]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page-writeback.c
writeback: reorganize [__]wb_update_bandwidth()
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
c42843f2 125unsigned long global_dirty_limit;
1da177e4 126
04fbfdc1
PZ
127/*
128 * Scale the writeback cache size proportional to the relative writeout speeds.
129 *
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
134 *
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
137 *
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
141 *
142 */
eb608e3a
JK
143static struct fprop_global writeout_completions;
144
145static void writeout_period(unsigned long t);
146/* Timer for aging of writeout_completions */
147static struct timer_list writeout_period_timer =
148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149static unsigned long writeout_period_time = 0;
150
151/*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 157
693108a8
TH
158#ifdef CONFIG_CGROUP_WRITEBACK
159
160static void wb_min_max_ratio(struct bdi_writeback *wb,
161 unsigned long *minp, unsigned long *maxp)
162{
163 unsigned long this_bw = wb->avg_write_bandwidth;
164 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
165 unsigned long long min = wb->bdi->min_ratio;
166 unsigned long long max = wb->bdi->max_ratio;
167
168 /*
169 * @wb may already be clean by the time control reaches here and
170 * the total may not include its bw.
171 */
172 if (this_bw < tot_bw) {
173 if (min) {
174 min *= this_bw;
175 do_div(min, tot_bw);
176 }
177 if (max < 100) {
178 max *= this_bw;
179 do_div(max, tot_bw);
180 }
181 }
182
183 *minp = min;
184 *maxp = max;
185}
186
187#else /* CONFIG_CGROUP_WRITEBACK */
188
189static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191{
192 *minp = wb->bdi->min_ratio;
193 *maxp = wb->bdi->max_ratio;
194}
195
196#endif /* CONFIG_CGROUP_WRITEBACK */
197
a756cf59
JW
198/*
199 * In a memory zone, there is a certain amount of pages we consider
200 * available for the page cache, which is essentially the number of
201 * free and reclaimable pages, minus some zone reserves to protect
202 * lowmem and the ability to uphold the zone's watermarks without
203 * requiring writeback.
204 *
205 * This number of dirtyable pages is the base value of which the
206 * user-configurable dirty ratio is the effictive number of pages that
207 * are allowed to be actually dirtied. Per individual zone, or
208 * globally by using the sum of dirtyable pages over all zones.
209 *
210 * Because the user is allowed to specify the dirty limit globally as
211 * absolute number of bytes, calculating the per-zone dirty limit can
212 * require translating the configured limit into a percentage of
213 * global dirtyable memory first.
214 */
215
a804552b
JW
216/**
217 * zone_dirtyable_memory - number of dirtyable pages in a zone
218 * @zone: the zone
219 *
220 * Returns the zone's number of pages potentially available for dirty
221 * page cache. This is the base value for the per-zone dirty limits.
222 */
223static unsigned long zone_dirtyable_memory(struct zone *zone)
224{
225 unsigned long nr_pages;
226
227 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
228 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
229
a1c3bfb2
JW
230 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
231 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
232
233 return nr_pages;
234}
235
1edf2234
JW
236static unsigned long highmem_dirtyable_memory(unsigned long total)
237{
238#ifdef CONFIG_HIGHMEM
239 int node;
240 unsigned long x = 0;
241
242 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 243 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 244
a804552b 245 x += zone_dirtyable_memory(z);
1edf2234 246 }
c8b74c2f
SR
247 /*
248 * Unreclaimable memory (kernel memory or anonymous memory
249 * without swap) can bring down the dirtyable pages below
250 * the zone's dirty balance reserve and the above calculation
251 * will underflow. However we still want to add in nodes
252 * which are below threshold (negative values) to get a more
253 * accurate calculation but make sure that the total never
254 * underflows.
255 */
256 if ((long)x < 0)
257 x = 0;
258
1edf2234
JW
259 /*
260 * Make sure that the number of highmem pages is never larger
261 * than the number of the total dirtyable memory. This can only
262 * occur in very strange VM situations but we want to make sure
263 * that this does not occur.
264 */
265 return min(x, total);
266#else
267 return 0;
268#endif
269}
270
271/**
ccafa287 272 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 273 *
ccafa287
JW
274 * Returns the global number of pages potentially available for dirty
275 * page cache. This is the base value for the global dirty limits.
1edf2234 276 */
18cf8cf8 277static unsigned long global_dirtyable_memory(void)
1edf2234
JW
278{
279 unsigned long x;
280
a804552b 281 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 282 x -= min(x, dirty_balance_reserve);
1edf2234 283
a1c3bfb2
JW
284 x += global_page_state(NR_INACTIVE_FILE);
285 x += global_page_state(NR_ACTIVE_FILE);
a804552b 286
1edf2234
JW
287 if (!vm_highmem_is_dirtyable)
288 x -= highmem_dirtyable_memory(x);
289
290 return x + 1; /* Ensure that we never return 0 */
291}
292
ccafa287
JW
293/*
294 * global_dirty_limits - background-writeback and dirty-throttling thresholds
295 *
296 * Calculate the dirty thresholds based on sysctl parameters
297 * - vm.dirty_background_ratio or vm.dirty_background_bytes
298 * - vm.dirty_ratio or vm.dirty_bytes
299 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
300 * real-time tasks.
301 */
302void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
303{
9ef0a0ff 304 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
305 unsigned long background;
306 unsigned long dirty;
ccafa287
JW
307 struct task_struct *tsk;
308
ccafa287
JW
309 if (vm_dirty_bytes)
310 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
311 else
312 dirty = (vm_dirty_ratio * available_memory) / 100;
313
314 if (dirty_background_bytes)
315 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
316 else
317 background = (dirty_background_ratio * available_memory) / 100;
318
319 if (background >= dirty)
320 background = dirty / 2;
321 tsk = current;
322 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
323 background += background / 4;
324 dirty += dirty / 4;
325 }
326 *pbackground = background;
327 *pdirty = dirty;
328 trace_global_dirty_state(background, dirty);
329}
330
a756cf59
JW
331/**
332 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
333 * @zone: the zone
334 *
335 * Returns the maximum number of dirty pages allowed in a zone, based
336 * on the zone's dirtyable memory.
337 */
338static unsigned long zone_dirty_limit(struct zone *zone)
339{
340 unsigned long zone_memory = zone_dirtyable_memory(zone);
341 struct task_struct *tsk = current;
342 unsigned long dirty;
343
344 if (vm_dirty_bytes)
345 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
346 zone_memory / global_dirtyable_memory();
347 else
348 dirty = vm_dirty_ratio * zone_memory / 100;
349
350 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
351 dirty += dirty / 4;
352
353 return dirty;
354}
355
356/**
357 * zone_dirty_ok - tells whether a zone is within its dirty limits
358 * @zone: the zone to check
359 *
360 * Returns %true when the dirty pages in @zone are within the zone's
361 * dirty limit, %false if the limit is exceeded.
362 */
363bool zone_dirty_ok(struct zone *zone)
364{
365 unsigned long limit = zone_dirty_limit(zone);
366
367 return zone_page_state(zone, NR_FILE_DIRTY) +
368 zone_page_state(zone, NR_UNSTABLE_NFS) +
369 zone_page_state(zone, NR_WRITEBACK) <= limit;
370}
371
2da02997 372int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 373 void __user *buffer, size_t *lenp,
2da02997
DR
374 loff_t *ppos)
375{
376 int ret;
377
8d65af78 378 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
379 if (ret == 0 && write)
380 dirty_background_bytes = 0;
381 return ret;
382}
383
384int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 385 void __user *buffer, size_t *lenp,
2da02997
DR
386 loff_t *ppos)
387{
388 int ret;
389
8d65af78 390 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
391 if (ret == 0 && write)
392 dirty_background_ratio = 0;
393 return ret;
394}
395
04fbfdc1 396int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 397 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
398 loff_t *ppos)
399{
400 int old_ratio = vm_dirty_ratio;
2da02997
DR
401 int ret;
402
8d65af78 403 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 404 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 405 writeback_set_ratelimit();
2da02997
DR
406 vm_dirty_bytes = 0;
407 }
408 return ret;
409}
410
2da02997 411int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 412 void __user *buffer, size_t *lenp,
2da02997
DR
413 loff_t *ppos)
414{
fc3501d4 415 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
416 int ret;
417
8d65af78 418 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 419 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 420 writeback_set_ratelimit();
2da02997 421 vm_dirty_ratio = 0;
04fbfdc1
PZ
422 }
423 return ret;
424}
425
eb608e3a
JK
426static unsigned long wp_next_time(unsigned long cur_time)
427{
428 cur_time += VM_COMPLETIONS_PERIOD_LEN;
429 /* 0 has a special meaning... */
430 if (!cur_time)
431 return 1;
432 return cur_time;
433}
434
04fbfdc1
PZ
435/*
436 * Increment the BDI's writeout completion count and the global writeout
437 * completion count. Called from test_clear_page_writeback().
438 */
93f78d88 439static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 440{
93f78d88 441 __inc_wb_stat(wb, WB_WRITTEN);
a88a341a 442 __fprop_inc_percpu_max(&writeout_completions, &wb->completions,
93f78d88 443 wb->bdi->max_prop_frac);
eb608e3a
JK
444 /* First event after period switching was turned off? */
445 if (!unlikely(writeout_period_time)) {
446 /*
447 * We can race with other __bdi_writeout_inc calls here but
448 * it does not cause any harm since the resulting time when
449 * timer will fire and what is in writeout_period_time will be
450 * roughly the same.
451 */
452 writeout_period_time = wp_next_time(jiffies);
453 mod_timer(&writeout_period_timer, writeout_period_time);
454 }
04fbfdc1
PZ
455}
456
93f78d88 457void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
458{
459 unsigned long flags;
460
461 local_irq_save(flags);
93f78d88 462 __wb_writeout_inc(wb);
dd5656e5
MS
463 local_irq_restore(flags);
464}
93f78d88 465EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 466
04fbfdc1
PZ
467/*
468 * Obtain an accurate fraction of the BDI's portion.
