]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page-writeback.c
writeback: make __wb_writeout_inc() and hard_dirty_limit() take wb_domaas a parameter
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131#endif
2bc00aef 132 struct bdi_writeback *wb;
e9770b34 133 struct fprop_local_percpu *wb_completions;
2bc00aef
TH
134
135 unsigned long dirty; /* file_dirty + write + nfs */
136 unsigned long thresh; /* dirty threshold */
137 unsigned long bg_thresh; /* dirty background threshold */
138
139 unsigned long wb_dirty; /* per-wb counterparts */
140 unsigned long wb_thresh;
970fb01a 141 unsigned long wb_bg_thresh;
daddfa3c
TH
142
143 unsigned long pos_ratio;
2bc00aef
TH
144};
145
e9f07dfd 146#define DTC_INIT_COMMON(__wb) .wb = (__wb), \
e9770b34 147 .wb_completions = &(__wb)->completions
2bc00aef 148
eb608e3a
JK
149/*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 155
693108a8
TH
156#ifdef CONFIG_CGROUP_WRITEBACK
157
e9f07dfd
TH
158#define GDTC_INIT(__wb) .dom = &global_wb_domain, \
159 DTC_INIT_COMMON(__wb)
160
161static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
162{
163 return dtc->dom;
164}
165
693108a8
TH
166static void wb_min_max_ratio(struct bdi_writeback *wb,
167 unsigned long *minp, unsigned long *maxp)
168{
169 unsigned long this_bw = wb->avg_write_bandwidth;
170 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
171 unsigned long long min = wb->bdi->min_ratio;
172 unsigned long long max = wb->bdi->max_ratio;
173
174 /*
175 * @wb may already be clean by the time control reaches here and
176 * the total may not include its bw.
177 */
178 if (this_bw < tot_bw) {
179 if (min) {
180 min *= this_bw;
181 do_div(min, tot_bw);
182 }
183 if (max < 100) {
184 max *= this_bw;
185 do_div(max, tot_bw);
186 }
187 }
188
189 *minp = min;
190 *maxp = max;
191}
192
193#else /* CONFIG_CGROUP_WRITEBACK */
194
e9f07dfd
TH
195#define GDTC_INIT(__wb) DTC_INIT_COMMON(__wb)
196
197static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
198{
199 return &global_wb_domain;
200}
201
693108a8
TH
202static void wb_min_max_ratio(struct bdi_writeback *wb,
203 unsigned long *minp, unsigned long *maxp)
204{
205 *minp = wb->bdi->min_ratio;
206 *maxp = wb->bdi->max_ratio;
207}
208
209#endif /* CONFIG_CGROUP_WRITEBACK */
210
a756cf59
JW
211/*
212 * In a memory zone, there is a certain amount of pages we consider
213 * available for the page cache, which is essentially the number of
214 * free and reclaimable pages, minus some zone reserves to protect
215 * lowmem and the ability to uphold the zone's watermarks without
216 * requiring writeback.
217 *
218 * This number of dirtyable pages is the base value of which the
219 * user-configurable dirty ratio is the effictive number of pages that
220 * are allowed to be actually dirtied. Per individual zone, or
221 * globally by using the sum of dirtyable pages over all zones.
222 *
223 * Because the user is allowed to specify the dirty limit globally as
224 * absolute number of bytes, calculating the per-zone dirty limit can
225 * require translating the configured limit into a percentage of
226 * global dirtyable memory first.
227 */
228
a804552b
JW
229/**
230 * zone_dirtyable_memory - number of dirtyable pages in a zone
231 * @zone: the zone
232 *
233 * Returns the zone's number of pages potentially available for dirty
234 * page cache. This is the base value for the per-zone dirty limits.
235 */
236static unsigned long zone_dirtyable_memory(struct zone *zone)
237{
238 unsigned long nr_pages;
239
240 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
241 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
242
a1c3bfb2
JW
243 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
244 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
245
246 return nr_pages;
247}
248
1edf2234
JW
249static unsigned long highmem_dirtyable_memory(unsigned long total)
250{
251#ifdef CONFIG_HIGHMEM
252 int node;
253 unsigned long x = 0;
254
255 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 256 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 257
a804552b 258 x += zone_dirtyable_memory(z);
1edf2234 259 }
c8b74c2f
SR
260 /*
261 * Unreclaimable memory (kernel memory or anonymous memory
262 * without swap) can bring down the dirtyable pages below
263 * the zone's dirty balance reserve and the above calculation
264 * will underflow. However we still want to add in nodes
265 * which are below threshold (negative values) to get a more
266 * accurate calculation but make sure that the total never
267 * underflows.
268 */
269 if ((long)x < 0)
270 x = 0;
271
1edf2234
JW
272 /*
273 * Make sure that the number of highmem pages is never larger
274 * than the number of the total dirtyable memory. This can only
275 * occur in very strange VM situations but we want to make sure
276 * that this does not occur.
277 */
278 return min(x, total);
279#else
280 return 0;
281#endif
282}
283
284/**
ccafa287 285 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 286 *
ccafa287
JW
287 * Returns the global number of pages potentially available for dirty
288 * page cache. This is the base value for the global dirty limits.
1edf2234 289 */
18cf8cf8 290static unsigned long global_dirtyable_memory(void)
1edf2234
JW
291{
292 unsigned long x;
293
a804552b 294 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 295 x -= min(x, dirty_balance_reserve);
1edf2234 296
a1c3bfb2
JW
297 x += global_page_state(NR_INACTIVE_FILE);
298 x += global_page_state(NR_ACTIVE_FILE);
a804552b 299
1edf2234
JW
300 if (!vm_highmem_is_dirtyable)
301 x -= highmem_dirtyable_memory(x);
302
303 return x + 1; /* Ensure that we never return 0 */
304}
305
ccafa287
JW
306/*
307 * global_dirty_limits - background-writeback and dirty-throttling thresholds
308 *
309 * Calculate the dirty thresholds based on sysctl parameters
310 * - vm.dirty_background_ratio or vm.dirty_background_bytes
311 * - vm.dirty_ratio or vm.dirty_bytes
312 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
313 * real-time tasks.
314 */
315void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
316{
9ef0a0ff 317 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
318 unsigned long background;
319 unsigned long dirty;
ccafa287
JW
320 struct task_struct *tsk;
321
ccafa287
JW
322 if (vm_dirty_bytes)
323 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
324 else
325 dirty = (vm_dirty_ratio * available_memory) / 100;
326
327 if (dirty_background_bytes)
328 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
329 else
330 background = (dirty_background_ratio * available_memory) / 100;
331
332 if (background >= dirty)
333 background = dirty / 2;
334 tsk = current;
335 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
336 background += background / 4;
337 dirty += dirty / 4;
338 }
339 *pbackground = background;
340 *pdirty = dirty;
341 trace_global_dirty_state(background, dirty);
342}
343
a756cf59
JW
344/**
345 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
346 * @zone: the zone
347 *
348 * Returns the maximum number of dirty pages allowed in a zone, based
349 * on the zone's dirtyable memory.
350 */
351static unsigned long zone_dirty_limit(struct zone *zone)
352{
353 unsigned long zone_memory = zone_dirtyable_memory(zone);
354 struct task_struct *tsk = current;
355 unsigned long dirty;
356
357 if (vm_dirty_bytes)
358 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
359 zone_memory / global_dirtyable_memory();
360 else
361 dirty = vm_dirty_ratio * zone_memory / 100;
362
363 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
364 dirty += dirty / 4;
365
366 return dirty;
367}
368
369/**
370 * zone_dirty_ok - tells whether a zone is within its dirty limits
371 * @zone: the zone to check
372 *
373 * Returns %true when the dirty pages in @zone are within the zone's
374 * dirty limit, %false if the limit is exceeded.
375 */
376bool zone_dirty_ok(struct zone *zone)
377{
378 unsigned long limit = zone_dirty_limit(zone);
379
380 return zone_page_state(zone, NR_FILE_DIRTY) +
381 zone_page_state(zone, NR_UNSTABLE_NFS) +
382 zone_page_state(zone, NR_WRITEBACK) <= limit;
383}
384
2da02997 385int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 386 void __user *buffer, size_t *lenp,
2da02997
DR
387 loff_t *ppos)
388{
389 int ret;
390
8d65af78 391 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
392 if (ret == 0 && write)
393 dirty_background_bytes = 0;
394 return ret;
395}
396
397int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 398 void __user *buffer, size_t *lenp,
2da02997
DR
399 loff_t *ppos)
400{
401 int ret;
402
8d65af78 403 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
404 if (ret == 0 && write)
405 dirty_background_ratio = 0;
406 return ret;
407}
408
04fbfdc1 409int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 410 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
411 loff_t *ppos)
412{
413 int old_ratio = vm_dirty_ratio;
2da02997
DR
414 int ret;
415
8d65af78 416 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 417 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 418 writeback_set_ratelimit();
2da02997
DR
419 vm_dirty_bytes = 0;
420 }
421 return ret;
422}
423
2da02997 424int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 425 void __user *buffer, size_t *lenp,
2da02997
DR
426 loff_t *ppos)
427{
fc3501d4 428 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
429 int ret;
430
8d65af78 431 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 432 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 433 writeback_set_ratelimit();
2da02997 434 vm_dirty_ratio = 0;
04fbfdc1
PZ
435 }
436 return ret;
437}
438
eb608e3a
JK
439static unsigned long wp_next_time(unsigned long cur_time)
440{
441 cur_time += VM_COMPLETIONS_PERIOD_LEN;
442 /* 0 has a special meaning... */
443 if (!cur_time)
444 return 1;
445 return cur_time;
446}
447
c7981433
TH
448static void wb_domain_writeout_inc(struct wb_domain *dom,
449 struct fprop_local_percpu *completions,
450 unsigned int max_prop_frac)
04fbfdc1 451{
c7981433
TH
452 __fprop_inc_percpu_max(&dom->completions, completions,
453 max_prop_frac);
eb608e3a 454 /* First event after period switching was turned off? */
380c27ca 455 if (!unlikely(dom->period_time)) {
eb608e3a
JK
456 /*
457 * We can race with other __bdi_writeout_inc calls here but
458 * it does not cause any harm since the resulting time when
459 * timer will fire and what is in writeout_period_time will be
460 * roughly the same.
