]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
de5dce59 49#include <xen/xen.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4
LT
75#include "internal.h"
76
c8e251fa
CS
77/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 79#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 80
72812019
LS
81#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82DEFINE_PER_CPU(int, numa_node);
83EXPORT_PER_CPU_SYMBOL(numa_node);
84#endif
85
4518085e
KW
86DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87
7aac7898
LS
88#ifdef CONFIG_HAVE_MEMORYLESS_NODES
89/*
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
94 */
95DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 97int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
98#endif
99
bd233f53
MG
100/* work_structs for global per-cpu drains */
101DEFINE_MUTEX(pcpu_drain_mutex);
102DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103
38addce8 104#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 105volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
106EXPORT_SYMBOL(latent_entropy);
107#endif
108
1da177e4 109/*
13808910 110 * Array of node states.
1da177e4 111 */
13808910
CL
112nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115#ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117#ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 119#endif
20b2f52b 120 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
121 [N_CPU] = { { [0] = 1UL } },
122#endif /* NUMA */
123};
124EXPORT_SYMBOL(node_states);
125
c3d5f5f0
JL
126/* Protect totalram_pages and zone->managed_pages */
127static DEFINE_SPINLOCK(managed_page_count_lock);
128
6c231b7b 129unsigned long totalram_pages __read_mostly;
cb45b0e9 130unsigned long totalreserve_pages __read_mostly;
e48322ab 131unsigned long totalcma_pages __read_mostly;
ab8fabd4 132
1b76b02f 133int percpu_pagelist_fraction;
dcce284a 134gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 135
bb14c2c7
VB
136/*
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
143 */
144static inline int get_pcppage_migratetype(struct page *page)
145{
146 return page->index;
147}
148
149static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150{
151 page->index = migratetype;
152}
153
452aa699
RW
154#ifdef CONFIG_PM_SLEEP
155/*
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
162 */
c9e664f1
RW
163
164static gfp_t saved_gfp_mask;
165
166void pm_restore_gfp_mask(void)
452aa699
RW
167{
168 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
452aa699
RW
173}
174
c9e664f1 175void pm_restrict_gfp_mask(void)
452aa699 176{
452aa699 177 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
d0164adc 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 181}
f90ac398
MG
182
183bool pm_suspended_storage(void)
184{
d0164adc 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
186 return false;
187 return true;
188}
452aa699
RW
189#endif /* CONFIG_PM_SLEEP */
190
d9c23400 191#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 192unsigned int pageblock_order __read_mostly;
d9c23400
MG
193#endif
194
d98c7a09 195static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 196
1da177e4
LT
197/*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
1da177e4 207 */
2f1b6248 208int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
2f1b6248 210 256,
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
2f1b6248 213 256,
fb0e7942 214#endif
e53ef38d 215#ifdef CONFIG_HIGHMEM
2a1e274a 216 32,
e53ef38d 217#endif
2a1e274a 218 32,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
2c85f51d
JB
268static unsigned long __meminitdata nr_kernel_pages;
269static unsigned long __meminitdata nr_all_pages;
a3142c8e 270static unsigned long __meminitdata dma_reserve;
1da177e4 271
0ee332c1
TH
272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275static unsigned long __initdata required_kernelcore;
276static unsigned long __initdata required_movablecore;
277static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 278static bool mirrored_kernelcore;
0ee332c1
TH
279
280/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281int movable_zone;
282EXPORT_SYMBOL(movable_zone);
283#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 284
418508c1
MS
285#if MAX_NUMNODES > 1
286int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 287int nr_online_nodes __read_mostly = 1;
418508c1 288EXPORT_SYMBOL(nr_node_ids);
62bc62a8 289EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
290#endif
291
9ef9acb0
MG
292int page_group_by_mobility_disabled __read_mostly;
293
3a80a7fa 294#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
d135e575
PT
295
296/*
297 * Determine how many pages need to be initialized durig early boot
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
301 */
3a80a7fa
MG
302static inline void reset_deferred_meminit(pg_data_t *pgdat)
303{
d135e575
PT
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
864b9a39
MH
307
308 /*
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
311 */
d135e575
PT
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
864b9a39
MH
314
315 /*
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
319 */
d135e575
PT
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
864b9a39 324
d135e575 325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
326 pgdat->first_deferred_pfn = ULONG_MAX;
327}
328
329/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 330static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 331{
ef70b6f4
MG
332 int nid = early_pfn_to_nid(pfn);
333
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
335 return true;
336
337 return false;
338}
339
340/*
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
343 */
344static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
347{
348 /* Always populate low zones for address-contrained allocations */
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
de5dce59
JG
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
3a80a7fa 354 (*nr_initialised)++;
d135e575 355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
359 }
360
361 return true;
362}
363#else
364static inline void reset_deferred_meminit(pg_data_t *pgdat)
365{
366}
367
368static inline bool early_page_uninitialised(unsigned long pfn)
369{
370 return false;
371}
372
373static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
376{
377 return true;
378}
379#endif
380
0b423ca2
MG
381/* Return a pointer to the bitmap storing bits affecting a block of pages */
382static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
384{
385#ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387#else
388 return page_zone(page)->pageblock_flags;
389#endif /* CONFIG_SPARSEMEM */
390}
391
392static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393{
394#ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397#else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400#endif /* CONFIG_SPARSEMEM */
401}
402
403/**
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
409 *
410 * Return: pageblock_bits flags
411 */
412static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416{
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
420
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
425
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429}
430
431unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434{
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436}
437
438static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439{
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441}
442
443/**
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
450 */
451void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455{
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
459
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
466
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
472
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
479 }
480}
3a80a7fa 481
ee6f509c 482void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 483{
5d0f3f72
KM
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
486 migratetype = MIGRATE_UNMOVABLE;
487
b2a0ac88
MG
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
490}
491
13e7444b 492#ifdef CONFIG_DEBUG_VM
c6a57e19 493static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 494{
bdc8cb98
DH
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 498 unsigned long sp, start_pfn;
c6a57e19 499
bdc8cb98
DH
500 do {
501 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
108bcc96 504 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
507
b5e6a5a2 508 if (ret)
613813e8
DH
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
b5e6a5a2 512
bdc8cb98 513 return ret;
c6a57e19
DH
514}
515
516static int page_is_consistent(struct zone *zone, struct page *page)
517{
14e07298 518 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 519 return 0;
1da177e4 520 if (zone != page_zone(page))
c6a57e19
DH
521 return 0;
522
523 return 1;
524}
525/*
526 * Temporary debugging check for pages not lying within a given zone.
527 */
d73d3c9f 528static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
529{
530 if (page_outside_zone_boundaries(zone, page))
1da177e4 531 return 1;
c6a57e19
DH
532 if (!page_is_consistent(zone, page))
533 return 1;
534
1da177e4
LT
535 return 0;
536}
13e7444b 537#else
d73d3c9f 538static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
539{
540 return 0;
541}
542#endif
543
d230dec1
KS
544static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
1da177e4 546{
d936cf9b
HD
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
550
551 /*
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
554 */
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
559 }
560 if (nr_unshown) {
ff8e8116 561 pr_alert(
1e9e6365 562 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
563 nr_unshown);
564 nr_unshown = 0;
565 }
566 nr_shown = 0;
567 }
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
570
ff8e8116 571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 572 current->comm, page_to_pfn(page));
ff8e8116
VB
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
4e462112 578 dump_page_owner(page);
3dc14741 579
4f31888c 580 print_modules();
1da177e4 581 dump_stack();
d936cf9b 582out:
8cc3b392 583 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 584 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
586}
587
1da177e4
LT
588/*
589 * Higher-order pages are called "compound pages". They are structured thusly:
590 *
1d798ca3 591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 592 *
1d798ca3
KS
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 595 *
1d798ca3
KS
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
1da177e4 598 *
1d798ca3 599 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 600 * This usage means that zero-order pages may not be compound.
1da177e4 601 */
d98c7a09 602
9a982250 603void free_compound_page(struct page *page)
d98c7a09 604{
d85f3385 605 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
606}
607
d00181b9 608void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
609{
610 int i;
611 int nr_pages = 1 << order;
612
f1e61557 613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
58a84aa9 618 set_page_count(p, 0);
1c290f64 619 p->mapping = TAIL_MAPPING;
1d798ca3 620 set_compound_head(p, page);
18229df5 621 }
53f9263b 622 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
623}
624
c0a32fc5
SG
625#ifdef CONFIG_DEBUG_PAGEALLOC
626unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
627bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 629EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
630bool _debug_guardpage_enabled __read_mostly;
631
031bc574
JK
632static int __init early_debug_pagealloc(char *buf)
633{
634 if (!buf)
635 return -EINVAL;
2a138dc7 636 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
637}
638early_param("debug_pagealloc", early_debug_pagealloc);
639
e30825f1
JK
640static bool need_debug_guardpage(void)
641{
031bc574
JK
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
645
f1c1e9f7
JK
646 if (!debug_guardpage_minorder())
647 return false;
648
e30825f1
JK
649 return true;
650}
651
652static void init_debug_guardpage(void)
653{
031bc574
JK
654 if (!debug_pagealloc_enabled())
655 return;
656
f1c1e9f7
JK
657 if (!debug_guardpage_minorder())
658 return;
659
e30825f1
JK
660 _debug_guardpage_enabled = true;
661}
662
663struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
666};
c0a32fc5
SG
667
668static int __init debug_guardpage_minorder_setup(char *buf)
669{
670 unsigned long res;
671
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 673 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
674 return 0;
675 }
676 _debug_guardpage_minorder = res;
1170532b 677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
678 return 0;
679}
f1c1e9f7 680early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 681
acbc15a4 682static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 683 unsigned int order, int migratetype)
c0a32fc5 684{
e30825f1
JK
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
acbc15a4
JK
688 return false;
689
690 if (order >= debug_guardpage_minorder())
691 return false;
e30825f1
JK
692
693 page_ext = lookup_page_ext(page);
f86e4271 694 if (unlikely(!page_ext))
acbc15a4 695 return false;
f86e4271 696
e30825f1
JK
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698
2847cf95
JK
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
703
704 return true;
c0a32fc5
SG
705}
706
2847cf95
JK
707static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
c0a32fc5 709{
e30825f1
JK
710 struct page_ext *page_ext;
711
712 if (!debug_guardpage_enabled())
713 return;
714
715 page_ext = lookup_page_ext(page);
f86e4271
YS
716 if (unlikely(!page_ext))
717 return;
718
e30825f1
JK
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
2847cf95
JK
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
724}
725#else
980ac167 726struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
727static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
2847cf95
JK
729static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
c0a32fc5
SG
731#endif
732
7aeb09f9 733static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 734{
4c21e2f2 735 set_page_private(page, order);
676165a8 736 __SetPageBuddy(page);
1da177e4
LT
737}
738
739static inline void rmv_page_order(struct page *page)
740{
676165a8 741 __ClearPageBuddy(page);
4c21e2f2 742 set_page_private(page, 0);
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
13ad59df 748 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 749 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
676165a8 752 *
cf6fe945
WSH
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
1da177e4 757 *
676165a8 758 * For recording page's order, we use page_private(page).
1da177e4 759 */
cb2b95e1 760static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 761 unsigned int order)
1da177e4 762{
c0a32fc5 763 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
c0a32fc5
SG
769 return 1;
770 }
771
cb2b95e1 772 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
4c5018ce
WY
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
6aa3001b 783 return 1;
676165a8 784 }
6aa3001b 785 return 0;
1da177e4
LT
786}
787
788/*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
1da177e4 804 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
1da177e4 807 * If a block is freed, and its buddy is also free, then this
5f63b720 808 * triggers coalescing into a block of larger size.
1da177e4 809 *
6d49e352 810 * -- nyc
1da177e4
LT
811 */
812
48db57f8 813static inline void __free_one_page(struct page *page,
dc4b0caf 814 unsigned long pfn,
ed0ae21d
MG
815 struct zone *zone, unsigned int order,
816 int migratetype)
1da177e4 817{
76741e77
VB
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 820 struct page *buddy;
d9dddbf5
VB
821 unsigned int max_order;
822
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 824
d29bb978 825 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 827
ed0ae21d 828 VM_BUG_ON(migratetype == -1);
d9dddbf5 829 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 831
76741e77 832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 834
d9dddbf5 835continue_merging:
3c605096 836 while (order < max_order - 1) {
76741e77
VB
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
839
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
cb2b95e1 842 if (!page_is_buddy(page, buddy, order))
d9dddbf5 843 goto done_merging;
c0a32fc5
SG
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy)) {
2847cf95 849 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
854 }
76741e77
VB
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
1da177e4
LT
858 order++;
859 }
d9dddbf5
VB
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
865 *
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
868 */
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
871
76741e77
VB
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
874 buddy_mt = get_pageblock_migratetype(buddy);
875
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
880 }
881 max_order++;
882 goto continue_merging;
883 }
884
885done_merging:
1da177e4 886 set_page_order(page, order);
6dda9d55
CZ
887
888 /*
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
895 */
13ad59df 896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 897 struct page *higher_page, *higher_buddy;
76741e77
VB
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
907 }
908 }
909
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911out:
1da177e4
LT
912 zone->free_area[order].nr_free++;
913}
914
7bfec6f4
MG
915/*
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
919 */
920static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
922{
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
925
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928#ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930#endif
931 (page->flags & check_flags)))
932 return false;
933
934 return true;
935}
936
bb552ac6 937static void free_pages_check_bad(struct page *page)
1da177e4 938{
7bfec6f4
MG
939 const char *bad_reason;
940 unsigned long bad_flags;
941
7bfec6f4
MG
942 bad_reason = NULL;
943 bad_flags = 0;
f0b791a3 944
53f9263b 945 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
fe896d18 949 if (unlikely(page_ref_count(page) != 0))
0139aa7b 950 bad_reason = "nonzero _refcount";
f0b791a3
DH
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 }
9edad6ea
JW
955#ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958#endif
7bfec6f4 959 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
960}
961
962static inline int free_pages_check(struct page *page)
963{
da838d4f 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 965 return 0;
bb552ac6
MG
966
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
7bfec6f4 969 return 1;
1da177e4
LT
970}
971
4db7548c
MG
972static int free_tail_pages_check(struct page *head_page, struct page *page)
973{
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
992 }
993 break;
994 case 2:
995 /*
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
998 */
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1004 }
1005 break;
1006 }
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1010 }
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1014 }
1015 ret = 0;
1016out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1020}
1021
e2769dbd
MG
1022static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
4db7548c 1024{
e2769dbd 1025 int bad = 0;
4db7548c 1026
4db7548c
MG
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1028
e2769dbd 1029 trace_mm_page_free(page, order);
e2769dbd
MG
1030
1031 /*
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1034 */
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1038
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1040
9a73f61b
KS
1041 if (compound)
1042 ClearPageDoubleMap(page);
e2769dbd
MG
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1049 }
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 }
1052 }
bda807d4 1053 if (PageMappingFlags(page))
4db7548c 1054 page->mapping = NULL;
c4159a75 1055 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1056 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
4db7548c 1061
e2769dbd
MG
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
4db7548c
MG
1065
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
e2769dbd 1068 PAGE_SIZE << order);
4db7548c 1069 debug_check_no_obj_freed(page_address(page),
e2769dbd 1070 PAGE_SIZE << order);
4db7548c 1071 }
e2769dbd
MG
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
29b52de1 1075 kasan_free_pages(page, order);
4db7548c 1076
4db7548c
MG
1077 return true;
1078}
1079
e2769dbd
MG
1080#ifdef CONFIG_DEBUG_VM
1081static inline bool free_pcp_prepare(struct page *page)
1082{
1083 return free_pages_prepare(page, 0, true);
1084}
1085
1086static inline bool bulkfree_pcp_prepare(struct page *page)
1087{
1088 return false;
1089}
1090#else
1091static bool free_pcp_prepare(struct page *page)
1092{
1093 return free_pages_prepare(page, 0, false);
1094}
1095
4db7548c
MG
1096static bool bulkfree_pcp_prepare(struct page *page)
1097{
1098 return free_pages_check(page);
1099}
1100#endif /* CONFIG_DEBUG_VM */
1101
1da177e4 1102/*
5f8dcc21 1103 * Frees a number of pages from the PCP lists
1da177e4 1104 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1105 * count is the number of pages to free.
1da177e4
LT
1106 *
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1109 *
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1112 */
5f8dcc21
MG
1113static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1da177e4 1115{
5f8dcc21 1116 int migratetype = 0;
a6f9edd6 1117 int batch_free = 0;
3777999d 1118 bool isolated_pageblocks;
5f8dcc21 1119
d34b0733 1120 spin_lock(&zone->lock);
3777999d 1121 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1122
e5b31ac2 1123 while (count) {
48db57f8 1124 struct page *page;
5f8dcc21
MG
1125 struct list_head *list;
1126
1127 /*
a6f9edd6
MG
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
5f8dcc21
MG
1133 */
1134 do {
a6f9edd6 1135 batch_free++;
5f8dcc21
MG
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
48db57f8 1140
1d16871d
NK
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1143 batch_free = count;
1d16871d 1144
a6f9edd6 1145 do {
770c8aaa
BZ
1146 int mt; /* migratetype of the to-be-freed page */
1147
a16601c5 1148 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
aa016d14 1151
bb14c2c7 1152 mt = get_pcppage_migratetype(page);
aa016d14
VB
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
3777999d 1156 if (unlikely(isolated_pageblocks))
51bb1a40 1157 mt = get_pageblock_migratetype(page);
51bb1a40 1158
4db7548c
MG
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1161
dc4b0caf 1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1163 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1164 } while (--count && --batch_free && !list_empty(list));
1da177e4 1165 }
d34b0733 1166 spin_unlock(&zone->lock);
1da177e4
LT
1167}
1168
dc4b0caf
MG
1169static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
7aeb09f9 1171 unsigned int order,
ed0ae21d 1172 int migratetype)
1da177e4 1173{
d34b0733 1174 spin_lock(&zone->lock);
ad53f92e
JK
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1178 }
dc4b0caf 1179 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1180 spin_unlock(&zone->lock);
48db57f8
NP
1181}
1182
1e8ce83c 1183static void __meminit __init_single_page(struct page *page, unsigned long pfn,
9ff9dd45 1184 unsigned long zone, int nid, bool zero)
1e8ce83c 1185{
9ff9dd45
MH
1186 if (zero)
1187 mm_zero_struct_page(page);
1e8ce83c 1188 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1e8ce83c 1192
1e8ce83c
RH
1193 INIT_LIST_HEAD(&page->lru);
1194#ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198#endif
1199}
1200
1201static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
9ff9dd45 1202 int nid, bool zero)
1e8ce83c 1203{
9ff9dd45 1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1e8ce83c
RH
1205}
1206
7e18adb4 1207#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1208static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1209{
1210 pg_data_t *pgdat;
1211 int nid, zid;
1212
1213 if (!early_page_uninitialised(pfn))
1214 return;
1215
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1218
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1221
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1224 }
9ff9dd45 1225 __init_single_pfn(pfn, zid, nid, true);
7e18adb4
MG
1226}
1227#else
1228static inline void init_reserved_page(unsigned long pfn)
1229{
1230}
1231#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
92923ca3
NZ
1233/*
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1238 */
4b50bcc7 1239void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1240{
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1243
7e18adb4
MG
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1247
1248 init_reserved_page(start_pfn);
1d798ca3
KS
1249
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1252
7e18adb4
MG
1253 SetPageReserved(page);
1254 }
1255 }
92923ca3
NZ
1256}
1257
ec95f53a
KM
1258static void __free_pages_ok(struct page *page, unsigned int order)
1259{
d34b0733 1260 unsigned long flags;
95e34412 1261 int migratetype;
dc4b0caf 1262 unsigned long pfn = page_to_pfn(page);
ec95f53a 1263
e2769dbd 1264 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1265 return;
1266
cfc47a28 1267 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1271 local_irq_restore(flags);
1da177e4
LT
1272}
1273
949698a3 1274static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1275{
c3993076 1276 unsigned int nr_pages = 1 << order;
e2d0bd2b 1277 struct page *p = page;
c3993076 1278 unsigned int loop;
a226f6c8 1279
e2d0bd2b
YL
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
c3993076
JW
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
a226f6c8 1285 }
e2d0bd2b
YL
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
c3993076 1288
e2d0bd2b 1289 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
a226f6c8
DH
1292}
1293
75a592a4
MG
1294#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1296
75a592a4
MG
1297static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299int __meminit early_pfn_to_nid(unsigned long pfn)
1300{
7ace9917 1301 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1302 int nid;
1303
7ace9917 1304 spin_lock(&early_pfn_lock);
75a592a4 1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1306 if (nid < 0)
e4568d38 1307 nid = first_online_node;
7ace9917
MG
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
75a592a4
MG
1311}
1312#endif
1313
1314#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1315static inline bool __meminit __maybe_unused
1316meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
75a592a4
MG
1318{
1319 int nid;
1320
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1325}
1326
1327/* Only safe to use early in boot when initialisation is single-threaded */
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331}
1332
1333#else
1334
1335static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336{
1337 return true;
1338}
d73d3c9f
MK
1339static inline bool __meminit __maybe_unused
1340meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
75a592a4
MG
1342{
1343 return true;
1344}
1345#endif
1346
1347
0e1cc95b 1348void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1349 unsigned int order)
1350{
1351 if (early_page_uninitialised(pfn))
1352 return;
949698a3 1353 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1354}
1355
7cf91a98
JK
1356/*
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1362 *
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364 *
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1372 */
1373struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375{
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1384
2d070eab
MH
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
7cf91a98
JK
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399}
1400
1401void set_zone_contiguous(struct zone *zone)
1402{
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1405
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1410
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1416 }
1417
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1420}
1421
1422void clear_zone_contiguous(struct zone *zone)
1423{
1424 zone->contiguous = false;
1425}
1426
7e18adb4 1427#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1428static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
a4de83dd 1430{
2f47a91f
PT
1431 struct page *page;
1432 unsigned long i;
a4de83dd 1433
2f47a91f 1434 if (!nr_pages)
a4de83dd
MG
1435 return;
1436
2f47a91f
PT
1437 page = pfn_to_page(pfn);
1438
a4de83dd 1439 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1443 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1444 return;
1445 }
1446
e780149b
XQ
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1450 __free_pages_boot_core(page, 0);
e780149b 1451 }
a4de83dd
MG
1452}
1453
d3cd131d
NS
1454/* Completion tracking for deferred_init_memmap() threads */
1455static atomic_t pgdat_init_n_undone __initdata;
1456static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457
1458static inline void __init pgdat_init_report_one_done(void)
1459{
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1462}
0e1cc95b 1463
2f47a91f
PT
1464/*
1465 * Helper for deferred_init_range, free the given range, reset the counters, and
1466 * return number of pages freed.
1467 */
1468static inline unsigned long __init __def_free(unsigned long *nr_free,
1469 unsigned long *free_base_pfn,
1470 struct page **page)
1471{
1472 unsigned long nr = *nr_free;
1473
1474 deferred_free_range(*free_base_pfn, nr);
1475 *free_base_pfn = 0;
1476 *nr_free = 0;
1477 *page = NULL;
1478
1479 return nr;
1480}
1481
1482static unsigned long __init deferred_init_range(int nid, int zid,
1483 unsigned long start_pfn,
1484 unsigned long end_pfn)
1485{
1486 struct mminit_pfnnid_cache nid_init_state = { };
1487 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1488 unsigned long free_base_pfn = 0;
1489 unsigned long nr_pages = 0;
1490 unsigned long nr_free = 0;
1491 struct page *page = NULL;
1492 unsigned long pfn;
1493
1494 /*
1495 * First we check if pfn is valid on architectures where it is possible
1496 * to have holes within pageblock_nr_pages. On systems where it is not
1497 * possible, this function is optimized out.
1498 *
1499 * Then, we check if a current large page is valid by only checking the
1500 * validity of the head pfn.
1501 *
1502 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1503 * within a node: a pfn is between start and end of a node, but does not
1504 * belong to this memory node.
1505 *
1506 * Finally, we minimize pfn page lookups and scheduler checks by
1507 * performing it only once every pageblock_nr_pages.
1508 *
1509 * We do it in two loops: first we initialize struct page, than free to
1510 * buddy allocator, becuse while we are freeing pages we can access
1511 * pages that are ahead (computing buddy page in __free_one_page()).
1512 */
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn))
1515 continue;
1516 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1517 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 if (page && (pfn & nr_pgmask))
1519 page++;
1520 else
1521 page = pfn_to_page(pfn);
9ff9dd45 1522 __init_single_page(page, pfn, zid, nid, true);
2f47a91f
PT
1523 cond_resched();
1524 }
1525 }
1526 }
1527
1528 page = NULL;
1529 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1530 if (!pfn_valid_within(pfn)) {
1531 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1532 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1533 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1534 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 } else if (page && (pfn & nr_pgmask)) {
1537 page++;
1538 nr_free++;
1539 } else {
1540 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1541 page = pfn_to_page(pfn);
1542 free_base_pfn = pfn;
1543 nr_free = 1;
1544 cond_resched();
1545 }
1546 }
1547 /* Free the last block of pages to allocator */
1548 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1549
1550 return nr_pages;
1551}
1552
7e18adb4 1553/* Initialise remaining memory on a node */
0e1cc95b 1554static int __init deferred_init_memmap(void *data)
7e18adb4 1555{
0e1cc95b
MG
1556 pg_data_t *pgdat = data;
1557 int nid = pgdat->node_id;
7e18adb4
MG
1558 unsigned long start = jiffies;
1559 unsigned long nr_pages = 0;
2f47a91f
PT
1560 unsigned long spfn, epfn;
1561 phys_addr_t spa, epa;
1562 int zid;
7e18adb4 1563 struct zone *zone;
7e18adb4 1564 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1565 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1566 u64 i;
7e18adb4 1567
0e1cc95b 1568 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1569 pgdat_init_report_one_done();
0e1cc95b
MG
1570 return 0;
1571 }
1572
1573 /* Bind memory initialisation thread to a local node if possible */
1574 if (!cpumask_empty(cpumask))
1575 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1576
1577 /* Sanity check boundaries */
1578 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1579 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1580 pgdat->first_deferred_pfn = ULONG_MAX;
1581
1582 /* Only the highest zone is deferred so find it */
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 zone = pgdat->node_zones + zid;
1585 if (first_init_pfn < zone_end_pfn(zone))
1586 break;
1587 }
2f47a91f 1588 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1589
2f47a91f
PT
1590 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1591 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1592 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1593 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1594 }
1595
1596 /* Sanity check that the next zone really is unpopulated */
1597 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1598
0e1cc95b 1599 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1600 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1601
1602 pgdat_init_report_one_done();
0e1cc95b
MG
1603 return 0;
1604}
7cf91a98 1605#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1606
1607void __init page_alloc_init_late(void)
1608{
7cf91a98
JK
1609 struct zone *zone;
1610
1611#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1612 int nid;
1613
d3cd131d
NS
1614 /* There will be num_node_state(N_MEMORY) threads */
1615 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1616 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1617 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1618 }
1619
1620 /* Block until all are initialised */
d3cd131d 1621 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1622
039c92de
MG
1623 /*
1624 * The number of managed pages has changed due to the initialisation
1625 * so the pcpu batch and high limits needs to be updated or the limits
1626 * will be artificially small.
