]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page-writeback.c
writeback: move bandwidth related fields from backing_dev_info into bdi_writeback
[mirror_ubuntu-zesty-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
c42843f2 125unsigned long global_dirty_limit;
1da177e4 126
04fbfdc1
PZ
127/*
128 * Scale the writeback cache size proportional to the relative writeout speeds.
129 *
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
134 *
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
137 *
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
141 *
142 */
eb608e3a
JK
143static struct fprop_global writeout_completions;
144
145static void writeout_period(unsigned long t);
146/* Timer for aging of writeout_completions */
147static struct timer_list writeout_period_timer =
148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149static unsigned long writeout_period_time = 0;
150
151/*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 157
a756cf59
JW
158/*
159 * In a memory zone, there is a certain amount of pages we consider
160 * available for the page cache, which is essentially the number of
161 * free and reclaimable pages, minus some zone reserves to protect
162 * lowmem and the ability to uphold the zone's watermarks without
163 * requiring writeback.
164 *
165 * This number of dirtyable pages is the base value of which the
166 * user-configurable dirty ratio is the effictive number of pages that
167 * are allowed to be actually dirtied. Per individual zone, or
168 * globally by using the sum of dirtyable pages over all zones.
169 *
170 * Because the user is allowed to specify the dirty limit globally as
171 * absolute number of bytes, calculating the per-zone dirty limit can
172 * require translating the configured limit into a percentage of
173 * global dirtyable memory first.
174 */
175
a804552b
JW
176/**
177 * zone_dirtyable_memory - number of dirtyable pages in a zone
178 * @zone: the zone
179 *
180 * Returns the zone's number of pages potentially available for dirty
181 * page cache. This is the base value for the per-zone dirty limits.
182 */
183static unsigned long zone_dirtyable_memory(struct zone *zone)
184{
185 unsigned long nr_pages;
186
187 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
188 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
189
a1c3bfb2
JW
190 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
191 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
192
193 return nr_pages;
194}
195
1edf2234
JW
196static unsigned long highmem_dirtyable_memory(unsigned long total)
197{
198#ifdef CONFIG_HIGHMEM
199 int node;
200 unsigned long x = 0;
201
202 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 203 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 204
a804552b 205 x += zone_dirtyable_memory(z);
1edf2234 206 }
c8b74c2f
SR
207 /*
208 * Unreclaimable memory (kernel memory or anonymous memory
209 * without swap) can bring down the dirtyable pages below
210 * the zone's dirty balance reserve and the above calculation
211 * will underflow. However we still want to add in nodes
212 * which are below threshold (negative values) to get a more
213 * accurate calculation but make sure that the total never
214 * underflows.
215 */
216 if ((long)x < 0)
217 x = 0;
218
1edf2234
JW
219 /*
220 * Make sure that the number of highmem pages is never larger
221 * than the number of the total dirtyable memory. This can only
222 * occur in very strange VM situations but we want to make sure
223 * that this does not occur.
224 */
225 return min(x, total);
226#else
227 return 0;
228#endif
229}
230
231/**
ccafa287 232 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 233 *
ccafa287
JW
234 * Returns the global number of pages potentially available for dirty
235 * page cache. This is the base value for the global dirty limits.
1edf2234 236 */
18cf8cf8 237static unsigned long global_dirtyable_memory(void)
1edf2234
JW
238{
239 unsigned long x;
240
a804552b 241 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 242 x -= min(x, dirty_balance_reserve);
1edf2234 243
a1c3bfb2
JW
244 x += global_page_state(NR_INACTIVE_FILE);
245 x += global_page_state(NR_ACTIVE_FILE);
a804552b 246
1edf2234
JW
247 if (!vm_highmem_is_dirtyable)
248 x -= highmem_dirtyable_memory(x);
249
250 return x + 1; /* Ensure that we never return 0 */
251}
252
ccafa287
JW
253/*
254 * global_dirty_limits - background-writeback and dirty-throttling thresholds
255 *
256 * Calculate the dirty thresholds based on sysctl parameters
257 * - vm.dirty_background_ratio or vm.dirty_background_bytes
258 * - vm.dirty_ratio or vm.dirty_bytes
259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
260 * real-time tasks.
261 */
262void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
263{
9ef0a0ff 264 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
265 unsigned long background;
266 unsigned long dirty;
ccafa287
JW
267 struct task_struct *tsk;
268
ccafa287
JW
269 if (vm_dirty_bytes)
270 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271 else
272 dirty = (vm_dirty_ratio * available_memory) / 100;
273
274 if (dirty_background_bytes)
275 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276 else
277 background = (dirty_background_ratio * available_memory) / 100;
278
279 if (background >= dirty)
280 background = dirty / 2;
281 tsk = current;
282 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283 background += background / 4;
284 dirty += dirty / 4;
285 }
286 *pbackground = background;
287 *pdirty = dirty;
288 trace_global_dirty_state(background, dirty);
289}
290
a756cf59
JW
291/**
292 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
293 * @zone: the zone
294 *
295 * Returns the maximum number of dirty pages allowed in a zone, based
296 * on the zone's dirtyable memory.
297 */
298static unsigned long zone_dirty_limit(struct zone *zone)
299{
300 unsigned long zone_memory = zone_dirtyable_memory(zone);
301 struct task_struct *tsk = current;
302 unsigned long dirty;
303
304 if (vm_dirty_bytes)
305 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
306 zone_memory / global_dirtyable_memory();
307 else
308 dirty = vm_dirty_ratio * zone_memory / 100;
309
310 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
311 dirty += dirty / 4;
312
313 return dirty;
314}
315
316/**
317 * zone_dirty_ok - tells whether a zone is within its dirty limits
318 * @zone: the zone to check
319 *
320 * Returns %true when the dirty pages in @zone are within the zone's
321 * dirty limit, %false if the limit is exceeded.
322 */
323bool zone_dirty_ok(struct zone *zone)
324{
325 unsigned long limit = zone_dirty_limit(zone);
326
327 return zone_page_state(zone, NR_FILE_DIRTY) +
328 zone_page_state(zone, NR_UNSTABLE_NFS) +
329 zone_page_state(zone, NR_WRITEBACK) <= limit;
330}
331
2da02997 332int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 333 void __user *buffer, size_t *lenp,
2da02997
DR
334 loff_t *ppos)
335{
336 int ret;
337
8d65af78 338 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
339 if (ret == 0 && write)
340 dirty_background_bytes = 0;
341 return ret;
342}
343
344int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 345 void __user *buffer, size_t *lenp,
2da02997
DR
346 loff_t *ppos)
347{
348 int ret;
349
8d65af78 350 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
351 if (ret == 0 && write)
352 dirty_background_ratio = 0;
353 return ret;
354}
355
04fbfdc1 356int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 357 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
358 loff_t *ppos)
359{
360 int old_ratio = vm_dirty_ratio;
2da02997
DR
361 int ret;
362
8d65af78 363 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 364 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 365 writeback_set_ratelimit();
2da02997
DR
366 vm_dirty_bytes = 0;
367 }
368 return ret;
369}
370
2da02997 371int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 372 void __user *buffer, size_t *lenp,
2da02997
DR
373 loff_t *ppos)
374{
fc3501d4 375 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
376 int ret;
377
8d65af78 378 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 379 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 380 writeback_set_ratelimit();
2da02997 381 vm_dirty_ratio = 0;
04fbfdc1
PZ
382 }
383 return ret;
384}
385
eb608e3a
JK
386static unsigned long wp_next_time(unsigned long cur_time)
387{
388 cur_time += VM_COMPLETIONS_PERIOD_LEN;
389 /* 0 has a special meaning... */
390 if (!cur_time)
391 return 1;
392 return cur_time;
393}
394
04fbfdc1
PZ
395/*
396 * Increment the BDI's writeout completion count and the global writeout
397 * completion count. Called from test_clear_page_writeback().
398 */
93f78d88 399static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 400{
93f78d88 401 __inc_wb_stat(wb, WB_WRITTEN);
a88a341a 402 __fprop_inc_percpu_max(&writeout_completions, &wb->completions,
93f78d88 403 wb->bdi->max_prop_frac);
eb608e3a
JK
404 /* First event after period switching was turned off? */
405 if (!unlikely(writeout_period_time)) {
406 /*
407 * We can race with other __bdi_writeout_inc calls here but
408 * it does not cause any harm since the resulting time when
409 * timer will fire and what is in writeout_period_time will be
410 * roughly the same.
411 */
412 writeout_period_time = wp_next_time(jiffies);
413 mod_timer(&writeout_period_timer, writeout_period_time);
414 }
04fbfdc1
PZ
415}
416
93f78d88 417void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
418{
419 unsigned long flags;
420
421 local_irq_save(flags);
93f78d88 422 __wb_writeout_inc(wb);
dd5656e5
MS
423 local_irq_restore(flags);
424}
93f78d88 425EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 426
04fbfdc1
PZ
427/*
428 * Obtain an accurate fraction of the BDI's portion.
429 */
a88a341a
TH
430static void wb_writeout_fraction(struct bdi_writeback *wb,
431 long *numerator, long *denominator)
04fbfdc1 432{
a88a341a 433 fprop_fraction_percpu(&writeout_completions, &wb->completions,
04fbfdc1 434 numerator, denominator);
04fbfdc1
PZ
435}
436
eb608e3a
JK
437/*
438 * On idle system, we can be called long after we scheduled because we use
439 * deferred timers so count with missed periods.
440 */
441static void writeout_period(unsigned long t)
442{
443 int miss_periods = (jiffies - writeout_period_time) /
444 VM_COMPLETIONS_PERIOD_LEN;
445
446 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
447 writeout_period_time = wp_next_time(writeout_period_time +
448 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
449 mod_timer(&writeout_period_timer, writeout_period_time);
450 } else {
451 /*
452 * Aging has zeroed all fractions. Stop wasting CPU on period
453 * updates.
454 */
455 writeout_period_time = 0;
456 }
457}
458
189d3c4a 459/*
d08c429b
JW
460 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
461 * registered backing devices, which, for obvious reasons, can not
462 * exceed 100%.