469 */
a88a341a
TH
470static void wb_writeout_fraction(struct bdi_writeback *wb,
471 long *numerator, long *denominator)
04fbfdc1 472{
a88a341a 473 fprop_fraction_percpu(&writeout_completions, &wb->completions,
04fbfdc1 474 numerator, denominator);
04fbfdc1
PZ
475}
476
eb608e3a
JK
477/*
478 * On idle system, we can be called long after we scheduled because we use
479 * deferred timers so count with missed periods.
480 */
481static void writeout_period(unsigned long t)
482{
483 int miss_periods = (jiffies - writeout_period_time) /
484 VM_COMPLETIONS_PERIOD_LEN;
485
486 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
487 writeout_period_time = wp_next_time(writeout_period_time +
488 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
489 mod_timer(&writeout_period_timer, writeout_period_time);
490 } else {
491 /*
492 * Aging has zeroed all fractions. Stop wasting CPU on period
493 * updates.
494 */
495 writeout_period_time = 0;
496 }
497}
498
189d3c4a 499/*
d08c429b
JW
500 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
501 * registered backing devices, which, for obvious reasons, can not
502 * exceed 100%.
189d3c4a 503 */
189d3c4a
PZ
504static unsigned int bdi_min_ratio;
505
506int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
507{
508 int ret = 0;
189d3c4a 509
cfc4ba53 510 spin_lock_bh(&bdi_lock);
a42dde04 511 if (min_ratio > bdi->max_ratio) {
189d3c4a 512 ret = -EINVAL;
a42dde04
PZ
513 } else {
514 min_ratio -= bdi->min_ratio;
515 if (bdi_min_ratio + min_ratio < 100) {
516 bdi_min_ratio += min_ratio;
517 bdi->min_ratio += min_ratio;
518 } else {
519 ret = -EINVAL;
520 }
521 }
cfc4ba53 522 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
523
524 return ret;
525}
526
527int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
528{
a42dde04
PZ
529 int ret = 0;
530
531 if (max_ratio > 100)
532 return -EINVAL;
533
cfc4ba53 534 spin_lock_bh(&bdi_lock);
a42dde04
PZ
535 if (bdi->min_ratio > max_ratio) {
536 ret = -EINVAL;
537 } else {
538 bdi->max_ratio = max_ratio;
eb608e3a 539 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 540 }
cfc4ba53 541 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
542
543 return ret;
544}
a42dde04 545EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 546
6c14ae1e
WF
547static unsigned long dirty_freerun_ceiling(unsigned long thresh,
548 unsigned long bg_thresh)
549{
550 return (thresh + bg_thresh) / 2;
551}
552
ffd1f609
WF
553static unsigned long hard_dirty_limit(unsigned long thresh)
554{
555 return max(thresh, global_dirty_limit);
556}
557
6f718656 558/**
0d960a38 559 * wb_calc_thresh - @wb's share of dirty throttling threshold
a88a341a 560 * @wb: bdi_writeback to query
6f718656 561 * @dirty: global dirty limit in pages
1babe183 562 *
a88a341a 563 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 564 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
565 *
566 * Note that balance_dirty_pages() will only seriously take it as a hard limit
567 * when sleeping max_pause per page is not enough to keep the dirty pages under
568 * control. For example, when the device is completely stalled due to some error
569 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
570 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 571 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 572 *
6f718656 573 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
574 * - starving fast devices
575 * - piling up dirty pages (that will take long time to sync) on slow devices
576 *
a88a341a 577 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
578 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
579 */
0d960a38 580unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
16c4042f 581{
0d960a38 582 u64 wb_thresh;
16c4042f 583 long numerator, denominator;
693108a8 584 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 585
16c4042f 586 /*
0d960a38 587 * Calculate this BDI's share of the thresh ratio.
16c4042f 588 */
a88a341a 589 wb_writeout_fraction(wb, &numerator, &denominator);
04fbfdc1 590
0d960a38
TH
591 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
592 wb_thresh *= numerator;
593 do_div(wb_thresh, denominator);
04fbfdc1 594
693108a8
TH
595 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
596
0d960a38
TH
597 wb_thresh += (thresh * wb_min_ratio) / 100;
598 if (wb_thresh > (thresh * wb_max_ratio) / 100)
599 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 600
0d960a38 601 return wb_thresh;
1da177e4
LT
602}
603
5a537485
MP
604/*
605 * setpoint - dirty 3
606 * f(dirty) := 1.0 + (----------------)
607 * limit - setpoint
608 *
609 * it's a 3rd order polynomial that subjects to
610 *
611 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
612 * (2) f(setpoint) = 1.0 => the balance point
613 * (3) f(limit) = 0 => the hard limit
614 * (4) df/dx <= 0 => negative feedback control
615 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
616 * => fast response on large errors; small oscillation near setpoint
617 */
d5c9fde3 618static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
619 unsigned long dirty,
620 unsigned long limit)
621{
622 long long pos_ratio;
623 long x;
624
d5c9fde3 625 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
626 limit - setpoint + 1);
627 pos_ratio = x;
628 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
629 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
630 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
631
632 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
633}
634
6c14ae1e
WF
635/*
636 * Dirty position control.
637 *
638 * (o) global/bdi setpoints
639 *
de1fff37 640 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
641 * When the number of dirty pages is higher/lower than the setpoint, the
642 * dirty position control ratio (and hence task dirty ratelimit) will be
643 * decreased/increased to bring the dirty pages back to the setpoint.
644 *
645 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
646 *
647 * if (dirty < setpoint) scale up pos_ratio
648 * if (dirty > setpoint) scale down pos_ratio
649 *
de1fff37
TH
650 * if (wb_dirty < wb_setpoint) scale up pos_ratio
651 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
652 *
653 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
654 *
655 * (o) global control line
656 *
657 * ^ pos_ratio
658 * |
659 * | |<===== global dirty control scope ======>|
660 * 2.0 .............*
661 * | .*
662 * | . *
663 * | . *
664 * | . *
665 * | . *
666 * | . *
667 * 1.0 ................................*
668 * | . . *
669 * | . . *
670 * | . . *
671 * | . . *
672 * | . . *
673 * 0 +------------.------------------.----------------------*------------->
674 * freerun^ setpoint^ limit^ dirty pages
675 *
de1fff37 676 * (o) wb control line
6c14ae1e
WF
677 *
678 * ^ pos_ratio
679 * |
680 * | *
681 * | *
682 * | *
683 * | *
684 * | * |<=========== span ============>|
685 * 1.0 .......................*
686 * | . *
687 * | . *
688 * | . *
689 * | . *
690 * | . *
691 * | . *
692 * | . *
693 * | . *
694 * | . *
695 * | . *
696 * | . *
697 * 1/4 ...............................................* * * * * * * * * * * *
698 * | . .
699 * | . .
700 * | . .
701 * 0 +----------------------.-------------------------------.------------->
de1fff37 702 * wb_setpoint^ x_intercept^
6c14ae1e 703 *
de1fff37 704 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
705 * be smoothly throttled down to normal if it starts high in situations like
706 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
707 * card's wb_dirty may rush to many times higher than wb_setpoint.
708 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 709 */
a88a341a
TH
710static unsigned long wb_position_ratio(struct bdi_writeback *wb,
711 unsigned long thresh,
712 unsigned long bg_thresh,
713 unsigned long dirty,
de1fff37
TH
714 unsigned long wb_thresh,
715 unsigned long wb_dirty)
6c14ae1e 716{
a88a341a 717 unsigned long write_bw = wb->avg_write_bandwidth;
6c14ae1e
WF
718 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
719 unsigned long limit = hard_dirty_limit(thresh);
720 unsigned long x_intercept;
721 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 722 unsigned long wb_setpoint;
6c14ae1e
WF
723 unsigned long span;
724 long long pos_ratio; /* for scaling up/down the rate limit */
725 long x;
726
727 if (unlikely(dirty >= limit))
728 return 0;
729
730 /*
731 * global setpoint
732 *
5a537485
MP
733 * See comment for pos_ratio_polynom().
734 */
735 setpoint = (freerun + limit) / 2;
736 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
737
738 /*
739 * The strictlimit feature is a tool preventing mistrusted filesystems
740 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
741 * such filesystems balance_dirty_pages always checks wb counters
742 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
743 * This is especially important for fuse which sets bdi->max_ratio to
744 * 1% by default. Without strictlimit feature, fuse writeback may
745 * consume arbitrary amount of RAM because it is accounted in
746 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 747 *
a88a341a 748 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 749 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
750 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
751 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 752 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 753 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 754 * about ~6K pages (as the average of background and throttle wb
5a537485 755 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 756 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 757 *
5a537485 758 * Note, that we cannot use global counters in these calculations
de1fff37 759 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
760 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
761 * in the example above).
6c14ae1e 762 */
a88a341a 763 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
764 long long wb_pos_ratio;
765 unsigned long wb_bg_thresh;
5a537485 766
de1fff37 767 if (wb_dirty < 8)
5a537485
MP
768 return min_t(long long, pos_ratio * 2,
769 2 << RATELIMIT_CALC_SHIFT);
770
de1fff37 771 if (wb_dirty >= wb_thresh)
5a537485
MP
772 return 0;
773
de1fff37
TH
774 wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
775 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
5a537485 776
de1fff37 777 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
5a537485
MP
778 return 0;
779
de1fff37
TH
780 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
781 wb_thresh);
5a537485
MP
782
783 /*
de1fff37
TH
784 * Typically, for strictlimit case, wb_setpoint << setpoint
785 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 786 * state ("dirty") is not limiting factor and we have to
de1fff37 787 * make decision based on wb counters. But there is an
5a537485
MP
788 * important case when global pos_ratio should get precedence:
789 * global limits are exceeded (e.g. due to activities on other
de1fff37 790 * wb's) while given strictlimit wb is below limit.
5a537485 791 *
de1fff37 792 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 793 * but it would look too non-natural for the case of all
de1fff37 794 * activity in the system coming from a single strictlimit wb
5a537485
MP
795 * with bdi->max_ratio == 100%.
796 *
797 * Note that min() below somewhat changes the dynamics of the
798 * control system. Normally, pos_ratio value can be well over 3
de1fff37 799 * (when globally we are at freerun and wb is well below wb
5a537485
MP
800 * setpoint). Now the maximum pos_ratio in the same situation
801 * is 2. We might want to tweak this if we observe the control
802 * system is too slow to adapt.
