]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/page-writeback.c
mm: use pagevec_lookup_range_tag() in __filemap_fdatawait_range()
[mirror_ubuntu-eoan-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
90eec103 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
f361bf4a 39#include <linux/sched/signal.h>
6e543d57 40#include <linux/mm_inline.h>
028c2dd1 41#include <trace/events/writeback.h>
1da177e4 42
6e543d57
LD
43#include "internal.h"
44
ffd1f609
WF
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
5b9b3574
WF
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
e98be2d5
WF
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
6c14ae1e
WF
61#define RATELIMIT_CALC_SHIFT 10
62
1da177e4
LT
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
1da177e4
LT
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
1b5e62b4 74int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80unsigned long dirty_background_bytes;
81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86int vm_highmem_is_dirtyable;
87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
1b5e62b4 91int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97unsigned long vm_dirty_bytes;
98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 103
91913a29
AB
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
1da177e4 106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
110
111/*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114int block_dump;
115
116/*
ed5b43f1
BS
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
119 */
120int laptop_mode;
121
122EXPORT_SYMBOL(laptop_mode);
123
124/* End of sysctl-exported parameters */
125
dcc25ae7 126struct wb_domain global_wb_domain;
1da177e4 127
2bc00aef
TH
128/* consolidated parameters for balance_dirty_pages() and its subroutines */
129struct dirty_throttle_control {
e9f07dfd
TH
130#ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
9fc3a43e 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 133#endif
2bc00aef 134 struct bdi_writeback *wb;
e9770b34 135 struct fprop_local_percpu *wb_completions;
eb608e3a 136
9fc3a43e 137 unsigned long avail; /* dirtyable */
2bc00aef
TH
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
141
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
970fb01a 144 unsigned long wb_bg_thresh;
daddfa3c
TH
145
146 unsigned long pos_ratio;
2bc00aef
TH
147};
148
eb608e3a
JK
149/*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 155
693108a8
TH
156#ifdef CONFIG_CGROUP_WRITEBACK
157
d60d1bdd
TH
158#define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
161
9fc3a43e 162#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
163
164#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
c2aa723a
TH
168
169static bool mdtc_valid(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
e9f07dfd
TH
173
174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175{
176 return dtc->dom;
177}
178
9fc3a43e
TH
179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180{
181 return mdtc->gdtc;
182}
183
841710aa
TH
184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185{
186 return &wb->memcg_completions;
187}
188
693108a8
TH
189static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191{
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
196
197 /*
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
200 */
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
204 do_div(min, tot_bw);
205 }
206 if (max < 100) {
207 max *= this_bw;
208 do_div(max, tot_bw);
209 }
210 }
211
212 *minp = min;
213 *maxp = max;
214}
215
216#else /* CONFIG_CGROUP_WRITEBACK */
217
d60d1bdd
TH
218#define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
9fc3a43e 220#define GDTC_INIT_NO_WB
c2aa723a
TH
221#define MDTC_INIT(__wb, __gdtc)
222
223static bool mdtc_valid(struct dirty_throttle_control *dtc)
224{
225 return false;
226}
e9f07dfd
TH
227
228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229{
230 return &global_wb_domain;
231}
232
9fc3a43e
TH
233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234{
235 return NULL;
236}
237
841710aa
TH
238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239{
240 return NULL;
241}
242
693108a8
TH
243static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
245{
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
248}
249
250#endif /* CONFIG_CGROUP_WRITEBACK */
251
a756cf59
JW
252/*
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
258 *
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
263 *
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
268 */
269
a804552b 270/**
281e3726
MG
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
a804552b 273 *
281e3726
MG
274 * Returns the node's number of pages potentially available for dirty
275 * page cache. This is the base value for the per-node dirty limits.
a804552b 276 */
281e3726 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 278{
281e3726
MG
279 unsigned long nr_pages = 0;
280 int z;
281
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
284
285 if (!populated_zone(zone))
286 continue;
287
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 }
a804552b 290
a8d01437
JW
291 /*
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
295 */
281e3726 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 297
281e3726
MG
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
300
301 return nr_pages;
302}
303
1edf2234
JW
304static unsigned long highmem_dirtyable_memory(unsigned long total)
305{
306#ifdef CONFIG_HIGHMEM
307 int node;
bb4cc2be 308 unsigned long x = 0;
09b4ab3c 309 int i;
1edf2234
JW
310
311 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
9cb937e2 314 unsigned long nr_pages;
281e3726
MG
315
316 if (!is_highmem_idx(i))
317 continue;
318
319 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
320 if (!populated_zone(z))
321 continue;
1edf2234 322
9cb937e2 323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 324 /* watch for underflows */
9cb937e2 325 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
09b4ab3c 329 }
1edf2234 330 }
281e3726 331
c8b74c2f
SR
332 /*
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
340 */
341 if ((long)x < 0)
342 x = 0;
343
1edf2234
JW
344 /*
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
349 */
350 return min(x, total);
351#else
352 return 0;
353#endif
354}
355
356/**
ccafa287 357 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 358 *
ccafa287
JW
359 * Returns the global number of pages potentially available for dirty
360 * page cache. This is the base value for the global dirty limits.
1edf2234 361 */
18cf8cf8 362static unsigned long global_dirtyable_memory(void)
1edf2234
JW
363{
364 unsigned long x;
365
c41f012a 366 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
367 /*
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
371 */
372 x -= min(x, totalreserve_pages);
1edf2234 373
599d0c95
MG
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 376
1edf2234
JW
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
379
380 return x + 1; /* Ensure that we never return 0 */
381}
382
9fc3a43e
TH
383/**
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
ccafa287 386 *
9fc3a43e
TH
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
391 * real-time tasks.
392 */
9fc3a43e 393static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 394{
9fc3a43e
TH
395 const unsigned long available_memory = dtc->avail;
396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 unsigned long bytes = vm_dirty_bytes;
398 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
399 /* convert ratios to per-PAGE_SIZE for higher precision */
400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
402 unsigned long thresh;
403 unsigned long bg_thresh;
ccafa287
JW
404 struct task_struct *tsk;
405
9fc3a43e
TH
406 /* gdtc is !NULL iff @dtc is for memcg domain */
407 if (gdtc) {
408 unsigned long global_avail = gdtc->avail;
409
410 /*
411 * The byte settings can't be applied directly to memcg
412 * domains. Convert them to ratios by scaling against
62a584fe
TH
413 * globally available memory. As the ratios are in
414 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 * number of pages.
9fc3a43e
TH
416 */
417 if (bytes)
62a584fe
TH
418 ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 PAGE_SIZE);
9fc3a43e 420 if (bg_bytes)
62a584fe
TH
421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 PAGE_SIZE);
9fc3a43e
TH
423 bytes = bg_bytes = 0;
424 }
425
426 if (bytes)
427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 428 else
62a584fe 429 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 430
9fc3a43e
TH
431 if (bg_bytes)
432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 433 else
62a584fe 434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 435
0f6d24f8
YS
436 if (unlikely(bg_thresh >= thresh)) {
437 pr_warn("vm direct limit must be set greater than background limit.\n");
9fc3a43e 438 bg_thresh = thresh / 2;
0f6d24f8
YS
439 }
440
ccafa287
JW
441 tsk = current;
442 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
a53eaff8
N
443 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
444 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 445 }
9fc3a43e
TH
446 dtc->thresh = thresh;
447 dtc->bg_thresh = bg_thresh;
448
449 /* we should eventually report the domain in the TP */
450 if (!gdtc)
451 trace_global_dirty_state(bg_thresh, thresh);
452}
453
454/**
455 * global_dirty_limits - background-writeback and dirty-throttling thresholds
456 * @pbackground: out parameter for bg_thresh
457 * @pdirty: out parameter for thresh
458 *
459 * Calculate bg_thresh and thresh for global_wb_domain. See
460 * domain_dirty_limits() for details.
461 */
462void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
463{
464 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
465
466 gdtc.avail = global_dirtyable_memory();
467 domain_dirty_limits(&gdtc);
468
469 *pbackground = gdtc.bg_thresh;
470 *pdirty = gdtc.thresh;
ccafa287
JW
471}
472
a756cf59 473/**
281e3726
MG
474 * node_dirty_limit - maximum number of dirty pages allowed in a node
475 * @pgdat: the node
a756cf59 476 *
281e3726
MG
477 * Returns the maximum number of dirty pages allowed in a node, based
478 * on the node's dirtyable memory.
a756cf59 479 */
281e3726 480static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 481{
281e3726 482 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
483 struct task_struct *tsk = current;
484 unsigned long dirty;
485
486 if (vm_dirty_bytes)
487 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 488 node_memory / global_dirtyable_memory();
a756cf59 489 else
281e3726 490 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59
JW
491
492 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
493 dirty += dirty / 4;
494
495 return dirty;
496}
497
498/**
281e3726
MG
499 * node_dirty_ok - tells whether a node is within its dirty limits
500 * @pgdat: the node to check
a756cf59 501 *
281e3726 502 * Returns %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
503 * dirty limit, %false if the limit is exceeded.
504 */
281e3726 505bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 506{
281e3726
MG
507 unsigned long limit = node_dirty_limit(pgdat);
508 unsigned long nr_pages = 0;
509
11fb9989
MG
510 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
511 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
512 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 513
281e3726 514 return nr_pages <= limit;
a756cf59
JW
515}
516
2da02997 517int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 518 void __user *buffer, size_t *lenp,
2da02997
DR
519 loff_t *ppos)
520{
521 int ret;
522
8d65af78 523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
524 if (ret == 0 && write)
525 dirty_background_bytes = 0;
526 return ret;
527}
528
529int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 530 void __user *buffer, size_t *lenp,
2da02997
DR
531 loff_t *ppos)
532{
533 int ret;
534
8d65af78 535 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
536 if (ret == 0 && write)
537 dirty_background_ratio = 0;
538 return ret;
539}
540
04fbfdc1 541int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 542 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
543 loff_t *ppos)
544{
545 int old_ratio = vm_dirty_ratio;
2da02997
DR
546 int ret;
547
8d65af78 548 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 549 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 550 writeback_set_ratelimit();
2da02997
DR
551 vm_dirty_bytes = 0;
552 }
553 return ret;
554}
555
2da02997 556int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 557 void __user *buffer, size_t *lenp,
2da02997
DR
558 loff_t *ppos)
559{
fc3501d4 560 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
561 int ret;
562
8d65af78 563 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 564 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 565 writeback_set_ratelimit();
2da02997 566 vm_dirty_ratio = 0;
04fbfdc1
PZ
567 }
568 return ret;
569}
570
eb608e3a
JK
571static unsigned long wp_next_time(unsigned long cur_time)
572{
573 cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 /* 0 has a special meaning... */
575 if (!cur_time)
576 return 1;
577 return cur_time;
578}
579
c7981433
TH
580static void wb_domain_writeout_inc(struct wb_domain *dom,
581 struct fprop_local_percpu *completions,
582 unsigned int max_prop_frac)
04fbfdc1 583{
c7981433
TH
584 __fprop_inc_percpu_max(&dom->completions, completions,
585 max_prop_frac);
eb608e3a 586 /* First event after period switching was turned off? */
517663ed 587 if (unlikely(!dom->period_time)) {
eb608e3a
JK
588 /*
589 * We can race with other __bdi_writeout_inc calls here but
590 * it does not cause any harm since the resulting time when
591 * timer will fire and what is in writeout_period_time will be
592 * roughly the same.
