]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page-writeback.c
writeback: add dirty_throttle_control->wb_completions
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
129 struct bdi_writeback *wb;
e9770b34 130 struct fprop_local_percpu *wb_completions;
2bc00aef
TH
131
132 unsigned long dirty; /* file_dirty + write + nfs */
133 unsigned long thresh; /* dirty threshold */
134 unsigned long bg_thresh; /* dirty background threshold */
135
136 unsigned long wb_dirty; /* per-wb counterparts */
137 unsigned long wb_thresh;
970fb01a 138 unsigned long wb_bg_thresh;
daddfa3c
TH
139
140 unsigned long pos_ratio;
2bc00aef
TH
141};
142
e9770b34
TH
143#define GDTC_INIT(__wb) .wb = (__wb), \
144 .wb_completions = &(__wb)->completions
2bc00aef 145
eb608e3a
JK
146/*
147 * Length of period for aging writeout fractions of bdis. This is an
148 * arbitrarily chosen number. The longer the period, the slower fractions will
149 * reflect changes in current writeout rate.
150 */
151#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 152
693108a8
TH
153#ifdef CONFIG_CGROUP_WRITEBACK
154
155static void wb_min_max_ratio(struct bdi_writeback *wb,
156 unsigned long *minp, unsigned long *maxp)
157{
158 unsigned long this_bw = wb->avg_write_bandwidth;
159 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
160 unsigned long long min = wb->bdi->min_ratio;
161 unsigned long long max = wb->bdi->max_ratio;
162
163 /*
164 * @wb may already be clean by the time control reaches here and
165 * the total may not include its bw.
166 */
167 if (this_bw < tot_bw) {
168 if (min) {
169 min *= this_bw;
170 do_div(min, tot_bw);
171 }
172 if (max < 100) {
173 max *= this_bw;
174 do_div(max, tot_bw);
175 }
176 }
177
178 *minp = min;
179 *maxp = max;
180}
181
182#else /* CONFIG_CGROUP_WRITEBACK */
183
184static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
186{
187 *minp = wb->bdi->min_ratio;
188 *maxp = wb->bdi->max_ratio;
189}
190
191#endif /* CONFIG_CGROUP_WRITEBACK */
192
a756cf59
JW
193/*
194 * In a memory zone, there is a certain amount of pages we consider
195 * available for the page cache, which is essentially the number of
196 * free and reclaimable pages, minus some zone reserves to protect
197 * lowmem and the ability to uphold the zone's watermarks without
198 * requiring writeback.
199 *
200 * This number of dirtyable pages is the base value of which the
201 * user-configurable dirty ratio is the effictive number of pages that
202 * are allowed to be actually dirtied. Per individual zone, or
203 * globally by using the sum of dirtyable pages over all zones.
204 *
205 * Because the user is allowed to specify the dirty limit globally as
206 * absolute number of bytes, calculating the per-zone dirty limit can
207 * require translating the configured limit into a percentage of
208 * global dirtyable memory first.
209 */
210
a804552b
JW
211/**
212 * zone_dirtyable_memory - number of dirtyable pages in a zone
213 * @zone: the zone
214 *
215 * Returns the zone's number of pages potentially available for dirty
216 * page cache. This is the base value for the per-zone dirty limits.
217 */
218static unsigned long zone_dirtyable_memory(struct zone *zone)
219{
220 unsigned long nr_pages;
221
222 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
223 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
224
a1c3bfb2
JW
225 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
226 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
227
228 return nr_pages;
229}
230
1edf2234
JW
231static unsigned long highmem_dirtyable_memory(unsigned long total)
232{
233#ifdef CONFIG_HIGHMEM
234 int node;
235 unsigned long x = 0;
236
237 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 238 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 239
a804552b 240 x += zone_dirtyable_memory(z);
1edf2234 241 }
c8b74c2f
SR
242 /*
243 * Unreclaimable memory (kernel memory or anonymous memory
244 * without swap) can bring down the dirtyable pages below
245 * the zone's dirty balance reserve and the above calculation
246 * will underflow. However we still want to add in nodes
247 * which are below threshold (negative values) to get a more
248 * accurate calculation but make sure that the total never
249 * underflows.
250 */
251 if ((long)x < 0)
252 x = 0;
253
1edf2234
JW
254 /*
255 * Make sure that the number of highmem pages is never larger
256 * than the number of the total dirtyable memory. This can only
257 * occur in very strange VM situations but we want to make sure
258 * that this does not occur.
259 */
260 return min(x, total);
261#else
262 return 0;
263#endif
264}
265
266/**
ccafa287 267 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 268 *
ccafa287
JW
269 * Returns the global number of pages potentially available for dirty
270 * page cache. This is the base value for the global dirty limits.
1edf2234 271 */
18cf8cf8 272static unsigned long global_dirtyable_memory(void)
1edf2234
JW
273{
274 unsigned long x;
275
a804552b 276 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 277 x -= min(x, dirty_balance_reserve);
1edf2234 278
a1c3bfb2
JW
279 x += global_page_state(NR_INACTIVE_FILE);
280 x += global_page_state(NR_ACTIVE_FILE);
a804552b 281
1edf2234
JW
282 if (!vm_highmem_is_dirtyable)
283 x -= highmem_dirtyable_memory(x);
284
285 return x + 1; /* Ensure that we never return 0 */
286}
287
ccafa287
JW
288/*
289 * global_dirty_limits - background-writeback and dirty-throttling thresholds
290 *
291 * Calculate the dirty thresholds based on sysctl parameters
292 * - vm.dirty_background_ratio or vm.dirty_background_bytes
293 * - vm.dirty_ratio or vm.dirty_bytes
294 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
295 * real-time tasks.
296 */
297void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
298{
9ef0a0ff 299 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
300 unsigned long background;
301 unsigned long dirty;
ccafa287
JW
302 struct task_struct *tsk;
303
ccafa287
JW
304 if (vm_dirty_bytes)
305 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
306 else
307 dirty = (vm_dirty_ratio * available_memory) / 100;
308
309 if (dirty_background_bytes)
310 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
311 else
312 background = (dirty_background_ratio * available_memory) / 100;
313
314 if (background >= dirty)
315 background = dirty / 2;
316 tsk = current;
317 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
318 background += background / 4;
319 dirty += dirty / 4;
320 }
321 *pbackground = background;
322 *pdirty = dirty;
323 trace_global_dirty_state(background, dirty);
324}
325
a756cf59
JW
326/**
327 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
328 * @zone: the zone
329 *
330 * Returns the maximum number of dirty pages allowed in a zone, based
331 * on the zone's dirtyable memory.
332 */
333static unsigned long zone_dirty_limit(struct zone *zone)
334{
335 unsigned long zone_memory = zone_dirtyable_memory(zone);
336 struct task_struct *tsk = current;
337 unsigned long dirty;
338
339 if (vm_dirty_bytes)
340 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
341 zone_memory / global_dirtyable_memory();
342 else
343 dirty = vm_dirty_ratio * zone_memory / 100;
344
345 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
346 dirty += dirty / 4;
347
348 return dirty;
349}
350
351/**
352 * zone_dirty_ok - tells whether a zone is within its dirty limits
353 * @zone: the zone to check
354 *
355 * Returns %true when the dirty pages in @zone are within the zone's
356 * dirty limit, %false if the limit is exceeded.
357 */
358bool zone_dirty_ok(struct zone *zone)
359{
360 unsigned long limit = zone_dirty_limit(zone);
361
362 return zone_page_state(zone, NR_FILE_DIRTY) +
363 zone_page_state(zone, NR_UNSTABLE_NFS) +
364 zone_page_state(zone, NR_WRITEBACK) <= limit;
365}
366
2da02997 367int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 368 void __user *buffer, size_t *lenp,
2da02997
DR
369 loff_t *ppos)
370{
371 int ret;
372
8d65af78 373 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
374 if (ret == 0 && write)
375 dirty_background_bytes = 0;
376 return ret;
377}
378
379int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 380 void __user *buffer, size_t *lenp,
2da02997
DR
381 loff_t *ppos)
382{
383 int ret;
384
8d65af78 385 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
386 if (ret == 0 && write)
387 dirty_background_ratio = 0;
388 return ret;
389}
390
04fbfdc1 391int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 392 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
393 loff_t *ppos)
394{
395 int old_ratio = vm_dirty_ratio;
2da02997
DR
396 int ret;
397
8d65af78 398 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 399 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 400 writeback_set_ratelimit();
2da02997
DR
401 vm_dirty_bytes = 0;
402 }
403 return ret;
404}
405
2da02997 406int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 407 void __user *buffer, size_t *lenp,
2da02997
DR
408 loff_t *ppos)
409{
fc3501d4 410 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
411 int ret;
412
8d65af78 413 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 414 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 415 writeback_set_ratelimit();
2da02997 416 vm_dirty_ratio = 0;
04fbfdc1
PZ
417 }
418 return ret;
419}
420
eb608e3a
JK
421static unsigned long wp_next_time(unsigned long cur_time)
422{
423 cur_time += VM_COMPLETIONS_PERIOD_LEN;
424 /* 0 has a special meaning... */
425 if (!cur_time)
426 return 1;
427 return cur_time;
428}
429
04fbfdc1 430/*
380c27ca 431 * Increment the wb's writeout completion count and the global writeout
04fbfdc1
PZ
432 * completion count. Called from test_clear_page_writeback().
433 */
93f78d88 434static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 435{
380c27ca
TH
436 struct wb_domain *dom = &global_wb_domain;
437
93f78d88 438 __inc_wb_stat(wb, WB_WRITTEN);
380c27ca 439 __fprop_inc_percpu_max(&dom->completions, &wb->completions,
93f78d88 440 wb->bdi->max_prop_frac);
eb608e3a 441 /* First event after period switching was turned off? */
380c27ca 442 if (!unlikely(dom->period_time)) {
eb608e3a
JK
443 /*
444 * We can race with other __bdi_writeout_inc calls here but
445 * it does not cause any harm since the resulting time when
446 * timer will fire and what is in writeout_period_time will be
447 * roughly the same.
