
22905f77 2353 return ret;
1da177e4
LT
2354}
2355
2356/**
2357 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2358 * @page: the page to write
2359 * @wait: if true, wait on writeout
1da177e4
LT
2360 *
2361 * The page must be locked by the caller and will be unlocked upon return.
2362 *
2363 * write_one_page() returns a negative error code if I/O failed.
2364 */
2365int write_one_page(struct page *page, int wait)
2366{
2367 struct address_space *mapping = page->mapping;
2368 int ret = 0;
2369 struct writeback_control wbc = {
2370 .sync_mode = WB_SYNC_ALL,
2371 .nr_to_write = 1,
2372 };
2373
2374 BUG_ON(!PageLocked(page));
2375
2376 if (wait)
2377 wait_on_page_writeback(page);
2378
2379 if (clear_page_dirty_for_io(page)) {
2380 page_cache_get(page);
2381 ret = mapping->a_ops->writepage(page, &wbc);
2382 if (ret == 0 && wait) {
2383 wait_on_page_writeback(page);
2384 if (PageError(page))
2385 ret = -EIO;
2386 }
2387 page_cache_release(page);
2388 } else {
2389 unlock_page(page);
2390 }
2391 return ret;
2392}
2393EXPORT_SYMBOL(write_one_page);
2394
76719325
KC
2395/*
2396 * For address_spaces which do not use buffers nor write back.
2397 */
2398int __set_page_dirty_no_writeback(struct page *page)
2399{
2400 if (!PageDirty(page))
c3f0da63 2401 return !TestSetPageDirty(page);
76719325
KC
2402 return 0;
2403}
2404
e3a7cca1
ES
2405/*
2406 * Helper function for set_page_dirty family.
c4843a75
GT
2407 *
2408 * Caller must hold mem_cgroup_begin_page_stat().
2409 *
e3a7cca1
ES
2410 * NOTE: This relies on being atomic wrt interrupts.
2411 */
c4843a75
GT
2412void account_page_dirtied(struct page *page, struct address_space *mapping,
2413 struct mem_cgroup *memcg)
e3a7cca1 2414{
52ebea74
TH
2415 struct inode *inode = mapping->host;
2416
9fb0a7da
TH
2417 trace_writeback_dirty_page(page, mapping);
2418
e3a7cca1 2419 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2420 struct bdi_writeback *wb;
de1414a6 2421
52ebea74
TH
2422 inode_attach_wb(inode, page);
2423 wb = inode_to_wb(inode);
de1414a6 2424
c4843a75 2425 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2426 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2427 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2428 __inc_wb_stat(wb, WB_RECLAIMABLE);
2429 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2430 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2431 current->nr_dirtied++;
2432 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2433 }
2434}
679ceace 2435EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2436
b9ea2515
KK
2437/*
2438 * Helper function for deaccounting dirty page without writeback.
2439 *
c4843a75 2440 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2441 */
c4843a75 2442void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 2443 struct mem_cgroup *memcg, struct bdi_writeback *wb)
b9ea2515
KK
2444{
2445 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2446 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2447 dec_zone_page_state(page, NR_FILE_DIRTY);
682aa8e1 2448 dec_wb_stat(wb, WB_RECLAIMABLE);
b9ea2515
KK
2449 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2450 }
2451}
b9ea2515 2452
1da177e4
LT
2453/*
2454 * For address_spaces which do not use buffers. Just tag the page as dirty in
2455 * its radix tree.
2456 *
2457 * This is also used when a single buffer is being dirtied: we want to set the
2458 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2459 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2460 *
2d6d7f98
JW
2461 * The caller must ensure this doesn't race with truncation. Most will simply
2462 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2463 * the pte lock held, which also locks out truncation.