1627 */
1628 for_each_populated_zone(zone)
1629 zone_pcp_update(zone);
1630
4248b0da
MG
1631 /* Reinit limits that are based on free pages after the kernel is up */
1632 files_maxfiles_init();
7cf91a98 1633#endif
3010f876
PT
1634#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1635 /* Discard memblock private memory */
1636 memblock_discard();
1637#endif
7cf91a98
JK
1638
1639 for_each_populated_zone(zone)
1640 set_zone_contiguous(zone);
7e18adb4 1641}
7e18adb4 1642
47118af0 1643#ifdef CONFIG_CMA
9cf510a5 1644/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1645void __init init_cma_reserved_pageblock(struct page *page)
1646{
1647 unsigned i = pageblock_nr_pages;
1648 struct page *p = page;
1649
1650 do {
1651 __ClearPageReserved(p);
1652 set_page_count(p, 0);
1653 } while (++p, --i);
1654
47118af0 1655 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1656
1657 if (pageblock_order >= MAX_ORDER) {
1658 i = pageblock_nr_pages;
1659 p = page;
1660 do {
1661 set_page_refcounted(p);
1662 __free_pages(p, MAX_ORDER - 1);
1663 p += MAX_ORDER_NR_PAGES;
1664 } while (i -= MAX_ORDER_NR_PAGES);
1665 } else {
1666 set_page_refcounted(page);
1667 __free_pages(page, pageblock_order);
1668 }
1669
3dcc0571 1670 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1671}
1672#endif
1da177e4
LT
1673
1674/*
1675 * The order of subdivision here is critical for the IO subsystem.
1676 * Please do not alter this order without good reasons and regression
1677 * testing. Specifically, as large blocks of memory are subdivided,
1678 * the order in which smaller blocks are delivered depends on the order
1679 * they're subdivided in this function. This is the primary factor
1680 * influencing the order in which pages are delivered to the IO
1681 * subsystem according to empirical testing, and this is also justified
1682 * by considering the behavior of a buddy system containing a single
1683 * large block of memory acted on by a series of small allocations.
1684 * This behavior is a critical factor in sglist merging's success.
1685 *
6d49e352 1686 * -- nyc
1da177e4 1687 */
085cc7d5 1688static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1689 int low, int high, struct free_area *area,
1690 int migratetype)
1da177e4
LT
1691{
1692 unsigned long size = 1 << high;
1693
1694 while (high > low) {
1695 area--;
1696 high--;
1697 size >>= 1;
309381fe 1698 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1699
acbc15a4
JK
1700 /*
1701 * Mark as guard pages (or page), that will allow to
1702 * merge back to allocator when buddy will be freed.
1703 * Corresponding page table entries will not be touched,
1704 * pages will stay not present in virtual address space
1705 */
1706 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1707 continue;
acbc15a4 1708
b2a0ac88 1709 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1710 area->nr_free++;
1711 set_page_order(&page[size], high);
1712 }
1da177e4
LT
1713}
1714
4e611801 1715static void check_new_page_bad(struct page *page)
1da177e4 1716{
4e611801
VB
1717 const char *bad_reason = NULL;
1718 unsigned long bad_flags = 0;
7bfec6f4 1719
53f9263b 1720 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1721 bad_reason = "nonzero mapcount";
1722 if (unlikely(page->mapping != NULL))
1723 bad_reason = "non-NULL mapping";
fe896d18 1724 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1725 bad_reason = "nonzero _count";
f4c18e6f
NH
1726 if (unlikely(page->flags & __PG_HWPOISON)) {
1727 bad_reason = "HWPoisoned (hardware-corrupted)";
1728 bad_flags = __PG_HWPOISON;
e570f56c
NH
1729 /* Don't complain about hwpoisoned pages */
1730 page_mapcount_reset(page); /* remove PageBuddy */
1731 return;
f4c18e6f 1732 }
f0b791a3
DH
1733 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1734 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1735 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1736 }
9edad6ea
JW
1737#ifdef CONFIG_MEMCG
1738 if (unlikely(page->mem_cgroup))
1739 bad_reason = "page still charged to cgroup";
1740#endif
4e611801
VB
1741 bad_page(page, bad_reason, bad_flags);
1742}
1743
1744/*
1745 * This page is about to be returned from the page allocator
1746 */
1747static inline int check_new_page(struct page *page)
1748{
1749 if (likely(page_expected_state(page,
1750 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1751 return 0;
1752
1753 check_new_page_bad(page);
1754 return 1;
2a7684a2
WF
1755}
1756
bd33ef36 1757static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1758{
1759 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1760 page_poisoning_enabled();
1414c7f4
LA
1761}
1762
479f854a
MG
1763#ifdef CONFIG_DEBUG_VM
1764static bool check_pcp_refill(struct page *page)
1765{
1766 return false;
1767}
1768
1769static bool check_new_pcp(struct page *page)
1770{
1771 return check_new_page(page);
1772}
1773#else
1774static bool check_pcp_refill(struct page *page)
1775{
1776 return check_new_page(page);
1777}
1778static bool check_new_pcp(struct page *page)
1779{
1780 return false;
1781}
1782#endif /* CONFIG_DEBUG_VM */
1783
1784static bool check_new_pages(struct page *page, unsigned int order)
1785{
1786 int i;
1787 for (i = 0; i < (1 << order); i++) {
1788 struct page *p = page + i;
1789
1790 if (unlikely(check_new_page(p)))
1791 return true;
1792 }
1793
1794 return false;
1795}
1796
46f24fd8
JK
1797inline void post_alloc_hook(struct page *page, unsigned int order,
1798 gfp_t gfp_flags)
1799{
1800 set_page_private(page, 0);
1801 set_page_refcounted(page);
1802
1803 arch_alloc_page(page, order);
1804 kernel_map_pages(page, 1 << order, 1);
46f24fd8 1805 kasan_alloc_pages(page, order);
56a3271e 1806 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
1807 set_page_owner(page, order, gfp_flags);
1808}
1809
479f854a 1810static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1811 unsigned int alloc_flags)
2a7684a2
WF
1812{
1813 int i;
689bcebf 1814
46f24fd8 1815 post_alloc_hook(page, order, gfp_flags);
17cf4406 1816
bd33ef36 1817 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1818 for (i = 0; i < (1 << order); i++)
1819 clear_highpage(page + i);
17cf4406
NP
1820
1821 if (order && (gfp_flags & __GFP_COMP))
1822 prep_compound_page(page, order);
1823
75379191 1824 /*
2f064f34 1825 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1826 * allocate the page. The expectation is that the caller is taking
1827 * steps that will free more memory. The caller should avoid the page
1828 * being used for !PFMEMALLOC purposes.
1829 */
2f064f34
MH
1830 if (alloc_flags & ALLOC_NO_WATERMARKS)
1831 set_page_pfmemalloc(page);
1832 else
1833 clear_page_pfmemalloc(page);
1da177e4
LT
1834}
1835
56fd56b8
MG
1836/*
1837 * Go through the free lists for the given migratetype and remove
1838 * the smallest available page from the freelists
1839 */
85ccc8fa 1840static __always_inline
728ec980 1841struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1842 int migratetype)
1843{
1844 unsigned int current_order;
b8af2941 1845 struct free_area *area;
56fd56b8
MG
1846 struct page *page;
1847
1848 /* Find a page of the appropriate size in the preferred list */
1849 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1850 area = &(zone->free_area[current_order]);
a16601c5 1851 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1852 struct page, lru);
a16601c5
GT
1853 if (!page)
1854 continue;
56fd56b8
MG
1855 list_del(&page->lru);
1856 rmv_page_order(page);
1857 area->nr_free--;
56fd56b8 1858 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1859 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1860 return page;
1861 }
1862
1863 return NULL;
1864}
1865
1866
b2a0ac88
MG
1867/*
1868 * This array describes the order lists are fallen back to when
1869 * the free lists for the desirable migrate type are depleted
1870 */
47118af0 1871static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1872 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1873 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1874 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1875#ifdef CONFIG_CMA
974a786e 1876 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1877#endif
194159fb 1878#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1879 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1880#endif
b2a0ac88
MG
1881};
1882
dc67647b 1883#ifdef CONFIG_CMA
85ccc8fa 1884static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1885 unsigned int order)
1886{
1887 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1888}
1889#else
1890static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1891 unsigned int order) { return NULL; }
1892#endif
1893
c361be55
MG
1894/*
1895 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1896 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1897 * boundary. If alignment is required, use move_freepages_block()
1898 */
02aa0cdd 1899static int move_freepages(struct zone *zone,
b69a7288 1900 struct page *start_page, struct page *end_page,
02aa0cdd 1901 int migratetype, int *num_movable)
c361be55
MG
1902{
1903 struct page *page;
d00181b9 1904 unsigned int order;
d100313f 1905 int pages_moved = 0;
c361be55
MG
1906
1907#ifndef CONFIG_HOLES_IN_ZONE
1908 /*
1909 * page_zone is not safe to call in this context when
1910 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1911 * anyway as we check zone boundaries in move_freepages_block().
1912 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1913 * grouping pages by mobility
c361be55 1914 */
97ee4ba7 1915 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1916#endif
1917
02aa0cdd
VB
1918 if (num_movable)
1919 *num_movable = 0;
1920
c361be55
MG
1921 for (page = start_page; page <= end_page;) {
1922 if (!pfn_valid_within(page_to_pfn(page))) {
1923 page++;
1924 continue;
1925 }
1926
f073bdc5
AB
1927 /* Make sure we are not inadvertently changing nodes */
1928 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1929
c361be55 1930 if (!PageBuddy(page)) {
02aa0cdd
VB
1931 /*
1932 * We assume that pages that could be isolated for
1933 * migration are movable. But we don't actually try
1934 * isolating, as that would be expensive.
1935 */
1936 if (num_movable &&
1937 (PageLRU(page) || __PageMovable(page)))
1938 (*num_movable)++;
1939
c361be55
MG
1940 page++;
1941 continue;
1942 }
1943
1944 order = page_order(page);
84be48d8
KS
1945 list_move(&page->lru,
1946 &zone->free_area[order].free_list[migratetype]);
c361be55 1947 page += 1 << order;
d100313f 1948 pages_moved += 1 << order;
c361be55
MG
1949 }
1950
d100313f 1951 return pages_moved;
c361be55
MG
1952}
1953
ee6f509c 1954int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1955 int migratetype, int *num_movable)
c361be55
MG
1956{
1957 unsigned long start_pfn, end_pfn;
1958 struct page *start_page, *end_page;
1959
1960 start_pfn = page_to_pfn(page);
d9c23400 1961 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1962 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1963 end_page = start_page + pageblock_nr_pages - 1;
1964 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1965
1966 /* Do not cross zone boundaries */
108bcc96 1967 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1968 start_page = page;
108bcc96 1969 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1970 return 0;
1971
02aa0cdd
VB
1972 return move_freepages(zone, start_page, end_page, migratetype,
1973 num_movable);
c361be55
MG
1974}
1975
2f66a68f
MG
1976static void change_pageblock_range(struct page *pageblock_page,
1977 int start_order, int migratetype)
1978{
1979 int nr_pageblocks = 1 << (start_order - pageblock_order);
1980
1981 while (nr_pageblocks--) {
1982 set_pageblock_migratetype(pageblock_page, migratetype);
1983 pageblock_page += pageblock_nr_pages;
1984 }
1985}
1986
fef903ef 1987/*
9c0415eb
VB
1988 * When we are falling back to another migratetype during allocation, try to
1989 * steal extra free pages from the same pageblocks to satisfy further
1990 * allocations, instead of polluting multiple pageblocks.
1991 *
1992 * If we are stealing a relatively large buddy page, it is likely there will
1993 * be more free pages in the pageblock, so try to steal them all. For
1994 * reclaimable and unmovable allocations, we steal regardless of page size,
1995 * as fragmentation caused by those allocations polluting movable pageblocks
1996 * is worse than movable allocations stealing from unmovable and reclaimable
1997 * pageblocks.
fef903ef 1998 */
4eb7dce6
JK
1999static bool can_steal_fallback(unsigned int order, int start_mt)
2000{
2001 /*
2002 * Leaving this order check is intended, although there is
2003 * relaxed order check in next check. The reason is that
2004 * we can actually steal whole pageblock if this condition met,
2005 * but, below check doesn't guarantee it and that is just heuristic
2006 * so could be changed anytime.
2007 */
2008 if (order >= pageblock_order)
2009 return true;
2010
2011 if (order >= pageblock_order / 2 ||
2012 start_mt == MIGRATE_RECLAIMABLE ||
2013 start_mt == MIGRATE_UNMOVABLE ||
2014 page_group_by_mobility_disabled)
2015 return true;
2016
2017 return false;
2018}
2019
2020/*
2021 * This function implements actual steal behaviour. If order is large enough,
2022 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2023 * pageblock to our migratetype and determine how many already-allocated pages
2024 * are there in the pageblock with a compatible migratetype. If at least half
2025 * of pages are free or compatible, we can change migratetype of the pageblock
2026 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2027 */
2028static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2029 int start_type, bool whole_block)
fef903ef 2030{
d00181b9 2031 unsigned int current_order = page_order(page);
3bc48f96 2032 struct free_area *area;
02aa0cdd
VB
2033 int free_pages, movable_pages, alike_pages;
2034 int old_block_type;
2035
2036 old_block_type = get_pageblock_migratetype(page);
fef903ef 2037
3bc48f96
VB
2038 /*
2039 * This can happen due to races and we want to prevent broken
2040 * highatomic accounting.
2041 */
02aa0cdd 2042 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2043 goto single_page;
2044
fef903ef
SB
2045 /* Take ownership for orders >= pageblock_order */
2046 if (current_order >= pageblock_order) {
2047 change_pageblock_range(page, current_order, start_type);
3bc48f96 2048 goto single_page;
fef903ef
SB
2049 }
2050
3bc48f96
VB
2051 /* We are not allowed to try stealing from the whole block */
2052 if (!whole_block)
2053 goto single_page;
2054
02aa0cdd
VB
2055 free_pages = move_freepages_block(zone, page, start_type,
2056 &movable_pages);
2057 /*
2058 * Determine how many pages are compatible with our allocation.
2059 * For movable allocation, it's the number of movable pages which
2060 * we just obtained. For other types it's a bit more tricky.
2061 */
2062 if (start_type == MIGRATE_MOVABLE) {
2063 alike_pages = movable_pages;
2064 } else {
2065 /*
2066 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2067 * to MOVABLE pageblock, consider all non-movable pages as
2068 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2069 * vice versa, be conservative since we can't distinguish the
2070 * exact migratetype of non-movable pages.
2071 */
2072 if (old_block_type == MIGRATE_MOVABLE)
2073 alike_pages = pageblock_nr_pages
2074 - (free_pages + movable_pages);
2075 else
2076 alike_pages = 0;
2077 }
2078
3bc48f96 2079 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2080 if (!free_pages)
3bc48f96 2081 goto single_page;
fef903ef 2082
02aa0cdd
VB
2083 /*
2084 * If a sufficient number of pages in the block are either free or of
2085 * comparable migratability as our allocation, claim the whole block.
2086 */
2087 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2088 page_group_by_mobility_disabled)
2089 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2090
2091 return;
2092
2093single_page:
2094 area = &zone->free_area[current_order];
2095 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2096}
2097
2149cdae
JK
2098/*
2099 * Check whether there is a suitable fallback freepage with requested order.
2100 * If only_stealable is true, this function returns fallback_mt only if
2101 * we can steal other freepages all together. This would help to reduce
2102 * fragmentation due to mixed migratetype pages in one pageblock.
2103 */
2104int find_suitable_fallback(struct free_area *area, unsigned int order,
2105 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2106{
2107 int i;
2108 int fallback_mt;
2109
2110 if (area->nr_free == 0)
2111 return -1;
2112
2113 *can_steal = false;
2114 for (i = 0;; i++) {
2115 fallback_mt = fallbacks[migratetype][i];
974a786e 2116 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2117 break;
2118
2119 if (list_empty(&area->free_list[fallback_mt]))
2120 continue;
fef903ef 2121
4eb7dce6
JK
2122 if (can_steal_fallback(order, migratetype))
2123 *can_steal = true;
2124
2149cdae
JK
2125 if (!only_stealable)
2126 return fallback_mt;
2127
2128 if (*can_steal)
2129 return fallback_mt;
fef903ef 2130 }
4eb7dce6
JK
2131
2132 return -1;
fef903ef
SB
2133}
2134
0aaa29a5
MG
2135/*
2136 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2137 * there are no empty page blocks that contain a page with a suitable order
2138 */
2139static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2140 unsigned int alloc_order)
2141{
2142 int mt;
2143 unsigned long max_managed, flags;
2144
2145 /*
2146 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2147 * Check is race-prone but harmless.
2148 */
2149 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2150 if (zone->nr_reserved_highatomic >= max_managed)
2151 return;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
2154
2155 /* Recheck the nr_reserved_highatomic limit under the lock */
2156 if (zone->nr_reserved_highatomic >= max_managed)
2157 goto out_unlock;
2158
2159 /* Yoink! */
2160 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2161 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2162 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2163 zone->nr_reserved_highatomic += pageblock_nr_pages;
2164 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2165 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2166 }
2167
2168out_unlock:
2169 spin_unlock_irqrestore(&zone->lock, flags);
2170}
2171
2172/*
2173 * Used when an allocation is about to fail under memory pressure. This
2174 * potentially hurts the reliability of high-order allocations when under
2175 * intense memory pressure but failed atomic allocations should be easier
2176 * to recover from than an OOM.
29fac03b
MK
2177 *
2178 * If @force is true, try to unreserve a pageblock even though highatomic
2179 * pageblock is exhausted.
0aaa29a5 2180 */
29fac03b
MK
2181static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2182 bool force)
0aaa29a5
MG
2183{
2184 struct zonelist *zonelist = ac->zonelist;
2185 unsigned long flags;
2186 struct zoneref *z;
2187 struct zone *zone;
2188 struct page *page;
2189 int order;
04c8716f 2190 bool ret;
0aaa29a5
MG
2191
2192 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2193 ac->nodemask) {
29fac03b
MK
2194 /*
2195 * Preserve at least one pageblock unless memory pressure
2196 * is really high.
2197 */
2198 if (!force && zone->nr_reserved_highatomic <=
2199 pageblock_nr_pages)
0aaa29a5
MG
2200 continue;
2201
2202 spin_lock_irqsave(&zone->lock, flags);
2203 for (order = 0; order < MAX_ORDER; order++) {
2204 struct free_area *area = &(zone->free_area[order]);
2205
a16601c5
GT
2206 page = list_first_entry_or_null(
2207 &area->free_list[MIGRATE_HIGHATOMIC],
2208 struct page, lru);
2209 if (!page)
0aaa29a5
MG
2210 continue;
2211
0aaa29a5 2212 /*
4855e4a7
MK
2213 * In page freeing path, migratetype change is racy so
2214 * we can counter several free pages in a pageblock
2215 * in this loop althoug we changed the pageblock type
2216 * from highatomic to ac->migratetype. So we should
2217 * adjust the count once.
0aaa29a5 2218 */
a6ffdc07 2219 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2220 /*
2221 * It should never happen but changes to
2222 * locking could inadvertently allow a per-cpu
2223 * drain to add pages to MIGRATE_HIGHATOMIC
2224 * while unreserving so be safe and watch for
2225 * underflows.
2226 */
2227 zone->nr_reserved_highatomic -= min(
2228 pageblock_nr_pages,
2229 zone->nr_reserved_highatomic);
2230 }
0aaa29a5
MG
2231
2232 /*
2233 * Convert to ac->migratetype and avoid the normal
2234 * pageblock stealing heuristics. Minimally, the caller
2235 * is doing the work and needs the pages. More
2236 * importantly, if the block was always converted to
2237 * MIGRATE_UNMOVABLE or another type then the number
2238 * of pageblocks that cannot be completely freed
2239 * may increase.
2240 */
2241 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2242 ret = move_freepages_block(zone, page, ac->migratetype,
2243 NULL);
29fac03b
MK
2244 if (ret) {
2245 spin_unlock_irqrestore(&zone->lock, flags);
2246 return ret;
2247 }
0aaa29a5
MG
2248 }
2249 spin_unlock_irqrestore(&zone->lock, flags);
2250 }
04c8716f
MK
2251
2252 return false;
0aaa29a5
MG
2253}
2254
3bc48f96
VB
2255/*
2256 * Try finding a free buddy page on the fallback list and put it on the free
2257 * list of requested migratetype, possibly along with other pages from the same
2258 * block, depending on fragmentation avoidance heuristics. Returns true if
2259 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2260 *
2261 * The use of signed ints for order and current_order is a deliberate
2262 * deviation from the rest of this file, to make the for loop
2263 * condition simpler.
3bc48f96 2264 */
85ccc8fa 2265static __always_inline bool
b002529d 2266__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2267{
b8af2941 2268 struct free_area *area;
b002529d 2269 int current_order;
b2a0ac88 2270 struct page *page;
4eb7dce6
JK
2271 int fallback_mt;
2272 bool can_steal;
b2a0ac88 2273
7a8f58f3
VB
2274 /*
2275 * Find the largest available free page in the other list. This roughly
2276 * approximates finding the pageblock with the most free pages, which
2277 * would be too costly to do exactly.
2278 */
b002529d 2279 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2280 --current_order) {
4eb7dce6
JK
2281 area = &(zone->free_area[current_order]);
2282 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2283 start_migratetype, false, &can_steal);
4eb7dce6
JK
2284 if (fallback_mt == -1)
2285 continue;
b2a0ac88 2286
7a8f58f3
VB
2287 /*
2288 * We cannot steal all free pages from the pageblock and the
2289 * requested migratetype is movable. In that case it's better to
2290 * steal and split the smallest available page instead of the
2291 * largest available page, because even if the next movable
2292 * allocation falls back into a different pageblock than this
2293 * one, it won't cause permanent fragmentation.
2294 */
2295 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2296 && current_order > order)
2297 goto find_smallest;
b2a0ac88 2298
7a8f58f3
VB
2299 goto do_steal;
2300 }
e0fff1bd 2301
7a8f58f3 2302 return false;
e0fff1bd 2303
7a8f58f3
VB
2304find_smallest:
2305 for (current_order = order; current_order < MAX_ORDER;
2306 current_order++) {
2307 area = &(zone->free_area[current_order]);
2308 fallback_mt = find_suitable_fallback(area, current_order,
2309 start_migratetype, false, &can_steal);
2310 if (fallback_mt != -1)
2311 break;
b2a0ac88
MG
2312 }
2313
7a8f58f3
VB
2314 /*
2315 * This should not happen - we already found a suitable fallback
2316 * when looking for the largest page.
2317 */
2318 VM_BUG_ON(current_order == MAX_ORDER);
2319
2320do_steal:
2321 page = list_first_entry(&area->free_list[fallback_mt],
2322 struct page, lru);
2323
2324 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2325
2326 trace_mm_page_alloc_extfrag(page, order, current_order,
2327 start_migratetype, fallback_mt);
2328
2329 return true;
2330
b2a0ac88
MG
2331}
2332
56fd56b8 2333/*
1da177e4
LT
2334 * Do the hard work of removing an element from the buddy allocator.
2335 * Call me with the zone->lock already held.
2336 */
85ccc8fa
AL
2337static __always_inline struct page *
2338__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2339{
1da177e4
LT
2340 struct page *page;
2341
3bc48f96 2342retry:
56fd56b8 2343 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2344 if (unlikely(!page)) {
dc67647b
JK
2345 if (migratetype == MIGRATE_MOVABLE)
2346 page = __rmqueue_cma_fallback(zone, order);
2347
3bc48f96
VB
2348 if (!page && __rmqueue_fallback(zone, order, migratetype))
2349 goto retry;
728ec980
MG
2350 }
2351
0d3d062a 2352 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2353 return page;
1da177e4
LT
2354}
2355
5f63b720 2356/*
1da177e4
LT
2357 * Obtain a specified number of elements from the buddy allocator, all under
2358 * a single hold of the lock, for efficiency. Add them to the supplied list.
2359 * Returns the number of new pages which were placed at *list.
2360 */
5f63b720 2361static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2362 unsigned long count, struct list_head *list,
453f85d4 2363 int migratetype)
1da177e4 2364{
a6de734b 2365 int i, alloced = 0;
5f63b720 2366
d34b0733 2367 spin_lock(&zone->lock);
1da177e4 2368 for (i = 0; i < count; ++i) {
6ac0206b 2369 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2370 if (unlikely(page == NULL))
1da177e4 2371 break;
81eabcbe 2372
479f854a
MG
2373 if (unlikely(check_pcp_refill(page)))
2374 continue;
2375
81eabcbe 2376 /*
0fac3ba5
VB
2377 * Split buddy pages returned by expand() are received here in
2378 * physical page order. The page is added to the tail of
2379 * caller's list. From the callers perspective, the linked list
2380 * is ordered by page number under some conditions. This is
2381 * useful for IO devices that can forward direction from the
2382 * head, thus also in the physical page order. This is useful
2383 * for IO devices that can merge IO requests if the physical
2384 * pages are ordered properly.
81eabcbe 2385 */
0fac3ba5 2386 list_add_tail(&page->lru, list);
a6de734b 2387 alloced++;
bb14c2c7 2388 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2389 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2390 -(1 << order));
1da177e4 2391 }
a6de734b
MG
2392
2393 /*
2394 * i pages were removed from the buddy list even if some leak due
2395 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2396 * on i. Do not confuse with 'alloced' which is the number of
2397 * pages added to the pcp list.
2398 */
f2260e6b 2399 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2400 spin_unlock(&zone->lock);
a6de734b 2401 return alloced;
1da177e4
LT
2402}
2403
4ae7c039 2404#ifdef CONFIG_NUMA
8fce4d8e 2405/*
4037d452
CL
2406 * Called from the vmstat counter updater to drain pagesets of this
2407 * currently executing processor on remote nodes after they have
2408 * expired.
2409 *
879336c3
CL
2410 * Note that this function must be called with the thread pinned to
2411 * a single processor.
8fce4d8e 2412 */
4037d452 2413void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2414{
4ae7c039 2415 unsigned long flags;
7be12fc9 2416 int to_drain, batch;
4ae7c039 2417
4037d452 2418 local_irq_save(flags);
4db0c3c2 2419 batch = READ_ONCE(pcp->batch);
7be12fc9 2420 to_drain = min(pcp->count, batch);
2a13515c
KM
2421 if (to_drain > 0) {
2422 free_pcppages_bulk(zone, to_drain, pcp);
2423 pcp->count -= to_drain;
2424 }
4037d452 2425 local_irq_restore(flags);
4ae7c039
CL
2426}
2427#endif
2428
9f8f2172 2429/*
93481ff0 2430 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2431 *
2432 * The processor must either be the current processor and the
2433 * thread pinned to the current processor or a processor that
2434 * is not online.
2435 */
93481ff0 2436static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2437{
c54ad30c 2438 unsigned long flags;
93481ff0
VB
2439 struct per_cpu_pageset *pset;
2440 struct per_cpu_pages *pcp;
1da177e4 2441
93481ff0
VB
2442 local_irq_save(flags);
2443 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2444
93481ff0
VB
2445 pcp = &pset->pcp;
2446 if (pcp->count) {
2447 free_pcppages_bulk(zone, pcp->count, pcp);
2448 pcp->count = 0;
2449 }
2450 local_irq_restore(flags);
2451}
3dfa5721 2452
93481ff0
VB
2453/*
2454 * Drain pcplists of all zones on the indicated processor.
2455 *
2456 * The processor must either be the current processor and the
2457 * thread pinned to the current processor or a processor that
2458 * is not online.
2459 */
2460static void drain_pages(unsigned int cpu)
2461{
2462 struct zone *zone;
2463
2464 for_each_populated_zone(zone) {
2465 drain_pages_zone(cpu, zone);
1da177e4
LT
2466 }
2467}
1da177e4 2468
9f8f2172
CL
2469/*
2470 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2471 *
2472 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2473 * the single zone's pages.
9f8f2172 2474 */
93481ff0 2475void drain_local_pages(struct zone *zone)
9f8f2172 2476{
93481ff0
VB
2477 int cpu = smp_processor_id();
2478
2479 if (zone)
2480 drain_pages_zone(cpu, zone);
2481 else
2482 drain_pages(cpu);
9f8f2172
CL
2483}
2484
0ccce3b9
MG
2485static void drain_local_pages_wq(struct work_struct *work)
2486{
a459eeb7
MH
2487 /*
2488 * drain_all_pages doesn't use proper cpu hotplug protection so
2489 * we can race with cpu offline when the WQ can move this from
2490 * a cpu pinned worker to an unbound one. We can operate on a different
2491 * cpu which is allright but we also have to make sure to not move to
2492 * a different one.
