]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/page-writeback.c
vmscan: add task name to warn_scan_unevictable() messages
[mirror_ubuntu-jammy-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
e98be2d5
WF
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
6c14ae1e
WF
49#define RATELIMIT_CALC_SHIFT 10
50
1da177e4
LT
51/*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55static long ratelimit_pages = 32;
56
1da177e4
LT
57/* The following parameters are exported via /proc/sys/vm */
58
59/*
5b0830cb 60 * Start background writeback (via writeback threads) at this percentage
1da177e4 61 */
1b5e62b4 62int dirty_background_ratio = 10;
1da177e4 63
2da02997
DR
64/*
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
67 */
68unsigned long dirty_background_bytes;
69
195cf453
BG
70/*
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
73 */
74int vm_highmem_is_dirtyable;
75
1da177e4
LT
76/*
77 * The generator of dirty data starts writeback at this percentage
78 */
1b5e62b4 79int vm_dirty_ratio = 20;
1da177e4 80
2da02997
DR
81/*
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
84 */
85unsigned long vm_dirty_bytes;
86
1da177e4 87/*
704503d8 88 * The interval between `kupdate'-style writebacks
1da177e4 89 */
22ef37ee 90unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
91
92/*
704503d8 93 * The longest time for which data is allowed to remain dirty
1da177e4 94 */
22ef37ee 95unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
96
97/*
98 * Flag that makes the machine dump writes/reads and block dirtyings.
99 */
100int block_dump;
101
102/*
ed5b43f1
BS
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
105 */
106int laptop_mode;
107
108EXPORT_SYMBOL(laptop_mode);
109
110/* End of sysctl-exported parameters */
111
c42843f2 112unsigned long global_dirty_limit;
1da177e4 113
04fbfdc1
PZ
114/*
115 * Scale the writeback cache size proportional to the relative writeout speeds.
116 *
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
121 *
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
124 *
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
128 *
129 */
130static struct prop_descriptor vm_completions;
131
1edf2234
JW
132/*
133 * Work out the current dirty-memory clamping and background writeout
134 * thresholds.
135 *
136 * The main aim here is to lower them aggressively if there is a lot of mapped
137 * memory around. To avoid stressing page reclaim with lots of unreclaimable
138 * pages. It is better to clamp down on writers than to start swapping, and
139 * performing lots of scanning.
140 *
141 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
142 *
143 * We don't permit the clamping level to fall below 5% - that is getting rather
144 * excessive.
145 *
146 * We make sure that the background writeout level is below the adjusted
147 * clamping level.
148 */
149static unsigned long highmem_dirtyable_memory(unsigned long total)
150{
151#ifdef CONFIG_HIGHMEM
152 int node;
153 unsigned long x = 0;
154
155 for_each_node_state(node, N_HIGH_MEMORY) {
156 struct zone *z =
157 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
158
159 x += zone_page_state(z, NR_FREE_PAGES) +
160 zone_reclaimable_pages(z);
161 }
162 /*
163 * Make sure that the number of highmem pages is never larger
164 * than the number of the total dirtyable memory. This can only
165 * occur in very strange VM situations but we want to make sure
166 * that this does not occur.
167 */
168 return min(x, total);
169#else
170 return 0;
171#endif
172}
173
174/**
175 * determine_dirtyable_memory - amount of memory that may be used
176 *
177 * Returns the numebr of pages that can currently be freed and used
178 * by the kernel for direct mappings.
179 */
180static unsigned long determine_dirtyable_memory(void)
181{
182 unsigned long x;
183
184 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
185
186 if (!vm_highmem_is_dirtyable)
187 x -= highmem_dirtyable_memory(x);
188
189 return x + 1; /* Ensure that we never return 0 */
190}
191
04fbfdc1
PZ
192/*
193 * couple the period to the dirty_ratio:
194 *
195 * period/2 ~ roundup_pow_of_two(dirty limit)
196 */
197static int calc_period_shift(void)
198{
199 unsigned long dirty_total;
200
2da02997
DR
201 if (vm_dirty_bytes)
202 dirty_total = vm_dirty_bytes / PAGE_SIZE;
203 else
204 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
205 100;
04fbfdc1
PZ
206 return 2 + ilog2(dirty_total - 1);
207}
208
209/*
2da02997 210 * update the period when the dirty threshold changes.
04fbfdc1 211 */
2da02997
DR
212static void update_completion_period(void)
213{
214 int shift = calc_period_shift();
215 prop_change_shift(&vm_completions, shift);
9d823e8f
WF
216
217 writeback_set_ratelimit();
2da02997
DR
218}
219
220int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 221 void __user *buffer, size_t *lenp,
2da02997
DR
222 loff_t *ppos)
223{
224 int ret;
225
8d65af78 226 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
227 if (ret == 0 && write)
228 dirty_background_bytes = 0;
229 return ret;
230}
231
232int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 233 void __user *buffer, size_t *lenp,
2da02997
DR
234 loff_t *ppos)
235{
236 int ret;
237
8d65af78 238 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
239 if (ret == 0 && write)
240 dirty_background_ratio = 0;
241 return ret;
242}
243
04fbfdc1 244int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 245 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
246 loff_t *ppos)
247{
248 int old_ratio = vm_dirty_ratio;
2da02997
DR
249 int ret;
250
8d65af78 251 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 252 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
253 update_completion_period();
254 vm_dirty_bytes = 0;
255 }
256 return ret;
257}
258
2da02997 259int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 260 void __user *buffer, size_t *lenp,
2da02997
DR
261 loff_t *ppos)
262{
fc3501d4 263 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
264 int ret;
265
8d65af78 266 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
267 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
268 update_completion_period();
269 vm_dirty_ratio = 0;
04fbfdc1
PZ
270 }
271 return ret;
272}
273
274/*
275 * Increment the BDI's writeout completion count and the global writeout
276 * completion count. Called from test_clear_page_writeback().
277 */
278static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
279{
f7d2b1ec 280 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
281 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
282 bdi->max_prop_frac);
04fbfdc1
PZ
283}
284
dd5656e5
MS
285void bdi_writeout_inc(struct backing_dev_info *bdi)
286{
287 unsigned long flags;
288
289 local_irq_save(flags);
290 __bdi_writeout_inc(bdi);
291 local_irq_restore(flags);
292}
293EXPORT_SYMBOL_GPL(bdi_writeout_inc);
294
04fbfdc1
PZ
295/*
296 * Obtain an accurate fraction of the BDI's portion.
297 */
298static void bdi_writeout_fraction(struct backing_dev_info *bdi,
299 long *numerator, long *denominator)
300{
3efaf0fa 301 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 302 numerator, denominator);
04fbfdc1
PZ
303}
304
189d3c4a 305/*
d08c429b
JW
306 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
307 * registered backing devices, which, for obvious reasons, can not
308 * exceed 100%.
189d3c4a 309 */
189d3c4a
PZ
310static unsigned int bdi_min_ratio;
311
312int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
313{
314 int ret = 0;
189d3c4a 315
cfc4ba53 316 spin_lock_bh(&bdi_lock);
a42dde04 317 if (min_ratio > bdi->max_ratio) {
189d3c4a 318 ret = -EINVAL;
a42dde04
PZ
319 } else {
320 min_ratio -= bdi->min_ratio;
321 if (bdi_min_ratio + min_ratio < 100) {
322 bdi_min_ratio += min_ratio;
323 bdi->min_ratio += min_ratio;
324 } else {
325 ret = -EINVAL;
326 }
327 }
cfc4ba53 328 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
329
330 return ret;
331}
332
333int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
334{
a42dde04
PZ
335 int ret = 0;
336
337 if (max_ratio > 100)
338 return -EINVAL;
339
cfc4ba53 340 spin_lock_bh(&bdi_lock);
a42dde04
PZ
341 if (bdi->min_ratio > max_ratio) {
342 ret = -EINVAL;
343 } else {
344 bdi->max_ratio = max_ratio;
345 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
346 }
cfc4ba53 347 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
348
349 return ret;
350}
a42dde04 351EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 352
6c14ae1e
WF
353static unsigned long dirty_freerun_ceiling(unsigned long thresh,
354 unsigned long bg_thresh)
355{
356 return (thresh + bg_thresh) / 2;
357}
358
ffd1f609
WF
359static unsigned long hard_dirty_limit(unsigned long thresh)
360{
361 return max(thresh, global_dirty_limit);
362}
363
03ab450f 364/*
1babe183
WF
365 * global_dirty_limits - background-writeback and dirty-throttling thresholds
366 *
367 * Calculate the dirty thresholds based on sysctl parameters
368 * - vm.dirty_background_ratio or vm.dirty_background_bytes
369 * - vm.dirty_ratio or vm.dirty_bytes
370 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 371 * real-time tasks.
