]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page-writeback.c
writeback: trace event writeback_queue_io
[mirror_ubuntu-zesty-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
1da177e4
LT
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
1da177e4
LT
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 48 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
49 * large amounts of I/O are submitted.
50 */
3a2e9a5a 51static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 52{
3a2e9a5a
WF
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
55
56 return dirtied + dirtied / 2;
1da177e4
LT
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
5b0830cb 62 * Start background writeback (via writeback threads) at this percentage
1da177e4 63 */
1b5e62b4 64int dirty_background_ratio = 10;
1da177e4 65
2da02997
DR
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
195cf453
BG
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
1da177e4
LT
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
1b5e62b4 81int vm_dirty_ratio = 20;
1da177e4 82
2da02997
DR
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
1da177e4 89/*
704503d8 90 * The interval between `kupdate'-style writebacks
1da177e4 91 */
22ef37ee 92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
93
94/*
704503d8 95 * The longest time for which data is allowed to remain dirty
1da177e4 96 */
22ef37ee 97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
ed5b43f1
BS
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
04fbfdc1
PZ
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
3e26c149 132static struct prop_descriptor vm_dirties;
04fbfdc1 133
04fbfdc1
PZ
134/*
135 * couple the period to the dirty_ratio:
136 *
137 * period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141 unsigned long dirty_total;
142
2da02997
DR
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
04fbfdc1
PZ
148 return 2 + ilog2(dirty_total - 1);
149}
150
151/*
2da02997 152 * update the period when the dirty threshold changes.
04fbfdc1 153 */
2da02997
DR
154static void update_completion_period(void)
155{
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 162 void __user *buffer, size_t *lenp,
2da02997
DR
163 loff_t *ppos)
164{
165 int ret;
166
8d65af78 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 174 void __user *buffer, size_t *lenp,
2da02997
DR
175 loff_t *ppos)
176{
177 int ret;
178
8d65af78 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
183}
184
04fbfdc1 185int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 186 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
187 loff_t *ppos)
188{
189 int old_ratio = vm_dirty_ratio;
2da02997
DR
190 int ret;
191
8d65af78 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
194 update_completion_period();
195 vm_dirty_bytes = 0;
196 }
197 return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 202 void __user *buffer, size_t *lenp,
2da02997
DR
203 loff_t *ppos)
204{
fc3501d4 205 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
206 int ret;
207
8d65af78 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
04fbfdc1
PZ
212 }
213 return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
a42dde04
PZ
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
04fbfdc1
PZ
224}
225
dd5656e5
MS
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228 unsigned long flags;
229
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
1cf6e7d8 236void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
237{
238 prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
04fbfdc1
PZ
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
246{
3efaf0fa 247 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 248 numerator, denominator);
04fbfdc1
PZ
249}
250
3e26c149
PZ
251static inline void task_dirties_fraction(struct task_struct *tsk,
252 long *numerator, long *denominator)
253{
254 prop_fraction_single(&vm_dirties, &tsk->dirties,
255 numerator, denominator);
256}
257
258/*
1babe183 259 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
260 *
261 * task specific dirty limit:
262 *
263 * dirty -= (dirty/8) * p_{t}
1babe183
WF
264 *
265 * To protect light/slow dirtying tasks from heavier/fast ones, we start
266 * throttling individual tasks before reaching the bdi dirty limit.
267 * Relatively low thresholds will be allocated to heavy dirtiers. So when
268 * dirty pages grow large, heavy dirtiers will be throttled first, which will
269 * effectively curb the growth of dirty pages. Light dirtiers with high enough
270 * dirty threshold may never get throttled.
3e26c149 271 */
16c4042f
WF
272static unsigned long task_dirty_limit(struct task_struct *tsk,
273 unsigned long bdi_dirty)
3e26c149
PZ
274{
275 long numerator, denominator;
16c4042f 276 unsigned long dirty = bdi_dirty;
3e26c149
PZ
277 u64 inv = dirty >> 3;
278
279 task_dirties_fraction(tsk, &numerator, &denominator);
280 inv *= numerator;
281 do_div(inv, denominator);
282
283 dirty -= inv;
3e26c149 284
16c4042f 285 return max(dirty, bdi_dirty/2);
3e26c149
PZ
286}
287
189d3c4a
PZ
288/*
289 *
290 */
189d3c4a
PZ
291static unsigned int bdi_min_ratio;
292
293int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
294{
295 int ret = 0;
189d3c4a 296
cfc4ba53 297 spin_lock_bh(&bdi_lock);
a42dde04 298 if (min_ratio > bdi->max_ratio) {
189d3c4a 299 ret = -EINVAL;
a42dde04
PZ
300 } else {
301 min_ratio -= bdi->min_ratio;
302 if (bdi_min_ratio + min_ratio < 100) {
303 bdi_min_ratio += min_ratio;
304 bdi->min_ratio += min_ratio;
305 } else {
306 ret = -EINVAL;
307 }
308 }
cfc4ba53 309 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
310
311 return ret;
312}
313
314int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
315{
a42dde04
PZ
316 int ret = 0;
317
318 if (max_ratio > 100)
319 return -EINVAL;
320
cfc4ba53 321 spin_lock_bh(&bdi_lock);
a42dde04
PZ
322 if (bdi->min_ratio > max_ratio) {
323 ret = -EINVAL;
324 } else {
325 bdi->max_ratio = max_ratio;
326 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
327 }
cfc4ba53 328 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
329
330 return ret;
331}
a42dde04 332EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 333
1da177e4
LT
334/*
335 * Work out the current dirty-memory clamping and background writeout
336 * thresholds.
