]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page-writeback.c
writeback: add dirty_throttle_control->wb_bg_thresh
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
129 struct bdi_writeback *wb;
130
131 unsigned long dirty; /* file_dirty + write + nfs */
132 unsigned long thresh; /* dirty threshold */
133 unsigned long bg_thresh; /* dirty background threshold */
134
135 unsigned long wb_dirty; /* per-wb counterparts */
136 unsigned long wb_thresh;
970fb01a 137 unsigned long wb_bg_thresh;
2bc00aef
TH
138};
139
140#define GDTC_INIT(__wb) .wb = (__wb)
141
eb608e3a
JK
142/*
143 * Length of period for aging writeout fractions of bdis. This is an
144 * arbitrarily chosen number. The longer the period, the slower fractions will
145 * reflect changes in current writeout rate.
146 */
147#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 148
693108a8
TH
149#ifdef CONFIG_CGROUP_WRITEBACK
150
151static void wb_min_max_ratio(struct bdi_writeback *wb,
152 unsigned long *minp, unsigned long *maxp)
153{
154 unsigned long this_bw = wb->avg_write_bandwidth;
155 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
156 unsigned long long min = wb->bdi->min_ratio;
157 unsigned long long max = wb->bdi->max_ratio;
158
159 /*
160 * @wb may already be clean by the time control reaches here and
161 * the total may not include its bw.
162 */
163 if (this_bw < tot_bw) {
164 if (min) {
165 min *= this_bw;
166 do_div(min, tot_bw);
167 }
168 if (max < 100) {
169 max *= this_bw;
170 do_div(max, tot_bw);
171 }
172 }
173
174 *minp = min;
175 *maxp = max;
176}
177
178#else /* CONFIG_CGROUP_WRITEBACK */
179
180static void wb_min_max_ratio(struct bdi_writeback *wb,
181 unsigned long *minp, unsigned long *maxp)
182{
183 *minp = wb->bdi->min_ratio;
184 *maxp = wb->bdi->max_ratio;
185}
186
187#endif /* CONFIG_CGROUP_WRITEBACK */
188
a756cf59
JW
189/*
190 * In a memory zone, there is a certain amount of pages we consider
191 * available for the page cache, which is essentially the number of
192 * free and reclaimable pages, minus some zone reserves to protect
193 * lowmem and the ability to uphold the zone's watermarks without
194 * requiring writeback.
195 *
196 * This number of dirtyable pages is the base value of which the
197 * user-configurable dirty ratio is the effictive number of pages that
198 * are allowed to be actually dirtied. Per individual zone, or
199 * globally by using the sum of dirtyable pages over all zones.
200 *
201 * Because the user is allowed to specify the dirty limit globally as
202 * absolute number of bytes, calculating the per-zone dirty limit can
203 * require translating the configured limit into a percentage of
204 * global dirtyable memory first.
205 */
206
a804552b
JW
207/**
208 * zone_dirtyable_memory - number of dirtyable pages in a zone
209 * @zone: the zone
210 *
211 * Returns the zone's number of pages potentially available for dirty
212 * page cache. This is the base value for the per-zone dirty limits.
213 */
214static unsigned long zone_dirtyable_memory(struct zone *zone)
215{
216 unsigned long nr_pages;
217
218 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
219 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
220
a1c3bfb2
JW
221 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
222 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
223
224 return nr_pages;
225}
226
1edf2234
JW
227static unsigned long highmem_dirtyable_memory(unsigned long total)
228{
229#ifdef CONFIG_HIGHMEM
230 int node;
231 unsigned long x = 0;
232
233 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 234 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 235
a804552b 236 x += zone_dirtyable_memory(z);
1edf2234 237 }
c8b74c2f
SR
238 /*
239 * Unreclaimable memory (kernel memory or anonymous memory
240 * without swap) can bring down the dirtyable pages below
241 * the zone's dirty balance reserve and the above calculation
242 * will underflow. However we still want to add in nodes
243 * which are below threshold (negative values) to get a more
244 * accurate calculation but make sure that the total never
245 * underflows.
246 */
247 if ((long)x < 0)
248 x = 0;
249
1edf2234
JW
250 /*
251 * Make sure that the number of highmem pages is never larger
252 * than the number of the total dirtyable memory. This can only
253 * occur in very strange VM situations but we want to make sure
254 * that this does not occur.
255 */
256 return min(x, total);
257#else
258 return 0;
259#endif
260}
261
262/**
ccafa287 263 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 264 *
ccafa287
JW
265 * Returns the global number of pages potentially available for dirty
266 * page cache. This is the base value for the global dirty limits.
1edf2234 267 */
18cf8cf8 268static unsigned long global_dirtyable_memory(void)
1edf2234
JW
269{
270 unsigned long x;
271
a804552b 272 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 273 x -= min(x, dirty_balance_reserve);
1edf2234 274
a1c3bfb2
JW
275 x += global_page_state(NR_INACTIVE_FILE);
276 x += global_page_state(NR_ACTIVE_FILE);
a804552b 277
1edf2234
JW
278 if (!vm_highmem_is_dirtyable)
279 x -= highmem_dirtyable_memory(x);
280
281 return x + 1; /* Ensure that we never return 0 */
282}
283
ccafa287
JW
284/*
285 * global_dirty_limits - background-writeback and dirty-throttling thresholds
286 *
287 * Calculate the dirty thresholds based on sysctl parameters
288 * - vm.dirty_background_ratio or vm.dirty_background_bytes
289 * - vm.dirty_ratio or vm.dirty_bytes
290 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
291 * real-time tasks.
292 */
293void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
294{
9ef0a0ff 295 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
296 unsigned long background;
297 unsigned long dirty;
ccafa287
JW
298 struct task_struct *tsk;
299
ccafa287
JW
300 if (vm_dirty_bytes)
301 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
302 else
303 dirty = (vm_dirty_ratio * available_memory) / 100;
304
305 if (dirty_background_bytes)
306 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
307 else
308 background = (dirty_background_ratio * available_memory) / 100;
309
310 if (background >= dirty)
311 background = dirty / 2;
312 tsk = current;
313 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
314 background += background / 4;
315 dirty += dirty / 4;
316 }
317 *pbackground = background;
318 *pdirty = dirty;
319 trace_global_dirty_state(background, dirty);
320}
321
a756cf59
JW
322/**
323 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
324 * @zone: the zone
325 *
326 * Returns the maximum number of dirty pages allowed in a zone, based
327 * on the zone's dirtyable memory.
328 */
329static unsigned long zone_dirty_limit(struct zone *zone)
330{
331 unsigned long zone_memory = zone_dirtyable_memory(zone);
332 struct task_struct *tsk = current;
333 unsigned long dirty;
334
335 if (vm_dirty_bytes)
336 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
337 zone_memory / global_dirtyable_memory();
338 else
339 dirty = vm_dirty_ratio * zone_memory / 100;
340
341 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
342 dirty += dirty / 4;
343
344 return dirty;
345}
346
347/**
348 * zone_dirty_ok - tells whether a zone is within its dirty limits
349 * @zone: the zone to check
350 *
351 * Returns %true when the dirty pages in @zone are within the zone's
352 * dirty limit, %false if the limit is exceeded.
353 */
354bool zone_dirty_ok(struct zone *zone)
355{
356 unsigned long limit = zone_dirty_limit(zone);
357
358 return zone_page_state(zone, NR_FILE_DIRTY) +
359 zone_page_state(zone, NR_UNSTABLE_NFS) +
360 zone_page_state(zone, NR_WRITEBACK) <= limit;
361}
362
2da02997 363int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 364 void __user *buffer, size_t *lenp,
2da02997
DR
365 loff_t *ppos)
366{
367 int ret;
368
8d65af78 369 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
370 if (ret == 0 && write)
371 dirty_background_bytes = 0;
372 return ret;
373}
374
375int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 376 void __user *buffer, size_t *lenp,
2da02997
DR
377 loff_t *ppos)
378{
379 int ret;
380
8d65af78 381 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
382 if (ret == 0 && write)
383 dirty_background_ratio = 0;
384 return ret;
385}
386
04fbfdc1 387int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 388 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
389 loff_t *ppos)
390{
391 int old_ratio = vm_dirty_ratio;
2da02997
DR
392 int ret;
393
8d65af78 394 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 395 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 396 writeback_set_ratelimit();
2da02997
DR
397 vm_dirty_bytes = 0;
398 }
399 return ret;
400}
401
2da02997 402int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
2da02997
DR
404 loff_t *ppos)
405{
fc3501d4 406 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
407 int ret;
408
8d65af78 409 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 410 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 411 writeback_set_ratelimit();
2da02997 412 vm_dirty_ratio = 0;
04fbfdc1
PZ
413 }
414 return ret;
415}
416
eb608e3a
JK
417static unsigned long wp_next_time(unsigned long cur_time)
418{
419 cur_time += VM_COMPLETIONS_PERIOD_LEN;
420 /* 0 has a special meaning... */
421 if (!cur_time)
422 return 1;
423 return cur_time;
424}
425
04fbfdc1 426/*
380c27ca 427 * Increment the wb's writeout completion count and the global writeout
04fbfdc1
PZ
428 * completion count. Called from test_clear_page_writeback().
429 */
93f78d88 430static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 431{
380c27ca
TH
432 struct wb_domain *dom = &global_wb_domain;
433
93f78d88 434 __inc_wb_stat(wb, WB_WRITTEN);
380c27ca 435 __fprop_inc_percpu_max(&dom->completions, &wb->completions,
93f78d88 436 wb->bdi->max_prop_frac);
eb608e3a 437 /* First event after period switching was turned off? */
380c27ca 438 if (!unlikely(dom->period_time)) {
eb608e3a
JK
439 /*
440 * We can race with other __bdi_writeout_inc calls here but
441 * it does not cause any harm since the resulting time when
442 * timer will fire and what is in writeout_period_time will be
443 * roughly the same.
