]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page-writeback.c
ftrace: add readpos to struct trace_seq; add trace_seq_to_user()
[mirror_ubuntu-zesty-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 akpm@zip.com.au
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
1da177e4
LT
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
1c0eeaf5 40 * operation. We do this so we don't hold I_SYNC against an inode for
1da177e4
LT
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES 1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
1da177e4
LT
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61 return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
07db59bd 69int dirty_background_ratio = 5;
1da177e4 70
195cf453
BG
71/*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75int vm_highmem_is_dirtyable;
76
1da177e4
LT
77/*
78 * The generator of dirty data starts writeback at this percentage
79 */
07db59bd 80int vm_dirty_ratio = 10;
1da177e4
LT
81
82/*
fd5403c7 83 * The interval between `kupdate'-style writebacks, in jiffies
1da177e4 84 */
f6ef9438 85int dirty_writeback_interval = 5 * HZ;
1da177e4
LT
86
87/*
fd5403c7 88 * The longest number of jiffies for which data is allowed to remain dirty
1da177e4 89 */
f6ef9438 90int dirty_expire_interval = 30 * HZ;
1da177e4
LT
91
92/*
93 * Flag that makes the machine dump writes/reads and block dirtyings.
94 */
95int block_dump;
96
97/*
ed5b43f1
BS
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
100 */
101int laptop_mode;
102
103EXPORT_SYMBOL(laptop_mode);
104
105/* End of sysctl-exported parameters */
106
107
108static void background_writeout(unsigned long _min_pages);
109
04fbfdc1
PZ
110/*
111 * Scale the writeback cache size proportional to the relative writeout speeds.
112 *
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
116 * share.
117 *
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
120 *
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
124 *
125 */
126static struct prop_descriptor vm_completions;
3e26c149 127static struct prop_descriptor vm_dirties;
04fbfdc1
PZ
128
129static unsigned long determine_dirtyable_memory(void);
130
131/*
132 * couple the period to the dirty_ratio:
133 *
134 * period/2 ~ roundup_pow_of_two(dirty limit)
135 */
136static int calc_period_shift(void)
137{
138 unsigned long dirty_total;
139
140 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
141 return 2 + ilog2(dirty_total - 1);
142}
143
144/*
145 * update the period when the dirty ratio changes.
146 */
147int dirty_ratio_handler(struct ctl_table *table, int write,
148 struct file *filp, void __user *buffer, size_t *lenp,
149 loff_t *ppos)
150{
151 int old_ratio = vm_dirty_ratio;
152 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
153 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
154 int shift = calc_period_shift();
155 prop_change_shift(&vm_completions, shift);
3e26c149 156 prop_change_shift(&vm_dirties, shift);
04fbfdc1
PZ
157 }
158 return ret;
159}
160
161/*
162 * Increment the BDI's writeout completion count and the global writeout
163 * completion count. Called from test_clear_page_writeback().
164 */
165static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
166{
a42dde04
PZ
167 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
168 bdi->max_prop_frac);
04fbfdc1
PZ
169}
170
dd5656e5
MS
171void bdi_writeout_inc(struct backing_dev_info *bdi)
172{
173 unsigned long flags;
174
175 local_irq_save(flags);
176 __bdi_writeout_inc(bdi);
177 local_irq_restore(flags);
178}
179EXPORT_SYMBOL_GPL(bdi_writeout_inc);
180
3e26c149
PZ
181static inline void task_dirty_inc(struct task_struct *tsk)
182{
183 prop_inc_single(&vm_dirties, &tsk->dirties);
184}
185
04fbfdc1
PZ
186/*
187 * Obtain an accurate fraction of the BDI's portion.
188 */
189static void bdi_writeout_fraction(struct backing_dev_info *bdi,
190 long *numerator, long *denominator)
191{
192 if (bdi_cap_writeback_dirty(bdi)) {
193 prop_fraction_percpu(&vm_completions, &bdi->completions,
194 numerator, denominator);
195 } else {
196 *numerator = 0;
197 *denominator = 1;
198 }
199}
200
201/*
202 * Clip the earned share of dirty pages to that which is actually available.
203 * This avoids exceeding the total dirty_limit when the floating averages
204 * fluctuate too quickly.