803 */
de1fff37 804 return min(pos_ratio, wb_pos_ratio);
5a537485 805 }
6c14ae1e
WF
806
807 /*
808 * We have computed basic pos_ratio above based on global situation. If
de1fff37 809 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
810 * pos_ratio further down/up. That is done by the following mechanism.
811 */
812
813 /*
de1fff37 814 * wb setpoint
6c14ae1e 815 *
de1fff37 816 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 817 *
de1fff37 818 * x_intercept - wb_dirty
6c14ae1e 819 * := --------------------------
de1fff37 820 * x_intercept - wb_setpoint
6c14ae1e 821 *
de1fff37 822 * The main wb control line is a linear function that subjects to
6c14ae1e 823 *
de1fff37
TH
824 * (1) f(wb_setpoint) = 1.0
825 * (2) k = - 1 / (8 * write_bw) (in single wb case)
826 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 827 *
de1fff37 828 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 829 * regularly within range
de1fff37 830 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
831 * for various filesystems, where (2) can yield in a reasonable 12.5%
832 * fluctuation range for pos_ratio.
833 *
de1fff37 834 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 835 * own size, so move the slope over accordingly and choose a slope that
de1fff37 836 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 837 */
de1fff37
TH
838 if (unlikely(wb_thresh > thresh))
839 wb_thresh = thresh;
aed21ad2 840 /*
de1fff37 841 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
842 * device is slow, but that it has remained inactive for long time.
843 * Honour such devices a reasonable good (hopefully IO efficient)
844 * threshold, so that the occasional writes won't be blocked and active
845 * writes can rampup the threshold quickly.
846 */
de1fff37 847 wb_thresh = max(wb_thresh, (limit - dirty) / 8);
6c14ae1e 848 /*
de1fff37
TH
849 * scale global setpoint to wb's:
850 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 851 */
de1fff37
TH
852 x = div_u64((u64)wb_thresh << 16, thresh + 1);
853 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 854 /*
de1fff37
TH
855 * Use span=(8*write_bw) in single wb case as indicated by
856 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 857 *
de1fff37
TH
858 * wb_thresh thresh - wb_thresh
859 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
860 * thresh thresh
6c14ae1e 861 */
de1fff37
TH
862 span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
863 x_intercept = wb_setpoint + span;
6c14ae1e 864
de1fff37
TH
865 if (wb_dirty < x_intercept - span / 4) {
866 pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
867 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
868 } else
869 pos_ratio /= 4;
870
8927f66c 871 /*
de1fff37 872 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
873 * It may push the desired control point of global dirty pages higher
874 * than setpoint.
875 */
de1fff37
TH
876 x_intercept = wb_thresh / 2;
877 if (wb_dirty < x_intercept) {
878 if (wb_dirty > x_intercept / 8)
879 pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
50657fc4 880 else
8927f66c
WF
881 pos_ratio *= 8;
882 }
883
6c14ae1e
WF
884 return pos_ratio;
885}
886
a88a341a
TH
887static void wb_update_write_bandwidth(struct bdi_writeback *wb,
888 unsigned long elapsed,
889 unsigned long written)
e98be2d5
WF
890{
891 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
892 unsigned long avg = wb->avg_write_bandwidth;
893 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
894 u64 bw;
895
896 /*
897 * bw = written * HZ / elapsed
898 *
899 * bw * elapsed + write_bandwidth * (period - elapsed)
900 * write_bandwidth = ---------------------------------------------------
901 * period
c72efb65
TH
902 *
903 * @written may have decreased due to account_page_redirty().
904 * Avoid underflowing @bw calculation.
e98be2d5 905 */
a88a341a 906 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
907 bw *= HZ;
908 if (unlikely(elapsed > period)) {
909 do_div(bw, elapsed);
910 avg = bw;
911 goto out;
912 }
a88a341a 913 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
914 bw >>= ilog2(period);
915
916 /*
917 * one more level of smoothing, for filtering out sudden spikes
918 */
919 if (avg > old && old >= (unsigned long)bw)
920 avg -= (avg - old) >> 3;
921
922 if (avg < old && old <= (unsigned long)bw)
923 avg += (old - avg) >> 3;
924
925out:
95a46c65
TH
926 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
927 avg = max(avg, 1LU);
928 if (wb_has_dirty_io(wb)) {
929 long delta = avg - wb->avg_write_bandwidth;
930 WARN_ON_ONCE(atomic_long_add_return(delta,
931 &wb->bdi->tot_write_bandwidth) <= 0);
932 }
a88a341a
TH
933 wb->write_bandwidth = bw;
934 wb->avg_write_bandwidth = avg;
e98be2d5
WF
935}
936
c42843f2
WF
937/*
938 * The global dirtyable memory and dirty threshold could be suddenly knocked
939 * down by a large amount (eg. on the startup of KVM in a swapless system).
940 * This may throw the system into deep dirty exceeded state and throttle
941 * heavy/light dirtiers alike. To retain good responsiveness, maintain
942 * global_dirty_limit for tracking slowly down to the knocked down dirty
943 * threshold.
944 */
945static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
946{
947 unsigned long limit = global_dirty_limit;
948
949 /*
950 * Follow up in one step.
951 */
952 if (limit < thresh) {
953 limit = thresh;
954 goto update;
955 }
956
957 /*
958 * Follow down slowly. Use the higher one as the target, because thresh
959 * may drop below dirty. This is exactly the reason to introduce
960 * global_dirty_limit which is guaranteed to lie above the dirty pages.
961 */
962 thresh = max(thresh, dirty);
963 if (limit > thresh) {
964 limit -= (limit - thresh) >> 5;
965 goto update;
966 }
967 return;
968update:
969 global_dirty_limit = limit;
970}
971
972static void global_update_bandwidth(unsigned long thresh,
973 unsigned long dirty,
974 unsigned long now)
975{
976 static DEFINE_SPINLOCK(dirty_lock);
7d70e154 977 static unsigned long update_time = INITIAL_JIFFIES;
c42843f2
WF
978
979 /*
980 * check locklessly first to optimize away locking for the most time
981 */
982 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
983 return;
984
985 spin_lock(&dirty_lock);
986 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
987 update_dirty_limit(thresh, dirty);
988 update_time = now;
989 }
990 spin_unlock(&dirty_lock);
991}
992
be3ffa27 993/*
de1fff37 994 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 995 *
de1fff37 996 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
997 * Obviously it should be around (write_bw / N) when there are N dd tasks.
998 */
a88a341a
TH
999static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
1000 unsigned long thresh,
1001 unsigned long bg_thresh,
1002 unsigned long dirty,
de1fff37
TH
1003 unsigned long wb_thresh,
1004 unsigned long wb_dirty,
a88a341a
TH
1005 unsigned long dirtied,
1006 unsigned long elapsed)
be3ffa27 1007{
7381131c
WF
1008 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
1009 unsigned long limit = hard_dirty_limit(thresh);
1010 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1011 unsigned long write_bw = wb->avg_write_bandwidth;
1012 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1013 unsigned long dirty_rate;
1014 unsigned long task_ratelimit;
1015 unsigned long balanced_dirty_ratelimit;
1016 unsigned long pos_ratio;
7381131c
WF
1017 unsigned long step;
1018 unsigned long x;
be3ffa27
WF
1019
1020 /*
1021 * The dirty rate will match the writeout rate in long term, except
1022 * when dirty pages are truncated by userspace or re-dirtied by FS.
1023 */
a88a341a 1024 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1025
a88a341a 1026 pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
de1fff37 1027 wb_thresh, wb_dirty);
be3ffa27
WF
1028 /*
1029 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1030 */
1031 task_ratelimit = (u64)dirty_ratelimit *
1032 pos_ratio >> RATELIMIT_CALC_SHIFT;
1033 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1034
1035 /*
1036 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1037 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1038 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1039 * formula will yield the balanced rate limit (write_bw / N).
1040 *
1041 * Note that the expanded form is not a pure rate feedback:
1042 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1043 * but also takes pos_ratio into account:
1044 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1045 *
1046 * (1) is not realistic because pos_ratio also takes part in balancing
1047 * the dirty rate. Consider the state
1048 * pos_ratio = 0.5 (3)
1049 * rate = 2 * (write_bw / N) (4)
1050 * If (1) is used, it will stuck in that state! Because each dd will
1051 * be throttled at
1052 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1053 * yielding
1054 * dirty_rate = N * task_ratelimit = write_bw (6)
1055 * put (6) into (1) we get
1056 * rate_(i+1) = rate_(i) (7)
1057 *
1058 * So we end up using (2) to always keep
1059 * rate_(i+1) ~= (write_bw / N) (8)
1060 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1061 * pos_ratio is able to drive itself to 1.0, which is not only where
1062 * the dirty count meet the setpoint, but also where the slope of
1063 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1064 */
1065 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1066 dirty_rate | 1);
bdaac490
WF
1067 /*
1068 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1069 */
1070 if (unlikely(balanced_dirty_ratelimit > write_bw))
1071 balanced_dirty_ratelimit = write_bw;
be3ffa27 1072
7381131c
WF
1073 /*
1074 * We could safely do this and return immediately:
1075 *
de1fff37 1076 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1077 *
1078 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1079 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1080 * limit the step size.
1081 *
1082 * The below code essentially only uses the relative value of
1083 *
1084 * task_ratelimit - dirty_ratelimit
1085 * = (pos_ratio - 1) * dirty_ratelimit
1086 *
1087 * which reflects the direction and size of dirty position error.
1088 */
1089
1090 /*
1091 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1092 * task_ratelimit is on the same side of dirty_ratelimit, too.
1093 * For example, when
1094 * - dirty_ratelimit > balanced_dirty_ratelimit
1095 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1096 * lowering dirty_ratelimit will help meet both the position and rate
1097 * control targets. Otherwise, don't update dirty_ratelimit if it will
1098 * only help meet the rate target. After all, what the users ultimately
1099 * feel and care are stable dirty rate and small position error.