337 *
338 * The main aim here is to lower them aggressively if there is a lot of mapped
339 * memory around. To avoid stressing page reclaim with lots of unreclaimable
340 * pages. It is better to clamp down on writers than to start swapping, and
341 * performing lots of scanning.
342 *
343 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
344 *
345 * We don't permit the clamping level to fall below 5% - that is getting rather
346 * excessive.
347 *
348 * We make sure that the background writeout level is below the adjusted
349 * clamping level.
350 */
1b424464
CL
351
352static unsigned long highmem_dirtyable_memory(unsigned long total)
353{
354#ifdef CONFIG_HIGHMEM
355 int node;
356 unsigned long x = 0;
357
37b07e41 358 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
359 struct zone *z =
360 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
361
adea02a1
WF
362 x += zone_page_state(z, NR_FREE_PAGES) +
363 zone_reclaimable_pages(z);
1b424464
CL
364 }
365 /*
366 * Make sure that the number of highmem pages is never larger
367 * than the number of the total dirtyable memory. This can only
368 * occur in very strange VM situations but we want to make sure
369 * that this does not occur.
370 */
371 return min(x, total);
372#else
373 return 0;
374#endif
375}
376
3eefae99
SR
377/**
378 * determine_dirtyable_memory - amount of memory that may be used
379 *
380 * Returns the numebr of pages that can currently be freed and used
381 * by the kernel for direct mappings.
382 */
383unsigned long determine_dirtyable_memory(void)
1b424464
CL
384{
385 unsigned long x;
386
adea02a1 387 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
388
389 if (!vm_highmem_is_dirtyable)
390 x -= highmem_dirtyable_memory(x);
391
1b424464
CL
392 return x + 1; /* Ensure that we never return 0 */
393}
394
03ab450f 395/*
1babe183
WF
396 * global_dirty_limits - background-writeback and dirty-throttling thresholds
397 *
398 * Calculate the dirty thresholds based on sysctl parameters
399 * - vm.dirty_background_ratio or vm.dirty_background_bytes
400 * - vm.dirty_ratio or vm.dirty_bytes
401 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 402 * real-time tasks.
1babe183 403 */
16c4042f 404void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 405{
364aeb28
DR
406 unsigned long background;
407 unsigned long dirty;
240c879f 408 unsigned long uninitialized_var(available_memory);
1da177e4
LT
409 struct task_struct *tsk;
410
240c879f
MK
411 if (!vm_dirty_bytes || !dirty_background_bytes)
412 available_memory = determine_dirtyable_memory();
413
2da02997
DR
414 if (vm_dirty_bytes)
415 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
416 else
417 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 418
2da02997
DR
419 if (dirty_background_bytes)
420 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
421 else
422 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 423
2da02997
DR
424 if (background >= dirty)
425 background = dirty / 2;
1da177e4
LT
426 tsk = current;
427 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
428 background += background / 4;
429 dirty += dirty / 4;
430 }
431 *pbackground = background;
432 *pdirty = dirty;
16c4042f 433}
04fbfdc1 434
6f718656 435/**
1babe183 436 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
437 * @bdi: the backing_dev_info to query
438 * @dirty: global dirty limit in pages
439 *
440 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
441 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
442 * And the "limit" in the name is not seriously taken as hard limit in
443 * balance_dirty_pages().
1babe183 444 *
6f718656 445 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
446 * - starving fast devices
447 * - piling up dirty pages (that will take long time to sync) on slow devices
448 *
449 * The bdi's share of dirty limit will be adapting to its throughput and
450 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
451 */
452unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
453{
454 u64 bdi_dirty;
455 long numerator, denominator;
04fbfdc1 456
16c4042f
WF
457 /*
458 * Calculate this BDI's share of the dirty ratio.
459 */
460 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 461
16c4042f
WF
462 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
463 bdi_dirty *= numerator;
464 do_div(bdi_dirty, denominator);
04fbfdc1 465
16c4042f
WF
466 bdi_dirty += (dirty * bdi->min_ratio) / 100;
467 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468 bdi_dirty = dirty * bdi->max_ratio / 100;
469
470 return bdi_dirty;
1da177e4
LT
471}
472
473/*
474 * balance_dirty_pages() must be called by processes which are generating dirty
475 * data. It looks at the number of dirty pages in the machine and will force
476 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
477 * If we're over `background_thresh' then the writeback threads are woken to
478 * perform some writeout.