205 */
206static void
207clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
208{
209 long avail_dirty;
210
211 avail_dirty = dirty -
212 (global_page_state(NR_FILE_DIRTY) +
213 global_page_state(NR_WRITEBACK) +
fc3ba692
MS
214 global_page_state(NR_UNSTABLE_NFS) +
215 global_page_state(NR_WRITEBACK_TEMP));
04fbfdc1
PZ
216
217 if (avail_dirty < 0)
218 avail_dirty = 0;
219
220 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
221 bdi_stat(bdi, BDI_WRITEBACK);
222
223 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
224}
225
3e26c149
PZ
226static inline void task_dirties_fraction(struct task_struct *tsk,
227 long *numerator, long *denominator)
228{
229 prop_fraction_single(&vm_dirties, &tsk->dirties,
230 numerator, denominator);
231}
232
233/*
234 * scale the dirty limit
235 *
236 * task specific dirty limit:
237 *
238 * dirty -= (dirty/8) * p_{t}
239 */
f61eaf9f 240static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
3e26c149
PZ
241{
242 long numerator, denominator;
243 long dirty = *pdirty;
244 u64 inv = dirty >> 3;
245
246 task_dirties_fraction(tsk, &numerator, &denominator);
247 inv *= numerator;
248 do_div(inv, denominator);
249
250 dirty -= inv;
251 if (dirty < *pdirty/2)
252 dirty = *pdirty/2;
253
254 *pdirty = dirty;
255}
256
189d3c4a
PZ
257/*
258 *
259 */
260static DEFINE_SPINLOCK(bdi_lock);
261static unsigned int bdi_min_ratio;
262
263int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
264{
265 int ret = 0;
266 unsigned long flags;
267
268 spin_lock_irqsave(&bdi_lock, flags);
a42dde04 269 if (min_ratio > bdi->max_ratio) {
189d3c4a 270 ret = -EINVAL;
a42dde04
PZ
271 } else {
272 min_ratio -= bdi->min_ratio;
273 if (bdi_min_ratio + min_ratio < 100) {
274 bdi_min_ratio += min_ratio;
275 bdi->min_ratio += min_ratio;
276 } else {
277 ret = -EINVAL;
278 }
279 }
280 spin_unlock_irqrestore(&bdi_lock, flags);
281
282 return ret;
283}
284
285int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
286{
287 unsigned long flags;
288 int ret = 0;
289
290 if (max_ratio > 100)
291 return -EINVAL;
292
293 spin_lock_irqsave(&bdi_lock, flags);
294 if (bdi->min_ratio > max_ratio) {
295 ret = -EINVAL;
296 } else {
297 bdi->max_ratio = max_ratio;
298 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
299 }
189d3c4a
PZ
300 spin_unlock_irqrestore(&bdi_lock, flags);
301
302 return ret;
303}
a42dde04 304EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 305
1da177e4
LT
306/*
307 * Work out the current dirty-memory clamping and background writeout
308 * thresholds.
309 *
310 * The main aim here is to lower them aggressively if there is a lot of mapped
311 * memory around. To avoid stressing page reclaim with lots of unreclaimable
312 * pages. It is better to clamp down on writers than to start swapping, and
313 * performing lots of scanning.
314 *
315 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
316 *
317 * We don't permit the clamping level to fall below 5% - that is getting rather
318 * excessive.
319 *
320 * We make sure that the background writeout level is below the adjusted
321 * clamping level.
322 */
1b424464
CL
323
324static unsigned long highmem_dirtyable_memory(unsigned long total)
325{
326#ifdef CONFIG_HIGHMEM
327 int node;
328 unsigned long x = 0;
329
37b07e41 330 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
331 struct zone *z =
332 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
333
334 x += zone_page_state(z, NR_FREE_PAGES)
335 + zone_page_state(z, NR_INACTIVE)
336 + zone_page_state(z, NR_ACTIVE);
337 }
338 /*
339 * Make sure that the number of highmem pages is never larger
340 * than the number of the total dirtyable memory. This can only
341 * occur in very strange VM situations but we want to make sure
342 * that this does not occur.
343 */
344 return min(x, total);
345#else
346 return 0;
347#endif
348}
349
350static unsigned long determine_dirtyable_memory(void)
351{
352 unsigned long x;
353
354 x = global_page_state(NR_FREE_PAGES)
355 + global_page_state(NR_INACTIVE)
356 + global_page_state(NR_ACTIVE);
195cf453
BG
357
358 if (!vm_highmem_is_dirtyable)
359 x -= highmem_dirtyable_memory(x);
360
1b424464
CL
361 return x + 1; /* Ensure that we never return 0 */
362}
363
cf0ca9fe 364void
04fbfdc1
PZ
365get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
366 struct backing_dev_info *bdi)
1da177e4
LT
367{
368 int background_ratio; /* Percentages */
369 int dirty_ratio;
1da177e4
LT
370 long background;
371 long dirty;
1b424464 372 unsigned long available_memory = determine_dirtyable_memory();
1da177e4
LT
373 struct task_struct *tsk;
374
1da177e4 375 dirty_ratio = vm_dirty_ratio;
1da177e4
LT
376 if (dirty_ratio < 5)
377 dirty_ratio = 5;
378
379 background_ratio = dirty_background_ratio;
380 if (background_ratio >= dirty_ratio)
381 background_ratio = dirty_ratio / 2;
382
383 background = (background_ratio * available_memory) / 100;
384 dirty = (dirty_ratio * available_memory) / 100;
385 tsk = current;
386 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
387 background += background / 4;
388 dirty += dirty / 4;
389 }
390 *pbackground = background;
391 *pdirty = dirty;
04fbfdc1
PZ
392
393 if (bdi) {
189d3c4a 394 u64 bdi_dirty;
04fbfdc1
PZ
395 long numerator, denominator;
396
397 /*
398 * Calculate this BDI's share of the dirty ratio.