1100 *
1101 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1102 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1103 * keeps jumping around randomly and can even leap far away at times
1104 * due to the small 200ms estimation period of dirty_rate (we want to
1105 * keep that period small to reduce time lags).
1106 */
1107 step = 0;
5a537485
MP
1108
1109 /*
de1fff37 1110 * For strictlimit case, calculations above were based on wb counters
a88a341a 1111 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1112 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1113 * Hence, to calculate "step" properly, we have to use wb_dirty as
1114 * "dirty" and wb_setpoint as "setpoint".
5a537485 1115 *
de1fff37
TH
1116 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1117 * it's possible that wb_thresh is close to zero due to inactivity
0d960a38 1118 * of backing device (see the implementation of wb_calc_thresh()).
5a537485 1119 */
a88a341a 1120 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
1121 dirty = wb_dirty;
1122 if (wb_dirty < 8)
1123 setpoint = wb_dirty + 1;
5a537485 1124 else
de1fff37 1125 setpoint = (wb_thresh +
0d960a38 1126 wb_calc_thresh(wb, bg_thresh)) / 2;
5a537485
MP
1127 }
1128
7381131c 1129 if (dirty < setpoint) {
a88a341a 1130 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1131 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1132 if (dirty_ratelimit < x)
1133 step = x - dirty_ratelimit;
1134 } else {
a88a341a 1135 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1136 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1137 if (dirty_ratelimit > x)
1138 step = dirty_ratelimit - x;
1139 }
1140
1141 /*
1142 * Don't pursue 100% rate matching. It's impossible since the balanced
1143 * rate itself is constantly fluctuating. So decrease the track speed
1144 * when it gets close to the target. Helps eliminate pointless tremors.
1145 */
1146 step >>= dirty_ratelimit / (2 * step + 1);
1147 /*
1148 * Limit the tracking speed to avoid overshooting.
1149 */
1150 step = (step + 7) / 8;
1151
1152 if (dirty_ratelimit < balanced_dirty_ratelimit)
1153 dirty_ratelimit += step;
1154 else
1155 dirty_ratelimit -= step;
1156
a88a341a
TH
1157 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1158 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1159
a88a341a 1160 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1161}
1162
8a731799
TH
1163static void __wb_update_bandwidth(struct bdi_writeback *wb,
1164 unsigned long thresh,
1165 unsigned long bg_thresh,
1166 unsigned long dirty,
1167 unsigned long wb_thresh,
1168 unsigned long wb_dirty,
1169 unsigned long start_time,
1170 bool update_ratelimit)
e98be2d5
WF
1171{
1172 unsigned long now = jiffies;
a88a341a 1173 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1174 unsigned long dirtied;
e98be2d5
WF
1175 unsigned long written;
1176
8a731799
TH
1177 lockdep_assert_held(&wb->list_lock);
1178
e98be2d5
WF
1179 /*
1180 * rate-limit, only update once every 200ms.
1181 */
1182 if (elapsed < BANDWIDTH_INTERVAL)
1183 return;
1184
a88a341a
TH
1185 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1186 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1187
1188 /*
1189 * Skip quiet periods when disk bandwidth is under-utilized.
1190 * (at least 1s idle time between two flusher runs)
1191 */
a88a341a 1192 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1193 goto snapshot;
1194
8a731799 1195 if (update_ratelimit) {
c42843f2 1196 global_update_bandwidth(thresh, dirty, now);
a88a341a 1197 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
de1fff37 1198 wb_thresh, wb_dirty,
a88a341a 1199 dirtied, elapsed);
be3ffa27 1200 }
a88a341a 1201 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1202
1203snapshot:
a88a341a
TH
1204 wb->dirtied_stamp = dirtied;
1205 wb->written_stamp = written;
1206 wb->bw_time_stamp = now;
e98be2d5
WF
1207}
1208
8a731799 1209void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1210{
8a731799 1211 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time, false);
e98be2d5
WF
1212}
1213
9d823e8f 1214/*
d0e1d66b 1215 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1216 * will look to see if it needs to start dirty throttling.
1217 *
1218 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1219 * global_page_state() too often. So scale it near-sqrt to the safety margin
1220 * (the number of pages we may dirty without exceeding the dirty limits).
1221 */
1222static unsigned long dirty_poll_interval(unsigned long dirty,
1223 unsigned long thresh)
1224{
1225 if (thresh > dirty)
1226 return 1UL << (ilog2(thresh - dirty) >> 1);
1227
1228 return 1;
1229}
1230
a88a341a 1231static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1232 unsigned long wb_dirty)
c8462cc9 1233{
a88a341a 1234 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1235 unsigned long t;
c8462cc9 1236
7ccb9ad5
WF
1237 /*
1238 * Limit pause time for small memory systems. If sleeping for too long
1239 * time, a small pool of dirty/writeback pages may go empty and disk go
1240 * idle.
1241 *
1242 * 8 serves as the safety ratio.
1243 */
de1fff37 1244 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1245 t++;
1246
e3b6c655 1247 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1248}
1249
a88a341a
TH
1250static long wb_min_pause(struct bdi_writeback *wb,
1251 long max_pause,
1252 unsigned long task_ratelimit,
1253 unsigned long dirty_ratelimit,
1254 int *nr_dirtied_pause)
c8462cc9 1255{
a88a341a
TH
1256 long hi = ilog2(wb->avg_write_bandwidth);
1257 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1258 long t; /* target pause */
1259 long pause; /* estimated next pause */
1260 int pages; /* target nr_dirtied_pause */
c8462cc9 1261
7ccb9ad5
WF
1262 /* target for 10ms pause on 1-dd case */
1263 t = max(1, HZ / 100);
c8462cc9
WF
1264
1265 /*
1266 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1267 * overheads.
1268 *
7ccb9ad5 1269 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1270 */
1271 if (hi > lo)
7ccb9ad5 1272 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1273
1274 /*
7ccb9ad5
WF
1275 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1276 * on the much more stable dirty_ratelimit. However the next pause time
1277 * will be computed based on task_ratelimit and the two rate limits may
1278 * depart considerably at some time. Especially if task_ratelimit goes
1279 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1280 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1281 * result task_ratelimit won't be executed faithfully, which could
1282 * eventually bring down dirty_ratelimit.
c8462cc9 1283 *
7ccb9ad5
WF
1284 * We apply two rules to fix it up:
1285 * 1) try to estimate the next pause time and if necessary, use a lower
1286 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1287 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1288 * 2) limit the target pause time to max_pause/2, so that the normal
1289 * small fluctuations of task_ratelimit won't trigger rule (1) and
1290 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1291 */
7ccb9ad5
WF
1292 t = min(t, 1 + max_pause / 2);
1293 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1294
1295 /*
5b9b3574
WF
1296 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1297 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1298 * When the 16 consecutive reads are often interrupted by some dirty
1299 * throttling pause during the async writes, cfq will go into idles
1300 * (deadline is fine). So push nr_dirtied_pause as high as possible
1301 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1302 */
5b9b3574
WF
1303 if (pages < DIRTY_POLL_THRESH) {
1304 t = max_pause;
1305 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1306 if (pages > DIRTY_POLL_THRESH) {
1307 pages = DIRTY_POLL_THRESH;
1308 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1309 }
1310 }
1311
7ccb9ad5
WF
1312 pause = HZ * pages / (task_ratelimit + 1);
1313 if (pause > max_pause) {
1314 t = max_pause;
1315 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1316 }
c8462cc9 1317
7ccb9ad5 1318 *nr_dirtied_pause = pages;
c8462cc9 1319 /*
7ccb9ad5 1320 * The minimal pause time will normally be half the target pause time.
c8462cc9 1321 */
5b9b3574 1322 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1323}
1324
a88a341a
TH
1325static inline void wb_dirty_limits(struct bdi_writeback *wb,
1326 unsigned long dirty_thresh,
1327 unsigned long background_thresh,
de1fff37
TH
1328 unsigned long *wb_dirty,
1329 unsigned long *wb_thresh,
1330 unsigned long *wb_bg_thresh)
5a537485 1331{
93f78d88 1332 unsigned long wb_reclaimable;
5a537485
MP
1333
1334 /*
de1fff37 1335 * wb_thresh is not treated as some limiting factor as
5a537485 1336 * dirty_thresh, due to reasons
de1fff37 1337 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1338 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1339 * go into state (wb_dirty >> wb_thresh) either because
1340 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1341 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1342 * dirtiers for 100 seconds until wb_dirty drops under
1343 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1344 * wb_position_ratio() will let the dirtier task progress
de1fff37 1345 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1346 */
0d960a38 1347 *wb_thresh = wb_calc_thresh(wb, dirty_thresh);
5a537485 1348
de1fff37
TH
1349 if (wb_bg_thresh)
1350 *wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
1351 background_thresh,
1352 dirty_thresh) : 0;
5a537485
MP
1353
1354 /*
1355 * In order to avoid the stacked BDI deadlock we need
1356 * to ensure we accurately count the 'dirty' pages when
1357 * the threshold is low.
1358 *
1359 * Otherwise it would be possible to get thresh+n pages
1360 * reported dirty, even though there are thresh-m pages
1361 * actually dirty; with m+n sitting in the percpu
1362 * deltas.
1363 */
de1fff37 1364 if (*wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1365 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
de1fff37 1366 *wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1367 } else {
93f78d88 1368 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
de1fff37 1369 *wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1370 }
1371}
1372
1da177e4
LT
1373/*
1374 * balance_dirty_pages() must be called by processes which are generating dirty
1375 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1376 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1377 * If we're over `background_thresh' then the writeback threads are woken to
1378 * perform some writeout.