1da177e4
LT
2464 */
2465int __set_page_dirty_nobuffers(struct page *page)
2466{
c4843a75
GT
2467 struct mem_cgroup *memcg;
2468
2469 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2470 if (!TestSetPageDirty(page)) {
2471 struct address_space *mapping = page_mapping(page);
a85d9df1 2472 unsigned long flags;
1da177e4 2473
c4843a75
GT
2474 if (!mapping) {
2475 mem_cgroup_end_page_stat(memcg);
8c08540f 2476 return 1;
c4843a75 2477 }
8c08540f 2478
a85d9df1 2479 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2480 BUG_ON(page_mapping(page) != mapping);
2481 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2482 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2483 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2484 PAGECACHE_TAG_DIRTY);
a85d9df1 2485 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2486 mem_cgroup_end_page_stat(memcg);
2487
8c08540f
AM
2488 if (mapping->host) {
2489 /* !PageAnon && !swapper_space */
2490 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2491 }
4741c9fd 2492 return 1;
1da177e4 2493 }
c4843a75 2494 mem_cgroup_end_page_stat(memcg);
4741c9fd 2495 return 0;
1da177e4
LT
2496}
2497EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2498
2f800fbd
WF
2499/*
2500 * Call this whenever redirtying a page, to de-account the dirty counters
2501 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2502 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2503 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2504 * control.
2505 */
2506void account_page_redirty(struct page *page)
2507{
2508 struct address_space *mapping = page->mapping;
91018134 2509
2f800fbd 2510 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2511 struct inode *inode = mapping->host;
2512 struct bdi_writeback *wb;
2513 bool locked;
91018134 2514
682aa8e1 2515 wb = unlocked_inode_to_wb_begin(inode, &locked);
2f800fbd
WF
2516 current->nr_dirtied--;
2517 dec_zone_page_state(page, NR_DIRTIED);
91018134 2518 dec_wb_stat(wb, WB_DIRTIED);
682aa8e1 2519 unlocked_inode_to_wb_end(inode, locked);
2f800fbd
WF
2520 }
2521}
2522EXPORT_SYMBOL(account_page_redirty);
2523
1da177e4
LT
2524/*
2525 * When a writepage implementation decides that it doesn't want to write this
2526 * page for some reason, it should redirty the locked page via
2527 * redirty_page_for_writepage() and it should then unlock the page and return 0
2528 */
2529int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2530{
8d38633c
KK
2531 int ret;
2532
1da177e4 2533 wbc->pages_skipped++;
8d38633c 2534 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2535 account_page_redirty(page);
8d38633c 2536 return ret;
1da177e4
LT
2537}
2538EXPORT_SYMBOL(redirty_page_for_writepage);
2539
2540/*
6746aff7
WF
2541 * Dirty a page.
2542 *
2543 * For pages with a mapping this should be done under the page lock
2544 * for the benefit of asynchronous memory errors who prefer a consistent
2545 * dirty state. This rule can be broken in some special cases,
2546 * but should be better not to.
2547 *
1da177e4
LT
2548 * If the mapping doesn't provide a set_page_dirty a_op, then
2549 * just fall through and assume that it wants buffer_heads.
2550 */
1cf6e7d8 2551int set_page_dirty(struct page *page)
1da177e4
LT
2552{
2553 struct address_space *mapping = page_mapping(page);
2554
2555 if (likely(mapping)) {
2556 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2557 /*
2558 * readahead/lru_deactivate_page could remain
2559 * PG_readahead/PG_reclaim due to race with end_page_writeback
2560 * About readahead, if the page is written, the flags would be
2561 * reset. So no problem.
2562 * About lru_deactivate_page, if the page is redirty, the flag
2563 * will be reset. So no problem. but if the page is used by readahead
2564 * it will confuse readahead and make it restart the size rampup
2565 * process. But it's a trivial problem.
2566 */
a4bb3ecd
NH
2567 if (PageReclaim(page))
2568 ClearPageReclaim(page);
9361401e
DH
2569#ifdef CONFIG_BLOCK
2570 if (!spd)
2571 spd = __set_page_dirty_buffers;
2572#endif
2573 return (*spd)(page);
1da177e4 2574 }
4741c9fd
AM
2575 if (!PageDirty(page)) {
2576 if (!TestSetPageDirty(page))
2577 return 1;
2578 }
1da177e4
LT
2579 return 0;
2580}
2581EXPORT_SYMBOL(set_page_dirty);
2582
2583/*
2584 * set_page_dirty() is racy if the caller has no reference against
2585 * page->mapping->host, and if the page is unlocked. This is because another
2586 * CPU could truncate the page off the mapping and then free the mapping.
2587 *
2588 * Usually, the page _is_ locked, or the caller is a user-space process which
2589 * holds a reference on the inode by having an open file.