399 */
400 bdi_writeout_fraction(bdi, &numerator, &denominator);
401
189d3c4a 402 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
04fbfdc1
PZ
403 bdi_dirty *= numerator;
404 do_div(bdi_dirty, denominator);
189d3c4a 405 bdi_dirty += (dirty * bdi->min_ratio) / 100;
a42dde04
PZ
406 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
407 bdi_dirty = dirty * bdi->max_ratio / 100;
04fbfdc1
PZ
408
409 *pbdi_dirty = bdi_dirty;
410 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
3e26c149 411 task_dirty_limit(current, pbdi_dirty);
04fbfdc1 412 }
1da177e4
LT
413}
414
415/*
416 * balance_dirty_pages() must be called by processes which are generating dirty
417 * data. It looks at the number of dirty pages in the machine and will force
418 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
419 * If we're over `background_thresh' then pdflush is woken to perform some
420 * writeout.
421 */
422static void balance_dirty_pages(struct address_space *mapping)
423{
5fce25a9
PZ
424 long nr_reclaimable, bdi_nr_reclaimable;
425 long nr_writeback, bdi_nr_writeback;
1da177e4
LT
426 long background_thresh;
427 long dirty_thresh;
04fbfdc1 428 long bdi_thresh;
1da177e4
LT
429 unsigned long pages_written = 0;
430 unsigned long write_chunk = sync_writeback_pages();
431
432 struct backing_dev_info *bdi = mapping->backing_dev_info;
433
434 for (;;) {
435 struct writeback_control wbc = {
436 .bdi = bdi,
437 .sync_mode = WB_SYNC_NONE,
438 .older_than_this = NULL,
439 .nr_to_write = write_chunk,
111ebb6e 440 .range_cyclic = 1,
1da177e4
LT
441 };
442
04fbfdc1
PZ
443 get_dirty_limits(&background_thresh, &dirty_thresh,
444 &bdi_thresh, bdi);
5fce25a9
PZ
445
446 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
447 global_page_state(NR_UNSTABLE_NFS);
448 nr_writeback = global_page_state(NR_WRITEBACK);
449
04fbfdc1
PZ
450 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
451 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
5fce25a9 452
04fbfdc1
PZ
453 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
454 break;
1da177e4 455
5fce25a9
PZ
456 /*
457 * Throttle it only when the background writeback cannot
458 * catch-up. This avoids (excessively) small writeouts
459 * when the bdi limits are ramping up.
460 */
461 if (nr_reclaimable + nr_writeback <
462 (background_thresh + dirty_thresh) / 2)
463 break;
464
04fbfdc1
PZ
465 if (!bdi->dirty_exceeded)
466 bdi->dirty_exceeded = 1;
1da177e4
LT
467
468 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
469 * Unstable writes are a feature of certain networked
470 * filesystems (i.e. NFS) in which data may have been
471 * written to the server's write cache, but has not yet
472 * been flushed to permanent storage.
473 */
04fbfdc1 474 if (bdi_nr_reclaimable) {
1da177e4 475 writeback_inodes(&wbc);
1da177e4 476 pages_written += write_chunk - wbc.nr_to_write;
04fbfdc1
PZ
477 get_dirty_limits(&background_thresh, &dirty_thresh,
478 &bdi_thresh, bdi);
479 }
480
481 /*
482 * In order to avoid the stacked BDI deadlock we need
483 * to ensure we accurately count the 'dirty' pages when
484 * the threshold is low.
485 *
486 * Otherwise it would be possible to get thresh+n pages
487 * reported dirty, even though there are thresh-m pages
488 * actually dirty; with m+n sitting in the percpu
489 * deltas.
490 */
491 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
492 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
493 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
494 } else if (bdi_nr_reclaimable) {
495 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
496 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
1da177e4 497 }
04fbfdc1
PZ
498
499 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
500 break;
501 if (pages_written >= write_chunk)
502 break; /* We've done our duty */
503
3fcfab16 504 congestion_wait(WRITE, HZ/10);
1da177e4
LT
505 }
506
04fbfdc1
PZ
507 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
508 bdi->dirty_exceeded)
509 bdi->dirty_exceeded = 0;
1da177e4
LT
510
511 if (writeback_in_progress(bdi))
512 return; /* pdflush is already working this queue */
513
514 /*
515 * In laptop mode, we wait until hitting the higher threshold before
516 * starting background writeout, and then write out all the way down
517 * to the lower threshold. So slow writers cause minimal disk activity.
518 *
519 * In normal mode, we start background writeout at the lower
520 * background_thresh, to keep the amount of dirty memory low.
521 */
522 if ((laptop_mode && pages_written) ||
04fbfdc1
PZ
523 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
524 + global_page_state(NR_UNSTABLE_NFS)
525 > background_thresh)))
1da177e4
LT
526 pdflush_operation(background_writeout, 0);
527}
528
a200ee18 529void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 530{
a200ee18 531 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
532 struct address_space *mapping = page_mapping(page);
533
534 if (mapping)
535 balance_dirty_pages_ratelimited(mapping);
536 }
537}
538
1da177e4 539/**
fa5a734e 540 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 541 * @mapping: address_space which was dirtied
a580290c 542 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
543 *
544 * Processes which are dirtying memory should call in here once for each page
545 * which was newly dirtied. The function will periodically check the system's
546 * dirty state and will initiate writeback if needed.