461 */
380c27ca
TH
462 dom->period_time = wp_next_time(jiffies);
463 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 464 }
04fbfdc1
PZ
465}
466
c7981433
TH
467/*
468 * Increment @wb's writeout completion count and the global writeout
469 * completion count. Called from test_clear_page_writeback().
470 */
471static inline void __wb_writeout_inc(struct bdi_writeback *wb)
472{
473 __inc_wb_stat(wb, WB_WRITTEN);
474 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
475 wb->bdi->max_prop_frac);
476}
477
93f78d88 478void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
479{
480 unsigned long flags;
481
482 local_irq_save(flags);
93f78d88 483 __wb_writeout_inc(wb);
dd5656e5
MS
484 local_irq_restore(flags);
485}
93f78d88 486EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 487
eb608e3a
JK
488/*
489 * On idle system, we can be called long after we scheduled because we use
490 * deferred timers so count with missed periods.
491 */
492static void writeout_period(unsigned long t)
493{
380c27ca
TH
494 struct wb_domain *dom = (void *)t;
495 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
496 VM_COMPLETIONS_PERIOD_LEN;
497
380c27ca
TH
498 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
499 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 500 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 501 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
502 } else {
503 /*
504 * Aging has zeroed all fractions. Stop wasting CPU on period
505 * updates.
506 */
380c27ca 507 dom->period_time = 0;
eb608e3a
JK
508 }
509}
510
380c27ca
TH
511int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
512{
513 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
514
515 spin_lock_init(&dom->lock);
516
380c27ca
TH
517 init_timer_deferrable(&dom->period_timer);
518 dom->period_timer.function = writeout_period;
519 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
520
521 dom->dirty_limit_tstamp = jiffies;
522
380c27ca
TH
523 return fprop_global_init(&dom->completions, gfp);
524}
525
189d3c4a 526/*
d08c429b
JW
527 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
528 * registered backing devices, which, for obvious reasons, can not
529 * exceed 100%.
189d3c4a 530 */
189d3c4a
PZ
531static unsigned int bdi_min_ratio;
532
533int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
534{
535 int ret = 0;
189d3c4a 536
cfc4ba53 537 spin_lock_bh(&bdi_lock);
a42dde04 538 if (min_ratio > bdi->max_ratio) {
189d3c4a 539 ret = -EINVAL;
a42dde04
PZ
540 } else {
541 min_ratio -= bdi->min_ratio;
542 if (bdi_min_ratio + min_ratio < 100) {
543 bdi_min_ratio += min_ratio;
544 bdi->min_ratio += min_ratio;
545 } else {
546 ret = -EINVAL;
547 }
548 }
cfc4ba53 549 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
550
551 return ret;
552}
553
554int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
555{
a42dde04
PZ
556 int ret = 0;
557
558 if (max_ratio > 100)
559 return -EINVAL;
560
cfc4ba53 561 spin_lock_bh(&bdi_lock);
a42dde04
PZ
562 if (bdi->min_ratio > max_ratio) {
563 ret = -EINVAL;
564 } else {
565 bdi->max_ratio = max_ratio;
eb608e3a 566 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 567 }
cfc4ba53 568 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
569
570 return ret;
571}
a42dde04 572EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 573
6c14ae1e
WF
574static unsigned long dirty_freerun_ceiling(unsigned long thresh,
575 unsigned long bg_thresh)
576{
577 return (thresh + bg_thresh) / 2;
578}
579
c7981433
TH
580static unsigned long hard_dirty_limit(struct wb_domain *dom,
581 unsigned long thresh)
ffd1f609 582{
dcc25ae7 583 return max(thresh, dom->dirty_limit);
ffd1f609
WF
584}
585
6f718656 586/**
b1cbc6d4
TH
587 * __wb_calc_thresh - @wb's share of dirty throttling threshold
588 * @dtc: dirty_throttle_context of interest
1babe183 589 *
a88a341a 590 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 591 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
592 *
593 * Note that balance_dirty_pages() will only seriously take it as a hard limit
594 * when sleeping max_pause per page is not enough to keep the dirty pages under
595 * control. For example, when the device is completely stalled due to some error
596 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
597 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 598 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 599 *
6f718656 600 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
601 * - starving fast devices
602 * - piling up dirty pages (that will take long time to sync) on slow devices
603 *
a88a341a 604 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
605 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
606 */
b1cbc6d4 607static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 608{
e9f07dfd 609 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 610 unsigned long thresh = dtc->thresh;
0d960a38 611 u64 wb_thresh;
16c4042f 612 long numerator, denominator;
693108a8 613 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 614
16c4042f 615 /*
0d960a38 616 * Calculate this BDI's share of the thresh ratio.
16c4042f 617 */
e9770b34 618 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 619 &numerator, &denominator);
04fbfdc1 620
0d960a38
TH
621 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
622 wb_thresh *= numerator;
623 do_div(wb_thresh, denominator);
04fbfdc1 624
b1cbc6d4 625 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
693108a8 626
0d960a38
TH
627 wb_thresh += (thresh * wb_min_ratio) / 100;
628 if (wb_thresh > (thresh * wb_max_ratio) / 100)
629 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 630
0d960a38 631 return wb_thresh;
1da177e4
LT
632}
633
b1cbc6d4
TH
634unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
635{
636 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
637 .thresh = thresh };
638 return __wb_calc_thresh(&gdtc);
639}
640
5a537485
MP
641/*
642 * setpoint - dirty 3
643 * f(dirty) := 1.0 + (----------------)
644 * limit - setpoint
645 *
646 * it's a 3rd order polynomial that subjects to
647 *
648 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
649 * (2) f(setpoint) = 1.0 => the balance point
650 * (3) f(limit) = 0 => the hard limit
651 * (4) df/dx <= 0 => negative feedback control
652 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
653 * => fast response on large errors; small oscillation near setpoint
654 */
d5c9fde3 655static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
656 unsigned long dirty,
657 unsigned long limit)
658{
659 long long pos_ratio;
660 long x;
661
d5c9fde3 662 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
663 limit - setpoint + 1);
664 pos_ratio = x;
665 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
666 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
667 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
668
669 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
670}
671
6c14ae1e
WF
672/*
673 * Dirty position control.
674 *
675 * (o) global/bdi setpoints
676 *
de1fff37 677 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
678 * When the number of dirty pages is higher/lower than the setpoint, the
679 * dirty position control ratio (and hence task dirty ratelimit) will be
680 * decreased/increased to bring the dirty pages back to the setpoint.
681 *
682 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
683 *
684 * if (dirty < setpoint) scale up pos_ratio
685 * if (dirty > setpoint) scale down pos_ratio
686 *
de1fff37
TH
687 * if (wb_dirty < wb_setpoint) scale up pos_ratio
688 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
689 *
690 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
691 *
692 * (o) global control line
693 *
694 * ^ pos_ratio
695 * |
696 * | |<===== global dirty control scope ======>|
697 * 2.0 .............*
698 * | .*
699 * | . *
700 * | . *
701 * | . *
702 * | . *
703 * | . *
704 * 1.0 ................................*
705 * | . . *
706 * | . . *
707 * | . . *
708 * | . . *
709 * | . . *
710 * 0 +------------.------------------.----------------------*------------->
711 * freerun^ setpoint^ limit^ dirty pages
712 *
de1fff37 713 * (o) wb control line
6c14ae1e
WF
714 *
715 * ^ pos_ratio
716 * |
717 * | *
718 * | *
719 * | *
720 * | *
721 * | * |<=========== span ============>|
722 * 1.0 .......................*
723 * | . *
724 * | . *
725 * | . *
726 * | . *
727 * | . *
728 * | . *
729 * | . *
730 * | . *
731 * | . *
732 * | . *
733 * | . *
734 * 1/4 ...............................................* * * * * * * * * * * *
735 * | . .
736 * | . .
737 * | . .
738 * 0 +----------------------.-------------------------------.------------->
de1fff37 739 * wb_setpoint^ x_intercept^
6c14ae1e 740 *
de1fff37 741 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
742 * be smoothly throttled down to normal if it starts high in situations like
743 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
744 * card's wb_dirty may rush to many times higher than wb_setpoint.
745 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 746 */
daddfa3c 747static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 748{
2bc00aef 749 struct bdi_writeback *wb = dtc->wb;
a88a341a 750 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 751 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 752 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 753 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
754 unsigned long x_intercept;
755 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 756 unsigned long wb_setpoint;
6c14ae1e
WF
757 unsigned long span;
758 long long pos_ratio; /* for scaling up/down the rate limit */
759 long x;
760
daddfa3c
TH
761 dtc->pos_ratio = 0;
762
2bc00aef 763 if (unlikely(dtc->dirty >= limit))
daddfa3c 764 return;
6c14ae1e
WF
765
766 /*
767 * global setpoint
768 *
5a537485
MP
769 * See comment for pos_ratio_polynom().
770 */
771 setpoint = (freerun + limit) / 2;
2bc00aef 772 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
773
774 /*
775 * The strictlimit feature is a tool preventing mistrusted filesystems
776 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
777 * such filesystems balance_dirty_pages always checks wb counters
778 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
779 * This is especially important for fuse which sets bdi->max_ratio to
780 * 1% by default. Without strictlimit feature, fuse writeback may
781 * consume arbitrary amount of RAM because it is accounted in
782 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 783 *
a88a341a 784 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 785 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
786 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
787 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 788 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 789 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 790 * about ~6K pages (as the average of background and throttle wb
5a537485 791 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 792 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 793 *
5a537485 794 * Note, that we cannot use global counters in these calculations
de1fff37 795 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
796 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
797 * in the example above).