2493 */
2494 preempt_disable();
0ccce3b9 2495 drain_local_pages(NULL);
a459eeb7 2496 preempt_enable();
0ccce3b9
MG
2497}
2498
9f8f2172 2499/*
74046494
GBY
2500 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2501 *
93481ff0
VB
2502 * When zone parameter is non-NULL, spill just the single zone's pages.
2503 *
0ccce3b9 2504 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2505 */
93481ff0 2506void drain_all_pages(struct zone *zone)
9f8f2172 2507{
74046494 2508 int cpu;
74046494
GBY
2509
2510 /*
2511 * Allocate in the BSS so we wont require allocation in
2512 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2513 */
2514 static cpumask_t cpus_with_pcps;
2515
ce612879
MH
2516 /*
2517 * Make sure nobody triggers this path before mm_percpu_wq is fully
2518 * initialized.
2519 */
2520 if (WARN_ON_ONCE(!mm_percpu_wq))
2521 return;
2522
bd233f53
MG
2523 /*
2524 * Do not drain if one is already in progress unless it's specific to
2525 * a zone. Such callers are primarily CMA and memory hotplug and need
2526 * the drain to be complete when the call returns.
2527 */
2528 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2529 if (!zone)
2530 return;
2531 mutex_lock(&pcpu_drain_mutex);
2532 }
0ccce3b9 2533
74046494
GBY
2534 /*
2535 * We don't care about racing with CPU hotplug event
2536 * as offline notification will cause the notified
2537 * cpu to drain that CPU pcps and on_each_cpu_mask
2538 * disables preemption as part of its processing
2539 */
2540 for_each_online_cpu(cpu) {
93481ff0
VB
2541 struct per_cpu_pageset *pcp;
2542 struct zone *z;
74046494 2543 bool has_pcps = false;
93481ff0
VB
2544
2545 if (zone) {
74046494 2546 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2547 if (pcp->pcp.count)
74046494 2548 has_pcps = true;
93481ff0
VB
2549 } else {
2550 for_each_populated_zone(z) {
2551 pcp = per_cpu_ptr(z->pageset, cpu);
2552 if (pcp->pcp.count) {
2553 has_pcps = true;
2554 break;
2555 }
74046494
GBY
2556 }
2557 }
93481ff0 2558
74046494
GBY
2559 if (has_pcps)
2560 cpumask_set_cpu(cpu, &cpus_with_pcps);
2561 else
2562 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2563 }
0ccce3b9 2564
bd233f53
MG
2565 for_each_cpu(cpu, &cpus_with_pcps) {
2566 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2567 INIT_WORK(work, drain_local_pages_wq);
ce612879 2568 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2569 }
bd233f53
MG
2570 for_each_cpu(cpu, &cpus_with_pcps)
2571 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2572
2573 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2574}
2575
296699de 2576#ifdef CONFIG_HIBERNATION
1da177e4 2577
556b969a
CY
2578/*
2579 * Touch the watchdog for every WD_PAGE_COUNT pages.
2580 */
2581#define WD_PAGE_COUNT (128*1024)
2582
1da177e4
LT
2583void mark_free_pages(struct zone *zone)
2584{
556b969a 2585 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2586 unsigned long flags;
7aeb09f9 2587 unsigned int order, t;
86760a2c 2588 struct page *page;
1da177e4 2589
8080fc03 2590 if (zone_is_empty(zone))
1da177e4
LT
2591 return;
2592
2593 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2594
108bcc96 2595 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2596 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2597 if (pfn_valid(pfn)) {
86760a2c 2598 page = pfn_to_page(pfn);
ba6b0979 2599
556b969a
CY
2600 if (!--page_count) {
2601 touch_nmi_watchdog();
2602 page_count = WD_PAGE_COUNT;
2603 }
2604
ba6b0979
JK
2605 if (page_zone(page) != zone)
2606 continue;
2607
7be98234
RW
2608 if (!swsusp_page_is_forbidden(page))
2609 swsusp_unset_page_free(page);
f623f0db 2610 }
1da177e4 2611
b2a0ac88 2612 for_each_migratetype_order(order, t) {
86760a2c
GT
2613 list_for_each_entry(page,
2614 &zone->free_area[order].free_list[t], lru) {
f623f0db 2615 unsigned long i;
1da177e4 2616
86760a2c 2617 pfn = page_to_pfn(page);
556b969a
CY
2618 for (i = 0; i < (1UL << order); i++) {
2619 if (!--page_count) {
2620 touch_nmi_watchdog();
2621 page_count = WD_PAGE_COUNT;
2622 }
7be98234 2623 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2624 }
f623f0db 2625 }
b2a0ac88 2626 }
1da177e4
LT
2627 spin_unlock_irqrestore(&zone->lock, flags);
2628}
e2c55dc8 2629#endif /* CONFIG_PM */
1da177e4 2630
2d4894b5 2631static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2632{
5f8dcc21 2633 int migratetype;
1da177e4 2634
4db7548c 2635 if (!free_pcp_prepare(page))
9cca35d4 2636 return false;
689bcebf 2637
dc4b0caf 2638 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2639 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2640 return true;
2641}
2642
2d4894b5 2643static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2644{
2645 struct zone *zone = page_zone(page);
2646 struct per_cpu_pages *pcp;
2647 int migratetype;
2648
2649 migratetype = get_pcppage_migratetype(page);
d34b0733 2650 __count_vm_event(PGFREE);
da456f14 2651
5f8dcc21
MG
2652 /*
2653 * We only track unmovable, reclaimable and movable on pcp lists.
2654 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2655 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2656 * areas back if necessary. Otherwise, we may have to free
2657 * excessively into the page allocator
2658 */
2659 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2660 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2661 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2662 return;
5f8dcc21
MG
2663 }
2664 migratetype = MIGRATE_MOVABLE;
2665 }
2666
99dcc3e5 2667 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2668 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2669 pcp->count++;
48db57f8 2670 if (pcp->count >= pcp->high) {
4db0c3c2 2671 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2672 free_pcppages_bulk(zone, batch, pcp);
2673 pcp->count -= batch;
48db57f8 2674 }
9cca35d4 2675}
5f8dcc21 2676
9cca35d4
MG
2677/*
2678 * Free a 0-order page
9cca35d4 2679 */
2d4894b5 2680void free_unref_page(struct page *page)
9cca35d4
MG
2681{
2682 unsigned long flags;
2683 unsigned long pfn = page_to_pfn(page);
2684
2d4894b5 2685 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2686 return;
2687
2688 local_irq_save(flags);
2d4894b5 2689 free_unref_page_commit(page, pfn);
d34b0733 2690 local_irq_restore(flags);
1da177e4
LT
2691}
2692
cc59850e
KK
2693/*
2694 * Free a list of 0-order pages
2695 */
2d4894b5 2696void free_unref_page_list(struct list_head *list)
cc59850e
KK
2697{
2698 struct page *page, *next;
9cca35d4 2699 unsigned long flags, pfn;
c24ad77d 2700 int batch_count = 0;
9cca35d4
MG
2701
2702 /* Prepare pages for freeing */
2703 list_for_each_entry_safe(page, next, list, lru) {
2704 pfn = page_to_pfn(page);
2d4894b5 2705 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2706 list_del(&page->lru);
2707 set_page_private(page, pfn);
2708 }
cc59850e 2709
9cca35d4 2710 local_irq_save(flags);
cc59850e 2711 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2712 unsigned long pfn = page_private(page);
2713
2714 set_page_private(page, 0);
2d4894b5
MG
2715 trace_mm_page_free_batched(page);
2716 free_unref_page_commit(page, pfn);
c24ad77d
LS
2717
2718 /*
2719 * Guard against excessive IRQ disabled times when we get
2720 * a large list of pages to free.
2721 */
2722 if (++batch_count == SWAP_CLUSTER_MAX) {
2723 local_irq_restore(flags);
2724 batch_count = 0;
2725 local_irq_save(flags);
2726 }
cc59850e 2727 }
9cca35d4 2728 local_irq_restore(flags);
cc59850e
KK
2729}
2730
8dfcc9ba
NP
2731/*
2732 * split_page takes a non-compound higher-order page, and splits it into
2733 * n (1<<order) sub-pages: page[0..n]
2734 * Each sub-page must be freed individually.
2735 *
2736 * Note: this is probably too low level an operation for use in drivers.
2737 * Please consult with lkml before using this in your driver.
2738 */
2739void split_page(struct page *page, unsigned int order)
2740{
2741 int i;
2742
309381fe
SL
2743 VM_BUG_ON_PAGE(PageCompound(page), page);
2744 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2745
a9627bc5 2746 for (i = 1; i < (1 << order); i++)
7835e98b 2747 set_page_refcounted(page + i);
a9627bc5 2748 split_page_owner(page, order);
8dfcc9ba 2749}
5853ff23 2750EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2751
3c605096 2752int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2753{
748446bb
MG
2754 unsigned long watermark;
2755 struct zone *zone;
2139cbe6 2756 int mt;
748446bb
MG
2757
2758 BUG_ON(!PageBuddy(page));
2759
2760 zone = page_zone(page);
2e30abd1 2761 mt = get_pageblock_migratetype(page);
748446bb 2762
194159fb 2763 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2764 /*
2765 * Obey watermarks as if the page was being allocated. We can
2766 * emulate a high-order watermark check with a raised order-0
2767 * watermark, because we already know our high-order page
2768 * exists.
2769 */
2770 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2771 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2772 return 0;
2773
8fb74b9f 2774 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2775 }
748446bb
MG
2776
2777 /* Remove page from free list */
2778 list_del(&page->lru);
2779 zone->free_area[order].nr_free--;
2780 rmv_page_order(page);
2139cbe6 2781
400bc7fd 2782 /*
2783 * Set the pageblock if the isolated page is at least half of a
2784 * pageblock
2785 */
748446bb
MG
2786 if (order >= pageblock_order - 1) {
2787 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2788 for (; page < endpage; page += pageblock_nr_pages) {
2789 int mt = get_pageblock_migratetype(page);
88ed365e 2790 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2791 && !is_migrate_highatomic(mt))
47118af0
MN
2792 set_pageblock_migratetype(page,
2793 MIGRATE_MOVABLE);
2794 }
748446bb
MG
2795 }
2796
f3a14ced 2797
8fb74b9f 2798 return 1UL << order;
1fb3f8ca
MG
2799}
2800
060e7417
MG
2801/*
2802 * Update NUMA hit/miss statistics
2803 *
2804 * Must be called with interrupts disabled.
060e7417 2805 */
41b6167e 2806static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2807{
2808#ifdef CONFIG_NUMA
3a321d2a 2809 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2810
4518085e
KW
2811 /* skip numa counters update if numa stats is disabled */
2812 if (!static_branch_likely(&vm_numa_stat_key))
2813 return;
2814
2df26639 2815 if (z->node != numa_node_id())
060e7417 2816 local_stat = NUMA_OTHER;
060e7417 2817
2df26639 2818 if (z->node == preferred_zone->node)
3a321d2a 2819 __inc_numa_state(z, NUMA_HIT);
2df26639 2820 else {
3a321d2a
KW
2821 __inc_numa_state(z, NUMA_MISS);
2822 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2823 }
3a321d2a 2824 __inc_numa_state(z, local_stat);
060e7417
MG
2825#endif
2826}
2827
066b2393
MG
2828/* Remove page from the per-cpu list, caller must protect the list */
2829static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2830 struct per_cpu_pages *pcp,
066b2393
MG
2831 struct list_head *list)
2832{
2833 struct page *page;
2834
2835 do {
2836 if (list_empty(list)) {
2837 pcp->count += rmqueue_bulk(zone, 0,
2838 pcp->batch, list,
453f85d4 2839 migratetype);
066b2393
MG
2840 if (unlikely(list_empty(list)))
2841 return NULL;
2842 }
2843
453f85d4 2844 page = list_first_entry(list, struct page, lru);
066b2393
MG
2845 list_del(&page->lru);
2846 pcp->count--;
2847 } while (check_new_pcp(page));
2848
2849 return page;
2850}
2851
2852/* Lock and remove page from the per-cpu list */
2853static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2854 struct zone *zone, unsigned int order,
2855 gfp_t gfp_flags, int migratetype)
2856{
2857 struct per_cpu_pages *pcp;
2858 struct list_head *list;
066b2393 2859 struct page *page;
d34b0733 2860 unsigned long flags;
066b2393 2861
d34b0733 2862 local_irq_save(flags);
066b2393
MG
2863 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2864 list = &pcp->lists[migratetype];
453f85d4 2865 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2866 if (page) {
2867 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2868 zone_statistics(preferred_zone, zone);
2869 }
d34b0733 2870 local_irq_restore(flags);
066b2393
MG
2871 return page;
2872}
2873
1da177e4 2874/*
75379191 2875 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2876 */
0a15c3e9 2877static inline
066b2393 2878struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2879 struct zone *zone, unsigned int order,
c603844b
MG
2880 gfp_t gfp_flags, unsigned int alloc_flags,
2881 int migratetype)
1da177e4
LT
2882{
2883 unsigned long flags;
689bcebf 2884 struct page *page;
1da177e4 2885
d34b0733 2886 if (likely(order == 0)) {
066b2393
MG
2887 page = rmqueue_pcplist(preferred_zone, zone, order,
2888 gfp_flags, migratetype);
2889 goto out;
2890 }
83b9355b 2891
066b2393
MG
2892 /*
2893 * We most definitely don't want callers attempting to
2894 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895 */
2896 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2897 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2898
066b2393
MG
2899 do {
2900 page = NULL;
2901 if (alloc_flags & ALLOC_HARDER) {
2902 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2903 if (page)
2904 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2905 }
a74609fa 2906 if (!page)
066b2393
MG
2907 page = __rmqueue(zone, order, migratetype);
2908 } while (page && check_new_pages(page, order));
2909 spin_unlock(&zone->lock);
2910 if (!page)
2911 goto failed;
2912 __mod_zone_freepage_state(zone, -(1 << order),
2913 get_pcppage_migratetype(page));
1da177e4 2914
16709d1d 2915 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2916 zone_statistics(preferred_zone, zone);
a74609fa 2917 local_irq_restore(flags);
1da177e4 2918
066b2393
MG
2919out:
2920 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2921 return page;
a74609fa
NP
2922
2923failed:
2924 local_irq_restore(flags);
a74609fa 2925 return NULL;
1da177e4
LT
2926}
2927
933e312e
AM
2928#ifdef CONFIG_FAIL_PAGE_ALLOC
2929
b2588c4b 2930static struct {
933e312e
AM
2931 struct fault_attr attr;
2932
621a5f7a 2933 bool ignore_gfp_highmem;
71baba4b 2934 bool ignore_gfp_reclaim;
54114994 2935 u32 min_order;
933e312e
AM
2936} fail_page_alloc = {
2937 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2938 .ignore_gfp_reclaim = true,
621a5f7a 2939 .ignore_gfp_highmem = true,
54114994 2940 .min_order = 1,
933e312e
AM
2941};
2942
2943static int __init setup_fail_page_alloc(char *str)
2944{
2945 return setup_fault_attr(&fail_page_alloc.attr, str);
2946}
2947__setup("fail_page_alloc=", setup_fail_page_alloc);
2948
deaf386e 2949static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2950{
54114994 2951 if (order < fail_page_alloc.min_order)
deaf386e 2952 return false;
933e312e 2953 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2954 return false;
933e312e 2955 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2956 return false;
71baba4b
MG
2957 if (fail_page_alloc.ignore_gfp_reclaim &&
2958 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2959 return false;
933e312e
AM
2960
2961 return should_fail(&fail_page_alloc.attr, 1 << order);
2962}
2963
2964#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2965
2966static int __init fail_page_alloc_debugfs(void)
2967{
f4ae40a6 2968 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2969 struct dentry *dir;
933e312e 2970
dd48c085
AM
2971 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2972 &fail_page_alloc.attr);
2973 if (IS_ERR(dir))
2974 return PTR_ERR(dir);
933e312e 2975
b2588c4b 2976 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2977 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2978 goto fail;
2979 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2980 &fail_page_alloc.ignore_gfp_highmem))
2981 goto fail;
2982 if (!debugfs_create_u32("min-order", mode, dir,
2983 &fail_page_alloc.min_order))
2984 goto fail;
2985
2986 return 0;
2987fail:
dd48c085 2988 debugfs_remove_recursive(dir);
933e312e 2989
b2588c4b 2990 return -ENOMEM;
933e312e
AM
2991}
2992
2993late_initcall(fail_page_alloc_debugfs);
2994
2995#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2996
2997#else /* CONFIG_FAIL_PAGE_ALLOC */
2998
deaf386e 2999static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3000{
deaf386e 3001 return false;
933e312e
AM
3002}
3003
3004#endif /* CONFIG_FAIL_PAGE_ALLOC */
3005
1da177e4 3006/*
97a16fc8
MG
3007 * Return true if free base pages are above 'mark'. For high-order checks it
3008 * will return true of the order-0 watermark is reached and there is at least
3009 * one free page of a suitable size. Checking now avoids taking the zone lock
3010 * to check in the allocation paths if no pages are free.
1da177e4 3011 */
86a294a8
MH
3012bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3013 int classzone_idx, unsigned int alloc_flags,
3014 long free_pages)
1da177e4 3015{
d23ad423 3016 long min = mark;
1da177e4 3017 int o;
cd04ae1e 3018 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3019
0aaa29a5 3020 /* free_pages may go negative - that's OK */
df0a6daa 3021 free_pages -= (1 << order) - 1;
0aaa29a5 3022
7fb1d9fc 3023 if (alloc_flags & ALLOC_HIGH)
1da177e4 3024 min -= min / 2;
0aaa29a5
MG
3025
3026 /*
3027 * If the caller does not have rights to ALLOC_HARDER then subtract
3028 * the high-atomic reserves. This will over-estimate the size of the
3029 * atomic reserve but it avoids a search.
3030 */
cd04ae1e 3031 if (likely(!alloc_harder)) {
0aaa29a5 3032 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3033 } else {
3034 /*
3035 * OOM victims can try even harder than normal ALLOC_HARDER
3036 * users on the grounds that it's definitely going to be in
3037 * the exit path shortly and free memory. Any allocation it
3038 * makes during the free path will be small and short-lived.
3039 */
3040 if (alloc_flags & ALLOC_OOM)
3041 min -= min / 2;
3042 else
3043 min -= min / 4;
3044 }
3045
e2b19197 3046
d95ea5d1
BZ
3047#ifdef CONFIG_CMA
3048 /* If allocation can't use CMA areas don't use free CMA pages */
3049 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3050 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3051#endif
026b0814 3052
97a16fc8
MG
3053 /*
3054 * Check watermarks for an order-0 allocation request. If these
3055 * are not met, then a high-order request also cannot go ahead
3056 * even if a suitable page happened to be free.
3057 */
3058 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3059 return false;
1da177e4 3060
97a16fc8
MG
3061 /* If this is an order-0 request then the watermark is fine */
3062 if (!order)
3063 return true;
3064
3065 /* For a high-order request, check at least one suitable page is free */
3066 for (o = order; o < MAX_ORDER; o++) {
3067 struct free_area *area = &z->free_area[o];
3068 int mt;
3069
3070 if (!area->nr_free)
3071 continue;
3072
97a16fc8
MG
3073 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3074 if (!list_empty(&area->free_list[mt]))
3075 return true;
3076 }
3077
3078#ifdef CONFIG_CMA
3079 if ((alloc_flags & ALLOC_CMA) &&
3080 !list_empty(&area->free_list[MIGRATE_CMA])) {
3081 return true;
3082 }
3083#endif
b050e376
VB
3084 if (alloc_harder &&
3085 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3086 return true;
1da177e4 3087 }
97a16fc8 3088 return false;
88f5acf8
MG
3089}
3090
7aeb09f9 3091bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3092 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3093{
3094 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3095 zone_page_state(z, NR_FREE_PAGES));
3096}
3097
48ee5f36
MG
3098static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3099 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3100{
3101 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3102 long cma_pages = 0;
3103
3104#ifdef CONFIG_CMA
3105 /* If allocation can't use CMA areas don't use free CMA pages */
3106 if (!(alloc_flags & ALLOC_CMA))
3107 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3108#endif
3109
3110 /*
3111 * Fast check for order-0 only. If this fails then the reserves
3112 * need to be calculated. There is a corner case where the check
3113 * passes but only the high-order atomic reserve are free. If
3114 * the caller is !atomic then it'll uselessly search the free
3115 * list. That corner case is then slower but it is harmless.
3116 */
3117 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3118 return true;
3119
3120 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3121 free_pages);
3122}
3123
7aeb09f9 3124bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3125 unsigned long mark, int classzone_idx)
88f5acf8
MG
3126{
3127 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3128
3129 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3130 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3131
e2b19197 3132 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3133 free_pages);
1da177e4
LT
3134}
3135
9276b1bc 3136#ifdef CONFIG_NUMA
957f822a
DR
3137static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3138{
e02dc017 3139 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3140 RECLAIM_DISTANCE;
957f822a 3141}
9276b1bc 3142#else /* CONFIG_NUMA */
957f822a
DR
3143static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3144{
3145 return true;
3146}
9276b1bc
PJ
3147#endif /* CONFIG_NUMA */
3148
7fb1d9fc 3149/*
0798e519 3150 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3151 * a page.
3152 */
3153static struct page *
a9263751
VB
3154get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3155 const struct alloc_context *ac)
753ee728 3156{
c33d6c06 3157 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3158 struct zone *zone;
3b8c0be4
MG
3159 struct pglist_data *last_pgdat_dirty_limit = NULL;
3160
7fb1d9fc 3161 /*
9276b1bc 3162 * Scan zonelist, looking for a zone with enough free.
344736f2 3163 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3164 */
c33d6c06 3165 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3166 ac->nodemask) {
be06af00 3167 struct page *page;
e085dbc5
JW
3168 unsigned long mark;
3169
664eedde
MG
3170 if (cpusets_enabled() &&
3171 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3172 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3173 continue;
a756cf59
JW
3174 /*
3175 * When allocating a page cache page for writing, we
281e3726
MG
3176 * want to get it from a node that is within its dirty
3177 * limit, such that no single node holds more than its
a756cf59 3178 * proportional share of globally allowed dirty pages.
281e3726 3179 * The dirty limits take into account the node's
a756cf59
JW
3180 * lowmem reserves and high watermark so that kswapd
3181 * should be able to balance it without having to
3182 * write pages from its LRU list.
3183 *
a756cf59 3184 * XXX: For now, allow allocations to potentially
281e3726 3185 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3186 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3187 * which is important when on a NUMA setup the allowed
281e3726 3188 * nodes are together not big enough to reach the
a756cf59 3189 * global limit. The proper fix for these situations
281e3726 3190 * will require awareness of nodes in the
a756cf59
JW
3191 * dirty-throttling and the flusher threads.
3192 */
3b8c0be4
MG
3193 if (ac->spread_dirty_pages) {
3194 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3195 continue;
3196
3197 if (!node_dirty_ok(zone->zone_pgdat)) {
3198 last_pgdat_dirty_limit = zone->zone_pgdat;
3199 continue;
3200 }
3201 }
7fb1d9fc 3202
e085dbc5 3203 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3204 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3205 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3206 int ret;
3207
5dab2911
MG
3208 /* Checked here to keep the fast path fast */
3209 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3210 if (alloc_flags & ALLOC_NO_WATERMARKS)
3211 goto try_this_zone;
3212
a5f5f91d 3213 if (node_reclaim_mode == 0 ||
c33d6c06 3214 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3215 continue;
3216
a5f5f91d 3217 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3218 switch (ret) {
a5f5f91d 3219 case NODE_RECLAIM_NOSCAN:
fa5e084e 3220 /* did not scan */
cd38b115 3221 continue;
a5f5f91d 3222 case NODE_RECLAIM_FULL:
fa5e084e 3223 /* scanned but unreclaimable */
cd38b115 3224 continue;
fa5e084e
MG
3225 default:
3226 /* did we reclaim enough */
fed2719e 3227 if (zone_watermark_ok(zone, order, mark,
93ea9964 3228 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3229 goto try_this_zone;
3230
fed2719e 3231 continue;
0798e519 3232 }
7fb1d9fc
RS
3233 }
3234
fa5e084e 3235try_this_zone:
066b2393 3236 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3237 gfp_mask, alloc_flags, ac->migratetype);
75379191 3238 if (page) {
479f854a 3239 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3240
3241 /*
3242 * If this is a high-order atomic allocation then check
3243 * if the pageblock should be reserved for the future
3244 */
3245 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3246 reserve_highatomic_pageblock(page, zone, order);
3247
75379191
VB
3248 return page;
3249 }
54a6eb5c 3250 }
9276b1bc 3251
4ffeaf35 3252 return NULL;
753ee728
MH
3253}
3254
29423e77
DR
3255/*
3256 * Large machines with many possible nodes should not always dump per-node
3257 * meminfo in irq context.
3258 */
3259static inline bool should_suppress_show_mem(void)
3260{
3261 bool ret = false;
3262
3263#if NODES_SHIFT > 8
3264 ret = in_interrupt();
3265#endif
3266 return ret;
3267}
3268
9af744d7 3269static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3270{
a238ab5b 3271 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3272 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3273
aa187507 3274 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3275 return;
3276
3277 /*
3278 * This documents exceptions given to allocations in certain
3279 * contexts that are allowed to allocate outside current's set
3280 * of allowed nodes.
3281 */
3282 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3283 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3284 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3285 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3286 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3287 filter &= ~SHOW_MEM_FILTER_NODES;
3288
9af744d7 3289 show_mem(filter, nodemask);
aa187507
MH
3290}
3291
a8e99259 3292void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3293{
3294 struct va_format vaf;
3295 va_list args;
3296 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3297 DEFAULT_RATELIMIT_BURST);
3298
0f7896f1 3299 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3300 return;
3301
7877cdcc
MH
3302 va_start(args, fmt);
3303 vaf.fmt = fmt;
3304 vaf.va = &args;
0205f755
MH
3305 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3306 current->comm, &vaf, gfp_mask, &gfp_mask,
3307 nodemask_pr_args(nodemask));
7877cdcc 3308 va_end(args);
3ee9a4f0 3309
a8e99259 3310 cpuset_print_current_mems_allowed();
3ee9a4f0 3311
a238ab5b 3312 dump_stack();
685dbf6f 3313 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3314}
3315
6c18ba7a
MH
3316static inline struct page *
3317__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3318 unsigned int alloc_flags,
3319 const struct alloc_context *ac)
3320{
3321 struct page *page;
3322
3323 page = get_page_from_freelist(gfp_mask, order,
3324 alloc_flags|ALLOC_CPUSET, ac);
3325 /*
3326 * fallback to ignore cpuset restriction if our nodes
3327 * are depleted
3328 */
3329 if (!page)
3330 page = get_page_from_freelist(gfp_mask, order,
3331 alloc_flags, ac);
3332
3333 return page;
3334}
3335
11e33f6a
MG
3336static inline struct page *
3337__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3338 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3339{
6e0fc46d
DR
3340 struct oom_control oc = {
3341 .zonelist = ac->zonelist,
3342 .nodemask = ac->nodemask,
2a966b77 3343 .memcg = NULL,
6e0fc46d
DR
3344 .gfp_mask = gfp_mask,
3345 .order = order,
6e0fc46d 3346 };
11e33f6a
MG
3347 struct page *page;
3348
9879de73
JW
3349 *did_some_progress = 0;
3350
9879de73 3351 /*
dc56401f
JW
3352 * Acquire the oom lock. If that fails, somebody else is
3353 * making progress for us.
9879de73 3354 */
dc56401f 3355 if (!mutex_trylock(&oom_lock)) {
9879de73 3356 *did_some_progress = 1;
11e33f6a 3357 schedule_timeout_uninterruptible(1);
1da177e4
LT
3358 return NULL;
3359 }
6b1de916 3360
11e33f6a
MG
3361 /*
3362 * Go through the zonelist yet one more time, keep very high watermark
3363 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3364 * we're still under heavy pressure. But make sure that this reclaim
3365 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3366 * allocation which will never fail due to oom_lock already held.