1da177e4 1379 */
3a2e9a5a 1380static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1381 struct bdi_writeback *wb,
143dfe86 1382 unsigned long pages_dirtied)
1da177e4 1383{
143dfe86 1384 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
7762741e 1385 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
364aeb28
DR
1386 unsigned long background_thresh;
1387 unsigned long dirty_thresh;
83712358 1388 long period;
7ccb9ad5
WF
1389 long pause;
1390 long max_pause;
1391 long min_pause;
1392 int nr_dirtied_pause;
e50e3720 1393 bool dirty_exceeded = false;
143dfe86 1394 unsigned long task_ratelimit;
7ccb9ad5 1395 unsigned long dirty_ratelimit;
143dfe86 1396 unsigned long pos_ratio;
dfb8ae56 1397 struct backing_dev_info *bdi = wb->bdi;
5a537485 1398 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1399 unsigned long start_time = jiffies;
1da177e4
LT
1400
1401 for (;;) {
83712358 1402 unsigned long now = jiffies;
de1fff37 1403 unsigned long uninitialized_var(wb_thresh);
5a537485 1404 unsigned long thresh;
de1fff37 1405 unsigned long uninitialized_var(wb_dirty);
5a537485
MP
1406 unsigned long dirty;
1407 unsigned long bg_thresh;
83712358 1408
143dfe86
WF
1409 /*
1410 * Unstable writes are a feature of certain networked
1411 * filesystems (i.e. NFS) in which data may have been
1412 * written to the server's write cache, but has not yet
1413 * been flushed to permanent storage.
1414 */
5fce25a9
PZ
1415 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1416 global_page_state(NR_UNSTABLE_NFS);
7762741e 1417 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1418
16c4042f
WF
1419 global_dirty_limits(&background_thresh, &dirty_thresh);
1420
5a537485 1421 if (unlikely(strictlimit)) {
a88a341a 1422 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1423 &wb_dirty, &wb_thresh, &bg_thresh);
5a537485 1424
de1fff37
TH
1425 dirty = wb_dirty;
1426 thresh = wb_thresh;
5a537485
MP
1427 } else {
1428 dirty = nr_dirty;
1429 thresh = dirty_thresh;
1430 bg_thresh = background_thresh;
1431 }
1432
16c4042f
WF
1433 /*
1434 * Throttle it only when the background writeback cannot
1435 * catch-up. This avoids (excessively) small writeouts
de1fff37 1436 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1437 *
de1fff37
TH
1438 * In strictlimit case make decision based on the wb counters
1439 * and limits. Small writeouts when the wb limits are ramping
5a537485 1440 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1441 */
5a537485 1442 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1443 current->dirty_paused_when = now;
1444 current->nr_dirtied = 0;
7ccb9ad5 1445 current->nr_dirtied_pause =
5a537485 1446 dirty_poll_interval(dirty, thresh);
16c4042f 1447 break;
83712358 1448 }
16c4042f 1449
bc05873d 1450 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1451 wb_start_background_writeback(wb);
143dfe86 1452
5a537485 1453 if (!strictlimit)
a88a341a 1454 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1455 &wb_dirty, &wb_thresh, NULL);
5fce25a9 1456
de1fff37 1457 dirty_exceeded = (wb_dirty > wb_thresh) &&
5a537485 1458 ((nr_dirty > dirty_thresh) || strictlimit);
a88a341a
TH
1459 if (dirty_exceeded && !wb->dirty_exceeded)
1460 wb->dirty_exceeded = 1;
1da177e4 1461
8a731799
TH
1462 if (time_is_before_jiffies(wb->bw_time_stamp +
1463 BANDWIDTH_INTERVAL)) {
1464 spin_lock(&wb->list_lock);
1465 __wb_update_bandwidth(wb, dirty_thresh,
1466 background_thresh, nr_dirty,
1467 wb_thresh, wb_dirty, start_time,
1468 true);
1469 spin_unlock(&wb->list_lock);
1470 }
e98be2d5 1471
a88a341a
TH
1472 dirty_ratelimit = wb->dirty_ratelimit;
1473 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1474 background_thresh, nr_dirty,
de1fff37 1475 wb_thresh, wb_dirty);
3a73dbbc
WF
1476 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1477 RATELIMIT_CALC_SHIFT;
de1fff37 1478 max_pause = wb_max_pause(wb, wb_dirty);
a88a341a
TH
1479 min_pause = wb_min_pause(wb, max_pause,
1480 task_ratelimit, dirty_ratelimit,
1481 &nr_dirtied_pause);
7ccb9ad5 1482
3a73dbbc 1483 if (unlikely(task_ratelimit == 0)) {
83712358 1484 period = max_pause;
c8462cc9 1485 pause = max_pause;
143dfe86 1486 goto pause;
04fbfdc1 1487 }
83712358
WF
1488 period = HZ * pages_dirtied / task_ratelimit;
1489 pause = period;
1490 if (current->dirty_paused_when)
1491 pause -= now - current->dirty_paused_when;
1492 /*
1493 * For less than 1s think time (ext3/4 may block the dirtier
1494 * for up to 800ms from time to time on 1-HDD; so does xfs,
1495 * however at much less frequency), try to compensate it in
1496 * future periods by updating the virtual time; otherwise just
1497 * do a reset, as it may be a light dirtier.
1498 */
7ccb9ad5 1499 if (pause < min_pause) {
ece13ac3
WF
1500 trace_balance_dirty_pages(bdi,
1501 dirty_thresh,
1502 background_thresh,
1503 nr_dirty,
de1fff37
TH
1504 wb_thresh,
1505 wb_dirty,
ece13ac3
WF
1506 dirty_ratelimit,
1507 task_ratelimit,
1508 pages_dirtied,
83712358 1509 period,
7ccb9ad5 1510 min(pause, 0L),
ece13ac3 1511 start_time);
83712358
WF
1512 if (pause < -HZ) {
1513 current->dirty_paused_when = now;
1514 current->nr_dirtied = 0;
1515 } else if (period) {
1516 current->dirty_paused_when += period;
1517 current->nr_dirtied = 0;
7ccb9ad5
WF
1518 } else if (current->nr_dirtied_pause <= pages_dirtied)
1519 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1520 break;
04fbfdc1 1521 }
7ccb9ad5
WF
1522 if (unlikely(pause > max_pause)) {
1523 /* for occasional dropped task_ratelimit */
1524 now += min(pause - max_pause, max_pause);
1525 pause = max_pause;
1526 }
143dfe86
WF
1527
1528pause:
ece13ac3
WF
1529 trace_balance_dirty_pages(bdi,
1530 dirty_thresh,
1531 background_thresh,
1532 nr_dirty,
de1fff37
TH
1533 wb_thresh,
1534 wb_dirty,
ece13ac3
WF
1535 dirty_ratelimit,
1536 task_ratelimit,
1537 pages_dirtied,
83712358 1538 period,
ece13ac3
WF
1539 pause,
1540 start_time);
499d05ec 1541 __set_current_state(TASK_KILLABLE);
d25105e8 1542 io_schedule_timeout(pause);
87c6a9b2 1543
83712358
WF
1544 current->dirty_paused_when = now + pause;
1545 current->nr_dirtied = 0;
7ccb9ad5 1546 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1547
ffd1f609 1548 /*
1df64719
WF
1549 * This is typically equal to (nr_dirty < dirty_thresh) and can
1550 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1551 */
1df64719 1552 if (task_ratelimit)
ffd1f609 1553 break;
499d05ec 1554
c5c6343c
WF
1555 /*
1556 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1557 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1558 * to go through, so that tasks on them still remain responsive.
1559 *
1560 * In theory 1 page is enough to keep the comsumer-producer
1561 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1562 * more page. However wb_dirty has accounting errors. So use
93f78d88 1563 * the larger and more IO friendly wb_stat_error.
c5c6343c 1564 */
de1fff37 1565 if (wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1566 break;
1567
499d05ec
JK
1568 if (fatal_signal_pending(current))
1569 break;
1da177e4
LT
1570 }
1571
a88a341a
TH
1572 if (!dirty_exceeded && wb->dirty_exceeded)
1573 wb->dirty_exceeded = 0;
1da177e4 1574
bc05873d 1575 if (writeback_in_progress(wb))
5b0830cb 1576 return;
1da177e4
LT
1577
1578 /*
1579 * In laptop mode, we wait until hitting the higher threshold before
1580 * starting background writeout, and then write out all the way down
1581 * to the lower threshold. So slow writers cause minimal disk activity.
1582 *
1583 * In normal mode, we start background writeout at the lower
1584 * background_thresh, to keep the amount of dirty memory low.
1585 */
143dfe86
WF
1586 if (laptop_mode)
1587 return;
1588
1589 if (nr_reclaimable > background_thresh)
9ecf4866 1590 wb_start_background_writeback(wb);
1da177e4
LT
1591}
1592
9d823e8f 1593static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1594
54848d73
WF
1595/*
1596 * Normal tasks are throttled by
1597 * loop {
1598 * dirty tsk->nr_dirtied_pause pages;
1599 * take a snap in balance_dirty_pages();
1600 * }
1601 * However there is a worst case. If every task exit immediately when dirtied
1602 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1603 * called to throttle the page dirties. The solution is to save the not yet
1604 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1605 * randomly into the running tasks. This works well for the above worst case,
1606 * as the new task will pick up and accumulate the old task's leaked dirty
1607 * count and eventually get throttled.
1608 */
1609DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1610
1da177e4 1611/**
d0e1d66b 1612 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1613 * @mapping: address_space which was dirtied
1da177e4
LT
1614 *
1615 * Processes which are dirtying memory should call in here once for each page
1616 * which was newly dirtied. The function will periodically check the system's
1617 * dirty state and will initiate writeback if needed.
1618 *
1619 * On really big machines, get_writeback_state is expensive, so try to avoid
1620 * calling it too often (ratelimiting). But once we're over the dirty memory
1621 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1622 * from overshooting the limit by (ratelimit_pages) each.
