]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page-writeback.c
writeback: only use bdi_writeback_all() for WB_SYNC_NONE writeout
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
1da177e4 37
1da177e4
LT
38/*
39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40 * will look to see if it needs to force writeback or throttling.
41 */
42static long ratelimit_pages = 32;
43
1da177e4
LT
44/*
45 * When balance_dirty_pages decides that the caller needs to perform some
46 * non-background writeback, this is how many pages it will attempt to write.
47 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
48 * large amounts of I/O are submitted.
49 */
50static inline long sync_writeback_pages(void)
51{
52 return ratelimit_pages + ratelimit_pages / 2;
53}
54
55/* The following parameters are exported via /proc/sys/vm */
56
57/*
58 * Start background writeback (via pdflush) at this percentage
59 */
1b5e62b4 60int dirty_background_ratio = 10;
1da177e4 61
2da02997
DR
62/*
63 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
64 * dirty_background_ratio * the amount of dirtyable memory
65 */
66unsigned long dirty_background_bytes;
67
195cf453
BG
68/*
69 * free highmem will not be subtracted from the total free memory
70 * for calculating free ratios if vm_highmem_is_dirtyable is true
71 */
72int vm_highmem_is_dirtyable;
73
1da177e4
LT
74/*
75 * The generator of dirty data starts writeback at this percentage
76 */
1b5e62b4 77int vm_dirty_ratio = 20;
1da177e4 78
2da02997
DR
79/*
80 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
81 * vm_dirty_ratio * the amount of dirtyable memory
82 */
83unsigned long vm_dirty_bytes;
84
1da177e4 85/*
704503d8 86 * The interval between `kupdate'-style writebacks
1da177e4 87 */
22ef37ee 88unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
89
90/*
704503d8 91 * The longest time for which data is allowed to remain dirty
1da177e4 92 */
22ef37ee 93unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
94
95/*
96 * Flag that makes the machine dump writes/reads and block dirtyings.
97 */
98int block_dump;
99
100/*
ed5b43f1
BS
101 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
102 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
103 */
104int laptop_mode;
105
106EXPORT_SYMBOL(laptop_mode);
107
108/* End of sysctl-exported parameters */
109
110
04fbfdc1
PZ
111/*
112 * Scale the writeback cache size proportional to the relative writeout speeds.
113 *
114 * We do this by keeping a floating proportion between BDIs, based on page
115 * writeback completions [end_page_writeback()]. Those devices that write out
116 * pages fastest will get the larger share, while the slower will get a smaller
117 * share.
118 *
119 * We use page writeout completions because we are interested in getting rid of
120 * dirty pages. Having them written out is the primary goal.
121 *
122 * We introduce a concept of time, a period over which we measure these events,
123 * because demand can/will vary over time. The length of this period itself is
124 * measured in page writeback completions.
125 *
126 */
127static struct prop_descriptor vm_completions;
3e26c149 128static struct prop_descriptor vm_dirties;
04fbfdc1 129
04fbfdc1
PZ
130/*
131 * couple the period to the dirty_ratio:
132 *
133 * period/2 ~ roundup_pow_of_two(dirty limit)
134 */
135static int calc_period_shift(void)
136{
137 unsigned long dirty_total;
138
2da02997
DR
139 if (vm_dirty_bytes)
140 dirty_total = vm_dirty_bytes / PAGE_SIZE;
141 else
142 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
143 100;
04fbfdc1
PZ
144 return 2 + ilog2(dirty_total - 1);
145}
146
147/*
2da02997 148 * update the period when the dirty threshold changes.
04fbfdc1 149 */
2da02997
DR
150static void update_completion_period(void)
151{
152 int shift = calc_period_shift();
153 prop_change_shift(&vm_completions, shift);
154 prop_change_shift(&vm_dirties, shift);
155}
156
157int dirty_background_ratio_handler(struct ctl_table *table, int write,
158 struct file *filp, void __user *buffer, size_t *lenp,
159 loff_t *ppos)
160{
161 int ret;
162
163 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
164 if (ret == 0 && write)
165 dirty_background_bytes = 0;
166 return ret;
167}
168
169int dirty_background_bytes_handler(struct ctl_table *table, int write,
170 struct file *filp, void __user *buffer, size_t *lenp,
171 loff_t *ppos)
172{
173 int ret;
174
175 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
176 if (ret == 0 && write)
177 dirty_background_ratio = 0;
178 return ret;
179}
180
04fbfdc1
PZ
181int dirty_ratio_handler(struct ctl_table *table, int write,
182 struct file *filp, void __user *buffer, size_t *lenp,
183 loff_t *ppos)
184{
185 int old_ratio = vm_dirty_ratio;
2da02997
DR
186 int ret;
187
188 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
04fbfdc1 189 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
190 update_completion_period();
191 vm_dirty_bytes = 0;
192 }
193 return ret;
194}
195
196
197int dirty_bytes_handler(struct ctl_table *table, int write,
198 struct file *filp, void __user *buffer, size_t *lenp,
199 loff_t *ppos)
200{
fc3501d4 201 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
202 int ret;
203
204 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
205 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
206 update_completion_period();
207 vm_dirty_ratio = 0;
04fbfdc1
PZ
208 }
209 return ret;
210}
211
212/*
213 * Increment the BDI's writeout completion count and the global writeout
214 * completion count. Called from test_clear_page_writeback().