1babe183 372 */
16c4042f 373void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 374{
364aeb28
DR
375 unsigned long background;
376 unsigned long dirty;
240c879f 377 unsigned long uninitialized_var(available_memory);
1da177e4
LT
378 struct task_struct *tsk;
379
240c879f
MK
380 if (!vm_dirty_bytes || !dirty_background_bytes)
381 available_memory = determine_dirtyable_memory();
382
2da02997
DR
383 if (vm_dirty_bytes)
384 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
385 else
386 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 387
2da02997
DR
388 if (dirty_background_bytes)
389 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
390 else
391 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 392
2da02997
DR
393 if (background >= dirty)
394 background = dirty / 2;
1da177e4
LT
395 tsk = current;
396 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
397 background += background / 4;
398 dirty += dirty / 4;
399 }
400 *pbackground = background;
401 *pdirty = dirty;
e1cbe236 402 trace_global_dirty_state(background, dirty);
16c4042f 403}
04fbfdc1 404
6f718656 405/**
1babe183 406 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
407 * @bdi: the backing_dev_info to query
408 * @dirty: global dirty limit in pages
1babe183 409 *
6f718656
WF
410 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
411 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
412 *
413 * Note that balance_dirty_pages() will only seriously take it as a hard limit
414 * when sleeping max_pause per page is not enough to keep the dirty pages under
415 * control. For example, when the device is completely stalled due to some error
416 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
417 * In the other normal situations, it acts more gently by throttling the tasks
418 * more (rather than completely block them) when the bdi dirty pages go high.
1babe183 419 *
6f718656 420 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
421 * - starving fast devices
422 * - piling up dirty pages (that will take long time to sync) on slow devices
423 *
424 * The bdi's share of dirty limit will be adapting to its throughput and
425 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
426 */
427unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
428{
429 u64 bdi_dirty;
430 long numerator, denominator;
04fbfdc1 431
16c4042f
WF
432 /*
433 * Calculate this BDI's share of the dirty ratio.
434 */
435 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 436
16c4042f
WF
437 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
438 bdi_dirty *= numerator;
439 do_div(bdi_dirty, denominator);
04fbfdc1 440
16c4042f
WF
441 bdi_dirty += (dirty * bdi->min_ratio) / 100;
442 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
443 bdi_dirty = dirty * bdi->max_ratio / 100;
444
445 return bdi_dirty;
1da177e4
LT
446}
447
6c14ae1e
WF
448/*
449 * Dirty position control.
450 *
451 * (o) global/bdi setpoints
452 *
453 * We want the dirty pages be balanced around the global/bdi setpoints.
454 * When the number of dirty pages is higher/lower than the setpoint, the
455 * dirty position control ratio (and hence task dirty ratelimit) will be
456 * decreased/increased to bring the dirty pages back to the setpoint.
457 *
458 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
459 *
460 * if (dirty < setpoint) scale up pos_ratio
461 * if (dirty > setpoint) scale down pos_ratio
462 *
463 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
464 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
465 *
466 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
467 *
468 * (o) global control line
469 *
470 * ^ pos_ratio
471 * |
472 * | |<===== global dirty control scope ======>|
473 * 2.0 .............*
474 * | .*
475 * | . *
476 * | . *
477 * | . *
478 * | . *
479 * | . *
480 * 1.0 ................................*
481 * | . . *
482 * | . . *
483 * | . . *
484 * | . . *
485 * | . . *
486 * 0 +------------.------------------.----------------------*------------->
487 * freerun^ setpoint^ limit^ dirty pages
488 *
489 * (o) bdi control line
490 *
491 * ^ pos_ratio
492 * |
493 * | *
494 * | *
495 * | *
496 * | *
497 * | * |<=========== span ============>|
498 * 1.0 .......................*
499 * | . *
500 * | . *
501 * | . *
502 * | . *
503 * | . *
504 * | . *
505 * | . *
506 * | . *
507 * | . *
508 * | . *
509 * | . *
510 * 1/4 ...............................................* * * * * * * * * * * *
511 * | . .
512 * | . .
513 * | . .
514 * 0 +----------------------.-------------------------------.------------->
515 * bdi_setpoint^ x_intercept^
516 *
517 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
518 * be smoothly throttled down to normal if it starts high in situations like
519 * - start writing to a slow SD card and a fast disk at the same time. The SD
520 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
521 * - the bdi dirty thresh drops quickly due to change of JBOD workload
522 */
523static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
524 unsigned long thresh,
525 unsigned long bg_thresh,
526 unsigned long dirty,
527 unsigned long bdi_thresh,
528 unsigned long bdi_dirty)
529{
530 unsigned long write_bw = bdi->avg_write_bandwidth;
531 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
532 unsigned long limit = hard_dirty_limit(thresh);
533 unsigned long x_intercept;
534 unsigned long setpoint; /* dirty pages' target balance point */
535 unsigned long bdi_setpoint;
536 unsigned long span;
537 long long pos_ratio; /* for scaling up/down the rate limit */
538 long x;
539
540 if (unlikely(dirty >= limit))
541 return 0;
542
543 /*
544 * global setpoint
545 *
546 * setpoint - dirty 3
547 * f(dirty) := 1.0 + (----------------)
548 * limit - setpoint
549 *
550 * it's a 3rd order polynomial that subjects to
551 *
552 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
553 * (2) f(setpoint) = 1.0 => the balance point
554 * (3) f(limit) = 0 => the hard limit
555 * (4) df/dx <= 0 => negative feedback control
556 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
557 * => fast response on large errors; small oscillation near setpoint
558 */
559 setpoint = (freerun + limit) / 2;
560 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
561 limit - setpoint + 1);
562 pos_ratio = x;
563 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
564 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
565 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
566
567 /*
568 * We have computed basic pos_ratio above based on global situation. If
569 * the bdi is over/under its share of dirty pages, we want to scale
570 * pos_ratio further down/up. That is done by the following mechanism.
571 */
572
573 /*
574 * bdi setpoint
575 *
576 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
577 *
578 * x_intercept - bdi_dirty
579 * := --------------------------
580 * x_intercept - bdi_setpoint
581 *
582 * The main bdi control line is a linear function that subjects to
583 *
584 * (1) f(bdi_setpoint) = 1.0
585 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
586 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
587 *
588 * For single bdi case, the dirty pages are observed to fluctuate
589 * regularly within range
590 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
591 * for various filesystems, where (2) can yield in a reasonable 12.5%
592 * fluctuation range for pos_ratio.
593 *
594 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
595 * own size, so move the slope over accordingly and choose a slope that
596 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
597 */
598 if (unlikely(bdi_thresh > thresh))
599 bdi_thresh = thresh;
aed21ad2
WF
600 /*
601 * It's very possible that bdi_thresh is close to 0 not because the
602 * device is slow, but that it has remained inactive for long time.
603 * Honour such devices a reasonable good (hopefully IO efficient)
604 * threshold, so that the occasional writes won't be blocked and active
605 * writes can rampup the threshold quickly.
606 */
8927f66c 607 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
6c14ae1e
WF
608 /*
609 * scale global setpoint to bdi's:
610 * bdi_setpoint = setpoint * bdi_thresh / thresh
611 */
612 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
613 bdi_setpoint = setpoint * (u64)x >> 16;
614 /*
615 * Use span=(8*write_bw) in single bdi case as indicated by
616 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
617 *
618 * bdi_thresh thresh - bdi_thresh
619 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
620 * thresh thresh
621 */
622 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
623 x_intercept = bdi_setpoint + span;
624
625 if (bdi_dirty < x_intercept - span / 4) {
50657fc4
WF
626 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
627 x_intercept - bdi_setpoint + 1);
6c14ae1e
WF
628 } else
629 pos_ratio /= 4;
630
8927f66c
WF
631 /*
632 * bdi reserve area, safeguard against dirty pool underrun and disk idle
633 * It may push the desired control point of global dirty pages higher
634 * than setpoint.