593 */
380c27ca
TH
594 dom->period_time = wp_next_time(jiffies);
595 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 596 }
04fbfdc1
PZ
597}
598
c7981433
TH
599/*
600 * Increment @wb's writeout completion count and the global writeout
601 * completion count. Called from test_clear_page_writeback().
602 */
603static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 604{
841710aa 605 struct wb_domain *cgdom;
dd5656e5 606
3e8f399d 607 inc_wb_stat(wb, WB_WRITTEN);
c7981433
TH
608 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
609 wb->bdi->max_prop_frac);
841710aa
TH
610
611 cgdom = mem_cgroup_wb_domain(wb);
612 if (cgdom)
613 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
614 wb->bdi->max_prop_frac);
dd5656e5 615}
dd5656e5 616
93f78d88 617void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 618{
dd5656e5
MS
619 unsigned long flags;
620
621 local_irq_save(flags);
93f78d88 622 __wb_writeout_inc(wb);
dd5656e5 623 local_irq_restore(flags);
04fbfdc1 624}
93f78d88 625EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 626
eb608e3a
JK
627/*
628 * On idle system, we can be called long after we scheduled because we use
629 * deferred timers so count with missed periods.
630 */
631static void writeout_period(unsigned long t)
632{
380c27ca
TH
633 struct wb_domain *dom = (void *)t;
634 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
635 VM_COMPLETIONS_PERIOD_LEN;
636
380c27ca
TH
637 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 639 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 640 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
641 } else {
642 /*
643 * Aging has zeroed all fractions. Stop wasting CPU on period
644 * updates.
645 */
380c27ca 646 dom->period_time = 0;
eb608e3a
JK
647 }
648}
649
380c27ca
TH
650int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651{
652 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
653
654 spin_lock_init(&dom->lock);
655
0a372d09
GT
656 setup_deferrable_timer(&dom->period_timer, writeout_period,
657 (unsigned long)dom);
dcc25ae7
TH
658
659 dom->dirty_limit_tstamp = jiffies;
660
380c27ca
TH
661 return fprop_global_init(&dom->completions, gfp);
662}
663
841710aa
TH
664#ifdef CONFIG_CGROUP_WRITEBACK
665void wb_domain_exit(struct wb_domain *dom)
666{
667 del_timer_sync(&dom->period_timer);
668 fprop_global_destroy(&dom->completions);
669}
670#endif
671
189d3c4a 672/*
d08c429b
JW
673 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
674 * registered backing devices, which, for obvious reasons, can not
675 * exceed 100%.
189d3c4a 676 */
189d3c4a
PZ
677static unsigned int bdi_min_ratio;
678
679int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
680{
681 int ret = 0;
189d3c4a 682
cfc4ba53 683 spin_lock_bh(&bdi_lock);
a42dde04 684 if (min_ratio > bdi->max_ratio) {
189d3c4a 685 ret = -EINVAL;
a42dde04
PZ
686 } else {
687 min_ratio -= bdi->min_ratio;
688 if (bdi_min_ratio + min_ratio < 100) {
689 bdi_min_ratio += min_ratio;
690 bdi->min_ratio += min_ratio;
691 } else {
692 ret = -EINVAL;
693 }
694 }
cfc4ba53 695 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
696
697 return ret;
698}
699
700int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
701{
a42dde04
PZ
702 int ret = 0;
703
704 if (max_ratio > 100)
705 return -EINVAL;
706
cfc4ba53 707 spin_lock_bh(&bdi_lock);
a42dde04
PZ
708 if (bdi->min_ratio > max_ratio) {
709 ret = -EINVAL;
710 } else {
711 bdi->max_ratio = max_ratio;
eb608e3a 712 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 713 }
cfc4ba53 714 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
715
716 return ret;
717}
a42dde04 718EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 719
6c14ae1e
WF
720static unsigned long dirty_freerun_ceiling(unsigned long thresh,
721 unsigned long bg_thresh)
722{
723 return (thresh + bg_thresh) / 2;
724}
725
c7981433
TH
726static unsigned long hard_dirty_limit(struct wb_domain *dom,
727 unsigned long thresh)
ffd1f609 728{
dcc25ae7 729 return max(thresh, dom->dirty_limit);
ffd1f609
WF
730}
731
c5edf9cd
TH
732/*
733 * Memory which can be further allocated to a memcg domain is capped by
734 * system-wide clean memory excluding the amount being used in the domain.
735 */
736static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
737 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
738{
739 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
740 unsigned long clean = filepages - min(filepages, mdtc->dirty);
741 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
742 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 743
c5edf9cd 744 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
745}
746
6f718656 747/**
b1cbc6d4
TH
748 * __wb_calc_thresh - @wb's share of dirty throttling threshold
749 * @dtc: dirty_throttle_context of interest
1babe183 750 *
a88a341a 751 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 752 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
753 *
754 * Note that balance_dirty_pages() will only seriously take it as a hard limit
755 * when sleeping max_pause per page is not enough to keep the dirty pages under
756 * control. For example, when the device is completely stalled due to some error
757 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
758 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 759 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 760 *
6f718656 761 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
762 * - starving fast devices
763 * - piling up dirty pages (that will take long time to sync) on slow devices
764 *
a88a341a 765 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
766 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
767 */
b1cbc6d4 768static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 769{
e9f07dfd 770 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 771 unsigned long thresh = dtc->thresh;
0d960a38 772 u64 wb_thresh;
16c4042f 773 long numerator, denominator;
693108a8 774 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 775
16c4042f 776 /*
0d960a38 777 * Calculate this BDI's share of the thresh ratio.
16c4042f 778 */
e9770b34 779 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 780 &numerator, &denominator);
04fbfdc1 781
0d960a38
TH
782 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
783 wb_thresh *= numerator;
784 do_div(wb_thresh, denominator);
04fbfdc1 785
b1cbc6d4 786 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 787
0d960a38
TH
788 wb_thresh += (thresh * wb_min_ratio) / 100;
789 if (wb_thresh > (thresh * wb_max_ratio) / 100)
790 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 791
0d960a38 792 return wb_thresh;
1da177e4
LT
793}
794
b1cbc6d4
TH
795unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
796{
797 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
798 .thresh = thresh };
799 return __wb_calc_thresh(&gdtc);
1da177e4
LT
800}
801
5a537485
MP
802/*
803 * setpoint - dirty 3
804 * f(dirty) := 1.0 + (----------------)
805 * limit - setpoint
806 *
807 * it's a 3rd order polynomial that subjects to
808 *
809 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
810 * (2) f(setpoint) = 1.0 => the balance point
811 * (3) f(limit) = 0 => the hard limit
812 * (4) df/dx <= 0 => negative feedback control
813 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
814 * => fast response on large errors; small oscillation near setpoint
815 */
d5c9fde3 816static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
817 unsigned long dirty,
818 unsigned long limit)
819{
820 long long pos_ratio;
821 long x;
822
d5c9fde3 823 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 824 (limit - setpoint) | 1);
5a537485
MP
825 pos_ratio = x;
826 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
827 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
828 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
829
830 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
831}
832
6c14ae1e
WF
833/*
834 * Dirty position control.
835 *
836 * (o) global/bdi setpoints
837 *
de1fff37 838 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
839 * When the number of dirty pages is higher/lower than the setpoint, the
840 * dirty position control ratio (and hence task dirty ratelimit) will be
841 * decreased/increased to bring the dirty pages back to the setpoint.
842 *
843 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
844 *
845 * if (dirty < setpoint) scale up pos_ratio
846 * if (dirty > setpoint) scale down pos_ratio
847 *
de1fff37
TH
848 * if (wb_dirty < wb_setpoint) scale up pos_ratio
849 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
850 *
851 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
852 *
853 * (o) global control line
854 *
855 * ^ pos_ratio
856 * |
857 * | |<===== global dirty control scope ======>|
858 * 2.0 .............*
859 * | .*
860 * | . *
861 * | . *
862 * | . *
863 * | . *
864 * | . *
865 * 1.0 ................................*
866 * | . . *
867 * | . . *
868 * | . . *
869 * | . . *
870 * | . . *
871 * 0 +------------.------------------.----------------------*------------->
872 * freerun^ setpoint^ limit^ dirty pages
873 *
de1fff37 874 * (o) wb control line
6c14ae1e
WF
875 *
876 * ^ pos_ratio
877 * |
878 * | *
879 * | *
880 * | *
881 * | *
882 * | * |<=========== span ============>|
883 * 1.0 .......................*
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * | . *
892 * | . *
893 * | . *
894 * | . *
895 * 1/4 ...............................................* * * * * * * * * * * *
896 * | . .
897 * | . .
898 * | . .
899 * 0 +----------------------.-------------------------------.------------->
de1fff37 900 * wb_setpoint^ x_intercept^
6c14ae1e 901 *
de1fff37 902 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
903 * be smoothly throttled down to normal if it starts high in situations like
904 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
905 * card's wb_dirty may rush to many times higher than wb_setpoint.
906 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 907 */
daddfa3c 908static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 909{
2bc00aef 910 struct bdi_writeback *wb = dtc->wb;
a88a341a 911 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 912 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 913 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 914 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
915 unsigned long x_intercept;
916 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 917 unsigned long wb_setpoint;
6c14ae1e
WF
918 unsigned long span;
919 long long pos_ratio; /* for scaling up/down the rate limit */
920 long x;
921
daddfa3c
TH
922 dtc->pos_ratio = 0;
923
2bc00aef 924 if (unlikely(dtc->dirty >= limit))
daddfa3c 925 return;
6c14ae1e
WF
926
927 /*
928 * global setpoint
929 *
5a537485
MP
930 * See comment for pos_ratio_polynom().
931 */
932 setpoint = (freerun + limit) / 2;
2bc00aef 933 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
934
935 /*
936 * The strictlimit feature is a tool preventing mistrusted filesystems
937 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
938 * such filesystems balance_dirty_pages always checks wb counters
939 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
940 * This is especially important for fuse which sets bdi->max_ratio to
941 * 1% by default. Without strictlimit feature, fuse writeback may
942 * consume arbitrary amount of RAM because it is accounted in
943 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 944 *
a88a341a 945 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 946 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
947 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
948 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 949 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 950 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 951 * about ~6K pages (as the average of background and throttle wb
5a537485 952 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 953 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 954 *
5a537485 955 * Note, that we cannot use global counters in these calculations
de1fff37 956 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
957 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
958 * in the example above).