547 *
548 * On really big machines, get_writeback_state is expensive, so try to avoid
549 * calling it too often (ratelimiting). But once we're over the dirty memory
550 * limit we decrease the ratelimiting by a lot, to prevent individual processes
551 * from overshooting the limit by (ratelimit_pages) each.
552 */
fa5a734e
AM
553void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
554 unsigned long nr_pages_dirtied)
1da177e4 555{
fa5a734e
AM
556 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
557 unsigned long ratelimit;
558 unsigned long *p;
1da177e4
LT
559
560 ratelimit = ratelimit_pages;
04fbfdc1 561 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
562 ratelimit = 8;
563
564 /*
565 * Check the rate limiting. Also, we do not want to throttle real-time
566 * tasks in balance_dirty_pages(). Period.
567 */
fa5a734e
AM
568 preempt_disable();
569 p = &__get_cpu_var(ratelimits);
570 *p += nr_pages_dirtied;
571 if (unlikely(*p >= ratelimit)) {
572 *p = 0;
573 preempt_enable();
1da177e4
LT
574 balance_dirty_pages(mapping);
575 return;
576 }
fa5a734e 577 preempt_enable();
1da177e4 578}
fa5a734e 579EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 580
232ea4d6 581void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 582{
1da177e4
LT
583 long background_thresh;
584 long dirty_thresh;
585
586 for ( ; ; ) {
04fbfdc1 587 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
1da177e4
LT
588
589 /*
590 * Boost the allowable dirty threshold a bit for page
591 * allocators so they don't get DoS'ed by heavy writers
592 */
593 dirty_thresh += dirty_thresh / 10; /* wheeee... */
594
c24f21bd
CL
595 if (global_page_state(NR_UNSTABLE_NFS) +
596 global_page_state(NR_WRITEBACK) <= dirty_thresh)
597 break;
3fcfab16 598 congestion_wait(WRITE, HZ/10);
369f2389
FW
599
600 /*
601 * The caller might hold locks which can prevent IO completion
602 * or progress in the filesystem. So we cannot just sit here
603 * waiting for IO to complete.
604 */
605 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
606 break;
1da177e4
LT
607 }
608}
609
1da177e4
LT
610/*
611 * writeback at least _min_pages, and keep writing until the amount of dirty
612 * memory is less than the background threshold, or until we're all clean.
613 */
614static void background_writeout(unsigned long _min_pages)
615{
616 long min_pages = _min_pages;
617 struct writeback_control wbc = {
618 .bdi = NULL,
619 .sync_mode = WB_SYNC_NONE,
620 .older_than_this = NULL,
621 .nr_to_write = 0,
622 .nonblocking = 1,
111ebb6e 623 .range_cyclic = 1,
1da177e4
LT
624 };
625
626 for ( ; ; ) {
1da177e4
LT
627 long background_thresh;
628 long dirty_thresh;
629
04fbfdc1 630 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
c24f21bd
CL
631 if (global_page_state(NR_FILE_DIRTY) +
632 global_page_state(NR_UNSTABLE_NFS) < background_thresh
1da177e4
LT
633 && min_pages <= 0)
634 break;
8bc3be27 635 wbc.more_io = 0;
1da177e4
LT
636 wbc.encountered_congestion = 0;
637 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
638 wbc.pages_skipped = 0;
639 writeback_inodes(&wbc);
640 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
641 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
642 /* Wrote less than expected */
8bc3be27
FW
643 if (wbc.encountered_congestion || wbc.more_io)
644 congestion_wait(WRITE, HZ/10);
645 else
1da177e4
LT
646 break;
647 }
648 }
649}
650
651/*
652 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
653 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
654 * -1 if all pdflush threads were busy.
655 */
687a21ce 656int wakeup_pdflush(long nr_pages)
1da177e4 657{
c24f21bd
CL
658 if (nr_pages == 0)
659 nr_pages = global_page_state(NR_FILE_DIRTY) +
660 global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
661 return pdflush_operation(background_writeout, nr_pages);
662}
663
664static void wb_timer_fn(unsigned long unused);
665static void laptop_timer_fn(unsigned long unused);
666
8d06afab
IM
667static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
668static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
1da177e4
LT
669
670/*
671 * Periodic writeback of "old" data.
672 *
673 * Define "old": the first time one of an inode's pages is dirtied, we mark the
674 * dirtying-time in the inode's address_space. So this periodic writeback code
675 * just walks the superblock inode list, writing back any inodes which are
676 * older than a specific point in time.
677 *
f6ef9438
BS
678 * Try to run once per dirty_writeback_interval. But if a writeback event
679 * takes longer than a dirty_writeback_interval interval, then leave a
1da177e4
LT
680 * one-second gap.
681 *
682 * older_than_this takes precedence over nr_to_write. So we'll only write back
683 * all dirty pages if they are all attached to "old" mappings.