215 */
216static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
217{
a42dde04
PZ
218 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
219 bdi->max_prop_frac);
04fbfdc1
PZ
220}
221
dd5656e5
MS
222void bdi_writeout_inc(struct backing_dev_info *bdi)
223{
224 unsigned long flags;
225
226 local_irq_save(flags);
227 __bdi_writeout_inc(bdi);
228 local_irq_restore(flags);
229}
230EXPORT_SYMBOL_GPL(bdi_writeout_inc);
231
1cf6e7d8 232void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
233{
234 prop_inc_single(&vm_dirties, &tsk->dirties);
235}
236
04fbfdc1
PZ
237/*
238 * Obtain an accurate fraction of the BDI's portion.
239 */
240static void bdi_writeout_fraction(struct backing_dev_info *bdi,
241 long *numerator, long *denominator)
242{
243 if (bdi_cap_writeback_dirty(bdi)) {
244 prop_fraction_percpu(&vm_completions, &bdi->completions,
245 numerator, denominator);
246 } else {
247 *numerator = 0;
248 *denominator = 1;
249 }
250}
251
252/*
253 * Clip the earned share of dirty pages to that which is actually available.
254 * This avoids exceeding the total dirty_limit when the floating averages
255 * fluctuate too quickly.
256 */
dcf975d5
HS
257static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
258 unsigned long dirty, unsigned long *pbdi_dirty)
04fbfdc1 259{
dcf975d5 260 unsigned long avail_dirty;
04fbfdc1 261
dcf975d5 262 avail_dirty = global_page_state(NR_FILE_DIRTY) +
04fbfdc1 263 global_page_state(NR_WRITEBACK) +
fc3ba692 264 global_page_state(NR_UNSTABLE_NFS) +
dcf975d5 265 global_page_state(NR_WRITEBACK_TEMP);
04fbfdc1 266
dcf975d5
HS
267 if (avail_dirty < dirty)
268 avail_dirty = dirty - avail_dirty;
269 else
04fbfdc1
PZ
270 avail_dirty = 0;
271
272 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
273 bdi_stat(bdi, BDI_WRITEBACK);
274
275 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
276}
277
3e26c149
PZ
278static inline void task_dirties_fraction(struct task_struct *tsk,
279 long *numerator, long *denominator)
280{
281 prop_fraction_single(&vm_dirties, &tsk->dirties,
282 numerator, denominator);
283}
284
285/*
286 * scale the dirty limit
287 *
288 * task specific dirty limit:
289 *
290 * dirty -= (dirty/8) * p_{t}
291 */
dcf975d5 292static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
3e26c149
PZ
293{
294 long numerator, denominator;
dcf975d5 295 unsigned long dirty = *pdirty;
3e26c149
PZ
296 u64 inv = dirty >> 3;
297
298 task_dirties_fraction(tsk, &numerator, &denominator);
299 inv *= numerator;
300 do_div(inv, denominator);
301
302 dirty -= inv;
303 if (dirty < *pdirty/2)
304 dirty = *pdirty/2;
305
306 *pdirty = dirty;
307}
308
189d3c4a
PZ
309/*
310 *
311 */
189d3c4a
PZ
312static unsigned int bdi_min_ratio;
313
314int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315{
316 int ret = 0;
189d3c4a 317
03ba3782 318 spin_lock(&bdi_lock);
a42dde04 319 if (min_ratio > bdi->max_ratio) {
189d3c4a 320 ret = -EINVAL;
a42dde04
PZ
321 } else {
322 min_ratio -= bdi->min_ratio;
323 if (bdi_min_ratio + min_ratio < 100) {
324 bdi_min_ratio += min_ratio;
325 bdi->min_ratio += min_ratio;
326 } else {
327 ret = -EINVAL;
328 }
329 }
03ba3782 330 spin_unlock(&bdi_lock);
a42dde04
PZ
331
332 return ret;
333}
334
335int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336{
a42dde04
PZ
337 int ret = 0;
338
339 if (max_ratio > 100)
340 return -EINVAL;
341
03ba3782 342 spin_lock(&bdi_lock);
a42dde04
PZ
343 if (bdi->min_ratio > max_ratio) {
344 ret = -EINVAL;
345 } else {
346 bdi->max_ratio = max_ratio;
347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348 }
03ba3782 349 spin_unlock(&bdi_lock);
189d3c4a
PZ
350
351 return ret;
352}
a42dde04 353EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 354
1da177e4
LT
355/*
356 * Work out the current dirty-memory clamping and background writeout
357 * thresholds.
358 *
359 * The main aim here is to lower them aggressively if there is a lot of mapped
360 * memory around. To avoid stressing page reclaim with lots of unreclaimable
361 * pages. It is better to clamp down on writers than to start swapping, and
362 * performing lots of scanning.
363 *
364 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365 *
366 * We don't permit the clamping level to fall below 5% - that is getting rather
367 * excessive.
368 *
369 * We make sure that the background writeout level is below the adjusted
370 * clamping level.
371 */
1b424464
CL
372
373static unsigned long highmem_dirtyable_memory(unsigned long total)
374{
375#ifdef CONFIG_HIGHMEM
376 int node;
377 unsigned long x = 0;
378
37b07e41 379 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
380 struct zone *z =
381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382
4f98a2fe 383 x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
1b424464
CL
384 }
385 /*
386 * Make sure that the number of highmem pages is never larger
387 * than the number of the total dirtyable memory. This can only
388 * occur in very strange VM situations but we want to make sure
389 * that this does not occur.