6c14ae1e 798 */
a88a341a 799 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 800 long long wb_pos_ratio;
5a537485 801
daddfa3c
TH
802 if (dtc->wb_dirty < 8) {
803 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
804 2 << RATELIMIT_CALC_SHIFT);
805 return;
806 }
5a537485 807
2bc00aef 808 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 809 return;
5a537485 810
970fb01a
TH
811 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
812 dtc->wb_bg_thresh);
5a537485 813
de1fff37 814 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 815 return;
5a537485 816
2bc00aef 817 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 818 wb_thresh);
5a537485
MP
819
820 /*
de1fff37
TH
821 * Typically, for strictlimit case, wb_setpoint << setpoint
822 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 823 * state ("dirty") is not limiting factor and we have to
de1fff37 824 * make decision based on wb counters. But there is an
5a537485
MP
825 * important case when global pos_ratio should get precedence:
826 * global limits are exceeded (e.g. due to activities on other
de1fff37 827 * wb's) while given strictlimit wb is below limit.
5a537485 828 *
de1fff37 829 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 830 * but it would look too non-natural for the case of all
de1fff37 831 * activity in the system coming from a single strictlimit wb
5a537485
MP
832 * with bdi->max_ratio == 100%.
833 *
834 * Note that min() below somewhat changes the dynamics of the
835 * control system. Normally, pos_ratio value can be well over 3
de1fff37 836 * (when globally we are at freerun and wb is well below wb
5a537485
MP
837 * setpoint). Now the maximum pos_ratio in the same situation
838 * is 2. We might want to tweak this if we observe the control
839 * system is too slow to adapt.
840 */
daddfa3c
TH
841 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
842 return;
5a537485 843 }
6c14ae1e
WF
844
845 /*
846 * We have computed basic pos_ratio above based on global situation. If
de1fff37 847 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
848 * pos_ratio further down/up. That is done by the following mechanism.
849 */
850
851 /*
de1fff37 852 * wb setpoint
6c14ae1e 853 *
de1fff37 854 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 855 *
de1fff37 856 * x_intercept - wb_dirty
6c14ae1e 857 * := --------------------------
de1fff37 858 * x_intercept - wb_setpoint
6c14ae1e 859 *
de1fff37 860 * The main wb control line is a linear function that subjects to
6c14ae1e 861 *
de1fff37
TH
862 * (1) f(wb_setpoint) = 1.0
863 * (2) k = - 1 / (8 * write_bw) (in single wb case)
864 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 865 *
de1fff37 866 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 867 * regularly within range
de1fff37 868 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
869 * for various filesystems, where (2) can yield in a reasonable 12.5%
870 * fluctuation range for pos_ratio.
871 *
de1fff37 872 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 873 * own size, so move the slope over accordingly and choose a slope that
de1fff37 874 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 875 */
2bc00aef
TH
876 if (unlikely(wb_thresh > dtc->thresh))
877 wb_thresh = dtc->thresh;
aed21ad2 878 /*
de1fff37 879 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
880 * device is slow, but that it has remained inactive for long time.
881 * Honour such devices a reasonable good (hopefully IO efficient)
882 * threshold, so that the occasional writes won't be blocked and active
883 * writes can rampup the threshold quickly.
884 */
2bc00aef 885 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 886 /*
de1fff37
TH
887 * scale global setpoint to wb's:
888 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 889 */
2bc00aef 890 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 891 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 892 /*
de1fff37
TH
893 * Use span=(8*write_bw) in single wb case as indicated by
894 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 895 *
de1fff37
TH
896 * wb_thresh thresh - wb_thresh
897 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
898 * thresh thresh
6c14ae1e 899 */
2bc00aef 900 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 901 x_intercept = wb_setpoint + span;
6c14ae1e 902
2bc00aef
TH
903 if (dtc->wb_dirty < x_intercept - span / 4) {
904 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
905 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
906 } else
907 pos_ratio /= 4;
908
8927f66c 909 /*
de1fff37 910 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
911 * It may push the desired control point of global dirty pages higher
912 * than setpoint.
913 */
de1fff37 914 x_intercept = wb_thresh / 2;
2bc00aef
TH
915 if (dtc->wb_dirty < x_intercept) {
916 if (dtc->wb_dirty > x_intercept / 8)
917 pos_ratio = div_u64(pos_ratio * x_intercept,
918 dtc->wb_dirty);
50657fc4 919 else
8927f66c
WF
920 pos_ratio *= 8;
921 }
922
daddfa3c 923 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
924}
925
a88a341a
TH
926static void wb_update_write_bandwidth(struct bdi_writeback *wb,
927 unsigned long elapsed,
928 unsigned long written)
e98be2d5
WF
929{
930 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
931 unsigned long avg = wb->avg_write_bandwidth;
932 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
933 u64 bw;
934
935 /*
936 * bw = written * HZ / elapsed
937 *
938 * bw * elapsed + write_bandwidth * (period - elapsed)
939 * write_bandwidth = ---------------------------------------------------
940 * period
c72efb65
TH
941 *
942 * @written may have decreased due to account_page_redirty().
943 * Avoid underflowing @bw calculation.
e98be2d5 944 */
a88a341a 945 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
946 bw *= HZ;
947 if (unlikely(elapsed > period)) {
948 do_div(bw, elapsed);
949 avg = bw;
950 goto out;
951 }
a88a341a 952 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
953 bw >>= ilog2(period);
954
955 /*
956 * one more level of smoothing, for filtering out sudden spikes
957 */
958 if (avg > old && old >= (unsigned long)bw)
959 avg -= (avg - old) >> 3;
960
961 if (avg < old && old <= (unsigned long)bw)
962 avg += (old - avg) >> 3;
963
964out:
95a46c65
TH
965 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
966 avg = max(avg, 1LU);
967 if (wb_has_dirty_io(wb)) {
968 long delta = avg - wb->avg_write_bandwidth;
969 WARN_ON_ONCE(atomic_long_add_return(delta,
970 &wb->bdi->tot_write_bandwidth) <= 0);
971 }
a88a341a
TH
972 wb->write_bandwidth = bw;
973 wb->avg_write_bandwidth = avg;
e98be2d5
WF
974}
975
2bc00aef 976static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 977{
e9f07dfd 978 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 979 unsigned long thresh = dtc->thresh;
dcc25ae7 980 unsigned long limit = dom->dirty_limit;
c42843f2
WF
981
982 /*
983 * Follow up in one step.
984 */
985 if (limit < thresh) {
986 limit = thresh;
987 goto update;
988 }
989
990 /*
991 * Follow down slowly. Use the higher one as the target, because thresh
992 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 993 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 994 */
2bc00aef 995 thresh = max(thresh, dtc->dirty);
c42843f2
WF
996 if (limit > thresh) {
997 limit -= (limit - thresh) >> 5;
998 goto update;
999 }
1000 return;
1001update:
dcc25ae7 1002 dom->dirty_limit = limit;
c42843f2
WF
1003}
1004
e9f07dfd 1005static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1006 unsigned long now)
1007{
e9f07dfd 1008 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1009
1010 /*
1011 * check locklessly first to optimize away locking for the most time
1012 */
dcc25ae7 1013 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1014 return;
1015
dcc25ae7
TH
1016 spin_lock(&dom->lock);
1017 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1018 update_dirty_limit(dtc);
dcc25ae7 1019 dom->dirty_limit_tstamp = now;
c42843f2 1020 }
dcc25ae7 1021 spin_unlock(&dom->lock);
c42843f2
WF
1022}
1023
be3ffa27 1024/*
de1fff37 1025 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1026 *
de1fff37 1027 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1028 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1029 */
2bc00aef 1030static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1031 unsigned long dirtied,
1032 unsigned long elapsed)
be3ffa27 1033{
2bc00aef
TH
1034 struct bdi_writeback *wb = dtc->wb;
1035 unsigned long dirty = dtc->dirty;
1036 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1037 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1038 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1039 unsigned long write_bw = wb->avg_write_bandwidth;
1040 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1041 unsigned long dirty_rate;
1042 unsigned long task_ratelimit;
1043 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1044 unsigned long step;
1045 unsigned long x;
be3ffa27
WF
1046
1047 /*
1048 * The dirty rate will match the writeout rate in long term, except
1049 * when dirty pages are truncated by userspace or re-dirtied by FS.
1050 */
a88a341a 1051 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1052
be3ffa27
WF
1053 /*
1054 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1055 */
1056 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1057 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1058 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1059
1060 /*
1061 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1062 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1063 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1064 * formula will yield the balanced rate limit (write_bw / N).
1065 *
1066 * Note that the expanded form is not a pure rate feedback:
1067 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1068 * but also takes pos_ratio into account:
1069 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1070 *
1071 * (1) is not realistic because pos_ratio also takes part in balancing
1072 * the dirty rate. Consider the state
1073 * pos_ratio = 0.5 (3)
1074 * rate = 2 * (write_bw / N) (4)
1075 * If (1) is used, it will stuck in that state! Because each dd will
1076 * be throttled at
1077 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1078 * yielding
1079 * dirty_rate = N * task_ratelimit = write_bw (6)
1080 * put (6) into (1) we get
1081 * rate_(i+1) = rate_(i) (7)
1082 *
1083 * So we end up using (2) to always keep
1084 * rate_(i+1) ~= (write_bw / N) (8)
1085 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1086 * pos_ratio is able to drive itself to 1.0, which is not only where
1087 * the dirty count meet the setpoint, but also where the slope of
1088 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1089 */
1090 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1091 dirty_rate | 1);
bdaac490
WF
1092 /*
1093 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1094 */
1095 if (unlikely(balanced_dirty_ratelimit > write_bw))
1096 balanced_dirty_ratelimit = write_bw;
be3ffa27 1097
7381131c
WF
1098 /*
1099 * We could safely do this and return immediately:
1100 *
de1fff37 1101 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1102 *
1103 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1104 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1105 * limit the step size.