1da177e4 479 */
3a2e9a5a
WF
480static void balance_dirty_pages(struct address_space *mapping,
481 unsigned long write_chunk)
1da177e4 482{
5fce25a9
PZ
483 long nr_reclaimable, bdi_nr_reclaimable;
484 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
485 unsigned long background_thresh;
486 unsigned long dirty_thresh;
487 unsigned long bdi_thresh;
1da177e4 488 unsigned long pages_written = 0;
87c6a9b2 489 unsigned long pause = 1;
e50e3720 490 bool dirty_exceeded = false;
1da177e4
LT
491 struct backing_dev_info *bdi = mapping->backing_dev_info;
492
3efaf0fa
WF
493 if (!bdi_cap_account_dirty(bdi))
494 return;
495
1da177e4
LT
496 for (;;) {
497 struct writeback_control wbc = {
1da177e4
LT
498 .sync_mode = WB_SYNC_NONE,
499 .older_than_this = NULL,
500 .nr_to_write = write_chunk,
111ebb6e 501 .range_cyclic = 1,
1da177e4
LT
502 };
503
5fce25a9
PZ
504 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
505 global_page_state(NR_UNSTABLE_NFS);
506 nr_writeback = global_page_state(NR_WRITEBACK);
507
16c4042f
WF
508 global_dirty_limits(&background_thresh, &dirty_thresh);
509
510 /*
511 * Throttle it only when the background writeback cannot
512 * catch-up. This avoids (excessively) small writeouts
513 * when the bdi limits are ramping up.
514 */
4cbec4c8 515 if (nr_reclaimable + nr_writeback <=
16c4042f
WF
516 (background_thresh + dirty_thresh) / 2)
517 break;
518
519 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
520 bdi_thresh = task_dirty_limit(current, bdi_thresh);
521
e50e3720
WF
522 /*
523 * In order to avoid the stacked BDI deadlock we need
524 * to ensure we accurately count the 'dirty' pages when
525 * the threshold is low.
526 *
527 * Otherwise it would be possible to get thresh+n pages
528 * reported dirty, even though there are thresh-m pages
529 * actually dirty; with m+n sitting in the percpu
530 * deltas.
531 */
532 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
533 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
534 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
535 } else {
536 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
537 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
538 }
5fce25a9 539
e50e3720
WF
540 /*
541 * The bdi thresh is somehow "soft" limit derived from the
542 * global "hard" limit. The former helps to prevent heavy IO
543 * bdi or process from holding back light ones; The latter is
544 * the last resort safeguard.
545 */
546 dirty_exceeded =
4cbec4c8
WF
547 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
548 || (nr_reclaimable + nr_writeback > dirty_thresh);
e50e3720
WF
549
550 if (!dirty_exceeded)
04fbfdc1 551 break;
1da177e4 552
04fbfdc1
PZ
553 if (!bdi->dirty_exceeded)
554 bdi->dirty_exceeded = 1;
1da177e4
LT
555
556 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
557 * Unstable writes are a feature of certain networked
558 * filesystems (i.e. NFS) in which data may have been
559 * written to the server's write cache, but has not yet
560 * been flushed to permanent storage.
d7831a0b
RK
561 * Only move pages to writeback if this bdi is over its
562 * threshold otherwise wait until the disk writes catch
563 * up.
1da177e4 564 */
028c2dd1 565 trace_wbc_balance_dirty_start(&wbc, bdi);
d7831a0b 566 if (bdi_nr_reclaimable > bdi_thresh) {
9c3a8ee8 567 writeback_inodes_wb(&bdi->wb, &wbc);
1da177e4 568 pages_written += write_chunk - wbc.nr_to_write;
028c2dd1 569 trace_wbc_balance_dirty_written(&wbc, bdi);
e50e3720
WF
570 if (pages_written >= write_chunk)
571 break; /* We've done our duty */
04fbfdc1 572 }
028c2dd1 573 trace_wbc_balance_dirty_wait(&wbc, bdi);
d153ba64 574 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 575 io_schedule_timeout(pause);
87c6a9b2
JA
576
577 /*
578 * Increase the delay for each loop, up to our previous
579 * default of taking a 100ms nap.
580 */
581 pause <<= 1;
582 if (pause > HZ / 10)
583 pause = HZ / 10;
1da177e4
LT
584 }
585
e50e3720 586 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 587 bdi->dirty_exceeded = 0;
1da177e4
LT
588
589 if (writeback_in_progress(bdi))
5b0830cb 590 return;
1da177e4
LT
591
592 /*
593 * In laptop mode, we wait until hitting the higher threshold before
594 * starting background writeout, and then write out all the way down
595 * to the lower threshold. So slow writers cause minimal disk activity.
596 *
597 * In normal mode, we start background writeout at the lower
598 * background_thresh, to keep the amount of dirty memory low.
599 */
600 if ((laptop_mode && pages_written) ||
e50e3720 601 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 602 bdi_start_background_writeback(bdi);
1da177e4
LT
603}
604
a200ee18 605void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 606{
a200ee18 607 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
608 struct address_space *mapping = page_mapping(page);
609
610 if (mapping)
611 balance_dirty_pages_ratelimited(mapping);
612 }
613}
614
245b2e70
TH
615static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
616
1da177e4 617/**
fa5a734e 618 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 619 * @mapping: address_space which was dirtied
a580290c 620 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
621 *
622 * Processes which are dirtying memory should call in here once for each page
623 * which was newly dirtied. The function will periodically check the system's
624 * dirty state and will initiate writeback if needed.
625 *
626 * On really big machines, get_writeback_state is expensive, so try to avoid
627 * calling it too often (ratelimiting). But once we're over the dirty memory
628 * limit we decrease the ratelimiting by a lot, to prevent individual processes
629 * from overshooting the limit by (ratelimit_pages) each.