189d3c4a 463 */
189d3c4a
PZ
464static unsigned int bdi_min_ratio;
465
466int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
467{
468 int ret = 0;
189d3c4a 469
cfc4ba53 470 spin_lock_bh(&bdi_lock);
a42dde04 471 if (min_ratio > bdi->max_ratio) {
189d3c4a 472 ret = -EINVAL;
a42dde04
PZ
473 } else {
474 min_ratio -= bdi->min_ratio;
475 if (bdi_min_ratio + min_ratio < 100) {
476 bdi_min_ratio += min_ratio;
477 bdi->min_ratio += min_ratio;
478 } else {
479 ret = -EINVAL;
480 }
481 }
cfc4ba53 482 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
483
484 return ret;
485}
486
487int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
488{
a42dde04
PZ
489 int ret = 0;
490
491 if (max_ratio > 100)
492 return -EINVAL;
493
cfc4ba53 494 spin_lock_bh(&bdi_lock);
a42dde04
PZ
495 if (bdi->min_ratio > max_ratio) {
496 ret = -EINVAL;
497 } else {
498 bdi->max_ratio = max_ratio;
eb608e3a 499 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 500 }
cfc4ba53 501 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
502
503 return ret;
504}
a42dde04 505EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 506
6c14ae1e
WF
507static unsigned long dirty_freerun_ceiling(unsigned long thresh,
508 unsigned long bg_thresh)
509{
510 return (thresh + bg_thresh) / 2;
511}
512
ffd1f609
WF
513static unsigned long hard_dirty_limit(unsigned long thresh)
514{
515 return max(thresh, global_dirty_limit);
516}
517
6f718656 518/**
a88a341a
TH
519 * wb_dirty_limit - @wb's share of dirty throttling threshold
520 * @wb: bdi_writeback to query
6f718656 521 * @dirty: global dirty limit in pages
1babe183 522 *
a88a341a 523 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 524 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
525 *
526 * Note that balance_dirty_pages() will only seriously take it as a hard limit
527 * when sleeping max_pause per page is not enough to keep the dirty pages under
528 * control. For example, when the device is completely stalled due to some error
529 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
530 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 531 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 532 *
6f718656 533 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
534 * - starving fast devices
535 * - piling up dirty pages (that will take long time to sync) on slow devices
536 *
a88a341a 537 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
538 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
539 */
a88a341a 540unsigned long wb_dirty_limit(struct bdi_writeback *wb, unsigned long dirty)
16c4042f 541{
a88a341a
TH
542 struct backing_dev_info *bdi = wb->bdi;
543 u64 wb_dirty;
16c4042f 544 long numerator, denominator;
04fbfdc1 545
16c4042f
WF
546 /*
547 * Calculate this BDI's share of the dirty ratio.
548 */
a88a341a 549 wb_writeout_fraction(wb, &numerator, &denominator);
04fbfdc1 550
a88a341a
TH
551 wb_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
552 wb_dirty *= numerator;
553 do_div(wb_dirty, denominator);
04fbfdc1 554
a88a341a
TH
555 wb_dirty += (dirty * bdi->min_ratio) / 100;
556 if (wb_dirty > (dirty * bdi->max_ratio) / 100)
557 wb_dirty = dirty * bdi->max_ratio / 100;
16c4042f 558
a88a341a 559 return wb_dirty;
1da177e4
LT
560}
561
5a537485
MP
562/*
563 * setpoint - dirty 3
564 * f(dirty) := 1.0 + (----------------)
565 * limit - setpoint
566 *
567 * it's a 3rd order polynomial that subjects to
568 *
569 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
570 * (2) f(setpoint) = 1.0 => the balance point
571 * (3) f(limit) = 0 => the hard limit
572 * (4) df/dx <= 0 => negative feedback control
573 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
574 * => fast response on large errors; small oscillation near setpoint
575 */
d5c9fde3 576static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
577 unsigned long dirty,
578 unsigned long limit)
579{
580 long long pos_ratio;
581 long x;
582
d5c9fde3 583 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
584 limit - setpoint + 1);
585 pos_ratio = x;
586 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
587 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
588 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
589
590 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
591}
592
6c14ae1e
WF
593/*
594 * Dirty position control.
595 *
596 * (o) global/bdi setpoints
597 *
598 * We want the dirty pages be balanced around the global/bdi setpoints.
599 * When the number of dirty pages is higher/lower than the setpoint, the
600 * dirty position control ratio (and hence task dirty ratelimit) will be
601 * decreased/increased to bring the dirty pages back to the setpoint.
602 *
603 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
604 *
605 * if (dirty < setpoint) scale up pos_ratio
606 * if (dirty > setpoint) scale down pos_ratio
607 *
608 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
609 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
610 *
611 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
612 *
613 * (o) global control line
614 *
615 * ^ pos_ratio
616 * |
617 * | |<===== global dirty control scope ======>|
618 * 2.0 .............*
619 * | .*
620 * | . *
621 * | . *
622 * | . *
623 * | . *
624 * | . *
625 * 1.0 ................................*
626 * | . . *
627 * | . . *
628 * | . . *
629 * | . . *
630 * | . . *
631 * 0 +------------.------------------.----------------------*------------->
632 * freerun^ setpoint^ limit^ dirty pages
633 *
634 * (o) bdi control line
635 *
636 * ^ pos_ratio
637 * |
638 * | *
639 * | *
640 * | *
641 * | *
642 * | * |<=========== span ============>|
643 * 1.0 .......................*
644 * | . *
645 * | . *
646 * | . *
647 * | . *
648 * | . *
649 * | . *
650 * | . *
651 * | . *
652 * | . *
653 * | . *
654 * | . *
655 * 1/4 ...............................................* * * * * * * * * * * *
656 * | . .
657 * | . .
658 * | . .
659 * 0 +----------------------.-------------------------------.------------->
660 * bdi_setpoint^ x_intercept^
661 *
662 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
663 * be smoothly throttled down to normal if it starts high in situations like
664 * - start writing to a slow SD card and a fast disk at the same time. The SD
665 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
666 * - the bdi dirty thresh drops quickly due to change of JBOD workload
667 */
a88a341a
TH
668static unsigned long wb_position_ratio(struct bdi_writeback *wb,
669 unsigned long thresh,
670 unsigned long bg_thresh,
671 unsigned long dirty,
672 unsigned long bdi_thresh,
673 unsigned long bdi_dirty)
6c14ae1e 674{
a88a341a 675 unsigned long write_bw = wb->avg_write_bandwidth;
6c14ae1e
WF
676 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
677 unsigned long limit = hard_dirty_limit(thresh);
678 unsigned long x_intercept;
679 unsigned long setpoint; /* dirty pages' target balance point */
680 unsigned long bdi_setpoint;
681 unsigned long span;
682 long long pos_ratio; /* for scaling up/down the rate limit */
683 long x;
684
685 if (unlikely(dirty >= limit))
686 return 0;
687
688 /*
689 * global setpoint
690 *
5a537485
MP
691 * See comment for pos_ratio_polynom().
692 */
693 setpoint = (freerun + limit) / 2;
694 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
695
696 /*
697 * The strictlimit feature is a tool preventing mistrusted filesystems
698 * from growing a large number of dirty pages before throttling. For
699 * such filesystems balance_dirty_pages always checks bdi counters
700 * against bdi limits. Even if global "nr_dirty" is under "freerun".
701 * This is especially important for fuse which sets bdi->max_ratio to
702 * 1% by default. Without strictlimit feature, fuse writeback may
703 * consume arbitrary amount of RAM because it is accounted in
704 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 705 *
a88a341a 706 * Here, in wb_position_ratio(), we calculate pos_ratio based on
5a537485
MP
707 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
708 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
709 * limits are set by default to 10% and 20% (background and throttle).
710 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
a88a341a 711 * wb_dirty_limit(wb, bg_thresh) is about ~4K pages. bdi_setpoint is
5a537485
MP
712 * about ~6K pages (as the average of background and throttle bdi
713 * limits). The 3rd order polynomial will provide positive feedback if
714 * bdi_dirty is under bdi_setpoint and vice versa.
6c14ae1e 715 *
5a537485
MP
716 * Note, that we cannot use global counters in these calculations
717 * because we want to throttle process writing to a strictlimit BDI
718 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
719 * in the example above).
6c14ae1e 720 */
a88a341a 721 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
5a537485
MP
722 long long bdi_pos_ratio;
723 unsigned long bdi_bg_thresh;
724
725 if (bdi_dirty < 8)
726 return min_t(long long, pos_ratio * 2,
727 2 << RATELIMIT_CALC_SHIFT);
728
729 if (bdi_dirty >= bdi_thresh)
730 return 0;
731
732 bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
733 bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
734 bdi_bg_thresh);
735
736 if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
737 return 0;
738
739 bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
740 bdi_thresh);
741
742 /*
743 * Typically, for strictlimit case, bdi_setpoint << setpoint
744 * and pos_ratio >> bdi_pos_ratio. In the other words global
745 * state ("dirty") is not limiting factor and we have to
746 * make decision based on bdi counters. But there is an
747 * important case when global pos_ratio should get precedence:
748 * global limits are exceeded (e.g. due to activities on other
749 * BDIs) while given strictlimit BDI is below limit.
750 *
751 * "pos_ratio * bdi_pos_ratio" would work for the case above,
752 * but it would look too non-natural for the case of all
753 * activity in the system coming from a single strictlimit BDI
754 * with bdi->max_ratio == 100%.
755 *
756 * Note that min() below somewhat changes the dynamics of the
757 * control system. Normally, pos_ratio value can be well over 3
758 * (when globally we are at freerun and bdi is well below bdi
759 * setpoint). Now the maximum pos_ratio in the same situation
760 * is 2. We might want to tweak this if we observe the control
761 * system is too slow to adapt.
762 */
763 return min(pos_ratio, bdi_pos_ratio);
764 }
6c14ae1e
WF
765
766 /*
767 * We have computed basic pos_ratio above based on global situation. If
768 * the bdi is over/under its share of dirty pages, we want to scale
769 * pos_ratio further down/up. That is done by the following mechanism.