1623 */
d0e1d66b 1624void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1625{
dfb8ae56
TH
1626 struct inode *inode = mapping->host;
1627 struct backing_dev_info *bdi = inode_to_bdi(inode);
1628 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1629 int ratelimit;
1630 int *p;
1da177e4 1631
36715cef
WF
1632 if (!bdi_cap_account_dirty(bdi))
1633 return;
1634
dfb8ae56
TH
1635 if (inode_cgwb_enabled(inode))
1636 wb = wb_get_create_current(bdi, GFP_KERNEL);
1637 if (!wb)
1638 wb = &bdi->wb;
1639
9d823e8f 1640 ratelimit = current->nr_dirtied_pause;
a88a341a 1641 if (wb->dirty_exceeded)
9d823e8f
WF
1642 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1643
9d823e8f 1644 preempt_disable();
1da177e4 1645 /*
9d823e8f
WF
1646 * This prevents one CPU to accumulate too many dirtied pages without
1647 * calling into balance_dirty_pages(), which can happen when there are
1648 * 1000+ tasks, all of them start dirtying pages at exactly the same
1649 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1650 */
7c8e0181 1651 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1652 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1653 *p = 0;
d3bc1fef
WF
1654 else if (unlikely(*p >= ratelimit_pages)) {
1655 *p = 0;
1656 ratelimit = 0;
1da177e4 1657 }
54848d73
WF
1658 /*
1659 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1660 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1661 * the dirty throttling and livelock other long-run dirtiers.
1662 */
7c8e0181 1663 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1664 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1665 unsigned long nr_pages_dirtied;
54848d73
WF
1666 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1667 *p -= nr_pages_dirtied;
1668 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1669 }
fa5a734e 1670 preempt_enable();
9d823e8f
WF
1671
1672 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1673 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1674
1675 wb_put(wb);
1da177e4 1676}
d0e1d66b 1677EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1678
232ea4d6 1679void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1680{
364aeb28
DR
1681 unsigned long background_thresh;
1682 unsigned long dirty_thresh;
1da177e4
LT
1683
1684 for ( ; ; ) {
16c4042f 1685 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1686 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1687
1688 /*
1689 * Boost the allowable dirty threshold a bit for page
1690 * allocators so they don't get DoS'ed by heavy writers
1691 */
1692 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1693
c24f21bd
CL
1694 if (global_page_state(NR_UNSTABLE_NFS) +
1695 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1696 break;
8aa7e847 1697 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1698
1699 /*
1700 * The caller might hold locks which can prevent IO completion
1701 * or progress in the filesystem. So we cannot just sit here
1702 * waiting for IO to complete.
1703 */
1704 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1705 break;
1da177e4
LT
1706 }
1707}
1708
1da177e4
LT
1709/*
1710 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1711 */
cccad5b9 1712int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1713 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1714{
8d65af78 1715 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1716 return 0;
1717}
1718
c2c4986e 1719#ifdef CONFIG_BLOCK
31373d09 1720void laptop_mode_timer_fn(unsigned long data)
1da177e4 1721{
31373d09
MG
1722 struct request_queue *q = (struct request_queue *)data;
1723 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1724 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1725 struct bdi_writeback *wb;
1726 struct wb_iter iter;
1da177e4 1727
31373d09
MG
1728 /*
1729 * We want to write everything out, not just down to the dirty
1730 * threshold
1731 */
a06fd6b1
TH
1732 if (!bdi_has_dirty_io(&q->backing_dev_info))
1733 return;
1734
1735 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1736 if (wb_has_dirty_io(wb))
1737 wb_start_writeback(wb, nr_pages, true,
1738 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1739}
1740
1741/*
1742 * We've spun up the disk and we're in laptop mode: schedule writeback
1743 * of all dirty data a few seconds from now. If the flush is already scheduled
1744 * then push it back - the user is still using the disk.
1745 */
31373d09 1746void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1747{
31373d09 1748 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1749}
1750
1751/*
1752 * We're in laptop mode and we've just synced. The sync's writes will have
1753 * caused another writeback to be scheduled by laptop_io_completion.
1754 * Nothing needs to be written back anymore, so we unschedule the writeback.
1755 */
1756void laptop_sync_completion(void)
1757{
31373d09
MG
1758 struct backing_dev_info *bdi;
1759
1760 rcu_read_lock();
1761
1762 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1763 del_timer(&bdi->laptop_mode_wb_timer);
1764
1765 rcu_read_unlock();
1da177e4 1766}
c2c4986e 1767#endif
1da177e4
LT
1768
1769/*
1770 * If ratelimit_pages is too high then we can get into dirty-data overload
1771 * if a large number of processes all perform writes at the same time.
1772 * If it is too low then SMP machines will call the (expensive)
1773 * get_writeback_state too often.
1774 *
1775 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1776 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1777 * thresholds.
1da177e4
LT
1778 */
1779
2d1d43f6 1780void writeback_set_ratelimit(void)
1da177e4 1781{
9d823e8f
WF
1782 unsigned long background_thresh;
1783 unsigned long dirty_thresh;
1784 global_dirty_limits(&background_thresh, &dirty_thresh);
68809c71 1785 global_dirty_limit = dirty_thresh;
9d823e8f 1786 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1787 if (ratelimit_pages < 16)
1788 ratelimit_pages = 16;
1da177e4
LT
1789}
1790
0db0628d 1791static int
2f60d628
SB
1792ratelimit_handler(struct notifier_block *self, unsigned long action,
1793 void *hcpu)
1da177e4 1794{
2f60d628
SB
1795
1796 switch (action & ~CPU_TASKS_FROZEN) {
1797 case CPU_ONLINE:
1798 case CPU_DEAD:
1799 writeback_set_ratelimit();
1800 return NOTIFY_OK;
1801 default:
1802 return NOTIFY_DONE;
1803 }
1da177e4
LT
1804}
1805
0db0628d 1806static struct notifier_block ratelimit_nb = {
1da177e4
LT
1807 .notifier_call = ratelimit_handler,
1808 .next = NULL,
1809};
1810
1811/*
dc6e29da
LT
1812 * Called early on to tune the page writeback dirty limits.
1813 *
1814 * We used to scale dirty pages according to how total memory
1815 * related to pages that could be allocated for buffers (by
1816 * comparing nr_free_buffer_pages() to vm_total_pages.
1817 *
1818 * However, that was when we used "dirty_ratio" to scale with
1819 * all memory, and we don't do that any more. "dirty_ratio"
1820 * is now applied to total non-HIGHPAGE memory (by subtracting
1821 * totalhigh_pages from vm_total_pages), and as such we can't
1822 * get into the old insane situation any more where we had
1823 * large amounts of dirty pages compared to a small amount of
1824 * non-HIGHMEM memory.
1825 *
1826 * But we might still want to scale the dirty_ratio by how
1827 * much memory the box has..
1da177e4
LT
1828 */
1829void __init page_writeback_init(void)
1830{
2d1d43f6 1831 writeback_set_ratelimit();
1da177e4 1832 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1833
20ae0079 1834 fprop_global_init(&writeout_completions, GFP_KERNEL);
1da177e4
LT
1835}
1836
f446daae
JK
1837/**
1838 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1839 * @mapping: address space structure to write
1840 * @start: starting page index
1841 * @end: ending page index (inclusive)
1842 *
1843 * This function scans the page range from @start to @end (inclusive) and tags
1844 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1845 * that write_cache_pages (or whoever calls this function) will then use
1846 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1847 * used to avoid livelocking of writeback by a process steadily creating new
1848 * dirty pages in the file (thus it is important for this function to be quick
1849 * so that it can tag pages faster than a dirtying process can create them).
1850 */
1851/*
1852 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1853 */
f446daae
JK
1854void tag_pages_for_writeback(struct address_space *mapping,
1855 pgoff_t start, pgoff_t end)
1856{
3c111a07 1857#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1858 unsigned long tagged;
1859
1860 do {
1861 spin_lock_irq(&mapping->tree_lock);
1862 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1863 &start, end, WRITEBACK_TAG_BATCH,
1864 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1865 spin_unlock_irq(&mapping->tree_lock);
1866 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1867 cond_resched();
d5ed3a4a
JK
1868 /* We check 'start' to handle wrapping when end == ~0UL */
1869 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1870}
1871EXPORT_SYMBOL(tag_pages_for_writeback);
1872
811d736f 1873/**
0ea97180 1874 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1875 * @mapping: address space structure to write
1876 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1877 * @writepage: function called for each page
1878 * @data: data passed to writepage function
811d736f 1879 *
0ea97180 1880 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1881 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1882 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1883 * and msync() need to guarantee that all the data which was dirty at the time
1884 * the call was made get new I/O started against them. If wbc->sync_mode is
1885 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1886 * existing IO to complete.
f446daae
JK
1887 *
1888 * To avoid livelocks (when other process dirties new pages), we first tag
1889 * pages which should be written back with TOWRITE tag and only then start
1890 * writing them. For data-integrity sync we have to be careful so that we do
1891 * not miss some pages (e.g., because some other process has cleared TOWRITE
1892 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1893 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1894 */
0ea97180
MS
1895int write_cache_pages(struct address_space *mapping,
1896 struct writeback_control *wbc, writepage_t writepage,
1897 void *data)
811d736f 1898{
811d736f
DH
1899 int ret = 0;
1900 int done = 0;
811d736f
DH
1901 struct pagevec pvec;
1902 int nr_pages;
31a12666 1903 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1904 pgoff_t index;
1905 pgoff_t end; /* Inclusive */
bd19e012 1906 pgoff_t done_index;
31a12666 1907 int cycled;
811d736f 1908 int range_whole = 0;
f446daae 1909 int tag;
811d736f 1910
811d736f
DH
1911 pagevec_init(&pvec, 0);
1912 if (wbc->range_cyclic) {
31a12666
NP
1913 writeback_index = mapping->writeback_index; /* prev offset */
1914 index = writeback_index;
1915 if (index == 0)
1916 cycled = 1;
1917 else
1918 cycled = 0;
811d736f
DH
1919 end = -1;
1920 } else {
1921 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1922 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1923 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1924 range_whole = 1;
31a12666 1925 cycled = 1; /* ignore range_cyclic tests */
811d736f 1926 }
6e6938b6 1927 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1928 tag = PAGECACHE_TAG_TOWRITE;
1929 else
1930 tag = PAGECACHE_TAG_DIRTY;
811d736f 1931retry:
6e6938b6 1932 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1933 tag_pages_for_writeback(mapping, index, end);
bd19e012 1934 done_index = index;
5a3d5c98
NP
1935 while (!done && (index <= end)) {
1936 int i;
1937
f446daae 1938 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1939 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1940 if (nr_pages == 0)
1941 break;
811d736f 1942
811d736f
DH
1943 for (i = 0; i < nr_pages; i++) {
1944 struct page *page = pvec.pages[i];
1945
1946 /*
d5482cdf
NP
1947 * At this point, the page may be truncated or
1948 * invalidated (changing page->mapping to NULL), or
1949 * even swizzled back from swapper_space to tmpfs file
1950 * mapping. However, page->index will not change
1951 * because we have a reference on the page.