6c14ae1e 959 */
a88a341a 960 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 961 long long wb_pos_ratio;
5a537485 962
daddfa3c
TH
963 if (dtc->wb_dirty < 8) {
964 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
965 2 << RATELIMIT_CALC_SHIFT);
966 return;
967 }
5a537485 968
2bc00aef 969 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 970 return;
5a537485 971
970fb01a
TH
972 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
973 dtc->wb_bg_thresh);
5a537485 974
de1fff37 975 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 976 return;
5a537485 977
2bc00aef 978 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 979 wb_thresh);
5a537485
MP
980
981 /*
de1fff37
TH
982 * Typically, for strictlimit case, wb_setpoint << setpoint
983 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 984 * state ("dirty") is not limiting factor and we have to
de1fff37 985 * make decision based on wb counters. But there is an
5a537485
MP
986 * important case when global pos_ratio should get precedence:
987 * global limits are exceeded (e.g. due to activities on other
de1fff37 988 * wb's) while given strictlimit wb is below limit.
5a537485 989 *
de1fff37 990 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 991 * but it would look too non-natural for the case of all
de1fff37 992 * activity in the system coming from a single strictlimit wb
5a537485
MP
993 * with bdi->max_ratio == 100%.
994 *
995 * Note that min() below somewhat changes the dynamics of the
996 * control system. Normally, pos_ratio value can be well over 3
de1fff37 997 * (when globally we are at freerun and wb is well below wb
5a537485
MP
998 * setpoint). Now the maximum pos_ratio in the same situation
999 * is 2. We might want to tweak this if we observe the control
1000 * system is too slow to adapt.
1001 */
daddfa3c
TH
1002 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1003 return;
5a537485 1004 }
6c14ae1e
WF
1005
1006 /*
1007 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1008 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1009 * pos_ratio further down/up. That is done by the following mechanism.
1010 */
1011
1012 /*
de1fff37 1013 * wb setpoint
6c14ae1e 1014 *
de1fff37 1015 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1016 *
de1fff37 1017 * x_intercept - wb_dirty
6c14ae1e 1018 * := --------------------------
de1fff37 1019 * x_intercept - wb_setpoint
6c14ae1e 1020 *
de1fff37 1021 * The main wb control line is a linear function that subjects to
6c14ae1e 1022 *
de1fff37
TH
1023 * (1) f(wb_setpoint) = 1.0
1024 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1025 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1026 *
de1fff37 1027 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1028 * regularly within range
de1fff37 1029 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1030 * for various filesystems, where (2) can yield in a reasonable 12.5%
1031 * fluctuation range for pos_ratio.
1032 *
de1fff37 1033 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1034 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1035 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1036 */
2bc00aef
TH
1037 if (unlikely(wb_thresh > dtc->thresh))
1038 wb_thresh = dtc->thresh;
aed21ad2 1039 /*
de1fff37 1040 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1041 * device is slow, but that it has remained inactive for long time.
1042 * Honour such devices a reasonable good (hopefully IO efficient)
1043 * threshold, so that the occasional writes won't be blocked and active
1044 * writes can rampup the threshold quickly.
1045 */
2bc00aef 1046 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1047 /*
de1fff37
TH
1048 * scale global setpoint to wb's:
1049 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1050 */
e4bc13ad 1051 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1052 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1053 /*
de1fff37
TH
1054 * Use span=(8*write_bw) in single wb case as indicated by
1055 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1056 *
de1fff37
TH
1057 * wb_thresh thresh - wb_thresh
1058 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1059 * thresh thresh
6c14ae1e 1060 */
2bc00aef 1061 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1062 x_intercept = wb_setpoint + span;
6c14ae1e 1063
2bc00aef
TH
1064 if (dtc->wb_dirty < x_intercept - span / 4) {
1065 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1066 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1067 } else
1068 pos_ratio /= 4;
1069
8927f66c 1070 /*
de1fff37 1071 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1072 * It may push the desired control point of global dirty pages higher
1073 * than setpoint.
1074 */
de1fff37 1075 x_intercept = wb_thresh / 2;
2bc00aef
TH
1076 if (dtc->wb_dirty < x_intercept) {
1077 if (dtc->wb_dirty > x_intercept / 8)
1078 pos_ratio = div_u64(pos_ratio * x_intercept,
1079 dtc->wb_dirty);
50657fc4 1080 else
8927f66c
WF
1081 pos_ratio *= 8;
1082 }
1083
daddfa3c 1084 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1085}
1086
a88a341a
TH
1087static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1088 unsigned long elapsed,
1089 unsigned long written)
e98be2d5
WF
1090{
1091 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1092 unsigned long avg = wb->avg_write_bandwidth;
1093 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1094 u64 bw;
1095
1096 /*
1097 * bw = written * HZ / elapsed
1098 *
1099 * bw * elapsed + write_bandwidth * (period - elapsed)
1100 * write_bandwidth = ---------------------------------------------------
1101 * period
c72efb65
TH
1102 *
1103 * @written may have decreased due to account_page_redirty().
1104 * Avoid underflowing @bw calculation.
e98be2d5 1105 */
a88a341a 1106 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1107 bw *= HZ;
1108 if (unlikely(elapsed > period)) {
1109 do_div(bw, elapsed);
1110 avg = bw;
1111 goto out;
1112 }
a88a341a 1113 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1114 bw >>= ilog2(period);
1115
1116 /*
1117 * one more level of smoothing, for filtering out sudden spikes
1118 */
1119 if (avg > old && old >= (unsigned long)bw)
1120 avg -= (avg - old) >> 3;
1121
1122 if (avg < old && old <= (unsigned long)bw)
1123 avg += (old - avg) >> 3;
1124
1125out:
95a46c65
TH
1126 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1127 avg = max(avg, 1LU);
1128 if (wb_has_dirty_io(wb)) {
1129 long delta = avg - wb->avg_write_bandwidth;
1130 WARN_ON_ONCE(atomic_long_add_return(delta,
1131 &wb->bdi->tot_write_bandwidth) <= 0);
1132 }
a88a341a
TH
1133 wb->write_bandwidth = bw;
1134 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1135}
1136
2bc00aef 1137static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1138{
e9f07dfd 1139 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1140 unsigned long thresh = dtc->thresh;
dcc25ae7 1141 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1142
1143 /*
1144 * Follow up in one step.
1145 */
1146 if (limit < thresh) {
1147 limit = thresh;
1148 goto update;
1149 }
1150
1151 /*
1152 * Follow down slowly. Use the higher one as the target, because thresh
1153 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1154 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1155 */
2bc00aef 1156 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1157 if (limit > thresh) {
1158 limit -= (limit - thresh) >> 5;
1159 goto update;
1160 }
1161 return;
1162update:
dcc25ae7 1163 dom->dirty_limit = limit;
c42843f2
WF
1164}
1165
e9f07dfd 1166static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1167 unsigned long now)
1168{
e9f07dfd 1169 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1170
1171 /*
1172 * check locklessly first to optimize away locking for the most time
1173 */
dcc25ae7 1174 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1175 return;
1176
dcc25ae7
TH
1177 spin_lock(&dom->lock);
1178 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1179 update_dirty_limit(dtc);
dcc25ae7 1180 dom->dirty_limit_tstamp = now;
c42843f2 1181 }
dcc25ae7 1182 spin_unlock(&dom->lock);
c42843f2
WF
1183}
1184
be3ffa27 1185/*
de1fff37 1186 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1187 *
de1fff37 1188 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1189 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1190 */
2bc00aef 1191static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1192 unsigned long dirtied,
1193 unsigned long elapsed)
be3ffa27 1194{
2bc00aef
TH
1195 struct bdi_writeback *wb = dtc->wb;
1196 unsigned long dirty = dtc->dirty;
1197 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1198 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1199 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1200 unsigned long write_bw = wb->avg_write_bandwidth;
1201 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1202 unsigned long dirty_rate;
1203 unsigned long task_ratelimit;
1204 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1205 unsigned long step;
1206 unsigned long x;
d59b1087 1207 unsigned long shift;
be3ffa27
WF
1208
1209 /*
1210 * The dirty rate will match the writeout rate in long term, except
1211 * when dirty pages are truncated by userspace or re-dirtied by FS.
1212 */
a88a341a 1213 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1214
be3ffa27
WF
1215 /*
1216 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1217 */
1218 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1219 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1220 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1221
1222 /*
1223 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1224 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1225 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1226 * formula will yield the balanced rate limit (write_bw / N).
1227 *
1228 * Note that the expanded form is not a pure rate feedback:
1229 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1230 * but also takes pos_ratio into account:
1231 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1232 *
1233 * (1) is not realistic because pos_ratio also takes part in balancing
1234 * the dirty rate. Consider the state
1235 * pos_ratio = 0.5 (3)
1236 * rate = 2 * (write_bw / N) (4)
1237 * If (1) is used, it will stuck in that state! Because each dd will
1238 * be throttled at
1239 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1240 * yielding
1241 * dirty_rate = N * task_ratelimit = write_bw (6)
1242 * put (6) into (1) we get
1243 * rate_(i+1) = rate_(i) (7)
1244 *
1245 * So we end up using (2) to always keep
1246 * rate_(i+1) ~= (write_bw / N) (8)
1247 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1248 * pos_ratio is able to drive itself to 1.0, which is not only where
1249 * the dirty count meet the setpoint, but also where the slope of
1250 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1251 */
1252 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1253 dirty_rate | 1);
bdaac490
WF
1254 /*
1255 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1256 */
1257 if (unlikely(balanced_dirty_ratelimit > write_bw))
1258 balanced_dirty_ratelimit = write_bw;
be3ffa27 1259
7381131c
WF
1260 /*
1261 * We could safely do this and return immediately:
1262 *
de1fff37 1263 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1264 *
1265 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1266 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1267 * limit the step size.
1268 *
1269 * The below code essentially only uses the relative value of
1270 *
1271 * task_ratelimit - dirty_ratelimit
1272 * = (pos_ratio - 1) * dirty_ratelimit
1273 *
1274 * which reflects the direction and size of dirty position error.
1275 */
1276
1277 /*
1278 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1279 * task_ratelimit is on the same side of dirty_ratelimit, too.
1280 * For example, when
1281 * - dirty_ratelimit > balanced_dirty_ratelimit
1282 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1283 * lowering dirty_ratelimit will help meet both the position and rate
1284 * control targets. Otherwise, don't update dirty_ratelimit if it will
1285 * only help meet the rate target. After all, what the users ultimately
1286 * feel and care are stable dirty rate and small position error.
1287 *
1288 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1289 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1290 * keeps jumping around randomly and can even leap far away at times
1291 * due to the small 200ms estimation period of dirty_rate (we want to
1292 * keep that period small to reduce time lags).
1293 */
1294 step = 0;
5a537485
MP
1295
1296 /*
de1fff37 1297 * For strictlimit case, calculations above were based on wb counters
a88a341a 1298 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1299 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1300 * Hence, to calculate "step" properly, we have to use wb_dirty as
1301 * "dirty" and wb_setpoint as "setpoint".
5a537485 1302 *
de1fff37
TH
1303 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1304 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1305 * of backing device.