444 */
380c27ca
TH
445 dom->period_time = wp_next_time(jiffies);
446 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 447 }
04fbfdc1
PZ
448}
449
93f78d88 450void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
451{
452 unsigned long flags;
453
454 local_irq_save(flags);
93f78d88 455 __wb_writeout_inc(wb);
dd5656e5
MS
456 local_irq_restore(flags);
457}
93f78d88 458EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 459
eb608e3a
JK
460/*
461 * On idle system, we can be called long after we scheduled because we use
462 * deferred timers so count with missed periods.
463 */
464static void writeout_period(unsigned long t)
465{
380c27ca
TH
466 struct wb_domain *dom = (void *)t;
467 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
468 VM_COMPLETIONS_PERIOD_LEN;
469
380c27ca
TH
470 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
471 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 472 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 473 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
474 } else {
475 /*
476 * Aging has zeroed all fractions. Stop wasting CPU on period
477 * updates.
478 */
380c27ca 479 dom->period_time = 0;
eb608e3a
JK
480 }
481}
482
380c27ca
TH
483int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
484{
485 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
486
487 spin_lock_init(&dom->lock);
488
380c27ca
TH
489 init_timer_deferrable(&dom->period_timer);
490 dom->period_timer.function = writeout_period;
491 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
492
493 dom->dirty_limit_tstamp = jiffies;
494
380c27ca
TH
495 return fprop_global_init(&dom->completions, gfp);
496}
497
189d3c4a 498/*
d08c429b
JW
499 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
500 * registered backing devices, which, for obvious reasons, can not
501 * exceed 100%.
189d3c4a 502 */
189d3c4a
PZ
503static unsigned int bdi_min_ratio;
504
505int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
506{
507 int ret = 0;
189d3c4a 508
cfc4ba53 509 spin_lock_bh(&bdi_lock);
a42dde04 510 if (min_ratio > bdi->max_ratio) {
189d3c4a 511 ret = -EINVAL;
a42dde04
PZ
512 } else {
513 min_ratio -= bdi->min_ratio;
514 if (bdi_min_ratio + min_ratio < 100) {
515 bdi_min_ratio += min_ratio;
516 bdi->min_ratio += min_ratio;
517 } else {
518 ret = -EINVAL;
519 }
520 }
cfc4ba53 521 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
522
523 return ret;
524}
525
526int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
527{
a42dde04
PZ
528 int ret = 0;
529
530 if (max_ratio > 100)
531 return -EINVAL;
532
cfc4ba53 533 spin_lock_bh(&bdi_lock);
a42dde04
PZ
534 if (bdi->min_ratio > max_ratio) {
535 ret = -EINVAL;
536 } else {
537 bdi->max_ratio = max_ratio;
eb608e3a 538 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 539 }
cfc4ba53 540 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
541
542 return ret;
543}
a42dde04 544EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 545
6c14ae1e
WF
546static unsigned long dirty_freerun_ceiling(unsigned long thresh,
547 unsigned long bg_thresh)
548{
549 return (thresh + bg_thresh) / 2;
550}
551
ffd1f609
WF
552static unsigned long hard_dirty_limit(unsigned long thresh)
553{
dcc25ae7
TH
554 struct wb_domain *dom = &global_wb_domain;
555
556 return max(thresh, dom->dirty_limit);
ffd1f609
WF
557}
558
6f718656 559/**
0d960a38 560 * wb_calc_thresh - @wb's share of dirty throttling threshold
a88a341a 561 * @wb: bdi_writeback to query
6f718656 562 * @dirty: global dirty limit in pages
1babe183 563 *
a88a341a 564 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 565 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
566 *
567 * Note that balance_dirty_pages() will only seriously take it as a hard limit
568 * when sleeping max_pause per page is not enough to keep the dirty pages under
569 * control. For example, when the device is completely stalled due to some error
570 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
571 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 572 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 573 *
6f718656 574 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
575 * - starving fast devices
576 * - piling up dirty pages (that will take long time to sync) on slow devices
577 *
a88a341a 578 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
579 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
580 */
0d960a38 581unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
16c4042f 582{
380c27ca 583 struct wb_domain *dom = &global_wb_domain;
0d960a38 584 u64 wb_thresh;
16c4042f 585 long numerator, denominator;
693108a8 586 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 587
16c4042f 588 /*
0d960a38 589 * Calculate this BDI's share of the thresh ratio.
16c4042f 590 */
380c27ca
TH
591 fprop_fraction_percpu(&dom->completions, &wb->completions,
592 &numerator, &denominator);
04fbfdc1 593
0d960a38
TH
594 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
595 wb_thresh *= numerator;
596 do_div(wb_thresh, denominator);
04fbfdc1 597
693108a8
TH
598 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
599
0d960a38
TH
600 wb_thresh += (thresh * wb_min_ratio) / 100;
601 if (wb_thresh > (thresh * wb_max_ratio) / 100)
602 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 603
0d960a38 604 return wb_thresh;
1da177e4
LT
605}
606
5a537485
MP
607/*
608 * setpoint - dirty 3
609 * f(dirty) := 1.0 + (----------------)
610 * limit - setpoint
611 *
612 * it's a 3rd order polynomial that subjects to
613 *
614 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
615 * (2) f(setpoint) = 1.0 => the balance point
616 * (3) f(limit) = 0 => the hard limit
617 * (4) df/dx <= 0 => negative feedback control
618 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
619 * => fast response on large errors; small oscillation near setpoint
620 */
d5c9fde3 621static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
622 unsigned long dirty,
623 unsigned long limit)
624{
625 long long pos_ratio;
626 long x;
627
d5c9fde3 628 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
629 limit - setpoint + 1);
630 pos_ratio = x;
631 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
632 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
633 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
634
635 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
636}
637
6c14ae1e
WF
638/*
639 * Dirty position control.
640 *
641 * (o) global/bdi setpoints
642 *
de1fff37 643 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
644 * When the number of dirty pages is higher/lower than the setpoint, the
645 * dirty position control ratio (and hence task dirty ratelimit) will be
646 * decreased/increased to bring the dirty pages back to the setpoint.
647 *
648 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
649 *
650 * if (dirty < setpoint) scale up pos_ratio
651 * if (dirty > setpoint) scale down pos_ratio
652 *
de1fff37
TH
653 * if (wb_dirty < wb_setpoint) scale up pos_ratio
654 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
655 *
656 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
657 *
658 * (o) global control line
659 *
660 * ^ pos_ratio
661 * |
662 * | |<===== global dirty control scope ======>|
663 * 2.0 .............*
664 * | .*
665 * | . *
666 * | . *
667 * | . *
668 * | . *
669 * | . *
670 * 1.0 ................................*
671 * | . . *
672 * | . . *
673 * | . . *
674 * | . . *
675 * | . . *
676 * 0 +------------.------------------.----------------------*------------->
677 * freerun^ setpoint^ limit^ dirty pages
678 *
de1fff37 679 * (o) wb control line
6c14ae1e
WF
680 *
681 * ^ pos_ratio
682 * |
683 * | *
684 * | *
685 * | *
686 * | *
687 * | * |<=========== span ============>|
688 * 1.0 .......................*
689 * | . *
690 * | . *
691 * | . *
692 * | . *
693 * | . *
694 * | . *
695 * | . *
696 * | . *
697 * | . *
698 * | . *
699 * | . *
700 * 1/4 ...............................................* * * * * * * * * * * *
701 * | . .
702 * | . .
703 * | . .
704 * 0 +----------------------.-------------------------------.------------->
de1fff37 705 * wb_setpoint^ x_intercept^
6c14ae1e 706 *
de1fff37 707 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
708 * be smoothly throttled down to normal if it starts high in situations like
709 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
710 * card's wb_dirty may rush to many times higher than wb_setpoint.
711 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 712 */
2bc00aef 713static unsigned long wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 714{
2bc00aef 715 struct bdi_writeback *wb = dtc->wb;
a88a341a 716 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef
TH
717 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
718 unsigned long limit = hard_dirty_limit(dtc->thresh);
719 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
720 unsigned long x_intercept;
721 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 722 unsigned long wb_setpoint;
6c14ae1e
WF
723 unsigned long span;
724 long long pos_ratio; /* for scaling up/down the rate limit */
725 long x;
726
2bc00aef 727 if (unlikely(dtc->dirty >= limit))
6c14ae1e
WF
728 return 0;
729
730 /*
731 * global setpoint
732 *
5a537485
MP
733 * See comment for pos_ratio_polynom().
734 */
735 setpoint = (freerun + limit) / 2;
2bc00aef 736 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
737
738 /*
739 * The strictlimit feature is a tool preventing mistrusted filesystems
740 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
741 * such filesystems balance_dirty_pages always checks wb counters
742 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
743 * This is especially important for fuse which sets bdi->max_ratio to
744 * 1% by default. Without strictlimit feature, fuse writeback may
745 * consume arbitrary amount of RAM because it is accounted in
746 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 747 *
a88a341a 748 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 749 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
750 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
751 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 752 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 753 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 754 * about ~6K pages (as the average of background and throttle wb
5a537485 755 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 756 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 757 *
5a537485 758 * Note, that we cannot use global counters in these calculations
de1fff37 759 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
760 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
761 * in the example above).
6c14ae1e 762 */
a88a341a 763 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 764 long long wb_pos_ratio;
5a537485 765
2bc00aef 766 if (dtc->wb_dirty < 8)
5a537485
MP
767 return min_t(long long, pos_ratio * 2,
768 2 << RATELIMIT_CALC_SHIFT);
769
2bc00aef 770 if (dtc->wb_dirty >= wb_thresh)
5a537485
MP
771 return 0;
772
970fb01a
TH
773 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
774 dtc->wb_bg_thresh);
5a537485 775
de1fff37 776 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
5a537485
MP
777 return 0;
778
2bc00aef 779 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 780 wb_thresh);
5a537485
MP
781
782 /*
de1fff37
TH
783 * Typically, for strictlimit case, wb_setpoint << setpoint
784 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 785 * state ("dirty") is not limiting factor and we have to
de1fff37 786 * make decision based on wb counters. But there is an
5a537485
MP
787 * important case when global pos_ratio should get precedence:
788 * global limits are exceeded (e.g. due to activities on other
de1fff37 789 * wb's) while given strictlimit wb is below limit.