635 */
636 x_intercept = bdi_thresh / 2;
637 if (bdi_dirty < x_intercept) {
50657fc4
WF
638 if (bdi_dirty > x_intercept / 8)
639 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
640 else
8927f66c
WF
641 pos_ratio *= 8;
642 }
643
6c14ae1e
WF
644 return pos_ratio;
645}
646
e98be2d5
WF
647static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
648 unsigned long elapsed,
649 unsigned long written)
650{
651 const unsigned long period = roundup_pow_of_two(3 * HZ);
652 unsigned long avg = bdi->avg_write_bandwidth;
653 unsigned long old = bdi->write_bandwidth;
654 u64 bw;
655
656 /*
657 * bw = written * HZ / elapsed
658 *
659 * bw * elapsed + write_bandwidth * (period - elapsed)
660 * write_bandwidth = ---------------------------------------------------
661 * period
662 */
663 bw = written - bdi->written_stamp;
664 bw *= HZ;
665 if (unlikely(elapsed > period)) {
666 do_div(bw, elapsed);
667 avg = bw;
668 goto out;
669 }
670 bw += (u64)bdi->write_bandwidth * (period - elapsed);
671 bw >>= ilog2(period);
672
673 /*
674 * one more level of smoothing, for filtering out sudden spikes
675 */
676 if (avg > old && old >= (unsigned long)bw)
677 avg -= (avg - old) >> 3;
678
679 if (avg < old && old <= (unsigned long)bw)
680 avg += (old - avg) >> 3;
681
682out:
683 bdi->write_bandwidth = bw;
684 bdi->avg_write_bandwidth = avg;
685}
686
c42843f2
WF
687/*
688 * The global dirtyable memory and dirty threshold could be suddenly knocked
689 * down by a large amount (eg. on the startup of KVM in a swapless system).
690 * This may throw the system into deep dirty exceeded state and throttle
691 * heavy/light dirtiers alike. To retain good responsiveness, maintain
692 * global_dirty_limit for tracking slowly down to the knocked down dirty
693 * threshold.
694 */
695static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
696{
697 unsigned long limit = global_dirty_limit;
698
699 /*
700 * Follow up in one step.
701 */
702 if (limit < thresh) {
703 limit = thresh;
704 goto update;
705 }
706
707 /*
708 * Follow down slowly. Use the higher one as the target, because thresh
709 * may drop below dirty. This is exactly the reason to introduce
710 * global_dirty_limit which is guaranteed to lie above the dirty pages.
711 */
712 thresh = max(thresh, dirty);
713 if (limit > thresh) {
714 limit -= (limit - thresh) >> 5;
715 goto update;
716 }
717 return;
718update:
719 global_dirty_limit = limit;
720}
721
722static void global_update_bandwidth(unsigned long thresh,
723 unsigned long dirty,
724 unsigned long now)
725{
726 static DEFINE_SPINLOCK(dirty_lock);
727 static unsigned long update_time;
728
729 /*
730 * check locklessly first to optimize away locking for the most time
731 */
732 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
733 return;
734
735 spin_lock(&dirty_lock);
736 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
737 update_dirty_limit(thresh, dirty);
738 update_time = now;
739 }
740 spin_unlock(&dirty_lock);
741}
742
be3ffa27
WF
743/*
744 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
745 *
746 * Normal bdi tasks will be curbed at or below it in long term.
747 * Obviously it should be around (write_bw / N) when there are N dd tasks.
748 */
749static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
750 unsigned long thresh,
751 unsigned long bg_thresh,
752 unsigned long dirty,
753 unsigned long bdi_thresh,
754 unsigned long bdi_dirty,
755 unsigned long dirtied,
756 unsigned long elapsed)
757{
7381131c
WF
758 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
759 unsigned long limit = hard_dirty_limit(thresh);
760 unsigned long setpoint = (freerun + limit) / 2;
be3ffa27
WF
761 unsigned long write_bw = bdi->avg_write_bandwidth;
762 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
763 unsigned long dirty_rate;
764 unsigned long task_ratelimit;
765 unsigned long balanced_dirty_ratelimit;
766 unsigned long pos_ratio;
7381131c
WF
767 unsigned long step;
768 unsigned long x;
be3ffa27
WF
769
770 /*
771 * The dirty rate will match the writeout rate in long term, except
772 * when dirty pages are truncated by userspace or re-dirtied by FS.
773 */
774 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
775
776 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
777 bdi_thresh, bdi_dirty);
778 /*
779 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
780 */
781 task_ratelimit = (u64)dirty_ratelimit *
782 pos_ratio >> RATELIMIT_CALC_SHIFT;
783 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
784
785 /*
786 * A linear estimation of the "balanced" throttle rate. The theory is,
787 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
788 * dirty_rate will be measured to be (N * task_ratelimit). So the below
789 * formula will yield the balanced rate limit (write_bw / N).
790 *
791 * Note that the expanded form is not a pure rate feedback:
792 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
793 * but also takes pos_ratio into account:
794 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
795 *
796 * (1) is not realistic because pos_ratio also takes part in balancing
797 * the dirty rate. Consider the state
798 * pos_ratio = 0.5 (3)
799 * rate = 2 * (write_bw / N) (4)
800 * If (1) is used, it will stuck in that state! Because each dd will
801 * be throttled at
802 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
803 * yielding
804 * dirty_rate = N * task_ratelimit = write_bw (6)
805 * put (6) into (1) we get
806 * rate_(i+1) = rate_(i) (7)
807 *
808 * So we end up using (2) to always keep
809 * rate_(i+1) ~= (write_bw / N) (8)
810 * regardless of the value of pos_ratio. As long as (8) is satisfied,
811 * pos_ratio is able to drive itself to 1.0, which is not only where
812 * the dirty count meet the setpoint, but also where the slope of
813 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
814 */
815 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
816 dirty_rate | 1);
817
7381131c
WF
818 /*
819 * We could safely do this and return immediately:
820 *
821 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
822 *
823 * However to get a more stable dirty_ratelimit, the below elaborated
824 * code makes use of task_ratelimit to filter out sigular points and
825 * limit the step size.
826 *
827 * The below code essentially only uses the relative value of
828 *
829 * task_ratelimit - dirty_ratelimit
830 * = (pos_ratio - 1) * dirty_ratelimit
831 *
832 * which reflects the direction and size of dirty position error.
833 */
834
835 /*
836 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
837 * task_ratelimit is on the same side of dirty_ratelimit, too.
838 * For example, when
839 * - dirty_ratelimit > balanced_dirty_ratelimit
840 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
841 * lowering dirty_ratelimit will help meet both the position and rate
842 * control targets. Otherwise, don't update dirty_ratelimit if it will
843 * only help meet the rate target. After all, what the users ultimately
844 * feel and care are stable dirty rate and small position error.
845 *
846 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
847 * and filter out the sigular points of balanced_dirty_ratelimit. Which
848 * keeps jumping around randomly and can even leap far away at times
849 * due to the small 200ms estimation period of dirty_rate (we want to
850 * keep that period small to reduce time lags).
851 */
852 step = 0;
853 if (dirty < setpoint) {
854 x = min(bdi->balanced_dirty_ratelimit,
855 min(balanced_dirty_ratelimit, task_ratelimit));
856 if (dirty_ratelimit < x)
857 step = x - dirty_ratelimit;
858 } else {
859 x = max(bdi->balanced_dirty_ratelimit,
860 max(balanced_dirty_ratelimit, task_ratelimit));
861 if (dirty_ratelimit > x)
862 step = dirty_ratelimit - x;
863 }
864
865 /*
866 * Don't pursue 100% rate matching. It's impossible since the balanced
867 * rate itself is constantly fluctuating. So decrease the track speed
868 * when it gets close to the target. Helps eliminate pointless tremors.