1106 *
1107 * The below code essentially only uses the relative value of
1108 *
1109 * task_ratelimit - dirty_ratelimit
1110 * = (pos_ratio - 1) * dirty_ratelimit
1111 *
1112 * which reflects the direction and size of dirty position error.
1113 */
1114
1115 /*
1116 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1117 * task_ratelimit is on the same side of dirty_ratelimit, too.
1118 * For example, when
1119 * - dirty_ratelimit > balanced_dirty_ratelimit
1120 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1121 * lowering dirty_ratelimit will help meet both the position and rate
1122 * control targets. Otherwise, don't update dirty_ratelimit if it will
1123 * only help meet the rate target. After all, what the users ultimately
1124 * feel and care are stable dirty rate and small position error.
1125 *
1126 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1127 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1128 * keeps jumping around randomly and can even leap far away at times
1129 * due to the small 200ms estimation period of dirty_rate (we want to
1130 * keep that period small to reduce time lags).
1131 */
1132 step = 0;
5a537485
MP
1133
1134 /*
de1fff37 1135 * For strictlimit case, calculations above were based on wb counters
a88a341a 1136 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1137 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1138 * Hence, to calculate "step" properly, we have to use wb_dirty as
1139 * "dirty" and wb_setpoint as "setpoint".
5a537485 1140 *
de1fff37
TH
1141 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1142 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1143 * of backing device.
5a537485 1144 */
a88a341a 1145 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1146 dirty = dtc->wb_dirty;
1147 if (dtc->wb_dirty < 8)
1148 setpoint = dtc->wb_dirty + 1;
5a537485 1149 else
970fb01a 1150 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1151 }
1152
7381131c 1153 if (dirty < setpoint) {
a88a341a 1154 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1155 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1156 if (dirty_ratelimit < x)
1157 step = x - dirty_ratelimit;
1158 } else {
a88a341a 1159 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1160 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1161 if (dirty_ratelimit > x)
1162 step = dirty_ratelimit - x;
1163 }
1164
1165 /*
1166 * Don't pursue 100% rate matching. It's impossible since the balanced
1167 * rate itself is constantly fluctuating. So decrease the track speed
1168 * when it gets close to the target. Helps eliminate pointless tremors.
1169 */
1170 step >>= dirty_ratelimit / (2 * step + 1);
1171 /*
1172 * Limit the tracking speed to avoid overshooting.
1173 */
1174 step = (step + 7) / 8;
1175
1176 if (dirty_ratelimit < balanced_dirty_ratelimit)
1177 dirty_ratelimit += step;
1178 else
1179 dirty_ratelimit -= step;
1180
a88a341a
TH
1181 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1182 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1183
a88a341a 1184 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1185}
1186
2bc00aef 1187static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1188 unsigned long start_time,
1189 bool update_ratelimit)
e98be2d5 1190{
2bc00aef 1191 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1192 unsigned long now = jiffies;
a88a341a 1193 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1194 unsigned long dirtied;
e98be2d5
WF
1195 unsigned long written;
1196
8a731799
TH
1197 lockdep_assert_held(&wb->list_lock);
1198
e98be2d5
WF
1199 /*
1200 * rate-limit, only update once every 200ms.
1201 */
1202 if (elapsed < BANDWIDTH_INTERVAL)
1203 return;
1204
a88a341a
TH
1205 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1206 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1207
1208 /*
1209 * Skip quiet periods when disk bandwidth is under-utilized.
1210 * (at least 1s idle time between two flusher runs)
1211 */
a88a341a 1212 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1213 goto snapshot;
1214
8a731799 1215 if (update_ratelimit) {
e9f07dfd 1216 domain_update_bandwidth(dtc, now);
2bc00aef 1217 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1218 }
a88a341a 1219 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1220
1221snapshot:
a88a341a
TH
1222 wb->dirtied_stamp = dirtied;
1223 wb->written_stamp = written;
1224 wb->bw_time_stamp = now;
e98be2d5
WF
1225}
1226
8a731799 1227void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1228{
2bc00aef
TH
1229 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1230
1231 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1232}
1233
9d823e8f 1234/*
d0e1d66b 1235 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1236 * will look to see if it needs to start dirty throttling.
1237 *
1238 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1239 * global_page_state() too often. So scale it near-sqrt to the safety margin
1240 * (the number of pages we may dirty without exceeding the dirty limits).
1241 */
1242static unsigned long dirty_poll_interval(unsigned long dirty,
1243 unsigned long thresh)
1244{
1245 if (thresh > dirty)
1246 return 1UL << (ilog2(thresh - dirty) >> 1);
1247
1248 return 1;
1249}
1250
a88a341a 1251static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1252 unsigned long wb_dirty)
c8462cc9 1253{
a88a341a 1254 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1255 unsigned long t;
c8462cc9 1256
7ccb9ad5
WF
1257 /*
1258 * Limit pause time for small memory systems. If sleeping for too long
1259 * time, a small pool of dirty/writeback pages may go empty and disk go
1260 * idle.
1261 *
1262 * 8 serves as the safety ratio.
1263 */
de1fff37 1264 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1265 t++;
1266
e3b6c655 1267 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1268}
1269
a88a341a
TH
1270static long wb_min_pause(struct bdi_writeback *wb,
1271 long max_pause,
1272 unsigned long task_ratelimit,
1273 unsigned long dirty_ratelimit,
1274 int *nr_dirtied_pause)
c8462cc9 1275{
a88a341a
TH
1276 long hi = ilog2(wb->avg_write_bandwidth);
1277 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1278 long t; /* target pause */
1279 long pause; /* estimated next pause */
1280 int pages; /* target nr_dirtied_pause */
c8462cc9 1281
7ccb9ad5
WF
1282 /* target for 10ms pause on 1-dd case */
1283 t = max(1, HZ / 100);
c8462cc9
WF
1284
1285 /*
1286 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1287 * overheads.
1288 *
7ccb9ad5 1289 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1290 */
1291 if (hi > lo)
7ccb9ad5 1292 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1293
1294 /*
7ccb9ad5
WF
1295 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1296 * on the much more stable dirty_ratelimit. However the next pause time
1297 * will be computed based on task_ratelimit and the two rate limits may
1298 * depart considerably at some time. Especially if task_ratelimit goes
1299 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1300 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1301 * result task_ratelimit won't be executed faithfully, which could
1302 * eventually bring down dirty_ratelimit.
c8462cc9 1303 *
7ccb9ad5
WF
1304 * We apply two rules to fix it up:
1305 * 1) try to estimate the next pause time and if necessary, use a lower
1306 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1307 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1308 * 2) limit the target pause time to max_pause/2, so that the normal
1309 * small fluctuations of task_ratelimit won't trigger rule (1) and
1310 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1311 */
7ccb9ad5
WF
1312 t = min(t, 1 + max_pause / 2);
1313 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1314
1315 /*
5b9b3574
WF
1316 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1317 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1318 * When the 16 consecutive reads are often interrupted by some dirty
1319 * throttling pause during the async writes, cfq will go into idles
1320 * (deadline is fine). So push nr_dirtied_pause as high as possible
1321 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1322 */
5b9b3574
WF
1323 if (pages < DIRTY_POLL_THRESH) {
1324 t = max_pause;
1325 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1326 if (pages > DIRTY_POLL_THRESH) {
1327 pages = DIRTY_POLL_THRESH;
1328 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1329 }
1330 }
1331
7ccb9ad5
WF
1332 pause = HZ * pages / (task_ratelimit + 1);
1333 if (pause > max_pause) {
1334 t = max_pause;
1335 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1336 }
c8462cc9 1337
7ccb9ad5 1338 *nr_dirtied_pause = pages;
c8462cc9 1339 /*
7ccb9ad5 1340 * The minimal pause time will normally be half the target pause time.
c8462cc9 1341 */
5b9b3574 1342 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1343}
1344
970fb01a 1345static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1346{
2bc00aef 1347 struct bdi_writeback *wb = dtc->wb;
93f78d88 1348 unsigned long wb_reclaimable;
5a537485
MP
1349
1350 /*
de1fff37 1351 * wb_thresh is not treated as some limiting factor as
5a537485 1352 * dirty_thresh, due to reasons
de1fff37 1353 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1354 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1355 * go into state (wb_dirty >> wb_thresh) either because
1356 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1357 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1358 * dirtiers for 100 seconds until wb_dirty drops under
1359 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1360 * wb_position_ratio() will let the dirtier task progress
de1fff37 1361 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1362 */
b1cbc6d4 1363 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1364 dtc->wb_bg_thresh = dtc->thresh ?
1365 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1366
1367 /*
1368 * In order to avoid the stacked BDI deadlock we need
1369 * to ensure we accurately count the 'dirty' pages when
1370 * the threshold is low.
1371 *
1372 * Otherwise it would be possible to get thresh+n pages
1373 * reported dirty, even though there are thresh-m pages
1374 * actually dirty; with m+n sitting in the percpu
1375 * deltas.
1376 */
2bc00aef 1377 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1378 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1379 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1380 } else {
93f78d88 1381 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1382 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1383 }
1384}
1385
1da177e4
LT
1386/*
1387 * balance_dirty_pages() must be called by processes which are generating dirty
1388 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1389 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1390 * If we're over `background_thresh' then the writeback threads are woken to
1391 * perform some writeout.