11e33f6a 3367 */
e746bf73
TH
3368 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3369 ~__GFP_DIRECT_RECLAIM, order,
3370 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3371 if (page)
11e33f6a
MG
3372 goto out;
3373
06ad276a
MH
3374 /* Coredumps can quickly deplete all memory reserves */
3375 if (current->flags & PF_DUMPCORE)
3376 goto out;
3377 /* The OOM killer will not help higher order allocs */
3378 if (order > PAGE_ALLOC_COSTLY_ORDER)
3379 goto out;
dcda9b04
MH
3380 /*
3381 * We have already exhausted all our reclaim opportunities without any
3382 * success so it is time to admit defeat. We will skip the OOM killer
3383 * because it is very likely that the caller has a more reasonable
3384 * fallback than shooting a random task.
3385 */
3386 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3387 goto out;
06ad276a
MH
3388 /* The OOM killer does not needlessly kill tasks for lowmem */
3389 if (ac->high_zoneidx < ZONE_NORMAL)
3390 goto out;
3391 if (pm_suspended_storage())
3392 goto out;
3393 /*
3394 * XXX: GFP_NOFS allocations should rather fail than rely on
3395 * other request to make a forward progress.
3396 * We are in an unfortunate situation where out_of_memory cannot
3397 * do much for this context but let's try it to at least get
3398 * access to memory reserved if the current task is killed (see
3399 * out_of_memory). Once filesystems are ready to handle allocation
3400 * failures more gracefully we should just bail out here.
3401 */
3402
3403 /* The OOM killer may not free memory on a specific node */
3404 if (gfp_mask & __GFP_THISNODE)
3405 goto out;
3da88fb3 3406
11e33f6a 3407 /* Exhausted what can be done so it's blamo time */
5020e285 3408 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3409 *did_some_progress = 1;
5020e285 3410
6c18ba7a
MH
3411 /*
3412 * Help non-failing allocations by giving them access to memory
3413 * reserves
3414 */
3415 if (gfp_mask & __GFP_NOFAIL)
3416 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3417 ALLOC_NO_WATERMARKS, ac);
5020e285 3418 }
11e33f6a 3419out:
dc56401f 3420 mutex_unlock(&oom_lock);
11e33f6a
MG
3421 return page;
3422}
3423
33c2d214
MH
3424/*
3425 * Maximum number of compaction retries wit a progress before OOM
3426 * killer is consider as the only way to move forward.
3427 */
3428#define MAX_COMPACT_RETRIES 16
3429
56de7263
MG
3430#ifdef CONFIG_COMPACTION
3431/* Try memory compaction for high-order allocations before reclaim */
3432static struct page *
3433__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3434 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3435 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3436{
98dd3b48 3437 struct page *page;
499118e9 3438 unsigned int noreclaim_flag;
53853e2d
VB
3439
3440 if (!order)
66199712 3441 return NULL;
66199712 3442
499118e9 3443 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3444 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3445 prio);
499118e9 3446 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3447
c5d01d0d 3448 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3449 return NULL;
53853e2d 3450
98dd3b48
VB
3451 /*
3452 * At least in one zone compaction wasn't deferred or skipped, so let's
3453 * count a compaction stall
3454 */
3455 count_vm_event(COMPACTSTALL);
8fb74b9f 3456
31a6c190 3457 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3458
98dd3b48
VB
3459 if (page) {
3460 struct zone *zone = page_zone(page);
53853e2d 3461
98dd3b48
VB
3462 zone->compact_blockskip_flush = false;
3463 compaction_defer_reset(zone, order, true);
3464 count_vm_event(COMPACTSUCCESS);
3465 return page;
3466 }
56de7263 3467
98dd3b48
VB
3468 /*
3469 * It's bad if compaction run occurs and fails. The most likely reason
3470 * is that pages exist, but not enough to satisfy watermarks.
3471 */
3472 count_vm_event(COMPACTFAIL);
66199712 3473
98dd3b48 3474 cond_resched();
56de7263
MG
3475
3476 return NULL;
3477}
33c2d214 3478
3250845d
VB
3479static inline bool
3480should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3481 enum compact_result compact_result,
3482 enum compact_priority *compact_priority,
d9436498 3483 int *compaction_retries)
3250845d
VB
3484{
3485 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3486 int min_priority;
65190cff
MH
3487 bool ret = false;
3488 int retries = *compaction_retries;
3489 enum compact_priority priority = *compact_priority;
3250845d
VB
3490
3491 if (!order)
3492 return false;
3493
d9436498
VB
3494 if (compaction_made_progress(compact_result))
3495 (*compaction_retries)++;
3496
3250845d
VB
3497 /*
3498 * compaction considers all the zone as desperately out of memory
3499 * so it doesn't really make much sense to retry except when the
3500 * failure could be caused by insufficient priority
3501 */
d9436498
VB
3502 if (compaction_failed(compact_result))
3503 goto check_priority;
3250845d
VB
3504
3505 /*
3506 * make sure the compaction wasn't deferred or didn't bail out early
3507 * due to locks contention before we declare that we should give up.
3508 * But do not retry if the given zonelist is not suitable for
3509 * compaction.
3510 */
65190cff
MH
3511 if (compaction_withdrawn(compact_result)) {
3512 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3513 goto out;
3514 }
3250845d
VB
3515
3516 /*
dcda9b04 3517 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3518 * costly ones because they are de facto nofail and invoke OOM
3519 * killer to move on while costly can fail and users are ready
3520 * to cope with that. 1/4 retries is rather arbitrary but we
3521 * would need much more detailed feedback from compaction to
3522 * make a better decision.
3523 */
3524 if (order > PAGE_ALLOC_COSTLY_ORDER)
3525 max_retries /= 4;
65190cff
MH
3526 if (*compaction_retries <= max_retries) {
3527 ret = true;
3528 goto out;
3529 }
3250845d 3530
d9436498
VB
3531 /*
3532 * Make sure there are attempts at the highest priority if we exhausted
3533 * all retries or failed at the lower priorities.
3534 */
3535check_priority:
c2033b00
VB
3536 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3537 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3538
c2033b00 3539 if (*compact_priority > min_priority) {
d9436498
VB
3540 (*compact_priority)--;
3541 *compaction_retries = 0;
65190cff 3542 ret = true;
d9436498 3543 }
65190cff
MH
3544out:
3545 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3546 return ret;
3250845d 3547}
56de7263
MG
3548#else
3549static inline struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3551 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3552 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3553{
33c2d214 3554 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3555 return NULL;
3556}
33c2d214
MH
3557
3558static inline bool
86a294a8
MH
3559should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3560 enum compact_result compact_result,
a5508cd8 3561 enum compact_priority *compact_priority,
d9436498 3562 int *compaction_retries)
33c2d214 3563{
31e49bfd
MH
3564 struct zone *zone;
3565 struct zoneref *z;
3566
3567 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3568 return false;
3569
3570 /*
3571 * There are setups with compaction disabled which would prefer to loop
3572 * inside the allocator rather than hit the oom killer prematurely.
3573 * Let's give them a good hope and keep retrying while the order-0
3574 * watermarks are OK.
3575 */
3576 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3577 ac->nodemask) {
3578 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3579 ac_classzone_idx(ac), alloc_flags))
3580 return true;
3581 }
33c2d214
MH
3582 return false;
3583}
3250845d 3584#endif /* CONFIG_COMPACTION */
56de7263 3585
d92a8cfc
PZ
3586#ifdef CONFIG_LOCKDEP
3587struct lockdep_map __fs_reclaim_map =
3588 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3589
3590static bool __need_fs_reclaim(gfp_t gfp_mask)
3591{
3592 gfp_mask = current_gfp_context(gfp_mask);
3593
3594 /* no reclaim without waiting on it */
3595 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3596 return false;
3597
3598 /* this guy won't enter reclaim */
474f9844 3599 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3600 return false;
3601
3602 /* We're only interested __GFP_FS allocations for now */
3603 if (!(gfp_mask & __GFP_FS))
3604 return false;
3605
3606 if (gfp_mask & __GFP_NOLOCKDEP)
3607 return false;
3608
3609 return true;
3610}
3611
3612void fs_reclaim_acquire(gfp_t gfp_mask)
3613{
3614 if (__need_fs_reclaim(gfp_mask))
3615 lock_map_acquire(&__fs_reclaim_map);
3616}
3617EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3618
3619void fs_reclaim_release(gfp_t gfp_mask)
3620{
3621 if (__need_fs_reclaim(gfp_mask))
3622 lock_map_release(&__fs_reclaim_map);
3623}
3624EXPORT_SYMBOL_GPL(fs_reclaim_release);
3625#endif
3626
bba90710
MS
3627/* Perform direct synchronous page reclaim */
3628static int
a9263751
VB
3629__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3630 const struct alloc_context *ac)
11e33f6a 3631{
11e33f6a 3632 struct reclaim_state reclaim_state;
bba90710 3633 int progress;
499118e9 3634 unsigned int noreclaim_flag;
11e33f6a
MG
3635
3636 cond_resched();
3637
3638 /* We now go into synchronous reclaim */
3639 cpuset_memory_pressure_bump();
499118e9 3640 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3641 fs_reclaim_acquire(gfp_mask);
11e33f6a 3642 reclaim_state.reclaimed_slab = 0;
c06b1fca 3643 current->reclaim_state = &reclaim_state;
11e33f6a 3644
a9263751
VB
3645 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3646 ac->nodemask);
11e33f6a 3647
c06b1fca 3648 current->reclaim_state = NULL;
d92a8cfc 3649 fs_reclaim_release(gfp_mask);
499118e9 3650 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3651
3652 cond_resched();
3653
bba90710
MS
3654 return progress;
3655}
3656
3657/* The really slow allocator path where we enter direct reclaim */
3658static inline struct page *
3659__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3660 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3661 unsigned long *did_some_progress)
bba90710
MS
3662{
3663 struct page *page = NULL;
3664 bool drained = false;
3665
a9263751 3666 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3667 if (unlikely(!(*did_some_progress)))
3668 return NULL;
11e33f6a 3669
9ee493ce 3670retry:
31a6c190 3671 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3672
3673 /*
3674 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3675 * pages are pinned on the per-cpu lists or in high alloc reserves.
3676 * Shrink them them and try again
9ee493ce
MG
3677 */
3678 if (!page && !drained) {
29fac03b 3679 unreserve_highatomic_pageblock(ac, false);
93481ff0 3680 drain_all_pages(NULL);
9ee493ce
MG
3681 drained = true;
3682 goto retry;
3683 }
3684
11e33f6a
MG
3685 return page;
3686}
3687
a9263751 3688static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3689{
3690 struct zoneref *z;
3691 struct zone *zone;
e1a55637 3692 pg_data_t *last_pgdat = NULL;
3a025760 3693
a9263751 3694 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3695 ac->high_zoneidx, ac->nodemask) {
3696 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3697 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3698 last_pgdat = zone->zone_pgdat;
3699 }
3a025760
JW
3700}
3701
c603844b 3702static inline unsigned int
341ce06f
PZ
3703gfp_to_alloc_flags(gfp_t gfp_mask)
3704{
c603844b 3705 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3706
a56f57ff 3707 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3708 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3709
341ce06f
PZ
3710 /*
3711 * The caller may dip into page reserves a bit more if the caller
3712 * cannot run direct reclaim, or if the caller has realtime scheduling
3713 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3714 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3715 */
e6223a3b 3716 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3717
d0164adc 3718 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3719 /*
b104a35d
DR
3720 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3721 * if it can't schedule.
5c3240d9 3722 */
b104a35d 3723 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3724 alloc_flags |= ALLOC_HARDER;
523b9458 3725 /*
b104a35d 3726 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3727 * comment for __cpuset_node_allowed().
523b9458 3728 */
341ce06f 3729 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3730 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3731 alloc_flags |= ALLOC_HARDER;
3732
d95ea5d1 3733#ifdef CONFIG_CMA
43e7a34d 3734 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3735 alloc_flags |= ALLOC_CMA;
3736#endif
341ce06f
PZ
3737 return alloc_flags;
3738}
3739
cd04ae1e 3740static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3741{
cd04ae1e
MH
3742 if (!tsk_is_oom_victim(tsk))
3743 return false;
3744
3745 /*
3746 * !MMU doesn't have oom reaper so give access to memory reserves
3747 * only to the thread with TIF_MEMDIE set
3748 */
3749 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3750 return false;
3751
cd04ae1e
MH
3752 return true;
3753}
3754
3755/*
3756 * Distinguish requests which really need access to full memory
3757 * reserves from oom victims which can live with a portion of it
3758 */
3759static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3760{
3761 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3762 return 0;
31a6c190 3763 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3764 return ALLOC_NO_WATERMARKS;
31a6c190 3765 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3766 return ALLOC_NO_WATERMARKS;
3767 if (!in_interrupt()) {
3768 if (current->flags & PF_MEMALLOC)
3769 return ALLOC_NO_WATERMARKS;
3770 else if (oom_reserves_allowed(current))
3771 return ALLOC_OOM;
3772 }
31a6c190 3773
cd04ae1e
MH
3774 return 0;
3775}
3776
3777bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3778{
3779 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3780}
3781
0a0337e0
MH
3782/*
3783 * Checks whether it makes sense to retry the reclaim to make a forward progress
3784 * for the given allocation request.
491d79ae
JW
3785 *
3786 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3787 * without success, or when we couldn't even meet the watermark if we
3788 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3789 *
3790 * Returns true if a retry is viable or false to enter the oom path.
3791 */
3792static inline bool
3793should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3794 struct alloc_context *ac, int alloc_flags,
423b452e 3795 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3796{
3797 struct zone *zone;
3798 struct zoneref *z;
3799
423b452e
VB
3800 /*
3801 * Costly allocations might have made a progress but this doesn't mean
3802 * their order will become available due to high fragmentation so
3803 * always increment the no progress counter for them
3804 */
3805 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3806 *no_progress_loops = 0;
3807 else
3808 (*no_progress_loops)++;
3809
0a0337e0
MH
3810 /*
3811 * Make sure we converge to OOM if we cannot make any progress
3812 * several times in the row.
3813 */
04c8716f
MK
3814 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3815 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3816 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3817 }
0a0337e0 3818
bca67592
MG
3819 /*
3820 * Keep reclaiming pages while there is a chance this will lead
3821 * somewhere. If none of the target zones can satisfy our allocation
3822 * request even if all reclaimable pages are considered then we are
3823 * screwed and have to go OOM.
0a0337e0
MH
3824 */
3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3826 ac->nodemask) {
3827 unsigned long available;
ede37713 3828 unsigned long reclaimable;
d379f01d
MH
3829 unsigned long min_wmark = min_wmark_pages(zone);
3830 bool wmark;
0a0337e0 3831
5a1c84b4 3832 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3833 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3834
3835 /*
491d79ae
JW
3836 * Would the allocation succeed if we reclaimed all
3837 * reclaimable pages?
0a0337e0 3838 */
d379f01d
MH
3839 wmark = __zone_watermark_ok(zone, order, min_wmark,
3840 ac_classzone_idx(ac), alloc_flags, available);
3841 trace_reclaim_retry_zone(z, order, reclaimable,
3842 available, min_wmark, *no_progress_loops, wmark);
3843 if (wmark) {
ede37713
MH
3844 /*
3845 * If we didn't make any progress and have a lot of
3846 * dirty + writeback pages then we should wait for
3847 * an IO to complete to slow down the reclaim and
3848 * prevent from pre mature OOM
3849 */
3850 if (!did_some_progress) {
11fb9989 3851 unsigned long write_pending;
ede37713 3852
5a1c84b4
MG
3853 write_pending = zone_page_state_snapshot(zone,
3854 NR_ZONE_WRITE_PENDING);
ede37713 3855
11fb9989 3856 if (2 * write_pending > reclaimable) {
ede37713
MH
3857 congestion_wait(BLK_RW_ASYNC, HZ/10);
3858 return true;
3859 }
3860 }
5a1c84b4 3861
ede37713
MH
3862 /*
3863 * Memory allocation/reclaim might be called from a WQ
3864 * context and the current implementation of the WQ
3865 * concurrency control doesn't recognize that
3866 * a particular WQ is congested if the worker thread is
3867 * looping without ever sleeping. Therefore we have to
3868 * do a short sleep here rather than calling
3869 * cond_resched().
3870 */
3871 if (current->flags & PF_WQ_WORKER)
3872 schedule_timeout_uninterruptible(1);
3873 else
3874 cond_resched();
3875
0a0337e0
MH
3876 return true;
3877 }
3878 }
3879
3880 return false;
3881}
3882
902b6281
VB
3883static inline bool
3884check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3885{
3886 /*
3887 * It's possible that cpuset's mems_allowed and the nodemask from
3888 * mempolicy don't intersect. This should be normally dealt with by
3889 * policy_nodemask(), but it's possible to race with cpuset update in
3890 * such a way the check therein was true, and then it became false
3891 * before we got our cpuset_mems_cookie here.
3892 * This assumes that for all allocations, ac->nodemask can come only
3893 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3894 * when it does not intersect with the cpuset restrictions) or the
3895 * caller can deal with a violated nodemask.
3896 */
3897 if (cpusets_enabled() && ac->nodemask &&
3898 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3899 ac->nodemask = NULL;
3900 return true;
3901 }
3902
3903 /*
3904 * When updating a task's mems_allowed or mempolicy nodemask, it is
3905 * possible to race with parallel threads in such a way that our
3906 * allocation can fail while the mask is being updated. If we are about
3907 * to fail, check if the cpuset changed during allocation and if so,
3908 * retry.
3909 */
3910 if (read_mems_allowed_retry(cpuset_mems_cookie))
3911 return true;
3912
3913 return false;
3914}
3915
11e33f6a
MG
3916static inline struct page *
3917__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3918 struct alloc_context *ac)
11e33f6a 3919{
d0164adc 3920 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3921 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3922 struct page *page = NULL;
c603844b 3923 unsigned int alloc_flags;
11e33f6a 3924 unsigned long did_some_progress;
5ce9bfef 3925 enum compact_priority compact_priority;
c5d01d0d 3926 enum compact_result compact_result;
5ce9bfef
VB
3927 int compaction_retries;
3928 int no_progress_loops;
5ce9bfef 3929 unsigned int cpuset_mems_cookie;
cd04ae1e 3930 int reserve_flags;
1da177e4 3931
d0164adc
MG
3932 /*
3933 * We also sanity check to catch abuse of atomic reserves being used by
3934 * callers that are not in atomic context.
3935 */
3936 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3937 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3938 gfp_mask &= ~__GFP_ATOMIC;
3939
5ce9bfef
VB
3940retry_cpuset:
3941 compaction_retries = 0;
3942 no_progress_loops = 0;
3943 compact_priority = DEF_COMPACT_PRIORITY;
3944 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3945
3946 /*
3947 * The fast path uses conservative alloc_flags to succeed only until
3948 * kswapd needs to be woken up, and to avoid the cost of setting up
3949 * alloc_flags precisely. So we do that now.
3950 */
3951 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3952
e47483bc
VB
3953 /*
3954 * We need to recalculate the starting point for the zonelist iterator
3955 * because we might have used different nodemask in the fast path, or
3956 * there was a cpuset modification and we are retrying - otherwise we
3957 * could end up iterating over non-eligible zones endlessly.
3958 */
3959 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3960 ac->high_zoneidx, ac->nodemask);
3961 if (!ac->preferred_zoneref->zone)
3962 goto nopage;
3963
23771235
VB
3964 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3965 wake_all_kswapds(order, ac);
3966
3967 /*
3968 * The adjusted alloc_flags might result in immediate success, so try
3969 * that first
3970 */
3971 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3972 if (page)
3973 goto got_pg;
3974
a8161d1e
VB
3975 /*
3976 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3977 * that we have enough base pages and don't need to reclaim. For non-
3978 * movable high-order allocations, do that as well, as compaction will
3979 * try prevent permanent fragmentation by migrating from blocks of the
3980 * same migratetype.
3981 * Don't try this for allocations that are allowed to ignore
3982 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3983 */
282722b0
VB
3984 if (can_direct_reclaim &&
3985 (costly_order ||
3986 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3987 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3988 page = __alloc_pages_direct_compact(gfp_mask, order,
3989 alloc_flags, ac,
a5508cd8 3990 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3991 &compact_result);
3992 if (page)
3993 goto got_pg;
3994
3eb2771b
VB
3995 /*
3996 * Checks for costly allocations with __GFP_NORETRY, which
3997 * includes THP page fault allocations
3998 */
282722b0 3999 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4000 /*
4001 * If compaction is deferred for high-order allocations,
4002 * it is because sync compaction recently failed. If
4003 * this is the case and the caller requested a THP
4004 * allocation, we do not want to heavily disrupt the
4005 * system, so we fail the allocation instead of entering
4006 * direct reclaim.
4007 */
4008 if (compact_result == COMPACT_DEFERRED)
4009 goto nopage;
4010
a8161d1e 4011 /*
3eb2771b
VB
4012 * Looks like reclaim/compaction is worth trying, but
4013 * sync compaction could be very expensive, so keep
25160354 4014 * using async compaction.
a8161d1e 4015 */
a5508cd8 4016 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4017 }
4018 }
23771235 4019
31a6c190 4020retry:
23771235 4021 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4022 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4023 wake_all_kswapds(order, ac);
4024
cd04ae1e
MH
4025 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4026 if (reserve_flags)
4027 alloc_flags = reserve_flags;
23771235 4028
e46e7b77
MG
4029 /*
4030 * Reset the zonelist iterators if memory policies can be ignored.
4031 * These allocations are high priority and system rather than user
4032 * orientated.
4033 */
cd04ae1e 4034 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4035 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4036 ac->high_zoneidx, ac->nodemask);
4037 }
4038
23771235 4039 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4040 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4041 if (page)
4042 goto got_pg;
1da177e4 4043
d0164adc 4044 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4045 if (!can_direct_reclaim)
1da177e4
LT
4046 goto nopage;
4047
9a67f648
MH
4048 /* Avoid recursion of direct reclaim */
4049 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4050 goto nopage;
4051
a8161d1e
VB
4052 /* Try direct reclaim and then allocating */
4053 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4054 &did_some_progress);
4055 if (page)
4056 goto got_pg;
4057
4058 /* Try direct compaction and then allocating */
a9263751 4059 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4060 compact_priority, &compact_result);
56de7263
MG
4061 if (page)
4062 goto got_pg;
75f30861 4063
9083905a
JW
4064 /* Do not loop if specifically requested */
4065 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4066 goto nopage;
9083905a 4067
0a0337e0
MH
4068 /*
4069 * Do not retry costly high order allocations unless they are
dcda9b04 4070 * __GFP_RETRY_MAYFAIL
0a0337e0 4071 */
dcda9b04 4072 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4073 goto nopage;
0a0337e0 4074
0a0337e0 4075 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4076 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4077 goto retry;
4078
33c2d214
MH
4079 /*
4080 * It doesn't make any sense to retry for the compaction if the order-0
4081 * reclaim is not able to make any progress because the current
4082 * implementation of the compaction depends on the sufficient amount
4083 * of free memory (see __compaction_suitable)
4084 */
4085 if (did_some_progress > 0 &&
86a294a8 4086 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4087 compact_result, &compact_priority,
d9436498 4088 &compaction_retries))
33c2d214
MH
4089 goto retry;
4090
902b6281
VB
4091
4092 /* Deal with possible cpuset update races before we start OOM killing */
4093 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4094 goto retry_cpuset;
4095
9083905a
JW
4096 /* Reclaim has failed us, start killing things */
4097 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4098 if (page)
4099 goto got_pg;
4100
9a67f648 4101 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4102 if (tsk_is_oom_victim(current) &&
4103 (alloc_flags == ALLOC_OOM ||
c288983d 4104 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4105 goto nopage;
4106
9083905a 4107 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4108 if (did_some_progress) {
4109 no_progress_loops = 0;
9083905a 4110 goto retry;
0a0337e0 4111 }
9083905a 4112
1da177e4 4113nopage:
902b6281
VB
4114 /* Deal with possible cpuset update races before we fail */
4115 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4116 goto retry_cpuset;
4117
9a67f648
MH
4118 /*
4119 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4120 * we always retry
4121 */
4122 if (gfp_mask & __GFP_NOFAIL) {
4123 /*
4124 * All existing users of the __GFP_NOFAIL are blockable, so warn
4125 * of any new users that actually require GFP_NOWAIT
4126 */
4127 if (WARN_ON_ONCE(!can_direct_reclaim))
4128 goto fail;
4129
4130 /*
4131 * PF_MEMALLOC request from this context is rather bizarre
4132 * because we cannot reclaim anything and only can loop waiting
4133 * for somebody to do a work for us
4134 */
4135 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4136
4137 /*
4138 * non failing costly orders are a hard requirement which we
4139 * are not prepared for much so let's warn about these users
4140 * so that we can identify them and convert them to something
4141 * else.
4142 */
4143 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4144
6c18ba7a
MH
4145 /*
4146 * Help non-failing allocations by giving them access to memory
4147 * reserves but do not use ALLOC_NO_WATERMARKS because this
4148 * could deplete whole memory reserves which would just make
4149 * the situation worse
4150 */
4151 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4152 if (page)
4153 goto got_pg;
4154
9a67f648
MH
4155 cond_resched();
4156 goto retry;
4157 }
4158fail:
a8e99259 4159 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4160 "page allocation failure: order:%u", order);
1da177e4 4161got_pg:
072bb0aa 4162 return page;
1da177e4 4163}
11e33f6a 4164
9cd75558 4165static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4166 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4167 struct alloc_context *ac, gfp_t *alloc_mask,
4168 unsigned int *alloc_flags)
11e33f6a 4169{
9cd75558 4170 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4171 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4172 ac->nodemask = nodemask;
4173 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4174
682a3385 4175 if (cpusets_enabled()) {
9cd75558 4176 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4177 if (!ac->nodemask)
4178 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4179 else
4180 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4181 }
4182
d92a8cfc
PZ
4183 fs_reclaim_acquire(gfp_mask);
4184 fs_reclaim_release(gfp_mask);
11e33f6a 4185
d0164adc 4186 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4187
4188 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4189 return false;
11e33f6a 4190
9cd75558
MG
4191 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4192 *alloc_flags |= ALLOC_CMA;
4193
4194 return true;
4195}
21bb9bd1 4196
9cd75558
MG
4197/* Determine whether to spread dirty pages and what the first usable zone */
4198static inline void finalise_ac(gfp_t gfp_mask,
4199 unsigned int order, struct alloc_context *ac)
4200{
c9ab0c4f 4201 /* Dirty zone balancing only done in the fast path */
9cd75558 4202 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4203
e46e7b77
MG
4204 /*
4205 * The preferred zone is used for statistics but crucially it is
4206 * also used as the starting point for the zonelist iterator. It
4207 * may get reset for allocations that ignore memory policies.
4208 */
9cd75558
MG
4209 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4210 ac->high_zoneidx, ac->nodemask);
4211}
4212
4213/*
4214 * This is the 'heart' of the zoned buddy allocator.
4215 */
4216struct page *
04ec6264
VB
4217__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4218 nodemask_t *nodemask)
9cd75558
MG
4219{
4220 struct page *page;
4221 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4222 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4223 struct alloc_context ac = { };
4224
12161adb
MH
4225 /*
4226 * There are several places where we assume that the order value is sane
4227 * so bail out early if the request is out of bound.