448 */
380c27ca
TH
449 dom->period_time = wp_next_time(jiffies);
450 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 451 }
04fbfdc1
PZ
452}
453
93f78d88 454void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
455{
456 unsigned long flags;
457
458 local_irq_save(flags);
93f78d88 459 __wb_writeout_inc(wb);
dd5656e5
MS
460 local_irq_restore(flags);
461}
93f78d88 462EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 463
eb608e3a
JK
464/*
465 * On idle system, we can be called long after we scheduled because we use
466 * deferred timers so count with missed periods.
467 */
468static void writeout_period(unsigned long t)
469{
380c27ca
TH
470 struct wb_domain *dom = (void *)t;
471 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
472 VM_COMPLETIONS_PERIOD_LEN;
473
380c27ca
TH
474 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
475 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 476 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 477 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
478 } else {
479 /*
480 * Aging has zeroed all fractions. Stop wasting CPU on period
481 * updates.
482 */
380c27ca 483 dom->period_time = 0;
eb608e3a
JK
484 }
485}
486
380c27ca
TH
487int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
488{
489 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
490
491 spin_lock_init(&dom->lock);
492
380c27ca
TH
493 init_timer_deferrable(&dom->period_timer);
494 dom->period_timer.function = writeout_period;
495 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
496
497 dom->dirty_limit_tstamp = jiffies;
498
380c27ca
TH
499 return fprop_global_init(&dom->completions, gfp);
500}
501
189d3c4a 502/*
d08c429b
JW
503 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
504 * registered backing devices, which, for obvious reasons, can not
505 * exceed 100%.
189d3c4a 506 */
189d3c4a
PZ
507static unsigned int bdi_min_ratio;
508
509int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
510{
511 int ret = 0;
189d3c4a 512
cfc4ba53 513 spin_lock_bh(&bdi_lock);
a42dde04 514 if (min_ratio > bdi->max_ratio) {
189d3c4a 515 ret = -EINVAL;
a42dde04
PZ
516 } else {
517 min_ratio -= bdi->min_ratio;
518 if (bdi_min_ratio + min_ratio < 100) {
519 bdi_min_ratio += min_ratio;
520 bdi->min_ratio += min_ratio;
521 } else {
522 ret = -EINVAL;
523 }
524 }
cfc4ba53 525 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
526
527 return ret;
528}
529
530int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
531{
a42dde04
PZ
532 int ret = 0;
533
534 if (max_ratio > 100)
535 return -EINVAL;
536
cfc4ba53 537 spin_lock_bh(&bdi_lock);
a42dde04
PZ
538 if (bdi->min_ratio > max_ratio) {
539 ret = -EINVAL;
540 } else {
541 bdi->max_ratio = max_ratio;
eb608e3a 542 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 543 }
cfc4ba53 544 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
545
546 return ret;
547}
a42dde04 548EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 549
6c14ae1e
WF
550static unsigned long dirty_freerun_ceiling(unsigned long thresh,
551 unsigned long bg_thresh)
552{
553 return (thresh + bg_thresh) / 2;
554}
555
ffd1f609
WF
556static unsigned long hard_dirty_limit(unsigned long thresh)
557{
dcc25ae7
TH
558 struct wb_domain *dom = &global_wb_domain;
559
560 return max(thresh, dom->dirty_limit);
ffd1f609
WF
561}
562
6f718656 563/**
b1cbc6d4
TH
564 * __wb_calc_thresh - @wb's share of dirty throttling threshold
565 * @dtc: dirty_throttle_context of interest
1babe183 566 *
a88a341a 567 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 568 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
569 *
570 * Note that balance_dirty_pages() will only seriously take it as a hard limit
571 * when sleeping max_pause per page is not enough to keep the dirty pages under
572 * control. For example, when the device is completely stalled due to some error
573 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
574 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 575 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 576 *
6f718656 577 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
578 * - starving fast devices
579 * - piling up dirty pages (that will take long time to sync) on slow devices
580 *
a88a341a 581 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
582 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
583 */
b1cbc6d4 584static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 585{
380c27ca 586 struct wb_domain *dom = &global_wb_domain;
b1cbc6d4 587 unsigned long thresh = dtc->thresh;
0d960a38 588 u64 wb_thresh;
16c4042f 589 long numerator, denominator;
693108a8 590 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 591
16c4042f 592 /*
0d960a38 593 * Calculate this BDI's share of the thresh ratio.
16c4042f 594 */
e9770b34 595 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 596 &numerator, &denominator);
04fbfdc1 597
0d960a38
TH
598 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
599 wb_thresh *= numerator;
600 do_div(wb_thresh, denominator);
04fbfdc1 601
b1cbc6d4 602 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
693108a8 603
0d960a38
TH
604 wb_thresh += (thresh * wb_min_ratio) / 100;
605 if (wb_thresh > (thresh * wb_max_ratio) / 100)
606 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 607
0d960a38 608 return wb_thresh;
1da177e4
LT
609}
610
b1cbc6d4
TH
611unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
612{
613 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
614 .thresh = thresh };
615 return __wb_calc_thresh(&gdtc);
616}
617
5a537485
MP
618/*
619 * setpoint - dirty 3
620 * f(dirty) := 1.0 + (----------------)
621 * limit - setpoint
622 *
623 * it's a 3rd order polynomial that subjects to
624 *
625 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
626 * (2) f(setpoint) = 1.0 => the balance point
627 * (3) f(limit) = 0 => the hard limit
628 * (4) df/dx <= 0 => negative feedback control
629 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
630 * => fast response on large errors; small oscillation near setpoint
631 */
d5c9fde3 632static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
633 unsigned long dirty,
634 unsigned long limit)
635{
636 long long pos_ratio;
637 long x;
638
d5c9fde3 639 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
640 limit - setpoint + 1);
641 pos_ratio = x;
642 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
643 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
644 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
645
646 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
647}
648
6c14ae1e
WF
649/*
650 * Dirty position control.
651 *
652 * (o) global/bdi setpoints
653 *
de1fff37 654 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
655 * When the number of dirty pages is higher/lower than the setpoint, the
656 * dirty position control ratio (and hence task dirty ratelimit) will be
657 * decreased/increased to bring the dirty pages back to the setpoint.
658 *
659 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
660 *
661 * if (dirty < setpoint) scale up pos_ratio
662 * if (dirty > setpoint) scale down pos_ratio
663 *
de1fff37
TH
664 * if (wb_dirty < wb_setpoint) scale up pos_ratio
665 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
666 *
667 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
668 *
669 * (o) global control line
670 *
671 * ^ pos_ratio
672 * |
673 * | |<===== global dirty control scope ======>|
674 * 2.0 .............*
675 * | .*
676 * | . *
677 * | . *
678 * | . *
679 * | . *
680 * | . *
681 * 1.0 ................................*
682 * | . . *
683 * | . . *
684 * | . . *
685 * | . . *
686 * | . . *
687 * 0 +------------.------------------.----------------------*------------->
688 * freerun^ setpoint^ limit^ dirty pages
689 *
de1fff37 690 * (o) wb control line
6c14ae1e
WF
691 *
692 * ^ pos_ratio
693 * |
694 * | *
695 * | *
696 * | *
697 * | *
698 * | * |<=========== span ============>|
699 * 1.0 .......................*
700 * | . *
701 * | . *
702 * | . *
703 * | . *
704 * | . *
705 * | . *
706 * | . *
707 * | . *
708 * | . *
709 * | . *
710 * | . *
711 * 1/4 ...............................................* * * * * * * * * * * *
712 * | . .
713 * | . .
714 * | . .
715 * 0 +----------------------.-------------------------------.------------->
de1fff37 716 * wb_setpoint^ x_intercept^
6c14ae1e 717 *
de1fff37 718 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
719 * be smoothly throttled down to normal if it starts high in situations like
720 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
721 * card's wb_dirty may rush to many times higher than wb_setpoint.
722 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 723 */
daddfa3c 724static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 725{
2bc00aef 726 struct bdi_writeback *wb = dtc->wb;
a88a341a 727 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef
TH
728 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
729 unsigned long limit = hard_dirty_limit(dtc->thresh);
730 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
731 unsigned long x_intercept;
732 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 733 unsigned long wb_setpoint;
6c14ae1e
WF
734 unsigned long span;
735 long long pos_ratio; /* for scaling up/down the rate limit */
736 long x;
737
daddfa3c
TH
738 dtc->pos_ratio = 0;
739
2bc00aef 740 if (unlikely(dtc->dirty >= limit))
daddfa3c 741 return;
6c14ae1e
WF
742
743 /*
744 * global setpoint
745 *
5a537485
MP
746 * See comment for pos_ratio_polynom().
747 */
748 setpoint = (freerun + limit) / 2;
2bc00aef 749 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
750
751 /*
752 * The strictlimit feature is a tool preventing mistrusted filesystems
753 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
754 * such filesystems balance_dirty_pages always checks wb counters
755 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
756 * This is especially important for fuse which sets bdi->max_ratio to
757 * 1% by default. Without strictlimit feature, fuse writeback may
758 * consume arbitrary amount of RAM because it is accounted in
759 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 760 *
a88a341a 761 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 762 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
763 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
764 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 765 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 766 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 767 * about ~6K pages (as the average of background and throttle wb
5a537485 768 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 769 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 770 *
5a537485 771 * Note, that we cannot use global counters in these calculations
de1fff37 772 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
773 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
774 * in the example above).