5a537485 790 *
de1fff37 791 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 792 * but it would look too non-natural for the case of all
de1fff37 793 * activity in the system coming from a single strictlimit wb
5a537485
MP
794 * with bdi->max_ratio == 100%.
795 *
796 * Note that min() below somewhat changes the dynamics of the
797 * control system. Normally, pos_ratio value can be well over 3
de1fff37 798 * (when globally we are at freerun and wb is well below wb
5a537485
MP
799 * setpoint). Now the maximum pos_ratio in the same situation
800 * is 2. We might want to tweak this if we observe the control
801 * system is too slow to adapt.
802 */
de1fff37 803 return min(pos_ratio, wb_pos_ratio);
5a537485 804 }
6c14ae1e
WF
805
806 /*
807 * We have computed basic pos_ratio above based on global situation. If
de1fff37 808 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
809 * pos_ratio further down/up. That is done by the following mechanism.
810 */
811
812 /*
de1fff37 813 * wb setpoint
6c14ae1e 814 *
de1fff37 815 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 816 *
de1fff37 817 * x_intercept - wb_dirty
6c14ae1e 818 * := --------------------------
de1fff37 819 * x_intercept - wb_setpoint
6c14ae1e 820 *
de1fff37 821 * The main wb control line is a linear function that subjects to
6c14ae1e 822 *
de1fff37
TH
823 * (1) f(wb_setpoint) = 1.0
824 * (2) k = - 1 / (8 * write_bw) (in single wb case)
825 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 826 *
de1fff37 827 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 828 * regularly within range
de1fff37 829 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
830 * for various filesystems, where (2) can yield in a reasonable 12.5%
831 * fluctuation range for pos_ratio.
832 *
de1fff37 833 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 834 * own size, so move the slope over accordingly and choose a slope that
de1fff37 835 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 836 */
2bc00aef
TH
837 if (unlikely(wb_thresh > dtc->thresh))
838 wb_thresh = dtc->thresh;
aed21ad2 839 /*
de1fff37 840 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
841 * device is slow, but that it has remained inactive for long time.
842 * Honour such devices a reasonable good (hopefully IO efficient)
843 * threshold, so that the occasional writes won't be blocked and active
844 * writes can rampup the threshold quickly.
845 */
2bc00aef 846 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 847 /*
de1fff37
TH
848 * scale global setpoint to wb's:
849 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 850 */
2bc00aef 851 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 852 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 853 /*
de1fff37
TH
854 * Use span=(8*write_bw) in single wb case as indicated by
855 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 856 *
de1fff37
TH
857 * wb_thresh thresh - wb_thresh
858 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
859 * thresh thresh
6c14ae1e 860 */
2bc00aef 861 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 862 x_intercept = wb_setpoint + span;
6c14ae1e 863
2bc00aef
TH
864 if (dtc->wb_dirty < x_intercept - span / 4) {
865 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
866 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
867 } else
868 pos_ratio /= 4;
869
8927f66c 870 /*
de1fff37 871 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
872 * It may push the desired control point of global dirty pages higher
873 * than setpoint.
874 */
de1fff37 875 x_intercept = wb_thresh / 2;
2bc00aef
TH
876 if (dtc->wb_dirty < x_intercept) {
877 if (dtc->wb_dirty > x_intercept / 8)
878 pos_ratio = div_u64(pos_ratio * x_intercept,
879 dtc->wb_dirty);
50657fc4 880 else
8927f66c
WF
881 pos_ratio *= 8;
882 }
883
6c14ae1e
WF
884 return pos_ratio;
885}
886
a88a341a
TH
887static void wb_update_write_bandwidth(struct bdi_writeback *wb,
888 unsigned long elapsed,
889 unsigned long written)
e98be2d5
WF
890{
891 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
892 unsigned long avg = wb->avg_write_bandwidth;
893 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
894 u64 bw;
895
896 /*
897 * bw = written * HZ / elapsed
898 *
899 * bw * elapsed + write_bandwidth * (period - elapsed)
900 * write_bandwidth = ---------------------------------------------------
901 * period
c72efb65
TH
902 *
903 * @written may have decreased due to account_page_redirty().
904 * Avoid underflowing @bw calculation.
e98be2d5 905 */
a88a341a 906 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
907 bw *= HZ;
908 if (unlikely(elapsed > period)) {
909 do_div(bw, elapsed);
910 avg = bw;
911 goto out;
912 }
a88a341a 913 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
914 bw >>= ilog2(period);
915
916 /*
917 * one more level of smoothing, for filtering out sudden spikes
918 */
919 if (avg > old && old >= (unsigned long)bw)
920 avg -= (avg - old) >> 3;
921
922 if (avg < old && old <= (unsigned long)bw)
923 avg += (old - avg) >> 3;
924
925out:
95a46c65
TH
926 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
927 avg = max(avg, 1LU);
928 if (wb_has_dirty_io(wb)) {
929 long delta = avg - wb->avg_write_bandwidth;
930 WARN_ON_ONCE(atomic_long_add_return(delta,
931 &wb->bdi->tot_write_bandwidth) <= 0);
932 }
a88a341a
TH
933 wb->write_bandwidth = bw;
934 wb->avg_write_bandwidth = avg;
e98be2d5
WF
935}
936
2bc00aef 937static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 938{
dcc25ae7 939 struct wb_domain *dom = &global_wb_domain;
2bc00aef 940 unsigned long thresh = dtc->thresh;
dcc25ae7 941 unsigned long limit = dom->dirty_limit;
c42843f2
WF
942
943 /*
944 * Follow up in one step.
945 */
946 if (limit < thresh) {
947 limit = thresh;
948 goto update;
949 }
950
951 /*
952 * Follow down slowly. Use the higher one as the target, because thresh
953 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 954 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 955 */
2bc00aef 956 thresh = max(thresh, dtc->dirty);
c42843f2
WF
957 if (limit > thresh) {
958 limit -= (limit - thresh) >> 5;
959 goto update;
960 }
961 return;
962update:
dcc25ae7 963 dom->dirty_limit = limit;
c42843f2
WF
964}
965
2bc00aef 966static void global_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
967 unsigned long now)
968{
dcc25ae7 969 struct wb_domain *dom = &global_wb_domain;
c42843f2
WF
970
971 /*
972 * check locklessly first to optimize away locking for the most time
973 */
dcc25ae7 974 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
975 return;
976
dcc25ae7
TH
977 spin_lock(&dom->lock);
978 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 979 update_dirty_limit(dtc);
dcc25ae7 980 dom->dirty_limit_tstamp = now;
c42843f2 981 }
dcc25ae7 982 spin_unlock(&dom->lock);
c42843f2
WF
983}
984
be3ffa27 985/*
de1fff37 986 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 987 *
de1fff37 988 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
989 * Obviously it should be around (write_bw / N) when there are N dd tasks.
990 */
2bc00aef 991static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
992 unsigned long dirtied,
993 unsigned long elapsed)
be3ffa27 994{
2bc00aef
TH
995 struct bdi_writeback *wb = dtc->wb;
996 unsigned long dirty = dtc->dirty;
997 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
998 unsigned long limit = hard_dirty_limit(dtc->thresh);
7381131c 999 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1000 unsigned long write_bw = wb->avg_write_bandwidth;
1001 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1002 unsigned long dirty_rate;
1003 unsigned long task_ratelimit;
1004 unsigned long balanced_dirty_ratelimit;
1005 unsigned long pos_ratio;
7381131c
WF
1006 unsigned long step;
1007 unsigned long x;
be3ffa27
WF
1008
1009 /*
1010 * The dirty rate will match the writeout rate in long term, except
1011 * when dirty pages are truncated by userspace or re-dirtied by FS.
1012 */
a88a341a 1013 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1014
2bc00aef 1015 pos_ratio = wb_position_ratio(dtc);
be3ffa27
WF
1016 /*
1017 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1018 */
1019 task_ratelimit = (u64)dirty_ratelimit *
1020 pos_ratio >> RATELIMIT_CALC_SHIFT;
1021 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1022
1023 /*
1024 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1025 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1026 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1027 * formula will yield the balanced rate limit (write_bw / N).
1028 *
1029 * Note that the expanded form is not a pure rate feedback:
1030 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1031 * but also takes pos_ratio into account:
1032 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1033 *
1034 * (1) is not realistic because pos_ratio also takes part in balancing
1035 * the dirty rate. Consider the state
1036 * pos_ratio = 0.5 (3)
1037 * rate = 2 * (write_bw / N) (4)
1038 * If (1) is used, it will stuck in that state! Because each dd will
1039 * be throttled at
1040 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1041 * yielding
1042 * dirty_rate = N * task_ratelimit = write_bw (6)
1043 * put (6) into (1) we get
1044 * rate_(i+1) = rate_(i) (7)
1045 *
1046 * So we end up using (2) to always keep
1047 * rate_(i+1) ~= (write_bw / N) (8)
1048 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1049 * pos_ratio is able to drive itself to 1.0, which is not only where
1050 * the dirty count meet the setpoint, but also where the slope of
1051 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1052 */
1053 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1054 dirty_rate | 1);
bdaac490
WF
1055 /*
1056 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1057 */
1058 if (unlikely(balanced_dirty_ratelimit > write_bw))
1059 balanced_dirty_ratelimit = write_bw;
be3ffa27 1060
7381131c
WF
1061 /*
1062 * We could safely do this and return immediately:
1063 *
de1fff37 1064 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1065 *
1066 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1067 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1068 * limit the step size.