1da177e4 1392 */
3a2e9a5a 1393static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1394 struct bdi_writeback *wb,
143dfe86 1395 unsigned long pages_dirtied)
1da177e4 1396{
2bc00aef
TH
1397 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1398 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1399 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1400 long period;
7ccb9ad5
WF
1401 long pause;
1402 long max_pause;
1403 long min_pause;
1404 int nr_dirtied_pause;
e50e3720 1405 bool dirty_exceeded = false;
143dfe86 1406 unsigned long task_ratelimit;
7ccb9ad5 1407 unsigned long dirty_ratelimit;
dfb8ae56 1408 struct backing_dev_info *bdi = wb->bdi;
5a537485 1409 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1410 unsigned long start_time = jiffies;
1da177e4
LT
1411
1412 for (;;) {
83712358 1413 unsigned long now = jiffies;
2bc00aef 1414 unsigned long dirty, thresh, bg_thresh;
83712358 1415
143dfe86
WF
1416 /*
1417 * Unstable writes are a feature of certain networked
1418 * filesystems (i.e. NFS) in which data may have been
1419 * written to the server's write cache, but has not yet
1420 * been flushed to permanent storage.
1421 */
5fce25a9
PZ
1422 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1423 global_page_state(NR_UNSTABLE_NFS);
2bc00aef 1424 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1425
2bc00aef 1426 global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
16c4042f 1427
5a537485 1428 if (unlikely(strictlimit)) {
970fb01a 1429 wb_dirty_limits(gdtc);
5a537485 1430
2bc00aef
TH
1431 dirty = gdtc->wb_dirty;
1432 thresh = gdtc->wb_thresh;
970fb01a 1433 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1434 } else {
2bc00aef
TH
1435 dirty = gdtc->dirty;
1436 thresh = gdtc->thresh;
1437 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1438 }
1439
16c4042f
WF
1440 /*
1441 * Throttle it only when the background writeback cannot
1442 * catch-up. This avoids (excessively) small writeouts
de1fff37 1443 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1444 *
de1fff37
TH
1445 * In strictlimit case make decision based on the wb counters
1446 * and limits. Small writeouts when the wb limits are ramping
5a537485 1447 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1448 */
5a537485 1449 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1450 current->dirty_paused_when = now;
1451 current->nr_dirtied = 0;
7ccb9ad5 1452 current->nr_dirtied_pause =
5a537485 1453 dirty_poll_interval(dirty, thresh);
16c4042f 1454 break;
83712358 1455 }
16c4042f 1456
bc05873d 1457 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1458 wb_start_background_writeback(wb);
143dfe86 1459
5a537485 1460 if (!strictlimit)
970fb01a 1461 wb_dirty_limits(gdtc);
5fce25a9 1462
2bc00aef
TH
1463 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1464 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1465
1466 wb_position_ratio(gdtc);
1467
a88a341a
TH
1468 if (dirty_exceeded && !wb->dirty_exceeded)
1469 wb->dirty_exceeded = 1;
1da177e4 1470
8a731799
TH
1471 if (time_is_before_jiffies(wb->bw_time_stamp +
1472 BANDWIDTH_INTERVAL)) {
1473 spin_lock(&wb->list_lock);
2bc00aef 1474 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1475 spin_unlock(&wb->list_lock);
1476 }
e98be2d5 1477
a88a341a 1478 dirty_ratelimit = wb->dirty_ratelimit;
daddfa3c 1479 task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
3a73dbbc 1480 RATELIMIT_CALC_SHIFT;
2bc00aef 1481 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1482 min_pause = wb_min_pause(wb, max_pause,
1483 task_ratelimit, dirty_ratelimit,
1484 &nr_dirtied_pause);
7ccb9ad5 1485
3a73dbbc 1486 if (unlikely(task_ratelimit == 0)) {
83712358 1487 period = max_pause;
c8462cc9 1488 pause = max_pause;
143dfe86 1489 goto pause;
04fbfdc1 1490 }
83712358
WF
1491 period = HZ * pages_dirtied / task_ratelimit;
1492 pause = period;
1493 if (current->dirty_paused_when)
1494 pause -= now - current->dirty_paused_when;
1495 /*
1496 * For less than 1s think time (ext3/4 may block the dirtier
1497 * for up to 800ms from time to time on 1-HDD; so does xfs,
1498 * however at much less frequency), try to compensate it in
1499 * future periods by updating the virtual time; otherwise just
1500 * do a reset, as it may be a light dirtier.
1501 */
7ccb9ad5 1502 if (pause < min_pause) {
ece13ac3 1503 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1504 gdtc->thresh,
1505 gdtc->bg_thresh,
1506 gdtc->dirty,
1507 gdtc->wb_thresh,
1508 gdtc->wb_dirty,
ece13ac3
WF
1509 dirty_ratelimit,
1510 task_ratelimit,
1511 pages_dirtied,
83712358 1512 period,
7ccb9ad5 1513 min(pause, 0L),
ece13ac3 1514 start_time);
83712358
WF
1515 if (pause < -HZ) {
1516 current->dirty_paused_when = now;
1517 current->nr_dirtied = 0;
1518 } else if (period) {
1519 current->dirty_paused_when += period;
1520 current->nr_dirtied = 0;
7ccb9ad5
WF
1521 } else if (current->nr_dirtied_pause <= pages_dirtied)
1522 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1523 break;
04fbfdc1 1524 }
7ccb9ad5
WF
1525 if (unlikely(pause > max_pause)) {
1526 /* for occasional dropped task_ratelimit */
1527 now += min(pause - max_pause, max_pause);
1528 pause = max_pause;
1529 }
143dfe86
WF
1530
1531pause:
ece13ac3 1532 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1533 gdtc->thresh,
1534 gdtc->bg_thresh,
1535 gdtc->dirty,
1536 gdtc->wb_thresh,
1537 gdtc->wb_dirty,
ece13ac3
WF
1538 dirty_ratelimit,
1539 task_ratelimit,
1540 pages_dirtied,
83712358 1541 period,
ece13ac3
WF
1542 pause,
1543 start_time);
499d05ec 1544 __set_current_state(TASK_KILLABLE);
d25105e8 1545 io_schedule_timeout(pause);
87c6a9b2 1546
83712358
WF
1547 current->dirty_paused_when = now + pause;
1548 current->nr_dirtied = 0;
7ccb9ad5 1549 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1550
ffd1f609 1551 /*
2bc00aef
TH
1552 * This is typically equal to (dirty < thresh) and can also
1553 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1554 */
1df64719 1555 if (task_ratelimit)
ffd1f609 1556 break;
499d05ec 1557
c5c6343c
WF
1558 /*
1559 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1560 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1561 * to go through, so that tasks on them still remain responsive.
1562 *
1563 * In theory 1 page is enough to keep the comsumer-producer
1564 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1565 * more page. However wb_dirty has accounting errors. So use
93f78d88 1566 * the larger and more IO friendly wb_stat_error.
c5c6343c 1567 */
2bc00aef 1568 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1569 break;
1570
499d05ec
JK
1571 if (fatal_signal_pending(current))
1572 break;
1da177e4
LT
1573 }
1574
a88a341a
TH
1575 if (!dirty_exceeded && wb->dirty_exceeded)
1576 wb->dirty_exceeded = 0;
1da177e4 1577
bc05873d 1578 if (writeback_in_progress(wb))
5b0830cb 1579 return;
1da177e4
LT
1580
1581 /*
1582 * In laptop mode, we wait until hitting the higher threshold before
1583 * starting background writeout, and then write out all the way down
1584 * to the lower threshold. So slow writers cause minimal disk activity.
1585 *
1586 * In normal mode, we start background writeout at the lower
1587 * background_thresh, to keep the amount of dirty memory low.
1588 */
143dfe86
WF
1589 if (laptop_mode)
1590 return;
1591
2bc00aef 1592 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1593 wb_start_background_writeback(wb);
1da177e4
LT
1594}
1595
9d823e8f 1596static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1597
54848d73
WF
1598/*
1599 * Normal tasks are throttled by
1600 * loop {
1601 * dirty tsk->nr_dirtied_pause pages;
1602 * take a snap in balance_dirty_pages();
1603 * }
1604 * However there is a worst case. If every task exit immediately when dirtied
1605 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1606 * called to throttle the page dirties. The solution is to save the not yet
1607 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1608 * randomly into the running tasks. This works well for the above worst case,
1609 * as the new task will pick up and accumulate the old task's leaked dirty
1610 * count and eventually get throttled.
1611 */
1612DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1613
1da177e4 1614/**
d0e1d66b 1615 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1616 * @mapping: address_space which was dirtied
1da177e4
LT
1617 *
1618 * Processes which are dirtying memory should call in here once for each page
1619 * which was newly dirtied. The function will periodically check the system's
1620 * dirty state and will initiate writeback if needed.
1621 *
1622 * On really big machines, get_writeback_state is expensive, so try to avoid
1623 * calling it too often (ratelimiting). But once we're over the dirty memory
1624 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1625 * from overshooting the limit by (ratelimit_pages) each.
1626 */
d0e1d66b 1627void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1628{
dfb8ae56
TH
1629 struct inode *inode = mapping->host;
1630 struct backing_dev_info *bdi = inode_to_bdi(inode);
1631 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1632 int ratelimit;
1633 int *p;
1da177e4 1634
36715cef
WF
1635 if (!bdi_cap_account_dirty(bdi))
1636 return;
1637
dfb8ae56
TH
1638 if (inode_cgwb_enabled(inode))
1639 wb = wb_get_create_current(bdi, GFP_KERNEL);
1640 if (!wb)
1641 wb = &bdi->wb;
1642
9d823e8f 1643 ratelimit = current->nr_dirtied_pause;
a88a341a 1644 if (wb->dirty_exceeded)
9d823e8f
WF
1645 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1646
9d823e8f 1647 preempt_disable();
1da177e4 1648 /*
9d823e8f
WF
1649 * This prevents one CPU to accumulate too many dirtied pages without
1650 * calling into balance_dirty_pages(), which can happen when there are
1651 * 1000+ tasks, all of them start dirtying pages at exactly the same
1652 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1653 */
7c8e0181 1654 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1655 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1656 *p = 0;
d3bc1fef
WF
1657 else if (unlikely(*p >= ratelimit_pages)) {
1658 *p = 0;
1659 ratelimit = 0;
1da177e4 1660 }
54848d73
WF
1661 /*
1662 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1663 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1664 * the dirty throttling and livelock other long-run dirtiers.