6c14ae1e 775 */
a88a341a 776 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 777 long long wb_pos_ratio;
5a537485 778
daddfa3c
TH
779 if (dtc->wb_dirty < 8) {
780 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
781 2 << RATELIMIT_CALC_SHIFT);
782 return;
783 }
5a537485 784
2bc00aef 785 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 786 return;
5a537485 787
970fb01a
TH
788 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
789 dtc->wb_bg_thresh);
5a537485 790
de1fff37 791 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 792 return;
5a537485 793
2bc00aef 794 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 795 wb_thresh);
5a537485
MP
796
797 /*
de1fff37
TH
798 * Typically, for strictlimit case, wb_setpoint << setpoint
799 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 800 * state ("dirty") is not limiting factor and we have to
de1fff37 801 * make decision based on wb counters. But there is an
5a537485
MP
802 * important case when global pos_ratio should get precedence:
803 * global limits are exceeded (e.g. due to activities on other
de1fff37 804 * wb's) while given strictlimit wb is below limit.
5a537485 805 *
de1fff37 806 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 807 * but it would look too non-natural for the case of all
de1fff37 808 * activity in the system coming from a single strictlimit wb
5a537485
MP
809 * with bdi->max_ratio == 100%.
810 *
811 * Note that min() below somewhat changes the dynamics of the
812 * control system. Normally, pos_ratio value can be well over 3
de1fff37 813 * (when globally we are at freerun and wb is well below wb
5a537485
MP
814 * setpoint). Now the maximum pos_ratio in the same situation
815 * is 2. We might want to tweak this if we observe the control
816 * system is too slow to adapt.
817 */
daddfa3c
TH
818 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
819 return;
5a537485 820 }
6c14ae1e
WF
821
822 /*
823 * We have computed basic pos_ratio above based on global situation. If
de1fff37 824 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
825 * pos_ratio further down/up. That is done by the following mechanism.
826 */
827
828 /*
de1fff37 829 * wb setpoint
6c14ae1e 830 *
de1fff37 831 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 832 *
de1fff37 833 * x_intercept - wb_dirty
6c14ae1e 834 * := --------------------------
de1fff37 835 * x_intercept - wb_setpoint
6c14ae1e 836 *
de1fff37 837 * The main wb control line is a linear function that subjects to
6c14ae1e 838 *
de1fff37
TH
839 * (1) f(wb_setpoint) = 1.0
840 * (2) k = - 1 / (8 * write_bw) (in single wb case)
841 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 842 *
de1fff37 843 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 844 * regularly within range
de1fff37 845 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
846 * for various filesystems, where (2) can yield in a reasonable 12.5%
847 * fluctuation range for pos_ratio.
848 *
de1fff37 849 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 850 * own size, so move the slope over accordingly and choose a slope that
de1fff37 851 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 852 */
2bc00aef
TH
853 if (unlikely(wb_thresh > dtc->thresh))
854 wb_thresh = dtc->thresh;
aed21ad2 855 /*
de1fff37 856 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
857 * device is slow, but that it has remained inactive for long time.
858 * Honour such devices a reasonable good (hopefully IO efficient)
859 * threshold, so that the occasional writes won't be blocked and active
860 * writes can rampup the threshold quickly.
861 */
2bc00aef 862 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 863 /*
de1fff37
TH
864 * scale global setpoint to wb's:
865 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 866 */
2bc00aef 867 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 868 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 869 /*
de1fff37
TH
870 * Use span=(8*write_bw) in single wb case as indicated by
871 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 872 *
de1fff37
TH
873 * wb_thresh thresh - wb_thresh
874 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
875 * thresh thresh
6c14ae1e 876 */
2bc00aef 877 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 878 x_intercept = wb_setpoint + span;
6c14ae1e 879
2bc00aef
TH
880 if (dtc->wb_dirty < x_intercept - span / 4) {
881 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
882 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
883 } else
884 pos_ratio /= 4;
885
8927f66c 886 /*
de1fff37 887 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
888 * It may push the desired control point of global dirty pages higher
889 * than setpoint.
890 */
de1fff37 891 x_intercept = wb_thresh / 2;
2bc00aef
TH
892 if (dtc->wb_dirty < x_intercept) {
893 if (dtc->wb_dirty > x_intercept / 8)
894 pos_ratio = div_u64(pos_ratio * x_intercept,
895 dtc->wb_dirty);
50657fc4 896 else
8927f66c
WF
897 pos_ratio *= 8;
898 }
899
daddfa3c 900 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
901}
902
a88a341a
TH
903static void wb_update_write_bandwidth(struct bdi_writeback *wb,
904 unsigned long elapsed,
905 unsigned long written)
e98be2d5
WF
906{
907 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
908 unsigned long avg = wb->avg_write_bandwidth;
909 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
910 u64 bw;
911
912 /*
913 * bw = written * HZ / elapsed
914 *
915 * bw * elapsed + write_bandwidth * (period - elapsed)
916 * write_bandwidth = ---------------------------------------------------
917 * period
c72efb65
TH
918 *
919 * @written may have decreased due to account_page_redirty().
920 * Avoid underflowing @bw calculation.
e98be2d5 921 */
a88a341a 922 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
923 bw *= HZ;
924 if (unlikely(elapsed > period)) {
925 do_div(bw, elapsed);
926 avg = bw;
927 goto out;
928 }
a88a341a 929 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
930 bw >>= ilog2(period);
931
932 /*
933 * one more level of smoothing, for filtering out sudden spikes
934 */
935 if (avg > old && old >= (unsigned long)bw)
936 avg -= (avg - old) >> 3;
937
938 if (avg < old && old <= (unsigned long)bw)
939 avg += (old - avg) >> 3;
940
941out:
95a46c65
TH
942 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
943 avg = max(avg, 1LU);
944 if (wb_has_dirty_io(wb)) {
945 long delta = avg - wb->avg_write_bandwidth;
946 WARN_ON_ONCE(atomic_long_add_return(delta,
947 &wb->bdi->tot_write_bandwidth) <= 0);
948 }
a88a341a
TH
949 wb->write_bandwidth = bw;
950 wb->avg_write_bandwidth = avg;
e98be2d5
WF
951}
952
2bc00aef 953static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 954{
dcc25ae7 955 struct wb_domain *dom = &global_wb_domain;
2bc00aef 956 unsigned long thresh = dtc->thresh;
dcc25ae7 957 unsigned long limit = dom->dirty_limit;
c42843f2
WF
958
959 /*
960 * Follow up in one step.
961 */
962 if (limit < thresh) {
963 limit = thresh;
964 goto update;
965 }
966
967 /*
968 * Follow down slowly. Use the higher one as the target, because thresh
969 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 970 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 971 */
2bc00aef 972 thresh = max(thresh, dtc->dirty);
c42843f2
WF
973 if (limit > thresh) {
974 limit -= (limit - thresh) >> 5;
975 goto update;
976 }
977 return;
978update:
dcc25ae7 979 dom->dirty_limit = limit;
c42843f2
WF
980}
981
2bc00aef 982static void global_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
983 unsigned long now)
984{
dcc25ae7 985 struct wb_domain *dom = &global_wb_domain;
c42843f2
WF
986
987 /*
988 * check locklessly first to optimize away locking for the most time
989 */
dcc25ae7 990 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
991 return;
992
dcc25ae7
TH
993 spin_lock(&dom->lock);
994 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 995 update_dirty_limit(dtc);
dcc25ae7 996 dom->dirty_limit_tstamp = now;
c42843f2 997 }
dcc25ae7 998 spin_unlock(&dom->lock);
c42843f2
WF
999}
1000
be3ffa27 1001/*
de1fff37 1002 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1003 *
de1fff37 1004 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1005 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1006 */
2bc00aef 1007static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1008 unsigned long dirtied,
1009 unsigned long elapsed)
be3ffa27 1010{
2bc00aef
TH
1011 struct bdi_writeback *wb = dtc->wb;
1012 unsigned long dirty = dtc->dirty;
1013 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1014 unsigned long limit = hard_dirty_limit(dtc->thresh);
7381131c 1015 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1016 unsigned long write_bw = wb->avg_write_bandwidth;
1017 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1018 unsigned long dirty_rate;
1019 unsigned long task_ratelimit;
1020 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1021 unsigned long step;
1022 unsigned long x;
be3ffa27
WF
1023
1024 /*
1025 * The dirty rate will match the writeout rate in long term, except
1026 * when dirty pages are truncated by userspace or re-dirtied by FS.
1027 */
a88a341a 1028 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1029
be3ffa27
WF
1030 /*
1031 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1032 */
1033 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1034 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1035 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1036
1037 /*
1038 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1039 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1040 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1041 * formula will yield the balanced rate limit (write_bw / N).
1042 *
1043 * Note that the expanded form is not a pure rate feedback:
1044 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1045 * but also takes pos_ratio into account:
1046 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1047 *
1048 * (1) is not realistic because pos_ratio also takes part in balancing
1049 * the dirty rate. Consider the state
1050 * pos_ratio = 0.5 (3)
1051 * rate = 2 * (write_bw / N) (4)
1052 * If (1) is used, it will stuck in that state! Because each dd will
1053 * be throttled at
1054 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1055 * yielding
1056 * dirty_rate = N * task_ratelimit = write_bw (6)
1057 * put (6) into (1) we get
1058 * rate_(i+1) = rate_(i) (7)
1059 *
1060 * So we end up using (2) to always keep
1061 * rate_(i+1) ~= (write_bw / N) (8)
1062 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1063 * pos_ratio is able to drive itself to 1.0, which is not only where
1064 * the dirty count meet the setpoint, but also where the slope of
1065 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1066 */
1067 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1068 dirty_rate | 1);
bdaac490
WF
1069 /*
1070 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1071 */
1072 if (unlikely(balanced_dirty_ratelimit > write_bw))
1073 balanced_dirty_ratelimit = write_bw;
be3ffa27 1074
7381131c
WF
1075 /*
1076 * We could safely do this and return immediately:
1077 *
de1fff37 1078 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1079 *
1080 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1081 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1082 * limit the step size.