684 */
685static void wb_kupdate(unsigned long arg)
686{
687 unsigned long oldest_jif;
688 unsigned long start_jif;
689 unsigned long next_jif;
690 long nr_to_write;
1da177e4
LT
691 struct writeback_control wbc = {
692 .bdi = NULL,
693 .sync_mode = WB_SYNC_NONE,
694 .older_than_this = &oldest_jif,
695 .nr_to_write = 0,
696 .nonblocking = 1,
697 .for_kupdate = 1,
111ebb6e 698 .range_cyclic = 1,
1da177e4
LT
699 };
700
701 sync_supers();
702
f6ef9438 703 oldest_jif = jiffies - dirty_expire_interval;
1da177e4 704 start_jif = jiffies;
f6ef9438 705 next_jif = start_jif + dirty_writeback_interval;
c24f21bd
CL
706 nr_to_write = global_page_state(NR_FILE_DIRTY) +
707 global_page_state(NR_UNSTABLE_NFS) +
1da177e4
LT
708 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
709 while (nr_to_write > 0) {
8bc3be27 710 wbc.more_io = 0;
1da177e4
LT
711 wbc.encountered_congestion = 0;
712 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
713 writeback_inodes(&wbc);
714 if (wbc.nr_to_write > 0) {
8bc3be27 715 if (wbc.encountered_congestion || wbc.more_io)
3fcfab16 716 congestion_wait(WRITE, HZ/10);
1da177e4
LT
717 else
718 break; /* All the old data is written */
719 }
720 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
721 }
722 if (time_before(next_jif, jiffies + HZ))
723 next_jif = jiffies + HZ;
f6ef9438 724 if (dirty_writeback_interval)
1da177e4
LT
725 mod_timer(&wb_timer, next_jif);
726}
727
728/*
729 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
730 */
731int dirty_writeback_centisecs_handler(ctl_table *table, int write,
3e733f07 732 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 733{
f6ef9438 734 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
3e733f07
AM
735 if (dirty_writeback_interval)
736 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
737 else
1da177e4 738 del_timer(&wb_timer);
1da177e4
LT
739 return 0;
740}
741
742static void wb_timer_fn(unsigned long unused)
743{
744 if (pdflush_operation(wb_kupdate, 0) < 0)
745 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
746}
747
748static void laptop_flush(unsigned long unused)
749{
750 sys_sync();
751}
752
753static void laptop_timer_fn(unsigned long unused)
754{
755 pdflush_operation(laptop_flush, 0);
756}
757
758/*
759 * We've spun up the disk and we're in laptop mode: schedule writeback
760 * of all dirty data a few seconds from now. If the flush is already scheduled
761 * then push it back - the user is still using the disk.
762 */
763void laptop_io_completion(void)
764{
ed5b43f1 765 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
766}
767
768/*
769 * We're in laptop mode and we've just synced. The sync's writes will have
770 * caused another writeback to be scheduled by laptop_io_completion.
771 * Nothing needs to be written back anymore, so we unschedule the writeback.
772 */
773void laptop_sync_completion(void)
774{
775 del_timer(&laptop_mode_wb_timer);
776}
777
778/*
779 * If ratelimit_pages is too high then we can get into dirty-data overload
780 * if a large number of processes all perform writes at the same time.
781 * If it is too low then SMP machines will call the (expensive)
782 * get_writeback_state too often.
783 *
784 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
785 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
786 * thresholds before writeback cuts in.
787 *
788 * But the limit should not be set too high. Because it also controls the
789 * amount of memory which the balance_dirty_pages() caller has to write back.
790 * If this is too large then the caller will block on the IO queue all the
791 * time. So limit it to four megabytes - the balance_dirty_pages() caller
792 * will write six megabyte chunks, max.
793 */
794
2d1d43f6 795void writeback_set_ratelimit(void)
1da177e4 796{
40c99aae 797 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
798 if (ratelimit_pages < 16)
799 ratelimit_pages = 16;
800 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
801 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
802}
803
26c2143b 804static int __cpuinit
1da177e4
LT
805ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
806{
2d1d43f6 807 writeback_set_ratelimit();
aa0f0303 808 return NOTIFY_DONE;
1da177e4
LT
809}
810
74b85f37 811static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
812 .notifier_call = ratelimit_handler,
813 .next = NULL,
814};
815
816/*
dc6e29da
LT
817 * Called early on to tune the page writeback dirty limits.
818 *
819 * We used to scale dirty pages according to how total memory
820 * related to pages that could be allocated for buffers (by
821 * comparing nr_free_buffer_pages() to vm_total_pages.
822 *
823 * However, that was when we used "dirty_ratio" to scale with
824 * all memory, and we don't do that any more. "dirty_ratio"
825 * is now applied to total non-HIGHPAGE memory (by subtracting
826 * totalhigh_pages from vm_total_pages), and as such we can't
827 * get into the old insane situation any more where we had
828 * large amounts of dirty pages compared to a small amount of
829 * non-HIGHMEM memory.
830 *
831 * But we might still want to scale the dirty_ratio by how
832 * much memory the box has..
1da177e4
LT
833 */
834void __init page_writeback_init(void)
835{
04fbfdc1
PZ
836 int shift;
837
f6ef9438 838 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
2d1d43f6 839 writeback_set_ratelimit();
1da177e4 840 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
841
842 shift = calc_period_shift();
843 prop_descriptor_init(&vm_completions, shift);
3e26c149 844 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
845}
846
811d736f 847/**
0ea97180 848 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
849 * @mapping: address space structure to write
850 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
851 * @writepage: function called for each page
852 * @data: data passed to writepage function
811d736f 853 *
0ea97180 854 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
857 * and msync() need to guarantee that all the data which was dirty at the time
858 * the call was made get new I/O started against them. If wbc->sync_mode is
859 * WB_SYNC_ALL then we were called for data integrity and we must wait for
860 * existing IO to complete.