811d736f 1952 */
d5482cdf
NP
1953 if (page->index > end) {
1954 /*
1955 * can't be range_cyclic (1st pass) because
1956 * end == -1 in that case.
1957 */
1958 done = 1;
1959 break;
1960 }
1961
cf15b07c 1962 done_index = page->index;
d5482cdf 1963
811d736f
DH
1964 lock_page(page);
1965
5a3d5c98
NP
1966 /*
1967 * Page truncated or invalidated. We can freely skip it
1968 * then, even for data integrity operations: the page
1969 * has disappeared concurrently, so there could be no
1970 * real expectation of this data interity operation
1971 * even if there is now a new, dirty page at the same
1972 * pagecache address.
1973 */
811d736f 1974 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1975continue_unlock:
811d736f
DH
1976 unlock_page(page);
1977 continue;
1978 }
1979
515f4a03
NP
1980 if (!PageDirty(page)) {
1981 /* someone wrote it for us */
1982 goto continue_unlock;
1983 }
1984
1985 if (PageWriteback(page)) {
1986 if (wbc->sync_mode != WB_SYNC_NONE)
1987 wait_on_page_writeback(page);
1988 else
1989 goto continue_unlock;
1990 }
811d736f 1991
515f4a03
NP
1992 BUG_ON(PageWriteback(page));
1993 if (!clear_page_dirty_for_io(page))
5a3d5c98 1994 goto continue_unlock;
811d736f 1995
de1414a6 1996 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1997 ret = (*writepage)(page, wbc, data);
00266770
NP
1998 if (unlikely(ret)) {
1999 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2000 unlock_page(page);
2001 ret = 0;
2002 } else {
2003 /*
2004 * done_index is set past this page,
2005 * so media errors will not choke
2006 * background writeout for the entire
2007 * file. This has consequences for
2008 * range_cyclic semantics (ie. it may
2009 * not be suitable for data integrity
2010 * writeout).
2011 */
cf15b07c 2012 done_index = page->index + 1;
00266770
NP
2013 done = 1;
2014 break;
2015 }
0b564927 2016 }
00266770 2017
546a1924
DC
2018 /*
2019 * We stop writing back only if we are not doing
2020 * integrity sync. In case of integrity sync we have to
2021 * keep going until we have written all the pages
2022 * we tagged for writeback prior to entering this loop.
2023 */
2024 if (--wbc->nr_to_write <= 0 &&
2025 wbc->sync_mode == WB_SYNC_NONE) {
2026 done = 1;
2027 break;
05fe478d 2028 }
811d736f
DH
2029 }
2030 pagevec_release(&pvec);
2031 cond_resched();
2032 }
3a4c6800 2033 if (!cycled && !done) {
811d736f 2034 /*
31a12666 2035 * range_cyclic:
811d736f
DH
2036 * We hit the last page and there is more work to be done: wrap
2037 * back to the start of the file
2038 */
31a12666 2039 cycled = 1;
811d736f 2040 index = 0;
31a12666 2041 end = writeback_index - 1;
811d736f
DH
2042 goto retry;
2043 }
0b564927
DC
2044 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2045 mapping->writeback_index = done_index;
06d6cf69 2046
811d736f
DH
2047 return ret;
2048}
0ea97180
MS
2049EXPORT_SYMBOL(write_cache_pages);
2050
2051/*
2052 * Function used by generic_writepages to call the real writepage
2053 * function and set the mapping flags on error
2054 */
2055static int __writepage(struct page *page, struct writeback_control *wbc,
2056 void *data)
2057{
2058 struct address_space *mapping = data;
2059 int ret = mapping->a_ops->writepage(page, wbc);
2060 mapping_set_error(mapping, ret);
2061 return ret;
2062}
2063
2064/**
2065 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2066 * @mapping: address space structure to write
2067 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2068 *
2069 * This is a library function, which implements the writepages()
2070 * address_space_operation.
2071 */
2072int generic_writepages(struct address_space *mapping,
2073 struct writeback_control *wbc)
2074{
9b6096a6
SL
2075 struct blk_plug plug;
2076 int ret;
2077
0ea97180
MS
2078 /* deal with chardevs and other special file */
2079 if (!mapping->a_ops->writepage)
2080 return 0;
2081
9b6096a6
SL
2082 blk_start_plug(&plug);
2083 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2084 blk_finish_plug(&plug);
2085 return ret;
0ea97180 2086}
811d736f
DH
2087
2088EXPORT_SYMBOL(generic_writepages);
2089
1da177e4
LT
2090int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2091{
22905f77
AM
2092 int ret;
2093
1da177e4
LT
2094 if (wbc->nr_to_write <= 0)
2095 return 0;
2096 if (mapping->a_ops->writepages)
d08b3851 2097 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2098 else
2099 ret = generic_writepages(mapping, wbc);
22905f77 2100 return ret;
1da177e4
LT
2101}
2102
2103/**
2104 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2105 * @page: the page to write
2106 * @wait: if true, wait on writeout
1da177e4
LT
2107 *
2108 * The page must be locked by the caller and will be unlocked upon return.
2109 *
2110 * write_one_page() returns a negative error code if I/O failed.
2111 */
2112int write_one_page(struct page *page, int wait)
2113{
2114 struct address_space *mapping = page->mapping;
2115 int ret = 0;
2116 struct writeback_control wbc = {
2117 .sync_mode = WB_SYNC_ALL,
2118 .nr_to_write = 1,
2119 };
2120
2121 BUG_ON(!PageLocked(page));
2122
2123 if (wait)
2124 wait_on_page_writeback(page);
2125
2126 if (clear_page_dirty_for_io(page)) {
2127 page_cache_get(page);
2128 ret = mapping->a_ops->writepage(page, &wbc);
2129 if (ret == 0 && wait) {
2130 wait_on_page_writeback(page);
2131 if (PageError(page))
2132 ret = -EIO;
2133 }
2134 page_cache_release(page);
2135 } else {
2136 unlock_page(page);
2137 }
2138 return ret;
2139}
2140EXPORT_SYMBOL(write_one_page);
2141
76719325
KC
2142/*
2143 * For address_spaces which do not use buffers nor write back.
2144 */
2145int __set_page_dirty_no_writeback(struct page *page)
2146{
2147 if (!PageDirty(page))
c3f0da63 2148 return !TestSetPageDirty(page);
76719325
KC
2149 return 0;
2150}
2151
e3a7cca1
ES
2152/*
2153 * Helper function for set_page_dirty family.
c4843a75
GT
2154 *
2155 * Caller must hold mem_cgroup_begin_page_stat().
2156 *
e3a7cca1
ES
2157 * NOTE: This relies on being atomic wrt interrupts.
2158 */
c4843a75
GT
2159void account_page_dirtied(struct page *page, struct address_space *mapping,
2160 struct mem_cgroup *memcg)
e3a7cca1 2161{
52ebea74
TH
2162 struct inode *inode = mapping->host;
2163
9fb0a7da
TH
2164 trace_writeback_dirty_page(page, mapping);
2165
e3a7cca1 2166 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2167 struct bdi_writeback *wb;
2168
2169 inode_attach_wb(inode, page);
2170 wb = inode_to_wb(inode);
de1414a6 2171
c4843a75 2172 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2173 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2174 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2175 __inc_wb_stat(wb, WB_RECLAIMABLE);
2176 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2177 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2178 current->nr_dirtied++;
2179 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2180 }
2181}
679ceace 2182EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2183
b9ea2515
KK
2184/*
2185 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2186 *
2187 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2188 */
c4843a75
GT
2189void account_page_cleaned(struct page *page, struct address_space *mapping,
2190 struct mem_cgroup *memcg)
b9ea2515
KK
2191{
2192 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2193 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2194 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2195 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2196 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2197 }
2198}
b9ea2515 2199
1da177e4
LT
2200/*
2201 * For address_spaces which do not use buffers. Just tag the page as dirty in
2202 * its radix tree.
2203 *
2204 * This is also used when a single buffer is being dirtied: we want to set the
2205 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2206 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2207 *
2d6d7f98
JW
2208 * The caller must ensure this doesn't race with truncation. Most will simply
2209 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2210 * the pte lock held, which also locks out truncation.
1da177e4
LT
2211 */
2212int __set_page_dirty_nobuffers(struct page *page)
2213{
c4843a75
GT
2214 struct mem_cgroup *memcg;
2215
2216 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2217 if (!TestSetPageDirty(page)) {
2218 struct address_space *mapping = page_mapping(page);
a85d9df1 2219 unsigned long flags;
1da177e4 2220
c4843a75
GT
2221 if (!mapping) {
2222 mem_cgroup_end_page_stat(memcg);
8c08540f 2223 return 1;
c4843a75 2224 }
8c08540f 2225
a85d9df1 2226 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2227 BUG_ON(page_mapping(page) != mapping);
2228 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2229 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2230 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2231 PAGECACHE_TAG_DIRTY);
a85d9df1 2232 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2233 mem_cgroup_end_page_stat(memcg);
2234
8c08540f
AM
2235 if (mapping->host) {
2236 /* !PageAnon && !swapper_space */
2237 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2238 }
4741c9fd 2239 return 1;
1da177e4 2240 }
c4843a75 2241 mem_cgroup_end_page_stat(memcg);
4741c9fd 2242 return 0;
1da177e4
LT
2243}
2244EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2245
2f800fbd
WF
2246/*
2247 * Call this whenever redirtying a page, to de-account the dirty counters
2248 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2249 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2250 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2251 * control.