1083 *
1084 * The below code essentially only uses the relative value of
1085 *
1086 * task_ratelimit - dirty_ratelimit
1087 * = (pos_ratio - 1) * dirty_ratelimit
1088 *
1089 * which reflects the direction and size of dirty position error.
1090 */
1091
1092 /*
1093 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1094 * task_ratelimit is on the same side of dirty_ratelimit, too.
1095 * For example, when
1096 * - dirty_ratelimit > balanced_dirty_ratelimit
1097 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1098 * lowering dirty_ratelimit will help meet both the position and rate
1099 * control targets. Otherwise, don't update dirty_ratelimit if it will
1100 * only help meet the rate target. After all, what the users ultimately
1101 * feel and care are stable dirty rate and small position error.
1102 *
1103 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1104 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1105 * keeps jumping around randomly and can even leap far away at times
1106 * due to the small 200ms estimation period of dirty_rate (we want to
1107 * keep that period small to reduce time lags).
1108 */
1109 step = 0;
5a537485
MP
1110
1111 /*
de1fff37 1112 * For strictlimit case, calculations above were based on wb counters
a88a341a 1113 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1114 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1115 * Hence, to calculate "step" properly, we have to use wb_dirty as
1116 * "dirty" and wb_setpoint as "setpoint".
5a537485 1117 *
de1fff37
TH
1118 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1119 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1120 * of backing device.
5a537485 1121 */
a88a341a 1122 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1123 dirty = dtc->wb_dirty;
1124 if (dtc->wb_dirty < 8)
1125 setpoint = dtc->wb_dirty + 1;
5a537485 1126 else
970fb01a 1127 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1128 }
1129
7381131c 1130 if (dirty < setpoint) {
a88a341a 1131 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1132 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1133 if (dirty_ratelimit < x)
1134 step = x - dirty_ratelimit;
1135 } else {
a88a341a 1136 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1137 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1138 if (dirty_ratelimit > x)
1139 step = dirty_ratelimit - x;
1140 }
1141
1142 /*
1143 * Don't pursue 100% rate matching. It's impossible since the balanced
1144 * rate itself is constantly fluctuating. So decrease the track speed
1145 * when it gets close to the target. Helps eliminate pointless tremors.
1146 */
1147 step >>= dirty_ratelimit / (2 * step + 1);
1148 /*
1149 * Limit the tracking speed to avoid overshooting.
1150 */
1151 step = (step + 7) / 8;
1152
1153 if (dirty_ratelimit < balanced_dirty_ratelimit)
1154 dirty_ratelimit += step;
1155 else
1156 dirty_ratelimit -= step;
1157
a88a341a
TH
1158 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1159 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1160
a88a341a 1161 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1162}
1163
2bc00aef 1164static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1165 unsigned long start_time,
1166 bool update_ratelimit)
e98be2d5 1167{
2bc00aef 1168 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1169 unsigned long now = jiffies;
a88a341a 1170 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1171 unsigned long dirtied;
e98be2d5
WF
1172 unsigned long written;
1173
8a731799
TH
1174 lockdep_assert_held(&wb->list_lock);
1175
e98be2d5
WF
1176 /*
1177 * rate-limit, only update once every 200ms.
1178 */
1179 if (elapsed < BANDWIDTH_INTERVAL)
1180 return;
1181
a88a341a
TH
1182 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1183 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1184
1185 /*
1186 * Skip quiet periods when disk bandwidth is under-utilized.
1187 * (at least 1s idle time between two flusher runs)
1188 */
a88a341a 1189 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1190 goto snapshot;
1191
8a731799 1192 if (update_ratelimit) {
2bc00aef
TH
1193 global_update_bandwidth(dtc, now);
1194 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1195 }
a88a341a 1196 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1197
1198snapshot:
a88a341a
TH
1199 wb->dirtied_stamp = dirtied;
1200 wb->written_stamp = written;
1201 wb->bw_time_stamp = now;
e98be2d5
WF
1202}
1203
8a731799 1204void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1205{
2bc00aef
TH
1206 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1207
1208 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1209}
1210
9d823e8f 1211/*
d0e1d66b 1212 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1213 * will look to see if it needs to start dirty throttling.
1214 *
1215 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1216 * global_page_state() too often. So scale it near-sqrt to the safety margin
1217 * (the number of pages we may dirty without exceeding the dirty limits).
1218 */
1219static unsigned long dirty_poll_interval(unsigned long dirty,
1220 unsigned long thresh)
1221{
1222 if (thresh > dirty)
1223 return 1UL << (ilog2(thresh - dirty) >> 1);
1224
1225 return 1;
1226}
1227
a88a341a 1228static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1229 unsigned long wb_dirty)
c8462cc9 1230{
a88a341a 1231 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1232 unsigned long t;
c8462cc9 1233
7ccb9ad5
WF
1234 /*
1235 * Limit pause time for small memory systems. If sleeping for too long
1236 * time, a small pool of dirty/writeback pages may go empty and disk go
1237 * idle.
1238 *
1239 * 8 serves as the safety ratio.
1240 */
de1fff37 1241 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1242 t++;
1243
e3b6c655 1244 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1245}
1246
a88a341a
TH
1247static long wb_min_pause(struct bdi_writeback *wb,
1248 long max_pause,
1249 unsigned long task_ratelimit,
1250 unsigned long dirty_ratelimit,
1251 int *nr_dirtied_pause)
c8462cc9 1252{
a88a341a
TH
1253 long hi = ilog2(wb->avg_write_bandwidth);
1254 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1255 long t; /* target pause */
1256 long pause; /* estimated next pause */
1257 int pages; /* target nr_dirtied_pause */
c8462cc9 1258
7ccb9ad5
WF
1259 /* target for 10ms pause on 1-dd case */
1260 t = max(1, HZ / 100);
c8462cc9
WF
1261
1262 /*
1263 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1264 * overheads.
1265 *
7ccb9ad5 1266 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1267 */
1268 if (hi > lo)
7ccb9ad5 1269 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1270
1271 /*
7ccb9ad5
WF
1272 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1273 * on the much more stable dirty_ratelimit. However the next pause time
1274 * will be computed based on task_ratelimit and the two rate limits may
1275 * depart considerably at some time. Especially if task_ratelimit goes
1276 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1277 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1278 * result task_ratelimit won't be executed faithfully, which could
1279 * eventually bring down dirty_ratelimit.
c8462cc9 1280 *
7ccb9ad5
WF
1281 * We apply two rules to fix it up:
1282 * 1) try to estimate the next pause time and if necessary, use a lower
1283 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1284 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1285 * 2) limit the target pause time to max_pause/2, so that the normal
1286 * small fluctuations of task_ratelimit won't trigger rule (1) and
1287 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1288 */
7ccb9ad5
WF
1289 t = min(t, 1 + max_pause / 2);
1290 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1291
1292 /*
5b9b3574
WF
1293 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1294 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1295 * When the 16 consecutive reads are often interrupted by some dirty
1296 * throttling pause during the async writes, cfq will go into idles
1297 * (deadline is fine). So push nr_dirtied_pause as high as possible
1298 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1299 */
5b9b3574
WF
1300 if (pages < DIRTY_POLL_THRESH) {
1301 t = max_pause;
1302 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1303 if (pages > DIRTY_POLL_THRESH) {
1304 pages = DIRTY_POLL_THRESH;
1305 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1306 }
1307 }
1308
7ccb9ad5
WF
1309 pause = HZ * pages / (task_ratelimit + 1);
1310 if (pause > max_pause) {
1311 t = max_pause;
1312 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1313 }
c8462cc9 1314
7ccb9ad5 1315 *nr_dirtied_pause = pages;
c8462cc9 1316 /*
7ccb9ad5 1317 * The minimal pause time will normally be half the target pause time.
c8462cc9 1318 */
5b9b3574 1319 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1320}
1321
970fb01a 1322static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1323{
2bc00aef 1324 struct bdi_writeback *wb = dtc->wb;
93f78d88 1325 unsigned long wb_reclaimable;
5a537485
MP
1326
1327 /*
de1fff37 1328 * wb_thresh is not treated as some limiting factor as
5a537485 1329 * dirty_thresh, due to reasons
de1fff37 1330 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1331 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1332 * go into state (wb_dirty >> wb_thresh) either because
1333 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1334 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1335 * dirtiers for 100 seconds until wb_dirty drops under
1336 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1337 * wb_position_ratio() will let the dirtier task progress
de1fff37 1338 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1339 */
b1cbc6d4 1340 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1341 dtc->wb_bg_thresh = dtc->thresh ?
1342 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1343
1344 /*
1345 * In order to avoid the stacked BDI deadlock we need
1346 * to ensure we accurately count the 'dirty' pages when
1347 * the threshold is low.
1348 *
1349 * Otherwise it would be possible to get thresh+n pages
1350 * reported dirty, even though there are thresh-m pages
1351 * actually dirty; with m+n sitting in the percpu
1352 * deltas.
1353 */
2bc00aef 1354 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1355 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1356 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1357 } else {
93f78d88 1358 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1359 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1360 }
1361}
1362
1da177e4
LT
1363/*
1364 * balance_dirty_pages() must be called by processes which are generating dirty
1365 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1366 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1367 * If we're over `background_thresh' then the writeback threads are woken to
1368 * perform some writeout.
1da177e4 1369 */
3a2e9a5a 1370static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1371 struct bdi_writeback *wb,
143dfe86 1372 unsigned long pages_dirtied)
1da177e4 1373{
2bc00aef
TH
1374 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1375 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1376 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1377 long period;
7ccb9ad5
WF
1378 long pause;
1379 long max_pause;
1380 long min_pause;
1381 int nr_dirtied_pause;
e50e3720 1382 bool dirty_exceeded = false;
143dfe86 1383 unsigned long task_ratelimit;
7ccb9ad5 1384 unsigned long dirty_ratelimit;
dfb8ae56 1385 struct backing_dev_info *bdi = wb->bdi;
5a537485 1386 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1387 unsigned long start_time = jiffies;
1da177e4
LT
1388
1389 for (;;) {
83712358 1390 unsigned long now = jiffies;
2bc00aef 1391 unsigned long dirty, thresh, bg_thresh;
83712358 1392
143dfe86
WF
1393 /*
1394 * Unstable writes are a feature of certain networked
1395 * filesystems (i.e. NFS) in which data may have been
1396 * written to the server's write cache, but has not yet
1397 * been flushed to permanent storage.