390 */
391 return min(x, total);
392#else
393 return 0;
394#endif
395}
396
3eefae99
SR
397/**
398 * determine_dirtyable_memory - amount of memory that may be used
399 *
400 * Returns the numebr of pages that can currently be freed and used
401 * by the kernel for direct mappings.
402 */
403unsigned long determine_dirtyable_memory(void)
1b424464
CL
404{
405 unsigned long x;
406
4f98a2fe 407 x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
195cf453
BG
408
409 if (!vm_highmem_is_dirtyable)
410 x -= highmem_dirtyable_memory(x);
411
1b424464
CL
412 return x + 1; /* Ensure that we never return 0 */
413}
414
cf0ca9fe 415void
364aeb28
DR
416get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
417 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
1da177e4 418{
364aeb28
DR
419 unsigned long background;
420 unsigned long dirty;
1b424464 421 unsigned long available_memory = determine_dirtyable_memory();
1da177e4
LT
422 struct task_struct *tsk;
423
2da02997
DR
424 if (vm_dirty_bytes)
425 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
426 else {
427 int dirty_ratio;
428
429 dirty_ratio = vm_dirty_ratio;
430 if (dirty_ratio < 5)
431 dirty_ratio = 5;
432 dirty = (dirty_ratio * available_memory) / 100;
433 }
1da177e4 434
2da02997
DR
435 if (dirty_background_bytes)
436 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
437 else
438 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 439
2da02997
DR
440 if (background >= dirty)
441 background = dirty / 2;
1da177e4
LT
442 tsk = current;
443 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
444 background += background / 4;
445 dirty += dirty / 4;
446 }
447 *pbackground = background;
448 *pdirty = dirty;
04fbfdc1
PZ
449
450 if (bdi) {
189d3c4a 451 u64 bdi_dirty;
04fbfdc1
PZ
452 long numerator, denominator;
453
454 /*
455 * Calculate this BDI's share of the dirty ratio.
456 */
457 bdi_writeout_fraction(bdi, &numerator, &denominator);
458
189d3c4a 459 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
04fbfdc1
PZ
460 bdi_dirty *= numerator;
461 do_div(bdi_dirty, denominator);
189d3c4a 462 bdi_dirty += (dirty * bdi->min_ratio) / 100;
a42dde04
PZ
463 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
464 bdi_dirty = dirty * bdi->max_ratio / 100;
04fbfdc1
PZ
465
466 *pbdi_dirty = bdi_dirty;
467 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
3e26c149 468 task_dirty_limit(current, pbdi_dirty);
04fbfdc1 469 }
1da177e4
LT
470}
471
472/*
473 * balance_dirty_pages() must be called by processes which are generating dirty
474 * data. It looks at the number of dirty pages in the machine and will force
475 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
476 * If we're over `background_thresh' then pdflush is woken to perform some
477 * writeout.
478 */
479static void balance_dirty_pages(struct address_space *mapping)
480{
5fce25a9
PZ
481 long nr_reclaimable, bdi_nr_reclaimable;
482 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
483 unsigned long background_thresh;
484 unsigned long dirty_thresh;
485 unsigned long bdi_thresh;
1da177e4
LT
486 unsigned long pages_written = 0;
487 unsigned long write_chunk = sync_writeback_pages();
488
489 struct backing_dev_info *bdi = mapping->backing_dev_info;
490
491 for (;;) {
492 struct writeback_control wbc = {
493 .bdi = bdi,
494 .sync_mode = WB_SYNC_NONE,
495 .older_than_this = NULL,
496 .nr_to_write = write_chunk,
111ebb6e 497 .range_cyclic = 1,
1da177e4
LT
498 };
499
04fbfdc1
PZ
500 get_dirty_limits(&background_thresh, &dirty_thresh,
501 &bdi_thresh, bdi);
5fce25a9
PZ
502
503 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
504 global_page_state(NR_UNSTABLE_NFS);
505 nr_writeback = global_page_state(NR_WRITEBACK);
506
04fbfdc1
PZ
507 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
508 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
5fce25a9 509
04fbfdc1
PZ
510 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
511 break;
1da177e4 512
5fce25a9
PZ
513 /*
514 * Throttle it only when the background writeback cannot
515 * catch-up. This avoids (excessively) small writeouts
516 * when the bdi limits are ramping up.
517 */
518 if (nr_reclaimable + nr_writeback <
519 (background_thresh + dirty_thresh) / 2)
520 break;
521
04fbfdc1
PZ
522 if (!bdi->dirty_exceeded)
523 bdi->dirty_exceeded = 1;
1da177e4
LT
524
525 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
526 * Unstable writes are a feature of certain networked
527 * filesystems (i.e. NFS) in which data may have been
528 * written to the server's write cache, but has not yet
529 * been flushed to permanent storage.
d7831a0b
RK
530 * Only move pages to writeback if this bdi is over its
531 * threshold otherwise wait until the disk writes catch
532 * up.