869 */
870 step >>= dirty_ratelimit / (2 * step + 1);
871 /*
872 * Limit the tracking speed to avoid overshooting.
873 */
874 step = (step + 7) / 8;
875
876 if (dirty_ratelimit < balanced_dirty_ratelimit)
877 dirty_ratelimit += step;
878 else
879 dirty_ratelimit -= step;
880
881 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
882 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d
WF
883
884 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
885}
886
e98be2d5 887void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 888 unsigned long thresh,
af6a3113 889 unsigned long bg_thresh,
c42843f2
WF
890 unsigned long dirty,
891 unsigned long bdi_thresh,
892 unsigned long bdi_dirty,
e98be2d5
WF
893 unsigned long start_time)
894{
895 unsigned long now = jiffies;
896 unsigned long elapsed = now - bdi->bw_time_stamp;
be3ffa27 897 unsigned long dirtied;
e98be2d5
WF
898 unsigned long written;
899
900 /*
901 * rate-limit, only update once every 200ms.
902 */
903 if (elapsed < BANDWIDTH_INTERVAL)
904 return;
905
be3ffa27 906 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
e98be2d5
WF
907 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
908
909 /*
910 * Skip quiet periods when disk bandwidth is under-utilized.
911 * (at least 1s idle time between two flusher runs)
912 */
913 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
914 goto snapshot;
915
be3ffa27 916 if (thresh) {
c42843f2 917 global_update_bandwidth(thresh, dirty, now);
be3ffa27
WF
918 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
919 bdi_thresh, bdi_dirty,
920 dirtied, elapsed);
921 }
e98be2d5
WF
922 bdi_update_write_bandwidth(bdi, elapsed, written);
923
924snapshot:
be3ffa27 925 bdi->dirtied_stamp = dirtied;
e98be2d5
WF
926 bdi->written_stamp = written;
927 bdi->bw_time_stamp = now;
928}
929
930static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 931 unsigned long thresh,
af6a3113 932 unsigned long bg_thresh,
c42843f2
WF
933 unsigned long dirty,
934 unsigned long bdi_thresh,
935 unsigned long bdi_dirty,
e98be2d5
WF
936 unsigned long start_time)
937{
938 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
939 return;
940 spin_lock(&bdi->wb.list_lock);
af6a3113
WF
941 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
942 bdi_thresh, bdi_dirty, start_time);
e98be2d5
WF
943 spin_unlock(&bdi->wb.list_lock);
944}
945
9d823e8f
WF
946/*
947 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
948 * will look to see if it needs to start dirty throttling.
949 *
950 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
951 * global_page_state() too often. So scale it near-sqrt to the safety margin
952 * (the number of pages we may dirty without exceeding the dirty limits).
953 */
954static unsigned long dirty_poll_interval(unsigned long dirty,
955 unsigned long thresh)
956{
957 if (thresh > dirty)
958 return 1UL << (ilog2(thresh - dirty) >> 1);
959
960 return 1;
961}
962
c8462cc9
WF
963static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
964 unsigned long bdi_dirty)
965{
966 unsigned long bw = bdi->avg_write_bandwidth;
967 unsigned long hi = ilog2(bw);
968 unsigned long lo = ilog2(bdi->dirty_ratelimit);
969 unsigned long t;
970
971 /* target for 20ms max pause on 1-dd case */
972 t = HZ / 50;
973
974 /*
975 * Scale up pause time for concurrent dirtiers in order to reduce CPU
976 * overheads.
977 *
978 * (N * 20ms) on 2^N concurrent tasks.
979 */
980 if (hi > lo)
981 t += (hi - lo) * (20 * HZ) / 1024;
982
983 /*
984 * Limit pause time for small memory systems. If sleeping for too long
985 * time, a small pool of dirty/writeback pages may go empty and disk go
986 * idle.
987 *
988 * 8 serves as the safety ratio.
989 */
82e230a0 990 t = min(t, bdi_dirty * HZ / (8 * bw + 1));
c8462cc9
WF
991
992 /*
993 * The pause time will be settled within range (max_pause/4, max_pause).
994 * Apply a minimal value of 4 to get a non-zero max_pause/4.
995 */
996 return clamp_val(t, 4, MAX_PAUSE);
997}
998
1da177e4
LT
999/*
1000 * balance_dirty_pages() must be called by processes which are generating dirty
1001 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1002 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1003 * If we're over `background_thresh' then the writeback threads are woken to
1004 * perform some writeout.
1da177e4 1005 */
3a2e9a5a 1006static void balance_dirty_pages(struct address_space *mapping,
143dfe86 1007 unsigned long pages_dirtied)
1da177e4 1008{
143dfe86
WF
1009 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1010 unsigned long bdi_reclaimable;
7762741e
WF
1011 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1012 unsigned long bdi_dirty;
6c14ae1e 1013 unsigned long freerun;
364aeb28
DR
1014 unsigned long background_thresh;
1015 unsigned long dirty_thresh;
1016 unsigned long bdi_thresh;
143dfe86 1017 long pause = 0;
50657fc4 1018 long uninitialized_var(max_pause);
e50e3720 1019 bool dirty_exceeded = false;
143dfe86 1020 unsigned long task_ratelimit;
50657fc4 1021 unsigned long uninitialized_var(dirty_ratelimit);
143dfe86 1022 unsigned long pos_ratio;
1da177e4 1023 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 1024 unsigned long start_time = jiffies;
1da177e4
LT
1025
1026 for (;;) {
143dfe86
WF
1027 /*
1028 * Unstable writes are a feature of certain networked
1029 * filesystems (i.e. NFS) in which data may have been
1030 * written to the server's write cache, but has not yet
1031 * been flushed to permanent storage.
1032 */
5fce25a9
PZ
1033 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1034 global_page_state(NR_UNSTABLE_NFS);
7762741e 1035 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1036
16c4042f
WF
1037 global_dirty_limits(&background_thresh, &dirty_thresh);
1038
1039 /*
1040 * Throttle it only when the background writeback cannot
1041 * catch-up. This avoids (excessively) small writeouts
1042 * when the bdi limits are ramping up.
1043 */
6c14ae1e
WF
1044 freerun = dirty_freerun_ceiling(dirty_thresh,
1045 background_thresh);
1046 if (nr_dirty <= freerun)
16c4042f
WF
1047 break;
1048
143dfe86
WF
1049 if (unlikely(!writeback_in_progress(bdi)))
1050 bdi_start_background_writeback(bdi);
1051
1052 /*
1053 * bdi_thresh is not treated as some limiting factor as
1054 * dirty_thresh, due to reasons
1055 * - in JBOD setup, bdi_thresh can fluctuate a lot
1056 * - in a system with HDD and USB key, the USB key may somehow
1057 * go into state (bdi_dirty >> bdi_thresh) either because
1058 * bdi_dirty starts high, or because bdi_thresh drops low.
1059 * In this case we don't want to hard throttle the USB key
1060 * dirtiers for 100 seconds until bdi_dirty drops under
1061 * bdi_thresh. Instead the auxiliary bdi control line in
1062 * bdi_position_ratio() will let the dirtier task progress
1063 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1064 */
16c4042f 1065 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
16c4042f 1066
e50e3720
WF
1067 /*
1068 * In order to avoid the stacked BDI deadlock we need
1069 * to ensure we accurately count the 'dirty' pages when
1070 * the threshold is low.
1071 *
1072 * Otherwise it would be possible to get thresh+n pages
1073 * reported dirty, even though there are thresh-m pages
1074 * actually dirty; with m+n sitting in the percpu
1075 * deltas.