5a537485 1306 */
a88a341a 1307 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1308 dirty = dtc->wb_dirty;
1309 if (dtc->wb_dirty < 8)
1310 setpoint = dtc->wb_dirty + 1;
5a537485 1311 else
970fb01a 1312 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1313 }
1314
7381131c 1315 if (dirty < setpoint) {
a88a341a 1316 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1317 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1318 if (dirty_ratelimit < x)
1319 step = x - dirty_ratelimit;
1320 } else {
a88a341a 1321 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1322 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1323 if (dirty_ratelimit > x)
1324 step = dirty_ratelimit - x;
1325 }
1326
1327 /*
1328 * Don't pursue 100% rate matching. It's impossible since the balanced
1329 * rate itself is constantly fluctuating. So decrease the track speed
1330 * when it gets close to the target. Helps eliminate pointless tremors.
1331 */
d59b1087
AR
1332 shift = dirty_ratelimit / (2 * step + 1);
1333 if (shift < BITS_PER_LONG)
1334 step = DIV_ROUND_UP(step >> shift, 8);
1335 else
1336 step = 0;
7381131c
WF
1337
1338 if (dirty_ratelimit < balanced_dirty_ratelimit)
1339 dirty_ratelimit += step;
1340 else
1341 dirty_ratelimit -= step;
1342
a88a341a
TH
1343 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1344 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1345
5634cc2a 1346 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1347}
1348
c2aa723a
TH
1349static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1350 struct dirty_throttle_control *mdtc,
8a731799
TH
1351 unsigned long start_time,
1352 bool update_ratelimit)
e98be2d5 1353{
c2aa723a 1354 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1355 unsigned long now = jiffies;
a88a341a 1356 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1357 unsigned long dirtied;
e98be2d5
WF
1358 unsigned long written;
1359
8a731799
TH
1360 lockdep_assert_held(&wb->list_lock);
1361
e98be2d5
WF
1362 /*
1363 * rate-limit, only update once every 200ms.
1364 */
1365 if (elapsed < BANDWIDTH_INTERVAL)
1366 return;
1367
a88a341a
TH
1368 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1369 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1370
1371 /*
1372 * Skip quiet periods when disk bandwidth is under-utilized.
1373 * (at least 1s idle time between two flusher runs)
1374 */
a88a341a 1375 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1376 goto snapshot;
1377
8a731799 1378 if (update_ratelimit) {
c2aa723a
TH
1379 domain_update_bandwidth(gdtc, now);
1380 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1381
1382 /*
1383 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1384 * compiler has no way to figure that out. Help it.
1385 */
1386 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1387 domain_update_bandwidth(mdtc, now);
1388 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1389 }
be3ffa27 1390 }
a88a341a 1391 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1392
1393snapshot:
a88a341a
TH
1394 wb->dirtied_stamp = dirtied;
1395 wb->written_stamp = written;
1396 wb->bw_time_stamp = now;
e98be2d5
WF
1397}
1398
8a731799 1399void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1400{
2bc00aef
TH
1401 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1402
c2aa723a 1403 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1404}
1405
9d823e8f 1406/*
d0e1d66b 1407 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1408 * will look to see if it needs to start dirty throttling.
1409 *
1410 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1411 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1412 * (the number of pages we may dirty without exceeding the dirty limits).
1413 */
1414static unsigned long dirty_poll_interval(unsigned long dirty,
1415 unsigned long thresh)
1416{
1417 if (thresh > dirty)
1418 return 1UL << (ilog2(thresh - dirty) >> 1);
1419
1420 return 1;
1421}
1422
a88a341a 1423static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1424 unsigned long wb_dirty)
c8462cc9 1425{
a88a341a 1426 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1427 unsigned long t;
c8462cc9 1428
7ccb9ad5
WF
1429 /*
1430 * Limit pause time for small memory systems. If sleeping for too long
1431 * time, a small pool of dirty/writeback pages may go empty and disk go
1432 * idle.
1433 *
1434 * 8 serves as the safety ratio.
1435 */
de1fff37 1436 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1437 t++;
1438
e3b6c655 1439 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1440}
1441
a88a341a
TH
1442static long wb_min_pause(struct bdi_writeback *wb,
1443 long max_pause,
1444 unsigned long task_ratelimit,
1445 unsigned long dirty_ratelimit,
1446 int *nr_dirtied_pause)
c8462cc9 1447{
a88a341a
TH
1448 long hi = ilog2(wb->avg_write_bandwidth);
1449 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1450 long t; /* target pause */
1451 long pause; /* estimated next pause */
1452 int pages; /* target nr_dirtied_pause */
c8462cc9 1453
7ccb9ad5
WF
1454 /* target for 10ms pause on 1-dd case */
1455 t = max(1, HZ / 100);
c8462cc9
WF
1456
1457 /*
1458 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1459 * overheads.
1460 *
7ccb9ad5 1461 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1462 */
1463 if (hi > lo)
7ccb9ad5 1464 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1465
1466 /*
7ccb9ad5
WF
1467 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1468 * on the much more stable dirty_ratelimit. However the next pause time
1469 * will be computed based on task_ratelimit and the two rate limits may
1470 * depart considerably at some time. Especially if task_ratelimit goes
1471 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1472 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1473 * result task_ratelimit won't be executed faithfully, which could
1474 * eventually bring down dirty_ratelimit.
c8462cc9 1475 *
7ccb9ad5
WF
1476 * We apply two rules to fix it up:
1477 * 1) try to estimate the next pause time and if necessary, use a lower
1478 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1479 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1480 * 2) limit the target pause time to max_pause/2, so that the normal
1481 * small fluctuations of task_ratelimit won't trigger rule (1) and
1482 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1483 */
7ccb9ad5
WF
1484 t = min(t, 1 + max_pause / 2);
1485 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1486
1487 /*
5b9b3574
WF
1488 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1489 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1490 * When the 16 consecutive reads are often interrupted by some dirty
1491 * throttling pause during the async writes, cfq will go into idles
1492 * (deadline is fine). So push nr_dirtied_pause as high as possible
1493 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1494 */
5b9b3574
WF
1495 if (pages < DIRTY_POLL_THRESH) {
1496 t = max_pause;
1497 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1498 if (pages > DIRTY_POLL_THRESH) {
1499 pages = DIRTY_POLL_THRESH;
1500 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1501 }
1502 }
1503
7ccb9ad5
WF
1504 pause = HZ * pages / (task_ratelimit + 1);
1505 if (pause > max_pause) {
1506 t = max_pause;
1507 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1508 }
c8462cc9 1509
7ccb9ad5 1510 *nr_dirtied_pause = pages;
c8462cc9 1511 /*
7ccb9ad5 1512 * The minimal pause time will normally be half the target pause time.
c8462cc9 1513 */
5b9b3574 1514 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1515}
1516
970fb01a 1517static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1518{
2bc00aef 1519 struct bdi_writeback *wb = dtc->wb;
93f78d88 1520 unsigned long wb_reclaimable;
5a537485
MP
1521
1522 /*
de1fff37 1523 * wb_thresh is not treated as some limiting factor as
5a537485 1524 * dirty_thresh, due to reasons
de1fff37 1525 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1526 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1527 * go into state (wb_dirty >> wb_thresh) either because
1528 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1529 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1530 * dirtiers for 100 seconds until wb_dirty drops under
1531 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1532 * wb_position_ratio() will let the dirtier task progress
de1fff37 1533 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1534 */
b1cbc6d4 1535 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1536 dtc->wb_bg_thresh = dtc->thresh ?
1537 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1538
1539 /*
1540 * In order to avoid the stacked BDI deadlock we need
1541 * to ensure we accurately count the 'dirty' pages when
1542 * the threshold is low.
1543 *
1544 * Otherwise it would be possible to get thresh+n pages
1545 * reported dirty, even though there are thresh-m pages
1546 * actually dirty; with m+n sitting in the percpu
1547 * deltas.
1548 */
2bc00aef 1549 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1550 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1551 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1552 } else {
93f78d88 1553 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1554 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1555 }
1556}
1557
1da177e4
LT
1558/*
1559 * balance_dirty_pages() must be called by processes which are generating dirty
1560 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1561 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1562 * If we're over `background_thresh' then the writeback threads are woken to
1563 * perform some writeout.
1da177e4 1564 */
4c578dce 1565static void balance_dirty_pages(struct bdi_writeback *wb,
143dfe86 1566 unsigned long pages_dirtied)
1da177e4 1567{
2bc00aef 1568 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1569 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1570 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1571 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1572 &mdtc_stor : NULL;
1573 struct dirty_throttle_control *sdtc;
143dfe86 1574 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1575 long period;
7ccb9ad5
WF
1576 long pause;
1577 long max_pause;
1578 long min_pause;
1579 int nr_dirtied_pause;
e50e3720 1580 bool dirty_exceeded = false;
143dfe86 1581 unsigned long task_ratelimit;
7ccb9ad5 1582 unsigned long dirty_ratelimit;
dfb8ae56 1583 struct backing_dev_info *bdi = wb->bdi;
5a537485 1584 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1585 unsigned long start_time = jiffies;
1da177e4
LT
1586
1587 for (;;) {
83712358 1588 unsigned long now = jiffies;
2bc00aef 1589 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1590 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1591 unsigned long m_thresh = 0;
1592 unsigned long m_bg_thresh = 0;
83712358 1593
143dfe86
WF
1594 /*
1595 * Unstable writes are a feature of certain networked
1596 * filesystems (i.e. NFS) in which data may have been
1597 * written to the server's write cache, but has not yet
1598 * been flushed to permanent storage.
1599 */
11fb9989
MG
1600 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1601 global_node_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1602 gdtc->avail = global_dirtyable_memory();
11fb9989 1603 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1604
9fc3a43e 1605 domain_dirty_limits(gdtc);
16c4042f 1606
5a537485 1607 if (unlikely(strictlimit)) {
970fb01a 1608 wb_dirty_limits(gdtc);
5a537485 1609
2bc00aef
TH
1610 dirty = gdtc->wb_dirty;
1611 thresh = gdtc->wb_thresh;
970fb01a 1612 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1613 } else {
2bc00aef
TH
1614 dirty = gdtc->dirty;
1615 thresh = gdtc->thresh;
1616 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1617 }
1618
c2aa723a 1619 if (mdtc) {
c5edf9cd 1620 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1621
1622 /*
1623 * If @wb belongs to !root memcg, repeat the same
1624 * basic calculations for the memcg domain.