1069 *
1070 * The below code essentially only uses the relative value of
1071 *
1072 * task_ratelimit - dirty_ratelimit
1073 * = (pos_ratio - 1) * dirty_ratelimit
1074 *
1075 * which reflects the direction and size of dirty position error.
1076 */
1077
1078 /*
1079 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1080 * task_ratelimit is on the same side of dirty_ratelimit, too.
1081 * For example, when
1082 * - dirty_ratelimit > balanced_dirty_ratelimit
1083 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1084 * lowering dirty_ratelimit will help meet both the position and rate
1085 * control targets. Otherwise, don't update dirty_ratelimit if it will
1086 * only help meet the rate target. After all, what the users ultimately
1087 * feel and care are stable dirty rate and small position error.
1088 *
1089 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1090 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1091 * keeps jumping around randomly and can even leap far away at times
1092 * due to the small 200ms estimation period of dirty_rate (we want to
1093 * keep that period small to reduce time lags).
1094 */
1095 step = 0;
5a537485
MP
1096
1097 /*
de1fff37 1098 * For strictlimit case, calculations above were based on wb counters
a88a341a 1099 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1100 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1101 * Hence, to calculate "step" properly, we have to use wb_dirty as
1102 * "dirty" and wb_setpoint as "setpoint".
5a537485 1103 *
de1fff37
TH
1104 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1105 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1106 * of backing device.
5a537485 1107 */
a88a341a 1108 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1109 dirty = dtc->wb_dirty;
1110 if (dtc->wb_dirty < 8)
1111 setpoint = dtc->wb_dirty + 1;
5a537485 1112 else
970fb01a 1113 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1114 }
1115
7381131c 1116 if (dirty < setpoint) {
a88a341a 1117 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1118 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1119 if (dirty_ratelimit < x)
1120 step = x - dirty_ratelimit;
1121 } else {
a88a341a 1122 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1123 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1124 if (dirty_ratelimit > x)
1125 step = dirty_ratelimit - x;
1126 }
1127
1128 /*
1129 * Don't pursue 100% rate matching. It's impossible since the balanced
1130 * rate itself is constantly fluctuating. So decrease the track speed
1131 * when it gets close to the target. Helps eliminate pointless tremors.
1132 */
1133 step >>= dirty_ratelimit / (2 * step + 1);
1134 /*
1135 * Limit the tracking speed to avoid overshooting.
1136 */
1137 step = (step + 7) / 8;
1138
1139 if (dirty_ratelimit < balanced_dirty_ratelimit)
1140 dirty_ratelimit += step;
1141 else
1142 dirty_ratelimit -= step;
1143
a88a341a
TH
1144 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1145 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1146
a88a341a 1147 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1148}
1149
2bc00aef 1150static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1151 unsigned long start_time,
1152 bool update_ratelimit)
e98be2d5 1153{
2bc00aef 1154 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1155 unsigned long now = jiffies;
a88a341a 1156 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1157 unsigned long dirtied;
e98be2d5
WF
1158 unsigned long written;
1159
8a731799
TH
1160 lockdep_assert_held(&wb->list_lock);
1161
e98be2d5
WF
1162 /*
1163 * rate-limit, only update once every 200ms.
1164 */
1165 if (elapsed < BANDWIDTH_INTERVAL)
1166 return;
1167
a88a341a
TH
1168 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1169 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1170
1171 /*
1172 * Skip quiet periods when disk bandwidth is under-utilized.
1173 * (at least 1s idle time between two flusher runs)
1174 */
a88a341a 1175 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1176 goto snapshot;
1177
8a731799 1178 if (update_ratelimit) {
2bc00aef
TH
1179 global_update_bandwidth(dtc, now);
1180 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1181 }
a88a341a 1182 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1183
1184snapshot:
a88a341a
TH
1185 wb->dirtied_stamp = dirtied;
1186 wb->written_stamp = written;
1187 wb->bw_time_stamp = now;
e98be2d5
WF
1188}
1189
8a731799 1190void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1191{
2bc00aef
TH
1192 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1193
1194 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1195}
1196
9d823e8f 1197/*
d0e1d66b 1198 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1199 * will look to see if it needs to start dirty throttling.
1200 *
1201 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1202 * global_page_state() too often. So scale it near-sqrt to the safety margin
1203 * (the number of pages we may dirty without exceeding the dirty limits).
1204 */
1205static unsigned long dirty_poll_interval(unsigned long dirty,
1206 unsigned long thresh)
1207{
1208 if (thresh > dirty)
1209 return 1UL << (ilog2(thresh - dirty) >> 1);
1210
1211 return 1;
1212}
1213
a88a341a 1214static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1215 unsigned long wb_dirty)
c8462cc9 1216{
a88a341a 1217 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1218 unsigned long t;
c8462cc9 1219
7ccb9ad5
WF
1220 /*
1221 * Limit pause time for small memory systems. If sleeping for too long
1222 * time, a small pool of dirty/writeback pages may go empty and disk go
1223 * idle.
1224 *
1225 * 8 serves as the safety ratio.
1226 */
de1fff37 1227 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1228 t++;
1229
e3b6c655 1230 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1231}
1232
a88a341a
TH
1233static long wb_min_pause(struct bdi_writeback *wb,
1234 long max_pause,
1235 unsigned long task_ratelimit,
1236 unsigned long dirty_ratelimit,
1237 int *nr_dirtied_pause)
c8462cc9 1238{
a88a341a
TH
1239 long hi = ilog2(wb->avg_write_bandwidth);
1240 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1241 long t; /* target pause */
1242 long pause; /* estimated next pause */
1243 int pages; /* target nr_dirtied_pause */
c8462cc9 1244
7ccb9ad5
WF
1245 /* target for 10ms pause on 1-dd case */
1246 t = max(1, HZ / 100);
c8462cc9
WF
1247
1248 /*
1249 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1250 * overheads.
1251 *
7ccb9ad5 1252 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1253 */
1254 if (hi > lo)
7ccb9ad5 1255 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1256
1257 /*
7ccb9ad5
WF
1258 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1259 * on the much more stable dirty_ratelimit. However the next pause time
1260 * will be computed based on task_ratelimit and the two rate limits may
1261 * depart considerably at some time. Especially if task_ratelimit goes
1262 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1263 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1264 * result task_ratelimit won't be executed faithfully, which could
1265 * eventually bring down dirty_ratelimit.
c8462cc9 1266 *
7ccb9ad5
WF
1267 * We apply two rules to fix it up:
1268 * 1) try to estimate the next pause time and if necessary, use a lower
1269 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1270 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1271 * 2) limit the target pause time to max_pause/2, so that the normal
1272 * small fluctuations of task_ratelimit won't trigger rule (1) and
1273 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1274 */
7ccb9ad5
WF
1275 t = min(t, 1 + max_pause / 2);
1276 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1277
1278 /*
5b9b3574
WF
1279 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1280 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1281 * When the 16 consecutive reads are often interrupted by some dirty
1282 * throttling pause during the async writes, cfq will go into idles
1283 * (deadline is fine). So push nr_dirtied_pause as high as possible
1284 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1285 */
5b9b3574
WF
1286 if (pages < DIRTY_POLL_THRESH) {
1287 t = max_pause;
1288 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1289 if (pages > DIRTY_POLL_THRESH) {
1290 pages = DIRTY_POLL_THRESH;
1291 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1292 }
1293 }
1294
7ccb9ad5
WF
1295 pause = HZ * pages / (task_ratelimit + 1);
1296 if (pause > max_pause) {
1297 t = max_pause;
1298 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1299 }
c8462cc9 1300
7ccb9ad5 1301 *nr_dirtied_pause = pages;
c8462cc9 1302 /*
7ccb9ad5 1303 * The minimal pause time will normally be half the target pause time.
c8462cc9 1304 */
5b9b3574 1305 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1306}
1307
970fb01a 1308static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1309{
2bc00aef 1310 struct bdi_writeback *wb = dtc->wb;
93f78d88 1311 unsigned long wb_reclaimable;
5a537485
MP
1312
1313 /*
de1fff37 1314 * wb_thresh is not treated as some limiting factor as
5a537485 1315 * dirty_thresh, due to reasons
de1fff37 1316 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1317 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1318 * go into state (wb_dirty >> wb_thresh) either because
1319 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1320 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1321 * dirtiers for 100 seconds until wb_dirty drops under
1322 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1323 * wb_position_ratio() will let the dirtier task progress
de1fff37 1324 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1325 */
2bc00aef 1326 dtc->wb_thresh = wb_calc_thresh(dtc->wb, dtc->thresh);
970fb01a
TH
1327 dtc->wb_bg_thresh = dtc->thresh ?
1328 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1329
1330 /*
1331 * In order to avoid the stacked BDI deadlock we need
1332 * to ensure we accurately count the 'dirty' pages when
1333 * the threshold is low.
1334 *
1335 * Otherwise it would be possible to get thresh+n pages
1336 * reported dirty, even though there are thresh-m pages
1337 * actually dirty; with m+n sitting in the percpu
1338 * deltas.
1339 */
2bc00aef 1340 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1341 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1342 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1343 } else {
93f78d88 1344 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1345 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1346 }
1347}
1348
1da177e4
LT
1349/*
1350 * balance_dirty_pages() must be called by processes which are generating dirty
1351 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1352 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1353 * If we're over `background_thresh' then the writeback threads are woken to
1354 * perform some writeout.