1076 */
143dfe86
WF
1077 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1078 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1079 bdi_dirty = bdi_reclaimable +
7762741e 1080 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720 1081 } else {
143dfe86
WF
1082 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1083 bdi_dirty = bdi_reclaimable +
7762741e 1084 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 1085 }
5fce25a9 1086
143dfe86 1087 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
7762741e 1088 (nr_dirty > dirty_thresh);
143dfe86 1089 if (dirty_exceeded && !bdi->dirty_exceeded)
04fbfdc1 1090 bdi->dirty_exceeded = 1;
1da177e4 1091
af6a3113
WF
1092 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1093 nr_dirty, bdi_thresh, bdi_dirty,
1094 start_time);
e98be2d5 1095
c8462cc9
WF
1096 max_pause = bdi_max_pause(bdi, bdi_dirty);
1097
143dfe86
WF
1098 dirty_ratelimit = bdi->dirty_ratelimit;
1099 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1100 background_thresh, nr_dirty,
1101 bdi_thresh, bdi_dirty);
3a73dbbc
WF
1102 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1103 RATELIMIT_CALC_SHIFT;
1104 if (unlikely(task_ratelimit == 0)) {
c8462cc9 1105 pause = max_pause;
143dfe86 1106 goto pause;
04fbfdc1 1107 }
3a73dbbc 1108 pause = HZ * pages_dirtied / task_ratelimit;
57fc978c 1109 if (unlikely(pause <= 0)) {
ece13ac3
WF
1110 trace_balance_dirty_pages(bdi,
1111 dirty_thresh,
1112 background_thresh,
1113 nr_dirty,
1114 bdi_thresh,
1115 bdi_dirty,
1116 dirty_ratelimit,
1117 task_ratelimit,
1118 pages_dirtied,
1119 pause,
1120 start_time);
57fc978c
WF
1121 pause = 1; /* avoid resetting nr_dirtied_pause below */
1122 break;
04fbfdc1 1123 }
c8462cc9 1124 pause = min(pause, max_pause);
143dfe86
WF
1125
1126pause:
ece13ac3
WF
1127 trace_balance_dirty_pages(bdi,
1128 dirty_thresh,
1129 background_thresh,
1130 nr_dirty,
1131 bdi_thresh,
1132 bdi_dirty,
1133 dirty_ratelimit,
1134 task_ratelimit,
1135 pages_dirtied,
1136 pause,
1137 start_time);
499d05ec 1138 __set_current_state(TASK_KILLABLE);
d25105e8 1139 io_schedule_timeout(pause);
87c6a9b2 1140
ffd1f609 1141 /*
1df64719
WF
1142 * This is typically equal to (nr_dirty < dirty_thresh) and can
1143 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1144 */
1df64719 1145 if (task_ratelimit)
ffd1f609 1146 break;
499d05ec 1147
c5c6343c
WF
1148 /*
1149 * In the case of an unresponding NFS server and the NFS dirty
1150 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1151 * to go through, so that tasks on them still remain responsive.
1152 *
1153 * In theory 1 page is enough to keep the comsumer-producer
1154 * pipe going: the flusher cleans 1 page => the task dirties 1
1155 * more page. However bdi_dirty has accounting errors. So use
1156 * the larger and more IO friendly bdi_stat_error.
1157 */
1158 if (bdi_dirty <= bdi_stat_error(bdi))
1159 break;
1160
499d05ec
JK
1161 if (fatal_signal_pending(current))
1162 break;
1da177e4
LT
1163 }
1164
143dfe86 1165 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 1166 bdi->dirty_exceeded = 0;
1da177e4 1167
9d823e8f 1168 current->nr_dirtied = 0;
57fc978c
WF
1169 if (pause == 0) { /* in freerun area */
1170 current->nr_dirtied_pause =
1171 dirty_poll_interval(nr_dirty, dirty_thresh);
1172 } else if (pause <= max_pause / 4 &&
1173 pages_dirtied >= current->nr_dirtied_pause) {
1174 current->nr_dirtied_pause = clamp_val(
1175 dirty_ratelimit * (max_pause / 2) / HZ,
1176 pages_dirtied + pages_dirtied / 8,
1177 pages_dirtied * 4);
1178 } else if (pause >= max_pause) {
1179 current->nr_dirtied_pause = 1 | clamp_val(
1180 dirty_ratelimit * (max_pause / 2) / HZ,
1181 pages_dirtied / 4,
1182 pages_dirtied - pages_dirtied / 8);
1183 }
9d823e8f 1184
1da177e4 1185 if (writeback_in_progress(bdi))
5b0830cb 1186 return;
1da177e4
LT
1187
1188 /*
1189 * In laptop mode, we wait until hitting the higher threshold before
1190 * starting background writeout, and then write out all the way down
1191 * to the lower threshold. So slow writers cause minimal disk activity.
1192 *
1193 * In normal mode, we start background writeout at the lower
1194 * background_thresh, to keep the amount of dirty memory low.
1195 */
143dfe86
WF
1196 if (laptop_mode)
1197 return;
1198
1199 if (nr_reclaimable > background_thresh)
c5444198 1200 bdi_start_background_writeback(bdi);
1da177e4
LT
1201}
1202
a200ee18 1203void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 1204{
a200ee18 1205 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
1206 struct address_space *mapping = page_mapping(page);
1207
1208 if (mapping)
1209 balance_dirty_pages_ratelimited(mapping);
1210 }
1211}
1212
9d823e8f 1213static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1214
1da177e4 1215/**
fa5a734e 1216 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 1217 * @mapping: address_space which was dirtied
a580290c 1218 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
1219 *
1220 * Processes which are dirtying memory should call in here once for each page
1221 * which was newly dirtied. The function will periodically check the system's
1222 * dirty state and will initiate writeback if needed.
1223 *
1224 * On really big machines, get_writeback_state is expensive, so try to avoid
1225 * calling it too often (ratelimiting). But once we're over the dirty memory
1226 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1227 * from overshooting the limit by (ratelimit_pages) each.
1228 */
fa5a734e
AM
1229void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1230 unsigned long nr_pages_dirtied)
1da177e4 1231{
36715cef 1232 struct backing_dev_info *bdi = mapping->backing_dev_info;
9d823e8f
WF
1233 int ratelimit;
1234 int *p;
1da177e4 1235
36715cef
WF
1236 if (!bdi_cap_account_dirty(bdi))
1237 return;
1238
9d823e8f
WF
1239 ratelimit = current->nr_dirtied_pause;
1240 if (bdi->dirty_exceeded)
1241 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1242
1243 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1244
9d823e8f 1245 preempt_disable();
1da177e4 1246 /*
9d823e8f
WF
1247 * This prevents one CPU to accumulate too many dirtied pages without
1248 * calling into balance_dirty_pages(), which can happen when there are
1249 * 1000+ tasks, all of them start dirtying pages at exactly the same
1250 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1251 */
245b2e70 1252 p = &__get_cpu_var(bdp_ratelimits);
9d823e8f 1253 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1254 *p = 0;
9d823e8f
WF
1255 else {
1256 *p += nr_pages_dirtied;
1257 if (unlikely(*p >= ratelimit_pages)) {
1258 *p = 0;
1259 ratelimit = 0;
1260 }
1da177e4 1261 }
fa5a734e 1262 preempt_enable();
9d823e8f
WF
1263
1264 if (unlikely(current->nr_dirtied >= ratelimit))
1265 balance_dirty_pages(mapping, current->nr_dirtied);
1da177e4 1266}
fa5a734e 1267EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 1268
232ea4d6 1269void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1270{
364aeb28
DR
1271 unsigned long background_thresh;
1272 unsigned long dirty_thresh;
1da177e4
LT
1273
1274 for ( ; ; ) {
16c4042f 1275 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
1276
1277 /*
1278 * Boost the allowable dirty threshold a bit for page
1279 * allocators so they don't get DoS'ed by heavy writers
1280 */
1281 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1282
c24f21bd
CL
1283 if (global_page_state(NR_UNSTABLE_NFS) +
1284 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1285 break;
8aa7e847 1286 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1287
1288 /*
1289 * The caller might hold locks which can prevent IO completion
1290 * or progress in the filesystem. So we cannot just sit here
1291 * waiting for IO to complete.