4228 */
4229 if (unlikely(order >= MAX_ORDER)) {
4230 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4231 return NULL;
4232 }
4233
9cd75558 4234 gfp_mask &= gfp_allowed_mask;
f19360f0 4235 alloc_mask = gfp_mask;
04ec6264 4236 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4237 return NULL;
4238
4239 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4240
5117f45d 4241 /* First allocation attempt */
a9263751 4242 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4243 if (likely(page))
4244 goto out;
11e33f6a 4245
4fcb0971 4246 /*
7dea19f9
MH
4247 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4248 * resp. GFP_NOIO which has to be inherited for all allocation requests
4249 * from a particular context which has been marked by
4250 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4251 */
7dea19f9 4252 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4253 ac.spread_dirty_pages = false;
23f086f9 4254
4741526b
MG
4255 /*
4256 * Restore the original nodemask if it was potentially replaced with
4257 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4258 */
e47483bc 4259 if (unlikely(ac.nodemask != nodemask))
4741526b 4260 ac.nodemask = nodemask;
16096c25 4261
4fcb0971 4262 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4263
4fcb0971 4264out:
c4159a75
VD
4265 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4266 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4267 __free_pages(page, order);
4268 page = NULL;
4949148a
VD
4269 }
4270
4fcb0971
MG
4271 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4272
11e33f6a 4273 return page;
1da177e4 4274}
d239171e 4275EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4276
4277/*
4278 * Common helper functions.
4279 */
920c7a5d 4280unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4281{
945a1113
AM
4282 struct page *page;
4283
4284 /*
4285 * __get_free_pages() returns a 32-bit address, which cannot represent
4286 * a highmem page
4287 */
4288 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4289
1da177e4
LT
4290 page = alloc_pages(gfp_mask, order);
4291 if (!page)
4292 return 0;
4293 return (unsigned long) page_address(page);
4294}
1da177e4
LT
4295EXPORT_SYMBOL(__get_free_pages);
4296
920c7a5d 4297unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4298{
945a1113 4299 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4300}
1da177e4
LT
4301EXPORT_SYMBOL(get_zeroed_page);
4302
15be2e60 4303static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4304{
15be2e60
AL
4305 if (order == 0) /* Via pcp? */
4306 free_unref_page(page);
4307 else
4308 __free_pages_ok(page, order);
1da177e4
LT
4309}
4310
15be2e60
AL
4311void __free_pages(struct page *page, unsigned int order)
4312{
4313 if (put_page_testzero(page))
4314 free_the_page(page, order);
4315}
1da177e4
LT
4316EXPORT_SYMBOL(__free_pages);
4317
920c7a5d 4318void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4319{
4320 if (addr != 0) {
725d704e 4321 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4322 __free_pages(virt_to_page((void *)addr), order);
4323 }
4324}
4325
4326EXPORT_SYMBOL(free_pages);
4327
b63ae8ca
AD
4328/*
4329 * Page Fragment:
4330 * An arbitrary-length arbitrary-offset area of memory which resides
4331 * within a 0 or higher order page. Multiple fragments within that page
4332 * are individually refcounted, in the page's reference counter.
4333 *
4334 * The page_frag functions below provide a simple allocation framework for
4335 * page fragments. This is used by the network stack and network device
4336 * drivers to provide a backing region of memory for use as either an
4337 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4338 */
2976db80
AD
4339static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4340 gfp_t gfp_mask)
b63ae8ca
AD
4341{
4342 struct page *page = NULL;
4343 gfp_t gfp = gfp_mask;
4344
4345#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4346 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4347 __GFP_NOMEMALLOC;
4348 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4349 PAGE_FRAG_CACHE_MAX_ORDER);
4350 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4351#endif
4352 if (unlikely(!page))
4353 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4354
4355 nc->va = page ? page_address(page) : NULL;
4356
4357 return page;
4358}
4359
2976db80 4360void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4361{
4362 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4363
15be2e60
AL
4364 if (page_ref_sub_and_test(page, count))
4365 free_the_page(page, compound_order(page));
44fdffd7 4366}
2976db80 4367EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4368
8c2dd3e4
AD
4369void *page_frag_alloc(struct page_frag_cache *nc,
4370 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4371{
4372 unsigned int size = PAGE_SIZE;
4373 struct page *page;
4374 int offset;
4375
4376 if (unlikely(!nc->va)) {
4377refill:
2976db80 4378 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4379 if (!page)
4380 return NULL;
4381
4382#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4383 /* if size can vary use size else just use PAGE_SIZE */
4384 size = nc->size;
4385#endif
4386 /* Even if we own the page, we do not use atomic_set().
4387 * This would break get_page_unless_zero() users.
4388 */
6b0429c3 4389 page_ref_add(page, size);
b63ae8ca
AD
4390
4391 /* reset page count bias and offset to start of new frag */
2f064f34 4392 nc->pfmemalloc = page_is_pfmemalloc(page);
6b0429c3 4393 nc->pagecnt_bias = size + 1;
b63ae8ca
AD
4394 nc->offset = size;
4395 }
4396
4397 offset = nc->offset - fragsz;
4398 if (unlikely(offset < 0)) {
4399 page = virt_to_page(nc->va);
4400
fe896d18 4401 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4402 goto refill;
4403
4404#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4405 /* if size can vary use size else just use PAGE_SIZE */
4406 size = nc->size;
4407#endif
4408 /* OK, page count is 0, we can safely set it */
6b0429c3 4409 set_page_count(page, size + 1);
b63ae8ca
AD
4410
4411 /* reset page count bias and offset to start of new frag */
6b0429c3 4412 nc->pagecnt_bias = size + 1;
b63ae8ca
AD
4413 offset = size - fragsz;
4414 }
4415
4416 nc->pagecnt_bias--;
4417 nc->offset = offset;
4418
4419 return nc->va + offset;
4420}
8c2dd3e4 4421EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4422
4423/*
4424 * Frees a page fragment allocated out of either a compound or order 0 page.
4425 */
8c2dd3e4 4426void page_frag_free(void *addr)
b63ae8ca
AD
4427{
4428 struct page *page = virt_to_head_page(addr);
4429
15be2e60
AL
4430 if (unlikely(put_page_testzero(page)))
4431 free_the_page(page, compound_order(page));
b63ae8ca 4432}
8c2dd3e4 4433EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4434
d00181b9
KS
4435static void *make_alloc_exact(unsigned long addr, unsigned int order,
4436 size_t size)
ee85c2e1
AK
4437{
4438 if (addr) {
4439 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4440 unsigned long used = addr + PAGE_ALIGN(size);
4441
4442 split_page(virt_to_page((void *)addr), order);
4443 while (used < alloc_end) {
4444 free_page(used);
4445 used += PAGE_SIZE;
4446 }
4447 }
4448 return (void *)addr;
4449}
4450
2be0ffe2
TT
4451/**
4452 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4453 * @size: the number of bytes to allocate
4454 * @gfp_mask: GFP flags for the allocation
4455 *
4456 * This function is similar to alloc_pages(), except that it allocates the
4457 * minimum number of pages to satisfy the request. alloc_pages() can only
4458 * allocate memory in power-of-two pages.
4459 *
4460 * This function is also limited by MAX_ORDER.
4461 *
4462 * Memory allocated by this function must be released by free_pages_exact().
4463 */
4464void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4465{
4466 unsigned int order = get_order(size);
4467 unsigned long addr;
4468
4469 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4470 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4471}
4472EXPORT_SYMBOL(alloc_pages_exact);
4473
ee85c2e1
AK
4474/**
4475 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4476 * pages on a node.
b5e6ab58 4477 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4478 * @size: the number of bytes to allocate
4479 * @gfp_mask: GFP flags for the allocation
4480 *
4481 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4482 * back.
ee85c2e1 4483 */
e1931811 4484void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4485{
d00181b9 4486 unsigned int order = get_order(size);
ee85c2e1
AK
4487 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4488 if (!p)
4489 return NULL;
4490 return make_alloc_exact((unsigned long)page_address(p), order, size);
4491}
ee85c2e1 4492
2be0ffe2
TT
4493/**
4494 * free_pages_exact - release memory allocated via alloc_pages_exact()
4495 * @virt: the value returned by alloc_pages_exact.
4496 * @size: size of allocation, same value as passed to alloc_pages_exact().
4497 *
4498 * Release the memory allocated by a previous call to alloc_pages_exact.
4499 */
4500void free_pages_exact(void *virt, size_t size)
4501{
4502 unsigned long addr = (unsigned long)virt;
4503 unsigned long end = addr + PAGE_ALIGN(size);
4504
4505 while (addr < end) {
4506 free_page(addr);
4507 addr += PAGE_SIZE;
4508 }
4509}
4510EXPORT_SYMBOL(free_pages_exact);
4511
e0fb5815
ZY
4512/**
4513 * nr_free_zone_pages - count number of pages beyond high watermark
4514 * @offset: The zone index of the highest zone
4515 *
4516 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4517 * high watermark within all zones at or below a given zone index. For each
4518 * zone, the number of pages is calculated as:
0e056eb5
MCC
4519 *
4520 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4521 */
ebec3862 4522static unsigned long nr_free_zone_pages(int offset)
1da177e4 4523{
dd1a239f 4524 struct zoneref *z;
54a6eb5c
MG
4525 struct zone *zone;
4526
e310fd43 4527 /* Just pick one node, since fallback list is circular */
ebec3862 4528 unsigned long sum = 0;
1da177e4 4529
0e88460d 4530 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4531
54a6eb5c 4532 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4533 unsigned long size = zone->managed_pages;
41858966 4534 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4535 if (size > high)
4536 sum += size - high;
1da177e4
LT
4537 }
4538
4539 return sum;
4540}
4541
e0fb5815
ZY
4542/**
4543 * nr_free_buffer_pages - count number of pages beyond high watermark
4544 *
4545 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4546 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4547 */
ebec3862 4548unsigned long nr_free_buffer_pages(void)
1da177e4 4549{
af4ca457 4550 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4551}
c2f1a551 4552EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4553
e0fb5815
ZY
4554/**
4555 * nr_free_pagecache_pages - count number of pages beyond high watermark
4556 *
4557 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4558 * high watermark within all zones.
1da177e4 4559 */
ebec3862 4560unsigned long nr_free_pagecache_pages(void)
1da177e4 4561{
2a1e274a 4562 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4563}
08e0f6a9
CL
4564
4565static inline void show_node(struct zone *zone)
1da177e4 4566{
e5adfffc 4567 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4568 printk("Node %d ", zone_to_nid(zone));
1da177e4 4569}
1da177e4 4570
d02bd27b
IR
4571long si_mem_available(void)
4572{
4573 long available;
4574 unsigned long pagecache;
4575 unsigned long wmark_low = 0;
4576 unsigned long pages[NR_LRU_LISTS];
4577 struct zone *zone;
4578 int lru;
4579
4580 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4581 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4582
4583 for_each_zone(zone)
4584 wmark_low += zone->watermark[WMARK_LOW];
4585
4586 /*
4587 * Estimate the amount of memory available for userspace allocations,
4588 * without causing swapping.
4589 */
c41f012a 4590 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4591
4592 /*
4593 * Not all the page cache can be freed, otherwise the system will
4594 * start swapping. Assume at least half of the page cache, or the
4595 * low watermark worth of cache, needs to stay.
4596 */
4597 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4598 pagecache -= min(pagecache / 2, wmark_low);
4599 available += pagecache;
4600
4601 /*
4602 * Part of the reclaimable slab consists of items that are in use,
4603 * and cannot be freed. Cap this estimate at the low watermark.
4604 */
d507e2eb
JW
4605 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4606 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4607 wmark_low);
d02bd27b 4608
14f18fb5
RG
4609 /*
4610 * Part of the kernel memory, which can be released under memory
4611 * pressure.
4612 */
4613 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4614 PAGE_SHIFT;
4615
d02bd27b
IR
4616 if (available < 0)
4617 available = 0;
4618 return available;
4619}
4620EXPORT_SYMBOL_GPL(si_mem_available);
4621
1da177e4
LT
4622void si_meminfo(struct sysinfo *val)
4623{
4624 val->totalram = totalram_pages;
11fb9989 4625 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4626 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4627 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4628 val->totalhigh = totalhigh_pages;
4629 val->freehigh = nr_free_highpages();
1da177e4
LT
4630 val->mem_unit = PAGE_SIZE;
4631}
4632
4633EXPORT_SYMBOL(si_meminfo);
4634
4635#ifdef CONFIG_NUMA
4636void si_meminfo_node(struct sysinfo *val, int nid)
4637{
cdd91a77
JL
4638 int zone_type; /* needs to be signed */
4639 unsigned long managed_pages = 0;
fc2bd799
JK
4640 unsigned long managed_highpages = 0;
4641 unsigned long free_highpages = 0;
1da177e4
LT
4642 pg_data_t *pgdat = NODE_DATA(nid);
4643
cdd91a77
JL
4644 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4645 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4646 val->totalram = managed_pages;
11fb9989 4647 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4648 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4649#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4650 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4651 struct zone *zone = &pgdat->node_zones[zone_type];
4652
4653 if (is_highmem(zone)) {
4654 managed_highpages += zone->managed_pages;
4655 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4656 }
4657 }
4658 val->totalhigh = managed_highpages;
4659 val->freehigh = free_highpages;
98d2b0eb 4660#else
fc2bd799
JK
4661 val->totalhigh = managed_highpages;
4662 val->freehigh = free_highpages;
98d2b0eb 4663#endif
1da177e4
LT
4664 val->mem_unit = PAGE_SIZE;
4665}
4666#endif
4667
ddd588b5 4668/*
7bf02ea2
DR
4669 * Determine whether the node should be displayed or not, depending on whether
4670 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4671 */
9af744d7 4672static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4673{
ddd588b5 4674 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4675 return false;
ddd588b5 4676
9af744d7
MH
4677 /*
4678 * no node mask - aka implicit memory numa policy. Do not bother with
4679 * the synchronization - read_mems_allowed_begin - because we do not
4680 * have to be precise here.
4681 */
4682 if (!nodemask)
4683 nodemask = &cpuset_current_mems_allowed;
4684
4685 return !node_isset(nid, *nodemask);
ddd588b5
DR
4686}
4687
1da177e4
LT
4688#define K(x) ((x) << (PAGE_SHIFT-10))
4689
377e4f16
RV
4690static void show_migration_types(unsigned char type)
4691{
4692 static const char types[MIGRATE_TYPES] = {
4693 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4694 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4695 [MIGRATE_RECLAIMABLE] = 'E',
4696 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4697#ifdef CONFIG_CMA
4698 [MIGRATE_CMA] = 'C',
4699#endif
194159fb 4700#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4701 [MIGRATE_ISOLATE] = 'I',
194159fb 4702#endif
377e4f16
RV
4703 };
4704 char tmp[MIGRATE_TYPES + 1];
4705 char *p = tmp;
4706 int i;
4707
4708 for (i = 0; i < MIGRATE_TYPES; i++) {
4709 if (type & (1 << i))
4710 *p++ = types[i];
4711 }
4712
4713 *p = '\0';
1f84a18f 4714 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4715}
4716
1da177e4
LT
4717/*
4718 * Show free area list (used inside shift_scroll-lock stuff)
4719 * We also calculate the percentage fragmentation. We do this by counting the
4720 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4721 *
4722 * Bits in @filter:
4723 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4724 * cpuset.
1da177e4 4725 */
9af744d7 4726void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4727{
d1bfcdb8 4728 unsigned long free_pcp = 0;
c7241913 4729 int cpu;
1da177e4 4730 struct zone *zone;
599d0c95 4731 pg_data_t *pgdat;
1da177e4 4732
ee99c71c 4733 for_each_populated_zone(zone) {
9af744d7 4734 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4735 continue;
d1bfcdb8 4736
761b0677
KK
4737 for_each_online_cpu(cpu)
4738 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4739 }
4740
a731286d
KM
4741 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4742 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4743 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4744 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4745 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4746 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4747 global_node_page_state(NR_ACTIVE_ANON),
4748 global_node_page_state(NR_INACTIVE_ANON),
4749 global_node_page_state(NR_ISOLATED_ANON),
4750 global_node_page_state(NR_ACTIVE_FILE),
4751 global_node_page_state(NR_INACTIVE_FILE),
4752 global_node_page_state(NR_ISOLATED_FILE),
4753 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4754 global_node_page_state(NR_FILE_DIRTY),
4755 global_node_page_state(NR_WRITEBACK),
4756 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4757 global_node_page_state(NR_SLAB_RECLAIMABLE),
4758 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4759 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4760 global_node_page_state(NR_SHMEM),
c41f012a
MH
4761 global_zone_page_state(NR_PAGETABLE),
4762 global_zone_page_state(NR_BOUNCE),
4763 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4764 free_pcp,
c41f012a 4765 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4766
599d0c95 4767 for_each_online_pgdat(pgdat) {
9af744d7 4768 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4769 continue;
4770
599d0c95
MG
4771 printk("Node %d"
4772 " active_anon:%lukB"
4773 " inactive_anon:%lukB"
4774 " active_file:%lukB"
4775 " inactive_file:%lukB"
4776 " unevictable:%lukB"
4777 " isolated(anon):%lukB"
4778 " isolated(file):%lukB"
50658e2e 4779 " mapped:%lukB"
11fb9989
MG
4780 " dirty:%lukB"
4781 " writeback:%lukB"
4782 " shmem:%lukB"
4783#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4784 " shmem_thp: %lukB"
4785 " shmem_pmdmapped: %lukB"
4786 " anon_thp: %lukB"
4787#endif
4788 " writeback_tmp:%lukB"
4789 " unstable:%lukB"
599d0c95
MG
4790 " all_unreclaimable? %s"
4791 "\n",
4792 pgdat->node_id,
4793 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4794 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4795 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4796 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4797 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4798 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4799 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4800 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4801 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4802 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4803 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4804#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4805 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4806 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4807 * HPAGE_PMD_NR),
4808 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4809#endif
11fb9989
MG
4810 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4811 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4812 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4813 "yes" : "no");
599d0c95
MG
4814 }
4815
ee99c71c 4816 for_each_populated_zone(zone) {
1da177e4
LT
4817 int i;
4818
9af744d7 4819 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4820 continue;
d1bfcdb8
KK
4821
4822 free_pcp = 0;
4823 for_each_online_cpu(cpu)
4824 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4825
1da177e4 4826 show_node(zone);
1f84a18f
JP
4827 printk(KERN_CONT
4828 "%s"
1da177e4
LT
4829 " free:%lukB"
4830 " min:%lukB"
4831 " low:%lukB"
4832 " high:%lukB"
71c799f4
MK
4833 " active_anon:%lukB"
4834 " inactive_anon:%lukB"
4835 " active_file:%lukB"
4836 " inactive_file:%lukB"
4837 " unevictable:%lukB"
5a1c84b4 4838 " writepending:%lukB"
1da177e4 4839 " present:%lukB"
9feedc9d 4840 " managed:%lukB"
4a0aa73f 4841 " mlocked:%lukB"
c6a7f572 4842 " kernel_stack:%lukB"
4a0aa73f 4843 " pagetables:%lukB"
4a0aa73f 4844 " bounce:%lukB"
d1bfcdb8
KK
4845 " free_pcp:%lukB"
4846 " local_pcp:%ukB"
d1ce749a 4847 " free_cma:%lukB"
1da177e4
LT
4848 "\n",
4849 zone->name,
88f5acf8 4850 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4851 K(min_wmark_pages(zone)),
4852 K(low_wmark_pages(zone)),
4853 K(high_wmark_pages(zone)),
71c799f4
MK
4854 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4855 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4856 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4857 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4858 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4859 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4860 K(zone->present_pages),
9feedc9d 4861 K(zone->managed_pages),
4a0aa73f 4862 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4863 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4864 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4865 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4866 K(free_pcp),
4867 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4868 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4869 printk("lowmem_reserve[]:");
4870 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4871 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4872 printk(KERN_CONT "\n");
1da177e4
LT
4873 }
4874
ee99c71c 4875 for_each_populated_zone(zone) {
d00181b9
KS
4876 unsigned int order;
4877 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4878 unsigned char types[MAX_ORDER];
1da177e4 4879
9af744d7 4880 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4881 continue;
1da177e4 4882 show_node(zone);
1f84a18f 4883 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4884
4885 spin_lock_irqsave(&zone->lock, flags);
4886 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4887 struct free_area *area = &zone->free_area[order];
4888 int type;
4889
4890 nr[order] = area->nr_free;
8f9de51a 4891 total += nr[order] << order;
377e4f16
RV
4892
4893 types[order] = 0;
4894 for (type = 0; type < MIGRATE_TYPES; type++) {
4895 if (!list_empty(&area->free_list[type]))
4896 types[order] |= 1 << type;
4897 }
1da177e4
LT
4898 }
4899 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4900 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4901 printk(KERN_CONT "%lu*%lukB ",
4902 nr[order], K(1UL) << order);
377e4f16
RV
4903 if (nr[order])
4904 show_migration_types(types[order]);
4905 }
1f84a18f 4906 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4907 }
4908
949f7ec5
DR
4909 hugetlb_show_meminfo();
4910
11fb9989 4911 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4912
1da177e4
LT
4913 show_swap_cache_info();
4914}
4915
19770b32
MG
4916static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4917{
4918 zoneref->zone = zone;
4919 zoneref->zone_idx = zone_idx(zone);
4920}
4921
1da177e4
LT
4922/*
4923 * Builds allocation fallback zone lists.
1a93205b
CL
4924 *
4925 * Add all populated zones of a node to the zonelist.
1da177e4 4926 */
9d3be21b 4927static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4928{
1a93205b 4929 struct zone *zone;
bc732f1d 4930 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4931 int nr_zones = 0;
02a68a5e
CL
4932
4933 do {
2f6726e5 4934 zone_type--;
070f8032 4935 zone = pgdat->node_zones + zone_type;
6aa303de 4936 if (managed_zone(zone)) {
9d3be21b 4937 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4938 check_highest_zone(zone_type);
1da177e4 4939 }
2f6726e5 4940 } while (zone_type);
bc732f1d 4941
070f8032 4942 return nr_zones;
1da177e4
LT
4943}
4944
4945#ifdef CONFIG_NUMA
f0c0b2b8
KH
4946
4947static int __parse_numa_zonelist_order(char *s)
4948{
c9bff3ee
MH
4949 /*
4950 * We used to support different zonlists modes but they turned
4951 * out to be just not useful. Let's keep the warning in place
4952 * if somebody still use the cmd line parameter so that we do
4953 * not fail it silently
4954 */
4955 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4956 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4957 return -EINVAL;
4958 }
4959 return 0;
4960}
4961
4962static __init int setup_numa_zonelist_order(char *s)
4963{
ecb256f8
VL
4964 if (!s)
4965 return 0;
4966
c9bff3ee 4967 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4968}
4969early_param("numa_zonelist_order", setup_numa_zonelist_order);
4970
c9bff3ee
MH
4971char numa_zonelist_order[] = "Node";
4972
f0c0b2b8
KH
4973/*
4974 * sysctl handler for numa_zonelist_order
4975 */
cccad5b9 4976int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4977 void __user *buffer, size_t *length,
f0c0b2b8
KH
4978 loff_t *ppos)
4979{
c9bff3ee 4980 char *str;
f0c0b2b8
KH
4981 int ret;
4982
c9bff3ee
MH
4983 if (!write)
4984 return proc_dostring(table, write, buffer, length, ppos);
4985 str = memdup_user_nul(buffer, 16);
4986 if (IS_ERR(str))
4987 return PTR_ERR(str);
dacbde09 4988
c9bff3ee
MH
4989 ret = __parse_numa_zonelist_order(str);
4990 kfree(str);
443c6f14 4991 return ret;
f0c0b2b8
KH
4992}
4993
4994
62bc62a8 4995#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4996static int node_load[MAX_NUMNODES];
4997
1da177e4 4998/**
4dc3b16b 4999 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5000 * @node: node whose fallback list we're appending
5001 * @used_node_mask: nodemask_t of already used nodes
5002 *
5003 * We use a number of factors to determine which is the next node that should
5004 * appear on a given node's fallback list. The node should not have appeared
5005 * already in @node's fallback list, and it should be the next closest node
5006 * according to the distance array (which contains arbitrary distance values
5007 * from each node to each node in the system), and should also prefer nodes
5008 * with no CPUs, since presumably they'll have very little allocation pressure
5009 * on them otherwise.
5010 * It returns -1 if no node is found.
5011 */
f0c0b2b8 5012static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5013{
4cf808eb 5014 int n, val;
1da177e4 5015 int min_val = INT_MAX;
00ef2d2f 5016 int best_node = NUMA_NO_NODE;
a70f7302 5017 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5018
4cf808eb
LT
5019 /* Use the local node if we haven't already */
5020 if (!node_isset(node, *used_node_mask)) {
5021 node_set(node, *used_node_mask);
5022 return node;
5023 }
1da177e4 5024
4b0ef1fe 5025 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5026
5027 /* Don't want a node to appear more than once */
5028 if (node_isset(n, *used_node_mask))
5029 continue;
5030
1da177e4
LT
5031 /* Use the distance array to find the distance */
5032 val = node_distance(node, n);
5033
4cf808eb
LT
5034 /* Penalize nodes under us ("prefer the next node") */
5035 val += (n < node);
5036
1da177e4 5037 /* Give preference to headless and unused nodes */
a70f7302
RR
5038 tmp = cpumask_of_node(n);
5039 if (!cpumask_empty(tmp))
1da177e4
LT
5040 val += PENALTY_FOR_NODE_WITH_CPUS;
5041
5042 /* Slight preference for less loaded node */
5043 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5044 val += node_load[n];
5045
5046 if (val < min_val) {
5047 min_val = val;
5048 best_node = n;
5049 }
5050 }
5051
5052 if (best_node >= 0)
5053 node_set(best_node, *used_node_mask);
5054
5055 return best_node;
5056}
5057
f0c0b2b8
KH
5058
5059/*
5060 * Build zonelists ordered by node and zones within node.
5061 * This results in maximum locality--normal zone overflows into local
5062 * DMA zone, if any--but risks exhausting DMA zone.
5063 */
9d3be21b
MH
5064static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5065 unsigned nr_nodes)
1da177e4 5066{
9d3be21b
MH
5067 struct zoneref *zonerefs;
5068 int i;
5069
5070 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5071
5072 for (i = 0; i < nr_nodes; i++) {
5073 int nr_zones;
5074
5075 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5076
9d3be21b
MH
5077 nr_zones = build_zonerefs_node(node, zonerefs);
5078 zonerefs += nr_zones;
5079 }
5080 zonerefs->zone = NULL;
5081 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5082}
5083
523b9458
CL
5084/*
5085 * Build gfp_thisnode zonelists
5086 */
5087static void build_thisnode_zonelists(pg_data_t *pgdat)
5088{
9d3be21b
MH
5089 struct zoneref *zonerefs;
5090 int nr_zones;
523b9458 5091
9d3be21b
MH
5092 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5093 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5094 zonerefs += nr_zones;
5095 zonerefs->zone = NULL;
5096 zonerefs->zone_idx = 0;
523b9458
CL
5097}
5098
f0c0b2b8
KH
5099/*
5100 * Build zonelists ordered by zone and nodes within zones.
5101 * This results in conserving DMA zone[s] until all Normal memory is
5102 * exhausted, but results in overflowing to remote node while memory
5103 * may still exist in local DMA zone.
5104 */
f0c0b2b8 5105
f0c0b2b8
KH
5106static void build_zonelists(pg_data_t *pgdat)
5107{
9d3be21b
MH
5108 static int node_order[MAX_NUMNODES];
5109 int node, load, nr_nodes = 0;
1da177e4 5110 nodemask_t used_mask;
f0c0b2b8 5111 int local_node, prev_node;
1da177e4
LT
5112
5113 /* NUMA-aware ordering of nodes */
5114 local_node = pgdat->node_id;
62bc62a8 5115 load = nr_online_nodes;
1da177e4
LT
5116 prev_node = local_node;
5117 nodes_clear(used_mask);
f0c0b2b8 5118
f0c0b2b8 5119 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5120 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5121 /*
5122 * We don't want to pressure a particular node.
5123 * So adding penalty to the first node in same
5124 * distance group to make it round-robin.