1665 */
7c8e0181 1666 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1667 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1668 unsigned long nr_pages_dirtied;
54848d73
WF
1669 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1670 *p -= nr_pages_dirtied;
1671 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1672 }
fa5a734e 1673 preempt_enable();
9d823e8f
WF
1674
1675 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1676 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1677
1678 wb_put(wb);
1da177e4 1679}
d0e1d66b 1680EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1681
232ea4d6 1682void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1683{
364aeb28
DR
1684 unsigned long background_thresh;
1685 unsigned long dirty_thresh;
1da177e4
LT
1686
1687 for ( ; ; ) {
16c4042f 1688 global_dirty_limits(&background_thresh, &dirty_thresh);
c7981433 1689 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1da177e4
LT
1690
1691 /*
1692 * Boost the allowable dirty threshold a bit for page
1693 * allocators so they don't get DoS'ed by heavy writers
1694 */
1695 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1696
c24f21bd
CL
1697 if (global_page_state(NR_UNSTABLE_NFS) +
1698 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1699 break;
8aa7e847 1700 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1701
1702 /*
1703 * The caller might hold locks which can prevent IO completion
1704 * or progress in the filesystem. So we cannot just sit here
1705 * waiting for IO to complete.
1706 */
1707 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1708 break;
1da177e4
LT
1709 }
1710}
1711
1da177e4
LT
1712/*
1713 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1714 */
cccad5b9 1715int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1716 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1717{
8d65af78 1718 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1719 return 0;
1720}
1721
c2c4986e 1722#ifdef CONFIG_BLOCK
31373d09 1723void laptop_mode_timer_fn(unsigned long data)
1da177e4 1724{
31373d09
MG
1725 struct request_queue *q = (struct request_queue *)data;
1726 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1727 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1728 struct bdi_writeback *wb;
1729 struct wb_iter iter;
1da177e4 1730
31373d09
MG
1731 /*
1732 * We want to write everything out, not just down to the dirty
1733 * threshold
1734 */
a06fd6b1
TH
1735 if (!bdi_has_dirty_io(&q->backing_dev_info))
1736 return;
1737
1738 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1739 if (wb_has_dirty_io(wb))
1740 wb_start_writeback(wb, nr_pages, true,
1741 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1742}
1743
1744/*
1745 * We've spun up the disk and we're in laptop mode: schedule writeback
1746 * of all dirty data a few seconds from now. If the flush is already scheduled
1747 * then push it back - the user is still using the disk.
1748 */
31373d09 1749void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1750{
31373d09 1751 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1752}
1753
1754/*
1755 * We're in laptop mode and we've just synced. The sync's writes will have
1756 * caused another writeback to be scheduled by laptop_io_completion.
1757 * Nothing needs to be written back anymore, so we unschedule the writeback.
1758 */
1759void laptop_sync_completion(void)
1760{
31373d09
MG
1761 struct backing_dev_info *bdi;
1762
1763 rcu_read_lock();
1764
1765 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1766 del_timer(&bdi->laptop_mode_wb_timer);
1767
1768 rcu_read_unlock();
1da177e4 1769}
c2c4986e 1770#endif
1da177e4
LT
1771
1772/*
1773 * If ratelimit_pages is too high then we can get into dirty-data overload
1774 * if a large number of processes all perform writes at the same time.
1775 * If it is too low then SMP machines will call the (expensive)
1776 * get_writeback_state too often.
1777 *
1778 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1779 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1780 * thresholds.
1da177e4
LT
1781 */
1782
2d1d43f6 1783void writeback_set_ratelimit(void)
1da177e4 1784{
dcc25ae7 1785 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1786 unsigned long background_thresh;
1787 unsigned long dirty_thresh;
dcc25ae7 1788
9d823e8f 1789 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1790 dom->dirty_limit = dirty_thresh;
9d823e8f 1791 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1792 if (ratelimit_pages < 16)
1793 ratelimit_pages = 16;
1da177e4
LT
1794}
1795
0db0628d 1796static int
2f60d628
SB
1797ratelimit_handler(struct notifier_block *self, unsigned long action,
1798 void *hcpu)
1da177e4 1799{
2f60d628
SB
1800
1801 switch (action & ~CPU_TASKS_FROZEN) {
1802 case CPU_ONLINE:
1803 case CPU_DEAD:
1804 writeback_set_ratelimit();
1805 return NOTIFY_OK;
1806 default:
1807 return NOTIFY_DONE;
1808 }
1da177e4
LT
1809}
1810
0db0628d 1811static struct notifier_block ratelimit_nb = {
1da177e4
LT
1812 .notifier_call = ratelimit_handler,
1813 .next = NULL,
1814};
1815
1816/*
dc6e29da
LT
1817 * Called early on to tune the page writeback dirty limits.
1818 *
1819 * We used to scale dirty pages according to how total memory
1820 * related to pages that could be allocated for buffers (by
1821 * comparing nr_free_buffer_pages() to vm_total_pages.
1822 *
1823 * However, that was when we used "dirty_ratio" to scale with
1824 * all memory, and we don't do that any more. "dirty_ratio"
1825 * is now applied to total non-HIGHPAGE memory (by subtracting
1826 * totalhigh_pages from vm_total_pages), and as such we can't
1827 * get into the old insane situation any more where we had
1828 * large amounts of dirty pages compared to a small amount of
1829 * non-HIGHMEM memory.
1830 *
1831 * But we might still want to scale the dirty_ratio by how
1832 * much memory the box has..
1da177e4
LT
1833 */
1834void __init page_writeback_init(void)
1835{
2d1d43f6 1836 writeback_set_ratelimit();
1da177e4 1837 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1838
380c27ca 1839 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1840}
1841
f446daae
JK
1842/**
1843 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1844 * @mapping: address space structure to write
1845 * @start: starting page index
1846 * @end: ending page index (inclusive)
1847 *
1848 * This function scans the page range from @start to @end (inclusive) and tags
1849 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1850 * that write_cache_pages (or whoever calls this function) will then use
1851 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1852 * used to avoid livelocking of writeback by a process steadily creating new
1853 * dirty pages in the file (thus it is important for this function to be quick
1854 * so that it can tag pages faster than a dirtying process can create them).
1855 */
1856/*
1857 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1858 */
f446daae
JK
1859void tag_pages_for_writeback(struct address_space *mapping,
1860 pgoff_t start, pgoff_t end)
1861{
3c111a07 1862#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1863 unsigned long tagged;
1864
1865 do {
1866 spin_lock_irq(&mapping->tree_lock);
1867 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1868 &start, end, WRITEBACK_TAG_BATCH,
1869 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1870 spin_unlock_irq(&mapping->tree_lock);
1871 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1872 cond_resched();
d5ed3a4a
JK
1873 /* We check 'start' to handle wrapping when end == ~0UL */
1874 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1875}
1876EXPORT_SYMBOL(tag_pages_for_writeback);
1877
811d736f 1878/**
0ea97180 1879 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1880 * @mapping: address space structure to write
1881 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1882 * @writepage: function called for each page
1883 * @data: data passed to writepage function
811d736f 1884 *
0ea97180 1885 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1886 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1887 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1888 * and msync() need to guarantee that all the data which was dirty at the time
1889 * the call was made get new I/O started against them. If wbc->sync_mode is
1890 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1891 * existing IO to complete.
f446daae
JK
1892 *
1893 * To avoid livelocks (when other process dirties new pages), we first tag
1894 * pages which should be written back with TOWRITE tag and only then start
1895 * writing them. For data-integrity sync we have to be careful so that we do
1896 * not miss some pages (e.g., because some other process has cleared TOWRITE
1897 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1898 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1899 */
0ea97180
MS
1900int write_cache_pages(struct address_space *mapping,
1901 struct writeback_control *wbc, writepage_t writepage,
1902 void *data)
811d736f 1903{
811d736f
DH
1904 int ret = 0;
1905 int done = 0;
811d736f
DH
1906 struct pagevec pvec;
1907 int nr_pages;
31a12666 1908 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1909 pgoff_t index;
1910 pgoff_t end; /* Inclusive */
bd19e012 1911 pgoff_t done_index;
31a12666 1912 int cycled;
811d736f 1913 int range_whole = 0;
f446daae 1914 int tag;
811d736f 1915
811d736f
DH
1916 pagevec_init(&pvec, 0);
1917 if (wbc->range_cyclic) {
31a12666
NP
1918 writeback_index = mapping->writeback_index; /* prev offset */
1919 index = writeback_index;
1920 if (index == 0)
1921 cycled = 1;
1922 else
1923 cycled = 0;
811d736f
DH
1924 end = -1;
1925 } else {
1926 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1927 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1928 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1929 range_whole = 1;
31a12666 1930 cycled = 1; /* ignore range_cyclic tests */
811d736f 1931 }
6e6938b6 1932 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1933 tag = PAGECACHE_TAG_TOWRITE;
1934 else
1935 tag = PAGECACHE_TAG_DIRTY;
811d736f 1936retry:
6e6938b6 1937 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1938 tag_pages_for_writeback(mapping, index, end);
bd19e012 1939 done_index = index;
5a3d5c98
NP
1940 while (!done && (index <= end)) {
1941 int i;
1942
f446daae 1943 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1944 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1945 if (nr_pages == 0)
1946 break;
811d736f 1947
811d736f
DH
1948 for (i = 0; i < nr_pages; i++) {
1949 struct page *page = pvec.pages[i];
1950
1951 /*
d5482cdf
NP
1952 * At this point, the page may be truncated or
1953 * invalidated (changing page->mapping to NULL), or
1954 * even swizzled back from swapper_space to tmpfs file
1955 * mapping. However, page->index will not change
1956 * because we have a reference on the page.
811d736f 1957 */
d5482cdf
NP
1958 if (page->index > end) {
1959 /*
1960 * can't be range_cyclic (1st pass) because
1961 * end == -1 in that case.