1da177e4 533 */
d7831a0b 534 if (bdi_nr_reclaimable > bdi_thresh) {
03ba3782 535 writeback_inodes_wbc(&wbc);
1da177e4 536 pages_written += write_chunk - wbc.nr_to_write;
04fbfdc1
PZ
537 get_dirty_limits(&background_thresh, &dirty_thresh,
538 &bdi_thresh, bdi);
539 }
540
541 /*
542 * In order to avoid the stacked BDI deadlock we need
543 * to ensure we accurately count the 'dirty' pages when
544 * the threshold is low.
545 *
546 * Otherwise it would be possible to get thresh+n pages
547 * reported dirty, even though there are thresh-m pages
548 * actually dirty; with m+n sitting in the percpu
549 * deltas.
550 */
551 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
552 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
553 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
554 } else if (bdi_nr_reclaimable) {
555 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
556 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
1da177e4 557 }
04fbfdc1
PZ
558
559 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
560 break;
561 if (pages_written >= write_chunk)
562 break; /* We've done our duty */
563
03ba3782 564 schedule_timeout(1);
1da177e4
LT
565 }
566
04fbfdc1
PZ
567 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
568 bdi->dirty_exceeded)
569 bdi->dirty_exceeded = 0;
1da177e4
LT
570
571 if (writeback_in_progress(bdi))
572 return; /* pdflush is already working this queue */
573
574 /*
575 * In laptop mode, we wait until hitting the higher threshold before
576 * starting background writeout, and then write out all the way down
577 * to the lower threshold. So slow writers cause minimal disk activity.
578 *
579 * In normal mode, we start background writeout at the lower
580 * background_thresh, to keep the amount of dirty memory low.
581 */
582 if ((laptop_mode && pages_written) ||
03ba3782
JA
583 (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY)
584 + global_page_state(NR_UNSTABLE_NFS))
585 > background_thresh))) {
586 struct writeback_control wbc = {
587 .bdi = bdi,
588 .sync_mode = WB_SYNC_NONE,
589 .nr_to_write = nr_writeback,
590 };
591
592
593 bdi_start_writeback(&wbc);
594 }
1da177e4
LT
595}
596
a200ee18 597void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 598{
a200ee18 599 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
600 struct address_space *mapping = page_mapping(page);
601
602 if (mapping)
603 balance_dirty_pages_ratelimited(mapping);
604 }
605}
606
245b2e70
TH
607static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
608
1da177e4 609/**
fa5a734e 610 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 611 * @mapping: address_space which was dirtied
a580290c 612 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
613 *
614 * Processes which are dirtying memory should call in here once for each page
615 * which was newly dirtied. The function will periodically check the system's
616 * dirty state and will initiate writeback if needed.
617 *
618 * On really big machines, get_writeback_state is expensive, so try to avoid
619 * calling it too often (ratelimiting). But once we're over the dirty memory
620 * limit we decrease the ratelimiting by a lot, to prevent individual processes
621 * from overshooting the limit by (ratelimit_pages) each.
622 */
fa5a734e
AM
623void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
624 unsigned long nr_pages_dirtied)
1da177e4 625{
fa5a734e
AM
626 unsigned long ratelimit;
627 unsigned long *p;
1da177e4
LT
628
629 ratelimit = ratelimit_pages;
04fbfdc1 630 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
631 ratelimit = 8;
632
633 /*
634 * Check the rate limiting. Also, we do not want to throttle real-time
635 * tasks in balance_dirty_pages(). Period.
636 */
fa5a734e 637 preempt_disable();
245b2e70 638 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
639 *p += nr_pages_dirtied;
640 if (unlikely(*p >= ratelimit)) {
641 *p = 0;
642 preempt_enable();
1da177e4
LT
643 balance_dirty_pages(mapping);
644 return;
645 }
fa5a734e 646 preempt_enable();
1da177e4 647}
fa5a734e 648EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 649
232ea4d6 650void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 651{
364aeb28
DR
652 unsigned long background_thresh;
653 unsigned long dirty_thresh;
1da177e4
LT
654
655 for ( ; ; ) {
04fbfdc1 656 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
1da177e4
LT
657
658 /*
659 * Boost the allowable dirty threshold a bit for page
660 * allocators so they don't get DoS'ed by heavy writers
661 */
662 dirty_thresh += dirty_thresh / 10; /* wheeee... */
663
c24f21bd
CL
664 if (global_page_state(NR_UNSTABLE_NFS) +
665 global_page_state(NR_WRITEBACK) <= dirty_thresh)
666 break;
8aa7e847 667 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
668
669 /*
670 * The caller might hold locks which can prevent IO completion
671 * or progress in the filesystem. So we cannot just sit here
672 * waiting for IO to complete.
673 */
674 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
675 break;
1da177e4
LT
676 }
677}
678
1da177e4
LT
679static void laptop_timer_fn(unsigned long unused);
680
8d06afab 681static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
1da177e4 682
1da177e4
LT
683/*
684 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685 */
686int dirty_writeback_centisecs_handler(ctl_table *table, int write,
3e733f07 687 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 688{
704503d8 689 proc_dointvec(table, write, file, buffer, length, ppos);
1da177e4
LT
690 return 0;
691}
692
03ba3782 693static void do_laptop_sync(struct work_struct *work)
1da177e4 694{
03ba3782
JA
695 wakeup_flusher_threads(0);
696 kfree(work);
1da177e4
LT
697}
698
699static void laptop_timer_fn(unsigned long unused)
700{
03ba3782
JA
701 struct work_struct *work;
702
703 work = kmalloc(sizeof(*work), GFP_ATOMIC);
704 if (work) {
705 INIT_WORK(work, do_laptop_sync);
706 schedule_work(work);
707 }
1da177e4
LT
708}
709
710/*
711 * We've spun up the disk and we're in laptop mode: schedule writeback
712 * of all dirty data a few seconds from now. If the flush is already scheduled
713 * then push it back - the user is still using the disk.