1292 */
1293 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1294 break;
1da177e4
LT
1295 }
1296}
1297
1da177e4
LT
1298/*
1299 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1300 */
1301int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 1302 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1303{
8d65af78 1304 proc_dointvec(table, write, buffer, length, ppos);
6423104b 1305 bdi_arm_supers_timer();
1da177e4
LT
1306 return 0;
1307}
1308
c2c4986e 1309#ifdef CONFIG_BLOCK
31373d09 1310void laptop_mode_timer_fn(unsigned long data)
1da177e4 1311{
31373d09
MG
1312 struct request_queue *q = (struct request_queue *)data;
1313 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1314 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1315
31373d09
MG
1316 /*
1317 * We want to write everything out, not just down to the dirty
1318 * threshold
1319 */
31373d09 1320 if (bdi_has_dirty_io(&q->backing_dev_info))
0e175a18
CW
1321 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1322 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1323}
1324
1325/*
1326 * We've spun up the disk and we're in laptop mode: schedule writeback
1327 * of all dirty data a few seconds from now. If the flush is already scheduled
1328 * then push it back - the user is still using the disk.
1329 */
31373d09 1330void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1331{
31373d09 1332 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1333}
1334
1335/*
1336 * We're in laptop mode and we've just synced. The sync's writes will have
1337 * caused another writeback to be scheduled by laptop_io_completion.
1338 * Nothing needs to be written back anymore, so we unschedule the writeback.
1339 */
1340void laptop_sync_completion(void)
1341{
31373d09
MG
1342 struct backing_dev_info *bdi;
1343
1344 rcu_read_lock();
1345
1346 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1347 del_timer(&bdi->laptop_mode_wb_timer);
1348
1349 rcu_read_unlock();
1da177e4 1350}
c2c4986e 1351#endif
1da177e4
LT
1352
1353/*
1354 * If ratelimit_pages is too high then we can get into dirty-data overload
1355 * if a large number of processes all perform writes at the same time.
1356 * If it is too low then SMP machines will call the (expensive)
1357 * get_writeback_state too often.
1358 *
1359 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1360 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1361 * thresholds.
1da177e4
LT
1362 */
1363
2d1d43f6 1364void writeback_set_ratelimit(void)
1da177e4 1365{
9d823e8f
WF
1366 unsigned long background_thresh;
1367 unsigned long dirty_thresh;
1368 global_dirty_limits(&background_thresh, &dirty_thresh);
1369 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1370 if (ratelimit_pages < 16)
1371 ratelimit_pages = 16;
1da177e4
LT
1372}
1373
26c2143b 1374static int __cpuinit
1da177e4
LT
1375ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1376{
2d1d43f6 1377 writeback_set_ratelimit();
aa0f0303 1378 return NOTIFY_DONE;
1da177e4
LT
1379}
1380
74b85f37 1381static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
1382 .notifier_call = ratelimit_handler,
1383 .next = NULL,
1384};
1385
1386/*
dc6e29da
LT
1387 * Called early on to tune the page writeback dirty limits.
1388 *
1389 * We used to scale dirty pages according to how total memory
1390 * related to pages that could be allocated for buffers (by
1391 * comparing nr_free_buffer_pages() to vm_total_pages.
1392 *
1393 * However, that was when we used "dirty_ratio" to scale with
1394 * all memory, and we don't do that any more. "dirty_ratio"
1395 * is now applied to total non-HIGHPAGE memory (by subtracting
1396 * totalhigh_pages from vm_total_pages), and as such we can't
1397 * get into the old insane situation any more where we had
1398 * large amounts of dirty pages compared to a small amount of
1399 * non-HIGHMEM memory.
1400 *
1401 * But we might still want to scale the dirty_ratio by how
1402 * much memory the box has..
1da177e4
LT
1403 */
1404void __init page_writeback_init(void)
1405{
04fbfdc1
PZ
1406 int shift;
1407
2d1d43f6 1408 writeback_set_ratelimit();
1da177e4 1409 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
1410
1411 shift = calc_period_shift();
1412 prop_descriptor_init(&vm_completions, shift);
1da177e4
LT
1413}
1414
f446daae
JK
1415/**
1416 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1417 * @mapping: address space structure to write
1418 * @start: starting page index
1419 * @end: ending page index (inclusive)
1420 *
1421 * This function scans the page range from @start to @end (inclusive) and tags
1422 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1423 * that write_cache_pages (or whoever calls this function) will then use
1424 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1425 * used to avoid livelocking of writeback by a process steadily creating new
1426 * dirty pages in the file (thus it is important for this function to be quick
1427 * so that it can tag pages faster than a dirtying process can create them).
1428 */
1429/*
1430 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1431 */
f446daae
JK
1432void tag_pages_for_writeback(struct address_space *mapping,
1433 pgoff_t start, pgoff_t end)
1434{
3c111a07 1435#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1436 unsigned long tagged;
1437
1438 do {
1439 spin_lock_irq(&mapping->tree_lock);
1440 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1441 &start, end, WRITEBACK_TAG_BATCH,
1442 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1443 spin_unlock_irq(&mapping->tree_lock);
1444 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1445 cond_resched();
d5ed3a4a
JK
1446 /* We check 'start' to handle wrapping when end == ~0UL */
1447 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1448}
1449EXPORT_SYMBOL(tag_pages_for_writeback);
1450
811d736f 1451/**
0ea97180 1452 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1453 * @mapping: address space structure to write
1454 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1455 * @writepage: function called for each page
1456 * @data: data passed to writepage function
811d736f 1457 *
0ea97180 1458 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1459 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1460 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1461 * and msync() need to guarantee that all the data which was dirty at the time
1462 * the call was made get new I/O started against them. If wbc->sync_mode is
1463 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1464 * existing IO to complete.
f446daae
JK
1465 *
1466 * To avoid livelocks (when other process dirties new pages), we first tag
1467 * pages which should be written back with TOWRITE tag and only then start
1468 * writing them. For data-integrity sync we have to be careful so that we do
1469 * not miss some pages (e.g., because some other process has cleared TOWRITE
1470 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1471 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1472 */
0ea97180
MS
1473int write_cache_pages(struct address_space *mapping,
1474 struct writeback_control *wbc, writepage_t writepage,
1475 void *data)
811d736f 1476{
811d736f
DH
1477 int ret = 0;
1478 int done = 0;
811d736f
DH
1479 struct pagevec pvec;
1480 int nr_pages;
31a12666 1481 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1482 pgoff_t index;
1483 pgoff_t end; /* Inclusive */
bd19e012 1484 pgoff_t done_index;
31a12666 1485 int cycled;
811d736f 1486 int range_whole = 0;
f446daae 1487 int tag;
811d736f 1488
811d736f
DH
1489 pagevec_init(&pvec, 0);
1490 if (wbc->range_cyclic) {
31a12666
NP
1491 writeback_index = mapping->writeback_index; /* prev offset */
1492 index = writeback_index;
1493 if (index == 0)
1494 cycled = 1;
1495 else
1496 cycled = 0;
811d736f
DH
1497 end = -1;
1498 } else {
1499 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1500 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1501 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1502 range_whole = 1;
31a12666 1503 cycled = 1; /* ignore range_cyclic tests */
811d736f 1504 }
6e6938b6 1505 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1506 tag = PAGECACHE_TAG_TOWRITE;
1507 else
1508 tag = PAGECACHE_TAG_DIRTY;
811d736f 1509retry:
6e6938b6 1510 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1511 tag_pages_for_writeback(mapping, index, end);
bd19e012 1512 done_index = index;
5a3d5c98
NP
1513 while (!done && (index <= end)) {
1514 int i;
1515
f446daae 1516 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1517 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1518 if (nr_pages == 0)
1519 break;
811d736f 1520
811d736f
DH
1521 for (i = 0; i < nr_pages; i++) {
1522 struct page *page = pvec.pages[i];
1523
1524 /*
d5482cdf
NP
1525 * At this point, the page may be truncated or
1526 * invalidated (changing page->mapping to NULL), or
1527 * even swizzled back from swapper_space to tmpfs file
1528 * mapping. However, page->index will not change
1529 * because we have a reference on the page.
811d736f 1530 */
d5482cdf
NP
1531 if (page->index > end) {
1532 /*
1533 * can't be range_cyclic (1st pass) because
1534 * end == -1 in that case.