1962 */
1963 done = 1;
1964 break;
1965 }
1966
cf15b07c 1967 done_index = page->index;
d5482cdf 1968
811d736f
DH
1969 lock_page(page);
1970
5a3d5c98
NP
1971 /*
1972 * Page truncated or invalidated. We can freely skip it
1973 * then, even for data integrity operations: the page
1974 * has disappeared concurrently, so there could be no
1975 * real expectation of this data interity operation
1976 * even if there is now a new, dirty page at the same
1977 * pagecache address.
1978 */
811d736f 1979 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1980continue_unlock:
811d736f
DH
1981 unlock_page(page);
1982 continue;
1983 }
1984
515f4a03
NP
1985 if (!PageDirty(page)) {
1986 /* someone wrote it for us */
1987 goto continue_unlock;
1988 }
1989
1990 if (PageWriteback(page)) {
1991 if (wbc->sync_mode != WB_SYNC_NONE)
1992 wait_on_page_writeback(page);
1993 else
1994 goto continue_unlock;
1995 }
811d736f 1996
515f4a03
NP
1997 BUG_ON(PageWriteback(page));
1998 if (!clear_page_dirty_for_io(page))
5a3d5c98 1999 goto continue_unlock;
811d736f 2000
de1414a6 2001 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2002 ret = (*writepage)(page, wbc, data);
00266770
NP
2003 if (unlikely(ret)) {
2004 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2005 unlock_page(page);
2006 ret = 0;
2007 } else {
2008 /*
2009 * done_index is set past this page,
2010 * so media errors will not choke
2011 * background writeout for the entire
2012 * file. This has consequences for
2013 * range_cyclic semantics (ie. it may
2014 * not be suitable for data integrity
2015 * writeout).
2016 */
cf15b07c 2017 done_index = page->index + 1;
00266770
NP
2018 done = 1;
2019 break;
2020 }
0b564927 2021 }
00266770 2022
546a1924
DC
2023 /*
2024 * We stop writing back only if we are not doing
2025 * integrity sync. In case of integrity sync we have to
2026 * keep going until we have written all the pages
2027 * we tagged for writeback prior to entering this loop.
2028 */
2029 if (--wbc->nr_to_write <= 0 &&
2030 wbc->sync_mode == WB_SYNC_NONE) {
2031 done = 1;
2032 break;
05fe478d 2033 }
811d736f
DH
2034 }
2035 pagevec_release(&pvec);
2036 cond_resched();
2037 }
3a4c6800 2038 if (!cycled && !done) {
811d736f 2039 /*
31a12666 2040 * range_cyclic:
811d736f
DH
2041 * We hit the last page and there is more work to be done: wrap
2042 * back to the start of the file
2043 */
31a12666 2044 cycled = 1;
811d736f 2045 index = 0;
31a12666 2046 end = writeback_index - 1;
811d736f
DH
2047 goto retry;
2048 }
0b564927
DC
2049 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2050 mapping->writeback_index = done_index;
06d6cf69 2051
811d736f
DH
2052 return ret;
2053}
0ea97180
MS
2054EXPORT_SYMBOL(write_cache_pages);
2055
2056/*
2057 * Function used by generic_writepages to call the real writepage
2058 * function and set the mapping flags on error
2059 */
2060static int __writepage(struct page *page, struct writeback_control *wbc,
2061 void *data)
2062{
2063 struct address_space *mapping = data;
2064 int ret = mapping->a_ops->writepage(page, wbc);
2065 mapping_set_error(mapping, ret);
2066 return ret;
2067}
2068
2069/**
2070 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2071 * @mapping: address space structure to write
2072 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2073 *
2074 * This is a library function, which implements the writepages()
2075 * address_space_operation.
2076 */
2077int generic_writepages(struct address_space *mapping,
2078 struct writeback_control *wbc)
2079{
9b6096a6
SL
2080 struct blk_plug plug;
2081 int ret;
2082
0ea97180
MS
2083 /* deal with chardevs and other special file */
2084 if (!mapping->a_ops->writepage)
2085 return 0;
2086
9b6096a6
SL
2087 blk_start_plug(&plug);
2088 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2089 blk_finish_plug(&plug);
2090 return ret;
0ea97180 2091}
811d736f
DH
2092
2093EXPORT_SYMBOL(generic_writepages);
2094
1da177e4
LT
2095int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2096{
22905f77
AM
2097 int ret;
2098
1da177e4
LT
2099 if (wbc->nr_to_write <= 0)
2100 return 0;
2101 if (mapping->a_ops->writepages)
d08b3851 2102 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2103 else
2104 ret = generic_writepages(mapping, wbc);
22905f77 2105 return ret;
1da177e4
LT
2106}
2107
2108/**
2109 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2110 * @page: the page to write
2111 * @wait: if true, wait on writeout
1da177e4
LT
2112 *
2113 * The page must be locked by the caller and will be unlocked upon return.
2114 *
2115 * write_one_page() returns a negative error code if I/O failed.
2116 */
2117int write_one_page(struct page *page, int wait)
2118{
2119 struct address_space *mapping = page->mapping;
2120 int ret = 0;
2121 struct writeback_control wbc = {
2122 .sync_mode = WB_SYNC_ALL,
2123 .nr_to_write = 1,
2124 };
2125
2126 BUG_ON(!PageLocked(page));
2127
2128 if (wait)
2129 wait_on_page_writeback(page);
2130
2131 if (clear_page_dirty_for_io(page)) {
2132 page_cache_get(page);
2133 ret = mapping->a_ops->writepage(page, &wbc);
2134 if (ret == 0 && wait) {
2135 wait_on_page_writeback(page);
2136 if (PageError(page))
2137 ret = -EIO;
2138 }
2139 page_cache_release(page);
2140 } else {
2141 unlock_page(page);
2142 }
2143 return ret;
2144}
2145EXPORT_SYMBOL(write_one_page);
2146
76719325
KC
2147/*
2148 * For address_spaces which do not use buffers nor write back.
2149 */
2150int __set_page_dirty_no_writeback(struct page *page)
2151{
2152 if (!PageDirty(page))
c3f0da63 2153 return !TestSetPageDirty(page);
76719325
KC
2154 return 0;
2155}
2156
e3a7cca1
ES
2157/*
2158 * Helper function for set_page_dirty family.
c4843a75
GT
2159 *
2160 * Caller must hold mem_cgroup_begin_page_stat().
2161 *
e3a7cca1
ES
2162 * NOTE: This relies on being atomic wrt interrupts.
2163 */
c4843a75
GT
2164void account_page_dirtied(struct page *page, struct address_space *mapping,
2165 struct mem_cgroup *memcg)
e3a7cca1 2166{
52ebea74
TH
2167 struct inode *inode = mapping->host;
2168
9fb0a7da
TH
2169 trace_writeback_dirty_page(page, mapping);
2170
e3a7cca1 2171 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2172 struct bdi_writeback *wb;
2173
2174 inode_attach_wb(inode, page);
2175 wb = inode_to_wb(inode);
de1414a6 2176
c4843a75 2177 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2178 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2179 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2180 __inc_wb_stat(wb, WB_RECLAIMABLE);
2181 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2182 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2183 current->nr_dirtied++;
2184 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2185 }
2186}
679ceace 2187EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2188
b9ea2515
KK
2189/*
2190 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2191 *
2192 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2193 */
c4843a75
GT
2194void account_page_cleaned(struct page *page, struct address_space *mapping,
2195 struct mem_cgroup *memcg)
b9ea2515
KK
2196{
2197 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2198 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2199 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2200 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2201 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2202 }
2203}
b9ea2515 2204
1da177e4
LT
2205/*
2206 * For address_spaces which do not use buffers. Just tag the page as dirty in
2207 * its radix tree.
2208 *
2209 * This is also used when a single buffer is being dirtied: we want to set the
2210 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2211 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2212 *
2d6d7f98
JW
2213 * The caller must ensure this doesn't race with truncation. Most will simply
2214 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2215 * the pte lock held, which also locks out truncation.
1da177e4
LT
2216 */
2217int __set_page_dirty_nobuffers(struct page *page)
2218{
c4843a75
GT
2219 struct mem_cgroup *memcg;
2220
2221 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2222 if (!TestSetPageDirty(page)) {
2223 struct address_space *mapping = page_mapping(page);
a85d9df1 2224 unsigned long flags;
1da177e4 2225
c4843a75
GT
2226 if (!mapping) {
2227 mem_cgroup_end_page_stat(memcg);
8c08540f 2228 return 1;
c4843a75 2229 }
8c08540f 2230
a85d9df1 2231 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2232 BUG_ON(page_mapping(page) != mapping);
2233 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2234 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2235 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2236 PAGECACHE_TAG_DIRTY);
a85d9df1 2237 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2238 mem_cgroup_end_page_stat(memcg);
2239
8c08540f
AM
2240 if (mapping->host) {
2241 /* !PageAnon && !swapper_space */
2242 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2243 }
4741c9fd 2244 return 1;
1da177e4 2245 }
c4843a75 2246 mem_cgroup_end_page_stat(memcg);
4741c9fd 2247 return 0;
1da177e4
LT
2248}
2249EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2250
2f800fbd
WF
2251/*
2252 * Call this whenever redirtying a page, to de-account the dirty counters
2253 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2254 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2255 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2256 * control.
2257 */
2258void account_page_redirty(struct page *page)
2259{
2260 struct address_space *mapping = page->mapping;
91018134 2261
2f800fbd 2262 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2263 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2264
2f800fbd
WF
2265 current->nr_dirtied--;
2266 dec_zone_page_state(page, NR_DIRTIED);
91018134 2267 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2268 }
2269}
2270EXPORT_SYMBOL(account_page_redirty);
2271
1da177e4
LT
2272/*
2273 * When a writepage implementation decides that it doesn't want to write this
2274 * page for some reason, it should redirty the locked page via
2275 * redirty_page_for_writepage() and it should then unlock the page and return 0
2276 */
2277int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2278{
8d38633c
KK
2279 int ret;
2280
1da177e4 2281 wbc->pages_skipped++;
8d38633c 2282 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2283 account_page_redirty(page);
8d38633c 2284 return ret;
1da177e4
LT
2285}
2286EXPORT_SYMBOL(redirty_page_for_writepage);
2287
2288/*
6746aff7
WF
2289 * Dirty a page.