1da177e4 1355 */
3a2e9a5a 1356static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1357 struct bdi_writeback *wb,
143dfe86 1358 unsigned long pages_dirtied)
1da177e4 1359{
2bc00aef
TH
1360 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1361 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1362 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1363 long period;
7ccb9ad5
WF
1364 long pause;
1365 long max_pause;
1366 long min_pause;
1367 int nr_dirtied_pause;
e50e3720 1368 bool dirty_exceeded = false;
143dfe86 1369 unsigned long task_ratelimit;
7ccb9ad5 1370 unsigned long dirty_ratelimit;
143dfe86 1371 unsigned long pos_ratio;
dfb8ae56 1372 struct backing_dev_info *bdi = wb->bdi;
5a537485 1373 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1374 unsigned long start_time = jiffies;
1da177e4
LT
1375
1376 for (;;) {
83712358 1377 unsigned long now = jiffies;
2bc00aef 1378 unsigned long dirty, thresh, bg_thresh;
83712358 1379
143dfe86
WF
1380 /*
1381 * Unstable writes are a feature of certain networked
1382 * filesystems (i.e. NFS) in which data may have been
1383 * written to the server's write cache, but has not yet
1384 * been flushed to permanent storage.
1385 */
5fce25a9
PZ
1386 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1387 global_page_state(NR_UNSTABLE_NFS);
2bc00aef 1388 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1389
2bc00aef 1390 global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
16c4042f 1391
5a537485 1392 if (unlikely(strictlimit)) {
970fb01a 1393 wb_dirty_limits(gdtc);
5a537485 1394
2bc00aef
TH
1395 dirty = gdtc->wb_dirty;
1396 thresh = gdtc->wb_thresh;
970fb01a 1397 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1398 } else {
2bc00aef
TH
1399 dirty = gdtc->dirty;
1400 thresh = gdtc->thresh;
1401 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1402 }
1403
16c4042f
WF
1404 /*
1405 * Throttle it only when the background writeback cannot
1406 * catch-up. This avoids (excessively) small writeouts
de1fff37 1407 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1408 *
de1fff37
TH
1409 * In strictlimit case make decision based on the wb counters
1410 * and limits. Small writeouts when the wb limits are ramping
5a537485 1411 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1412 */
5a537485 1413 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1414 current->dirty_paused_when = now;
1415 current->nr_dirtied = 0;
7ccb9ad5 1416 current->nr_dirtied_pause =
5a537485 1417 dirty_poll_interval(dirty, thresh);
16c4042f 1418 break;
83712358 1419 }
16c4042f 1420
bc05873d 1421 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1422 wb_start_background_writeback(wb);
143dfe86 1423
5a537485 1424 if (!strictlimit)
970fb01a 1425 wb_dirty_limits(gdtc);
5fce25a9 1426
2bc00aef
TH
1427 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1428 ((gdtc->dirty > gdtc->thresh) || strictlimit);
a88a341a
TH
1429 if (dirty_exceeded && !wb->dirty_exceeded)
1430 wb->dirty_exceeded = 1;
1da177e4 1431
8a731799
TH
1432 if (time_is_before_jiffies(wb->bw_time_stamp +
1433 BANDWIDTH_INTERVAL)) {
1434 spin_lock(&wb->list_lock);
2bc00aef 1435 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1436 spin_unlock(&wb->list_lock);
1437 }
e98be2d5 1438
a88a341a 1439 dirty_ratelimit = wb->dirty_ratelimit;
2bc00aef 1440 pos_ratio = wb_position_ratio(gdtc);
3a73dbbc
WF
1441 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1442 RATELIMIT_CALC_SHIFT;
2bc00aef 1443 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1444 min_pause = wb_min_pause(wb, max_pause,
1445 task_ratelimit, dirty_ratelimit,
1446 &nr_dirtied_pause);
7ccb9ad5 1447
3a73dbbc 1448 if (unlikely(task_ratelimit == 0)) {
83712358 1449 period = max_pause;
c8462cc9 1450 pause = max_pause;
143dfe86 1451 goto pause;
04fbfdc1 1452 }
83712358
WF
1453 period = HZ * pages_dirtied / task_ratelimit;
1454 pause = period;
1455 if (current->dirty_paused_when)
1456 pause -= now - current->dirty_paused_when;
1457 /*
1458 * For less than 1s think time (ext3/4 may block the dirtier
1459 * for up to 800ms from time to time on 1-HDD; so does xfs,
1460 * however at much less frequency), try to compensate it in
1461 * future periods by updating the virtual time; otherwise just
1462 * do a reset, as it may be a light dirtier.
1463 */
7ccb9ad5 1464 if (pause < min_pause) {
ece13ac3 1465 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1466 gdtc->thresh,
1467 gdtc->bg_thresh,
1468 gdtc->dirty,
1469 gdtc->wb_thresh,
1470 gdtc->wb_dirty,
ece13ac3
WF
1471 dirty_ratelimit,
1472 task_ratelimit,
1473 pages_dirtied,
83712358 1474 period,
7ccb9ad5 1475 min(pause, 0L),
ece13ac3 1476 start_time);
83712358
WF
1477 if (pause < -HZ) {
1478 current->dirty_paused_when = now;
1479 current->nr_dirtied = 0;
1480 } else if (period) {
1481 current->dirty_paused_when += period;
1482 current->nr_dirtied = 0;
7ccb9ad5
WF
1483 } else if (current->nr_dirtied_pause <= pages_dirtied)
1484 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1485 break;
04fbfdc1 1486 }
7ccb9ad5
WF
1487 if (unlikely(pause > max_pause)) {
1488 /* for occasional dropped task_ratelimit */
1489 now += min(pause - max_pause, max_pause);
1490 pause = max_pause;
1491 }
143dfe86
WF
1492
1493pause:
ece13ac3 1494 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1495 gdtc->thresh,
1496 gdtc->bg_thresh,
1497 gdtc->dirty,
1498 gdtc->wb_thresh,
1499 gdtc->wb_dirty,
ece13ac3
WF
1500 dirty_ratelimit,
1501 task_ratelimit,
1502 pages_dirtied,
83712358 1503 period,
ece13ac3
WF
1504 pause,
1505 start_time);
499d05ec 1506 __set_current_state(TASK_KILLABLE);
d25105e8 1507 io_schedule_timeout(pause);
87c6a9b2 1508
83712358
WF
1509 current->dirty_paused_when = now + pause;
1510 current->nr_dirtied = 0;
7ccb9ad5 1511 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1512
ffd1f609 1513 /*
2bc00aef
TH
1514 * This is typically equal to (dirty < thresh) and can also
1515 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1516 */
1df64719 1517 if (task_ratelimit)
ffd1f609 1518 break;
499d05ec 1519
c5c6343c
WF
1520 /*
1521 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1522 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1523 * to go through, so that tasks on them still remain responsive.
1524 *
1525 * In theory 1 page is enough to keep the comsumer-producer
1526 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1527 * more page. However wb_dirty has accounting errors. So use
93f78d88 1528 * the larger and more IO friendly wb_stat_error.
c5c6343c 1529 */
2bc00aef 1530 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1531 break;
1532
499d05ec
JK
1533 if (fatal_signal_pending(current))
1534 break;
1da177e4
LT
1535 }
1536
a88a341a
TH
1537 if (!dirty_exceeded && wb->dirty_exceeded)
1538 wb->dirty_exceeded = 0;
1da177e4 1539
bc05873d 1540 if (writeback_in_progress(wb))
5b0830cb 1541 return;
1da177e4
LT
1542
1543 /*
1544 * In laptop mode, we wait until hitting the higher threshold before
1545 * starting background writeout, and then write out all the way down
1546 * to the lower threshold. So slow writers cause minimal disk activity.
1547 *
1548 * In normal mode, we start background writeout at the lower
1549 * background_thresh, to keep the amount of dirty memory low.
1550 */
143dfe86
WF
1551 if (laptop_mode)
1552 return;
1553
2bc00aef 1554 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1555 wb_start_background_writeback(wb);
1da177e4
LT
1556}
1557
9d823e8f 1558static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1559
54848d73
WF
1560/*
1561 * Normal tasks are throttled by
1562 * loop {
1563 * dirty tsk->nr_dirtied_pause pages;
1564 * take a snap in balance_dirty_pages();
1565 * }
1566 * However there is a worst case. If every task exit immediately when dirtied
1567 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1568 * called to throttle the page dirties. The solution is to save the not yet
1569 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1570 * randomly into the running tasks. This works well for the above worst case,
1571 * as the new task will pick up and accumulate the old task's leaked dirty
1572 * count and eventually get throttled.
1573 */
1574DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1575
1da177e4 1576/**
d0e1d66b 1577 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1578 * @mapping: address_space which was dirtied
1da177e4
LT
1579 *
1580 * Processes which are dirtying memory should call in here once for each page
1581 * which was newly dirtied. The function will periodically check the system's
1582 * dirty state and will initiate writeback if needed.
1583 *
1584 * On really big machines, get_writeback_state is expensive, so try to avoid
1585 * calling it too often (ratelimiting). But once we're over the dirty memory
1586 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1587 * from overshooting the limit by (ratelimit_pages) each.
1588 */
d0e1d66b 1589void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1590{
dfb8ae56
TH
1591 struct inode *inode = mapping->host;
1592 struct backing_dev_info *bdi = inode_to_bdi(inode);
1593 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1594 int ratelimit;
1595 int *p;
1da177e4 1596
36715cef
WF
1597 if (!bdi_cap_account_dirty(bdi))
1598 return;
1599
dfb8ae56
TH
1600 if (inode_cgwb_enabled(inode))
1601 wb = wb_get_create_current(bdi, GFP_KERNEL);
1602 if (!wb)
1603 wb = &bdi->wb;
1604
9d823e8f 1605 ratelimit = current->nr_dirtied_pause;
a88a341a 1606 if (wb->dirty_exceeded)
9d823e8f
WF
1607 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1608
9d823e8f 1609 preempt_disable();
1da177e4 1610 /*
9d823e8f
WF
1611 * This prevents one CPU to accumulate too many dirtied pages without
1612 * calling into balance_dirty_pages(), which can happen when there are
1613 * 1000+ tasks, all of them start dirtying pages at exactly the same
1614 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1615 */
7c8e0181 1616 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1617 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1618 *p = 0;
d3bc1fef
WF
1619 else if (unlikely(*p >= ratelimit_pages)) {
1620 *p = 0;
1621 ratelimit = 0;
1da177e4 1622 }
54848d73
WF
1623 /*
1624 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1625 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1626 * the dirty throttling and livelock other long-run dirtiers.