714 */
715void laptop_io_completion(void)
716{
ed5b43f1 717 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
718}
719
720/*
721 * We're in laptop mode and we've just synced. The sync's writes will have
722 * caused another writeback to be scheduled by laptop_io_completion.
723 * Nothing needs to be written back anymore, so we unschedule the writeback.
724 */
725void laptop_sync_completion(void)
726{
727 del_timer(&laptop_mode_wb_timer);
728}
729
730/*
731 * If ratelimit_pages is too high then we can get into dirty-data overload
732 * if a large number of processes all perform writes at the same time.
733 * If it is too low then SMP machines will call the (expensive)
734 * get_writeback_state too often.
735 *
736 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
737 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
738 * thresholds before writeback cuts in.
739 *
740 * But the limit should not be set too high. Because it also controls the
741 * amount of memory which the balance_dirty_pages() caller has to write back.
742 * If this is too large then the caller will block on the IO queue all the
743 * time. So limit it to four megabytes - the balance_dirty_pages() caller
744 * will write six megabyte chunks, max.
745 */
746
2d1d43f6 747void writeback_set_ratelimit(void)
1da177e4 748{
40c99aae 749 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
750 if (ratelimit_pages < 16)
751 ratelimit_pages = 16;
752 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
753 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
754}
755
26c2143b 756static int __cpuinit
1da177e4
LT
757ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
758{
2d1d43f6 759 writeback_set_ratelimit();
aa0f0303 760 return NOTIFY_DONE;
1da177e4
LT
761}
762
74b85f37 763static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
764 .notifier_call = ratelimit_handler,
765 .next = NULL,
766};
767
768/*
dc6e29da
LT
769 * Called early on to tune the page writeback dirty limits.
770 *
771 * We used to scale dirty pages according to how total memory
772 * related to pages that could be allocated for buffers (by
773 * comparing nr_free_buffer_pages() to vm_total_pages.
774 *
775 * However, that was when we used "dirty_ratio" to scale with
776 * all memory, and we don't do that any more. "dirty_ratio"
777 * is now applied to total non-HIGHPAGE memory (by subtracting
778 * totalhigh_pages from vm_total_pages), and as such we can't
779 * get into the old insane situation any more where we had
780 * large amounts of dirty pages compared to a small amount of
781 * non-HIGHMEM memory.
782 *
783 * But we might still want to scale the dirty_ratio by how
784 * much memory the box has..
1da177e4
LT
785 */
786void __init page_writeback_init(void)
787{
04fbfdc1
PZ
788 int shift;
789
2d1d43f6 790 writeback_set_ratelimit();
1da177e4 791 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
792
793 shift = calc_period_shift();
794 prop_descriptor_init(&vm_completions, shift);
3e26c149 795 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
796}
797
811d736f 798/**
0ea97180 799 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
800 * @mapping: address space structure to write
801 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
802 * @writepage: function called for each page
803 * @data: data passed to writepage function
811d736f 804 *
0ea97180 805 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
806 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
807 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
808 * and msync() need to guarantee that all the data which was dirty at the time
809 * the call was made get new I/O started against them. If wbc->sync_mode is
810 * WB_SYNC_ALL then we were called for data integrity and we must wait for
811 * existing IO to complete.
811d736f 812 */
0ea97180
MS
813int write_cache_pages(struct address_space *mapping,
814 struct writeback_control *wbc, writepage_t writepage,
815 void *data)
811d736f
DH
816{
817 struct backing_dev_info *bdi = mapping->backing_dev_info;
818 int ret = 0;
819 int done = 0;
811d736f
DH
820 struct pagevec pvec;
821 int nr_pages;
31a12666 822 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
823 pgoff_t index;
824 pgoff_t end; /* Inclusive */
bd19e012 825 pgoff_t done_index;
31a12666 826 int cycled;
811d736f 827 int range_whole = 0;
17bc6c30 828 long nr_to_write = wbc->nr_to_write;
811d736f
DH
829
830 if (wbc->nonblocking && bdi_write_congested(bdi)) {
831 wbc->encountered_congestion = 1;
832 return 0;
833 }
834
811d736f
DH
835 pagevec_init(&pvec, 0);
836 if (wbc->range_cyclic) {
31a12666
NP
837 writeback_index = mapping->writeback_index; /* prev offset */
838 index = writeback_index;
839 if (index == 0)
840 cycled = 1;
841 else
842 cycled = 0;
811d736f
DH
843 end = -1;
844 } else {
845 index = wbc->range_start >> PAGE_CACHE_SHIFT;
846 end = wbc->range_end >> PAGE_CACHE_SHIFT;
847 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
848 range_whole = 1;
31a12666 849 cycled = 1; /* ignore range_cyclic tests */
811d736f
DH
850 }
851retry:
bd19e012 852 done_index = index;
5a3d5c98
NP
853 while (!done && (index <= end)) {
854 int i;
855
856 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
857 PAGECACHE_TAG_DIRTY,
858 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
859 if (nr_pages == 0)
860 break;
811d736f 861
811d736f
DH
862 for (i = 0; i < nr_pages; i++) {
863 struct page *page = pvec.pages[i];
864
865 /*
d5482cdf
NP
866 * At this point, the page may be truncated or
867 * invalidated (changing page->mapping to NULL), or
868 * even swizzled back from swapper_space to tmpfs file
869 * mapping. However, page->index will not change
870 * because we have a reference on the page.