1398 */
5fce25a9
PZ
1399 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1400 global_page_state(NR_UNSTABLE_NFS);
2bc00aef 1401 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1402
2bc00aef 1403 global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
16c4042f 1404
5a537485 1405 if (unlikely(strictlimit)) {
970fb01a 1406 wb_dirty_limits(gdtc);
5a537485 1407
2bc00aef
TH
1408 dirty = gdtc->wb_dirty;
1409 thresh = gdtc->wb_thresh;
970fb01a 1410 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1411 } else {
2bc00aef
TH
1412 dirty = gdtc->dirty;
1413 thresh = gdtc->thresh;
1414 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1415 }
1416
16c4042f
WF
1417 /*
1418 * Throttle it only when the background writeback cannot
1419 * catch-up. This avoids (excessively) small writeouts
de1fff37 1420 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1421 *
de1fff37
TH
1422 * In strictlimit case make decision based on the wb counters
1423 * and limits. Small writeouts when the wb limits are ramping
5a537485 1424 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1425 */
5a537485 1426 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1427 current->dirty_paused_when = now;
1428 current->nr_dirtied = 0;
7ccb9ad5 1429 current->nr_dirtied_pause =
5a537485 1430 dirty_poll_interval(dirty, thresh);
16c4042f 1431 break;
83712358 1432 }
16c4042f 1433
bc05873d 1434 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1435 wb_start_background_writeback(wb);
143dfe86 1436
5a537485 1437 if (!strictlimit)
970fb01a 1438 wb_dirty_limits(gdtc);
5fce25a9 1439
2bc00aef
TH
1440 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1441 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1442
1443 wb_position_ratio(gdtc);
1444
a88a341a
TH
1445 if (dirty_exceeded && !wb->dirty_exceeded)
1446 wb->dirty_exceeded = 1;
1da177e4 1447
8a731799
TH
1448 if (time_is_before_jiffies(wb->bw_time_stamp +
1449 BANDWIDTH_INTERVAL)) {
1450 spin_lock(&wb->list_lock);
2bc00aef 1451 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1452 spin_unlock(&wb->list_lock);
1453 }
e98be2d5 1454
a88a341a 1455 dirty_ratelimit = wb->dirty_ratelimit;
daddfa3c 1456 task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
3a73dbbc 1457 RATELIMIT_CALC_SHIFT;
2bc00aef 1458 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1459 min_pause = wb_min_pause(wb, max_pause,
1460 task_ratelimit, dirty_ratelimit,
1461 &nr_dirtied_pause);
7ccb9ad5 1462
3a73dbbc 1463 if (unlikely(task_ratelimit == 0)) {
83712358 1464 period = max_pause;
c8462cc9 1465 pause = max_pause;
143dfe86 1466 goto pause;
04fbfdc1 1467 }
83712358
WF
1468 period = HZ * pages_dirtied / task_ratelimit;
1469 pause = period;
1470 if (current->dirty_paused_when)
1471 pause -= now - current->dirty_paused_when;
1472 /*
1473 * For less than 1s think time (ext3/4 may block the dirtier
1474 * for up to 800ms from time to time on 1-HDD; so does xfs,
1475 * however at much less frequency), try to compensate it in
1476 * future periods by updating the virtual time; otherwise just
1477 * do a reset, as it may be a light dirtier.
1478 */
7ccb9ad5 1479 if (pause < min_pause) {
ece13ac3 1480 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1481 gdtc->thresh,
1482 gdtc->bg_thresh,
1483 gdtc->dirty,
1484 gdtc->wb_thresh,
1485 gdtc->wb_dirty,
ece13ac3
WF
1486 dirty_ratelimit,
1487 task_ratelimit,
1488 pages_dirtied,
83712358 1489 period,
7ccb9ad5 1490 min(pause, 0L),
ece13ac3 1491 start_time);
83712358
WF
1492 if (pause < -HZ) {
1493 current->dirty_paused_when = now;
1494 current->nr_dirtied = 0;
1495 } else if (period) {
1496 current->dirty_paused_when += period;
1497 current->nr_dirtied = 0;
7ccb9ad5
WF
1498 } else if (current->nr_dirtied_pause <= pages_dirtied)
1499 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1500 break;
04fbfdc1 1501 }
7ccb9ad5
WF
1502 if (unlikely(pause > max_pause)) {
1503 /* for occasional dropped task_ratelimit */
1504 now += min(pause - max_pause, max_pause);
1505 pause = max_pause;
1506 }
143dfe86
WF
1507
1508pause:
ece13ac3 1509 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1510 gdtc->thresh,
1511 gdtc->bg_thresh,
1512 gdtc->dirty,
1513 gdtc->wb_thresh,
1514 gdtc->wb_dirty,
ece13ac3
WF
1515 dirty_ratelimit,
1516 task_ratelimit,
1517 pages_dirtied,
83712358 1518 period,
ece13ac3
WF
1519 pause,
1520 start_time);
499d05ec 1521 __set_current_state(TASK_KILLABLE);
d25105e8 1522 io_schedule_timeout(pause);
87c6a9b2 1523
83712358
WF
1524 current->dirty_paused_when = now + pause;
1525 current->nr_dirtied = 0;
7ccb9ad5 1526 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1527
ffd1f609 1528 /*
2bc00aef
TH
1529 * This is typically equal to (dirty < thresh) and can also
1530 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1531 */
1df64719 1532 if (task_ratelimit)
ffd1f609 1533 break;
499d05ec 1534
c5c6343c
WF
1535 /*
1536 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1537 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1538 * to go through, so that tasks on them still remain responsive.
1539 *
1540 * In theory 1 page is enough to keep the comsumer-producer
1541 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1542 * more page. However wb_dirty has accounting errors. So use
93f78d88 1543 * the larger and more IO friendly wb_stat_error.
c5c6343c 1544 */
2bc00aef 1545 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1546 break;
1547
499d05ec
JK
1548 if (fatal_signal_pending(current))
1549 break;
1da177e4
LT
1550 }
1551
a88a341a
TH
1552 if (!dirty_exceeded && wb->dirty_exceeded)
1553 wb->dirty_exceeded = 0;
1da177e4 1554
bc05873d 1555 if (writeback_in_progress(wb))
5b0830cb 1556 return;
1da177e4
LT
1557
1558 /*
1559 * In laptop mode, we wait until hitting the higher threshold before
1560 * starting background writeout, and then write out all the way down
1561 * to the lower threshold. So slow writers cause minimal disk activity.
1562 *
1563 * In normal mode, we start background writeout at the lower
1564 * background_thresh, to keep the amount of dirty memory low.
1565 */
143dfe86
WF
1566 if (laptop_mode)
1567 return;
1568
2bc00aef 1569 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1570 wb_start_background_writeback(wb);
1da177e4
LT
1571}
1572
9d823e8f 1573static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1574
54848d73
WF
1575/*
1576 * Normal tasks are throttled by
1577 * loop {
1578 * dirty tsk->nr_dirtied_pause pages;
1579 * take a snap in balance_dirty_pages();
1580 * }
1581 * However there is a worst case. If every task exit immediately when dirtied
1582 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1583 * called to throttle the page dirties. The solution is to save the not yet
1584 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1585 * randomly into the running tasks. This works well for the above worst case,
1586 * as the new task will pick up and accumulate the old task's leaked dirty
1587 * count and eventually get throttled.
1588 */
1589DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1590
1da177e4 1591/**
d0e1d66b 1592 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1593 * @mapping: address_space which was dirtied
1da177e4
LT
1594 *
1595 * Processes which are dirtying memory should call in here once for each page
1596 * which was newly dirtied. The function will periodically check the system's
1597 * dirty state and will initiate writeback if needed.
1598 *
1599 * On really big machines, get_writeback_state is expensive, so try to avoid
1600 * calling it too often (ratelimiting). But once we're over the dirty memory
1601 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1602 * from overshooting the limit by (ratelimit_pages) each.
1603 */
d0e1d66b 1604void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1605{
dfb8ae56
TH
1606 struct inode *inode = mapping->host;
1607 struct backing_dev_info *bdi = inode_to_bdi(inode);
1608 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1609 int ratelimit;
1610 int *p;
1da177e4 1611
36715cef
WF
1612 if (!bdi_cap_account_dirty(bdi))
1613 return;
1614
dfb8ae56
TH
1615 if (inode_cgwb_enabled(inode))
1616 wb = wb_get_create_current(bdi, GFP_KERNEL);
1617 if (!wb)
1618 wb = &bdi->wb;
1619
9d823e8f 1620 ratelimit = current->nr_dirtied_pause;
a88a341a 1621 if (wb->dirty_exceeded)
9d823e8f
WF
1622 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1623
9d823e8f 1624 preempt_disable();
1da177e4 1625 /*
9d823e8f
WF
1626 * This prevents one CPU to accumulate too many dirtied pages without
1627 * calling into balance_dirty_pages(), which can happen when there are
1628 * 1000+ tasks, all of them start dirtying pages at exactly the same
1629 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1630 */
7c8e0181 1631 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1632 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1633 *p = 0;
d3bc1fef
WF
1634 else if (unlikely(*p >= ratelimit_pages)) {
1635 *p = 0;
1636 ratelimit = 0;
1da177e4 1637 }
54848d73
WF
1638 /*
1639 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1640 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1641 * the dirty throttling and livelock other long-run dirtiers.