630 */
fa5a734e
AM
631void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
632 unsigned long nr_pages_dirtied)
1da177e4 633{
fa5a734e
AM
634 unsigned long ratelimit;
635 unsigned long *p;
1da177e4
LT
636
637 ratelimit = ratelimit_pages;
04fbfdc1 638 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
639 ratelimit = 8;
640
641 /*
642 * Check the rate limiting. Also, we do not want to throttle real-time
643 * tasks in balance_dirty_pages(). Period.
644 */
fa5a734e 645 preempt_disable();
245b2e70 646 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
647 *p += nr_pages_dirtied;
648 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 649 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
650 *p = 0;
651 preempt_enable();
3a2e9a5a 652 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
653 return;
654 }
fa5a734e 655 preempt_enable();
1da177e4 656}
fa5a734e 657EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 658
232ea4d6 659void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 660{
364aeb28
DR
661 unsigned long background_thresh;
662 unsigned long dirty_thresh;
1da177e4
LT
663
664 for ( ; ; ) {
16c4042f 665 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
666
667 /*
668 * Boost the allowable dirty threshold a bit for page
669 * allocators so they don't get DoS'ed by heavy writers
670 */
671 dirty_thresh += dirty_thresh / 10; /* wheeee... */
672
c24f21bd
CL
673 if (global_page_state(NR_UNSTABLE_NFS) +
674 global_page_state(NR_WRITEBACK) <= dirty_thresh)
675 break;
8aa7e847 676 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
677
678 /*
679 * The caller might hold locks which can prevent IO completion
680 * or progress in the filesystem. So we cannot just sit here
681 * waiting for IO to complete.
682 */
683 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
684 break;
1da177e4
LT
685 }
686}
687
1da177e4
LT
688/*
689 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
690 */
691int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 692 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 693{
8d65af78 694 proc_dointvec(table, write, buffer, length, ppos);
6423104b 695 bdi_arm_supers_timer();
1da177e4
LT
696 return 0;
697}
698
c2c4986e 699#ifdef CONFIG_BLOCK
31373d09 700void laptop_mode_timer_fn(unsigned long data)
1da177e4 701{
31373d09
MG
702 struct request_queue *q = (struct request_queue *)data;
703 int nr_pages = global_page_state(NR_FILE_DIRTY) +
704 global_page_state(NR_UNSTABLE_NFS);
1da177e4 705
31373d09
MG
706 /*
707 * We want to write everything out, not just down to the dirty
708 * threshold
709 */
31373d09 710 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 711 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
712}
713
714/*
715 * We've spun up the disk and we're in laptop mode: schedule writeback
716 * of all dirty data a few seconds from now. If the flush is already scheduled
717 * then push it back - the user is still using the disk.
718 */
31373d09 719void laptop_io_completion(struct backing_dev_info *info)
1da177e4 720{
31373d09 721 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
722}
723
724/*
725 * We're in laptop mode and we've just synced. The sync's writes will have
726 * caused another writeback to be scheduled by laptop_io_completion.
727 * Nothing needs to be written back anymore, so we unschedule the writeback.
728 */
729void laptop_sync_completion(void)
730{
31373d09
MG
731 struct backing_dev_info *bdi;
732
733 rcu_read_lock();
734
735 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
736 del_timer(&bdi->laptop_mode_wb_timer);
737
738 rcu_read_unlock();
1da177e4 739}
c2c4986e 740#endif
1da177e4
LT
741
742/*
743 * If ratelimit_pages is too high then we can get into dirty-data overload
744 * if a large number of processes all perform writes at the same time.
745 * If it is too low then SMP machines will call the (expensive)
746 * get_writeback_state too often.
747 *
748 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
749 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
750 * thresholds before writeback cuts in.
751 *
752 * But the limit should not be set too high. Because it also controls the
753 * amount of memory which the balance_dirty_pages() caller has to write back.
754 * If this is too large then the caller will block on the IO queue all the
755 * time. So limit it to four megabytes - the balance_dirty_pages() caller
756 * will write six megabyte chunks, max.
757 */
758
2d1d43f6 759void writeback_set_ratelimit(void)
1da177e4 760{
40c99aae 761 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
762 if (ratelimit_pages < 16)
763 ratelimit_pages = 16;
764 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
765 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
766}
767
26c2143b 768static int __cpuinit
1da177e4
LT
769ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
770{
2d1d43f6 771 writeback_set_ratelimit();
aa0f0303 772 return NOTIFY_DONE;
1da177e4
LT
773}
774
74b85f37 775static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
776 .notifier_call = ratelimit_handler,
777 .next = NULL,
778};
779
780/*
dc6e29da
LT
781 * Called early on to tune the page writeback dirty limits.
782 *
783 * We used to scale dirty pages according to how total memory
784 * related to pages that could be allocated for buffers (by
785 * comparing nr_free_buffer_pages() to vm_total_pages.
786 *
787 * However, that was when we used "dirty_ratio" to scale with
788 * all memory, and we don't do that any more. "dirty_ratio"
789 * is now applied to total non-HIGHPAGE memory (by subtracting
790 * totalhigh_pages from vm_total_pages), and as such we can't
791 * get into the old insane situation any more where we had
792 * large amounts of dirty pages compared to a small amount of
793 * non-HIGHMEM memory.
794 *
795 * But we might still want to scale the dirty_ratio by how
796 * much memory the box has..