811d736f 861 */
0ea97180
MS
862int write_cache_pages(struct address_space *mapping,
863 struct writeback_control *wbc, writepage_t writepage,
864 void *data)
811d736f
DH
865{
866 struct backing_dev_info *bdi = mapping->backing_dev_info;
867 int ret = 0;
868 int done = 0;
811d736f
DH
869 struct pagevec pvec;
870 int nr_pages;
871 pgoff_t index;
872 pgoff_t end; /* Inclusive */
873 int scanned = 0;
874 int range_whole = 0;
875
876 if (wbc->nonblocking && bdi_write_congested(bdi)) {
877 wbc->encountered_congestion = 1;
878 return 0;
879 }
880
811d736f
DH
881 pagevec_init(&pvec, 0);
882 if (wbc->range_cyclic) {
883 index = mapping->writeback_index; /* Start from prev offset */
884 end = -1;
885 } else {
886 index = wbc->range_start >> PAGE_CACHE_SHIFT;
887 end = wbc->range_end >> PAGE_CACHE_SHIFT;
888 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
889 range_whole = 1;
890 scanned = 1;
891 }
892retry:
893 while (!done && (index <= end) &&
894 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
895 PAGECACHE_TAG_DIRTY,
896 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
897 unsigned i;
898
899 scanned = 1;
900 for (i = 0; i < nr_pages; i++) {
901 struct page *page = pvec.pages[i];
902
903 /*
904 * At this point we hold neither mapping->tree_lock nor
905 * lock on the page itself: the page may be truncated or
906 * invalidated (changing page->mapping to NULL), or even
907 * swizzled back from swapper_space to tmpfs file
908 * mapping
909 */
910 lock_page(page);
911
912 if (unlikely(page->mapping != mapping)) {
913 unlock_page(page);
914 continue;
915 }
916
917 if (!wbc->range_cyclic && page->index > end) {
918 done = 1;
919 unlock_page(page);
920 continue;
921 }
922
923 if (wbc->sync_mode != WB_SYNC_NONE)
924 wait_on_page_writeback(page);
925
926 if (PageWriteback(page) ||
927 !clear_page_dirty_for_io(page)) {
928 unlock_page(page);
929 continue;
930 }
931
0ea97180 932 ret = (*writepage)(page, wbc, data);
811d736f 933
e4230030 934 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
811d736f 935 unlock_page(page);
e4230030
AM
936 ret = 0;
937 }
811d736f
DH
938 if (ret || (--(wbc->nr_to_write) <= 0))
939 done = 1;
940 if (wbc->nonblocking && bdi_write_congested(bdi)) {
941 wbc->encountered_congestion = 1;
942 done = 1;
943 }
944 }
945 pagevec_release(&pvec);
946 cond_resched();
947 }
948 if (!scanned && !done) {
949 /*
950 * We hit the last page and there is more work to be done: wrap
951 * back to the start of the file
952 */
953 scanned = 1;
954 index = 0;
955 goto retry;
956 }
957 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
958 mapping->writeback_index = index;
959 return ret;
960}
0ea97180
MS
961EXPORT_SYMBOL(write_cache_pages);
962
963/*
964 * Function used by generic_writepages to call the real writepage
965 * function and set the mapping flags on error
966 */
967static int __writepage(struct page *page, struct writeback_control *wbc,
968 void *data)
969{
970 struct address_space *mapping = data;
971 int ret = mapping->a_ops->writepage(page, wbc);
972 mapping_set_error(mapping, ret);
973 return ret;
974}
975
976/**
977 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
978 * @mapping: address space structure to write
979 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
980 *
981 * This is a library function, which implements the writepages()
982 * address_space_operation.
983 */
984int generic_writepages(struct address_space *mapping,
985 struct writeback_control *wbc)
986{
987 /* deal with chardevs and other special file */
988 if (!mapping->a_ops->writepage)
989 return 0;
990
991 return write_cache_pages(mapping, wbc, __writepage, mapping);
992}
811d736f
DH
993
994EXPORT_SYMBOL(generic_writepages);
995
1da177e4
LT
996int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
997{
22905f77
AM
998 int ret;
999
1da177e4
LT
1000 if (wbc->nr_to_write <= 0)
1001 return 0;
22905f77 1002 wbc->for_writepages = 1;
1da177e4 1003 if (mapping->a_ops->writepages)
d08b3851 1004 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1005 else
1006 ret = generic_writepages(mapping, wbc);
1007 wbc->for_writepages = 0;
1008 return ret;
1da177e4
LT
1009}
1010
1011/**
1012 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1013 * @page: the page to write
1014 * @wait: if true, wait on writeout
1da177e4
LT
1015 *
1016 * The page must be locked by the caller and will be unlocked upon return.
1017 *
1018 * write_one_page() returns a negative error code if I/O failed.