811d736f 871 */
d5482cdf
NP
872 if (page->index > end) {
873 /*
874 * can't be range_cyclic (1st pass) because
875 * end == -1 in that case.
876 */
877 done = 1;
878 break;
879 }
880
881 done_index = page->index + 1;
882
811d736f
DH
883 lock_page(page);
884
5a3d5c98
NP
885 /*
886 * Page truncated or invalidated. We can freely skip it
887 * then, even for data integrity operations: the page
888 * has disappeared concurrently, so there could be no
889 * real expectation of this data interity operation
890 * even if there is now a new, dirty page at the same
891 * pagecache address.
892 */
811d736f 893 if (unlikely(page->mapping != mapping)) {
5a3d5c98 894continue_unlock:
811d736f
DH
895 unlock_page(page);
896 continue;
897 }
898
515f4a03
NP
899 if (!PageDirty(page)) {
900 /* someone wrote it for us */
901 goto continue_unlock;
902 }
903
904 if (PageWriteback(page)) {
905 if (wbc->sync_mode != WB_SYNC_NONE)
906 wait_on_page_writeback(page);
907 else
908 goto continue_unlock;
909 }
811d736f 910
515f4a03
NP
911 BUG_ON(PageWriteback(page));
912 if (!clear_page_dirty_for_io(page))
5a3d5c98 913 goto continue_unlock;
811d736f 914
0ea97180 915 ret = (*writepage)(page, wbc, data);
00266770
NP
916 if (unlikely(ret)) {
917 if (ret == AOP_WRITEPAGE_ACTIVATE) {
918 unlock_page(page);
919 ret = 0;
920 } else {
921 /*
922 * done_index is set past this page,
923 * so media errors will not choke
924 * background writeout for the entire
925 * file. This has consequences for
926 * range_cyclic semantics (ie. it may
927 * not be suitable for data integrity
928 * writeout).
929 */
930 done = 1;
931 break;
932 }
933 }
934
89e12190 935 if (nr_to_write > 0) {
dcf6a79d 936 nr_to_write--;
89e12190
FC
937 if (nr_to_write == 0 &&
938 wbc->sync_mode == WB_SYNC_NONE) {
939 /*
940 * We stop writing back only if we are
941 * not doing integrity sync. In case of
942 * integrity sync we have to keep going
943 * because someone may be concurrently
944 * dirtying pages, and we might have
945 * synced a lot of newly appeared dirty
946 * pages, but have not synced all of the
947 * old dirty pages.
948 */
949 done = 1;
950 break;
951 }
05fe478d 952 }
dcf6a79d 953
811d736f
DH
954 if (wbc->nonblocking && bdi_write_congested(bdi)) {
955 wbc->encountered_congestion = 1;
956 done = 1;
82fd1a9a 957 break;
811d736f
DH
958 }
959 }
960 pagevec_release(&pvec);
961 cond_resched();
962 }
3a4c6800 963 if (!cycled && !done) {
811d736f 964 /*
31a12666 965 * range_cyclic:
811d736f
DH
966 * We hit the last page and there is more work to be done: wrap
967 * back to the start of the file
968 */
31a12666 969 cycled = 1;
811d736f 970 index = 0;
31a12666 971 end = writeback_index - 1;
811d736f
DH
972 goto retry;
973 }
17bc6c30
AK
974 if (!wbc->no_nrwrite_index_update) {
975 if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
bd19e012 976 mapping->writeback_index = done_index;
17bc6c30
AK
977 wbc->nr_to_write = nr_to_write;
978 }
06d6cf69 979
811d736f
DH
980 return ret;
981}
0ea97180
MS
982EXPORT_SYMBOL(write_cache_pages);
983
984/*
985 * Function used by generic_writepages to call the real writepage
986 * function and set the mapping flags on error
987 */
988static int __writepage(struct page *page, struct writeback_control *wbc,
989 void *data)
990{
991 struct address_space *mapping = data;
992 int ret = mapping->a_ops->writepage(page, wbc);
993 mapping_set_error(mapping, ret);
994 return ret;
995}
996
997/**
998 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
999 * @mapping: address space structure to write
1000 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1001 *
1002 * This is a library function, which implements the writepages()
1003 * address_space_operation.
1004 */
1005int generic_writepages(struct address_space *mapping,
1006 struct writeback_control *wbc)
1007{
1008 /* deal with chardevs and other special file */
1009 if (!mapping->a_ops->writepage)
1010 return 0;
1011
1012 return write_cache_pages(mapping, wbc, __writepage, mapping);
1013}
811d736f
DH
1014
1015EXPORT_SYMBOL(generic_writepages);
1016
1da177e4
LT
1017int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1018{
22905f77
AM
1019 int ret;
1020
1da177e4
LT
1021 if (wbc->nr_to_write <= 0)
1022 return 0;
1023 if (mapping->a_ops->writepages)
d08b3851 1024 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1025 else
1026 ret = generic_writepages(mapping, wbc);
22905f77 1027 return ret;
1da177e4
LT
1028}
1029
1030/**
1031 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1032 * @page: the page to write
1033 * @wait: if true, wait on writeout
1da177e4
LT
1034 *
1035 * The page must be locked by the caller and will be unlocked upon return.