1da177e4
LT
797 */
798void __init page_writeback_init(void)
799{
04fbfdc1
PZ
800 int shift;
801
2d1d43f6 802 writeback_set_ratelimit();
1da177e4 803 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
804
805 shift = calc_period_shift();
806 prop_descriptor_init(&vm_completions, shift);
3e26c149 807 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
808}
809
f446daae
JK
810/**
811 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
812 * @mapping: address space structure to write
813 * @start: starting page index
814 * @end: ending page index (inclusive)
815 *
816 * This function scans the page range from @start to @end (inclusive) and tags
817 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
818 * that write_cache_pages (or whoever calls this function) will then use
819 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
820 * used to avoid livelocking of writeback by a process steadily creating new
821 * dirty pages in the file (thus it is important for this function to be quick
822 * so that it can tag pages faster than a dirtying process can create them).
823 */
824/*
825 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
826 */
f446daae
JK
827void tag_pages_for_writeback(struct address_space *mapping,
828 pgoff_t start, pgoff_t end)
829{
3c111a07 830#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
831 unsigned long tagged;
832
833 do {
834 spin_lock_irq(&mapping->tree_lock);
835 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
836 &start, end, WRITEBACK_TAG_BATCH,
837 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
838 spin_unlock_irq(&mapping->tree_lock);
839 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
840 cond_resched();
d5ed3a4a
JK
841 /* We check 'start' to handle wrapping when end == ~0UL */
842 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
843}
844EXPORT_SYMBOL(tag_pages_for_writeback);
845
811d736f 846/**
0ea97180 847 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
848 * @mapping: address space structure to write
849 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
850 * @writepage: function called for each page
851 * @data: data passed to writepage function
811d736f 852 *
0ea97180 853 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
854 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
855 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
856 * and msync() need to guarantee that all the data which was dirty at the time
857 * the call was made get new I/O started against them. If wbc->sync_mode is
858 * WB_SYNC_ALL then we were called for data integrity and we must wait for
859 * existing IO to complete.
f446daae
JK
860 *
861 * To avoid livelocks (when other process dirties new pages), we first tag
862 * pages which should be written back with TOWRITE tag and only then start
863 * writing them. For data-integrity sync we have to be careful so that we do
864 * not miss some pages (e.g., because some other process has cleared TOWRITE
865 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
866 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 867 */
0ea97180
MS
868int write_cache_pages(struct address_space *mapping,
869 struct writeback_control *wbc, writepage_t writepage,
870 void *data)
811d736f 871{
811d736f
DH
872 int ret = 0;
873 int done = 0;
811d736f
DH
874 struct pagevec pvec;
875 int nr_pages;
31a12666 876 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
877 pgoff_t index;
878 pgoff_t end; /* Inclusive */
bd19e012 879 pgoff_t done_index;
31a12666 880 int cycled;
811d736f 881 int range_whole = 0;
f446daae 882 int tag;
811d736f 883
811d736f
DH
884 pagevec_init(&pvec, 0);
885 if (wbc->range_cyclic) {
31a12666
NP
886 writeback_index = mapping->writeback_index; /* prev offset */
887 index = writeback_index;
888 if (index == 0)
889 cycled = 1;
890 else
891 cycled = 0;
811d736f
DH
892 end = -1;
893 } else {
894 index = wbc->range_start >> PAGE_CACHE_SHIFT;
895 end = wbc->range_end >> PAGE_CACHE_SHIFT;
896 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
897 range_whole = 1;
31a12666 898 cycled = 1; /* ignore range_cyclic tests */
811d736f 899 }
6e6938b6 900 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
901 tag = PAGECACHE_TAG_TOWRITE;
902 else
903 tag = PAGECACHE_TAG_DIRTY;
811d736f 904retry:
6e6938b6 905 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 906 tag_pages_for_writeback(mapping, index, end);
bd19e012 907 done_index = index;
5a3d5c98
NP
908 while (!done && (index <= end)) {
909 int i;
910
f446daae 911 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
912 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
913 if (nr_pages == 0)
914 break;
811d736f 915
811d736f
DH
916 for (i = 0; i < nr_pages; i++) {
917 struct page *page = pvec.pages[i];
918
919 /*
d5482cdf
NP
920 * At this point, the page may be truncated or
921 * invalidated (changing page->mapping to NULL), or
922 * even swizzled back from swapper_space to tmpfs file
923 * mapping. However, page->index will not change
924 * because we have a reference on the page.
811d736f 925 */
d5482cdf
NP
926 if (page->index > end) {
927 /*
928 * can't be range_cyclic (1st pass) because
929 * end == -1 in that case.
930 */
931 done = 1;
932 break;
933 }
934
cf15b07c 935 done_index = page->index;
d5482cdf 936
811d736f
DH
937 lock_page(page);
938
5a3d5c98
NP
939 /*
940 * Page truncated or invalidated. We can freely skip it
941 * then, even for data integrity operations: the page
942 * has disappeared concurrently, so there could be no
943 * real expectation of this data interity operation
944 * even if there is now a new, dirty page at the same
945 * pagecache address.