1627 */
7c8e0181 1628 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1629 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1630 unsigned long nr_pages_dirtied;
54848d73
WF
1631 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1632 *p -= nr_pages_dirtied;
1633 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1634 }
fa5a734e 1635 preempt_enable();
9d823e8f
WF
1636
1637 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1638 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1639
1640 wb_put(wb);
1da177e4 1641}
d0e1d66b 1642EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1643
232ea4d6 1644void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1645{
364aeb28
DR
1646 unsigned long background_thresh;
1647 unsigned long dirty_thresh;
1da177e4
LT
1648
1649 for ( ; ; ) {
16c4042f 1650 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1651 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1652
1653 /*
1654 * Boost the allowable dirty threshold a bit for page
1655 * allocators so they don't get DoS'ed by heavy writers
1656 */
1657 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1658
c24f21bd
CL
1659 if (global_page_state(NR_UNSTABLE_NFS) +
1660 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1661 break;
8aa7e847 1662 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1663
1664 /*
1665 * The caller might hold locks which can prevent IO completion
1666 * or progress in the filesystem. So we cannot just sit here
1667 * waiting for IO to complete.
1668 */
1669 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1670 break;
1da177e4
LT
1671 }
1672}
1673
1da177e4
LT
1674/*
1675 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1676 */
cccad5b9 1677int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1678 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1679{
8d65af78 1680 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1681 return 0;
1682}
1683
c2c4986e 1684#ifdef CONFIG_BLOCK
31373d09 1685void laptop_mode_timer_fn(unsigned long data)
1da177e4 1686{
31373d09
MG
1687 struct request_queue *q = (struct request_queue *)data;
1688 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1689 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1690 struct bdi_writeback *wb;
1691 struct wb_iter iter;
1da177e4 1692
31373d09
MG
1693 /*
1694 * We want to write everything out, not just down to the dirty
1695 * threshold
1696 */
a06fd6b1
TH
1697 if (!bdi_has_dirty_io(&q->backing_dev_info))
1698 return;
1699
1700 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1701 if (wb_has_dirty_io(wb))
1702 wb_start_writeback(wb, nr_pages, true,
1703 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1704}
1705
1706/*
1707 * We've spun up the disk and we're in laptop mode: schedule writeback
1708 * of all dirty data a few seconds from now. If the flush is already scheduled
1709 * then push it back - the user is still using the disk.
1710 */
31373d09 1711void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1712{
31373d09 1713 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1714}
1715
1716/*
1717 * We're in laptop mode and we've just synced. The sync's writes will have
1718 * caused another writeback to be scheduled by laptop_io_completion.
1719 * Nothing needs to be written back anymore, so we unschedule the writeback.
1720 */
1721void laptop_sync_completion(void)
1722{
31373d09
MG
1723 struct backing_dev_info *bdi;
1724
1725 rcu_read_lock();
1726
1727 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1728 del_timer(&bdi->laptop_mode_wb_timer);
1729
1730 rcu_read_unlock();
1da177e4 1731}
c2c4986e 1732#endif
1da177e4
LT
1733
1734/*
1735 * If ratelimit_pages is too high then we can get into dirty-data overload
1736 * if a large number of processes all perform writes at the same time.
1737 * If it is too low then SMP machines will call the (expensive)
1738 * get_writeback_state too often.
1739 *
1740 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1741 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1742 * thresholds.
1da177e4
LT
1743 */
1744
2d1d43f6 1745void writeback_set_ratelimit(void)
1da177e4 1746{
dcc25ae7 1747 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1748 unsigned long background_thresh;
1749 unsigned long dirty_thresh;
dcc25ae7 1750
9d823e8f 1751 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1752 dom->dirty_limit = dirty_thresh;
9d823e8f 1753 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1754 if (ratelimit_pages < 16)
1755 ratelimit_pages = 16;
1da177e4
LT
1756}
1757
0db0628d 1758static int
2f60d628
SB
1759ratelimit_handler(struct notifier_block *self, unsigned long action,
1760 void *hcpu)
1da177e4 1761{
2f60d628
SB
1762
1763 switch (action & ~CPU_TASKS_FROZEN) {
1764 case CPU_ONLINE:
1765 case CPU_DEAD:
1766 writeback_set_ratelimit();
1767 return NOTIFY_OK;
1768 default:
1769 return NOTIFY_DONE;
1770 }
1da177e4
LT
1771}
1772
0db0628d 1773static struct notifier_block ratelimit_nb = {
1da177e4
LT
1774 .notifier_call = ratelimit_handler,
1775 .next = NULL,
1776};
1777
1778/*
dc6e29da
LT
1779 * Called early on to tune the page writeback dirty limits.
1780 *
1781 * We used to scale dirty pages according to how total memory
1782 * related to pages that could be allocated for buffers (by
1783 * comparing nr_free_buffer_pages() to vm_total_pages.
1784 *
1785 * However, that was when we used "dirty_ratio" to scale with
1786 * all memory, and we don't do that any more. "dirty_ratio"
1787 * is now applied to total non-HIGHPAGE memory (by subtracting
1788 * totalhigh_pages from vm_total_pages), and as such we can't
1789 * get into the old insane situation any more where we had
1790 * large amounts of dirty pages compared to a small amount of
1791 * non-HIGHMEM memory.
1792 *
1793 * But we might still want to scale the dirty_ratio by how
1794 * much memory the box has..
1da177e4
LT
1795 */
1796void __init page_writeback_init(void)
1797{
2d1d43f6 1798 writeback_set_ratelimit();
1da177e4 1799 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1800
380c27ca 1801 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1802}
1803
f446daae
JK
1804/**
1805 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1806 * @mapping: address space structure to write
1807 * @start: starting page index
1808 * @end: ending page index (inclusive)
1809 *
1810 * This function scans the page range from @start to @end (inclusive) and tags
1811 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1812 * that write_cache_pages (or whoever calls this function) will then use
1813 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1814 * used to avoid livelocking of writeback by a process steadily creating new
1815 * dirty pages in the file (thus it is important for this function to be quick
1816 * so that it can tag pages faster than a dirtying process can create them).
1817 */
1818/*
1819 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1820 */
f446daae
JK
1821void tag_pages_for_writeback(struct address_space *mapping,
1822 pgoff_t start, pgoff_t end)
1823{
3c111a07 1824#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1825 unsigned long tagged;
1826
1827 do {
1828 spin_lock_irq(&mapping->tree_lock);
1829 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1830 &start, end, WRITEBACK_TAG_BATCH,
1831 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1832 spin_unlock_irq(&mapping->tree_lock);
1833 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1834 cond_resched();
d5ed3a4a
JK
1835 /* We check 'start' to handle wrapping when end == ~0UL */
1836 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1837}
1838EXPORT_SYMBOL(tag_pages_for_writeback);
1839
811d736f 1840/**
0ea97180 1841 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1842 * @mapping: address space structure to write
1843 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1844 * @writepage: function called for each page
1845 * @data: data passed to writepage function
811d736f 1846 *
0ea97180 1847 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1848 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1849 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1850 * and msync() need to guarantee that all the data which was dirty at the time
1851 * the call was made get new I/O started against them. If wbc->sync_mode is
1852 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1853 * existing IO to complete.
f446daae
JK
1854 *
1855 * To avoid livelocks (when other process dirties new pages), we first tag
1856 * pages which should be written back with TOWRITE tag and only then start
1857 * writing them. For data-integrity sync we have to be careful so that we do
1858 * not miss some pages (e.g., because some other process has cleared TOWRITE
1859 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1860 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1861 */
0ea97180
MS
1862int write_cache_pages(struct address_space *mapping,
1863 struct writeback_control *wbc, writepage_t writepage,
1864 void *data)
811d736f 1865{
811d736f
DH
1866 int ret = 0;
1867 int done = 0;
811d736f
DH
1868 struct pagevec pvec;
1869 int nr_pages;
31a12666 1870 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1871 pgoff_t index;
1872 pgoff_t end; /* Inclusive */
bd19e012 1873 pgoff_t done_index;
31a12666 1874 int cycled;
811d736f 1875 int range_whole = 0;
f446daae 1876 int tag;
811d736f 1877
811d736f
DH
1878 pagevec_init(&pvec, 0);
1879 if (wbc->range_cyclic) {
31a12666
NP
1880 writeback_index = mapping->writeback_index; /* prev offset */
1881 index = writeback_index;
1882 if (index == 0)
1883 cycled = 1;
1884 else
1885 cycled = 0;
811d736f
DH
1886 end = -1;
1887 } else {
1888 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1889 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1890 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1891 range_whole = 1;
31a12666 1892 cycled = 1; /* ignore range_cyclic tests */
811d736f 1893 }
6e6938b6 1894 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1895 tag = PAGECACHE_TAG_TOWRITE;
1896 else
1897 tag = PAGECACHE_TAG_DIRTY;
811d736f 1898retry:
6e6938b6 1899 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1900 tag_pages_for_writeback(mapping, index, end);
bd19e012 1901 done_index = index;
5a3d5c98
NP
1902 while (!done && (index <= end)) {
1903 int i;
1904
f446daae 1905 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1906 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1907 if (nr_pages == 0)
1908 break;
811d736f 1909
811d736f
DH
1910 for (i = 0; i < nr_pages; i++) {
1911 struct page *page = pvec.pages[i];
1912
1913 /*
d5482cdf
NP
1914 * At this point, the page may be truncated or
1915 * invalidated (changing page->mapping to NULL), or
1916 * even swizzled back from swapper_space to tmpfs file
1917 * mapping. However, page->index will not change
1918 * because we have a reference on the page.
811d736f 1919 */
d5482cdf
NP
1920 if (page->index > end) {
1921 /*
1922 * can't be range_cyclic (1st pass) because
1923 * end == -1 in that case.