1625 */
c5edf9cd
TH
1626 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1627 &mdtc->dirty, &writeback);
c2aa723a 1628 mdtc->dirty += writeback;
c5edf9cd 1629 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1630
1631 domain_dirty_limits(mdtc);
1632
1633 if (unlikely(strictlimit)) {
1634 wb_dirty_limits(mdtc);
1635 m_dirty = mdtc->wb_dirty;
1636 m_thresh = mdtc->wb_thresh;
1637 m_bg_thresh = mdtc->wb_bg_thresh;
1638 } else {
1639 m_dirty = mdtc->dirty;
1640 m_thresh = mdtc->thresh;
1641 m_bg_thresh = mdtc->bg_thresh;
1642 }
5a537485
MP
1643 }
1644
16c4042f
WF
1645 /*
1646 * Throttle it only when the background writeback cannot
1647 * catch-up. This avoids (excessively) small writeouts
de1fff37 1648 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1649 *
de1fff37
TH
1650 * In strictlimit case make decision based on the wb counters
1651 * and limits. Small writeouts when the wb limits are ramping
5a537485 1652 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1653 *
1654 * If memcg domain is in effect, @dirty should be under
1655 * both global and memcg freerun ceilings.
16c4042f 1656 */
c2aa723a
TH
1657 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1658 (!mdtc ||
1659 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1660 unsigned long intv = dirty_poll_interval(dirty, thresh);
1661 unsigned long m_intv = ULONG_MAX;
1662
83712358
WF
1663 current->dirty_paused_when = now;
1664 current->nr_dirtied = 0;
c2aa723a
TH
1665 if (mdtc)
1666 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1667 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1668 break;
83712358 1669 }
16c4042f 1670
bc05873d 1671 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1672 wb_start_background_writeback(wb);
143dfe86 1673
c2aa723a
TH
1674 /*
1675 * Calculate global domain's pos_ratio and select the
1676 * global dtc by default.
1677 */
5a537485 1678 if (!strictlimit)
970fb01a 1679 wb_dirty_limits(gdtc);
5fce25a9 1680
2bc00aef
TH
1681 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1682 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1683
1684 wb_position_ratio(gdtc);
c2aa723a
TH
1685 sdtc = gdtc;
1686
1687 if (mdtc) {
1688 /*
1689 * If memcg domain is in effect, calculate its
1690 * pos_ratio. @wb should satisfy constraints from
1691 * both global and memcg domains. Choose the one
1692 * w/ lower pos_ratio.
1693 */
1694 if (!strictlimit)
1695 wb_dirty_limits(mdtc);
1696
1697 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1698 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1699
1700 wb_position_ratio(mdtc);
1701 if (mdtc->pos_ratio < gdtc->pos_ratio)
1702 sdtc = mdtc;
1703 }
daddfa3c 1704
a88a341a
TH
1705 if (dirty_exceeded && !wb->dirty_exceeded)
1706 wb->dirty_exceeded = 1;
1da177e4 1707
8a731799
TH
1708 if (time_is_before_jiffies(wb->bw_time_stamp +
1709 BANDWIDTH_INTERVAL)) {
1710 spin_lock(&wb->list_lock);
c2aa723a 1711 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1712 spin_unlock(&wb->list_lock);
1713 }
e98be2d5 1714
c2aa723a 1715 /* throttle according to the chosen dtc */
a88a341a 1716 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1717 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1718 RATELIMIT_CALC_SHIFT;
c2aa723a 1719 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1720 min_pause = wb_min_pause(wb, max_pause,
1721 task_ratelimit, dirty_ratelimit,
1722 &nr_dirtied_pause);
7ccb9ad5 1723
3a73dbbc 1724 if (unlikely(task_ratelimit == 0)) {
83712358 1725 period = max_pause;
c8462cc9 1726 pause = max_pause;
143dfe86 1727 goto pause;
04fbfdc1 1728 }
83712358
WF
1729 period = HZ * pages_dirtied / task_ratelimit;
1730 pause = period;
1731 if (current->dirty_paused_when)
1732 pause -= now - current->dirty_paused_when;
1733 /*
1734 * For less than 1s think time (ext3/4 may block the dirtier
1735 * for up to 800ms from time to time on 1-HDD; so does xfs,
1736 * however at much less frequency), try to compensate it in
1737 * future periods by updating the virtual time; otherwise just
1738 * do a reset, as it may be a light dirtier.
1739 */
7ccb9ad5 1740 if (pause < min_pause) {
5634cc2a 1741 trace_balance_dirty_pages(wb,
c2aa723a
TH
1742 sdtc->thresh,
1743 sdtc->bg_thresh,
1744 sdtc->dirty,
1745 sdtc->wb_thresh,
1746 sdtc->wb_dirty,
ece13ac3
WF
1747 dirty_ratelimit,
1748 task_ratelimit,
1749 pages_dirtied,
83712358 1750 period,
7ccb9ad5 1751 min(pause, 0L),
ece13ac3 1752 start_time);
83712358
WF
1753 if (pause < -HZ) {
1754 current->dirty_paused_when = now;
1755 current->nr_dirtied = 0;
1756 } else if (period) {
1757 current->dirty_paused_when += period;
1758 current->nr_dirtied = 0;
7ccb9ad5
WF
1759 } else if (current->nr_dirtied_pause <= pages_dirtied)
1760 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1761 break;
04fbfdc1 1762 }
7ccb9ad5
WF
1763 if (unlikely(pause > max_pause)) {
1764 /* for occasional dropped task_ratelimit */
1765 now += min(pause - max_pause, max_pause);
1766 pause = max_pause;
1767 }
143dfe86
WF
1768
1769pause:
5634cc2a 1770 trace_balance_dirty_pages(wb,
c2aa723a
TH
1771 sdtc->thresh,
1772 sdtc->bg_thresh,
1773 sdtc->dirty,
1774 sdtc->wb_thresh,
1775 sdtc->wb_dirty,
ece13ac3
WF
1776 dirty_ratelimit,
1777 task_ratelimit,
1778 pages_dirtied,
83712358 1779 period,
ece13ac3
WF
1780 pause,
1781 start_time);
499d05ec 1782 __set_current_state(TASK_KILLABLE);
b57d74af 1783 wb->dirty_sleep = now;
d25105e8 1784 io_schedule_timeout(pause);
87c6a9b2 1785
83712358
WF
1786 current->dirty_paused_when = now + pause;
1787 current->nr_dirtied = 0;
7ccb9ad5 1788 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1789
ffd1f609 1790 /*
2bc00aef
TH
1791 * This is typically equal to (dirty < thresh) and can also
1792 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1793 */
1df64719 1794 if (task_ratelimit)
ffd1f609 1795 break;
499d05ec 1796
c5c6343c
WF
1797 /*
1798 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1799 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1800 * to go through, so that tasks on them still remain responsive.
1801 *
3f8b6fb7 1802 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1803 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1804 * more page. However wb_dirty has accounting errors. So use
93f78d88 1805 * the larger and more IO friendly wb_stat_error.
c5c6343c 1806 */
c2aa723a 1807 if (sdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1808 break;
1809
499d05ec
JK
1810 if (fatal_signal_pending(current))
1811 break;
1da177e4
LT
1812 }
1813
a88a341a
TH
1814 if (!dirty_exceeded && wb->dirty_exceeded)
1815 wb->dirty_exceeded = 0;
1da177e4 1816
bc05873d 1817 if (writeback_in_progress(wb))
5b0830cb 1818 return;
1da177e4
LT
1819
1820 /*
1821 * In laptop mode, we wait until hitting the higher threshold before
1822 * starting background writeout, and then write out all the way down
1823 * to the lower threshold. So slow writers cause minimal disk activity.
1824 *
1825 * In normal mode, we start background writeout at the lower
1826 * background_thresh, to keep the amount of dirty memory low.
1827 */
143dfe86
WF
1828 if (laptop_mode)
1829 return;
1830
2bc00aef 1831 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1832 wb_start_background_writeback(wb);
1da177e4
LT
1833}
1834
9d823e8f 1835static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1836
54848d73
WF
1837/*
1838 * Normal tasks are throttled by
1839 * loop {
1840 * dirty tsk->nr_dirtied_pause pages;
1841 * take a snap in balance_dirty_pages();
1842 * }
1843 * However there is a worst case. If every task exit immediately when dirtied
1844 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1845 * called to throttle the page dirties. The solution is to save the not yet
1846 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1847 * randomly into the running tasks. This works well for the above worst case,
1848 * as the new task will pick up and accumulate the old task's leaked dirty
1849 * count and eventually get throttled.
1850 */
1851DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1852
1da177e4 1853/**
d0e1d66b 1854 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1855 * @mapping: address_space which was dirtied
1da177e4
LT
1856 *
1857 * Processes which are dirtying memory should call in here once for each page
1858 * which was newly dirtied. The function will periodically check the system's
1859 * dirty state and will initiate writeback if needed.
1860 *
1861 * On really big machines, get_writeback_state is expensive, so try to avoid
1862 * calling it too often (ratelimiting). But once we're over the dirty memory
1863 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1864 * from overshooting the limit by (ratelimit_pages) each.
1865 */
d0e1d66b 1866void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1867{
dfb8ae56
TH
1868 struct inode *inode = mapping->host;
1869 struct backing_dev_info *bdi = inode_to_bdi(inode);
1870 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1871 int ratelimit;
1872 int *p;
1da177e4 1873
36715cef
WF
1874 if (!bdi_cap_account_dirty(bdi))
1875 return;
1876
dfb8ae56
TH
1877 if (inode_cgwb_enabled(inode))
1878 wb = wb_get_create_current(bdi, GFP_KERNEL);
1879 if (!wb)
1880 wb = &bdi->wb;
1881
9d823e8f 1882 ratelimit = current->nr_dirtied_pause;
a88a341a 1883 if (wb->dirty_exceeded)
9d823e8f
WF
1884 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1885
9d823e8f 1886 preempt_disable();
1da177e4 1887 /*
9d823e8f
WF
1888 * This prevents one CPU to accumulate too many dirtied pages without
1889 * calling into balance_dirty_pages(), which can happen when there are
1890 * 1000+ tasks, all of them start dirtying pages at exactly the same
1891 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1892 */
7c8e0181 1893 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1894 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1895 *p = 0;
d3bc1fef
WF
1896 else if (unlikely(*p >= ratelimit_pages)) {
1897 *p = 0;
1898 ratelimit = 0;
1da177e4 1899 }
54848d73
WF
1900 /*
1901 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1902 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1903 * the dirty throttling and livelock other long-run dirtiers.
1904 */
7c8e0181 1905 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1906 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1907 unsigned long nr_pages_dirtied;
54848d73
WF
1908 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1909 *p -= nr_pages_dirtied;
1910 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1911 }
fa5a734e 1912 preempt_enable();
9d823e8f
WF
1913
1914 if (unlikely(current->nr_dirtied >= ratelimit))
4c578dce 1915 balance_dirty_pages(wb, current->nr_dirtied);
dfb8ae56
TH
1916
1917 wb_put(wb);
1da177e4 1918}
d0e1d66b 1919EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1920
aa661bbe
TH
1921/**
1922 * wb_over_bg_thresh - does @wb need to be written back?
1923 * @wb: bdi_writeback of interest
1924 *
1925 * Determines whether background writeback should keep writing @wb or it's
1926 * clean enough. Returns %true if writeback should continue.