1036 *
1037 * write_one_page() returns a negative error code if I/O failed.
1038 */
1039int write_one_page(struct page *page, int wait)
1040{
1041 struct address_space *mapping = page->mapping;
1042 int ret = 0;
1043 struct writeback_control wbc = {
1044 .sync_mode = WB_SYNC_ALL,
1045 .nr_to_write = 1,
1046 };
1047
1048 BUG_ON(!PageLocked(page));
1049
1050 if (wait)
1051 wait_on_page_writeback(page);
1052
1053 if (clear_page_dirty_for_io(page)) {
1054 page_cache_get(page);
1055 ret = mapping->a_ops->writepage(page, &wbc);
1056 if (ret == 0 && wait) {
1057 wait_on_page_writeback(page);
1058 if (PageError(page))
1059 ret = -EIO;
1060 }
1061 page_cache_release(page);
1062 } else {
1063 unlock_page(page);
1064 }
1065 return ret;
1066}
1067EXPORT_SYMBOL(write_one_page);
1068
76719325
KC
1069/*
1070 * For address_spaces which do not use buffers nor write back.
1071 */
1072int __set_page_dirty_no_writeback(struct page *page)
1073{
1074 if (!PageDirty(page))
1075 SetPageDirty(page);
1076 return 0;
1077}
1078
e3a7cca1
ES
1079/*
1080 * Helper function for set_page_dirty family.
1081 * NOTE: This relies on being atomic wrt interrupts.
1082 */
1083void account_page_dirtied(struct page *page, struct address_space *mapping)
1084{
1085 if (mapping_cap_account_dirty(mapping)) {
1086 __inc_zone_page_state(page, NR_FILE_DIRTY);
1087 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1088 task_dirty_inc(current);
1089 task_io_account_write(PAGE_CACHE_SIZE);
1090 }
1091}
1092
1da177e4
LT
1093/*
1094 * For address_spaces which do not use buffers. Just tag the page as dirty in
1095 * its radix tree.
1096 *
1097 * This is also used when a single buffer is being dirtied: we want to set the
1098 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1099 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1100 *
1101 * Most callers have locked the page, which pins the address_space in memory.
1102 * But zap_pte_range() does not lock the page, however in that case the
1103 * mapping is pinned by the vma's ->vm_file reference.
1104 *
1105 * We take care to handle the case where the page was truncated from the
183ff22b 1106 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1107 */
1108int __set_page_dirty_nobuffers(struct page *page)
1109{
1da177e4
LT
1110 if (!TestSetPageDirty(page)) {
1111 struct address_space *mapping = page_mapping(page);
1112 struct address_space *mapping2;
1113
8c08540f
AM
1114 if (!mapping)
1115 return 1;
1116
19fd6231 1117 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1118 mapping2 = page_mapping(page);
1119 if (mapping2) { /* Race with truncate? */
1120 BUG_ON(mapping2 != mapping);
787d2214 1121 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1122 account_page_dirtied(page, mapping);
8c08540f
AM
1123 radix_tree_tag_set(&mapping->page_tree,
1124 page_index(page), PAGECACHE_TAG_DIRTY);
1125 }
19fd6231 1126 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1127 if (mapping->host) {
1128 /* !PageAnon && !swapper_space */
1129 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1130 }
4741c9fd 1131 return 1;
1da177e4 1132 }
4741c9fd 1133 return 0;
1da177e4
LT
1134}
1135EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1136
1137/*
1138 * When a writepage implementation decides that it doesn't want to write this
1139 * page for some reason, it should redirty the locked page via
1140 * redirty_page_for_writepage() and it should then unlock the page and return 0
1141 */
1142int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1143{
1144 wbc->pages_skipped++;
1145 return __set_page_dirty_nobuffers(page);
1146}
1147EXPORT_SYMBOL(redirty_page_for_writepage);
1148
1149/*
1150 * If the mapping doesn't provide a set_page_dirty a_op, then
1151 * just fall through and assume that it wants buffer_heads.
1152 */
1cf6e7d8 1153int set_page_dirty(struct page *page)
1da177e4
LT
1154{
1155 struct address_space *mapping = page_mapping(page);
1156
1157 if (likely(mapping)) {
1158 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
9361401e
DH
1159#ifdef CONFIG_BLOCK
1160 if (!spd)
1161 spd = __set_page_dirty_buffers;
1162#endif
1163 return (*spd)(page);
1da177e4 1164 }
4741c9fd
AM
1165 if (!PageDirty(page)) {
1166 if (!TestSetPageDirty(page))
1167 return 1;
1168 }
1da177e4
LT
1169 return 0;
1170}
1171EXPORT_SYMBOL(set_page_dirty);
1172
1173/*
1174 * set_page_dirty() is racy if the caller has no reference against
1175 * page->mapping->host, and if the page is unlocked. This is because another
1176 * CPU could truncate the page off the mapping and then free the mapping.
1177 *
1178 * Usually, the page _is_ locked, or the caller is a user-space process which
1179 * holds a reference on the inode by having an open file.