1924 */
1925 done = 1;
1926 break;
1927 }
1928
cf15b07c 1929 done_index = page->index;
d5482cdf 1930
811d736f
DH
1931 lock_page(page);
1932
5a3d5c98
NP
1933 /*
1934 * Page truncated or invalidated. We can freely skip it
1935 * then, even for data integrity operations: the page
1936 * has disappeared concurrently, so there could be no
1937 * real expectation of this data interity operation
1938 * even if there is now a new, dirty page at the same
1939 * pagecache address.
1940 */
811d736f 1941 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1942continue_unlock:
811d736f
DH
1943 unlock_page(page);
1944 continue;
1945 }
1946
515f4a03
NP
1947 if (!PageDirty(page)) {
1948 /* someone wrote it for us */
1949 goto continue_unlock;
1950 }
1951
1952 if (PageWriteback(page)) {
1953 if (wbc->sync_mode != WB_SYNC_NONE)
1954 wait_on_page_writeback(page);
1955 else
1956 goto continue_unlock;
1957 }
811d736f 1958
515f4a03
NP
1959 BUG_ON(PageWriteback(page));
1960 if (!clear_page_dirty_for_io(page))
5a3d5c98 1961 goto continue_unlock;
811d736f 1962
de1414a6 1963 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1964 ret = (*writepage)(page, wbc, data);
00266770
NP
1965 if (unlikely(ret)) {
1966 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1967 unlock_page(page);
1968 ret = 0;
1969 } else {
1970 /*
1971 * done_index is set past this page,
1972 * so media errors will not choke
1973 * background writeout for the entire
1974 * file. This has consequences for
1975 * range_cyclic semantics (ie. it may
1976 * not be suitable for data integrity
1977 * writeout).
1978 */
cf15b07c 1979 done_index = page->index + 1;
00266770
NP
1980 done = 1;
1981 break;
1982 }
0b564927 1983 }
00266770 1984
546a1924
DC
1985 /*
1986 * We stop writing back only if we are not doing
1987 * integrity sync. In case of integrity sync we have to
1988 * keep going until we have written all the pages
1989 * we tagged for writeback prior to entering this loop.
1990 */
1991 if (--wbc->nr_to_write <= 0 &&
1992 wbc->sync_mode == WB_SYNC_NONE) {
1993 done = 1;
1994 break;
05fe478d 1995 }
811d736f
DH
1996 }
1997 pagevec_release(&pvec);
1998 cond_resched();
1999 }
3a4c6800 2000 if (!cycled && !done) {
811d736f 2001 /*
31a12666 2002 * range_cyclic:
811d736f
DH
2003 * We hit the last page and there is more work to be done: wrap
2004 * back to the start of the file
2005 */
31a12666 2006 cycled = 1;
811d736f 2007 index = 0;
31a12666 2008 end = writeback_index - 1;
811d736f
DH
2009 goto retry;
2010 }
0b564927
DC
2011 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2012 mapping->writeback_index = done_index;
06d6cf69 2013
811d736f
DH
2014 return ret;
2015}
0ea97180
MS
2016EXPORT_SYMBOL(write_cache_pages);
2017
2018/*
2019 * Function used by generic_writepages to call the real writepage
2020 * function and set the mapping flags on error
2021 */
2022static int __writepage(struct page *page, struct writeback_control *wbc,
2023 void *data)
2024{
2025 struct address_space *mapping = data;
2026 int ret = mapping->a_ops->writepage(page, wbc);
2027 mapping_set_error(mapping, ret);
2028 return ret;
2029}
2030
2031/**
2032 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2033 * @mapping: address space structure to write
2034 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2035 *
2036 * This is a library function, which implements the writepages()
2037 * address_space_operation.
2038 */
2039int generic_writepages(struct address_space *mapping,
2040 struct writeback_control *wbc)
2041{
9b6096a6
SL
2042 struct blk_plug plug;
2043 int ret;
2044
0ea97180
MS
2045 /* deal with chardevs and other special file */
2046 if (!mapping->a_ops->writepage)
2047 return 0;
2048
9b6096a6
SL
2049 blk_start_plug(&plug);
2050 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2051 blk_finish_plug(&plug);
2052 return ret;
0ea97180 2053}
811d736f
DH
2054
2055EXPORT_SYMBOL(generic_writepages);
2056
1da177e4
LT
2057int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2058{
22905f77
AM
2059 int ret;
2060
1da177e4
LT
2061 if (wbc->nr_to_write <= 0)
2062 return 0;
2063 if (mapping->a_ops->writepages)
d08b3851 2064 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2065 else
2066 ret = generic_writepages(mapping, wbc);
22905f77 2067 return ret;
1da177e4
LT
2068}
2069
2070/**
2071 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2072 * @page: the page to write
2073 * @wait: if true, wait on writeout
1da177e4
LT
2074 *
2075 * The page must be locked by the caller and will be unlocked upon return.
2076 *
2077 * write_one_page() returns a negative error code if I/O failed.
2078 */
2079int write_one_page(struct page *page, int wait)
2080{
2081 struct address_space *mapping = page->mapping;
2082 int ret = 0;
2083 struct writeback_control wbc = {
2084 .sync_mode = WB_SYNC_ALL,
2085 .nr_to_write = 1,
2086 };
2087
2088 BUG_ON(!PageLocked(page));
2089
2090 if (wait)
2091 wait_on_page_writeback(page);
2092
2093 if (clear_page_dirty_for_io(page)) {
2094 page_cache_get(page);
2095 ret = mapping->a_ops->writepage(page, &wbc);
2096 if (ret == 0 && wait) {
2097 wait_on_page_writeback(page);
2098 if (PageError(page))
2099 ret = -EIO;
2100 }
2101 page_cache_release(page);
2102 } else {
2103 unlock_page(page);
2104 }
2105 return ret;
2106}
2107EXPORT_SYMBOL(write_one_page);
2108
76719325
KC
2109/*
2110 * For address_spaces which do not use buffers nor write back.
2111 */
2112int __set_page_dirty_no_writeback(struct page *page)
2113{
2114 if (!PageDirty(page))
c3f0da63 2115 return !TestSetPageDirty(page);
76719325
KC
2116 return 0;
2117}
2118
e3a7cca1
ES
2119/*
2120 * Helper function for set_page_dirty family.
c4843a75
GT
2121 *
2122 * Caller must hold mem_cgroup_begin_page_stat().
2123 *
e3a7cca1
ES
2124 * NOTE: This relies on being atomic wrt interrupts.
2125 */
c4843a75
GT
2126void account_page_dirtied(struct page *page, struct address_space *mapping,
2127 struct mem_cgroup *memcg)
e3a7cca1 2128{
52ebea74
TH
2129 struct inode *inode = mapping->host;
2130
9fb0a7da
TH
2131 trace_writeback_dirty_page(page, mapping);
2132
e3a7cca1 2133 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2134 struct bdi_writeback *wb;
2135
2136 inode_attach_wb(inode, page);
2137 wb = inode_to_wb(inode);
de1414a6 2138
c4843a75 2139 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2140 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2141 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2142 __inc_wb_stat(wb, WB_RECLAIMABLE);
2143 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2144 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2145 current->nr_dirtied++;
2146 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2147 }
2148}
679ceace 2149EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2150
b9ea2515
KK
2151/*
2152 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2153 *
2154 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2155 */
c4843a75
GT
2156void account_page_cleaned(struct page *page, struct address_space *mapping,
2157 struct mem_cgroup *memcg)
b9ea2515
KK
2158{
2159 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2160 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2161 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2162 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2163 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2164 }
2165}
b9ea2515 2166
1da177e4
LT
2167/*
2168 * For address_spaces which do not use buffers. Just tag the page as dirty in
2169 * its radix tree.
2170 *
2171 * This is also used when a single buffer is being dirtied: we want to set the
2172 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2173 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2174 *
2d6d7f98
JW
2175 * The caller must ensure this doesn't race with truncation. Most will simply
2176 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2177 * the pte lock held, which also locks out truncation.
1da177e4
LT
2178 */
2179int __set_page_dirty_nobuffers(struct page *page)
2180{
c4843a75
GT
2181 struct mem_cgroup *memcg;
2182
2183 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2184 if (!TestSetPageDirty(page)) {
2185 struct address_space *mapping = page_mapping(page);
a85d9df1 2186 unsigned long flags;
1da177e4 2187
c4843a75
GT
2188 if (!mapping) {
2189 mem_cgroup_end_page_stat(memcg);
8c08540f 2190 return 1;
c4843a75 2191 }
8c08540f 2192
a85d9df1 2193 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2194 BUG_ON(page_mapping(page) != mapping);
2195 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2196 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2197 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2198 PAGECACHE_TAG_DIRTY);
a85d9df1 2199 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2200 mem_cgroup_end_page_stat(memcg);
2201
8c08540f
AM
2202 if (mapping->host) {
2203 /* !PageAnon && !swapper_space */
2204 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2205 }
4741c9fd 2206 return 1;
1da177e4 2207 }
c4843a75 2208 mem_cgroup_end_page_stat(memcg);
4741c9fd 2209 return 0;
1da177e4
LT
2210}
2211EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2212
2f800fbd
WF
2213/*
2214 * Call this whenever redirtying a page, to de-account the dirty counters
2215 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2216 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2217 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2218 * control.
2219 */
2220void account_page_redirty(struct page *page)
2221{
2222 struct address_space *mapping = page->mapping;
91018134 2223
2f800fbd 2224 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2225 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2226
2f800fbd
WF
2227 current->nr_dirtied--;
2228 dec_zone_page_state(page, NR_DIRTIED);
91018134 2229 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2230 }
2231}
2232EXPORT_SYMBOL(account_page_redirty);
2233
1da177e4
LT
2234/*
2235 * When a writepage implementation decides that it doesn't want to write this
2236 * page for some reason, it should redirty the locked page via
2237 * redirty_page_for_writepage() and it should then unlock the page and return 0
2238 */
2239int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2240{
8d38633c
KK
2241 int ret;
2242
1da177e4 2243 wbc->pages_skipped++;
8d38633c 2244 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2245 account_page_redirty(page);
8d38633c 2246 return ret;
1da177e4
LT
2247}
2248EXPORT_SYMBOL(redirty_page_for_writepage);
2249
2250/*
6746aff7
WF
2251 * Dirty a page.