5125 */
957f822a
DR
5126 if (node_distance(local_node, node) !=
5127 node_distance(local_node, prev_node))
f0c0b2b8
KH
5128 node_load[node] = load;
5129
9d3be21b 5130 node_order[nr_nodes++] = node;
1da177e4
LT
5131 prev_node = node;
5132 load--;
1da177e4 5133 }
523b9458 5134
9d3be21b 5135 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5136 build_thisnode_zonelists(pgdat);
1da177e4
LT
5137}
5138
7aac7898
LS
5139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5140/*
5141 * Return node id of node used for "local" allocations.
5142 * I.e., first node id of first zone in arg node's generic zonelist.
5143 * Used for initializing percpu 'numa_mem', which is used primarily
5144 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5145 */
5146int local_memory_node(int node)
5147{
c33d6c06 5148 struct zoneref *z;
7aac7898 5149
c33d6c06 5150 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5151 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5152 NULL);
5153 return z->zone->node;
7aac7898
LS
5154}
5155#endif
f0c0b2b8 5156
6423aa81
JK
5157static void setup_min_unmapped_ratio(void);
5158static void setup_min_slab_ratio(void);
1da177e4
LT
5159#else /* CONFIG_NUMA */
5160
f0c0b2b8 5161static void build_zonelists(pg_data_t *pgdat)
1da177e4 5162{
19655d34 5163 int node, local_node;
9d3be21b
MH
5164 struct zoneref *zonerefs;
5165 int nr_zones;
1da177e4
LT
5166
5167 local_node = pgdat->node_id;
1da177e4 5168
9d3be21b
MH
5169 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5170 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5171 zonerefs += nr_zones;
1da177e4 5172
54a6eb5c
MG
5173 /*
5174 * Now we build the zonelist so that it contains the zones
5175 * of all the other nodes.
5176 * We don't want to pressure a particular node, so when
5177 * building the zones for node N, we make sure that the
5178 * zones coming right after the local ones are those from
5179 * node N+1 (modulo N)
5180 */
5181 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5182 if (!node_online(node))
5183 continue;
9d3be21b
MH
5184 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5185 zonerefs += nr_zones;
1da177e4 5186 }
54a6eb5c
MG
5187 for (node = 0; node < local_node; node++) {
5188 if (!node_online(node))
5189 continue;
9d3be21b
MH
5190 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5191 zonerefs += nr_zones;
54a6eb5c
MG
5192 }
5193
9d3be21b
MH
5194 zonerefs->zone = NULL;
5195 zonerefs->zone_idx = 0;
1da177e4
LT
5196}
5197
5198#endif /* CONFIG_NUMA */
5199
99dcc3e5
CL
5200/*
5201 * Boot pageset table. One per cpu which is going to be used for all
5202 * zones and all nodes. The parameters will be set in such a way
5203 * that an item put on a list will immediately be handed over to
5204 * the buddy list. This is safe since pageset manipulation is done
5205 * with interrupts disabled.
5206 *
5207 * The boot_pagesets must be kept even after bootup is complete for
5208 * unused processors and/or zones. They do play a role for bootstrapping
5209 * hotplugged processors.
5210 *
5211 * zoneinfo_show() and maybe other functions do
5212 * not check if the processor is online before following the pageset pointer.
5213 * Other parts of the kernel may not check if the zone is available.
5214 */
5215static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5216static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5217static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5218
11cd8638 5219static void __build_all_zonelists(void *data)
1da177e4 5220{
6811378e 5221 int nid;
afb6ebb3 5222 int __maybe_unused cpu;
9adb62a5 5223 pg_data_t *self = data;
b93e0f32
MH
5224 static DEFINE_SPINLOCK(lock);
5225
5226 spin_lock(&lock);
9276b1bc 5227
7f9cfb31
BL
5228#ifdef CONFIG_NUMA
5229 memset(node_load, 0, sizeof(node_load));
5230#endif
9adb62a5 5231
c1152583
WY
5232 /*
5233 * This node is hotadded and no memory is yet present. So just
5234 * building zonelists is fine - no need to touch other nodes.
5235 */
9adb62a5
JL
5236 if (self && !node_online(self->node_id)) {
5237 build_zonelists(self);
c1152583
WY
5238 } else {
5239 for_each_online_node(nid) {
5240 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5241
c1152583
WY
5242 build_zonelists(pgdat);
5243 }
99dcc3e5 5244
7aac7898
LS
5245#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5246 /*
5247 * We now know the "local memory node" for each node--
5248 * i.e., the node of the first zone in the generic zonelist.
5249 * Set up numa_mem percpu variable for on-line cpus. During
5250 * boot, only the boot cpu should be on-line; we'll init the
5251 * secondary cpus' numa_mem as they come on-line. During
5252 * node/memory hotplug, we'll fixup all on-line cpus.
5253 */
d9c9a0b9 5254 for_each_online_cpu(cpu)
7aac7898 5255 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5256#endif
d9c9a0b9 5257 }
b93e0f32
MH
5258
5259 spin_unlock(&lock);
6811378e
YG
5260}
5261
061f67bc
RV
5262static noinline void __init
5263build_all_zonelists_init(void)
5264{
afb6ebb3
MH
5265 int cpu;
5266
061f67bc 5267 __build_all_zonelists(NULL);
afb6ebb3
MH
5268
5269 /*
5270 * Initialize the boot_pagesets that are going to be used
5271 * for bootstrapping processors. The real pagesets for
5272 * each zone will be allocated later when the per cpu
5273 * allocator is available.
5274 *
5275 * boot_pagesets are used also for bootstrapping offline
5276 * cpus if the system is already booted because the pagesets
5277 * are needed to initialize allocators on a specific cpu too.
5278 * F.e. the percpu allocator needs the page allocator which
5279 * needs the percpu allocator in order to allocate its pagesets
5280 * (a chicken-egg dilemma).
5281 */
5282 for_each_possible_cpu(cpu)
5283 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5284
061f67bc
RV
5285 mminit_verify_zonelist();
5286 cpuset_init_current_mems_allowed();
5287}
5288
4eaf3f64 5289/*
4eaf3f64 5290 * unless system_state == SYSTEM_BOOTING.
061f67bc 5291 *
72675e13 5292 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5293 * [protected by SYSTEM_BOOTING].
4eaf3f64 5294 */
72675e13 5295void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5296{
5297 if (system_state == SYSTEM_BOOTING) {
061f67bc 5298 build_all_zonelists_init();
6811378e 5299 } else {
11cd8638 5300 __build_all_zonelists(pgdat);
6811378e
YG
5301 /* cpuset refresh routine should be here */
5302 }
bd1e22b8 5303 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5304 /*
5305 * Disable grouping by mobility if the number of pages in the
5306 * system is too low to allow the mechanism to work. It would be
5307 * more accurate, but expensive to check per-zone. This check is
5308 * made on memory-hotadd so a system can start with mobility
5309 * disabled and enable it later
5310 */
d9c23400 5311 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5312 page_group_by_mobility_disabled = 1;
5313 else
5314 page_group_by_mobility_disabled = 0;
5315
c9bff3ee 5316 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5317 nr_online_nodes,
756a025f
JP
5318 page_group_by_mobility_disabled ? "off" : "on",
5319 vm_total_pages);
f0c0b2b8 5320#ifdef CONFIG_NUMA
f88dfff5 5321 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5322#endif
1da177e4
LT
5323}
5324
1da177e4
LT
5325/*
5326 * Initially all pages are reserved - free ones are freed
5327 * up by free_all_bootmem() once the early boot process is
5328 * done. Non-atomic initialization, single-pass.
5329 */
c09b4240 5330void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5331 unsigned long start_pfn, enum memmap_context context)
1da177e4 5332{
4b94ffdc 5333 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5334 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5335 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5336 unsigned long pfn;
3a80a7fa 5337 unsigned long nr_initialised = 0;
342332e6
TI
5338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5339 struct memblock_region *r = NULL, *tmp;
5340#endif
1da177e4 5341
22b31eec
HD
5342 if (highest_memmap_pfn < end_pfn - 1)
5343 highest_memmap_pfn = end_pfn - 1;
5344
4b94ffdc
DW
5345 /*
5346 * Honor reservation requested by the driver for this ZONE_DEVICE
5347 * memory
5348 */
5349 if (altmap && start_pfn == altmap->base_pfn)
5350 start_pfn += altmap->reserve;
5351
cbe8dd4a 5352 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5353 /*
b72d0ffb
AM
5354 * There can be holes in boot-time mem_map[]s handed to this
5355 * function. They do not exist on hotplugged memory.
a2f3aa02 5356 */
b72d0ffb
AM
5357 if (context != MEMMAP_EARLY)
5358 goto not_early;
5359
2e30df12 5360 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5361 continue;
5362 if (!early_pfn_in_nid(pfn, nid))
5363 continue;
5364 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5365 break;
342332e6
TI
5366
5367#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5368 /*
5369 * Check given memblock attribute by firmware which can affect
5370 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5371 * mirrored, it's an overlapped memmap init. skip it.
5372 */
5373 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5374 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5375 for_each_memblock(memory, tmp)
5376 if (pfn < memblock_region_memory_end_pfn(tmp))
5377 break;
5378 r = tmp;
5379 }
5380 if (pfn >= memblock_region_memory_base_pfn(r) &&
5381 memblock_is_mirror(r)) {
5382 /* already initialized as NORMAL */
5383 pfn = memblock_region_memory_end_pfn(r);
5384 continue;
342332e6 5385 }
a2f3aa02 5386 }
b72d0ffb 5387#endif
ac5d2539 5388
b72d0ffb 5389not_early:
ac5d2539
MG
5390 /*
5391 * Mark the block movable so that blocks are reserved for
5392 * movable at startup. This will force kernel allocations
5393 * to reserve their blocks rather than leaking throughout
5394 * the address space during boot when many long-lived
974a786e 5395 * kernel allocations are made.
ac5d2539
MG
5396 *
5397 * bitmap is created for zone's valid pfn range. but memmap
5398 * can be created for invalid pages (for alignment)
5399 * check here not to call set_pageblock_migratetype() against
5400 * pfn out of zone.
9ff9dd45
MH
5401 *
5402 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5403 * because this is done early in sparse_add_one_section
ac5d2539
MG
5404 */
5405 if (!(pfn & (pageblock_nr_pages - 1))) {
5406 struct page *page = pfn_to_page(pfn);
5407
9ff9dd45
MH
5408 __init_single_page(page, pfn, zone, nid,
5409 context != MEMMAP_HOTPLUG);
ac5d2539 5410 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5411 cond_resched();
ac5d2539 5412 } else {
9ff9dd45
MH
5413 __init_single_pfn(pfn, zone, nid,
5414 context != MEMMAP_HOTPLUG);
ac5d2539 5415 }
1da177e4
LT
5416 }
5417}
5418
1e548deb 5419static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5420{
7aeb09f9 5421 unsigned int order, t;
b2a0ac88
MG
5422 for_each_migratetype_order(order, t) {
5423 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5424 zone->free_area[order].nr_free = 0;
5425 }
5426}
5427
5428#ifndef __HAVE_ARCH_MEMMAP_INIT
5429#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5430 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5431#endif
5432
7cd2b0a3 5433static int zone_batchsize(struct zone *zone)
e7c8d5c9 5434{
3a6be87f 5435#ifdef CONFIG_MMU
e7c8d5c9
CL
5436 int batch;
5437
5438 /*
5439 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5440 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5441 *
5442 * OK, so we don't know how big the cache is. So guess.
5443 */
b40da049 5444 batch = zone->managed_pages / 1024;
ba56e91c
SR
5445 if (batch * PAGE_SIZE > 512 * 1024)
5446 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5447 batch /= 4; /* We effectively *= 4 below */
5448 if (batch < 1)
5449 batch = 1;
5450
5451 /*
0ceaacc9
NP
5452 * Clamp the batch to a 2^n - 1 value. Having a power
5453 * of 2 value was found to be more likely to have
5454 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5455 *
0ceaacc9
NP
5456 * For example if 2 tasks are alternately allocating
5457 * batches of pages, one task can end up with a lot
5458 * of pages of one half of the possible page colors
5459 * and the other with pages of the other colors.
e7c8d5c9 5460 */
9155203a 5461 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5462
e7c8d5c9 5463 return batch;
3a6be87f
DH
5464
5465#else
5466 /* The deferral and batching of frees should be suppressed under NOMMU
5467 * conditions.
5468 *
5469 * The problem is that NOMMU needs to be able to allocate large chunks
5470 * of contiguous memory as there's no hardware page translation to
5471 * assemble apparent contiguous memory from discontiguous pages.
5472 *
5473 * Queueing large contiguous runs of pages for batching, however,
5474 * causes the pages to actually be freed in smaller chunks. As there
5475 * can be a significant delay between the individual batches being
5476 * recycled, this leads to the once large chunks of space being
5477 * fragmented and becoming unavailable for high-order allocations.
5478 */
5479 return 0;
5480#endif
e7c8d5c9
CL
5481}
5482
8d7a8fa9
CS
5483/*
5484 * pcp->high and pcp->batch values are related and dependent on one another:
5485 * ->batch must never be higher then ->high.
5486 * The following function updates them in a safe manner without read side
5487 * locking.
5488 *
5489 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5490 * those fields changing asynchronously (acording the the above rule).
5491 *
5492 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5493 * outside of boot time (or some other assurance that no concurrent updaters
5494 * exist).
5495 */
5496static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5497 unsigned long batch)
5498{
5499 /* start with a fail safe value for batch */
5500 pcp->batch = 1;
5501 smp_wmb();
5502
5503 /* Update high, then batch, in order */
5504 pcp->high = high;
5505 smp_wmb();
5506
5507 pcp->batch = batch;
5508}
5509
3664033c 5510/* a companion to pageset_set_high() */
4008bab7
CS
5511static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5512{
8d7a8fa9 5513 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5514}
5515
88c90dbc 5516static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5517{
5518 struct per_cpu_pages *pcp;
5f8dcc21 5519 int migratetype;
2caaad41 5520
1c6fe946
MD
5521 memset(p, 0, sizeof(*p));
5522
3dfa5721 5523 pcp = &p->pcp;
2caaad41 5524 pcp->count = 0;
5f8dcc21
MG
5525 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5526 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5527}
5528
88c90dbc
CS
5529static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5530{
5531 pageset_init(p);
5532 pageset_set_batch(p, batch);
5533}
5534
8ad4b1fb 5535/*
3664033c 5536 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5537 * to the value high for the pageset p.
5538 */
3664033c 5539static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5540 unsigned long high)
5541{
8d7a8fa9
CS
5542 unsigned long batch = max(1UL, high / 4);
5543 if ((high / 4) > (PAGE_SHIFT * 8))
5544 batch = PAGE_SHIFT * 8;
8ad4b1fb 5545
8d7a8fa9 5546 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5547}
5548
7cd2b0a3
DR
5549static void pageset_set_high_and_batch(struct zone *zone,
5550 struct per_cpu_pageset *pcp)
56cef2b8 5551{
56cef2b8 5552 if (percpu_pagelist_fraction)
3664033c 5553 pageset_set_high(pcp,
56cef2b8
CS
5554 (zone->managed_pages /
5555 percpu_pagelist_fraction));
5556 else
5557 pageset_set_batch(pcp, zone_batchsize(zone));
5558}
5559
169f6c19
CS
5560static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5561{
5562 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5563
5564 pageset_init(pcp);
5565 pageset_set_high_and_batch(zone, pcp);
5566}
5567
72675e13 5568void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5569{
5570 int cpu;
319774e2 5571 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5572 for_each_possible_cpu(cpu)
5573 zone_pageset_init(zone, cpu);
319774e2
WF
5574}
5575
2caaad41 5576/*
99dcc3e5
CL
5577 * Allocate per cpu pagesets and initialize them.
5578 * Before this call only boot pagesets were available.
e7c8d5c9 5579 */
99dcc3e5 5580void __init setup_per_cpu_pageset(void)
e7c8d5c9 5581{
b4911ea2 5582 struct pglist_data *pgdat;
99dcc3e5 5583 struct zone *zone;
e7c8d5c9 5584
319774e2
WF
5585 for_each_populated_zone(zone)
5586 setup_zone_pageset(zone);
b4911ea2
MG
5587
5588 for_each_online_pgdat(pgdat)
5589 pgdat->per_cpu_nodestats =
5590 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5591}
5592
c09b4240 5593static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5594{
99dcc3e5
CL
5595 /*
5596 * per cpu subsystem is not up at this point. The following code
5597 * relies on the ability of the linker to provide the
5598 * offset of a (static) per cpu variable into the per cpu area.
5599 */
5600 zone->pageset = &boot_pageset;
ed8ece2e 5601
b38a8725 5602 if (populated_zone(zone))
99dcc3e5
CL
5603 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5604 zone->name, zone->present_pages,
5605 zone_batchsize(zone));
ed8ece2e
DH
5606}
5607
dc0bbf3b 5608void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5609 unsigned long zone_start_pfn,
b171e409 5610 unsigned long size)
ed8ece2e
DH
5611{
5612 struct pglist_data *pgdat = zone->zone_pgdat;
0c39c822 5613 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5614
0c39c822
WY
5615 if (zone_idx > pgdat->nr_zones)
5616 pgdat->nr_zones = zone_idx;
ed8ece2e 5617
ed8ece2e
DH
5618 zone->zone_start_pfn = zone_start_pfn;
5619
708614e6
MG
5620 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5621 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5622 pgdat->node_id,
5623 (unsigned long)zone_idx(zone),
5624 zone_start_pfn, (zone_start_pfn + size));
5625
1e548deb 5626 zone_init_free_lists(zone);
9dcb8b68 5627 zone->initialized = 1;
ed8ece2e
DH
5628}
5629
0ee332c1 5630#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5631#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5632
c713216d
MG
5633/*
5634 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5635 */
8a942fde
MG
5636int __meminit __early_pfn_to_nid(unsigned long pfn,
5637 struct mminit_pfnnid_cache *state)
c713216d 5638{
c13291a5 5639 unsigned long start_pfn, end_pfn;
e76b63f8 5640 int nid;
7c243c71 5641
8a942fde
MG
5642 if (state->last_start <= pfn && pfn < state->last_end)
5643 return state->last_nid;
c713216d 5644
e76b63f8
YL
5645 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5646 if (nid != -1) {
8a942fde
MG
5647 state->last_start = start_pfn;
5648 state->last_end = end_pfn;
5649 state->last_nid = nid;
e76b63f8
YL
5650 }
5651
5652 return nid;
c713216d
MG
5653}
5654#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5655
c713216d 5656/**
6782832e 5657 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5658 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5659 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5660 *
7d018176
ZZ
5661 * If an architecture guarantees that all ranges registered contain no holes
5662 * and may be freed, this this function may be used instead of calling
5663 * memblock_free_early_nid() manually.
c713216d 5664 */
c13291a5 5665void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5666{
c13291a5
TH
5667 unsigned long start_pfn, end_pfn;
5668 int i, this_nid;
edbe7d23 5669
c13291a5
TH
5670 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5671 start_pfn = min(start_pfn, max_low_pfn);
5672 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5673
c13291a5 5674 if (start_pfn < end_pfn)
6782832e
SS
5675 memblock_free_early_nid(PFN_PHYS(start_pfn),
5676 (end_pfn - start_pfn) << PAGE_SHIFT,
5677 this_nid);
edbe7d23 5678 }
edbe7d23 5679}
edbe7d23 5680
c713216d
MG
5681/**
5682 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5683 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5684 *
7d018176
ZZ
5685 * If an architecture guarantees that all ranges registered contain no holes and may
5686 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5687 */
5688void __init sparse_memory_present_with_active_regions(int nid)
5689{
c13291a5
TH
5690 unsigned long start_pfn, end_pfn;
5691 int i, this_nid;
c713216d 5692
c13291a5
TH
5693 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5694 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5695}
5696
5697/**
5698 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5699 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5700 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5701 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5702 *
5703 * It returns the start and end page frame of a node based on information
7d018176 5704 * provided by memblock_set_node(). If called for a node
c713216d 5705 * with no available memory, a warning is printed and the start and end
88ca3b94 5706 * PFNs will be 0.
c713216d 5707 */
a3142c8e 5708void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5709 unsigned long *start_pfn, unsigned long *end_pfn)
5710{
c13291a5 5711 unsigned long this_start_pfn, this_end_pfn;
c713216d 5712 int i;
c13291a5 5713
c713216d
MG
5714 *start_pfn = -1UL;
5715 *end_pfn = 0;
5716
c13291a5
TH
5717 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5718 *start_pfn = min(*start_pfn, this_start_pfn);
5719 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5720 }
5721
633c0666 5722 if (*start_pfn == -1UL)
c713216d 5723 *start_pfn = 0;
c713216d
MG
5724}
5725
2a1e274a
MG
5726/*
5727 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5728 * assumption is made that zones within a node are ordered in monotonic
5729 * increasing memory addresses so that the "highest" populated zone is used
5730 */
b69a7288 5731static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5732{
5733 int zone_index;
5734 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5735 if (zone_index == ZONE_MOVABLE)
5736 continue;
5737
5738 if (arch_zone_highest_possible_pfn[zone_index] >
5739 arch_zone_lowest_possible_pfn[zone_index])
5740 break;
5741 }
5742
5743 VM_BUG_ON(zone_index == -1);
5744 movable_zone = zone_index;
5745}
5746
5747/*
5748 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5749 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5750 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5751 * in each node depending on the size of each node and how evenly kernelcore
5752 * is distributed. This helper function adjusts the zone ranges
5753 * provided by the architecture for a given node by using the end of the
5754 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5755 * zones within a node are in order of monotonic increases memory addresses
5756 */
b69a7288 5757static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5758 unsigned long zone_type,
5759 unsigned long node_start_pfn,
5760 unsigned long node_end_pfn,
5761 unsigned long *zone_start_pfn,
5762 unsigned long *zone_end_pfn)
5763{
5764 /* Only adjust if ZONE_MOVABLE is on this node */
5765 if (zone_movable_pfn[nid]) {
5766 /* Size ZONE_MOVABLE */
5767 if (zone_type == ZONE_MOVABLE) {
5768 *zone_start_pfn = zone_movable_pfn[nid];
5769 *zone_end_pfn = min(node_end_pfn,
5770 arch_zone_highest_possible_pfn[movable_zone]);
5771
e506b996
XQ
5772 /* Adjust for ZONE_MOVABLE starting within this range */
5773 } else if (!mirrored_kernelcore &&
5774 *zone_start_pfn < zone_movable_pfn[nid] &&
5775 *zone_end_pfn > zone_movable_pfn[nid]) {
5776 *zone_end_pfn = zone_movable_pfn[nid];
5777
2a1e274a
MG
5778 /* Check if this whole range is within ZONE_MOVABLE */
5779 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5780 *zone_start_pfn = *zone_end_pfn;
5781 }
5782}
5783
c713216d
MG
5784/*
5785 * Return the number of pages a zone spans in a node, including holes
5786 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5787 */
6ea6e688 5788static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5789 unsigned long zone_type,
7960aedd
ZY
5790 unsigned long node_start_pfn,
5791 unsigned long node_end_pfn,
d91749c1
TI
5792 unsigned long *zone_start_pfn,
5793 unsigned long *zone_end_pfn,
c713216d
MG
5794 unsigned long *ignored)
5795{
367035d7
LF
5796 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5797 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 5798 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5799 if (!node_start_pfn && !node_end_pfn)
5800 return 0;
5801
7960aedd 5802 /* Get the start and end of the zone */
367035d7
LF
5803 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5804 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
5805 adjust_zone_range_for_zone_movable(nid, zone_type,
5806 node_start_pfn, node_end_pfn,
d91749c1 5807 zone_start_pfn, zone_end_pfn);
c713216d
MG
5808
5809 /* Check that this node has pages within the zone's required range */
d91749c1 5810 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5811 return 0;
5812
5813 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5814 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5815 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5816
5817 /* Return the spanned pages */
d91749c1 5818 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5819}
5820
5821/*
5822 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5823 * then all holes in the requested range will be accounted for.
c713216d 5824 */
32996250 5825unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5826 unsigned long range_start_pfn,
5827 unsigned long range_end_pfn)
5828{
96e907d1
TH
5829 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5830 unsigned long start_pfn, end_pfn;
5831 int i;
c713216d 5832
96e907d1
TH
5833 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5834 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5835 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5836 nr_absent -= end_pfn - start_pfn;
c713216d 5837 }
96e907d1 5838 return nr_absent;
c713216d
MG
5839}
5840
5841/**
5842 * absent_pages_in_range - Return number of page frames in holes within a range
5843 * @start_pfn: The start PFN to start searching for holes
5844 * @end_pfn: The end PFN to stop searching for holes
5845 *
88ca3b94 5846 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5847 */
5848unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5849 unsigned long end_pfn)
5850{
5851 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5852}
5853
5854/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5855static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5856 unsigned long zone_type,
7960aedd
ZY
5857 unsigned long node_start_pfn,
5858 unsigned long node_end_pfn,
c713216d
MG
5859 unsigned long *ignored)
5860{
96e907d1
TH
5861 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5862 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5863 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5864 unsigned long nr_absent;
9c7cd687 5865
b5685e92 5866 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5867 if (!node_start_pfn && !node_end_pfn)
5868 return 0;
5869
96e907d1
TH
5870 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5871 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5872
2a1e274a
MG
5873 adjust_zone_range_for_zone_movable(nid, zone_type,
5874 node_start_pfn, node_end_pfn,
5875 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5876 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5877
5878 /*
5879 * ZONE_MOVABLE handling.
5880 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5881 * and vice versa.
5882 */
e506b996
XQ
5883 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5884 unsigned long start_pfn, end_pfn;
5885 struct memblock_region *r;
5886
5887 for_each_memblock(memory, r) {
5888 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5889 zone_start_pfn, zone_end_pfn);
5890 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5891 zone_start_pfn, zone_end_pfn);
5892
5893 if (zone_type == ZONE_MOVABLE &&
5894 memblock_is_mirror(r))
5895 nr_absent += end_pfn - start_pfn;
5896
5897 if (zone_type == ZONE_NORMAL &&
5898 !memblock_is_mirror(r))
5899 nr_absent += end_pfn - start_pfn;
342332e6
TI
5900 }
5901 }
5902
5903 return nr_absent;
c713216d 5904}
0e0b864e 5905
0ee332c1 5906#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5907static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5908 unsigned long zone_type,
7960aedd
ZY
5909 unsigned long node_start_pfn,
5910 unsigned long node_end_pfn,
d91749c1
TI
5911 unsigned long *zone_start_pfn,
5912 unsigned long *zone_end_pfn,
c713216d
MG
5913 unsigned long *zones_size)
5914{
d91749c1
TI
5915 unsigned int zone;
5916
5917 *zone_start_pfn = node_start_pfn;
5918 for (zone = 0; zone < zone_type; zone++)
5919 *zone_start_pfn += zones_size[zone];
5920
5921 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5922
c713216d
MG
5923 return zones_size[zone_type];
5924}
5925
6ea6e688 5926static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5927 unsigned long zone_type,
7960aedd
ZY
5928 unsigned long node_start_pfn,
5929 unsigned long node_end_pfn,
c713216d
MG
5930 unsigned long *zholes_size)
5931{
5932 if (!zholes_size)
5933 return 0;
5934
5935 return zholes_size[zone_type];
5936}
20e6926d 5937
0ee332c1 5938#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5939
a3142c8e 5940static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5941 unsigned long node_start_pfn,
5942 unsigned long node_end_pfn,
5943 unsigned long *zones_size,
5944 unsigned long *zholes_size)
c713216d 5945{
febd5949 5946 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5947 enum zone_type i;
5948
febd5949
GZ
5949 for (i = 0; i < MAX_NR_ZONES; i++) {
5950 struct zone *zone = pgdat->node_zones + i;
d91749c1 5951 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5952 unsigned long size, real_size;
c713216d 5953
febd5949
GZ
5954 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5955 node_start_pfn,
5956 node_end_pfn,
d91749c1
TI
5957 &zone_start_pfn,
5958 &zone_end_pfn,
febd5949
GZ
5959 zones_size);
5960 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5961 node_start_pfn, node_end_pfn,
5962 zholes_size);
d91749c1
TI
5963 if (size)
5964 zone->zone_start_pfn = zone_start_pfn;
5965 else
5966 zone->zone_start_pfn = 0;
febd5949
GZ
5967 zone->spanned_pages = size;
5968 zone->present_pages = real_size;
5969
5970 totalpages += size;
5971 realtotalpages += real_size;
5972 }
5973
5974 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5975 pgdat->node_present_pages = realtotalpages;
5976 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5977 realtotalpages);
5978}
5979
835c134e
MG
5980#ifndef CONFIG_SPARSEMEM
5981/*
5982 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5983 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5984 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5985 * round what is now in bits to nearest long in bits, then return it in
5986 * bytes.