770 */
771
772 /*
773 * bdi setpoint
774 *
775 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
776 *
777 * x_intercept - bdi_dirty
778 * := --------------------------
779 * x_intercept - bdi_setpoint
780 *
781 * The main bdi control line is a linear function that subjects to
782 *
783 * (1) f(bdi_setpoint) = 1.0
784 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
785 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
786 *
787 * For single bdi case, the dirty pages are observed to fluctuate
788 * regularly within range
789 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
790 * for various filesystems, where (2) can yield in a reasonable 12.5%
791 * fluctuation range for pos_ratio.
792 *
793 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
794 * own size, so move the slope over accordingly and choose a slope that
795 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
796 */
797 if (unlikely(bdi_thresh > thresh))
798 bdi_thresh = thresh;
aed21ad2
WF
799 /*
800 * It's very possible that bdi_thresh is close to 0 not because the
801 * device is slow, but that it has remained inactive for long time.
802 * Honour such devices a reasonable good (hopefully IO efficient)
803 * threshold, so that the occasional writes won't be blocked and active
804 * writes can rampup the threshold quickly.
805 */
8927f66c 806 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
6c14ae1e
WF
807 /*
808 * scale global setpoint to bdi's:
809 * bdi_setpoint = setpoint * bdi_thresh / thresh
810 */
811 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
812 bdi_setpoint = setpoint * (u64)x >> 16;
813 /*
814 * Use span=(8*write_bw) in single bdi case as indicated by
815 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
816 *
817 * bdi_thresh thresh - bdi_thresh
818 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
819 * thresh thresh
820 */
821 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
822 x_intercept = bdi_setpoint + span;
823
824 if (bdi_dirty < x_intercept - span / 4) {
d5c9fde3 825 pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
50657fc4 826 x_intercept - bdi_setpoint + 1);
6c14ae1e
WF
827 } else
828 pos_ratio /= 4;
829
8927f66c
WF
830 /*
831 * bdi reserve area, safeguard against dirty pool underrun and disk idle
832 * It may push the desired control point of global dirty pages higher
833 * than setpoint.
834 */
835 x_intercept = bdi_thresh / 2;
836 if (bdi_dirty < x_intercept) {
50657fc4
WF
837 if (bdi_dirty > x_intercept / 8)
838 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
839 else
8927f66c
WF
840 pos_ratio *= 8;
841 }
842
6c14ae1e
WF
843 return pos_ratio;
844}
845
a88a341a
TH
846static void wb_update_write_bandwidth(struct bdi_writeback *wb,
847 unsigned long elapsed,
848 unsigned long written)
e98be2d5
WF
849{
850 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
851 unsigned long avg = wb->avg_write_bandwidth;
852 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
853 u64 bw;
854
855 /*
856 * bw = written * HZ / elapsed
857 *
858 * bw * elapsed + write_bandwidth * (period - elapsed)
859 * write_bandwidth = ---------------------------------------------------
860 * period
c72efb65
TH
861 *
862 * @written may have decreased due to account_page_redirty().
863 * Avoid underflowing @bw calculation.
e98be2d5 864 */
a88a341a 865 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
866 bw *= HZ;
867 if (unlikely(elapsed > period)) {
868 do_div(bw, elapsed);
869 avg = bw;
870 goto out;
871 }
a88a341a 872 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
873 bw >>= ilog2(period);
874
875 /*
876 * one more level of smoothing, for filtering out sudden spikes
877 */
878 if (avg > old && old >= (unsigned long)bw)
879 avg -= (avg - old) >> 3;
880
881 if (avg < old && old <= (unsigned long)bw)
882 avg += (old - avg) >> 3;
883
884out:
a88a341a
TH
885 wb->write_bandwidth = bw;
886 wb->avg_write_bandwidth = avg;
e98be2d5
WF
887}
888
c42843f2
WF
889/*
890 * The global dirtyable memory and dirty threshold could be suddenly knocked
891 * down by a large amount (eg. on the startup of KVM in a swapless system).
892 * This may throw the system into deep dirty exceeded state and throttle
893 * heavy/light dirtiers alike. To retain good responsiveness, maintain
894 * global_dirty_limit for tracking slowly down to the knocked down dirty
895 * threshold.
896 */
897static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
898{
899 unsigned long limit = global_dirty_limit;
900
901 /*
902 * Follow up in one step.
903 */
904 if (limit < thresh) {
905 limit = thresh;
906 goto update;
907 }
908
909 /*
910 * Follow down slowly. Use the higher one as the target, because thresh
911 * may drop below dirty. This is exactly the reason to introduce
912 * global_dirty_limit which is guaranteed to lie above the dirty pages.
913 */
914 thresh = max(thresh, dirty);
915 if (limit > thresh) {
916 limit -= (limit - thresh) >> 5;
917 goto update;
918 }
919 return;
920update:
921 global_dirty_limit = limit;
922}
923
924static void global_update_bandwidth(unsigned long thresh,
925 unsigned long dirty,
926 unsigned long now)
927{
928 static DEFINE_SPINLOCK(dirty_lock);
7d70e154 929 static unsigned long update_time = INITIAL_JIFFIES;
c42843f2
WF
930
931 /*
932 * check locklessly first to optimize away locking for the most time
933 */
934 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
935 return;
936
937 spin_lock(&dirty_lock);
938 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
939 update_dirty_limit(thresh, dirty);
940 update_time = now;
941 }
942 spin_unlock(&dirty_lock);
943}
944
be3ffa27
WF
945/*
946 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
947 *
948 * Normal bdi tasks will be curbed at or below it in long term.
949 * Obviously it should be around (write_bw / N) when there are N dd tasks.
950 */
a88a341a
TH
951static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
952 unsigned long thresh,
953 unsigned long bg_thresh,
954 unsigned long dirty,
955 unsigned long bdi_thresh,
956 unsigned long bdi_dirty,
957 unsigned long dirtied,
958 unsigned long elapsed)
be3ffa27 959{
7381131c
WF
960 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
961 unsigned long limit = hard_dirty_limit(thresh);
962 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
963 unsigned long write_bw = wb->avg_write_bandwidth;
964 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
965 unsigned long dirty_rate;
966 unsigned long task_ratelimit;
967 unsigned long balanced_dirty_ratelimit;
968 unsigned long pos_ratio;
7381131c
WF
969 unsigned long step;
970 unsigned long x;
be3ffa27
WF
971
972 /*
973 * The dirty rate will match the writeout rate in long term, except
974 * when dirty pages are truncated by userspace or re-dirtied by FS.
975 */
a88a341a 976 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 977
a88a341a
TH
978 pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
979 bdi_thresh, bdi_dirty);
be3ffa27
WF
980 /*
981 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
982 */
983 task_ratelimit = (u64)dirty_ratelimit *
984 pos_ratio >> RATELIMIT_CALC_SHIFT;
985 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
986
987 /*
988 * A linear estimation of the "balanced" throttle rate. The theory is,
989 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
990 * dirty_rate will be measured to be (N * task_ratelimit). So the below
991 * formula will yield the balanced rate limit (write_bw / N).
992 *
993 * Note that the expanded form is not a pure rate feedback:
994 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
995 * but also takes pos_ratio into account:
996 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
997 *
998 * (1) is not realistic because pos_ratio also takes part in balancing
999 * the dirty rate. Consider the state
1000 * pos_ratio = 0.5 (3)
1001 * rate = 2 * (write_bw / N) (4)
1002 * If (1) is used, it will stuck in that state! Because each dd will
1003 * be throttled at
1004 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1005 * yielding
1006 * dirty_rate = N * task_ratelimit = write_bw (6)
1007 * put (6) into (1) we get
1008 * rate_(i+1) = rate_(i) (7)
1009 *
1010 * So we end up using (2) to always keep
1011 * rate_(i+1) ~= (write_bw / N) (8)
1012 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1013 * pos_ratio is able to drive itself to 1.0, which is not only where
1014 * the dirty count meet the setpoint, but also where the slope of
1015 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1016 */
1017 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1018 dirty_rate | 1);
bdaac490
WF
1019 /*
1020 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1021 */
1022 if (unlikely(balanced_dirty_ratelimit > write_bw))
1023 balanced_dirty_ratelimit = write_bw;
be3ffa27 1024
7381131c
WF
1025 /*
1026 * We could safely do this and return immediately:
1027 *
1028 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1029 *
1030 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1031 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1032 * limit the step size.
1033 *
1034 * The below code essentially only uses the relative value of
1035 *
1036 * task_ratelimit - dirty_ratelimit
1037 * = (pos_ratio - 1) * dirty_ratelimit
1038 *
1039 * which reflects the direction and size of dirty position error.
1040 */
1041
1042 /*
1043 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1044 * task_ratelimit is on the same side of dirty_ratelimit, too.
1045 * For example, when
1046 * - dirty_ratelimit > balanced_dirty_ratelimit
1047 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1048 * lowering dirty_ratelimit will help meet both the position and rate
1049 * control targets. Otherwise, don't update dirty_ratelimit if it will
1050 * only help meet the rate target. After all, what the users ultimately
1051 * feel and care are stable dirty rate and small position error.
1052 *
1053 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1054 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1055 * keeps jumping around randomly and can even leap far away at times
1056 * due to the small 200ms estimation period of dirty_rate (we want to
1057 * keep that period small to reduce time lags).
1058 */
1059 step = 0;
5a537485
MP
1060
1061 /*
1062 * For strictlimit case, calculations above were based on bdi counters
a88a341a 1063 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485
MP
1064 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1065 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1066 * "dirty" and bdi_setpoint as "setpoint".
1067 *
1068 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1069 * it's possible that bdi_thresh is close to zero due to inactivity
a88a341a 1070 * of backing device (see the implementation of wb_dirty_limit()).