1019 */
1020int write_one_page(struct page *page, int wait)
1021{
1022 struct address_space *mapping = page->mapping;
1023 int ret = 0;
1024 struct writeback_control wbc = {
1025 .sync_mode = WB_SYNC_ALL,
1026 .nr_to_write = 1,
1027 };
1028
1029 BUG_ON(!PageLocked(page));
1030
1031 if (wait)
1032 wait_on_page_writeback(page);
1033
1034 if (clear_page_dirty_for_io(page)) {
1035 page_cache_get(page);
1036 ret = mapping->a_ops->writepage(page, &wbc);
1037 if (ret == 0 && wait) {
1038 wait_on_page_writeback(page);
1039 if (PageError(page))
1040 ret = -EIO;
1041 }
1042 page_cache_release(page);
1043 } else {
1044 unlock_page(page);
1045 }
1046 return ret;
1047}
1048EXPORT_SYMBOL(write_one_page);
1049
76719325
KC
1050/*
1051 * For address_spaces which do not use buffers nor write back.
1052 */
1053int __set_page_dirty_no_writeback(struct page *page)
1054{
1055 if (!PageDirty(page))
1056 SetPageDirty(page);
1057 return 0;
1058}
1059
1da177e4
LT
1060/*
1061 * For address_spaces which do not use buffers. Just tag the page as dirty in
1062 * its radix tree.
1063 *
1064 * This is also used when a single buffer is being dirtied: we want to set the
1065 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1066 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1067 *
1068 * Most callers have locked the page, which pins the address_space in memory.
1069 * But zap_pte_range() does not lock the page, however in that case the
1070 * mapping is pinned by the vma's ->vm_file reference.
1071 *
1072 * We take care to handle the case where the page was truncated from the
183ff22b 1073 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1074 */
1075int __set_page_dirty_nobuffers(struct page *page)
1076{
1da177e4
LT
1077 if (!TestSetPageDirty(page)) {
1078 struct address_space *mapping = page_mapping(page);
1079 struct address_space *mapping2;
1080
8c08540f
AM
1081 if (!mapping)
1082 return 1;
1083
1084 write_lock_irq(&mapping->tree_lock);
1085 mapping2 = page_mapping(page);
1086 if (mapping2) { /* Race with truncate? */
1087 BUG_ON(mapping2 != mapping);
787d2214 1088 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
55e829af 1089 if (mapping_cap_account_dirty(mapping)) {
8c08540f 1090 __inc_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1091 __inc_bdi_stat(mapping->backing_dev_info,
1092 BDI_RECLAIMABLE);
55e829af
AM
1093 task_io_account_write(PAGE_CACHE_SIZE);
1094 }
8c08540f
AM
1095 radix_tree_tag_set(&mapping->page_tree,
1096 page_index(page), PAGECACHE_TAG_DIRTY);
1097 }
1098 write_unlock_irq(&mapping->tree_lock);
1099 if (mapping->host) {
1100 /* !PageAnon && !swapper_space */
1101 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1102 }
4741c9fd 1103 return 1;
1da177e4 1104 }
4741c9fd 1105 return 0;
1da177e4
LT
1106}
1107EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1108
1109/*
1110 * When a writepage implementation decides that it doesn't want to write this
1111 * page for some reason, it should redirty the locked page via
1112 * redirty_page_for_writepage() and it should then unlock the page and return 0
1113 */
1114int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1115{
1116 wbc->pages_skipped++;
1117 return __set_page_dirty_nobuffers(page);
1118}
1119EXPORT_SYMBOL(redirty_page_for_writepage);
1120
1121/*
1122 * If the mapping doesn't provide a set_page_dirty a_op, then
1123 * just fall through and assume that it wants buffer_heads.
1124 */
3e26c149 1125static int __set_page_dirty(struct page *page)
1da177e4
LT
1126{
1127 struct address_space *mapping = page_mapping(page);
1128
1129 if (likely(mapping)) {
1130 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
9361401e
DH
1131#ifdef CONFIG_BLOCK
1132 if (!spd)
1133 spd = __set_page_dirty_buffers;
1134#endif
1135 return (*spd)(page);
1da177e4 1136 }
4741c9fd
AM
1137 if (!PageDirty(page)) {
1138 if (!TestSetPageDirty(page))
1139 return 1;
1140 }
1da177e4
LT
1141 return 0;
1142}
3e26c149 1143
920c7a5d 1144int set_page_dirty(struct page *page)
3e26c149
PZ
1145{
1146 int ret = __set_page_dirty(page);
1147 if (ret)
1148 task_dirty_inc(current);
1149 return ret;
1150}
1da177e4
LT
1151EXPORT_SYMBOL(set_page_dirty);
1152
1153/*
1154 * set_page_dirty() is racy if the caller has no reference against
1155 * page->mapping->host, and if the page is unlocked. This is because another
1156 * CPU could truncate the page off the mapping and then free the mapping.
1157 *
1158 * Usually, the page _is_ locked, or the caller is a user-space process which
1159 * holds a reference on the inode by having an open file.
1160 *
1161 * In other cases, the page should be locked before running set_page_dirty().
1162 */
1163int set_page_dirty_lock(struct page *page)
1164{
1165 int ret;
1166
db37648c 1167 lock_page_nosync(page);
1da177e4
LT
1168 ret = set_page_dirty(page);
1169 unlock_page(page);
1170 return ret;
1171}
1172EXPORT_SYMBOL(set_page_dirty_lock);
1173
1da177e4
LT
1174/*
1175 * Clear a page's dirty flag, while caring for dirty memory accounting.