2590 *
2591 * In other cases, the page should be locked before running set_page_dirty().
2592 */
2593int set_page_dirty_lock(struct page *page)
2594{
2595 int ret;
2596
7eaceacc 2597 lock_page(page);
1da177e4
LT
2598 ret = set_page_dirty(page);
2599 unlock_page(page);
2600 return ret;
2601}
2602EXPORT_SYMBOL(set_page_dirty_lock);
2603
11f81bec
TH
2604/*
2605 * This cancels just the dirty bit on the kernel page itself, it does NOT
2606 * actually remove dirty bits on any mmap's that may be around. It also
2607 * leaves the page tagged dirty, so any sync activity will still find it on
2608 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2609 * look at the dirty bits in the VM.
2610 *
2611 * Doing this should *normally* only ever be done when a page is truncated,
2612 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2613 * this when it notices that somebody has cleaned out all the buffers on a
2614 * page without actually doing it through the VM. Can you say "ext3 is
2615 * horribly ugly"? Thought you could.
2616 */
2617void cancel_dirty_page(struct page *page)
2618{
c4843a75
GT
2619 struct address_space *mapping = page_mapping(page);
2620
2621 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2622 struct inode *inode = mapping->host;
2623 struct bdi_writeback *wb;
c4843a75 2624 struct mem_cgroup *memcg;
682aa8e1 2625 bool locked;
c4843a75
GT
2626
2627 memcg = mem_cgroup_begin_page_stat(page);
682aa8e1 2628 wb = unlocked_inode_to_wb_begin(inode, &locked);
c4843a75
GT
2629
2630 if (TestClearPageDirty(page))
682aa8e1 2631 account_page_cleaned(page, mapping, memcg, wb);
c4843a75 2632
682aa8e1 2633 unlocked_inode_to_wb_end(inode, locked);
c4843a75
GT
2634 mem_cgroup_end_page_stat(memcg);
2635 } else {
2636 ClearPageDirty(page);
2637 }
11f81bec
TH
2638}
2639EXPORT_SYMBOL(cancel_dirty_page);
2640
1da177e4
LT
2641/*
2642 * Clear a page's dirty flag, while caring for dirty memory accounting.
2643 * Returns true if the page was previously dirty.
2644 *
2645 * This is for preparing to put the page under writeout. We leave the page
2646 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2647 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2648 * implementation will run either set_page_writeback() or set_page_dirty(),
2649 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2650 * back into sync.
2651 *
2652 * This incoherency between the page's dirty flag and radix-tree tag is
2653 * unfortunate, but it only exists while the page is locked.
2654 */
2655int clear_page_dirty_for_io(struct page *page)
2656{
2657 struct address_space *mapping = page_mapping(page);
c4843a75 2658 int ret = 0;
1da177e4 2659
79352894
NP
2660 BUG_ON(!PageLocked(page));
2661
7658cc28 2662 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2663 struct inode *inode = mapping->host;
2664 struct bdi_writeback *wb;
2665 struct mem_cgroup *memcg;
2666 bool locked;
2667
7658cc28
LT
2668 /*
2669 * Yes, Virginia, this is indeed insane.
2670 *
2671 * We use this sequence to make sure that
2672 * (a) we account for dirty stats properly
2673 * (b) we tell the low-level filesystem to
2674 * mark the whole page dirty if it was
2675 * dirty in a pagetable. Only to then
2676 * (c) clean the page again and return 1 to
2677 * cause the writeback.
2678 *
2679 * This way we avoid all nasty races with the
2680 * dirty bit in multiple places and clearing
2681 * them concurrently from different threads.
2682 *
2683 * Note! Normally the "set_page_dirty(page)"
2684 * has no effect on the actual dirty bit - since
2685 * that will already usually be set. But we
2686 * need the side effects, and it can help us
2687 * avoid races.
2688 *
2689 * We basically use the page "master dirty bit"
2690 * as a serialization point for all the different
2691 * threads doing their things.
7658cc28
LT
2692 */
2693 if (page_mkclean(page))
2694 set_page_dirty(page);
79352894
NP
2695 /*
2696 * We carefully synchronise fault handlers against
2697 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2698 * at this point. We do this by having them hold the
2699 * page lock while dirtying the page, and pages are
2700 * always locked coming in here, so we get the desired
2701 * exclusion.