946 */
811d736f 947 if (unlikely(page->mapping != mapping)) {
5a3d5c98 948continue_unlock:
811d736f
DH
949 unlock_page(page);
950 continue;
951 }
952
515f4a03
NP
953 if (!PageDirty(page)) {
954 /* someone wrote it for us */
955 goto continue_unlock;
956 }
957
958 if (PageWriteback(page)) {
959 if (wbc->sync_mode != WB_SYNC_NONE)
960 wait_on_page_writeback(page);
961 else
962 goto continue_unlock;
963 }
811d736f 964
515f4a03
NP
965 BUG_ON(PageWriteback(page));
966 if (!clear_page_dirty_for_io(page))
5a3d5c98 967 goto continue_unlock;
811d736f 968
9e094383 969 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 970 ret = (*writepage)(page, wbc, data);
00266770
NP
971 if (unlikely(ret)) {
972 if (ret == AOP_WRITEPAGE_ACTIVATE) {
973 unlock_page(page);
974 ret = 0;
975 } else {
976 /*
977 * done_index is set past this page,
978 * so media errors will not choke
979 * background writeout for the entire
980 * file. This has consequences for
981 * range_cyclic semantics (ie. it may
982 * not be suitable for data integrity
983 * writeout).
984 */
cf15b07c 985 done_index = page->index + 1;
00266770
NP
986 done = 1;
987 break;
988 }
0b564927 989 }
00266770 990
546a1924
DC
991 /*
992 * We stop writing back only if we are not doing
993 * integrity sync. In case of integrity sync we have to
994 * keep going until we have written all the pages
995 * we tagged for writeback prior to entering this loop.
996 */
997 if (--wbc->nr_to_write <= 0 &&
998 wbc->sync_mode == WB_SYNC_NONE) {
999 done = 1;
1000 break;
05fe478d 1001 }
811d736f
DH
1002 }
1003 pagevec_release(&pvec);
1004 cond_resched();
1005 }
3a4c6800 1006 if (!cycled && !done) {
811d736f 1007 /*
31a12666 1008 * range_cyclic:
811d736f
DH
1009 * We hit the last page and there is more work to be done: wrap
1010 * back to the start of the file
1011 */
31a12666 1012 cycled = 1;
811d736f 1013 index = 0;
31a12666 1014 end = writeback_index - 1;
811d736f
DH
1015 goto retry;
1016 }
0b564927
DC
1017 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1018 mapping->writeback_index = done_index;
06d6cf69 1019
811d736f
DH
1020 return ret;
1021}
0ea97180
MS
1022EXPORT_SYMBOL(write_cache_pages);
1023
1024/*
1025 * Function used by generic_writepages to call the real writepage
1026 * function and set the mapping flags on error
1027 */
1028static int __writepage(struct page *page, struct writeback_control *wbc,
1029 void *data)
1030{
1031 struct address_space *mapping = data;
1032 int ret = mapping->a_ops->writepage(page, wbc);
1033 mapping_set_error(mapping, ret);
1034 return ret;
1035}
1036
1037/**
1038 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1039 * @mapping: address space structure to write
1040 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1041 *
1042 * This is a library function, which implements the writepages()
1043 * address_space_operation.
1044 */
1045int generic_writepages(struct address_space *mapping,
1046 struct writeback_control *wbc)
1047{
9b6096a6
SL
1048 struct blk_plug plug;
1049 int ret;
1050
0ea97180
MS
1051 /* deal with chardevs and other special file */
1052 if (!mapping->a_ops->writepage)
1053 return 0;
1054
9b6096a6
SL
1055 blk_start_plug(&plug);
1056 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1057 blk_finish_plug(&plug);
1058 return ret;
0ea97180 1059}
811d736f
DH
1060
1061EXPORT_SYMBOL(generic_writepages);
1062
1da177e4
LT
1063int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1064{
22905f77
AM
1065 int ret;
1066
1da177e4
LT
1067 if (wbc->nr_to_write <= 0)
1068 return 0;
1069 if (mapping->a_ops->writepages)
d08b3851 1070 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1071 else
1072 ret = generic_writepages(mapping, wbc);
22905f77 1073 return ret;
1da177e4
LT
1074}
1075
1076/**
1077 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1078 * @page: the page to write
1079 * @wait: if true, wait on writeout
1da177e4
LT
1080 *
1081 * The page must be locked by the caller and will be unlocked upon return.
1082 *
1083 * write_one_page() returns a negative error code if I/O failed.
1084 */
1085int write_one_page(struct page *page, int wait)
1086{
1087 struct address_space *mapping = page->mapping;
1088 int ret = 0;
1089 struct writeback_control wbc = {
1090 .sync_mode = WB_SYNC_ALL,
1091 .nr_to_write = 1,
1092 };
1093
1094 BUG_ON(!PageLocked(page));
1095
1096 if (wait)
1097 wait_on_page_writeback(page);
1098
1099 if (clear_page_dirty_for_io(page)) {
1100 page_cache_get(page);
1101 ret = mapping->a_ops->writepage(page, &wbc);
1102 if (ret == 0 && wait) {
1103 wait_on_page_writeback(page);
1104 if (PageError(page))
1105 ret = -EIO;
1106 }
1107 page_cache_release(page);
1108 } else {
1109 unlock_page(page);
1110 }
1111 return ret;
1112}
1113EXPORT_SYMBOL(write_one_page);
1114
76719325
KC
1115/*
1116 * For address_spaces which do not use buffers nor write back.