1927 */
1928bool wb_over_bg_thresh(struct bdi_writeback *wb)
1929{
947e9762 1930 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1931 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1932 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1933 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1934 &mdtc_stor : NULL;
aa661bbe 1935
947e9762
TH
1936 /*
1937 * Similar to balance_dirty_pages() but ignores pages being written
1938 * as we're trying to decide whether to put more under writeback.
1939 */
1940 gdtc->avail = global_dirtyable_memory();
11fb9989
MG
1941 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1942 global_node_page_state(NR_UNSTABLE_NFS);
947e9762 1943 domain_dirty_limits(gdtc);
aa661bbe 1944
947e9762 1945 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1946 return true;
1947
74d36944
HC
1948 if (wb_stat(wb, WB_RECLAIMABLE) >
1949 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
aa661bbe
TH
1950 return true;
1951
c2aa723a 1952 if (mdtc) {
c5edf9cd 1953 unsigned long filepages, headroom, writeback;
c2aa723a 1954
c5edf9cd
TH
1955 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1956 &writeback);
1957 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1958 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1959
1960 if (mdtc->dirty > mdtc->bg_thresh)
1961 return true;
1962
74d36944
HC
1963 if (wb_stat(wb, WB_RECLAIMABLE) >
1964 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
c2aa723a
TH
1965 return true;
1966 }
1967
aa661bbe
TH
1968 return false;
1969}
1970
1da177e4
LT
1971/*
1972 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973 */
cccad5b9 1974int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1975 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1976{
94af5846
YS
1977 unsigned int old_interval = dirty_writeback_interval;
1978 int ret;
1979
1980 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
1981
1982 /*
1983 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1984 * and a different non-zero value will wakeup the writeback threads.
1985 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1986 * iterate over all bdis and wbs.
1987 * The reason we do this is to make the change take effect immediately.
1988 */
1989 if (!ret && write && dirty_writeback_interval &&
1990 dirty_writeback_interval != old_interval)
94af5846
YS
1991 wakeup_flusher_threads(WB_REASON_PERIODIC);
1992
1993 return ret;
1da177e4
LT
1994}
1995
c2c4986e 1996#ifdef CONFIG_BLOCK
31373d09 1997void laptop_mode_timer_fn(unsigned long data)
1da177e4 1998{
31373d09 1999 struct request_queue *q = (struct request_queue *)data;
1da177e4 2000
0ab29fd0 2001 wakeup_flusher_threads_bdi(q->backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2002}
2003
2004/*
2005 * We've spun up the disk and we're in laptop mode: schedule writeback
2006 * of all dirty data a few seconds from now. If the flush is already scheduled
2007 * then push it back - the user is still using the disk.
2008 */
31373d09 2009void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2010{
31373d09 2011 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2012}
2013
2014/*
2015 * We're in laptop mode and we've just synced. The sync's writes will have
2016 * caused another writeback to be scheduled by laptop_io_completion.
2017 * Nothing needs to be written back anymore, so we unschedule the writeback.
2018 */
2019void laptop_sync_completion(void)
2020{
31373d09
MG
2021 struct backing_dev_info *bdi;
2022
2023 rcu_read_lock();
2024
2025 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2026 del_timer(&bdi->laptop_mode_wb_timer);
2027
2028 rcu_read_unlock();
1da177e4 2029}
c2c4986e 2030#endif
1da177e4
LT
2031
2032/*
2033 * If ratelimit_pages is too high then we can get into dirty-data overload
2034 * if a large number of processes all perform writes at the same time.
2035 * If it is too low then SMP machines will call the (expensive)
2036 * get_writeback_state too often.
2037 *
2038 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2039 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2040 * thresholds.
1da177e4
LT
2041 */
2042
2d1d43f6 2043void writeback_set_ratelimit(void)
1da177e4 2044{
dcc25ae7 2045 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2046 unsigned long background_thresh;
2047 unsigned long dirty_thresh;
dcc25ae7 2048
9d823e8f 2049 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2050 dom->dirty_limit = dirty_thresh;
9d823e8f 2051 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2052 if (ratelimit_pages < 16)
2053 ratelimit_pages = 16;
1da177e4
LT
2054}
2055
1d7ac6ae 2056static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2057{
1d7ac6ae
SAS
2058 writeback_set_ratelimit();
2059 return 0;
1da177e4
LT
2060}
2061
1da177e4 2062/*
dc6e29da
LT
2063 * Called early on to tune the page writeback dirty limits.
2064 *
2065 * We used to scale dirty pages according to how total memory
2066 * related to pages that could be allocated for buffers (by
2067 * comparing nr_free_buffer_pages() to vm_total_pages.
2068 *
2069 * However, that was when we used "dirty_ratio" to scale with
2070 * all memory, and we don't do that any more. "dirty_ratio"
2071 * is now applied to total non-HIGHPAGE memory (by subtracting
2072 * totalhigh_pages from vm_total_pages), and as such we can't
2073 * get into the old insane situation any more where we had
2074 * large amounts of dirty pages compared to a small amount of
2075 * non-HIGHMEM memory.
2076 *
2077 * But we might still want to scale the dirty_ratio by how
2078 * much memory the box has..
1da177e4
LT
2079 */
2080void __init page_writeback_init(void)
2081{
a50fcb51
RV
2082 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2083
1d7ac6ae
SAS
2084 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2085 page_writeback_cpu_online, NULL);
2086 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2087 page_writeback_cpu_online);
1da177e4
LT
2088}
2089
f446daae
JK
2090/**
2091 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2092 * @mapping: address space structure to write
2093 * @start: starting page index
2094 * @end: ending page index (inclusive)
2095 *
2096 * This function scans the page range from @start to @end (inclusive) and tags
2097 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2098 * that write_cache_pages (or whoever calls this function) will then use
2099 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2100 * used to avoid livelocking of writeback by a process steadily creating new
2101 * dirty pages in the file (thus it is important for this function to be quick
2102 * so that it can tag pages faster than a dirtying process can create them).
2103 */
2104/*
2105 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2106 */
f446daae
JK
2107void tag_pages_for_writeback(struct address_space *mapping,
2108 pgoff_t start, pgoff_t end)
2109{
3c111a07 2110#define WRITEBACK_TAG_BATCH 4096
268f42de
MW
2111 unsigned long tagged = 0;
2112 struct radix_tree_iter iter;
2113 void **slot;
2114
2115 spin_lock_irq(&mapping->tree_lock);
2116 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2117 PAGECACHE_TAG_DIRTY) {
2118 if (iter.index > end)
2119 break;
2120 radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2121 PAGECACHE_TAG_TOWRITE);
2122 tagged++;
2123 if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2124 continue;
2125 slot = radix_tree_iter_resume(slot, &iter);
f446daae 2126 spin_unlock_irq(&mapping->tree_lock);
f446daae 2127 cond_resched();
268f42de
MW
2128 spin_lock_irq(&mapping->tree_lock);
2129 }
2130 spin_unlock_irq(&mapping->tree_lock);
f446daae
JK
2131}
2132EXPORT_SYMBOL(tag_pages_for_writeback);
2133
811d736f 2134/**
0ea97180 2135 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2136 * @mapping: address space structure to write
2137 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2138 * @writepage: function called for each page
2139 * @data: data passed to writepage function
811d736f 2140 *
0ea97180 2141 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2144 * and msync() need to guarantee that all the data which was dirty at the time
2145 * the call was made get new I/O started against them. If wbc->sync_mode is
2146 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2147 * existing IO to complete.
f446daae
JK
2148 *
2149 * To avoid livelocks (when other process dirties new pages), we first tag
2150 * pages which should be written back with TOWRITE tag and only then start
2151 * writing them. For data-integrity sync we have to be careful so that we do
2152 * not miss some pages (e.g., because some other process has cleared TOWRITE
2153 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2154 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 2155 */
0ea97180
MS
2156int write_cache_pages(struct address_space *mapping,
2157 struct writeback_control *wbc, writepage_t writepage,
2158 void *data)
811d736f 2159{
811d736f
DH
2160 int ret = 0;
2161 int done = 0;
811d736f
DH
2162 struct pagevec pvec;
2163 int nr_pages;
31a12666 2164 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2165 pgoff_t index;
2166 pgoff_t end; /* Inclusive */
bd19e012 2167 pgoff_t done_index;
31a12666 2168 int cycled;
811d736f 2169 int range_whole = 0;
f446daae 2170 int tag;
811d736f 2171
811d736f
DH
2172 pagevec_init(&pvec, 0);
2173 if (wbc->range_cyclic) {
31a12666
NP
2174 writeback_index = mapping->writeback_index; /* prev offset */
2175 index = writeback_index;
2176 if (index == 0)
2177 cycled = 1;
2178 else
2179 cycled = 0;
811d736f
DH
2180 end = -1;
2181 } else {
09cbfeaf
KS
2182 index = wbc->range_start >> PAGE_SHIFT;
2183 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2184 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2185 range_whole = 1;
31a12666 2186 cycled = 1; /* ignore range_cyclic tests */
811d736f 2187 }
6e6938b6 2188 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2189 tag = PAGECACHE_TAG_TOWRITE;
2190 else
2191 tag = PAGECACHE_TAG_DIRTY;
811d736f 2192retry:
6e6938b6 2193 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2194 tag_pages_for_writeback(mapping, index, end);
bd19e012 2195 done_index = index;
5a3d5c98
NP
2196 while (!done && (index <= end)) {
2197 int i;
2198
f446daae 2199 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
2200 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2201 if (nr_pages == 0)
2202 break;
811d736f 2203
811d736f
DH
2204 for (i = 0; i < nr_pages; i++) {
2205 struct page *page = pvec.pages[i];
2206
2207 /*
d5482cdf
NP
2208 * At this point, the page may be truncated or
2209 * invalidated (changing page->mapping to NULL), or
2210 * even swizzled back from swapper_space to tmpfs file
2211 * mapping. However, page->index will not change
2212 * because we have a reference on the page.
811d736f 2213 */
d5482cdf
NP
2214 if (page->index > end) {
2215 /*
2216 * can't be range_cyclic (1st pass) because
2217 * end == -1 in that case.
2218 */
2219 done = 1;
2220 break;
2221 }
2222
cf15b07c 2223 done_index = page->index;
d5482cdf 2224
811d736f
DH
2225 lock_page(page);
2226
5a3d5c98
NP
2227 /*
2228 * Page truncated or invalidated. We can freely skip it
2229 * then, even for data integrity operations: the page
2230 * has disappeared concurrently, so there could be no
2231 * real expectation of this data interity operation
2232 * even if there is now a new, dirty page at the same
2233 * pagecache address.