5987 */
7c45512d 5988static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5989{
5990 unsigned long usemapsize;
5991
7c45512d 5992 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5993 usemapsize = roundup(zonesize, pageblock_nr_pages);
5994 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5995 usemapsize *= NR_PAGEBLOCK_BITS;
5996 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5997
5998 return usemapsize / 8;
5999}
6000
6001static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6002 struct zone *zone,
6003 unsigned long zone_start_pfn,
6004 unsigned long zonesize)
835c134e 6005{
7c45512d 6006 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6007 zone->pageblock_flags = NULL;
58a01a45 6008 if (usemapsize)
6782832e
SS
6009 zone->pageblock_flags =
6010 memblock_virt_alloc_node_nopanic(usemapsize,
6011 pgdat->node_id);
835c134e
MG
6012}
6013#else
7c45512d
LT
6014static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6015 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6016#endif /* CONFIG_SPARSEMEM */
6017
d9c23400 6018#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6019
d9c23400 6020/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6021void __paginginit set_pageblock_order(void)
d9c23400 6022{
955c1cd7
AM
6023 unsigned int order;
6024
d9c23400
MG
6025 /* Check that pageblock_nr_pages has not already been setup */
6026 if (pageblock_order)
6027 return;
6028
955c1cd7
AM
6029 if (HPAGE_SHIFT > PAGE_SHIFT)
6030 order = HUGETLB_PAGE_ORDER;
6031 else
6032 order = MAX_ORDER - 1;
6033
d9c23400
MG
6034 /*
6035 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6036 * This value may be variable depending on boot parameters on IA64 and
6037 * powerpc.
d9c23400
MG
6038 */
6039 pageblock_order = order;
6040}
6041#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6042
ba72cb8c
MG
6043/*
6044 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6045 * is unused as pageblock_order is set at compile-time. See
6046 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6047 * the kernel config
ba72cb8c 6048 */
15ca220e 6049void __paginginit set_pageblock_order(void)
ba72cb8c 6050{
ba72cb8c 6051}
d9c23400
MG
6052
6053#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6054
01cefaef
JL
6055static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6056 unsigned long present_pages)
6057{
6058 unsigned long pages = spanned_pages;
6059
6060 /*
6061 * Provide a more accurate estimation if there are holes within
6062 * the zone and SPARSEMEM is in use. If there are holes within the
6063 * zone, each populated memory region may cost us one or two extra
6064 * memmap pages due to alignment because memmap pages for each
89d790ab 6065 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6066 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6067 */
6068 if (spanned_pages > present_pages + (present_pages >> 4) &&
6069 IS_ENABLED(CONFIG_SPARSEMEM))
6070 pages = present_pages;
6071
6072 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6073}
6074
1da177e4
LT
6075/*
6076 * Set up the zone data structures:
6077 * - mark all pages reserved
6078 * - mark all memory queues empty
6079 * - clear the memory bitmaps
6527af5d
MK
6080 *
6081 * NOTE: pgdat should get zeroed by caller.
1da177e4 6082 */
7f3eb55b 6083static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6084{
2f1b6248 6085 enum zone_type j;
ed8ece2e 6086 int nid = pgdat->node_id;
1da177e4 6087
208d54e5 6088 pgdat_resize_init(pgdat);
8177a420
AA
6089#ifdef CONFIG_NUMA_BALANCING
6090 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6091 pgdat->numabalancing_migrate_nr_pages = 0;
6092 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6093#endif
6094#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6095 spin_lock_init(&pgdat->split_queue_lock);
6096 INIT_LIST_HEAD(&pgdat->split_queue);
6097 pgdat->split_queue_len = 0;
8177a420 6098#endif
1da177e4 6099 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6100 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6101#ifdef CONFIG_COMPACTION
6102 init_waitqueue_head(&pgdat->kcompactd_wait);
6103#endif
eefa864b 6104 pgdat_page_ext_init(pgdat);
a52633d8 6105 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6106 lruvec_init(node_lruvec(pgdat));
5f63b720 6107
385386cf
JW
6108 pgdat->per_cpu_nodestats = &boot_nodestats;
6109
1da177e4
LT
6110 for (j = 0; j < MAX_NR_ZONES; j++) {
6111 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6112 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6113 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6114
febd5949
GZ
6115 size = zone->spanned_pages;
6116 realsize = freesize = zone->present_pages;
1da177e4 6117
0e0b864e 6118 /*
9feedc9d 6119 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6120 * is used by this zone for memmap. This affects the watermark
6121 * and per-cpu initialisations
6122 */
01cefaef 6123 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6124 if (!is_highmem_idx(j)) {
6125 if (freesize >= memmap_pages) {
6126 freesize -= memmap_pages;
6127 if (memmap_pages)
6128 printk(KERN_DEBUG
6129 " %s zone: %lu pages used for memmap\n",
6130 zone_names[j], memmap_pages);
6131 } else
1170532b 6132 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6133 zone_names[j], memmap_pages, freesize);
6134 }
0e0b864e 6135
6267276f 6136 /* Account for reserved pages */
9feedc9d
JL
6137 if (j == 0 && freesize > dma_reserve) {
6138 freesize -= dma_reserve;
d903ef9f 6139 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6140 zone_names[0], dma_reserve);
0e0b864e
MG
6141 }
6142
98d2b0eb 6143 if (!is_highmem_idx(j))
9feedc9d 6144 nr_kernel_pages += freesize;
01cefaef
JL
6145 /* Charge for highmem memmap if there are enough kernel pages */
6146 else if (nr_kernel_pages > memmap_pages * 2)
6147 nr_kernel_pages -= memmap_pages;
9feedc9d 6148 nr_all_pages += freesize;
1da177e4 6149
9feedc9d
JL
6150 /*
6151 * Set an approximate value for lowmem here, it will be adjusted
6152 * when the bootmem allocator frees pages into the buddy system.
6153 * And all highmem pages will be managed by the buddy system.
6154 */
6155 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6156#ifdef CONFIG_NUMA
d5f541ed 6157 zone->node = nid;
9614634f 6158#endif
1da177e4 6159 zone->name = zone_names[j];
a52633d8 6160 zone->zone_pgdat = pgdat;
1da177e4 6161 spin_lock_init(&zone->lock);
bdc8cb98 6162 zone_seqlock_init(zone);
ed8ece2e 6163 zone_pcp_init(zone);
81c0a2bb 6164
1da177e4
LT
6165 if (!size)
6166 continue;
6167
955c1cd7 6168 set_pageblock_order();
7c45512d 6169 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6170 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6171 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6172 }
6173}
6174
0cd842f9 6175#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6176static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6177{
b0aeba74 6178 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6179 unsigned long __maybe_unused offset = 0;
6180
1da177e4
LT
6181 /* Skip empty nodes */
6182 if (!pgdat->node_spanned_pages)
6183 return;
6184
b0aeba74
TL
6185 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6186 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6187 /* ia64 gets its own node_mem_map, before this, without bootmem */
6188 if (!pgdat->node_mem_map) {
b0aeba74 6189 unsigned long size, end;
d41dee36
AW
6190 struct page *map;
6191
e984bb43
BP
6192 /*
6193 * The zone's endpoints aren't required to be MAX_ORDER
6194 * aligned but the node_mem_map endpoints must be in order
6195 * for the buddy allocator to function correctly.
6196 */
108bcc96 6197 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6198 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6199 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6200 map = alloc_remap(pgdat->node_id, size);
6201 if (!map)
6782832e
SS
6202 map = memblock_virt_alloc_node_nopanic(size,
6203 pgdat->node_id);
a1c34a3b 6204 pgdat->node_mem_map = map + offset;
1da177e4 6205 }
0cd842f9
OS
6206 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6207 __func__, pgdat->node_id, (unsigned long)pgdat,
6208 (unsigned long)pgdat->node_mem_map);
12d810c1 6209#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6210 /*
6211 * With no DISCONTIG, the global mem_map is just set as node 0's
6212 */
c713216d 6213 if (pgdat == NODE_DATA(0)) {
1da177e4 6214 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6215#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6216 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6217 mem_map -= offset;
0ee332c1 6218#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6219 }
1da177e4
LT
6220#endif
6221}
0cd842f9
OS
6222#else
6223static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6224#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6225
9109fb7b
JW
6226void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6227 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6228{
9109fb7b 6229 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6230 unsigned long start_pfn = 0;
6231 unsigned long end_pfn = 0;
9109fb7b 6232
88fdf75d 6233 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6234 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6235
1da177e4
LT
6236 pgdat->node_id = nid;
6237 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6238 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6239#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6240 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6241 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6242 (u64)start_pfn << PAGE_SHIFT,
6243 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6244#else
6245 start_pfn = node_start_pfn;
7960aedd
ZY
6246#endif
6247 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6248 zones_size, zholes_size);
1da177e4
LT
6249
6250 alloc_node_mem_map(pgdat);
6251
864b9a39 6252 reset_deferred_meminit(pgdat);
7f3eb55b 6253 free_area_init_core(pgdat);
1da177e4
LT
6254}
6255
afa11cd3 6256#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
6257/*
6258 * Only struct pages that are backed by physical memory are zeroed and
6259 * initialized by going through __init_single_page(). But, there are some
6260 * struct pages which are reserved in memblock allocator and their fields
6261 * may be accessed (for example page_to_pfn() on some configuration accesses
6262 * flags). We must explicitly zero those struct pages.
6263 */
6264void __paginginit zero_resv_unavail(void)
6265{
6266 phys_addr_t start, end;
6267 unsigned long pfn;
6268 u64 i, pgcnt;
6269
6270 /*
6271 * Loop through ranges that are reserved, but do not have reported
6272 * physical memory backing.
6273 */
6274 pgcnt = 0;
6275 for_each_resv_unavail_range(i, &start, &end) {
6276 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
e8c24773
DY
6277 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6278 continue;
a4a3ede2
PT
6279 mm_zero_struct_page(pfn_to_page(pfn));
6280 pgcnt++;
6281 }
6282 }
6283
6284 /*
6285 * Struct pages that do not have backing memory. This could be because
6286 * firmware is using some of this memory, or for some other reasons.
6287 * Once memblock is changed so such behaviour is not allowed: i.e.
6288 * list of "reserved" memory must be a subset of list of "memory", then
6289 * this code can be removed.
6290 */
6291 if (pgcnt)
6292 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6293}
afa11cd3 6294#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6295
0ee332c1 6296#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6297
6298#if MAX_NUMNODES > 1
6299/*
6300 * Figure out the number of possible node ids.
6301 */
f9872caf 6302void __init setup_nr_node_ids(void)
418508c1 6303{
904a9553 6304 unsigned int highest;
418508c1 6305
904a9553 6306 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6307 nr_node_ids = highest + 1;
6308}
418508c1
MS
6309#endif
6310
1e01979c
TH
6311/**
6312 * node_map_pfn_alignment - determine the maximum internode alignment
6313 *
6314 * This function should be called after node map is populated and sorted.
6315 * It calculates the maximum power of two alignment which can distinguish
6316 * all the nodes.
6317 *
6318 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6319 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6320 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6321 * shifted, 1GiB is enough and this function will indicate so.
6322 *
6323 * This is used to test whether pfn -> nid mapping of the chosen memory
6324 * model has fine enough granularity to avoid incorrect mapping for the
6325 * populated node map.
6326 *
6327 * Returns the determined alignment in pfn's. 0 if there is no alignment
6328 * requirement (single node).
6329 */
6330unsigned long __init node_map_pfn_alignment(void)
6331{
6332 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6333 unsigned long start, end, mask;
1e01979c 6334 int last_nid = -1;
c13291a5 6335 int i, nid;
1e01979c 6336
c13291a5 6337 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6338 if (!start || last_nid < 0 || last_nid == nid) {
6339 last_nid = nid;
6340 last_end = end;
6341 continue;
6342 }
6343
6344 /*
6345 * Start with a mask granular enough to pin-point to the
6346 * start pfn and tick off bits one-by-one until it becomes
6347 * too coarse to separate the current node from the last.
6348 */
6349 mask = ~((1 << __ffs(start)) - 1);
6350 while (mask && last_end <= (start & (mask << 1)))
6351 mask <<= 1;
6352
6353 /* accumulate all internode masks */
6354 accl_mask |= mask;
6355 }
6356
6357 /* convert mask to number of pages */
6358 return ~accl_mask + 1;
6359}
6360
a6af2bc3 6361/* Find the lowest pfn for a node */
b69a7288 6362static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6363{
a6af2bc3 6364 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6365 unsigned long start_pfn;
6366 int i;
1abbfb41 6367
c13291a5
TH
6368 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6369 min_pfn = min(min_pfn, start_pfn);
c713216d 6370
a6af2bc3 6371 if (min_pfn == ULONG_MAX) {
1170532b 6372 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6373 return 0;
6374 }
6375
6376 return min_pfn;
c713216d
MG
6377}
6378
6379/**
6380 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6381 *
6382 * It returns the minimum PFN based on information provided via
7d018176 6383 * memblock_set_node().
c713216d
MG
6384 */
6385unsigned long __init find_min_pfn_with_active_regions(void)
6386{
6387 return find_min_pfn_for_node(MAX_NUMNODES);
6388}
6389
37b07e41
LS
6390/*
6391 * early_calculate_totalpages()
6392 * Sum pages in active regions for movable zone.
4b0ef1fe 6393 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6394 */
484f51f8 6395static unsigned long __init early_calculate_totalpages(void)
7e63efef 6396{
7e63efef 6397 unsigned long totalpages = 0;
c13291a5
TH
6398 unsigned long start_pfn, end_pfn;
6399 int i, nid;
6400
6401 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6402 unsigned long pages = end_pfn - start_pfn;
7e63efef 6403
37b07e41
LS
6404 totalpages += pages;
6405 if (pages)
4b0ef1fe 6406 node_set_state(nid, N_MEMORY);
37b07e41 6407 }
b8af2941 6408 return totalpages;
7e63efef
MG
6409}
6410
2a1e274a
MG
6411/*
6412 * Find the PFN the Movable zone begins in each node. Kernel memory
6413 * is spread evenly between nodes as long as the nodes have enough
6414 * memory. When they don't, some nodes will have more kernelcore than
6415 * others
6416 */
b224ef85 6417static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6418{
6419 int i, nid;
6420 unsigned long usable_startpfn;
6421 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6422 /* save the state before borrow the nodemask */
4b0ef1fe 6423 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6424 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6425 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6426 struct memblock_region *r;
b2f3eebe
TC
6427
6428 /* Need to find movable_zone earlier when movable_node is specified. */
6429 find_usable_zone_for_movable();
6430
6431 /*
6432 * If movable_node is specified, ignore kernelcore and movablecore
6433 * options.
6434 */
6435 if (movable_node_is_enabled()) {
136199f0
EM
6436 for_each_memblock(memory, r) {
6437 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6438 continue;
6439
136199f0 6440 nid = r->nid;
b2f3eebe 6441
136199f0 6442 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6443 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6444 min(usable_startpfn, zone_movable_pfn[nid]) :
6445 usable_startpfn;
6446 }
6447
6448 goto out2;
6449 }
2a1e274a 6450
342332e6
TI
6451 /*
6452 * If kernelcore=mirror is specified, ignore movablecore option
6453 */
6454 if (mirrored_kernelcore) {
6455 bool mem_below_4gb_not_mirrored = false;
6456
6457 for_each_memblock(memory, r) {
6458 if (memblock_is_mirror(r))
6459 continue;
6460
6461 nid = r->nid;
6462
6463 usable_startpfn = memblock_region_memory_base_pfn(r);
6464
6465 if (usable_startpfn < 0x100000) {
6466 mem_below_4gb_not_mirrored = true;
6467 continue;
6468 }
6469
6470 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6471 min(usable_startpfn, zone_movable_pfn[nid]) :
6472 usable_startpfn;
6473 }
6474
6475 if (mem_below_4gb_not_mirrored)
6476 pr_warn("This configuration results in unmirrored kernel memory.");
6477
6478 goto out2;
6479 }
6480
7e63efef 6481 /*
b2f3eebe 6482 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6483 * kernelcore that corresponds so that memory usable for
6484 * any allocation type is evenly spread. If both kernelcore
6485 * and movablecore are specified, then the value of kernelcore
6486 * will be used for required_kernelcore if it's greater than
6487 * what movablecore would have allowed.
6488 */
6489 if (required_movablecore) {
7e63efef
MG
6490 unsigned long corepages;
6491
6492 /*
6493 * Round-up so that ZONE_MOVABLE is at least as large as what
6494 * was requested by the user
6495 */
6496 required_movablecore =
6497 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6498 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6499 corepages = totalpages - required_movablecore;
6500
6501 required_kernelcore = max(required_kernelcore, corepages);
6502 }
6503
bde304bd
XQ
6504 /*
6505 * If kernelcore was not specified or kernelcore size is larger
6506 * than totalpages, there is no ZONE_MOVABLE.
6507 */
6508 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6509 goto out;
2a1e274a
MG
6510
6511 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6512 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6513
6514restart:
6515 /* Spread kernelcore memory as evenly as possible throughout nodes */
6516 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6517 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6518 unsigned long start_pfn, end_pfn;
6519
2a1e274a
MG
6520 /*
6521 * Recalculate kernelcore_node if the division per node
6522 * now exceeds what is necessary to satisfy the requested
6523 * amount of memory for the kernel
6524 */
6525 if (required_kernelcore < kernelcore_node)
6526 kernelcore_node = required_kernelcore / usable_nodes;
6527
6528 /*
6529 * As the map is walked, we track how much memory is usable
6530 * by the kernel using kernelcore_remaining. When it is
6531 * 0, the rest of the node is usable by ZONE_MOVABLE
6532 */
6533 kernelcore_remaining = kernelcore_node;
6534
6535 /* Go through each range of PFNs within this node */
c13291a5 6536 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6537 unsigned long size_pages;
6538
c13291a5 6539 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6540 if (start_pfn >= end_pfn)
6541 continue;
6542
6543 /* Account for what is only usable for kernelcore */
6544 if (start_pfn < usable_startpfn) {
6545 unsigned long kernel_pages;
6546 kernel_pages = min(end_pfn, usable_startpfn)
6547 - start_pfn;
6548
6549 kernelcore_remaining -= min(kernel_pages,
6550 kernelcore_remaining);
6551 required_kernelcore -= min(kernel_pages,
6552 required_kernelcore);
6553
6554 /* Continue if range is now fully accounted */
6555 if (end_pfn <= usable_startpfn) {
6556
6557 /*
6558 * Push zone_movable_pfn to the end so
6559 * that if we have to rebalance
6560 * kernelcore across nodes, we will
6561 * not double account here
6562 */
6563 zone_movable_pfn[nid] = end_pfn;
6564 continue;
6565 }
6566 start_pfn = usable_startpfn;
6567 }
6568
6569 /*
6570 * The usable PFN range for ZONE_MOVABLE is from
6571 * start_pfn->end_pfn. Calculate size_pages as the
6572 * number of pages used as kernelcore
6573 */
6574 size_pages = end_pfn - start_pfn;
6575 if (size_pages > kernelcore_remaining)
6576 size_pages = kernelcore_remaining;
6577 zone_movable_pfn[nid] = start_pfn + size_pages;
6578
6579 /*
6580 * Some kernelcore has been met, update counts and
6581 * break if the kernelcore for this node has been
b8af2941 6582 * satisfied
2a1e274a
MG
6583 */
6584 required_kernelcore -= min(required_kernelcore,
6585 size_pages);
6586 kernelcore_remaining -= size_pages;
6587 if (!kernelcore_remaining)
6588 break;
6589 }
6590 }
6591
6592 /*
6593 * If there is still required_kernelcore, we do another pass with one
6594 * less node in the count. This will push zone_movable_pfn[nid] further
6595 * along on the nodes that still have memory until kernelcore is
b8af2941 6596 * satisfied
2a1e274a
MG
6597 */
6598 usable_nodes--;
6599 if (usable_nodes && required_kernelcore > usable_nodes)
6600 goto restart;
6601
b2f3eebe 6602out2:
2a1e274a
MG
6603 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6604 for (nid = 0; nid < MAX_NUMNODES; nid++)
6605 zone_movable_pfn[nid] =
6606 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6607
20e6926d 6608out:
66918dcd 6609 /* restore the node_state */
4b0ef1fe 6610 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6611}
6612
4b0ef1fe
LJ
6613/* Any regular or high memory on that node ? */
6614static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6615{
37b07e41
LS
6616 enum zone_type zone_type;
6617
4b0ef1fe
LJ
6618 if (N_MEMORY == N_NORMAL_MEMORY)
6619 return;
6620
6621 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6622 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6623 if (populated_zone(zone)) {
4b0ef1fe
LJ
6624 node_set_state(nid, N_HIGH_MEMORY);
6625 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6626 zone_type <= ZONE_NORMAL)
6627 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6628 break;
6629 }
37b07e41 6630 }
37b07e41
LS
6631}
6632
c713216d
MG
6633/**
6634 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6635 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6636 *
6637 * This will call free_area_init_node() for each active node in the system.
7d018176 6638 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6639 * zone in each node and their holes is calculated. If the maximum PFN
6640 * between two adjacent zones match, it is assumed that the zone is empty.
6641 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6642 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6643 * starts where the previous one ended. For example, ZONE_DMA32 starts
6644 * at arch_max_dma_pfn.
6645 */
6646void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6647{
c13291a5
TH
6648 unsigned long start_pfn, end_pfn;
6649 int i, nid;
a6af2bc3 6650
c713216d
MG
6651 /* Record where the zone boundaries are */
6652 memset(arch_zone_lowest_possible_pfn, 0,
6653 sizeof(arch_zone_lowest_possible_pfn));
6654 memset(arch_zone_highest_possible_pfn, 0,
6655 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6656
6657 start_pfn = find_min_pfn_with_active_regions();
6658
6659 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6660 if (i == ZONE_MOVABLE)
6661 continue;
90cae1fe
OH
6662
6663 end_pfn = max(max_zone_pfn[i], start_pfn);
6664 arch_zone_lowest_possible_pfn[i] = start_pfn;
6665 arch_zone_highest_possible_pfn[i] = end_pfn;
6666
6667 start_pfn = end_pfn;
c713216d 6668 }
2a1e274a
MG
6669
6670 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6671 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6672 find_zone_movable_pfns_for_nodes();
c713216d 6673
c713216d 6674 /* Print out the zone ranges */
f88dfff5 6675 pr_info("Zone ranges:\n");
2a1e274a
MG
6676 for (i = 0; i < MAX_NR_ZONES; i++) {
6677 if (i == ZONE_MOVABLE)
6678 continue;
f88dfff5 6679 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6680 if (arch_zone_lowest_possible_pfn[i] ==
6681 arch_zone_highest_possible_pfn[i])
f88dfff5 6682 pr_cont("empty\n");
72f0ba02 6683 else
8d29e18a
JG
6684 pr_cont("[mem %#018Lx-%#018Lx]\n",
6685 (u64)arch_zone_lowest_possible_pfn[i]
6686 << PAGE_SHIFT,
6687 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6688 << PAGE_SHIFT) - 1);
2a1e274a
MG
6689 }
6690
6691 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6692 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6693 for (i = 0; i < MAX_NUMNODES; i++) {
6694 if (zone_movable_pfn[i])
8d29e18a
JG
6695 pr_info(" Node %d: %#018Lx\n", i,
6696 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6697 }
c713216d 6698
f2d52fe5 6699 /* Print out the early node map */
f88dfff5 6700 pr_info("Early memory node ranges\n");
c13291a5 6701 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6702 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6703 (u64)start_pfn << PAGE_SHIFT,
6704 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6705
6706 /* Initialise every node */
708614e6 6707 mminit_verify_pageflags_layout();
8ef82866 6708 setup_nr_node_ids();
a6e2dae0 6709 zero_resv_unavail();
c713216d
MG
6710 for_each_online_node(nid) {
6711 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6712 free_area_init_node(nid, NULL,
c713216d 6713 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6714
6715 /* Any memory on that node */
6716 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6717 node_set_state(nid, N_MEMORY);
6718 check_for_memory(pgdat, nid);
c713216d
MG
6719 }
6720}
2a1e274a 6721
7e63efef 6722static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6723{
6724 unsigned long long coremem;
6725 if (!p)
6726 return -EINVAL;
6727
6728 coremem = memparse(p, &p);
7e63efef 6729 *core = coremem >> PAGE_SHIFT;
2a1e274a 6730
7e63efef 6731 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6732 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6733
6734 return 0;
6735}
ed7ed365 6736
7e63efef
MG
6737/*
6738 * kernelcore=size sets the amount of memory for use for allocations that
6739 * cannot be reclaimed or migrated.
6740 */
6741static int __init cmdline_parse_kernelcore(char *p)
6742{
342332e6
TI
6743 /* parse kernelcore=mirror */
6744 if (parse_option_str(p, "mirror")) {
6745 mirrored_kernelcore = true;
6746 return 0;
6747 }
6748
7e63efef
MG
6749 return cmdline_parse_core(p, &required_kernelcore);
6750}
6751
6752/*
6753 * movablecore=size sets the amount of memory for use for allocations that
6754 * can be reclaimed or migrated.
6755 */
6756static int __init cmdline_parse_movablecore(char *p)
6757{
6758 return cmdline_parse_core(p, &required_movablecore);
6759}
6760
ed7ed365 6761early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6762early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6763
0ee332c1 6764#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6765
c3d5f5f0
JL
6766void adjust_managed_page_count(struct page *page, long count)
6767{
6768 spin_lock(&managed_page_count_lock);
6769 page_zone(page)->managed_pages += count;
6770 totalram_pages += count;
3dcc0571
JL
6771#ifdef CONFIG_HIGHMEM
6772 if (PageHighMem(page))
6773 totalhigh_pages += count;
6774#endif
c3d5f5f0
JL
6775 spin_unlock(&managed_page_count_lock);
6776}
3dcc0571 6777EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6778
11199692 6779unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6780{
11199692
JL
6781 void *pos;
6782 unsigned long pages = 0;
69afade7 6783
11199692
JL
6784 start = (void *)PAGE_ALIGN((unsigned long)start);
6785 end = (void *)((unsigned long)end & PAGE_MASK);
6786 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
34239c54
DH
6787 struct page *page = virt_to_page(pos);
6788 void *direct_map_addr;
6789
6790 /*
6791 * 'direct_map_addr' might be different from 'pos'
6792 * because some architectures' virt_to_page()
6793 * work with aliases. Getting the direct map
6794 * address ensures that we get a _writeable_
6795 * alias for the memset().