1176 * Returns true if the page was previously dirty.
1177 *
1178 * This is for preparing to put the page under writeout. We leave the page
1179 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1180 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1181 * implementation will run either set_page_writeback() or set_page_dirty(),
1182 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1183 * back into sync.
1184 *
1185 * This incoherency between the page's dirty flag and radix-tree tag is
1186 * unfortunate, but it only exists while the page is locked.
1187 */
1188int clear_page_dirty_for_io(struct page *page)
1189{
1190 struct address_space *mapping = page_mapping(page);
1191
79352894
NP
1192 BUG_ON(!PageLocked(page));
1193
fe3cba17 1194 ClearPageReclaim(page);
7658cc28
LT
1195 if (mapping && mapping_cap_account_dirty(mapping)) {
1196 /*
1197 * Yes, Virginia, this is indeed insane.
1198 *
1199 * We use this sequence to make sure that
1200 * (a) we account for dirty stats properly
1201 * (b) we tell the low-level filesystem to
1202 * mark the whole page dirty if it was
1203 * dirty in a pagetable. Only to then
1204 * (c) clean the page again and return 1 to
1205 * cause the writeback.
1206 *
1207 * This way we avoid all nasty races with the
1208 * dirty bit in multiple places and clearing
1209 * them concurrently from different threads.
1210 *
1211 * Note! Normally the "set_page_dirty(page)"
1212 * has no effect on the actual dirty bit - since
1213 * that will already usually be set. But we
1214 * need the side effects, and it can help us
1215 * avoid races.
1216 *
1217 * We basically use the page "master dirty bit"
1218 * as a serialization point for all the different
1219 * threads doing their things.
7658cc28
LT
1220 */
1221 if (page_mkclean(page))
1222 set_page_dirty(page);
79352894
NP
1223 /*
1224 * We carefully synchronise fault handlers against
1225 * installing a dirty pte and marking the page dirty
1226 * at this point. We do this by having them hold the
1227 * page lock at some point after installing their
1228 * pte, but before marking the page dirty.
1229 * Pages are always locked coming in here, so we get
1230 * the desired exclusion. See mm/memory.c:do_wp_page()
1231 * for more comments.
1232 */
7658cc28 1233 if (TestClearPageDirty(page)) {
8c08540f 1234 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1235 dec_bdi_stat(mapping->backing_dev_info,
1236 BDI_RECLAIMABLE);
7658cc28 1237 return 1;
1da177e4 1238 }
7658cc28 1239 return 0;
1da177e4 1240 }
7658cc28 1241 return TestClearPageDirty(page);
1da177e4 1242}
58bb01a9 1243EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1244
1245int test_clear_page_writeback(struct page *page)
1246{
1247 struct address_space *mapping = page_mapping(page);
1248 int ret;
1249
1250 if (mapping) {
69cb51d1 1251 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1252 unsigned long flags;
1253
1254 write_lock_irqsave(&mapping->tree_lock, flags);
1255 ret = TestClearPageWriteback(page);
69cb51d1 1256 if (ret) {
1da177e4
LT
1257 radix_tree_tag_clear(&mapping->page_tree,
1258 page_index(page),
1259 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1260 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1261 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1262 __bdi_writeout_inc(bdi);
1263 }
69cb51d1 1264 }
1da177e4
LT
1265 write_unlock_irqrestore(&mapping->tree_lock, flags);
1266 } else {
1267 ret = TestClearPageWriteback(page);
1268 }
d688abf5
AM
1269 if (ret)
1270 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1271 return ret;
1272}
1273
1274int test_set_page_writeback(struct page *page)
1275{
1276 struct address_space *mapping = page_mapping(page);
1277 int ret;
1278
1279 if (mapping) {
69cb51d1 1280 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1281 unsigned long flags;
1282
1283 write_lock_irqsave(&mapping->tree_lock, flags);
1284 ret = TestSetPageWriteback(page);
69cb51d1 1285 if (!ret) {
1da177e4
LT
1286 radix_tree_tag_set(&mapping->page_tree,
1287 page_index(page),
1288 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1289 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1290 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1291 }
1da177e4
LT
1292 if (!PageDirty(page))
1293 radix_tree_tag_clear(&mapping->page_tree,
1294 page_index(page),
1295 PAGECACHE_TAG_DIRTY);
1296 write_unlock_irqrestore(&mapping->tree_lock, flags);
1297 } else {
1298 ret = TestSetPageWriteback(page);
1299 }
d688abf5
AM
1300 if (!ret)
1301 inc_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1302 return ret;
1303
1304}
1305EXPORT_SYMBOL(test_set_page_writeback);
1306
1307/*
00128188 1308 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1309 * passed tag.
1310 */
1311int mapping_tagged(struct address_space *mapping, int tag)
1312{
1da177e4 1313 int ret;
00128188 1314 rcu_read_lock();
1da177e4 1315 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1316 rcu_read_unlock();
1da177e4
LT
1317 return ret;
1318}
1319EXPORT_SYMBOL(mapping_tagged);