2234 */
811d736f 2235 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2236continue_unlock:
811d736f
DH
2237 unlock_page(page);
2238 continue;
2239 }
2240
515f4a03
NP
2241 if (!PageDirty(page)) {
2242 /* someone wrote it for us */
2243 goto continue_unlock;
2244 }
2245
2246 if (PageWriteback(page)) {
2247 if (wbc->sync_mode != WB_SYNC_NONE)
2248 wait_on_page_writeback(page);
2249 else
2250 goto continue_unlock;
2251 }
811d736f 2252
515f4a03
NP
2253 BUG_ON(PageWriteback(page));
2254 if (!clear_page_dirty_for_io(page))
5a3d5c98 2255 goto continue_unlock;
811d736f 2256
de1414a6 2257 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2258 ret = (*writepage)(page, wbc, data);
00266770
NP
2259 if (unlikely(ret)) {
2260 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2261 unlock_page(page);
2262 ret = 0;
2263 } else {
2264 /*
2265 * done_index is set past this page,
2266 * so media errors will not choke
2267 * background writeout for the entire
2268 * file. This has consequences for
2269 * range_cyclic semantics (ie. it may
2270 * not be suitable for data integrity
2271 * writeout).
2272 */
cf15b07c 2273 done_index = page->index + 1;
00266770
NP
2274 done = 1;
2275 break;
2276 }
0b564927 2277 }
00266770 2278
546a1924
DC
2279 /*
2280 * We stop writing back only if we are not doing
2281 * integrity sync. In case of integrity sync we have to
2282 * keep going until we have written all the pages
2283 * we tagged for writeback prior to entering this loop.
2284 */
2285 if (--wbc->nr_to_write <= 0 &&
2286 wbc->sync_mode == WB_SYNC_NONE) {
2287 done = 1;
2288 break;
05fe478d 2289 }
811d736f
DH
2290 }
2291 pagevec_release(&pvec);
2292 cond_resched();
2293 }
3a4c6800 2294 if (!cycled && !done) {
811d736f 2295 /*
31a12666 2296 * range_cyclic:
811d736f
DH
2297 * We hit the last page and there is more work to be done: wrap
2298 * back to the start of the file
2299 */
31a12666 2300 cycled = 1;
811d736f 2301 index = 0;
31a12666 2302 end = writeback_index - 1;
811d736f
DH
2303 goto retry;
2304 }
0b564927
DC
2305 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2306 mapping->writeback_index = done_index;
06d6cf69 2307
811d736f
DH
2308 return ret;
2309}
0ea97180
MS
2310EXPORT_SYMBOL(write_cache_pages);
2311
2312/*
2313 * Function used by generic_writepages to call the real writepage
2314 * function and set the mapping flags on error
2315 */
2316static int __writepage(struct page *page, struct writeback_control *wbc,
2317 void *data)
2318{
2319 struct address_space *mapping = data;
2320 int ret = mapping->a_ops->writepage(page, wbc);
2321 mapping_set_error(mapping, ret);
2322 return ret;
2323}
2324
2325/**
2326 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2327 * @mapping: address space structure to write
2328 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2329 *
2330 * This is a library function, which implements the writepages()
2331 * address_space_operation.
2332 */
2333int generic_writepages(struct address_space *mapping,
2334 struct writeback_control *wbc)
2335{
9b6096a6
SL
2336 struct blk_plug plug;
2337 int ret;
2338
0ea97180
MS
2339 /* deal with chardevs and other special file */
2340 if (!mapping->a_ops->writepage)
2341 return 0;
2342
9b6096a6
SL
2343 blk_start_plug(&plug);
2344 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2345 blk_finish_plug(&plug);
2346 return ret;
0ea97180 2347}
811d736f
DH
2348
2349EXPORT_SYMBOL(generic_writepages);
2350
1da177e4
LT
2351int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2352{
22905f77
AM
2353 int ret;
2354
1da177e4
LT
2355 if (wbc->nr_to_write <= 0)
2356 return 0;
80a2ea9f
TT
2357 while (1) {
2358 if (mapping->a_ops->writepages)
2359 ret = mapping->a_ops->writepages(mapping, wbc);
2360 else
2361 ret = generic_writepages(mapping, wbc);
2362 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2363 break;
2364 cond_resched();
2365 congestion_wait(BLK_RW_ASYNC, HZ/50);
2366 }
22905f77 2367 return ret;
1da177e4
LT
2368}
2369
2370/**
2b69c828 2371 * write_one_page - write out a single page and wait on I/O
67be2dd1 2372 * @page: the page to write
1da177e4
LT
2373 *
2374 * The page must be locked by the caller and will be unlocked upon return.
2375 *
37e51a76
JL
2376 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2377 * function returns.
1da177e4 2378 */
2b69c828 2379int write_one_page(struct page *page)
1da177e4
LT
2380{
2381 struct address_space *mapping = page->mapping;
2382 int ret = 0;
2383 struct writeback_control wbc = {
2384 .sync_mode = WB_SYNC_ALL,
2385 .nr_to_write = 1,
2386 };
2387
2388 BUG_ON(!PageLocked(page));
2389
2b69c828 2390 wait_on_page_writeback(page);
1da177e4
LT
2391
2392 if (clear_page_dirty_for_io(page)) {
09cbfeaf 2393 get_page(page);
1da177e4 2394 ret = mapping->a_ops->writepage(page, &wbc);
37e51a76 2395 if (ret == 0)
1da177e4 2396 wait_on_page_writeback(page);
09cbfeaf 2397 put_page(page);
1da177e4
LT
2398 } else {
2399 unlock_page(page);
2400 }
37e51a76
JL
2401
2402 if (!ret)
2403 ret = filemap_check_errors(mapping);
1da177e4
LT
2404 return ret;
2405}
2406EXPORT_SYMBOL(write_one_page);
2407
76719325
KC
2408/*
2409 * For address_spaces which do not use buffers nor write back.
2410 */
2411int __set_page_dirty_no_writeback(struct page *page)
2412{
2413 if (!PageDirty(page))
c3f0da63 2414 return !TestSetPageDirty(page);
76719325
KC
2415 return 0;
2416}
2417
e3a7cca1
ES
2418/*
2419 * Helper function for set_page_dirty family.
c4843a75 2420 *
81f8c3a4 2421 * Caller must hold lock_page_memcg().
c4843a75 2422 *
e3a7cca1
ES
2423 * NOTE: This relies on being atomic wrt interrupts.
2424 */
62cccb8c 2425void account_page_dirtied(struct page *page, struct address_space *mapping)
e3a7cca1 2426{
52ebea74
TH
2427 struct inode *inode = mapping->host;
2428
9fb0a7da
TH
2429 trace_writeback_dirty_page(page, mapping);
2430
e3a7cca1 2431 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2432 struct bdi_writeback *wb;
de1414a6 2433
52ebea74
TH
2434 inode_attach_wb(inode, page);
2435 wb = inode_to_wb(inode);
de1414a6 2436
00f3ca2c 2437 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2438 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2439 __inc_node_page_state(page, NR_DIRTIED);
3e8f399d
NB
2440 inc_wb_stat(wb, WB_RECLAIMABLE);
2441 inc_wb_stat(wb, WB_DIRTIED);
09cbfeaf 2442 task_io_account_write(PAGE_SIZE);
d3bc1fef
WF
2443 current->nr_dirtied++;
2444 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2445 }
2446}
679ceace 2447EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2448
b9ea2515
KK
2449/*
2450 * Helper function for deaccounting dirty page without writeback.
2451 *
81f8c3a4 2452 * Caller must hold lock_page_memcg().
b9ea2515 2453 */
c4843a75 2454void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 2455 struct bdi_writeback *wb)
b9ea2515
KK
2456{
2457 if (mapping_cap_account_dirty(mapping)) {
00f3ca2c 2458 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2459 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2460 dec_wb_stat(wb, WB_RECLAIMABLE);
09cbfeaf 2461 task_io_account_cancelled_write(PAGE_SIZE);
b9ea2515
KK
2462 }
2463}
b9ea2515 2464
1da177e4
LT
2465/*
2466 * For address_spaces which do not use buffers. Just tag the page as dirty in
2467 * its radix tree.
2468 *
2469 * This is also used when a single buffer is being dirtied: we want to set the
2470 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2471 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2472 *
2d6d7f98
JW
2473 * The caller must ensure this doesn't race with truncation. Most will simply
2474 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2475 * the pte lock held, which also locks out truncation.
1da177e4
LT
2476 */
2477int __set_page_dirty_nobuffers(struct page *page)
2478{
62cccb8c 2479 lock_page_memcg(page);
1da177e4
LT
2480 if (!TestSetPageDirty(page)) {
2481 struct address_space *mapping = page_mapping(page);
a85d9df1 2482 unsigned long flags;
1da177e4 2483
c4843a75 2484 if (!mapping) {
62cccb8c 2485 unlock_page_memcg(page);
8c08540f 2486 return 1;
c4843a75 2487 }
8c08540f 2488
a85d9df1 2489 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2490 BUG_ON(page_mapping(page) != mapping);
2491 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
62cccb8c 2492 account_page_dirtied(page, mapping);
2d6d7f98
JW
2493 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2494 PAGECACHE_TAG_DIRTY);
a85d9df1 2495 spin_unlock_irqrestore(&mapping->tree_lock, flags);
62cccb8c 2496 unlock_page_memcg(page);
c4843a75 2497
8c08540f
AM
2498 if (mapping->host) {
2499 /* !PageAnon && !swapper_space */
2500 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2501 }
4741c9fd 2502 return 1;
1da177e4 2503 }
62cccb8c 2504 unlock_page_memcg(page);
4741c9fd 2505 return 0;
1da177e4
LT
2506}
2507EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2508
2f800fbd
WF
2509/*
2510 * Call this whenever redirtying a page, to de-account the dirty counters
2511 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2512 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2513 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2514 * control.
2515 */
2516void account_page_redirty(struct page *page)
2517{
2518 struct address_space *mapping = page->mapping;
91018134 2519
2f800fbd 2520 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2521 struct inode *inode = mapping->host;
2522 struct bdi_writeback *wb;
2523 bool locked;
91018134 2524
682aa8e1 2525 wb = unlocked_inode_to_wb_begin(inode, &locked);
2f800fbd 2526 current->nr_dirtied--;
c4a25635 2527 dec_node_page_state(page, NR_DIRTIED);
91018134 2528 dec_wb_stat(wb, WB_DIRTIED);
682aa8e1 2529 unlocked_inode_to_wb_end(inode, locked);
2f800fbd
WF
2530 }
2531}
2532EXPORT_SYMBOL(account_page_redirty);
2533
1da177e4
LT
2534/*
2535 * When a writepage implementation decides that it doesn't want to write this
2536 * page for some reason, it should redirty the locked page via
2537 * redirty_page_for_writepage() and it should then unlock the page and return 0
2538 */
2539int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2540{
8d38633c
KK
2541 int ret;
2542
1da177e4 2543 wbc->pages_skipped++;
8d38633c 2544 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2545 account_page_redirty(page);
8d38633c 2546 return ret;
1da177e4
LT
2547}
2548EXPORT_SYMBOL(redirty_page_for_writepage);
2549
2550/*
6746aff7
WF
2551 * Dirty a page.
2552 *
2553 * For pages with a mapping this should be done under the page lock
2554 * for the benefit of asynchronous memory errors who prefer a consistent
2555 * dirty state. This rule can be broken in some special cases,
2556 * but should be better not to.