1117 */
1118int __set_page_dirty_no_writeback(struct page *page)
1119{
1120 if (!PageDirty(page))
c3f0da63 1121 return !TestSetPageDirty(page);
76719325
KC
1122 return 0;
1123}
1124
e3a7cca1
ES
1125/*
1126 * Helper function for set_page_dirty family.
1127 * NOTE: This relies on being atomic wrt interrupts.
1128 */
1129void account_page_dirtied(struct page *page, struct address_space *mapping)
1130{
1131 if (mapping_cap_account_dirty(mapping)) {
1132 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1133 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1
ES
1134 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1135 task_dirty_inc(current);
1136 task_io_account_write(PAGE_CACHE_SIZE);
1137 }
1138}
679ceace 1139EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1140
f629d1c9
MR
1141/*
1142 * Helper function for set_page_writeback family.
1143 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1144 * wrt interrupts.
1145 */
1146void account_page_writeback(struct page *page)
1147{
1148 inc_zone_page_state(page, NR_WRITEBACK);
ea941f0e 1149 inc_zone_page_state(page, NR_WRITTEN);
f629d1c9
MR
1150}
1151EXPORT_SYMBOL(account_page_writeback);
1152
1da177e4
LT
1153/*
1154 * For address_spaces which do not use buffers. Just tag the page as dirty in
1155 * its radix tree.
1156 *
1157 * This is also used when a single buffer is being dirtied: we want to set the
1158 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1159 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1160 *
1161 * Most callers have locked the page, which pins the address_space in memory.
1162 * But zap_pte_range() does not lock the page, however in that case the
1163 * mapping is pinned by the vma's ->vm_file reference.
1164 *
1165 * We take care to handle the case where the page was truncated from the
183ff22b 1166 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1167 */
1168int __set_page_dirty_nobuffers(struct page *page)
1169{
1da177e4
LT
1170 if (!TestSetPageDirty(page)) {
1171 struct address_space *mapping = page_mapping(page);
1172 struct address_space *mapping2;
1173
8c08540f
AM
1174 if (!mapping)
1175 return 1;
1176
19fd6231 1177 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1178 mapping2 = page_mapping(page);
1179 if (mapping2) { /* Race with truncate? */
1180 BUG_ON(mapping2 != mapping);
787d2214 1181 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1182 account_page_dirtied(page, mapping);
8c08540f
AM
1183 radix_tree_tag_set(&mapping->page_tree,
1184 page_index(page), PAGECACHE_TAG_DIRTY);
1185 }
19fd6231 1186 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1187 if (mapping->host) {
1188 /* !PageAnon && !swapper_space */
1189 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1190 }
4741c9fd 1191 return 1;
1da177e4 1192 }
4741c9fd 1193 return 0;
1da177e4
LT
1194}
1195EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1196
1197/*
1198 * When a writepage implementation decides that it doesn't want to write this
1199 * page for some reason, it should redirty the locked page via
1200 * redirty_page_for_writepage() and it should then unlock the page and return 0
1201 */
1202int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1203{
1204 wbc->pages_skipped++;
1205 return __set_page_dirty_nobuffers(page);
1206}
1207EXPORT_SYMBOL(redirty_page_for_writepage);
1208
1209/*
6746aff7
WF
1210 * Dirty a page.
1211 *
1212 * For pages with a mapping this should be done under the page lock
1213 * for the benefit of asynchronous memory errors who prefer a consistent
1214 * dirty state. This rule can be broken in some special cases,
1215 * but should be better not to.
1216 *
1da177e4
LT
1217 * If the mapping doesn't provide a set_page_dirty a_op, then
1218 * just fall through and assume that it wants buffer_heads.
1219 */
1cf6e7d8 1220int set_page_dirty(struct page *page)
1da177e4
LT
1221{
1222 struct address_space *mapping = page_mapping(page);
1223
1224 if (likely(mapping)) {
1225 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1226 /*
1227 * readahead/lru_deactivate_page could remain
1228 * PG_readahead/PG_reclaim due to race with end_page_writeback
1229 * About readahead, if the page is written, the flags would be
1230 * reset. So no problem.
1231 * About lru_deactivate_page, if the page is redirty, the flag
1232 * will be reset. So no problem. but if the page is used by readahead
1233 * it will confuse readahead and make it restart the size rampup
1234 * process. But it's a trivial problem.
1235 */
1236 ClearPageReclaim(page);
9361401e
DH
1237#ifdef CONFIG_BLOCK
1238 if (!spd)
1239 spd = __set_page_dirty_buffers;
1240#endif
1241 return (*spd)(page);
1da177e4 1242 }
4741c9fd
AM
1243 if (!PageDirty(page)) {
1244 if (!TestSetPageDirty(page))
1245 return 1;
1246 }
1da177e4
LT
1247 return 0;
1248}
1249EXPORT_SYMBOL(set_page_dirty);
1250
1251/*
1252 * set_page_dirty() is racy if the caller has no reference against
1253 * page->mapping->host, and if the page is unlocked. This is because another
1254 * CPU could truncate the page off the mapping and then free the mapping.
1255 *
1256 * Usually, the page _is_ locked, or the caller is a user-space process which
1257 * holds a reference on the inode by having an open file.
1258 *
1259 * In other cases, the page should be locked before running set_page_dirty().