2290 *
2291 * For pages with a mapping this should be done under the page lock
2292 * for the benefit of asynchronous memory errors who prefer a consistent
2293 * dirty state. This rule can be broken in some special cases,
2294 * but should be better not to.
2295 *
1da177e4
LT
2296 * If the mapping doesn't provide a set_page_dirty a_op, then
2297 * just fall through and assume that it wants buffer_heads.
2298 */
1cf6e7d8 2299int set_page_dirty(struct page *page)
1da177e4
LT
2300{
2301 struct address_space *mapping = page_mapping(page);
2302
2303 if (likely(mapping)) {
2304 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2305 /*
2306 * readahead/lru_deactivate_page could remain
2307 * PG_readahead/PG_reclaim due to race with end_page_writeback
2308 * About readahead, if the page is written, the flags would be
2309 * reset. So no problem.
2310 * About lru_deactivate_page, if the page is redirty, the flag
2311 * will be reset. So no problem. but if the page is used by readahead
2312 * it will confuse readahead and make it restart the size rampup
2313 * process. But it's a trivial problem.
2314 */
a4bb3ecd
NH
2315 if (PageReclaim(page))
2316 ClearPageReclaim(page);
9361401e
DH
2317#ifdef CONFIG_BLOCK
2318 if (!spd)
2319 spd = __set_page_dirty_buffers;
2320#endif
2321 return (*spd)(page);
1da177e4 2322 }
4741c9fd
AM
2323 if (!PageDirty(page)) {
2324 if (!TestSetPageDirty(page))
2325 return 1;
2326 }
1da177e4
LT
2327 return 0;
2328}
2329EXPORT_SYMBOL(set_page_dirty);
2330
2331/*
2332 * set_page_dirty() is racy if the caller has no reference against
2333 * page->mapping->host, and if the page is unlocked. This is because another
2334 * CPU could truncate the page off the mapping and then free the mapping.
2335 *
2336 * Usually, the page _is_ locked, or the caller is a user-space process which
2337 * holds a reference on the inode by having an open file.
2338 *
2339 * In other cases, the page should be locked before running set_page_dirty().
2340 */
2341int set_page_dirty_lock(struct page *page)
2342{
2343 int ret;
2344
7eaceacc 2345 lock_page(page);
1da177e4
LT
2346 ret = set_page_dirty(page);
2347 unlock_page(page);
2348 return ret;
2349}
2350EXPORT_SYMBOL(set_page_dirty_lock);
2351
11f81bec
TH
2352/*
2353 * This cancels just the dirty bit on the kernel page itself, it does NOT
2354 * actually remove dirty bits on any mmap's that may be around. It also
2355 * leaves the page tagged dirty, so any sync activity will still find it on
2356 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2357 * look at the dirty bits in the VM.
2358 *
2359 * Doing this should *normally* only ever be done when a page is truncated,
2360 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2361 * this when it notices that somebody has cleaned out all the buffers on a
2362 * page without actually doing it through the VM. Can you say "ext3 is
2363 * horribly ugly"? Thought you could.
2364 */
2365void cancel_dirty_page(struct page *page)
2366{
c4843a75
GT
2367 struct address_space *mapping = page_mapping(page);
2368
2369 if (mapping_cap_account_dirty(mapping)) {
2370 struct mem_cgroup *memcg;
2371
2372 memcg = mem_cgroup_begin_page_stat(page);
2373
2374 if (TestClearPageDirty(page))
2375 account_page_cleaned(page, mapping, memcg);
2376
2377 mem_cgroup_end_page_stat(memcg);
2378 } else {
2379 ClearPageDirty(page);
2380 }
11f81bec
TH
2381}
2382EXPORT_SYMBOL(cancel_dirty_page);
2383
1da177e4
LT
2384/*
2385 * Clear a page's dirty flag, while caring for dirty memory accounting.
2386 * Returns true if the page was previously dirty.
2387 *
2388 * This is for preparing to put the page under writeout. We leave the page
2389 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2390 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2391 * implementation will run either set_page_writeback() or set_page_dirty(),
2392 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2393 * back into sync.
2394 *
2395 * This incoherency between the page's dirty flag and radix-tree tag is
2396 * unfortunate, but it only exists while the page is locked.
2397 */
2398int clear_page_dirty_for_io(struct page *page)
2399{
2400 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2401 struct mem_cgroup *memcg;
2402 int ret = 0;
1da177e4 2403
79352894
NP
2404 BUG_ON(!PageLocked(page));
2405
7658cc28
LT
2406 if (mapping && mapping_cap_account_dirty(mapping)) {
2407 /*
2408 * Yes, Virginia, this is indeed insane.
2409 *
2410 * We use this sequence to make sure that
2411 * (a) we account for dirty stats properly
2412 * (b) we tell the low-level filesystem to
2413 * mark the whole page dirty if it was
2414 * dirty in a pagetable. Only to then
2415 * (c) clean the page again and return 1 to
2416 * cause the writeback.
2417 *
2418 * This way we avoid all nasty races with the
2419 * dirty bit in multiple places and clearing
2420 * them concurrently from different threads.
2421 *
2422 * Note! Normally the "set_page_dirty(page)"
2423 * has no effect on the actual dirty bit - since
2424 * that will already usually be set. But we
2425 * need the side effects, and it can help us
2426 * avoid races.
2427 *
2428 * We basically use the page "master dirty bit"
2429 * as a serialization point for all the different
2430 * threads doing their things.
7658cc28
LT
2431 */
2432 if (page_mkclean(page))
2433 set_page_dirty(page);
79352894
NP
2434 /*
2435 * We carefully synchronise fault handlers against
2436 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2437 * at this point. We do this by having them hold the
2438 * page lock while dirtying the page, and pages are
2439 * always locked coming in here, so we get the desired
2440 * exclusion.
79352894 2441 */
c4843a75 2442 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2443 if (TestClearPageDirty(page)) {
c4843a75 2444 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2445 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2446 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2447 ret = 1;
1da177e4 2448 }
c4843a75
GT
2449 mem_cgroup_end_page_stat(memcg);
2450 return ret;
1da177e4 2451 }
7658cc28 2452 return TestClearPageDirty(page);
1da177e4 2453}
58bb01a9 2454EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2455
2456int test_clear_page_writeback(struct page *page)
2457{
2458 struct address_space *mapping = page_mapping(page);
d7365e78 2459 struct mem_cgroup *memcg;
d7365e78 2460 int ret;
1da177e4 2461
6de22619 2462 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2463 if (mapping) {
91018134
TH
2464 struct inode *inode = mapping->host;
2465 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2466 unsigned long flags;
2467
19fd6231 2468 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2469 ret = TestClearPageWriteback(page);
69cb51d1 2470 if (ret) {
1da177e4
LT
2471 radix_tree_tag_clear(&mapping->page_tree,
2472 page_index(page),
2473 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2474 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2475 struct bdi_writeback *wb = inode_to_wb(inode);
2476
2477 __dec_wb_stat(wb, WB_WRITEBACK);
2478 __wb_writeout_inc(wb);
04fbfdc1 2479 }
69cb51d1 2480 }
19fd6231 2481 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2482 } else {
2483 ret = TestClearPageWriteback(page);
2484 }
99b12e3d 2485 if (ret) {
d7365e78 2486 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2487 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2488 inc_zone_page_state(page, NR_WRITTEN);
2489 }
6de22619 2490 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2491 return ret;
2492}
2493
1c8349a1 2494int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2495{
2496 struct address_space *mapping = page_mapping(page);
d7365e78 2497 struct mem_cgroup *memcg;
d7365e78 2498 int ret;
1da177e4 2499
6de22619 2500 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2501 if (mapping) {
91018134
TH
2502 struct inode *inode = mapping->host;
2503 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2504 unsigned long flags;
2505
19fd6231 2506 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2507 ret = TestSetPageWriteback(page);
69cb51d1 2508 if (!ret) {
1da177e4
LT
2509 radix_tree_tag_set(&mapping->page_tree,
2510 page_index(page),
2511 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2512 if (bdi_cap_account_writeback(bdi))
91018134 2513 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2514 }
1da177e4
LT
2515 if (!PageDirty(page))
2516 radix_tree_tag_clear(&mapping->page_tree,
2517 page_index(page),
2518 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2519 if (!keep_write)
2520 radix_tree_tag_clear(&mapping->page_tree,
2521 page_index(page),
2522 PAGECACHE_TAG_TOWRITE);
19fd6231 2523 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2524 } else {
2525 ret = TestSetPageWriteback(page);
2526 }
3a3c02ec 2527 if (!ret) {
d7365e78 2528 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2529 inc_zone_page_state(page, NR_WRITEBACK);
2530 }
6de22619 2531 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2532 return ret;
2533
2534}
1c8349a1 2535EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2536
2537/*
00128188 2538 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2539 * passed tag.
2540 */
2541int mapping_tagged(struct address_space *mapping, int tag)
2542{
72c47832 2543 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2544}
2545EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2546
2547/**
2548 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2549 * @page: The page to wait on.
2550 *
2551 * This function determines if the given page is related to a backing device
2552 * that requires page contents to be held stable during writeback. If so, then
2553 * it will wait for any pending writeback to complete.
2554 */
2555void wait_for_stable_page(struct page *page)
2556{
de1414a6
CH
2557 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2558 wait_on_page_writeback(page);
1d1d1a76
DW
2559}
2560EXPORT_SYMBOL_GPL(wait_for_stable_page);