5a537485 1071 */
a88a341a 1072 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
5a537485
MP
1073 dirty = bdi_dirty;
1074 if (bdi_dirty < 8)
1075 setpoint = bdi_dirty + 1;
1076 else
1077 setpoint = (bdi_thresh +
a88a341a 1078 wb_dirty_limit(wb, bg_thresh)) / 2;
5a537485
MP
1079 }
1080
7381131c 1081 if (dirty < setpoint) {
a88a341a 1082 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1083 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1084 if (dirty_ratelimit < x)
1085 step = x - dirty_ratelimit;
1086 } else {
a88a341a 1087 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1088 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1089 if (dirty_ratelimit > x)
1090 step = dirty_ratelimit - x;
1091 }
1092
1093 /*
1094 * Don't pursue 100% rate matching. It's impossible since the balanced
1095 * rate itself is constantly fluctuating. So decrease the track speed
1096 * when it gets close to the target. Helps eliminate pointless tremors.
1097 */
1098 step >>= dirty_ratelimit / (2 * step + 1);
1099 /*
1100 * Limit the tracking speed to avoid overshooting.
1101 */
1102 step = (step + 7) / 8;
1103
1104 if (dirty_ratelimit < balanced_dirty_ratelimit)
1105 dirty_ratelimit += step;
1106 else
1107 dirty_ratelimit -= step;
1108
a88a341a
TH
1109 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1110 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1111
a88a341a 1112 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1113}
1114
a88a341a
TH
1115void __wb_update_bandwidth(struct bdi_writeback *wb,
1116 unsigned long thresh,
1117 unsigned long bg_thresh,
1118 unsigned long dirty,
1119 unsigned long bdi_thresh,
1120 unsigned long bdi_dirty,
1121 unsigned long start_time)
e98be2d5
WF
1122{
1123 unsigned long now = jiffies;
a88a341a 1124 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1125 unsigned long dirtied;
e98be2d5
WF
1126 unsigned long written;
1127
1128 /*
1129 * rate-limit, only update once every 200ms.
1130 */
1131 if (elapsed < BANDWIDTH_INTERVAL)
1132 return;
1133
a88a341a
TH
1134 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1135 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1136
1137 /*
1138 * Skip quiet periods when disk bandwidth is under-utilized.
1139 * (at least 1s idle time between two flusher runs)
1140 */
a88a341a 1141 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1142 goto snapshot;
1143
be3ffa27 1144 if (thresh) {
c42843f2 1145 global_update_bandwidth(thresh, dirty, now);
a88a341a
TH
1146 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
1147 bdi_thresh, bdi_dirty,
1148 dirtied, elapsed);
be3ffa27 1149 }
a88a341a 1150 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1151
1152snapshot:
a88a341a
TH
1153 wb->dirtied_stamp = dirtied;
1154 wb->written_stamp = written;
1155 wb->bw_time_stamp = now;
e98be2d5
WF
1156}
1157
a88a341a
TH
1158static void wb_update_bandwidth(struct bdi_writeback *wb,
1159 unsigned long thresh,
1160 unsigned long bg_thresh,
1161 unsigned long dirty,
1162 unsigned long bdi_thresh,
1163 unsigned long bdi_dirty,
1164 unsigned long start_time)
e98be2d5 1165{
a88a341a 1166 if (time_is_after_eq_jiffies(wb->bw_time_stamp + BANDWIDTH_INTERVAL))
e98be2d5 1167 return;
a88a341a
TH
1168 spin_lock(&wb->list_lock);
1169 __wb_update_bandwidth(wb, thresh, bg_thresh, dirty,
1170 bdi_thresh, bdi_dirty, start_time);
1171 spin_unlock(&wb->list_lock);
e98be2d5
WF
1172}
1173
9d823e8f 1174/*
d0e1d66b 1175 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1176 * will look to see if it needs to start dirty throttling.
1177 *
1178 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1179 * global_page_state() too often. So scale it near-sqrt to the safety margin
1180 * (the number of pages we may dirty without exceeding the dirty limits).
1181 */
1182static unsigned long dirty_poll_interval(unsigned long dirty,
1183 unsigned long thresh)
1184{
1185 if (thresh > dirty)
1186 return 1UL << (ilog2(thresh - dirty) >> 1);
1187
1188 return 1;
1189}
1190
a88a341a
TH
1191static unsigned long wb_max_pause(struct bdi_writeback *wb,
1192 unsigned long bdi_dirty)
c8462cc9 1193{
a88a341a 1194 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1195 unsigned long t;
c8462cc9 1196
7ccb9ad5
WF
1197 /*
1198 * Limit pause time for small memory systems. If sleeping for too long
1199 * time, a small pool of dirty/writeback pages may go empty and disk go
1200 * idle.
1201 *
1202 * 8 serves as the safety ratio.
1203 */
1204 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1205 t++;
1206
e3b6c655 1207 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1208}
1209
a88a341a
TH
1210static long wb_min_pause(struct bdi_writeback *wb,
1211 long max_pause,
1212 unsigned long task_ratelimit,
1213 unsigned long dirty_ratelimit,
1214 int *nr_dirtied_pause)
c8462cc9 1215{
a88a341a
TH
1216 long hi = ilog2(wb->avg_write_bandwidth);
1217 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1218 long t; /* target pause */
1219 long pause; /* estimated next pause */
1220 int pages; /* target nr_dirtied_pause */
c8462cc9 1221
7ccb9ad5
WF
1222 /* target for 10ms pause on 1-dd case */
1223 t = max(1, HZ / 100);
c8462cc9
WF
1224
1225 /*
1226 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1227 * overheads.
1228 *
7ccb9ad5 1229 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1230 */
1231 if (hi > lo)
7ccb9ad5 1232 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1233
1234 /*
7ccb9ad5
WF
1235 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1236 * on the much more stable dirty_ratelimit. However the next pause time
1237 * will be computed based on task_ratelimit and the two rate limits may
1238 * depart considerably at some time. Especially if task_ratelimit goes
1239 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1240 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1241 * result task_ratelimit won't be executed faithfully, which could
1242 * eventually bring down dirty_ratelimit.
c8462cc9 1243 *
7ccb9ad5
WF
1244 * We apply two rules to fix it up:
1245 * 1) try to estimate the next pause time and if necessary, use a lower
1246 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1247 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1248 * 2) limit the target pause time to max_pause/2, so that the normal
1249 * small fluctuations of task_ratelimit won't trigger rule (1) and
1250 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1251 */
7ccb9ad5
WF
1252 t = min(t, 1 + max_pause / 2);
1253 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1254
1255 /*
5b9b3574
WF
1256 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1257 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1258 * When the 16 consecutive reads are often interrupted by some dirty
1259 * throttling pause during the async writes, cfq will go into idles
1260 * (deadline is fine). So push nr_dirtied_pause as high as possible
1261 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1262 */
5b9b3574
WF
1263 if (pages < DIRTY_POLL_THRESH) {
1264 t = max_pause;
1265 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1266 if (pages > DIRTY_POLL_THRESH) {
1267 pages = DIRTY_POLL_THRESH;
1268 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1269 }
1270 }
1271
7ccb9ad5
WF
1272 pause = HZ * pages / (task_ratelimit + 1);
1273 if (pause > max_pause) {
1274 t = max_pause;
1275 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1276 }
c8462cc9 1277
7ccb9ad5 1278 *nr_dirtied_pause = pages;
c8462cc9 1279 /*
7ccb9ad5 1280 * The minimal pause time will normally be half the target pause time.
c8462cc9 1281 */
5b9b3574 1282 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1283}
1284
a88a341a
TH
1285static inline void wb_dirty_limits(struct bdi_writeback *wb,
1286 unsigned long dirty_thresh,
1287 unsigned long background_thresh,
1288 unsigned long *bdi_dirty,
1289 unsigned long *bdi_thresh,
1290 unsigned long *bdi_bg_thresh)
5a537485 1291{
93f78d88 1292 unsigned long wb_reclaimable;
5a537485
MP
1293
1294 /*
1295 * bdi_thresh is not treated as some limiting factor as
1296 * dirty_thresh, due to reasons
1297 * - in JBOD setup, bdi_thresh can fluctuate a lot
1298 * - in a system with HDD and USB key, the USB key may somehow
1299 * go into state (bdi_dirty >> bdi_thresh) either because
1300 * bdi_dirty starts high, or because bdi_thresh drops low.
1301 * In this case we don't want to hard throttle the USB key
1302 * dirtiers for 100 seconds until bdi_dirty drops under
1303 * bdi_thresh. Instead the auxiliary bdi control line in
a88a341a 1304 * wb_position_ratio() will let the dirtier task progress
5a537485
MP
1305 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1306 */
a88a341a 1307 *bdi_thresh = wb_dirty_limit(wb, dirty_thresh);
5a537485
MP
1308
1309 if (bdi_bg_thresh)
f6789593
MP
1310 *bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh *
1311 background_thresh,
1312 dirty_thresh) : 0;
5a537485
MP
1313
1314 /*
1315 * In order to avoid the stacked BDI deadlock we need
1316 * to ensure we accurately count the 'dirty' pages when
1317 * the threshold is low.
1318 *
1319 * Otherwise it would be possible to get thresh+n pages
1320 * reported dirty, even though there are thresh-m pages
1321 * actually dirty; with m+n sitting in the percpu
1322 * deltas.
1323 */
93f78d88
TH
1324 if (*bdi_thresh < 2 * wb_stat_error(wb)) {
1325 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1326 *bdi_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1327 } else {
93f78d88
TH
1328 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1329 *bdi_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1330 }
1331}
1332
1da177e4
LT
1333/*
1334 * balance_dirty_pages() must be called by processes which are generating dirty
1335 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1336 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1337 * If we're over `background_thresh' then the writeback threads are woken to
1338 * perform some writeout.