1535 */
1536 done = 1;
1537 break;
1538 }
1539
cf15b07c 1540 done_index = page->index;
d5482cdf 1541
811d736f
DH
1542 lock_page(page);
1543
5a3d5c98
NP
1544 /*
1545 * Page truncated or invalidated. We can freely skip it
1546 * then, even for data integrity operations: the page
1547 * has disappeared concurrently, so there could be no
1548 * real expectation of this data interity operation
1549 * even if there is now a new, dirty page at the same
1550 * pagecache address.
1551 */
811d736f 1552 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1553continue_unlock:
811d736f
DH
1554 unlock_page(page);
1555 continue;
1556 }
1557
515f4a03
NP
1558 if (!PageDirty(page)) {
1559 /* someone wrote it for us */
1560 goto continue_unlock;
1561 }
1562
1563 if (PageWriteback(page)) {
1564 if (wbc->sync_mode != WB_SYNC_NONE)
1565 wait_on_page_writeback(page);
1566 else
1567 goto continue_unlock;
1568 }
811d736f 1569
515f4a03
NP
1570 BUG_ON(PageWriteback(page));
1571 if (!clear_page_dirty_for_io(page))
5a3d5c98 1572 goto continue_unlock;
811d736f 1573
9e094383 1574 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1575 ret = (*writepage)(page, wbc, data);
00266770
NP
1576 if (unlikely(ret)) {
1577 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1578 unlock_page(page);
1579 ret = 0;
1580 } else {
1581 /*
1582 * done_index is set past this page,
1583 * so media errors will not choke
1584 * background writeout for the entire
1585 * file. This has consequences for
1586 * range_cyclic semantics (ie. it may
1587 * not be suitable for data integrity
1588 * writeout).
1589 */
cf15b07c 1590 done_index = page->index + 1;
00266770
NP
1591 done = 1;
1592 break;
1593 }
0b564927 1594 }
00266770 1595
546a1924
DC
1596 /*
1597 * We stop writing back only if we are not doing
1598 * integrity sync. In case of integrity sync we have to
1599 * keep going until we have written all the pages
1600 * we tagged for writeback prior to entering this loop.
1601 */
1602 if (--wbc->nr_to_write <= 0 &&
1603 wbc->sync_mode == WB_SYNC_NONE) {
1604 done = 1;
1605 break;
05fe478d 1606 }
811d736f
DH
1607 }
1608 pagevec_release(&pvec);
1609 cond_resched();
1610 }
3a4c6800 1611 if (!cycled && !done) {
811d736f 1612 /*
31a12666 1613 * range_cyclic:
811d736f
DH
1614 * We hit the last page and there is more work to be done: wrap
1615 * back to the start of the file
1616 */
31a12666 1617 cycled = 1;
811d736f 1618 index = 0;
31a12666 1619 end = writeback_index - 1;
811d736f
DH
1620 goto retry;
1621 }
0b564927
DC
1622 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1623 mapping->writeback_index = done_index;
06d6cf69 1624
811d736f
DH
1625 return ret;
1626}
0ea97180
MS
1627EXPORT_SYMBOL(write_cache_pages);
1628
1629/*
1630 * Function used by generic_writepages to call the real writepage
1631 * function and set the mapping flags on error
1632 */
1633static int __writepage(struct page *page, struct writeback_control *wbc,
1634 void *data)
1635{
1636 struct address_space *mapping = data;
1637 int ret = mapping->a_ops->writepage(page, wbc);
1638 mapping_set_error(mapping, ret);
1639 return ret;
1640}
1641
1642/**
1643 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1644 * @mapping: address space structure to write
1645 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1646 *
1647 * This is a library function, which implements the writepages()
1648 * address_space_operation.
1649 */
1650int generic_writepages(struct address_space *mapping,
1651 struct writeback_control *wbc)
1652{
9b6096a6
SL
1653 struct blk_plug plug;
1654 int ret;
1655
0ea97180
MS
1656 /* deal with chardevs and other special file */
1657 if (!mapping->a_ops->writepage)
1658 return 0;
1659
9b6096a6
SL
1660 blk_start_plug(&plug);
1661 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1662 blk_finish_plug(&plug);
1663 return ret;
0ea97180 1664}
811d736f
DH
1665
1666EXPORT_SYMBOL(generic_writepages);
1667
1da177e4
LT
1668int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1669{
22905f77
AM
1670 int ret;
1671
1da177e4
LT
1672 if (wbc->nr_to_write <= 0)
1673 return 0;
1674 if (mapping->a_ops->writepages)
d08b3851 1675 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1676 else
1677 ret = generic_writepages(mapping, wbc);
22905f77 1678 return ret;
1da177e4
LT
1679}
1680
1681/**
1682 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1683 * @page: the page to write
1684 * @wait: if true, wait on writeout
1da177e4
LT
1685 *
1686 * The page must be locked by the caller and will be unlocked upon return.
1687 *
1688 * write_one_page() returns a negative error code if I/O failed.
1689 */
1690int write_one_page(struct page *page, int wait)
1691{
1692 struct address_space *mapping = page->mapping;
1693 int ret = 0;
1694 struct writeback_control wbc = {
1695 .sync_mode = WB_SYNC_ALL,
1696 .nr_to_write = 1,
1697 };
1698
1699 BUG_ON(!PageLocked(page));
1700
1701 if (wait)
1702 wait_on_page_writeback(page);
1703
1704 if (clear_page_dirty_for_io(page)) {
1705 page_cache_get(page);
1706 ret = mapping->a_ops->writepage(page, &wbc);
1707 if (ret == 0 && wait) {
1708 wait_on_page_writeback(page);
1709 if (PageError(page))
1710 ret = -EIO;
1711 }
1712 page_cache_release(page);
1713 } else {
1714 unlock_page(page);
1715 }
1716 return ret;
1717}
1718EXPORT_SYMBOL(write_one_page);
1719
76719325
KC
1720/*
1721 * For address_spaces which do not use buffers nor write back.
1722 */
1723int __set_page_dirty_no_writeback(struct page *page)
1724{
1725 if (!PageDirty(page))
c3f0da63 1726 return !TestSetPageDirty(page);
76719325
KC
1727 return 0;
1728}
1729
e3a7cca1
ES
1730/*
1731 * Helper function for set_page_dirty family.
1732 * NOTE: This relies on being atomic wrt interrupts.
1733 */
1734void account_page_dirtied(struct page *page, struct address_space *mapping)
1735{
1736 if (mapping_cap_account_dirty(mapping)) {
1737 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1738 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1 1739 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
c8e28ce0 1740 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
e3a7cca1
ES
1741 task_io_account_write(PAGE_CACHE_SIZE);
1742 }
1743}
679ceace 1744EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1745
f629d1c9
MR
1746/*
1747 * Helper function for set_page_writeback family.
1748 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1749 * wrt interrupts.
1750 */
1751void account_page_writeback(struct page *page)
1752{
1753 inc_zone_page_state(page, NR_WRITEBACK);
1754}
1755EXPORT_SYMBOL(account_page_writeback);
1756
1da177e4
LT
1757/*
1758 * For address_spaces which do not use buffers. Just tag the page as dirty in
1759 * its radix tree.
1760 *
1761 * This is also used when a single buffer is being dirtied: we want to set the
1762 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1763 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1764 *
1765 * Most callers have locked the page, which pins the address_space in memory.
1766 * But zap_pte_range() does not lock the page, however in that case the
1767 * mapping is pinned by the vma's ->vm_file reference.
1768 *
1769 * We take care to handle the case where the page was truncated from the
183ff22b 1770 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1771 */
1772int __set_page_dirty_nobuffers(struct page *page)
1773{
1da177e4
LT
1774 if (!TestSetPageDirty(page)) {
1775 struct address_space *mapping = page_mapping(page);
1776 struct address_space *mapping2;
1777
8c08540f
AM
1778 if (!mapping)
1779 return 1;
1780
19fd6231 1781 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1782 mapping2 = page_mapping(page);
1783 if (mapping2) { /* Race with truncate? */
1784 BUG_ON(mapping2 != mapping);
787d2214 1785 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1786 account_page_dirtied(page, mapping);
8c08540f
AM
1787 radix_tree_tag_set(&mapping->page_tree,
1788 page_index(page), PAGECACHE_TAG_DIRTY);
1789 }
19fd6231 1790 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1791 if (mapping->host) {
1792 /* !PageAnon && !swapper_space */
1793 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1794 }
4741c9fd 1795 return 1;
1da177e4 1796 }
4741c9fd 1797 return 0;
1da177e4
LT
1798}
1799EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1800
1801/*
1802 * When a writepage implementation decides that it doesn't want to write this
1803 * page for some reason, it should redirty the locked page via
1804 * redirty_page_for_writepage() and it should then unlock the page and return 0
1805 */
1806int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1807{
1808 wbc->pages_skipped++;
1809 return __set_page_dirty_nobuffers(page);
1810}
1811EXPORT_SYMBOL(redirty_page_for_writepage);
1812
1813/*
6746aff7
WF
1814 * Dirty a page.