1642 */
7c8e0181 1643 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1644 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1645 unsigned long nr_pages_dirtied;
54848d73
WF
1646 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1647 *p -= nr_pages_dirtied;
1648 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1649 }
fa5a734e 1650 preempt_enable();
9d823e8f
WF
1651
1652 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1653 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1654
1655 wb_put(wb);
1da177e4 1656}
d0e1d66b 1657EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1658
232ea4d6 1659void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1660{
364aeb28
DR
1661 unsigned long background_thresh;
1662 unsigned long dirty_thresh;
1da177e4
LT
1663
1664 for ( ; ; ) {
16c4042f 1665 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1666 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1667
1668 /*
1669 * Boost the allowable dirty threshold a bit for page
1670 * allocators so they don't get DoS'ed by heavy writers
1671 */
1672 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1673
c24f21bd
CL
1674 if (global_page_state(NR_UNSTABLE_NFS) +
1675 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1676 break;
8aa7e847 1677 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1678
1679 /*
1680 * The caller might hold locks which can prevent IO completion
1681 * or progress in the filesystem. So we cannot just sit here
1682 * waiting for IO to complete.
1683 */
1684 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1685 break;
1da177e4
LT
1686 }
1687}
1688
1da177e4
LT
1689/*
1690 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1691 */
cccad5b9 1692int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1693 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1694{
8d65af78 1695 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1696 return 0;
1697}
1698
c2c4986e 1699#ifdef CONFIG_BLOCK
31373d09 1700void laptop_mode_timer_fn(unsigned long data)
1da177e4 1701{
31373d09
MG
1702 struct request_queue *q = (struct request_queue *)data;
1703 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1704 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1705 struct bdi_writeback *wb;
1706 struct wb_iter iter;
1da177e4 1707
31373d09
MG
1708 /*
1709 * We want to write everything out, not just down to the dirty
1710 * threshold
1711 */
a06fd6b1
TH
1712 if (!bdi_has_dirty_io(&q->backing_dev_info))
1713 return;
1714
1715 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1716 if (wb_has_dirty_io(wb))
1717 wb_start_writeback(wb, nr_pages, true,
1718 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1719}
1720
1721/*
1722 * We've spun up the disk and we're in laptop mode: schedule writeback
1723 * of all dirty data a few seconds from now. If the flush is already scheduled
1724 * then push it back - the user is still using the disk.
1725 */
31373d09 1726void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1727{
31373d09 1728 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1729}
1730
1731/*
1732 * We're in laptop mode and we've just synced. The sync's writes will have
1733 * caused another writeback to be scheduled by laptop_io_completion.
1734 * Nothing needs to be written back anymore, so we unschedule the writeback.
1735 */
1736void laptop_sync_completion(void)
1737{
31373d09
MG
1738 struct backing_dev_info *bdi;
1739
1740 rcu_read_lock();
1741
1742 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1743 del_timer(&bdi->laptop_mode_wb_timer);
1744
1745 rcu_read_unlock();
1da177e4 1746}
c2c4986e 1747#endif
1da177e4
LT
1748
1749/*
1750 * If ratelimit_pages is too high then we can get into dirty-data overload
1751 * if a large number of processes all perform writes at the same time.
1752 * If it is too low then SMP machines will call the (expensive)
1753 * get_writeback_state too often.
1754 *
1755 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1756 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1757 * thresholds.
1da177e4
LT
1758 */
1759
2d1d43f6 1760void writeback_set_ratelimit(void)
1da177e4 1761{
dcc25ae7 1762 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1763 unsigned long background_thresh;
1764 unsigned long dirty_thresh;
dcc25ae7 1765
9d823e8f 1766 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1767 dom->dirty_limit = dirty_thresh;
9d823e8f 1768 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1769 if (ratelimit_pages < 16)
1770 ratelimit_pages = 16;
1da177e4
LT
1771}
1772
0db0628d 1773static int
2f60d628
SB
1774ratelimit_handler(struct notifier_block *self, unsigned long action,
1775 void *hcpu)
1da177e4 1776{
2f60d628
SB
1777
1778 switch (action & ~CPU_TASKS_FROZEN) {
1779 case CPU_ONLINE:
1780 case CPU_DEAD:
1781 writeback_set_ratelimit();
1782 return NOTIFY_OK;
1783 default:
1784 return NOTIFY_DONE;
1785 }
1da177e4
LT
1786}
1787
0db0628d 1788static struct notifier_block ratelimit_nb = {
1da177e4
LT
1789 .notifier_call = ratelimit_handler,
1790 .next = NULL,
1791};
1792
1793/*
dc6e29da
LT
1794 * Called early on to tune the page writeback dirty limits.
1795 *
1796 * We used to scale dirty pages according to how total memory
1797 * related to pages that could be allocated for buffers (by
1798 * comparing nr_free_buffer_pages() to vm_total_pages.
1799 *
1800 * However, that was when we used "dirty_ratio" to scale with
1801 * all memory, and we don't do that any more. "dirty_ratio"
1802 * is now applied to total non-HIGHPAGE memory (by subtracting
1803 * totalhigh_pages from vm_total_pages), and as such we can't
1804 * get into the old insane situation any more where we had
1805 * large amounts of dirty pages compared to a small amount of
1806 * non-HIGHMEM memory.
1807 *
1808 * But we might still want to scale the dirty_ratio by how
1809 * much memory the box has..
1da177e4
LT
1810 */
1811void __init page_writeback_init(void)
1812{
2d1d43f6 1813 writeback_set_ratelimit();
1da177e4 1814 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1815
380c27ca 1816 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1817}
1818
f446daae
JK
1819/**
1820 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1821 * @mapping: address space structure to write
1822 * @start: starting page index
1823 * @end: ending page index (inclusive)
1824 *
1825 * This function scans the page range from @start to @end (inclusive) and tags
1826 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1827 * that write_cache_pages (or whoever calls this function) will then use
1828 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1829 * used to avoid livelocking of writeback by a process steadily creating new
1830 * dirty pages in the file (thus it is important for this function to be quick
1831 * so that it can tag pages faster than a dirtying process can create them).
1832 */
1833/*
1834 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1835 */
f446daae
JK
1836void tag_pages_for_writeback(struct address_space *mapping,
1837 pgoff_t start, pgoff_t end)
1838{
3c111a07 1839#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1840 unsigned long tagged;
1841
1842 do {
1843 spin_lock_irq(&mapping->tree_lock);
1844 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1845 &start, end, WRITEBACK_TAG_BATCH,
1846 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1847 spin_unlock_irq(&mapping->tree_lock);
1848 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1849 cond_resched();
d5ed3a4a
JK
1850 /* We check 'start' to handle wrapping when end == ~0UL */
1851 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1852}
1853EXPORT_SYMBOL(tag_pages_for_writeback);
1854
811d736f 1855/**
0ea97180 1856 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1857 * @mapping: address space structure to write
1858 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1859 * @writepage: function called for each page
1860 * @data: data passed to writepage function
811d736f 1861 *
0ea97180 1862 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1863 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1864 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1865 * and msync() need to guarantee that all the data which was dirty at the time
1866 * the call was made get new I/O started against them. If wbc->sync_mode is
1867 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1868 * existing IO to complete.
f446daae
JK
1869 *
1870 * To avoid livelocks (when other process dirties new pages), we first tag
1871 * pages which should be written back with TOWRITE tag and only then start
1872 * writing them. For data-integrity sync we have to be careful so that we do
1873 * not miss some pages (e.g., because some other process has cleared TOWRITE
1874 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1875 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1876 */
0ea97180
MS
1877int write_cache_pages(struct address_space *mapping,
1878 struct writeback_control *wbc, writepage_t writepage,
1879 void *data)
811d736f 1880{
811d736f
DH
1881 int ret = 0;
1882 int done = 0;
811d736f
DH
1883 struct pagevec pvec;
1884 int nr_pages;
31a12666 1885 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1886 pgoff_t index;
1887 pgoff_t end; /* Inclusive */
bd19e012 1888 pgoff_t done_index;
31a12666 1889 int cycled;
811d736f 1890 int range_whole = 0;
f446daae 1891 int tag;
811d736f 1892
811d736f
DH
1893 pagevec_init(&pvec, 0);
1894 if (wbc->range_cyclic) {
31a12666
NP
1895 writeback_index = mapping->writeback_index; /* prev offset */
1896 index = writeback_index;
1897 if (index == 0)
1898 cycled = 1;
1899 else
1900 cycled = 0;
811d736f
DH
1901 end = -1;
1902 } else {
1903 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1904 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1905 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1906 range_whole = 1;
31a12666 1907 cycled = 1; /* ignore range_cyclic tests */
811d736f 1908 }
6e6938b6 1909 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1910 tag = PAGECACHE_TAG_TOWRITE;
1911 else
1912 tag = PAGECACHE_TAG_DIRTY;
811d736f 1913retry:
6e6938b6 1914 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1915 tag_pages_for_writeback(mapping, index, end);
bd19e012 1916 done_index = index;
5a3d5c98
NP
1917 while (!done && (index <= end)) {
1918 int i;
1919
f446daae 1920 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1921 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1922 if (nr_pages == 0)
1923 break;
811d736f 1924
811d736f
DH
1925 for (i = 0; i < nr_pages; i++) {
1926 struct page *page = pvec.pages[i];
1927
1928 /*
d5482cdf
NP
1929 * At this point, the page may be truncated or
1930 * invalidated (changing page->mapping to NULL), or
1931 * even swizzled back from swapper_space to tmpfs file
1932 * mapping. However, page->index will not change
1933 * because we have a reference on the page.
811d736f 1934 */
d5482cdf
NP
1935 if (page->index > end) {
1936 /*
1937 * can't be range_cyclic (1st pass) because
1938 * end == -1 in that case.