1da177e4 1339 */
3a2e9a5a 1340static void balance_dirty_pages(struct address_space *mapping,
143dfe86 1341 unsigned long pages_dirtied)
1da177e4 1342{
143dfe86 1343 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
7762741e 1344 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
364aeb28
DR
1345 unsigned long background_thresh;
1346 unsigned long dirty_thresh;
83712358 1347 long period;
7ccb9ad5
WF
1348 long pause;
1349 long max_pause;
1350 long min_pause;
1351 int nr_dirtied_pause;
e50e3720 1352 bool dirty_exceeded = false;
143dfe86 1353 unsigned long task_ratelimit;
7ccb9ad5 1354 unsigned long dirty_ratelimit;
143dfe86 1355 unsigned long pos_ratio;
de1414a6 1356 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
a88a341a 1357 struct bdi_writeback *wb = &bdi->wb;
5a537485 1358 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1359 unsigned long start_time = jiffies;
1da177e4
LT
1360
1361 for (;;) {
83712358 1362 unsigned long now = jiffies;
5a537485
MP
1363 unsigned long uninitialized_var(bdi_thresh);
1364 unsigned long thresh;
1365 unsigned long uninitialized_var(bdi_dirty);
1366 unsigned long dirty;
1367 unsigned long bg_thresh;
83712358 1368
143dfe86
WF
1369 /*
1370 * Unstable writes are a feature of certain networked
1371 * filesystems (i.e. NFS) in which data may have been
1372 * written to the server's write cache, but has not yet
1373 * been flushed to permanent storage.
1374 */
5fce25a9
PZ
1375 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1376 global_page_state(NR_UNSTABLE_NFS);
7762741e 1377 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1378
16c4042f
WF
1379 global_dirty_limits(&background_thresh, &dirty_thresh);
1380
5a537485 1381 if (unlikely(strictlimit)) {
a88a341a
TH
1382 wb_dirty_limits(wb, dirty_thresh, background_thresh,
1383 &bdi_dirty, &bdi_thresh, &bg_thresh);
5a537485
MP
1384
1385 dirty = bdi_dirty;
1386 thresh = bdi_thresh;
1387 } else {
1388 dirty = nr_dirty;
1389 thresh = dirty_thresh;
1390 bg_thresh = background_thresh;
1391 }
1392
16c4042f
WF
1393 /*
1394 * Throttle it only when the background writeback cannot
1395 * catch-up. This avoids (excessively) small writeouts
5a537485
MP
1396 * when the bdi limits are ramping up in case of !strictlimit.
1397 *
1398 * In strictlimit case make decision based on the bdi counters
1399 * and limits. Small writeouts when the bdi limits are ramping
1400 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1401 */
5a537485 1402 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1403 current->dirty_paused_when = now;
1404 current->nr_dirtied = 0;
7ccb9ad5 1405 current->nr_dirtied_pause =
5a537485 1406 dirty_poll_interval(dirty, thresh);
16c4042f 1407 break;
83712358 1408 }
16c4042f 1409
143dfe86
WF
1410 if (unlikely(!writeback_in_progress(bdi)))
1411 bdi_start_background_writeback(bdi);
1412
5a537485 1413 if (!strictlimit)
a88a341a
TH
1414 wb_dirty_limits(wb, dirty_thresh, background_thresh,
1415 &bdi_dirty, &bdi_thresh, NULL);
5fce25a9 1416
82791940 1417 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
5a537485 1418 ((nr_dirty > dirty_thresh) || strictlimit);
a88a341a
TH
1419 if (dirty_exceeded && !wb->dirty_exceeded)
1420 wb->dirty_exceeded = 1;
1da177e4 1421
a88a341a
TH
1422 wb_update_bandwidth(wb, dirty_thresh, background_thresh,
1423 nr_dirty, bdi_thresh, bdi_dirty,
1424 start_time);
e98be2d5 1425
a88a341a
TH
1426 dirty_ratelimit = wb->dirty_ratelimit;
1427 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1428 background_thresh, nr_dirty,
1429 bdi_thresh, bdi_dirty);
3a73dbbc
WF
1430 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1431 RATELIMIT_CALC_SHIFT;
a88a341a
TH
1432 max_pause = wb_max_pause(wb, bdi_dirty);
1433 min_pause = wb_min_pause(wb, max_pause,
1434 task_ratelimit, dirty_ratelimit,
1435 &nr_dirtied_pause);
7ccb9ad5 1436
3a73dbbc 1437 if (unlikely(task_ratelimit == 0)) {
83712358 1438 period = max_pause;
c8462cc9 1439 pause = max_pause;
143dfe86 1440 goto pause;
04fbfdc1 1441 }
83712358
WF
1442 period = HZ * pages_dirtied / task_ratelimit;
1443 pause = period;
1444 if (current->dirty_paused_when)
1445 pause -= now - current->dirty_paused_when;
1446 /*
1447 * For less than 1s think time (ext3/4 may block the dirtier
1448 * for up to 800ms from time to time on 1-HDD; so does xfs,
1449 * however at much less frequency), try to compensate it in
1450 * future periods by updating the virtual time; otherwise just
1451 * do a reset, as it may be a light dirtier.
1452 */
7ccb9ad5 1453 if (pause < min_pause) {
ece13ac3
WF
1454 trace_balance_dirty_pages(bdi,
1455 dirty_thresh,
1456 background_thresh,
1457 nr_dirty,
1458 bdi_thresh,
1459 bdi_dirty,
1460 dirty_ratelimit,
1461 task_ratelimit,
1462 pages_dirtied,
83712358 1463 period,
7ccb9ad5 1464 min(pause, 0L),
ece13ac3 1465 start_time);
83712358
WF
1466 if (pause < -HZ) {
1467 current->dirty_paused_when = now;
1468 current->nr_dirtied = 0;
1469 } else if (period) {
1470 current->dirty_paused_when += period;
1471 current->nr_dirtied = 0;
7ccb9ad5
WF
1472 } else if (current->nr_dirtied_pause <= pages_dirtied)
1473 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1474 break;
04fbfdc1 1475 }
7ccb9ad5
WF
1476 if (unlikely(pause > max_pause)) {
1477 /* for occasional dropped task_ratelimit */
1478 now += min(pause - max_pause, max_pause);
1479 pause = max_pause;
1480 }
143dfe86
WF
1481
1482pause:
ece13ac3
WF
1483 trace_balance_dirty_pages(bdi,
1484 dirty_thresh,
1485 background_thresh,
1486 nr_dirty,
1487 bdi_thresh,
1488 bdi_dirty,
1489 dirty_ratelimit,
1490 task_ratelimit,
1491 pages_dirtied,
83712358 1492 period,
ece13ac3
WF
1493 pause,
1494 start_time);
499d05ec 1495 __set_current_state(TASK_KILLABLE);
d25105e8 1496 io_schedule_timeout(pause);
87c6a9b2 1497
83712358
WF
1498 current->dirty_paused_when = now + pause;
1499 current->nr_dirtied = 0;
7ccb9ad5 1500 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1501
ffd1f609 1502 /*
1df64719
WF
1503 * This is typically equal to (nr_dirty < dirty_thresh) and can
1504 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1505 */
1df64719 1506 if (task_ratelimit)
ffd1f609 1507 break;
499d05ec 1508
c5c6343c
WF
1509 /*
1510 * In the case of an unresponding NFS server and the NFS dirty
1511 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1512 * to go through, so that tasks on them still remain responsive.
1513 *
1514 * In theory 1 page is enough to keep the comsumer-producer
1515 * pipe going: the flusher cleans 1 page => the task dirties 1
1516 * more page. However bdi_dirty has accounting errors. So use
93f78d88 1517 * the larger and more IO friendly wb_stat_error.
c5c6343c 1518 */
a88a341a 1519 if (bdi_dirty <= wb_stat_error(wb))
c5c6343c
WF
1520 break;
1521
499d05ec
JK
1522 if (fatal_signal_pending(current))
1523 break;
1da177e4
LT
1524 }
1525
a88a341a
TH
1526 if (!dirty_exceeded && wb->dirty_exceeded)
1527 wb->dirty_exceeded = 0;
1da177e4
LT
1528
1529 if (writeback_in_progress(bdi))
5b0830cb 1530 return;
1da177e4
LT
1531
1532 /*
1533 * In laptop mode, we wait until hitting the higher threshold before
1534 * starting background writeout, and then write out all the way down
1535 * to the lower threshold. So slow writers cause minimal disk activity.
1536 *
1537 * In normal mode, we start background writeout at the lower
1538 * background_thresh, to keep the amount of dirty memory low.
1539 */
143dfe86
WF
1540 if (laptop_mode)
1541 return;
1542
1543 if (nr_reclaimable > background_thresh)
c5444198 1544 bdi_start_background_writeback(bdi);
1da177e4
LT
1545}
1546
9d823e8f 1547static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1548
54848d73
WF
1549/*
1550 * Normal tasks are throttled by
1551 * loop {
1552 * dirty tsk->nr_dirtied_pause pages;
1553 * take a snap in balance_dirty_pages();
1554 * }
1555 * However there is a worst case. If every task exit immediately when dirtied
1556 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1557 * called to throttle the page dirties. The solution is to save the not yet
1558 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1559 * randomly into the running tasks. This works well for the above worst case,
1560 * as the new task will pick up and accumulate the old task's leaked dirty
1561 * count and eventually get throttled.
1562 */
1563DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1564
1da177e4 1565/**
d0e1d66b 1566 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1567 * @mapping: address_space which was dirtied
1da177e4
LT
1568 *
1569 * Processes which are dirtying memory should call in here once for each page
1570 * which was newly dirtied. The function will periodically check the system's
1571 * dirty state and will initiate writeback if needed.
1572 *
1573 * On really big machines, get_writeback_state is expensive, so try to avoid
1574 * calling it too often (ratelimiting). But once we're over the dirty memory
1575 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1576 * from overshooting the limit by (ratelimit_pages) each.
1577 */
d0e1d66b 1578void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1579{
de1414a6 1580 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
a88a341a 1581 struct bdi_writeback *wb = &bdi->wb;
9d823e8f
WF
1582 int ratelimit;
1583 int *p;
1da177e4 1584
36715cef
WF
1585 if (!bdi_cap_account_dirty(bdi))
1586 return;
1587
9d823e8f 1588 ratelimit = current->nr_dirtied_pause;
a88a341a 1589 if (wb->dirty_exceeded)
9d823e8f
WF
1590 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1591
9d823e8f 1592 preempt_disable();
1da177e4 1593 /*
9d823e8f
WF
1594 * This prevents one CPU to accumulate too many dirtied pages without
1595 * calling into balance_dirty_pages(), which can happen when there are
1596 * 1000+ tasks, all of them start dirtying pages at exactly the same
1597 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1598 */
7c8e0181 1599 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1600 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1601 *p = 0;
d3bc1fef
WF
1602 else if (unlikely(*p >= ratelimit_pages)) {
1603 *p = 0;
1604 ratelimit = 0;
1da177e4 1605 }
54848d73
WF
1606 /*
1607 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1608 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1609 * the dirty throttling and livelock other long-run dirtiers.