79352894 2702 */
c4843a75 2703 memcg = mem_cgroup_begin_page_stat(page);
682aa8e1 2704 wb = unlocked_inode_to_wb_begin(inode, &locked);
7658cc28 2705 if (TestClearPageDirty(page)) {
c4843a75 2706 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2707 dec_zone_page_state(page, NR_FILE_DIRTY);
682aa8e1 2708 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2709 ret = 1;
1da177e4 2710 }
682aa8e1 2711 unlocked_inode_to_wb_end(inode, locked);
c4843a75
GT
2712 mem_cgroup_end_page_stat(memcg);
2713 return ret;
1da177e4 2714 }
7658cc28 2715 return TestClearPageDirty(page);
1da177e4 2716}
58bb01a9 2717EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2718
2719int test_clear_page_writeback(struct page *page)
2720{
2721 struct address_space *mapping = page_mapping(page);
d7365e78 2722 struct mem_cgroup *memcg;
d7365e78 2723 int ret;
1da177e4 2724
6de22619 2725 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2726 if (mapping) {
91018134
TH
2727 struct inode *inode = mapping->host;
2728 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2729 unsigned long flags;
2730
19fd6231 2731 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2732 ret = TestClearPageWriteback(page);
69cb51d1 2733 if (ret) {
1da177e4
LT
2734 radix_tree_tag_clear(&mapping->page_tree,
2735 page_index(page),
2736 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2737 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2738 struct bdi_writeback *wb = inode_to_wb(inode);
2739
2740 __dec_wb_stat(wb, WB_WRITEBACK);
2741 __wb_writeout_inc(wb);
04fbfdc1 2742 }
69cb51d1 2743 }
19fd6231 2744 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2745 } else {
2746 ret = TestClearPageWriteback(page);
2747 }
99b12e3d 2748 if (ret) {
d7365e78 2749 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2750 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2751 inc_zone_page_state(page, NR_WRITTEN);
2752 }
6de22619 2753 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2754 return ret;
2755}
2756
1c8349a1 2757int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2758{
2759 struct address_space *mapping = page_mapping(page);
d7365e78 2760 struct mem_cgroup *memcg;
d7365e78 2761 int ret;
1da177e4 2762
6de22619 2763 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2764 if (mapping) {
91018134
TH
2765 struct inode *inode = mapping->host;
2766 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2767 unsigned long flags;
2768
19fd6231 2769 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2770 ret = TestSetPageWriteback(page);
69cb51d1 2771 if (!ret) {
1da177e4
LT
2772 radix_tree_tag_set(&mapping->page_tree,
2773 page_index(page),
2774 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2775 if (bdi_cap_account_writeback(bdi))
91018134 2776 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2777 }
1da177e4
LT
2778 if (!PageDirty(page))
2779 radix_tree_tag_clear(&mapping->page_tree,
2780 page_index(page),
2781 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2782 if (!keep_write)
2783 radix_tree_tag_clear(&mapping->page_tree,
2784 page_index(page),
2785 PAGECACHE_TAG_TOWRITE);
19fd6231 2786 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2787 } else {
2788 ret = TestSetPageWriteback(page);
2789 }
3a3c02ec 2790 if (!ret) {
d7365e78 2791 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2792 inc_zone_page_state(page, NR_WRITEBACK);
2793 }
6de22619 2794 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2795 return ret;
2796
2797}
1c8349a1 2798EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2799
2800/*
00128188 2801 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2802 * passed tag.
2803 */
2804int mapping_tagged(struct address_space *mapping, int tag)
2805{
72c47832 2806 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2807}
2808EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2809
2810/**
2811 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2812 * @page: The page to wait on.
2813 *
2814 * This function determines if the given page is related to a backing device
2815 * that requires page contents to be held stable during writeback. If so, then
2816 * it will wait for any pending writeback to complete.
2817 */
2818void wait_for_stable_page(struct page *page)
2819{
de1414a6
CH
2820 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2821 wait_on_page_writeback(page);
1d1d1a76
DW
2822}
2823EXPORT_SYMBOL_GPL(wait_for_stable_page);