2252 */
2253void account_page_redirty(struct page *page)
2254{
2255 struct address_space *mapping = page->mapping;
91018134 2256
2f800fbd 2257 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2258 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2259
2f800fbd
WF
2260 current->nr_dirtied--;
2261 dec_zone_page_state(page, NR_DIRTIED);
91018134 2262 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2263 }
2264}
2265EXPORT_SYMBOL(account_page_redirty);
2266
1da177e4
LT
2267/*
2268 * When a writepage implementation decides that it doesn't want to write this
2269 * page for some reason, it should redirty the locked page via
2270 * redirty_page_for_writepage() and it should then unlock the page and return 0
2271 */
2272int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2273{
8d38633c
KK
2274 int ret;
2275
1da177e4 2276 wbc->pages_skipped++;
8d38633c 2277 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2278 account_page_redirty(page);
8d38633c 2279 return ret;
1da177e4
LT
2280}
2281EXPORT_SYMBOL(redirty_page_for_writepage);
2282
2283/*
6746aff7
WF
2284 * Dirty a page.
2285 *
2286 * For pages with a mapping this should be done under the page lock
2287 * for the benefit of asynchronous memory errors who prefer a consistent
2288 * dirty state. This rule can be broken in some special cases,
2289 * but should be better not to.
2290 *
1da177e4
LT
2291 * If the mapping doesn't provide a set_page_dirty a_op, then
2292 * just fall through and assume that it wants buffer_heads.
2293 */
1cf6e7d8 2294int set_page_dirty(struct page *page)
1da177e4
LT
2295{
2296 struct address_space *mapping = page_mapping(page);
2297
2298 if (likely(mapping)) {
2299 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2300 /*
2301 * readahead/lru_deactivate_page could remain
2302 * PG_readahead/PG_reclaim due to race with end_page_writeback
2303 * About readahead, if the page is written, the flags would be
2304 * reset. So no problem.
2305 * About lru_deactivate_page, if the page is redirty, the flag
2306 * will be reset. So no problem. but if the page is used by readahead
2307 * it will confuse readahead and make it restart the size rampup
2308 * process. But it's a trivial problem.
2309 */
a4bb3ecd
NH
2310 if (PageReclaim(page))
2311 ClearPageReclaim(page);
9361401e
DH
2312#ifdef CONFIG_BLOCK
2313 if (!spd)
2314 spd = __set_page_dirty_buffers;
2315#endif
2316 return (*spd)(page);
1da177e4 2317 }
4741c9fd
AM
2318 if (!PageDirty(page)) {
2319 if (!TestSetPageDirty(page))
2320 return 1;
2321 }
1da177e4
LT
2322 return 0;
2323}
2324EXPORT_SYMBOL(set_page_dirty);
2325
2326/*
2327 * set_page_dirty() is racy if the caller has no reference against
2328 * page->mapping->host, and if the page is unlocked. This is because another
2329 * CPU could truncate the page off the mapping and then free the mapping.
2330 *
2331 * Usually, the page _is_ locked, or the caller is a user-space process which
2332 * holds a reference on the inode by having an open file.
2333 *
2334 * In other cases, the page should be locked before running set_page_dirty().
2335 */
2336int set_page_dirty_lock(struct page *page)
2337{
2338 int ret;
2339
7eaceacc 2340 lock_page(page);
1da177e4
LT
2341 ret = set_page_dirty(page);
2342 unlock_page(page);
2343 return ret;
2344}
2345EXPORT_SYMBOL(set_page_dirty_lock);
2346
11f81bec
TH
2347/*
2348 * This cancels just the dirty bit on the kernel page itself, it does NOT
2349 * actually remove dirty bits on any mmap's that may be around. It also
2350 * leaves the page tagged dirty, so any sync activity will still find it on
2351 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2352 * look at the dirty bits in the VM.
2353 *
2354 * Doing this should *normally* only ever be done when a page is truncated,
2355 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2356 * this when it notices that somebody has cleaned out all the buffers on a
2357 * page without actually doing it through the VM. Can you say "ext3 is
2358 * horribly ugly"? Thought you could.
2359 */
2360void cancel_dirty_page(struct page *page)
2361{
c4843a75
GT
2362 struct address_space *mapping = page_mapping(page);
2363
2364 if (mapping_cap_account_dirty(mapping)) {
2365 struct mem_cgroup *memcg;
2366
2367 memcg = mem_cgroup_begin_page_stat(page);
2368
2369 if (TestClearPageDirty(page))
2370 account_page_cleaned(page, mapping, memcg);
2371
2372 mem_cgroup_end_page_stat(memcg);
2373 } else {
2374 ClearPageDirty(page);
2375 }
11f81bec
TH
2376}
2377EXPORT_SYMBOL(cancel_dirty_page);
2378
1da177e4
LT
2379/*
2380 * Clear a page's dirty flag, while caring for dirty memory accounting.
2381 * Returns true if the page was previously dirty.
2382 *
2383 * This is for preparing to put the page under writeout. We leave the page
2384 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2385 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2386 * implementation will run either set_page_writeback() or set_page_dirty(),
2387 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2388 * back into sync.
2389 *
2390 * This incoherency between the page's dirty flag and radix-tree tag is
2391 * unfortunate, but it only exists while the page is locked.
2392 */
2393int clear_page_dirty_for_io(struct page *page)
2394{
2395 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2396 struct mem_cgroup *memcg;
2397 int ret = 0;
1da177e4 2398
79352894
NP
2399 BUG_ON(!PageLocked(page));
2400
7658cc28
LT
2401 if (mapping && mapping_cap_account_dirty(mapping)) {
2402 /*
2403 * Yes, Virginia, this is indeed insane.
2404 *
2405 * We use this sequence to make sure that
2406 * (a) we account for dirty stats properly
2407 * (b) we tell the low-level filesystem to
2408 * mark the whole page dirty if it was
2409 * dirty in a pagetable. Only to then
2410 * (c) clean the page again and return 1 to
2411 * cause the writeback.
2412 *
2413 * This way we avoid all nasty races with the
2414 * dirty bit in multiple places and clearing
2415 * them concurrently from different threads.
2416 *
2417 * Note! Normally the "set_page_dirty(page)"
2418 * has no effect on the actual dirty bit - since
2419 * that will already usually be set. But we
2420 * need the side effects, and it can help us
2421 * avoid races.
2422 *
2423 * We basically use the page "master dirty bit"
2424 * as a serialization point for all the different
2425 * threads doing their things.
7658cc28
LT
2426 */
2427 if (page_mkclean(page))
2428 set_page_dirty(page);
79352894
NP
2429 /*
2430 * We carefully synchronise fault handlers against
2431 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2432 * at this point. We do this by having them hold the
2433 * page lock while dirtying the page, and pages are
2434 * always locked coming in here, so we get the desired
2435 * exclusion.
79352894 2436 */
c4843a75 2437 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2438 if (TestClearPageDirty(page)) {
c4843a75 2439 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2440 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2441 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2442 ret = 1;
1da177e4 2443 }
c4843a75
GT
2444 mem_cgroup_end_page_stat(memcg);
2445 return ret;
1da177e4 2446 }
7658cc28 2447 return TestClearPageDirty(page);
1da177e4 2448}
58bb01a9 2449EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2450
2451int test_clear_page_writeback(struct page *page)
2452{
2453 struct address_space *mapping = page_mapping(page);
d7365e78 2454 struct mem_cgroup *memcg;
d7365e78 2455 int ret;
1da177e4 2456
6de22619 2457 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2458 if (mapping) {
91018134
TH
2459 struct inode *inode = mapping->host;
2460 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2461 unsigned long flags;
2462
19fd6231 2463 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2464 ret = TestClearPageWriteback(page);
69cb51d1 2465 if (ret) {
1da177e4
LT
2466 radix_tree_tag_clear(&mapping->page_tree,
2467 page_index(page),
2468 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2469 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2470 struct bdi_writeback *wb = inode_to_wb(inode);
2471
2472 __dec_wb_stat(wb, WB_WRITEBACK);
2473 __wb_writeout_inc(wb);
04fbfdc1 2474 }
69cb51d1 2475 }
19fd6231 2476 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2477 } else {
2478 ret = TestClearPageWriteback(page);
2479 }
99b12e3d 2480 if (ret) {
d7365e78 2481 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2482 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2483 inc_zone_page_state(page, NR_WRITTEN);
2484 }
6de22619 2485 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2486 return ret;
2487}
2488
1c8349a1 2489int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2490{
2491 struct address_space *mapping = page_mapping(page);
d7365e78 2492 struct mem_cgroup *memcg;
d7365e78 2493 int ret;
1da177e4 2494
6de22619 2495 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2496 if (mapping) {
91018134
TH
2497 struct inode *inode = mapping->host;
2498 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2499 unsigned long flags;
2500
19fd6231 2501 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2502 ret = TestSetPageWriteback(page);
69cb51d1 2503 if (!ret) {
1da177e4
LT
2504 radix_tree_tag_set(&mapping->page_tree,
2505 page_index(page),
2506 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2507 if (bdi_cap_account_writeback(bdi))
91018134 2508 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2509 }
1da177e4
LT
2510 if (!PageDirty(page))
2511 radix_tree_tag_clear(&mapping->page_tree,
2512 page_index(page),
2513 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2514 if (!keep_write)
2515 radix_tree_tag_clear(&mapping->page_tree,
2516 page_index(page),
2517 PAGECACHE_TAG_TOWRITE);
19fd6231 2518 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2519 } else {
2520 ret = TestSetPageWriteback(page);
2521 }
3a3c02ec 2522 if (!ret) {
d7365e78 2523 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2524 inc_zone_page_state(page, NR_WRITEBACK);
2525 }
6de22619 2526 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2527 return ret;
2528
2529}
1c8349a1 2530EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2531
2532/*
00128188 2533 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2534 * passed tag.
2535 */
2536int mapping_tagged(struct address_space *mapping, int tag)
2537{
72c47832 2538 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2539}
2540EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2541
2542/**
2543 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2544 * @page: The page to wait on.
2545 *
2546 * This function determines if the given page is related to a backing device
2547 * that requires page contents to be held stable during writeback. If so, then
2548 * it will wait for any pending writeback to complete.
2549 */
2550void wait_for_stable_page(struct page *page)
2551{
de1414a6
CH
2552 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2553 wait_on_page_writeback(page);
1d1d1a76
DW
2554}
2555EXPORT_SYMBOL_GPL(wait_for_stable_page);