1610 */
7c8e0181 1611 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1612 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1613 unsigned long nr_pages_dirtied;
54848d73
WF
1614 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1615 *p -= nr_pages_dirtied;
1616 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1617 }
fa5a734e 1618 preempt_enable();
9d823e8f
WF
1619
1620 if (unlikely(current->nr_dirtied >= ratelimit))
1621 balance_dirty_pages(mapping, current->nr_dirtied);
1da177e4 1622}
d0e1d66b 1623EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1624
232ea4d6 1625void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1626{
364aeb28
DR
1627 unsigned long background_thresh;
1628 unsigned long dirty_thresh;
1da177e4
LT
1629
1630 for ( ; ; ) {
16c4042f 1631 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1632 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1633
1634 /*
1635 * Boost the allowable dirty threshold a bit for page
1636 * allocators so they don't get DoS'ed by heavy writers
1637 */
1638 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1639
c24f21bd
CL
1640 if (global_page_state(NR_UNSTABLE_NFS) +
1641 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1642 break;
8aa7e847 1643 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1644
1645 /*
1646 * The caller might hold locks which can prevent IO completion
1647 * or progress in the filesystem. So we cannot just sit here
1648 * waiting for IO to complete.
1649 */
1650 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1651 break;
1da177e4
LT
1652 }
1653}
1654
1da177e4
LT
1655/*
1656 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1657 */
cccad5b9 1658int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1659 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1660{
8d65af78 1661 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1662 return 0;
1663}
1664
c2c4986e 1665#ifdef CONFIG_BLOCK
31373d09 1666void laptop_mode_timer_fn(unsigned long data)
1da177e4 1667{
31373d09
MG
1668 struct request_queue *q = (struct request_queue *)data;
1669 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1670 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1671
31373d09
MG
1672 /*
1673 * We want to write everything out, not just down to the dirty
1674 * threshold
1675 */
31373d09 1676 if (bdi_has_dirty_io(&q->backing_dev_info))
0e175a18
CW
1677 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1678 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1679}
1680
1681/*
1682 * We've spun up the disk and we're in laptop mode: schedule writeback
1683 * of all dirty data a few seconds from now. If the flush is already scheduled
1684 * then push it back - the user is still using the disk.
1685 */
31373d09 1686void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1687{
31373d09 1688 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1689}
1690
1691/*
1692 * We're in laptop mode and we've just synced. The sync's writes will have
1693 * caused another writeback to be scheduled by laptop_io_completion.
1694 * Nothing needs to be written back anymore, so we unschedule the writeback.
1695 */
1696void laptop_sync_completion(void)
1697{
31373d09
MG
1698 struct backing_dev_info *bdi;
1699
1700 rcu_read_lock();
1701
1702 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1703 del_timer(&bdi->laptop_mode_wb_timer);
1704
1705 rcu_read_unlock();
1da177e4 1706}
c2c4986e 1707#endif
1da177e4
LT
1708
1709/*
1710 * If ratelimit_pages is too high then we can get into dirty-data overload
1711 * if a large number of processes all perform writes at the same time.
1712 * If it is too low then SMP machines will call the (expensive)
1713 * get_writeback_state too often.
1714 *
1715 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1716 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1717 * thresholds.
1da177e4
LT
1718 */
1719
2d1d43f6 1720void writeback_set_ratelimit(void)
1da177e4 1721{
9d823e8f
WF
1722 unsigned long background_thresh;
1723 unsigned long dirty_thresh;
1724 global_dirty_limits(&background_thresh, &dirty_thresh);
68809c71 1725 global_dirty_limit = dirty_thresh;
9d823e8f 1726 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1727 if (ratelimit_pages < 16)
1728 ratelimit_pages = 16;
1da177e4
LT
1729}
1730
0db0628d 1731static int
2f60d628
SB
1732ratelimit_handler(struct notifier_block *self, unsigned long action,
1733 void *hcpu)
1da177e4 1734{
2f60d628
SB
1735
1736 switch (action & ~CPU_TASKS_FROZEN) {
1737 case CPU_ONLINE:
1738 case CPU_DEAD:
1739 writeback_set_ratelimit();
1740 return NOTIFY_OK;
1741 default:
1742 return NOTIFY_DONE;
1743 }
1da177e4
LT
1744}
1745
0db0628d 1746static struct notifier_block ratelimit_nb = {
1da177e4
LT
1747 .notifier_call = ratelimit_handler,
1748 .next = NULL,
1749};
1750
1751/*
dc6e29da
LT
1752 * Called early on to tune the page writeback dirty limits.
1753 *
1754 * We used to scale dirty pages according to how total memory
1755 * related to pages that could be allocated for buffers (by
1756 * comparing nr_free_buffer_pages() to vm_total_pages.
1757 *
1758 * However, that was when we used "dirty_ratio" to scale with
1759 * all memory, and we don't do that any more. "dirty_ratio"
1760 * is now applied to total non-HIGHPAGE memory (by subtracting
1761 * totalhigh_pages from vm_total_pages), and as such we can't
1762 * get into the old insane situation any more where we had
1763 * large amounts of dirty pages compared to a small amount of
1764 * non-HIGHMEM memory.
1765 *
1766 * But we might still want to scale the dirty_ratio by how
1767 * much memory the box has..
1da177e4
LT
1768 */
1769void __init page_writeback_init(void)
1770{
2d1d43f6 1771 writeback_set_ratelimit();
1da177e4 1772 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1773
20ae0079 1774 fprop_global_init(&writeout_completions, GFP_KERNEL);
1da177e4
LT
1775}
1776
f446daae
JK
1777/**
1778 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1779 * @mapping: address space structure to write
1780 * @start: starting page index
1781 * @end: ending page index (inclusive)
1782 *
1783 * This function scans the page range from @start to @end (inclusive) and tags
1784 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1785 * that write_cache_pages (or whoever calls this function) will then use
1786 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1787 * used to avoid livelocking of writeback by a process steadily creating new
1788 * dirty pages in the file (thus it is important for this function to be quick
1789 * so that it can tag pages faster than a dirtying process can create them).
1790 */
1791/*
1792 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1793 */
f446daae
JK
1794void tag_pages_for_writeback(struct address_space *mapping,
1795 pgoff_t start, pgoff_t end)
1796{
3c111a07 1797#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1798 unsigned long tagged;
1799
1800 do {
1801 spin_lock_irq(&mapping->tree_lock);
1802 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1803 &start, end, WRITEBACK_TAG_BATCH,
1804 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1805 spin_unlock_irq(&mapping->tree_lock);
1806 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1807 cond_resched();
d5ed3a4a
JK
1808 /* We check 'start' to handle wrapping when end == ~0UL */
1809 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1810}
1811EXPORT_SYMBOL(tag_pages_for_writeback);
1812
811d736f 1813/**
0ea97180 1814 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1815 * @mapping: address space structure to write
1816 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1817 * @writepage: function called for each page
1818 * @data: data passed to writepage function
811d736f 1819 *
0ea97180 1820 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1821 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1822 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1823 * and msync() need to guarantee that all the data which was dirty at the time
1824 * the call was made get new I/O started against them. If wbc->sync_mode is
1825 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1826 * existing IO to complete.
f446daae
JK
1827 *
1828 * To avoid livelocks (when other process dirties new pages), we first tag
1829 * pages which should be written back with TOWRITE tag and only then start
1830 * writing them. For data-integrity sync we have to be careful so that we do
1831 * not miss some pages (e.g., because some other process has cleared TOWRITE
1832 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1833 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1834 */
0ea97180
MS
1835int write_cache_pages(struct address_space *mapping,
1836 struct writeback_control *wbc, writepage_t writepage,
1837 void *data)
811d736f 1838{
811d736f
DH
1839 int ret = 0;
1840 int done = 0;
811d736f
DH
1841 struct pagevec pvec;
1842 int nr_pages;
31a12666 1843 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1844 pgoff_t index;
1845 pgoff_t end; /* Inclusive */
bd19e012 1846 pgoff_t done_index;
31a12666 1847 int cycled;
811d736f 1848 int range_whole = 0;
f446daae 1849 int tag;
811d736f 1850
811d736f
DH
1851 pagevec_init(&pvec, 0);
1852 if (wbc->range_cyclic) {
31a12666
NP
1853 writeback_index = mapping->writeback_index; /* prev offset */
1854 index = writeback_index;
1855 if (index == 0)
1856 cycled = 1;
1857 else
1858 cycled = 0;
811d736f
DH
1859 end = -1;
1860 } else {
1861 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1862 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1863 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1864 range_whole = 1;
31a12666 1865 cycled = 1; /* ignore range_cyclic tests */
811d736f 1866 }
6e6938b6 1867 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1868 tag = PAGECACHE_TAG_TOWRITE;
1869 else
1870 tag = PAGECACHE_TAG_DIRTY;
811d736f 1871retry:
6e6938b6 1872 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1873 tag_pages_for_writeback(mapping, index, end);
bd19e012 1874 done_index = index;
5a3d5c98
NP
1875 while (!done && (index <= end)) {
1876 int i;
1877
f446daae 1878 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1879 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1880 if (nr_pages == 0)
1881 break;
811d736f 1882
811d736f
DH
1883 for (i = 0; i < nr_pages; i++) {
1884 struct page *page = pvec.pages[i];
1885
1886 /*
d5482cdf
NP
1887 * At this point, the page may be truncated or
1888 * invalidated (changing page->mapping to NULL), or
1889 * even swizzled back from swapper_space to tmpfs file
1890 * mapping. However, page->index will not change
1891 * because we have a reference on the page.
811d736f 1892 */
d5482cdf
NP
1893 if (page->index > end) {
1894 /*
1895 * can't be range_cyclic (1st pass) because
1896 * end == -1 in that case.