1939 */
1940 done = 1;
1941 break;
1942 }
1943
cf15b07c 1944 done_index = page->index;
d5482cdf 1945
811d736f
DH
1946 lock_page(page);
1947
5a3d5c98
NP
1948 /*
1949 * Page truncated or invalidated. We can freely skip it
1950 * then, even for data integrity operations: the page
1951 * has disappeared concurrently, so there could be no
1952 * real expectation of this data interity operation
1953 * even if there is now a new, dirty page at the same
1954 * pagecache address.
1955 */
811d736f 1956 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1957continue_unlock:
811d736f
DH
1958 unlock_page(page);
1959 continue;
1960 }
1961
515f4a03
NP
1962 if (!PageDirty(page)) {
1963 /* someone wrote it for us */
1964 goto continue_unlock;
1965 }
1966
1967 if (PageWriteback(page)) {
1968 if (wbc->sync_mode != WB_SYNC_NONE)
1969 wait_on_page_writeback(page);
1970 else
1971 goto continue_unlock;
1972 }
811d736f 1973
515f4a03
NP
1974 BUG_ON(PageWriteback(page));
1975 if (!clear_page_dirty_for_io(page))
5a3d5c98 1976 goto continue_unlock;
811d736f 1977
de1414a6 1978 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1979 ret = (*writepage)(page, wbc, data);
00266770
NP
1980 if (unlikely(ret)) {
1981 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1982 unlock_page(page);
1983 ret = 0;
1984 } else {
1985 /*
1986 * done_index is set past this page,
1987 * so media errors will not choke
1988 * background writeout for the entire
1989 * file. This has consequences for
1990 * range_cyclic semantics (ie. it may
1991 * not be suitable for data integrity
1992 * writeout).
1993 */
cf15b07c 1994 done_index = page->index + 1;
00266770
NP
1995 done = 1;
1996 break;
1997 }
0b564927 1998 }
00266770 1999
546a1924
DC
2000 /*
2001 * We stop writing back only if we are not doing
2002 * integrity sync. In case of integrity sync we have to
2003 * keep going until we have written all the pages
2004 * we tagged for writeback prior to entering this loop.
2005 */
2006 if (--wbc->nr_to_write <= 0 &&
2007 wbc->sync_mode == WB_SYNC_NONE) {
2008 done = 1;
2009 break;
05fe478d 2010 }
811d736f
DH
2011 }
2012 pagevec_release(&pvec);
2013 cond_resched();
2014 }
3a4c6800 2015 if (!cycled && !done) {
811d736f 2016 /*
31a12666 2017 * range_cyclic:
811d736f
DH
2018 * We hit the last page and there is more work to be done: wrap
2019 * back to the start of the file
2020 */
31a12666 2021 cycled = 1;
811d736f 2022 index = 0;
31a12666 2023 end = writeback_index - 1;
811d736f
DH
2024 goto retry;
2025 }
0b564927
DC
2026 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2027 mapping->writeback_index = done_index;
06d6cf69 2028
811d736f
DH
2029 return ret;
2030}
0ea97180
MS
2031EXPORT_SYMBOL(write_cache_pages);
2032
2033/*
2034 * Function used by generic_writepages to call the real writepage
2035 * function and set the mapping flags on error
2036 */
2037static int __writepage(struct page *page, struct writeback_control *wbc,
2038 void *data)
2039{
2040 struct address_space *mapping = data;
2041 int ret = mapping->a_ops->writepage(page, wbc);
2042 mapping_set_error(mapping, ret);
2043 return ret;
2044}
2045
2046/**
2047 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2048 * @mapping: address space structure to write
2049 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2050 *
2051 * This is a library function, which implements the writepages()
2052 * address_space_operation.
2053 */
2054int generic_writepages(struct address_space *mapping,
2055 struct writeback_control *wbc)
2056{
9b6096a6
SL
2057 struct blk_plug plug;
2058 int ret;
2059
0ea97180
MS
2060 /* deal with chardevs and other special file */
2061 if (!mapping->a_ops->writepage)
2062 return 0;
2063
9b6096a6
SL
2064 blk_start_plug(&plug);
2065 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2066 blk_finish_plug(&plug);
2067 return ret;
0ea97180 2068}
811d736f
DH
2069
2070EXPORT_SYMBOL(generic_writepages);
2071
1da177e4
LT
2072int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2073{
22905f77
AM
2074 int ret;
2075
1da177e4
LT
2076 if (wbc->nr_to_write <= 0)
2077 return 0;
2078 if (mapping->a_ops->writepages)
d08b3851 2079 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2080 else
2081 ret = generic_writepages(mapping, wbc);
22905f77 2082 return ret;
1da177e4
LT
2083}
2084
2085/**
2086 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2087 * @page: the page to write
2088 * @wait: if true, wait on writeout
1da177e4
LT
2089 *
2090 * The page must be locked by the caller and will be unlocked upon return.
2091 *
2092 * write_one_page() returns a negative error code if I/O failed.
2093 */
2094int write_one_page(struct page *page, int wait)
2095{
2096 struct address_space *mapping = page->mapping;
2097 int ret = 0;
2098 struct writeback_control wbc = {
2099 .sync_mode = WB_SYNC_ALL,
2100 .nr_to_write = 1,
2101 };
2102
2103 BUG_ON(!PageLocked(page));
2104
2105 if (wait)
2106 wait_on_page_writeback(page);
2107
2108 if (clear_page_dirty_for_io(page)) {
2109 page_cache_get(page);
2110 ret = mapping->a_ops->writepage(page, &wbc);
2111 if (ret == 0 && wait) {
2112 wait_on_page_writeback(page);
2113 if (PageError(page))
2114 ret = -EIO;
2115 }
2116 page_cache_release(page);
2117 } else {
2118 unlock_page(page);
2119 }
2120 return ret;
2121}
2122EXPORT_SYMBOL(write_one_page);
2123
76719325
KC
2124/*
2125 * For address_spaces which do not use buffers nor write back.
2126 */
2127int __set_page_dirty_no_writeback(struct page *page)
2128{
2129 if (!PageDirty(page))
c3f0da63 2130 return !TestSetPageDirty(page);
76719325
KC
2131 return 0;
2132}
2133
e3a7cca1
ES
2134/*
2135 * Helper function for set_page_dirty family.
c4843a75
GT
2136 *
2137 * Caller must hold mem_cgroup_begin_page_stat().
2138 *
e3a7cca1
ES
2139 * NOTE: This relies on being atomic wrt interrupts.
2140 */
c4843a75
GT
2141void account_page_dirtied(struct page *page, struct address_space *mapping,
2142 struct mem_cgroup *memcg)
e3a7cca1 2143{
52ebea74
TH
2144 struct inode *inode = mapping->host;
2145
9fb0a7da
TH
2146 trace_writeback_dirty_page(page, mapping);
2147
e3a7cca1 2148 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2149 struct bdi_writeback *wb;
2150
2151 inode_attach_wb(inode, page);
2152 wb = inode_to_wb(inode);
de1414a6 2153
c4843a75 2154 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2155 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2156 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2157 __inc_wb_stat(wb, WB_RECLAIMABLE);
2158 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2159 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2160 current->nr_dirtied++;
2161 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2162 }
2163}
679ceace 2164EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2165
b9ea2515
KK
2166/*
2167 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2168 *
2169 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2170 */
c4843a75
GT
2171void account_page_cleaned(struct page *page, struct address_space *mapping,
2172 struct mem_cgroup *memcg)
b9ea2515
KK
2173{
2174 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2175 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2176 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2177 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2178 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2179 }
2180}
b9ea2515 2181
1da177e4
LT
2182/*
2183 * For address_spaces which do not use buffers. Just tag the page as dirty in
2184 * its radix tree.
2185 *
2186 * This is also used when a single buffer is being dirtied: we want to set the
2187 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2188 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2189 *
2d6d7f98
JW
2190 * The caller must ensure this doesn't race with truncation. Most will simply
2191 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2192 * the pte lock held, which also locks out truncation.
1da177e4
LT
2193 */
2194int __set_page_dirty_nobuffers(struct page *page)
2195{
c4843a75
GT
2196 struct mem_cgroup *memcg;
2197
2198 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2199 if (!TestSetPageDirty(page)) {
2200 struct address_space *mapping = page_mapping(page);
a85d9df1 2201 unsigned long flags;
1da177e4 2202
c4843a75
GT
2203 if (!mapping) {
2204 mem_cgroup_end_page_stat(memcg);
8c08540f 2205 return 1;
c4843a75 2206 }
8c08540f 2207
a85d9df1 2208 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2209 BUG_ON(page_mapping(page) != mapping);
2210 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2211 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2212 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2213 PAGECACHE_TAG_DIRTY);
a85d9df1 2214 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2215 mem_cgroup_end_page_stat(memcg);
2216
8c08540f
AM
2217 if (mapping->host) {
2218 /* !PageAnon && !swapper_space */
2219 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2220 }
4741c9fd 2221 return 1;
1da177e4 2222 }
c4843a75 2223 mem_cgroup_end_page_stat(memcg);
4741c9fd 2224 return 0;
1da177e4
LT
2225}
2226EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2227
2f800fbd
WF
2228/*
2229 * Call this whenever redirtying a page, to de-account the dirty counters
2230 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2231 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2232 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2233 * control.
2234 */
2235void account_page_redirty(struct page *page)
2236{
2237 struct address_space *mapping = page->mapping;
91018134 2238
2f800fbd 2239 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2240 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2241
2f800fbd
WF
2242 current->nr_dirtied--;
2243 dec_zone_page_state(page, NR_DIRTIED);
91018134 2244 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2245 }
2246}
2247EXPORT_SYMBOL(account_page_redirty);
2248
1da177e4
LT
2249/*
2250 * When a writepage implementation decides that it doesn't want to write this
2251 * page for some reason, it should redirty the locked page via
2252 * redirty_page_for_writepage() and it should then unlock the page and return 0
2253 */
2254int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2255{
8d38633c
KK
2256 int ret;
2257
1da177e4 2258 wbc->pages_skipped++;
8d38633c 2259 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2260 account_page_redirty(page);
8d38633c 2261 return ret;
1da177e4
LT
2262}
2263EXPORT_SYMBOL(redirty_page_for_writepage);
2264
2265/*
6746aff7
WF
2266 * Dirty a page.