2252 *
2253 * For pages with a mapping this should be done under the page lock
2254 * for the benefit of asynchronous memory errors who prefer a consistent
2255 * dirty state. This rule can be broken in some special cases,
2256 * but should be better not to.
2257 *
1da177e4
LT
2258 * If the mapping doesn't provide a set_page_dirty a_op, then
2259 * just fall through and assume that it wants buffer_heads.
2260 */
1cf6e7d8 2261int set_page_dirty(struct page *page)
1da177e4
LT
2262{
2263 struct address_space *mapping = page_mapping(page);
2264
2265 if (likely(mapping)) {
2266 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2267 /*
2268 * readahead/lru_deactivate_page could remain
2269 * PG_readahead/PG_reclaim due to race with end_page_writeback
2270 * About readahead, if the page is written, the flags would be
2271 * reset. So no problem.
2272 * About lru_deactivate_page, if the page is redirty, the flag
2273 * will be reset. So no problem. but if the page is used by readahead
2274 * it will confuse readahead and make it restart the size rampup
2275 * process. But it's a trivial problem.
2276 */
a4bb3ecd
NH
2277 if (PageReclaim(page))
2278 ClearPageReclaim(page);
9361401e
DH
2279#ifdef CONFIG_BLOCK
2280 if (!spd)
2281 spd = __set_page_dirty_buffers;
2282#endif
2283 return (*spd)(page);
1da177e4 2284 }
4741c9fd
AM
2285 if (!PageDirty(page)) {
2286 if (!TestSetPageDirty(page))
2287 return 1;
2288 }
1da177e4
LT
2289 return 0;
2290}
2291EXPORT_SYMBOL(set_page_dirty);
2292
2293/*
2294 * set_page_dirty() is racy if the caller has no reference against
2295 * page->mapping->host, and if the page is unlocked. This is because another
2296 * CPU could truncate the page off the mapping and then free the mapping.
2297 *
2298 * Usually, the page _is_ locked, or the caller is a user-space process which
2299 * holds a reference on the inode by having an open file.
2300 *
2301 * In other cases, the page should be locked before running set_page_dirty().
2302 */
2303int set_page_dirty_lock(struct page *page)
2304{
2305 int ret;
2306
7eaceacc 2307 lock_page(page);
1da177e4
LT
2308 ret = set_page_dirty(page);
2309 unlock_page(page);
2310 return ret;
2311}
2312EXPORT_SYMBOL(set_page_dirty_lock);
2313
11f81bec
TH
2314/*
2315 * This cancels just the dirty bit on the kernel page itself, it does NOT
2316 * actually remove dirty bits on any mmap's that may be around. It also
2317 * leaves the page tagged dirty, so any sync activity will still find it on
2318 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2319 * look at the dirty bits in the VM.
2320 *
2321 * Doing this should *normally* only ever be done when a page is truncated,
2322 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2323 * this when it notices that somebody has cleaned out all the buffers on a
2324 * page without actually doing it through the VM. Can you say "ext3 is
2325 * horribly ugly"? Thought you could.
2326 */
2327void cancel_dirty_page(struct page *page)
2328{
c4843a75
GT
2329 struct address_space *mapping = page_mapping(page);
2330
2331 if (mapping_cap_account_dirty(mapping)) {
2332 struct mem_cgroup *memcg;
2333
2334 memcg = mem_cgroup_begin_page_stat(page);
2335
2336 if (TestClearPageDirty(page))
2337 account_page_cleaned(page, mapping, memcg);
2338
2339 mem_cgroup_end_page_stat(memcg);
2340 } else {
2341 ClearPageDirty(page);
2342 }
11f81bec
TH
2343}
2344EXPORT_SYMBOL(cancel_dirty_page);
2345
1da177e4
LT
2346/*
2347 * Clear a page's dirty flag, while caring for dirty memory accounting.
2348 * Returns true if the page was previously dirty.
2349 *
2350 * This is for preparing to put the page under writeout. We leave the page
2351 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2352 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2353 * implementation will run either set_page_writeback() or set_page_dirty(),
2354 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2355 * back into sync.
2356 *
2357 * This incoherency between the page's dirty flag and radix-tree tag is
2358 * unfortunate, but it only exists while the page is locked.
2359 */
2360int clear_page_dirty_for_io(struct page *page)
2361{
2362 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2363 struct mem_cgroup *memcg;
2364 int ret = 0;
1da177e4 2365
79352894
NP
2366 BUG_ON(!PageLocked(page));
2367
7658cc28
LT
2368 if (mapping && mapping_cap_account_dirty(mapping)) {
2369 /*
2370 * Yes, Virginia, this is indeed insane.
2371 *
2372 * We use this sequence to make sure that
2373 * (a) we account for dirty stats properly
2374 * (b) we tell the low-level filesystem to
2375 * mark the whole page dirty if it was
2376 * dirty in a pagetable. Only to then
2377 * (c) clean the page again and return 1 to
2378 * cause the writeback.
2379 *
2380 * This way we avoid all nasty races with the
2381 * dirty bit in multiple places and clearing
2382 * them concurrently from different threads.
2383 *
2384 * Note! Normally the "set_page_dirty(page)"
2385 * has no effect on the actual dirty bit - since
2386 * that will already usually be set. But we
2387 * need the side effects, and it can help us
2388 * avoid races.
2389 *
2390 * We basically use the page "master dirty bit"
2391 * as a serialization point for all the different
2392 * threads doing their things.
7658cc28
LT
2393 */
2394 if (page_mkclean(page))
2395 set_page_dirty(page);
79352894
NP
2396 /*
2397 * We carefully synchronise fault handlers against
2398 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2399 * at this point. We do this by having them hold the
2400 * page lock while dirtying the page, and pages are
2401 * always locked coming in here, so we get the desired
2402 * exclusion.
79352894 2403 */
c4843a75 2404 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2405 if (TestClearPageDirty(page)) {
c4843a75 2406 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2407 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2408 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2409 ret = 1;
1da177e4 2410 }
c4843a75
GT
2411 mem_cgroup_end_page_stat(memcg);
2412 return ret;
1da177e4 2413 }
7658cc28 2414 return TestClearPageDirty(page);
1da177e4 2415}
58bb01a9 2416EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2417
2418int test_clear_page_writeback(struct page *page)
2419{
2420 struct address_space *mapping = page_mapping(page);
d7365e78 2421 struct mem_cgroup *memcg;
d7365e78 2422 int ret;
1da177e4 2423
6de22619 2424 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2425 if (mapping) {
91018134
TH
2426 struct inode *inode = mapping->host;
2427 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2428 unsigned long flags;
2429
19fd6231 2430 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2431 ret = TestClearPageWriteback(page);
69cb51d1 2432 if (ret) {
1da177e4
LT
2433 radix_tree_tag_clear(&mapping->page_tree,
2434 page_index(page),
2435 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2436 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2437 struct bdi_writeback *wb = inode_to_wb(inode);
2438
2439 __dec_wb_stat(wb, WB_WRITEBACK);
2440 __wb_writeout_inc(wb);
04fbfdc1 2441 }
69cb51d1 2442 }
19fd6231 2443 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2444 } else {
2445 ret = TestClearPageWriteback(page);
2446 }
99b12e3d 2447 if (ret) {
d7365e78 2448 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2449 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2450 inc_zone_page_state(page, NR_WRITTEN);
2451 }
6de22619 2452 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2453 return ret;
2454}
2455
1c8349a1 2456int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2457{
2458 struct address_space *mapping = page_mapping(page);
d7365e78 2459 struct mem_cgroup *memcg;
d7365e78 2460 int ret;
1da177e4 2461
6de22619 2462 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2463 if (mapping) {
91018134
TH
2464 struct inode *inode = mapping->host;
2465 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2466 unsigned long flags;
2467
19fd6231 2468 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2469 ret = TestSetPageWriteback(page);
69cb51d1 2470 if (!ret) {
1da177e4
LT
2471 radix_tree_tag_set(&mapping->page_tree,
2472 page_index(page),
2473 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2474 if (bdi_cap_account_writeback(bdi))
91018134 2475 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2476 }
1da177e4
LT
2477 if (!PageDirty(page))
2478 radix_tree_tag_clear(&mapping->page_tree,
2479 page_index(page),
2480 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2481 if (!keep_write)
2482 radix_tree_tag_clear(&mapping->page_tree,
2483 page_index(page),
2484 PAGECACHE_TAG_TOWRITE);
19fd6231 2485 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2486 } else {
2487 ret = TestSetPageWriteback(page);
2488 }
3a3c02ec 2489 if (!ret) {
d7365e78 2490 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2491 inc_zone_page_state(page, NR_WRITEBACK);
2492 }
6de22619 2493 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2494 return ret;
2495
2496}
1c8349a1 2497EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2498
2499/*
00128188 2500 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2501 * passed tag.
2502 */
2503int mapping_tagged(struct address_space *mapping, int tag)
2504{
72c47832 2505 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2506}
2507EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2508
2509/**
2510 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2511 * @page: The page to wait on.
2512 *
2513 * This function determines if the given page is related to a backing device
2514 * that requires page contents to be held stable during writeback. If so, then
2515 * it will wait for any pending writeback to complete.
2516 */
2517void wait_for_stable_page(struct page *page)
2518{
de1414a6
CH
2519 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2520 wait_on_page_writeback(page);
1d1d1a76
DW
2521}
2522EXPORT_SYMBOL_GPL(wait_for_stable_page);