1897 */
1898 done = 1;
1899 break;
1900 }
1901
cf15b07c 1902 done_index = page->index;
d5482cdf 1903
811d736f
DH
1904 lock_page(page);
1905
5a3d5c98
NP
1906 /*
1907 * Page truncated or invalidated. We can freely skip it
1908 * then, even for data integrity operations: the page
1909 * has disappeared concurrently, so there could be no
1910 * real expectation of this data interity operation
1911 * even if there is now a new, dirty page at the same
1912 * pagecache address.
1913 */
811d736f 1914 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1915continue_unlock:
811d736f
DH
1916 unlock_page(page);
1917 continue;
1918 }
1919
515f4a03
NP
1920 if (!PageDirty(page)) {
1921 /* someone wrote it for us */
1922 goto continue_unlock;
1923 }
1924
1925 if (PageWriteback(page)) {
1926 if (wbc->sync_mode != WB_SYNC_NONE)
1927 wait_on_page_writeback(page);
1928 else
1929 goto continue_unlock;
1930 }
811d736f 1931
515f4a03
NP
1932 BUG_ON(PageWriteback(page));
1933 if (!clear_page_dirty_for_io(page))
5a3d5c98 1934 goto continue_unlock;
811d736f 1935
de1414a6 1936 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1937 ret = (*writepage)(page, wbc, data);
00266770
NP
1938 if (unlikely(ret)) {
1939 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1940 unlock_page(page);
1941 ret = 0;
1942 } else {
1943 /*
1944 * done_index is set past this page,
1945 * so media errors will not choke
1946 * background writeout for the entire
1947 * file. This has consequences for
1948 * range_cyclic semantics (ie. it may
1949 * not be suitable for data integrity
1950 * writeout).
1951 */
cf15b07c 1952 done_index = page->index + 1;
00266770
NP
1953 done = 1;
1954 break;
1955 }
0b564927 1956 }
00266770 1957
546a1924
DC
1958 /*
1959 * We stop writing back only if we are not doing
1960 * integrity sync. In case of integrity sync we have to
1961 * keep going until we have written all the pages
1962 * we tagged for writeback prior to entering this loop.
1963 */
1964 if (--wbc->nr_to_write <= 0 &&
1965 wbc->sync_mode == WB_SYNC_NONE) {
1966 done = 1;
1967 break;
05fe478d 1968 }
811d736f
DH
1969 }
1970 pagevec_release(&pvec);
1971 cond_resched();
1972 }
3a4c6800 1973 if (!cycled && !done) {
811d736f 1974 /*
31a12666 1975 * range_cyclic:
811d736f
DH
1976 * We hit the last page and there is more work to be done: wrap
1977 * back to the start of the file
1978 */
31a12666 1979 cycled = 1;
811d736f 1980 index = 0;
31a12666 1981 end = writeback_index - 1;
811d736f
DH
1982 goto retry;
1983 }
0b564927
DC
1984 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1985 mapping->writeback_index = done_index;
06d6cf69 1986
811d736f
DH
1987 return ret;
1988}
0ea97180
MS
1989EXPORT_SYMBOL(write_cache_pages);
1990
1991/*
1992 * Function used by generic_writepages to call the real writepage
1993 * function and set the mapping flags on error
1994 */
1995static int __writepage(struct page *page, struct writeback_control *wbc,
1996 void *data)
1997{
1998 struct address_space *mapping = data;
1999 int ret = mapping->a_ops->writepage(page, wbc);
2000 mapping_set_error(mapping, ret);
2001 return ret;
2002}
2003
2004/**
2005 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2006 * @mapping: address space structure to write
2007 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2008 *
2009 * This is a library function, which implements the writepages()
2010 * address_space_operation.
2011 */
2012int generic_writepages(struct address_space *mapping,
2013 struct writeback_control *wbc)
2014{
9b6096a6
SL
2015 struct blk_plug plug;
2016 int ret;
2017
0ea97180
MS
2018 /* deal with chardevs and other special file */
2019 if (!mapping->a_ops->writepage)
2020 return 0;
2021
9b6096a6
SL
2022 blk_start_plug(&plug);
2023 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2024 blk_finish_plug(&plug);
2025 return ret;
0ea97180 2026}
811d736f
DH
2027
2028EXPORT_SYMBOL(generic_writepages);
2029
1da177e4
LT
2030int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2031{
22905f77
AM
2032 int ret;
2033
1da177e4
LT
2034 if (wbc->nr_to_write <= 0)
2035 return 0;
2036 if (mapping->a_ops->writepages)
d08b3851 2037 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2038 else
2039 ret = generic_writepages(mapping, wbc);
22905f77 2040 return ret;
1da177e4
LT
2041}
2042
2043/**
2044 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2045 * @page: the page to write
2046 * @wait: if true, wait on writeout
1da177e4
LT
2047 *
2048 * The page must be locked by the caller and will be unlocked upon return.
2049 *
2050 * write_one_page() returns a negative error code if I/O failed.
2051 */
2052int write_one_page(struct page *page, int wait)
2053{
2054 struct address_space *mapping = page->mapping;
2055 int ret = 0;
2056 struct writeback_control wbc = {
2057 .sync_mode = WB_SYNC_ALL,
2058 .nr_to_write = 1,
2059 };
2060
2061 BUG_ON(!PageLocked(page));
2062
2063 if (wait)
2064 wait_on_page_writeback(page);
2065
2066 if (clear_page_dirty_for_io(page)) {
2067 page_cache_get(page);
2068 ret = mapping->a_ops->writepage(page, &wbc);
2069 if (ret == 0 && wait) {
2070 wait_on_page_writeback(page);
2071 if (PageError(page))
2072 ret = -EIO;
2073 }
2074 page_cache_release(page);
2075 } else {
2076 unlock_page(page);
2077 }
2078 return ret;
2079}
2080EXPORT_SYMBOL(write_one_page);
2081
76719325
KC
2082/*
2083 * For address_spaces which do not use buffers nor write back.
2084 */
2085int __set_page_dirty_no_writeback(struct page *page)
2086{
2087 if (!PageDirty(page))
c3f0da63 2088 return !TestSetPageDirty(page);
76719325
KC
2089 return 0;
2090}
2091
e3a7cca1
ES
2092/*
2093 * Helper function for set_page_dirty family.
c4843a75
GT
2094 *
2095 * Caller must hold mem_cgroup_begin_page_stat().
2096 *
e3a7cca1
ES
2097 * NOTE: This relies on being atomic wrt interrupts.
2098 */
c4843a75
GT
2099void account_page_dirtied(struct page *page, struct address_space *mapping,
2100 struct mem_cgroup *memcg)
e3a7cca1 2101{
9fb0a7da
TH
2102 trace_writeback_dirty_page(page, mapping);
2103
e3a7cca1 2104 if (mapping_cap_account_dirty(mapping)) {
de1414a6
CH
2105 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
2106
c4843a75 2107 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2108 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2109 __inc_zone_page_state(page, NR_DIRTIED);
93f78d88
TH
2110 __inc_wb_stat(&bdi->wb, WB_RECLAIMABLE);
2111 __inc_wb_stat(&bdi->wb, WB_DIRTIED);
e3a7cca1 2112 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2113 current->nr_dirtied++;
2114 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2115 }
2116}
679ceace 2117EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2118
b9ea2515
KK
2119/*
2120 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2121 *
2122 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2123 */
c4843a75
GT
2124void account_page_cleaned(struct page *page, struct address_space *mapping,
2125 struct mem_cgroup *memcg)
b9ea2515
KK
2126{
2127 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2128 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2129 dec_zone_page_state(page, NR_FILE_DIRTY);
93f78d88 2130 dec_wb_stat(&inode_to_bdi(mapping->host)->wb, WB_RECLAIMABLE);
b9ea2515
KK
2131 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2132 }
2133}
b9ea2515 2134
1da177e4
LT
2135/*
2136 * For address_spaces which do not use buffers. Just tag the page as dirty in
2137 * its radix tree.
2138 *
2139 * This is also used when a single buffer is being dirtied: we want to set the
2140 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2141 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2142 *
2d6d7f98
JW
2143 * The caller must ensure this doesn't race with truncation. Most will simply
2144 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2145 * the pte lock held, which also locks out truncation.
1da177e4
LT
2146 */
2147int __set_page_dirty_nobuffers(struct page *page)
2148{
c4843a75
GT
2149 struct mem_cgroup *memcg;
2150
2151 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2152 if (!TestSetPageDirty(page)) {
2153 struct address_space *mapping = page_mapping(page);
a85d9df1 2154 unsigned long flags;
1da177e4 2155
c4843a75
GT
2156 if (!mapping) {
2157 mem_cgroup_end_page_stat(memcg);
8c08540f 2158 return 1;
c4843a75 2159 }
8c08540f 2160
a85d9df1 2161 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2162 BUG_ON(page_mapping(page) != mapping);
2163 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2164 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2165 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2166 PAGECACHE_TAG_DIRTY);
a85d9df1 2167 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2168 mem_cgroup_end_page_stat(memcg);
2169
8c08540f
AM
2170 if (mapping->host) {
2171 /* !PageAnon && !swapper_space */
2172 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2173 }
4741c9fd 2174 return 1;
1da177e4 2175 }
c4843a75 2176 mem_cgroup_end_page_stat(memcg);
4741c9fd 2177 return 0;
1da177e4
LT
2178}
2179EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2180
2f800fbd
WF
2181/*
2182 * Call this whenever redirtying a page, to de-account the dirty counters
2183 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2184 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2185 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2186 * control.
2187 */
2188void account_page_redirty(struct page *page)
2189{
2190 struct address_space *mapping = page->mapping;
2191 if (mapping && mapping_cap_account_dirty(mapping)) {
2192 current->nr_dirtied--;
2193 dec_zone_page_state(page, NR_DIRTIED);
93f78d88 2194 dec_wb_stat(&inode_to_bdi(mapping->host)->wb, WB_DIRTIED);
2f800fbd
WF
2195 }
2196}
2197EXPORT_SYMBOL(account_page_redirty);
2198
1da177e4
LT
2199/*
2200 * When a writepage implementation decides that it doesn't want to write this
2201 * page for some reason, it should redirty the locked page via
2202 * redirty_page_for_writepage() and it should then unlock the page and return 0
2203 */
2204int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2205{
8d38633c
KK
2206 int ret;
2207
1da177e4 2208 wbc->pages_skipped++;
8d38633c 2209 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2210 account_page_redirty(page);
8d38633c 2211 return ret;
1da177e4
LT
2212}
2213EXPORT_SYMBOL(redirty_page_for_writepage);
2214
2215/*
6746aff7
WF
2216 * Dirty a page.