1260 */
1261int set_page_dirty_lock(struct page *page)
1262{
1263 int ret;
1264
7eaceacc 1265 lock_page(page);
1da177e4
LT
1266 ret = set_page_dirty(page);
1267 unlock_page(page);
1268 return ret;
1269}
1270EXPORT_SYMBOL(set_page_dirty_lock);
1271
1da177e4
LT
1272/*
1273 * Clear a page's dirty flag, while caring for dirty memory accounting.
1274 * Returns true if the page was previously dirty.
1275 *
1276 * This is for preparing to put the page under writeout. We leave the page
1277 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1278 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1279 * implementation will run either set_page_writeback() or set_page_dirty(),
1280 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1281 * back into sync.
1282 *
1283 * This incoherency between the page's dirty flag and radix-tree tag is
1284 * unfortunate, but it only exists while the page is locked.
1285 */
1286int clear_page_dirty_for_io(struct page *page)
1287{
1288 struct address_space *mapping = page_mapping(page);
1289
79352894
NP
1290 BUG_ON(!PageLocked(page));
1291
7658cc28
LT
1292 if (mapping && mapping_cap_account_dirty(mapping)) {
1293 /*
1294 * Yes, Virginia, this is indeed insane.
1295 *
1296 * We use this sequence to make sure that
1297 * (a) we account for dirty stats properly
1298 * (b) we tell the low-level filesystem to
1299 * mark the whole page dirty if it was
1300 * dirty in a pagetable. Only to then
1301 * (c) clean the page again and return 1 to
1302 * cause the writeback.
1303 *
1304 * This way we avoid all nasty races with the
1305 * dirty bit in multiple places and clearing
1306 * them concurrently from different threads.
1307 *
1308 * Note! Normally the "set_page_dirty(page)"
1309 * has no effect on the actual dirty bit - since
1310 * that will already usually be set. But we
1311 * need the side effects, and it can help us
1312 * avoid races.
1313 *
1314 * We basically use the page "master dirty bit"
1315 * as a serialization point for all the different
1316 * threads doing their things.
7658cc28
LT
1317 */
1318 if (page_mkclean(page))
1319 set_page_dirty(page);
79352894
NP
1320 /*
1321 * We carefully synchronise fault handlers against
1322 * installing a dirty pte and marking the page dirty
1323 * at this point. We do this by having them hold the
1324 * page lock at some point after installing their
1325 * pte, but before marking the page dirty.
1326 * Pages are always locked coming in here, so we get
1327 * the desired exclusion. See mm/memory.c:do_wp_page()
1328 * for more comments.
1329 */
7658cc28 1330 if (TestClearPageDirty(page)) {
8c08540f 1331 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1332 dec_bdi_stat(mapping->backing_dev_info,
1333 BDI_RECLAIMABLE);
7658cc28 1334 return 1;
1da177e4 1335 }
7658cc28 1336 return 0;
1da177e4 1337 }
7658cc28 1338 return TestClearPageDirty(page);
1da177e4 1339}
58bb01a9 1340EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1341
1342int test_clear_page_writeback(struct page *page)
1343{
1344 struct address_space *mapping = page_mapping(page);
1345 int ret;
1346
1347 if (mapping) {
69cb51d1 1348 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1349 unsigned long flags;
1350
19fd6231 1351 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1352 ret = TestClearPageWriteback(page);
69cb51d1 1353 if (ret) {
1da177e4
LT
1354 radix_tree_tag_clear(&mapping->page_tree,
1355 page_index(page),
1356 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1357 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1358 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1359 __bdi_writeout_inc(bdi);
1360 }
69cb51d1 1361 }
19fd6231 1362 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1363 } else {
1364 ret = TestClearPageWriteback(page);
1365 }
d688abf5
AM
1366 if (ret)
1367 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1368 return ret;
1369}
1370
1371int test_set_page_writeback(struct page *page)
1372{
1373 struct address_space *mapping = page_mapping(page);
1374 int ret;
1375
1376 if (mapping) {
69cb51d1 1377 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1378 unsigned long flags;
1379
19fd6231 1380 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1381 ret = TestSetPageWriteback(page);
69cb51d1 1382 if (!ret) {
1da177e4
LT
1383 radix_tree_tag_set(&mapping->page_tree,
1384 page_index(page),
1385 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1386 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1387 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1388 }
1da177e4
LT
1389 if (!PageDirty(page))
1390 radix_tree_tag_clear(&mapping->page_tree,
1391 page_index(page),
1392 PAGECACHE_TAG_DIRTY);
f446daae
JK
1393 radix_tree_tag_clear(&mapping->page_tree,
1394 page_index(page),
1395 PAGECACHE_TAG_TOWRITE);
19fd6231 1396 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1397 } else {
1398 ret = TestSetPageWriteback(page);
1399 }
d688abf5 1400 if (!ret)
f629d1c9 1401 account_page_writeback(page);
1da177e4
LT
1402 return ret;
1403
1404}
1405EXPORT_SYMBOL(test_set_page_writeback);
1406
1407/*
00128188 1408 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1409 * passed tag.
1410 */
1411int mapping_tagged(struct address_space *mapping, int tag)
1412{
1da177e4 1413 int ret;
00128188 1414 rcu_read_lock();
1da177e4 1415 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1416 rcu_read_unlock();
1da177e4
LT
1417 return ret;
1418}
1419EXPORT_SYMBOL(mapping_tagged);