2267 *
2268 * For pages with a mapping this should be done under the page lock
2269 * for the benefit of asynchronous memory errors who prefer a consistent
2270 * dirty state. This rule can be broken in some special cases,
2271 * but should be better not to.
2272 *
1da177e4
LT
2273 * If the mapping doesn't provide a set_page_dirty a_op, then
2274 * just fall through and assume that it wants buffer_heads.
2275 */
1cf6e7d8 2276int set_page_dirty(struct page *page)
1da177e4
LT
2277{
2278 struct address_space *mapping = page_mapping(page);
2279
2280 if (likely(mapping)) {
2281 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2282 /*
2283 * readahead/lru_deactivate_page could remain
2284 * PG_readahead/PG_reclaim due to race with end_page_writeback
2285 * About readahead, if the page is written, the flags would be
2286 * reset. So no problem.
2287 * About lru_deactivate_page, if the page is redirty, the flag
2288 * will be reset. So no problem. but if the page is used by readahead
2289 * it will confuse readahead and make it restart the size rampup
2290 * process. But it's a trivial problem.
2291 */
a4bb3ecd
NH
2292 if (PageReclaim(page))
2293 ClearPageReclaim(page);
9361401e
DH
2294#ifdef CONFIG_BLOCK
2295 if (!spd)
2296 spd = __set_page_dirty_buffers;
2297#endif
2298 return (*spd)(page);
1da177e4 2299 }
4741c9fd
AM
2300 if (!PageDirty(page)) {
2301 if (!TestSetPageDirty(page))
2302 return 1;
2303 }
1da177e4
LT
2304 return 0;
2305}
2306EXPORT_SYMBOL(set_page_dirty);
2307
2308/*
2309 * set_page_dirty() is racy if the caller has no reference against
2310 * page->mapping->host, and if the page is unlocked. This is because another
2311 * CPU could truncate the page off the mapping and then free the mapping.
2312 *
2313 * Usually, the page _is_ locked, or the caller is a user-space process which
2314 * holds a reference on the inode by having an open file.
2315 *
2316 * In other cases, the page should be locked before running set_page_dirty().
2317 */
2318int set_page_dirty_lock(struct page *page)
2319{
2320 int ret;
2321
7eaceacc 2322 lock_page(page);
1da177e4
LT
2323 ret = set_page_dirty(page);
2324 unlock_page(page);
2325 return ret;
2326}
2327EXPORT_SYMBOL(set_page_dirty_lock);
2328
11f81bec
TH
2329/*
2330 * This cancels just the dirty bit on the kernel page itself, it does NOT
2331 * actually remove dirty bits on any mmap's that may be around. It also
2332 * leaves the page tagged dirty, so any sync activity will still find it on
2333 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2334 * look at the dirty bits in the VM.
2335 *
2336 * Doing this should *normally* only ever be done when a page is truncated,
2337 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2338 * this when it notices that somebody has cleaned out all the buffers on a
2339 * page without actually doing it through the VM. Can you say "ext3 is
2340 * horribly ugly"? Thought you could.
2341 */
2342void cancel_dirty_page(struct page *page)
2343{
c4843a75
GT
2344 struct address_space *mapping = page_mapping(page);
2345
2346 if (mapping_cap_account_dirty(mapping)) {
2347 struct mem_cgroup *memcg;
2348
2349 memcg = mem_cgroup_begin_page_stat(page);
2350
2351 if (TestClearPageDirty(page))
2352 account_page_cleaned(page, mapping, memcg);
2353
2354 mem_cgroup_end_page_stat(memcg);
2355 } else {
2356 ClearPageDirty(page);
2357 }
11f81bec
TH
2358}
2359EXPORT_SYMBOL(cancel_dirty_page);
2360
1da177e4
LT
2361/*
2362 * Clear a page's dirty flag, while caring for dirty memory accounting.
2363 * Returns true if the page was previously dirty.
2364 *
2365 * This is for preparing to put the page under writeout. We leave the page
2366 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2367 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2368 * implementation will run either set_page_writeback() or set_page_dirty(),
2369 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2370 * back into sync.
2371 *
2372 * This incoherency between the page's dirty flag and radix-tree tag is
2373 * unfortunate, but it only exists while the page is locked.
2374 */
2375int clear_page_dirty_for_io(struct page *page)
2376{
2377 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2378 struct mem_cgroup *memcg;
2379 int ret = 0;
1da177e4 2380
79352894
NP
2381 BUG_ON(!PageLocked(page));
2382
7658cc28
LT
2383 if (mapping && mapping_cap_account_dirty(mapping)) {
2384 /*
2385 * Yes, Virginia, this is indeed insane.
2386 *
2387 * We use this sequence to make sure that
2388 * (a) we account for dirty stats properly
2389 * (b) we tell the low-level filesystem to
2390 * mark the whole page dirty if it was
2391 * dirty in a pagetable. Only to then
2392 * (c) clean the page again and return 1 to
2393 * cause the writeback.
2394 *
2395 * This way we avoid all nasty races with the
2396 * dirty bit in multiple places and clearing
2397 * them concurrently from different threads.
2398 *
2399 * Note! Normally the "set_page_dirty(page)"
2400 * has no effect on the actual dirty bit - since
2401 * that will already usually be set. But we
2402 * need the side effects, and it can help us
2403 * avoid races.
2404 *
2405 * We basically use the page "master dirty bit"
2406 * as a serialization point for all the different
2407 * threads doing their things.
7658cc28
LT
2408 */
2409 if (page_mkclean(page))
2410 set_page_dirty(page);
79352894
NP
2411 /*
2412 * We carefully synchronise fault handlers against
2413 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2414 * at this point. We do this by having them hold the
2415 * page lock while dirtying the page, and pages are
2416 * always locked coming in here, so we get the desired
2417 * exclusion.
79352894 2418 */
c4843a75 2419 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2420 if (TestClearPageDirty(page)) {
c4843a75 2421 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2422 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2423 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2424 ret = 1;
1da177e4 2425 }
c4843a75
GT
2426 mem_cgroup_end_page_stat(memcg);
2427 return ret;
1da177e4 2428 }
7658cc28 2429 return TestClearPageDirty(page);
1da177e4 2430}
58bb01a9 2431EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2432
2433int test_clear_page_writeback(struct page *page)
2434{
2435 struct address_space *mapping = page_mapping(page);
d7365e78 2436 struct mem_cgroup *memcg;
d7365e78 2437 int ret;
1da177e4 2438
6de22619 2439 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2440 if (mapping) {
91018134
TH
2441 struct inode *inode = mapping->host;
2442 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2443 unsigned long flags;
2444
19fd6231 2445 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2446 ret = TestClearPageWriteback(page);
69cb51d1 2447 if (ret) {
1da177e4
LT
2448 radix_tree_tag_clear(&mapping->page_tree,
2449 page_index(page),
2450 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2451 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2452 struct bdi_writeback *wb = inode_to_wb(inode);
2453
2454 __dec_wb_stat(wb, WB_WRITEBACK);
2455 __wb_writeout_inc(wb);
04fbfdc1 2456 }
69cb51d1 2457 }
19fd6231 2458 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2459 } else {
2460 ret = TestClearPageWriteback(page);
2461 }
99b12e3d 2462 if (ret) {
d7365e78 2463 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2464 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2465 inc_zone_page_state(page, NR_WRITTEN);
2466 }
6de22619 2467 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2468 return ret;
2469}
2470
1c8349a1 2471int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2472{
2473 struct address_space *mapping = page_mapping(page);
d7365e78 2474 struct mem_cgroup *memcg;
d7365e78 2475 int ret;
1da177e4 2476
6de22619 2477 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2478 if (mapping) {
91018134
TH
2479 struct inode *inode = mapping->host;
2480 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2481 unsigned long flags;
2482
19fd6231 2483 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2484 ret = TestSetPageWriteback(page);
69cb51d1 2485 if (!ret) {
1da177e4
LT
2486 radix_tree_tag_set(&mapping->page_tree,
2487 page_index(page),
2488 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2489 if (bdi_cap_account_writeback(bdi))
91018134 2490 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2491 }
1da177e4
LT
2492 if (!PageDirty(page))
2493 radix_tree_tag_clear(&mapping->page_tree,
2494 page_index(page),
2495 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2496 if (!keep_write)
2497 radix_tree_tag_clear(&mapping->page_tree,
2498 page_index(page),
2499 PAGECACHE_TAG_TOWRITE);
19fd6231 2500 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2501 } else {
2502 ret = TestSetPageWriteback(page);
2503 }
3a3c02ec 2504 if (!ret) {
d7365e78 2505 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2506 inc_zone_page_state(page, NR_WRITEBACK);
2507 }
6de22619 2508 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2509 return ret;
2510
2511}
1c8349a1 2512EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2513
2514/*
00128188 2515 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2516 * passed tag.
2517 */
2518int mapping_tagged(struct address_space *mapping, int tag)
2519{
72c47832 2520 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2521}
2522EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2523
2524/**
2525 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2526 * @page: The page to wait on.
2527 *
2528 * This function determines if the given page is related to a backing device
2529 * that requires page contents to be held stable during writeback. If so, then
2530 * it will wait for any pending writeback to complete.
2531 */
2532void wait_for_stable_page(struct page *page)
2533{
de1414a6
CH
2534 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2535 wait_on_page_writeback(page);
1d1d1a76
DW
2536}
2537EXPORT_SYMBOL_GPL(wait_for_stable_page);