2217 *
2218 * For pages with a mapping this should be done under the page lock
2219 * for the benefit of asynchronous memory errors who prefer a consistent
2220 * dirty state. This rule can be broken in some special cases,
2221 * but should be better not to.
2222 *
1da177e4
LT
2223 * If the mapping doesn't provide a set_page_dirty a_op, then
2224 * just fall through and assume that it wants buffer_heads.
2225 */
1cf6e7d8 2226int set_page_dirty(struct page *page)
1da177e4
LT
2227{
2228 struct address_space *mapping = page_mapping(page);
2229
2230 if (likely(mapping)) {
2231 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2232 /*
2233 * readahead/lru_deactivate_page could remain
2234 * PG_readahead/PG_reclaim due to race with end_page_writeback
2235 * About readahead, if the page is written, the flags would be
2236 * reset. So no problem.
2237 * About lru_deactivate_page, if the page is redirty, the flag
2238 * will be reset. So no problem. but if the page is used by readahead
2239 * it will confuse readahead and make it restart the size rampup
2240 * process. But it's a trivial problem.
2241 */
a4bb3ecd
NH
2242 if (PageReclaim(page))
2243 ClearPageReclaim(page);
9361401e
DH
2244#ifdef CONFIG_BLOCK
2245 if (!spd)
2246 spd = __set_page_dirty_buffers;
2247#endif
2248 return (*spd)(page);
1da177e4 2249 }
4741c9fd
AM
2250 if (!PageDirty(page)) {
2251 if (!TestSetPageDirty(page))
2252 return 1;
2253 }
1da177e4
LT
2254 return 0;
2255}
2256EXPORT_SYMBOL(set_page_dirty);
2257
2258/*
2259 * set_page_dirty() is racy if the caller has no reference against
2260 * page->mapping->host, and if the page is unlocked. This is because another
2261 * CPU could truncate the page off the mapping and then free the mapping.
2262 *
2263 * Usually, the page _is_ locked, or the caller is a user-space process which
2264 * holds a reference on the inode by having an open file.
2265 *
2266 * In other cases, the page should be locked before running set_page_dirty().
2267 */
2268int set_page_dirty_lock(struct page *page)
2269{
2270 int ret;
2271
7eaceacc 2272 lock_page(page);
1da177e4
LT
2273 ret = set_page_dirty(page);
2274 unlock_page(page);
2275 return ret;
2276}
2277EXPORT_SYMBOL(set_page_dirty_lock);
2278
11f81bec
TH
2279/*
2280 * This cancels just the dirty bit on the kernel page itself, it does NOT
2281 * actually remove dirty bits on any mmap's that may be around. It also
2282 * leaves the page tagged dirty, so any sync activity will still find it on
2283 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2284 * look at the dirty bits in the VM.
2285 *
2286 * Doing this should *normally* only ever be done when a page is truncated,
2287 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2288 * this when it notices that somebody has cleaned out all the buffers on a
2289 * page without actually doing it through the VM. Can you say "ext3 is
2290 * horribly ugly"? Thought you could.
2291 */
2292void cancel_dirty_page(struct page *page)
2293{
c4843a75
GT
2294 struct address_space *mapping = page_mapping(page);
2295
2296 if (mapping_cap_account_dirty(mapping)) {
2297 struct mem_cgroup *memcg;
2298
2299 memcg = mem_cgroup_begin_page_stat(page);
2300
2301 if (TestClearPageDirty(page))
2302 account_page_cleaned(page, mapping, memcg);
2303
2304 mem_cgroup_end_page_stat(memcg);
2305 } else {
2306 ClearPageDirty(page);
2307 }
11f81bec
TH
2308}
2309EXPORT_SYMBOL(cancel_dirty_page);
2310
1da177e4
LT
2311/*
2312 * Clear a page's dirty flag, while caring for dirty memory accounting.
2313 * Returns true if the page was previously dirty.
2314 *
2315 * This is for preparing to put the page under writeout. We leave the page
2316 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2317 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2318 * implementation will run either set_page_writeback() or set_page_dirty(),
2319 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2320 * back into sync.
2321 *
2322 * This incoherency between the page's dirty flag and radix-tree tag is
2323 * unfortunate, but it only exists while the page is locked.
2324 */
2325int clear_page_dirty_for_io(struct page *page)
2326{
2327 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2328 struct mem_cgroup *memcg;
2329 int ret = 0;
1da177e4 2330
79352894
NP
2331 BUG_ON(!PageLocked(page));
2332
7658cc28
LT
2333 if (mapping && mapping_cap_account_dirty(mapping)) {
2334 /*
2335 * Yes, Virginia, this is indeed insane.
2336 *
2337 * We use this sequence to make sure that
2338 * (a) we account for dirty stats properly
2339 * (b) we tell the low-level filesystem to
2340 * mark the whole page dirty if it was
2341 * dirty in a pagetable. Only to then
2342 * (c) clean the page again and return 1 to
2343 * cause the writeback.
2344 *
2345 * This way we avoid all nasty races with the
2346 * dirty bit in multiple places and clearing
2347 * them concurrently from different threads.
2348 *
2349 * Note! Normally the "set_page_dirty(page)"
2350 * has no effect on the actual dirty bit - since
2351 * that will already usually be set. But we
2352 * need the side effects, and it can help us
2353 * avoid races.
2354 *
2355 * We basically use the page "master dirty bit"
2356 * as a serialization point for all the different
2357 * threads doing their things.
7658cc28
LT
2358 */
2359 if (page_mkclean(page))
2360 set_page_dirty(page);
79352894
NP
2361 /*
2362 * We carefully synchronise fault handlers against
2363 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2364 * at this point. We do this by having them hold the
2365 * page lock while dirtying the page, and pages are
2366 * always locked coming in here, so we get the desired
2367 * exclusion.
79352894 2368 */
c4843a75 2369 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2370 if (TestClearPageDirty(page)) {
c4843a75 2371 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2372 dec_zone_page_state(page, NR_FILE_DIRTY);
93f78d88
TH
2373 dec_wb_stat(&inode_to_bdi(mapping->host)->wb,
2374 WB_RECLAIMABLE);
c4843a75 2375 ret = 1;
1da177e4 2376 }
c4843a75
GT
2377 mem_cgroup_end_page_stat(memcg);
2378 return ret;
1da177e4 2379 }
7658cc28 2380 return TestClearPageDirty(page);
1da177e4 2381}
58bb01a9 2382EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2383
2384int test_clear_page_writeback(struct page *page)
2385{
2386 struct address_space *mapping = page_mapping(page);
d7365e78 2387 struct mem_cgroup *memcg;
d7365e78 2388 int ret;
1da177e4 2389
6de22619 2390 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2391 if (mapping) {
de1414a6 2392 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1da177e4
LT
2393 unsigned long flags;
2394
19fd6231 2395 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2396 ret = TestClearPageWriteback(page);
69cb51d1 2397 if (ret) {
1da177e4
LT
2398 radix_tree_tag_clear(&mapping->page_tree,
2399 page_index(page),
2400 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2401 if (bdi_cap_account_writeback(bdi)) {
93f78d88
TH
2402 __dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2403 __wb_writeout_inc(&bdi->wb);
04fbfdc1 2404 }
69cb51d1 2405 }
19fd6231 2406 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2407 } else {
2408 ret = TestClearPageWriteback(page);
2409 }
99b12e3d 2410 if (ret) {
d7365e78 2411 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2412 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2413 inc_zone_page_state(page, NR_WRITTEN);
2414 }
6de22619 2415 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2416 return ret;
2417}
2418
1c8349a1 2419int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2420{
2421 struct address_space *mapping = page_mapping(page);
d7365e78 2422 struct mem_cgroup *memcg;
d7365e78 2423 int ret;
1da177e4 2424
6de22619 2425 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2426 if (mapping) {
de1414a6 2427 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1da177e4
LT
2428 unsigned long flags;
2429
19fd6231 2430 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2431 ret = TestSetPageWriteback(page);
69cb51d1 2432 if (!ret) {
1da177e4
LT
2433 radix_tree_tag_set(&mapping->page_tree,
2434 page_index(page),
2435 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2436 if (bdi_cap_account_writeback(bdi))
93f78d88 2437 __inc_wb_stat(&bdi->wb, WB_WRITEBACK);
69cb51d1 2438 }
1da177e4
LT
2439 if (!PageDirty(page))
2440 radix_tree_tag_clear(&mapping->page_tree,
2441 page_index(page),
2442 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2443 if (!keep_write)
2444 radix_tree_tag_clear(&mapping->page_tree,
2445 page_index(page),
2446 PAGECACHE_TAG_TOWRITE);
19fd6231 2447 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2448 } else {
2449 ret = TestSetPageWriteback(page);
2450 }
3a3c02ec 2451 if (!ret) {
d7365e78 2452 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2453 inc_zone_page_state(page, NR_WRITEBACK);
2454 }
6de22619 2455 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2456 return ret;
2457
2458}
1c8349a1 2459EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2460
2461/*
00128188 2462 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2463 * passed tag.
2464 */
2465int mapping_tagged(struct address_space *mapping, int tag)
2466{
72c47832 2467 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2468}
2469EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2470
2471/**
2472 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2473 * @page: The page to wait on.
2474 *
2475 * This function determines if the given page is related to a backing device
2476 * that requires page contents to be held stable during writeback. If so, then
2477 * it will wait for any pending writeback to complete.
2478 */
2479void wait_for_stable_page(struct page *page)
2480{
de1414a6
CH
2481 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2482 wait_on_page_writeback(page);
1d1d1a76
DW
2483}
2484EXPORT_SYMBOL_GPL(wait_for_stable_page);