1815 *
1816 * For pages with a mapping this should be done under the page lock
1817 * for the benefit of asynchronous memory errors who prefer a consistent
1818 * dirty state. This rule can be broken in some special cases,
1819 * but should be better not to.
1820 *
1da177e4
LT
1821 * If the mapping doesn't provide a set_page_dirty a_op, then
1822 * just fall through and assume that it wants buffer_heads.
1823 */
1cf6e7d8 1824int set_page_dirty(struct page *page)
1da177e4
LT
1825{
1826 struct address_space *mapping = page_mapping(page);
1827
1828 if (likely(mapping)) {
1829 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1830 /*
1831 * readahead/lru_deactivate_page could remain
1832 * PG_readahead/PG_reclaim due to race with end_page_writeback
1833 * About readahead, if the page is written, the flags would be
1834 * reset. So no problem.
1835 * About lru_deactivate_page, if the page is redirty, the flag
1836 * will be reset. So no problem. but if the page is used by readahead
1837 * it will confuse readahead and make it restart the size rampup
1838 * process. But it's a trivial problem.
1839 */
1840 ClearPageReclaim(page);
9361401e
DH
1841#ifdef CONFIG_BLOCK
1842 if (!spd)
1843 spd = __set_page_dirty_buffers;
1844#endif
1845 return (*spd)(page);
1da177e4 1846 }
4741c9fd
AM
1847 if (!PageDirty(page)) {
1848 if (!TestSetPageDirty(page))
1849 return 1;
1850 }
1da177e4
LT
1851 return 0;
1852}
1853EXPORT_SYMBOL(set_page_dirty);
1854
1855/*
1856 * set_page_dirty() is racy if the caller has no reference against
1857 * page->mapping->host, and if the page is unlocked. This is because another
1858 * CPU could truncate the page off the mapping and then free the mapping.
1859 *
1860 * Usually, the page _is_ locked, or the caller is a user-space process which
1861 * holds a reference on the inode by having an open file.
1862 *
1863 * In other cases, the page should be locked before running set_page_dirty().
1864 */
1865int set_page_dirty_lock(struct page *page)
1866{
1867 int ret;
1868
7eaceacc 1869 lock_page(page);
1da177e4
LT
1870 ret = set_page_dirty(page);
1871 unlock_page(page);
1872 return ret;
1873}
1874EXPORT_SYMBOL(set_page_dirty_lock);
1875
1da177e4
LT
1876/*
1877 * Clear a page's dirty flag, while caring for dirty memory accounting.
1878 * Returns true if the page was previously dirty.
1879 *
1880 * This is for preparing to put the page under writeout. We leave the page
1881 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1882 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1883 * implementation will run either set_page_writeback() or set_page_dirty(),
1884 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1885 * back into sync.
1886 *
1887 * This incoherency between the page's dirty flag and radix-tree tag is
1888 * unfortunate, but it only exists while the page is locked.
1889 */
1890int clear_page_dirty_for_io(struct page *page)
1891{
1892 struct address_space *mapping = page_mapping(page);
1893
79352894
NP
1894 BUG_ON(!PageLocked(page));
1895
7658cc28
LT
1896 if (mapping && mapping_cap_account_dirty(mapping)) {
1897 /*
1898 * Yes, Virginia, this is indeed insane.
1899 *
1900 * We use this sequence to make sure that
1901 * (a) we account for dirty stats properly
1902 * (b) we tell the low-level filesystem to
1903 * mark the whole page dirty if it was
1904 * dirty in a pagetable. Only to then
1905 * (c) clean the page again and return 1 to
1906 * cause the writeback.
1907 *
1908 * This way we avoid all nasty races with the
1909 * dirty bit in multiple places and clearing
1910 * them concurrently from different threads.
1911 *
1912 * Note! Normally the "set_page_dirty(page)"
1913 * has no effect on the actual dirty bit - since
1914 * that will already usually be set. But we
1915 * need the side effects, and it can help us
1916 * avoid races.
1917 *
1918 * We basically use the page "master dirty bit"
1919 * as a serialization point for all the different
1920 * threads doing their things.
7658cc28
LT
1921 */
1922 if (page_mkclean(page))
1923 set_page_dirty(page);
79352894
NP
1924 /*
1925 * We carefully synchronise fault handlers against
1926 * installing a dirty pte and marking the page dirty
1927 * at this point. We do this by having them hold the
1928 * page lock at some point after installing their
1929 * pte, but before marking the page dirty.
1930 * Pages are always locked coming in here, so we get
1931 * the desired exclusion. See mm/memory.c:do_wp_page()
1932 * for more comments.
1933 */
7658cc28 1934 if (TestClearPageDirty(page)) {
8c08540f 1935 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1936 dec_bdi_stat(mapping->backing_dev_info,
1937 BDI_RECLAIMABLE);
7658cc28 1938 return 1;
1da177e4 1939 }
7658cc28 1940 return 0;
1da177e4 1941 }
7658cc28 1942 return TestClearPageDirty(page);
1da177e4 1943}
58bb01a9 1944EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1945
1946int test_clear_page_writeback(struct page *page)
1947{
1948 struct address_space *mapping = page_mapping(page);
1949 int ret;
1950
1951 if (mapping) {
69cb51d1 1952 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1953 unsigned long flags;
1954
19fd6231 1955 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1956 ret = TestClearPageWriteback(page);
69cb51d1 1957 if (ret) {
1da177e4
LT
1958 radix_tree_tag_clear(&mapping->page_tree,
1959 page_index(page),
1960 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1961 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1962 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1963 __bdi_writeout_inc(bdi);
1964 }
69cb51d1 1965 }
19fd6231 1966 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1967 } else {
1968 ret = TestClearPageWriteback(page);
1969 }
99b12e3d 1970 if (ret) {
d688abf5 1971 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
1972 inc_zone_page_state(page, NR_WRITTEN);
1973 }
1da177e4
LT
1974 return ret;
1975}
1976
1977int test_set_page_writeback(struct page *page)
1978{
1979 struct address_space *mapping = page_mapping(page);
1980 int ret;
1981
1982 if (mapping) {
69cb51d1 1983 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1984 unsigned long flags;
1985
19fd6231 1986 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1987 ret = TestSetPageWriteback(page);
69cb51d1 1988 if (!ret) {
1da177e4
LT
1989 radix_tree_tag_set(&mapping->page_tree,
1990 page_index(page),
1991 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1992 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1993 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1994 }
1da177e4
LT
1995 if (!PageDirty(page))
1996 radix_tree_tag_clear(&mapping->page_tree,
1997 page_index(page),
1998 PAGECACHE_TAG_DIRTY);
f446daae
JK
1999 radix_tree_tag_clear(&mapping->page_tree,
2000 page_index(page),
2001 PAGECACHE_TAG_TOWRITE);
19fd6231 2002 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2003 } else {
2004 ret = TestSetPageWriteback(page);
2005 }
d688abf5 2006 if (!ret)
f629d1c9 2007 account_page_writeback(page);
1da177e4
LT
2008 return ret;
2009
2010}
2011EXPORT_SYMBOL(test_set_page_writeback);
2012
2013/*
00128188 2014 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2015 * passed tag.
2016 */
2017int mapping_tagged(struct address_space *mapping, int tag)
2018{
72c47832 2019 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2020}
2021EXPORT_SYMBOL(mapping_tagged);