2557 *
1da177e4
LT
2558 * If the mapping doesn't provide a set_page_dirty a_op, then
2559 * just fall through and assume that it wants buffer_heads.
2560 */
1cf6e7d8 2561int set_page_dirty(struct page *page)
1da177e4
LT
2562{
2563 struct address_space *mapping = page_mapping(page);
2564
800d8c63 2565 page = compound_head(page);
1da177e4
LT
2566 if (likely(mapping)) {
2567 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2568 /*
2569 * readahead/lru_deactivate_page could remain
2570 * PG_readahead/PG_reclaim due to race with end_page_writeback
2571 * About readahead, if the page is written, the flags would be
2572 * reset. So no problem.
2573 * About lru_deactivate_page, if the page is redirty, the flag
2574 * will be reset. So no problem. but if the page is used by readahead
2575 * it will confuse readahead and make it restart the size rampup
2576 * process. But it's a trivial problem.
2577 */
a4bb3ecd
NH
2578 if (PageReclaim(page))
2579 ClearPageReclaim(page);
9361401e
DH
2580#ifdef CONFIG_BLOCK
2581 if (!spd)
2582 spd = __set_page_dirty_buffers;
2583#endif
2584 return (*spd)(page);
1da177e4 2585 }
4741c9fd
AM
2586 if (!PageDirty(page)) {
2587 if (!TestSetPageDirty(page))
2588 return 1;
2589 }
1da177e4
LT
2590 return 0;
2591}
2592EXPORT_SYMBOL(set_page_dirty);
2593
2594/*
2595 * set_page_dirty() is racy if the caller has no reference against
2596 * page->mapping->host, and if the page is unlocked. This is because another
2597 * CPU could truncate the page off the mapping and then free the mapping.
2598 *
2599 * Usually, the page _is_ locked, or the caller is a user-space process which
2600 * holds a reference on the inode by having an open file.
2601 *
2602 * In other cases, the page should be locked before running set_page_dirty().
2603 */
2604int set_page_dirty_lock(struct page *page)
2605{
2606 int ret;
2607
7eaceacc 2608 lock_page(page);
1da177e4
LT
2609 ret = set_page_dirty(page);
2610 unlock_page(page);
2611 return ret;
2612}
2613EXPORT_SYMBOL(set_page_dirty_lock);
2614
11f81bec
TH
2615/*
2616 * This cancels just the dirty bit on the kernel page itself, it does NOT
2617 * actually remove dirty bits on any mmap's that may be around. It also
2618 * leaves the page tagged dirty, so any sync activity will still find it on
2619 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2620 * look at the dirty bits in the VM.
2621 *
2622 * Doing this should *normally* only ever be done when a page is truncated,
2623 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2624 * this when it notices that somebody has cleaned out all the buffers on a
2625 * page without actually doing it through the VM. Can you say "ext3 is
2626 * horribly ugly"? Thought you could.
2627 */
2628void cancel_dirty_page(struct page *page)
2629{
c4843a75
GT
2630 struct address_space *mapping = page_mapping(page);
2631
2632 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2633 struct inode *inode = mapping->host;
2634 struct bdi_writeback *wb;
682aa8e1 2635 bool locked;
c4843a75 2636
62cccb8c 2637 lock_page_memcg(page);
682aa8e1 2638 wb = unlocked_inode_to_wb_begin(inode, &locked);
c4843a75
GT
2639
2640 if (TestClearPageDirty(page))
62cccb8c 2641 account_page_cleaned(page, mapping, wb);
c4843a75 2642
682aa8e1 2643 unlocked_inode_to_wb_end(inode, locked);
62cccb8c 2644 unlock_page_memcg(page);
c4843a75
GT
2645 } else {
2646 ClearPageDirty(page);
2647 }
11f81bec
TH
2648}
2649EXPORT_SYMBOL(cancel_dirty_page);
2650
1da177e4
LT
2651/*
2652 * Clear a page's dirty flag, while caring for dirty memory accounting.
2653 * Returns true if the page was previously dirty.
2654 *
2655 * This is for preparing to put the page under writeout. We leave the page
2656 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2657 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2658 * implementation will run either set_page_writeback() or set_page_dirty(),
2659 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2660 * back into sync.
2661 *
2662 * This incoherency between the page's dirty flag and radix-tree tag is
2663 * unfortunate, but it only exists while the page is locked.
2664 */
2665int clear_page_dirty_for_io(struct page *page)
2666{
2667 struct address_space *mapping = page_mapping(page);
c4843a75 2668 int ret = 0;
1da177e4 2669
79352894
NP
2670 BUG_ON(!PageLocked(page));
2671
7658cc28 2672 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2673 struct inode *inode = mapping->host;
2674 struct bdi_writeback *wb;
682aa8e1
TH
2675 bool locked;
2676
7658cc28
LT
2677 /*
2678 * Yes, Virginia, this is indeed insane.
2679 *
2680 * We use this sequence to make sure that
2681 * (a) we account for dirty stats properly
2682 * (b) we tell the low-level filesystem to
2683 * mark the whole page dirty if it was
2684 * dirty in a pagetable. Only to then
2685 * (c) clean the page again and return 1 to
2686 * cause the writeback.
2687 *
2688 * This way we avoid all nasty races with the
2689 * dirty bit in multiple places and clearing
2690 * them concurrently from different threads.
2691 *
2692 * Note! Normally the "set_page_dirty(page)"
2693 * has no effect on the actual dirty bit - since
2694 * that will already usually be set. But we
2695 * need the side effects, and it can help us
2696 * avoid races.
2697 *
2698 * We basically use the page "master dirty bit"
2699 * as a serialization point for all the different
2700 * threads doing their things.
7658cc28
LT
2701 */
2702 if (page_mkclean(page))
2703 set_page_dirty(page);
79352894
NP
2704 /*
2705 * We carefully synchronise fault handlers against
2706 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2707 * at this point. We do this by having them hold the
2708 * page lock while dirtying the page, and pages are
2709 * always locked coming in here, so we get the desired
2710 * exclusion.
79352894 2711 */
682aa8e1 2712 wb = unlocked_inode_to_wb_begin(inode, &locked);
7658cc28 2713 if (TestClearPageDirty(page)) {
00f3ca2c 2714 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2715 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2716 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2717 ret = 1;
1da177e4 2718 }
682aa8e1 2719 unlocked_inode_to_wb_end(inode, locked);
c4843a75 2720 return ret;
1da177e4 2721 }
7658cc28 2722 return TestClearPageDirty(page);
1da177e4 2723}
58bb01a9 2724EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2725
2726int test_clear_page_writeback(struct page *page)
2727{
2728 struct address_space *mapping = page_mapping(page);
739f79fc
JW
2729 struct mem_cgroup *memcg;
2730 struct lruvec *lruvec;
d7365e78 2731 int ret;
1da177e4 2732
739f79fc
JW
2733 memcg = lock_page_memcg(page);
2734 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
371a096e 2735 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2736 struct inode *inode = mapping->host;
2737 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2738 unsigned long flags;
2739
19fd6231 2740 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2741 ret = TestClearPageWriteback(page);
69cb51d1 2742 if (ret) {
1da177e4
LT
2743 radix_tree_tag_clear(&mapping->page_tree,
2744 page_index(page),
2745 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2746 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2747 struct bdi_writeback *wb = inode_to_wb(inode);
2748
3e8f399d 2749 dec_wb_stat(wb, WB_WRITEBACK);
91018134 2750 __wb_writeout_inc(wb);
04fbfdc1 2751 }
69cb51d1 2752 }
6c60d2b5
DC
2753
2754 if (mapping->host && !mapping_tagged(mapping,
2755 PAGECACHE_TAG_WRITEBACK))
2756 sb_clear_inode_writeback(mapping->host);
2757
19fd6231 2758 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2759 } else {
2760 ret = TestClearPageWriteback(page);
2761 }
739f79fc
JW
2762 /*
2763 * NOTE: Page might be free now! Writeback doesn't hold a page
2764 * reference on its own, it relies on truncation to wait for
2765 * the clearing of PG_writeback. The below can only access
2766 * page state that is static across allocation cycles.
2767 */
99b12e3d 2768 if (ret) {
739f79fc 2769 dec_lruvec_state(lruvec, NR_WRITEBACK);
5a1c84b4 2770 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2771 inc_node_page_state(page, NR_WRITTEN);
99b12e3d 2772 }
739f79fc 2773 __unlock_page_memcg(memcg);
1da177e4
LT
2774 return ret;
2775}
2776
1c8349a1 2777int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2778{
2779 struct address_space *mapping = page_mapping(page);
d7365e78 2780 int ret;
1da177e4 2781
62cccb8c 2782 lock_page_memcg(page);
371a096e 2783 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2784 struct inode *inode = mapping->host;
2785 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2786 unsigned long flags;
2787
19fd6231 2788 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2789 ret = TestSetPageWriteback(page);
69cb51d1 2790 if (!ret) {
6c60d2b5
DC
2791 bool on_wblist;
2792
2793 on_wblist = mapping_tagged(mapping,
2794 PAGECACHE_TAG_WRITEBACK);
2795
1da177e4
LT
2796 radix_tree_tag_set(&mapping->page_tree,
2797 page_index(page),
2798 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2799 if (bdi_cap_account_writeback(bdi))
3e8f399d 2800 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
6c60d2b5
DC
2801
2802 /*
2803 * We can come through here when swapping anonymous
2804 * pages, so we don't necessarily have an inode to track
2805 * for sync.
2806 */
2807 if (mapping->host && !on_wblist)
2808 sb_mark_inode_writeback(mapping->host);
69cb51d1 2809 }
1da177e4
LT
2810 if (!PageDirty(page))
2811 radix_tree_tag_clear(&mapping->page_tree,
2812 page_index(page),
2813 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2814 if (!keep_write)
2815 radix_tree_tag_clear(&mapping->page_tree,
2816 page_index(page),
2817 PAGECACHE_TAG_TOWRITE);
19fd6231 2818 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2819 } else {
2820 ret = TestSetPageWriteback(page);
2821 }
3a3c02ec 2822 if (!ret) {
00f3ca2c 2823 inc_lruvec_page_state(page, NR_WRITEBACK);
5a1c84b4 2824 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
3a3c02ec 2825 }
62cccb8c 2826 unlock_page_memcg(page);
1da177e4
LT
2827 return ret;
2828
2829}
1c8349a1 2830EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2831
2832/*
00128188 2833 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2834 * passed tag.
2835 */
2836int mapping_tagged(struct address_space *mapping, int tag)
2837{
72c47832 2838 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2839}
2840EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2841
2842/**
2843 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2844 * @page: The page to wait on.
2845 *
2846 * This function determines if the given page is related to a backing device
2847 * that requires page contents to be held stable during writeback. If so, then
2848 * it will wait for any pending writeback to complete.
2849 */
2850void wait_for_stable_page(struct page *page)
2851{
de1414a6
CH
2852 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2853 wait_on_page_writeback(page);
1d1d1a76
DW
2854}
2855EXPORT_SYMBOL_GPL(wait_for_stable_page);