1180 *
1181 * In other cases, the page should be locked before running set_page_dirty().
1182 */
1183int set_page_dirty_lock(struct page *page)
1184{
1185 int ret;
1186
db37648c 1187 lock_page_nosync(page);
1da177e4
LT
1188 ret = set_page_dirty(page);
1189 unlock_page(page);
1190 return ret;
1191}
1192EXPORT_SYMBOL(set_page_dirty_lock);
1193
1da177e4
LT
1194/*
1195 * Clear a page's dirty flag, while caring for dirty memory accounting.
1196 * Returns true if the page was previously dirty.
1197 *
1198 * This is for preparing to put the page under writeout. We leave the page
1199 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1200 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1201 * implementation will run either set_page_writeback() or set_page_dirty(),
1202 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1203 * back into sync.
1204 *
1205 * This incoherency between the page's dirty flag and radix-tree tag is
1206 * unfortunate, but it only exists while the page is locked.
1207 */
1208int clear_page_dirty_for_io(struct page *page)
1209{
1210 struct address_space *mapping = page_mapping(page);
1211
79352894
NP
1212 BUG_ON(!PageLocked(page));
1213
fe3cba17 1214 ClearPageReclaim(page);
7658cc28
LT
1215 if (mapping && mapping_cap_account_dirty(mapping)) {
1216 /*
1217 * Yes, Virginia, this is indeed insane.
1218 *
1219 * We use this sequence to make sure that
1220 * (a) we account for dirty stats properly
1221 * (b) we tell the low-level filesystem to
1222 * mark the whole page dirty if it was
1223 * dirty in a pagetable. Only to then
1224 * (c) clean the page again and return 1 to
1225 * cause the writeback.
1226 *
1227 * This way we avoid all nasty races with the
1228 * dirty bit in multiple places and clearing
1229 * them concurrently from different threads.
1230 *
1231 * Note! Normally the "set_page_dirty(page)"
1232 * has no effect on the actual dirty bit - since
1233 * that will already usually be set. But we
1234 * need the side effects, and it can help us
1235 * avoid races.
1236 *
1237 * We basically use the page "master dirty bit"
1238 * as a serialization point for all the different
1239 * threads doing their things.
7658cc28
LT
1240 */
1241 if (page_mkclean(page))
1242 set_page_dirty(page);
79352894
NP
1243 /*
1244 * We carefully synchronise fault handlers against
1245 * installing a dirty pte and marking the page dirty
1246 * at this point. We do this by having them hold the
1247 * page lock at some point after installing their
1248 * pte, but before marking the page dirty.
1249 * Pages are always locked coming in here, so we get
1250 * the desired exclusion. See mm/memory.c:do_wp_page()
1251 * for more comments.
1252 */
7658cc28 1253 if (TestClearPageDirty(page)) {
8c08540f 1254 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1255 dec_bdi_stat(mapping->backing_dev_info,
1256 BDI_RECLAIMABLE);
7658cc28 1257 return 1;
1da177e4 1258 }
7658cc28 1259 return 0;
1da177e4 1260 }
7658cc28 1261 return TestClearPageDirty(page);
1da177e4 1262}
58bb01a9 1263EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1264
1265int test_clear_page_writeback(struct page *page)
1266{
1267 struct address_space *mapping = page_mapping(page);
1268 int ret;
1269
1270 if (mapping) {
69cb51d1 1271 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1272 unsigned long flags;
1273
19fd6231 1274 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1275 ret = TestClearPageWriteback(page);
69cb51d1 1276 if (ret) {
1da177e4
LT
1277 radix_tree_tag_clear(&mapping->page_tree,
1278 page_index(page),
1279 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1280 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1281 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1282 __bdi_writeout_inc(bdi);
1283 }
69cb51d1 1284 }
19fd6231 1285 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1286 } else {
1287 ret = TestClearPageWriteback(page);
1288 }
d688abf5
AM
1289 if (ret)
1290 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1291 return ret;
1292}
1293
1294int test_set_page_writeback(struct page *page)
1295{
1296 struct address_space *mapping = page_mapping(page);
1297 int ret;
1298
1299 if (mapping) {
69cb51d1 1300 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1301 unsigned long flags;
1302
19fd6231 1303 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1304 ret = TestSetPageWriteback(page);
69cb51d1 1305 if (!ret) {
1da177e4
LT
1306 radix_tree_tag_set(&mapping->page_tree,
1307 page_index(page),
1308 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1309 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1310 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1311 }
1da177e4
LT
1312 if (!PageDirty(page))
1313 radix_tree_tag_clear(&mapping->page_tree,
1314 page_index(page),
1315 PAGECACHE_TAG_DIRTY);
19fd6231 1316 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1317 } else {
1318 ret = TestSetPageWriteback(page);
1319 }
d688abf5
AM
1320 if (!ret)
1321 inc_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1322 return ret;
1323
1324}
1325EXPORT_SYMBOL(test_set_page_writeback);
1326
1327/*
00128188 1328 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1329 * passed tag.
1330 */
1331int mapping_tagged(struct address_space *mapping, int tag)
1332{
1da177e4 1333 int ret;
00128188 1334 rcu_read_lock();
1da177e4 1335 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1336 rcu_read_unlock();
1da177e4
LT
1337 return ret;
1338}
1339EXPORT_SYMBOL(mapping_tagged);