6796 */
6797 direct_map_addr = page_address(page);
dbe67df4 6798 if ((unsigned int)poison <= 0xFF)
34239c54
DH
6799 memset(direct_map_addr, poison, PAGE_SIZE);
6800
6801 free_reserved_page(page);
69afade7
JL
6802 }
6803
6804 if (pages && s)
adb1fe9a
JP
6805 pr_info("Freeing %s memory: %ldK\n",
6806 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6807
6808 return pages;
6809}
11199692 6810EXPORT_SYMBOL(free_reserved_area);
69afade7 6811
cfa11e08
JL
6812#ifdef CONFIG_HIGHMEM
6813void free_highmem_page(struct page *page)
6814{
6815 __free_reserved_page(page);
6816 totalram_pages++;
7b4b2a0d 6817 page_zone(page)->managed_pages++;
cfa11e08
JL
6818 totalhigh_pages++;
6819}
6820#endif
6821
7ee3d4e8
JL
6822
6823void __init mem_init_print_info(const char *str)
6824{
6825 unsigned long physpages, codesize, datasize, rosize, bss_size;
6826 unsigned long init_code_size, init_data_size;
6827
6828 physpages = get_num_physpages();
6829 codesize = _etext - _stext;
6830 datasize = _edata - _sdata;
6831 rosize = __end_rodata - __start_rodata;
6832 bss_size = __bss_stop - __bss_start;
6833 init_data_size = __init_end - __init_begin;
6834 init_code_size = _einittext - _sinittext;
6835
6836 /*
6837 * Detect special cases and adjust section sizes accordingly:
6838 * 1) .init.* may be embedded into .data sections
6839 * 2) .init.text.* may be out of [__init_begin, __init_end],
6840 * please refer to arch/tile/kernel/vmlinux.lds.S.
6841 * 3) .rodata.* may be embedded into .text or .data sections.
6842 */
6843#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6844 do { \
6845 if (start <= pos && pos < end && size > adj) \
6846 size -= adj; \
6847 } while (0)
7ee3d4e8
JL
6848
6849 adj_init_size(__init_begin, __init_end, init_data_size,
6850 _sinittext, init_code_size);
6851 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6852 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6853 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6854 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6855
6856#undef adj_init_size
6857
756a025f 6858 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6859#ifdef CONFIG_HIGHMEM
756a025f 6860 ", %luK highmem"
7ee3d4e8 6861#endif
756a025f
JP
6862 "%s%s)\n",
6863 nr_free_pages() << (PAGE_SHIFT - 10),
6864 physpages << (PAGE_SHIFT - 10),
6865 codesize >> 10, datasize >> 10, rosize >> 10,
6866 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6867 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6868 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6869#ifdef CONFIG_HIGHMEM
756a025f 6870 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6871#endif
756a025f 6872 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6873}
6874
0e0b864e 6875/**
88ca3b94
RD
6876 * set_dma_reserve - set the specified number of pages reserved in the first zone
6877 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6878 *
013110a7 6879 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6880 * In the DMA zone, a significant percentage may be consumed by kernel image
6881 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6882 * function may optionally be used to account for unfreeable pages in the
6883 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6884 * smaller per-cpu batchsize.
0e0b864e
MG
6885 */
6886void __init set_dma_reserve(unsigned long new_dma_reserve)
6887{
6888 dma_reserve = new_dma_reserve;
6889}
6890
1da177e4
LT
6891void __init free_area_init(unsigned long *zones_size)
6892{
a6e2dae0 6893 zero_resv_unavail();
9109fb7b 6894 free_area_init_node(0, zones_size,
1da177e4
LT
6895 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6896}
1da177e4 6897
005fd4bb 6898static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6899{
1da177e4 6900
005fd4bb
SAS
6901 lru_add_drain_cpu(cpu);
6902 drain_pages(cpu);
9f8f2172 6903
005fd4bb
SAS
6904 /*
6905 * Spill the event counters of the dead processor
6906 * into the current processors event counters.
6907 * This artificially elevates the count of the current
6908 * processor.
6909 */
6910 vm_events_fold_cpu(cpu);
9f8f2172 6911
005fd4bb
SAS
6912 /*
6913 * Zero the differential counters of the dead processor
6914 * so that the vm statistics are consistent.
6915 *
6916 * This is only okay since the processor is dead and cannot
6917 * race with what we are doing.
6918 */
6919 cpu_vm_stats_fold(cpu);
6920 return 0;
1da177e4 6921}
1da177e4
LT
6922
6923void __init page_alloc_init(void)
6924{
005fd4bb
SAS
6925 int ret;
6926
6927 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6928 "mm/page_alloc:dead", NULL,
6929 page_alloc_cpu_dead);
6930 WARN_ON(ret < 0);
1da177e4
LT
6931}
6932
cb45b0e9 6933/*
34b10060 6934 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6935 * or min_free_kbytes changes.
6936 */
6937static void calculate_totalreserve_pages(void)
6938{
6939 struct pglist_data *pgdat;
6940 unsigned long reserve_pages = 0;
2f6726e5 6941 enum zone_type i, j;
cb45b0e9
HA
6942
6943 for_each_online_pgdat(pgdat) {
281e3726
MG
6944
6945 pgdat->totalreserve_pages = 0;
6946
cb45b0e9
HA
6947 for (i = 0; i < MAX_NR_ZONES; i++) {
6948 struct zone *zone = pgdat->node_zones + i;
3484b2de 6949 long max = 0;
cb45b0e9
HA
6950
6951 /* Find valid and maximum lowmem_reserve in the zone */
6952 for (j = i; j < MAX_NR_ZONES; j++) {
6953 if (zone->lowmem_reserve[j] > max)
6954 max = zone->lowmem_reserve[j];
6955 }
6956
41858966
MG
6957 /* we treat the high watermark as reserved pages. */
6958 max += high_wmark_pages(zone);
cb45b0e9 6959
b40da049
JL
6960 if (max > zone->managed_pages)
6961 max = zone->managed_pages;
a8d01437 6962
281e3726 6963 pgdat->totalreserve_pages += max;
a8d01437 6964
cb45b0e9
HA
6965 reserve_pages += max;
6966 }
6967 }
6968 totalreserve_pages = reserve_pages;
6969}
6970
1da177e4
LT
6971/*
6972 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6973 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6974 * has a correct pages reserved value, so an adequate number of
6975 * pages are left in the zone after a successful __alloc_pages().
6976 */
6977static void setup_per_zone_lowmem_reserve(void)
6978{
6979 struct pglist_data *pgdat;
2f6726e5 6980 enum zone_type j, idx;
1da177e4 6981
ec936fc5 6982 for_each_online_pgdat(pgdat) {
1da177e4
LT
6983 for (j = 0; j < MAX_NR_ZONES; j++) {
6984 struct zone *zone = pgdat->node_zones + j;
b40da049 6985 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6986
6987 zone->lowmem_reserve[j] = 0;
6988
2f6726e5
CL
6989 idx = j;
6990 while (idx) {
1da177e4
LT
6991 struct zone *lower_zone;
6992
2f6726e5
CL
6993 idx--;
6994
1da177e4
LT
6995 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6996 sysctl_lowmem_reserve_ratio[idx] = 1;
6997
6998 lower_zone = pgdat->node_zones + idx;
b40da049 6999 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 7000 sysctl_lowmem_reserve_ratio[idx];
b40da049 7001 managed_pages += lower_zone->managed_pages;
1da177e4
LT
7002 }
7003 }
7004 }
cb45b0e9
HA
7005
7006 /* update totalreserve_pages */
7007 calculate_totalreserve_pages();
1da177e4
LT
7008}
7009
cfd3da1e 7010static void __setup_per_zone_wmarks(void)
1da177e4
LT
7011{
7012 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7013 unsigned long lowmem_pages = 0;
7014 struct zone *zone;
7015 unsigned long flags;
7016
7017 /* Calculate total number of !ZONE_HIGHMEM pages */
7018 for_each_zone(zone) {
7019 if (!is_highmem(zone))
b40da049 7020 lowmem_pages += zone->managed_pages;
1da177e4
LT
7021 }
7022
7023 for_each_zone(zone) {
ac924c60
AM
7024 u64 tmp;
7025
1125b4e3 7026 spin_lock_irqsave(&zone->lock, flags);
b40da049 7027 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7028 do_div(tmp, lowmem_pages);
1da177e4
LT
7029 if (is_highmem(zone)) {
7030 /*
669ed175
NP
7031 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7032 * need highmem pages, so cap pages_min to a small
7033 * value here.
7034 *
41858966 7035 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7036 * deltas control asynch page reclaim, and so should
669ed175 7037 * not be capped for highmem.
1da177e4 7038 */
90ae8d67 7039 unsigned long min_pages;
1da177e4 7040
b40da049 7041 min_pages = zone->managed_pages / 1024;
90ae8d67 7042 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7043 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7044 } else {
669ed175
NP
7045 /*
7046 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7047 * proportionate to the zone's size.
7048 */
41858966 7049 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7050 }
7051
795ae7a0
JW
7052 /*
7053 * Set the kswapd watermarks distance according to the
7054 * scale factor in proportion to available memory, but
7055 * ensure a minimum size on small systems.
7056 */
7057 tmp = max_t(u64, tmp >> 2,
7058 mult_frac(zone->managed_pages,
7059 watermark_scale_factor, 10000));
7060
7061 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7062 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7063
1125b4e3 7064 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7065 }
cb45b0e9
HA
7066
7067 /* update totalreserve_pages */
7068 calculate_totalreserve_pages();
1da177e4
LT
7069}
7070
cfd3da1e
MG
7071/**
7072 * setup_per_zone_wmarks - called when min_free_kbytes changes
7073 * or when memory is hot-{added|removed}
7074 *
7075 * Ensures that the watermark[min,low,high] values for each zone are set
7076 * correctly with respect to min_free_kbytes.
7077 */
7078void setup_per_zone_wmarks(void)
7079{
b93e0f32
MH
7080 static DEFINE_SPINLOCK(lock);
7081
7082 spin_lock(&lock);
cfd3da1e 7083 __setup_per_zone_wmarks();
b93e0f32 7084 spin_unlock(&lock);
cfd3da1e
MG
7085}
7086
1da177e4
LT
7087/*
7088 * Initialise min_free_kbytes.
7089 *
7090 * For small machines we want it small (128k min). For large machines
7091 * we want it large (64MB max). But it is not linear, because network
7092 * bandwidth does not increase linearly with machine size. We use
7093 *
b8af2941 7094 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7095 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7096 *
7097 * which yields
7098 *
7099 * 16MB: 512k
7100 * 32MB: 724k
7101 * 64MB: 1024k
7102 * 128MB: 1448k
7103 * 256MB: 2048k
7104 * 512MB: 2896k
7105 * 1024MB: 4096k
7106 * 2048MB: 5792k
7107 * 4096MB: 8192k
7108 * 8192MB: 11584k
7109 * 16384MB: 16384k
7110 */
1b79acc9 7111int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7112{
7113 unsigned long lowmem_kbytes;
5f12733e 7114 int new_min_free_kbytes;
1da177e4
LT
7115
7116 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7117 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7118
7119 if (new_min_free_kbytes > user_min_free_kbytes) {
7120 min_free_kbytes = new_min_free_kbytes;
7121 if (min_free_kbytes < 128)
7122 min_free_kbytes = 128;
7123 if (min_free_kbytes > 65536)
7124 min_free_kbytes = 65536;
7125 } else {
7126 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7127 new_min_free_kbytes, user_min_free_kbytes);
7128 }
bc75d33f 7129 setup_per_zone_wmarks();
a6cccdc3 7130 refresh_zone_stat_thresholds();
1da177e4 7131 setup_per_zone_lowmem_reserve();
6423aa81
JK
7132
7133#ifdef CONFIG_NUMA
7134 setup_min_unmapped_ratio();
7135 setup_min_slab_ratio();
7136#endif
7137
1da177e4
LT
7138 return 0;
7139}
bc22af74 7140core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7141
7142/*
b8af2941 7143 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7144 * that we can call two helper functions whenever min_free_kbytes
7145 * changes.
7146 */
cccad5b9 7147int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7148 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7149{
da8c757b
HP
7150 int rc;
7151
7152 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7153 if (rc)
7154 return rc;
7155
5f12733e
MH
7156 if (write) {
7157 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7158 setup_per_zone_wmarks();
5f12733e 7159 }
1da177e4
LT
7160 return 0;
7161}
7162
795ae7a0
JW
7163int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7164 void __user *buffer, size_t *length, loff_t *ppos)
7165{
7166 int rc;
7167
7168 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7169 if (rc)
7170 return rc;
7171
7172 if (write)
7173 setup_per_zone_wmarks();
7174
7175 return 0;
7176}
7177
9614634f 7178#ifdef CONFIG_NUMA
6423aa81 7179static void setup_min_unmapped_ratio(void)
9614634f 7180{
6423aa81 7181 pg_data_t *pgdat;
9614634f 7182 struct zone *zone;
9614634f 7183
a5f5f91d 7184 for_each_online_pgdat(pgdat)
81cbcbc2 7185 pgdat->min_unmapped_pages = 0;
a5f5f91d 7186
9614634f 7187 for_each_zone(zone)
a5f5f91d 7188 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7189 sysctl_min_unmapped_ratio) / 100;
9614634f 7190}
0ff38490 7191
6423aa81
JK
7192
7193int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7194 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7195{
0ff38490
CL
7196 int rc;
7197
8d65af78 7198 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7199 if (rc)
7200 return rc;
7201
6423aa81
JK
7202 setup_min_unmapped_ratio();
7203
7204 return 0;
7205}
7206
7207static void setup_min_slab_ratio(void)
7208{
7209 pg_data_t *pgdat;
7210 struct zone *zone;
7211
a5f5f91d
MG
7212 for_each_online_pgdat(pgdat)
7213 pgdat->min_slab_pages = 0;
7214
0ff38490 7215 for_each_zone(zone)
a5f5f91d 7216 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7217 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7218}
7219
7220int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7221 void __user *buffer, size_t *length, loff_t *ppos)
7222{
7223 int rc;
7224
7225 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7226 if (rc)
7227 return rc;
7228
7229 setup_min_slab_ratio();
7230
0ff38490
CL
7231 return 0;
7232}
9614634f
CL
7233#endif
7234
1da177e4
LT
7235/*
7236 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7237 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7238 * whenever sysctl_lowmem_reserve_ratio changes.
7239 *
7240 * The reserve ratio obviously has absolutely no relation with the
41858966 7241 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7242 * if in function of the boot time zone sizes.
7243 */
cccad5b9 7244int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7245 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7246{
8d65af78 7247 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7248 setup_per_zone_lowmem_reserve();
7249 return 0;
7250}
7251
8ad4b1fb
RS
7252/*
7253 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7254 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7255 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7256 */
cccad5b9 7257int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7258 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7259{
7260 struct zone *zone;
7cd2b0a3 7261 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7262 int ret;
7263
7cd2b0a3
DR
7264 mutex_lock(&pcp_batch_high_lock);
7265 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7266
8d65af78 7267 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7268 if (!write || ret < 0)
7269 goto out;
7270
7271 /* Sanity checking to avoid pcp imbalance */
7272 if (percpu_pagelist_fraction &&
7273 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7274 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7275 ret = -EINVAL;
7276 goto out;
7277 }
7278
7279 /* No change? */
7280 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7281 goto out;
c8e251fa 7282
364df0eb 7283 for_each_populated_zone(zone) {
7cd2b0a3
DR
7284 unsigned int cpu;
7285
22a7f12b 7286 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7287 pageset_set_high_and_batch(zone,
7288 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7289 }
7cd2b0a3 7290out:
c8e251fa 7291 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7292 return ret;
8ad4b1fb
RS
7293}
7294
a9919c79 7295#ifdef CONFIG_NUMA
f034b5d4 7296int hashdist = HASHDIST_DEFAULT;
1da177e4 7297
1da177e4
LT
7298static int __init set_hashdist(char *str)
7299{
7300 if (!str)
7301 return 0;
7302 hashdist = simple_strtoul(str, &str, 0);
7303 return 1;
7304}
7305__setup("hashdist=", set_hashdist);
7306#endif
7307
f6f34b43
SD
7308#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7309/*
7310 * Returns the number of pages that arch has reserved but
7311 * is not known to alloc_large_system_hash().
7312 */
7313static unsigned long __init arch_reserved_kernel_pages(void)
7314{
7315 return 0;
7316}
7317#endif
7318
9017217b
PT
7319/*
7320 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7321 * machines. As memory size is increased the scale is also increased but at
7322 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7323 * quadruples the scale is increased by one, which means the size of hash table
7324 * only doubles, instead of quadrupling as well.
7325 * Because 32-bit systems cannot have large physical memory, where this scaling
7326 * makes sense, it is disabled on such platforms.
7327 */
7328#if __BITS_PER_LONG > 32
7329#define ADAPT_SCALE_BASE (64ul << 30)
7330#define ADAPT_SCALE_SHIFT 2
7331#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7332#endif
7333
1da177e4
LT
7334/*
7335 * allocate a large system hash table from bootmem
7336 * - it is assumed that the hash table must contain an exact power-of-2
7337 * quantity of entries
7338 * - limit is the number of hash buckets, not the total allocation size
7339 */
7340void *__init alloc_large_system_hash(const char *tablename,
7341 unsigned long bucketsize,
7342 unsigned long numentries,
7343 int scale,
7344 int flags,
7345 unsigned int *_hash_shift,
7346 unsigned int *_hash_mask,
31fe62b9
TB
7347 unsigned long low_limit,
7348 unsigned long high_limit)
1da177e4 7349{
31fe62b9 7350 unsigned long long max = high_limit;
1da177e4
LT
7351 unsigned long log2qty, size;
7352 void *table = NULL;
3749a8f0 7353 gfp_t gfp_flags;
1da177e4
LT
7354
7355 /* allow the kernel cmdline to have a say */
7356 if (!numentries) {
7357 /* round applicable memory size up to nearest megabyte */
04903664 7358 numentries = nr_kernel_pages;
f6f34b43 7359 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7360
7361 /* It isn't necessary when PAGE_SIZE >= 1MB */
7362 if (PAGE_SHIFT < 20)
7363 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7364
9017217b
PT
7365#if __BITS_PER_LONG > 32
7366 if (!high_limit) {
7367 unsigned long adapt;
7368
7369 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7370 adapt <<= ADAPT_SCALE_SHIFT)
7371 scale++;
7372 }
7373#endif
7374
1da177e4
LT
7375 /* limit to 1 bucket per 2^scale bytes of low memory */
7376 if (scale > PAGE_SHIFT)
7377 numentries >>= (scale - PAGE_SHIFT);
7378 else
7379 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7380
7381 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7382 if (unlikely(flags & HASH_SMALL)) {
7383 /* Makes no sense without HASH_EARLY */
7384 WARN_ON(!(flags & HASH_EARLY));
7385 if (!(numentries >> *_hash_shift)) {
7386 numentries = 1UL << *_hash_shift;
7387 BUG_ON(!numentries);
7388 }
7389 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7390 numentries = PAGE_SIZE / bucketsize;
1da177e4 7391 }
6e692ed3 7392 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7393
7394 /* limit allocation size to 1/16 total memory by default */
7395 if (max == 0) {
7396 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7397 do_div(max, bucketsize);
7398 }
074b8517 7399 max = min(max, 0x80000000ULL);
1da177e4 7400
31fe62b9
TB
7401 if (numentries < low_limit)
7402 numentries = low_limit;
1da177e4
LT
7403 if (numentries > max)
7404 numentries = max;
7405
f0d1b0b3 7406 log2qty = ilog2(numentries);
1da177e4 7407
3749a8f0 7408 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7409 do {
7410 size = bucketsize << log2qty;
ea1f5f37
PT
7411 if (flags & HASH_EARLY) {
7412 if (flags & HASH_ZERO)
7413 table = memblock_virt_alloc_nopanic(size, 0);
7414 else
7415 table = memblock_virt_alloc_raw(size, 0);
7416 } else if (hashdist) {
3749a8f0 7417 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7418 } else {
1037b83b
ED
7419 /*
7420 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7421 * some pages at the end of hash table which
7422 * alloc_pages_exact() automatically does
1037b83b 7423 */
264ef8a9 7424 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7425 table = alloc_pages_exact(size, gfp_flags);
7426 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7427 }
1da177e4
LT
7428 }
7429 } while (!table && size > PAGE_SIZE && --log2qty);
7430
7431 if (!table)
7432 panic("Failed to allocate %s hash table\n", tablename);
7433
1170532b
JP
7434 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7435 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7436
7437 if (_hash_shift)
7438 *_hash_shift = log2qty;
7439 if (_hash_mask)
7440 *_hash_mask = (1 << log2qty) - 1;
7441
7442 return table;
7443}
a117e66e 7444
a5d76b54 7445/*
80934513
MK
7446 * This function checks whether pageblock includes unmovable pages or not.
7447 * If @count is not zero, it is okay to include less @count unmovable pages
7448 *
b8af2941 7449 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7450 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7451 * check without lock_page also may miss some movable non-lru pages at
7452 * race condition. So you can't expect this function should be exact.
a5d76b54 7453 */
b023f468 7454bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7455 int migratetype,
b023f468 7456 bool skip_hwpoisoned_pages)
49ac8255
KH
7457{
7458 unsigned long pfn, iter, found;
47118af0 7459
49ac8255
KH
7460 /*
7461 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7462 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7463 */
7464 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7465 return false;
49ac8255 7466
4da2ce25
MH
7467 /*
7468 * CMA allocations (alloc_contig_range) really need to mark isolate
7469 * CMA pageblocks even when they are not movable in fact so consider
7470 * them movable here.
7471 */
7472 if (is_migrate_cma(migratetype) &&
7473 is_migrate_cma(get_pageblock_migratetype(page)))
7474 return false;
7475
49ac8255
KH
7476 pfn = page_to_pfn(page);
7477 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7478 unsigned long check = pfn + iter;
7479
29723fcc 7480 if (!pfn_valid_within(check))
49ac8255 7481 continue;
29723fcc 7482
49ac8255 7483 page = pfn_to_page(check);
c8721bbb 7484
d7ab3672
MH
7485 if (PageReserved(page))
7486 return true;
7487
c8721bbb
NH
7488 /*
7489 * Hugepages are not in LRU lists, but they're movable.
7490 * We need not scan over tail pages bacause we don't
7491 * handle each tail page individually in migration.
7492 */
7493 if (PageHuge(page)) {
7494 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7495 continue;
7496 }
7497
97d255c8
MK
7498 /*
7499 * We can't use page_count without pin a page
7500 * because another CPU can free compound page.
7501 * This check already skips compound tails of THP
0139aa7b 7502 * because their page->_refcount is zero at all time.
97d255c8 7503 */
fe896d18 7504 if (!page_ref_count(page)) {
49ac8255
KH
7505 if (PageBuddy(page))
7506 iter += (1 << page_order(page)) - 1;
7507 continue;
7508 }
97d255c8 7509
b023f468
WC
7510 /*
7511 * The HWPoisoned page may be not in buddy system, and
7512 * page_count() is not 0.
7513 */
7514 if (skip_hwpoisoned_pages && PageHWPoison(page))
7515 continue;
7516
0efadf48
YX
7517 if (__PageMovable(page))
7518 continue;
7519
49ac8255
KH
7520 if (!PageLRU(page))
7521 found++;
7522 /*
6b4f7799
JW
7523 * If there are RECLAIMABLE pages, we need to check
7524 * it. But now, memory offline itself doesn't call
7525 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7526 */
7527 /*
7528 * If the page is not RAM, page_count()should be 0.
7529 * we don't need more check. This is an _used_ not-movable page.
7530 *
7531 * The problematic thing here is PG_reserved pages. PG_reserved
7532 * is set to both of a memory hole page and a _used_ kernel
7533 * page at boot.
7534 */
7535 if (found > count)
80934513 7536 return true;
49ac8255 7537 }
80934513 7538 return false;
49ac8255
KH
7539}
7540
7541bool is_pageblock_removable_nolock(struct page *page)
7542{
656a0706
MH
7543 struct zone *zone;
7544 unsigned long pfn;
687875fb
MH
7545
7546 /*
7547 * We have to be careful here because we are iterating over memory
7548 * sections which are not zone aware so we might end up outside of
7549 * the zone but still within the section.
656a0706
MH
7550 * We have to take care about the node as well. If the node is offline
7551 * its NODE_DATA will be NULL - see page_zone.
687875fb 7552 */
656a0706
MH
7553 if (!node_online(page_to_nid(page)))
7554 return false;
7555
7556 zone = page_zone(page);
7557 pfn = page_to_pfn(page);
108bcc96 7558 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7559 return false;
7560
4da2ce25 7561 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7562}
0c0e6195 7563
080fe206 7564#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7565
7566static unsigned long pfn_max_align_down(unsigned long pfn)
7567{
7568 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7569 pageblock_nr_pages) - 1);
7570}
7571
7572static unsigned long pfn_max_align_up(unsigned long pfn)
7573{
7574 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7575 pageblock_nr_pages));
7576}
7577
041d3a8c 7578/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7579static int __alloc_contig_migrate_range(struct compact_control *cc,
7580 unsigned long start, unsigned long end)
041d3a8c
MN
7581{
7582 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7583 unsigned long nr_reclaimed;
041d3a8c
MN
7584 unsigned long pfn = start;
7585 unsigned int tries = 0;
7586 int ret = 0;
7587
be49a6e1 7588 migrate_prep();
041d3a8c 7589
bb13ffeb 7590 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7591 if (fatal_signal_pending(current)) {
7592 ret = -EINTR;
7593 break;
7594 }
7595
bb13ffeb
MG
7596 if (list_empty(&cc->migratepages)) {
7597 cc->nr_migratepages = 0;
edc2ca61 7598 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7599 if (!pfn) {
7600 ret = -EINTR;
7601 break;
7602 }
7603 tries = 0;
7604 } else if (++tries == 5) {
7605 ret = ret < 0 ? ret : -EBUSY;
7606 break;
7607 }
7608
beb51eaa
MK
7609 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7610 &cc->migratepages);
7611 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7612
9c620e2b 7613 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7614 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7615 }
2a6f5124
SP
7616 if (ret < 0) {
7617 putback_movable_pages(&cc->migratepages);
7618 return ret;
7619 }
7620 return 0;
041d3a8c
MN
7621}
7622
7623/**
7624 * alloc_contig_range() -- tries to allocate given range of pages
7625 * @start: start PFN to allocate
7626 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7627 * @migratetype: migratetype of the underlaying pageblocks (either
7628 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7629 * in range must have the same migratetype and it must
7630 * be either of the two.
ca96b625 7631 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7632 *
7633 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7634 * aligned, however it's the caller's responsibility to guarantee that
7635 * we are the only thread that changes migrate type of pageblocks the
7636 * pages fall in.
7637 *
7638 * The PFN range must belong to a single zone.
7639 *
7640 * Returns zero on success or negative error code. On success all
7641 * pages which PFN is in [start, end) are allocated for the caller and
7642 * need to be freed with free_contig_range().
7643 */
0815f3d8 7644int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7645 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7646{
041d3a8c 7647 unsigned long outer_start, outer_end;
d00181b9
KS
7648 unsigned int order;
7649 int ret = 0;
041d3a8c 7650
bb13ffeb
MG
7651 struct compact_control cc = {
7652 .nr_migratepages = 0,
7653 .order = -1,
7654 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7655 .mode = MIGRATE_SYNC,
bb13ffeb 7656 .ignore_skip_hint = true,
2583d671 7657 .no_set_skip_hint = true,
7dea19f9 7658 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7659 };
7660 INIT_LIST_HEAD(&cc.migratepages);
7661
041d3a8c
MN
7662 /*
7663 * What we do here is we mark all pageblocks in range as
7664 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7665 * have different sizes, and due to the way page allocator
7666 * work, we align the range to biggest of the two pages so
7667 * that page allocator won't try to merge buddies from
7668 * different pageblocks and change MIGRATE_ISOLATE to some
7669 * other migration type.
7670 *
7671 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7672 * migrate the pages from an unaligned range (ie. pages that
7673 * we are interested in). This will put all the pages in
7674 * range back to page allocator as MIGRATE_ISOLATE.
7675 *
7676 * When this is done, we take the pages in range from page
7677 * allocator removing them from the buddy system. This way
7678 * page allocator will never consider using them.
7679 *
7680 * This lets us mark the pageblocks back as
7681 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7682 * aligned range but not in the unaligned, original range are
7683 * put back to page allocator so that buddy can use them.
7684 */
7685
7686 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7687 pfn_max_align_up(end), migratetype,
7688 false);
041d3a8c 7689 if (ret)
86a595f9 7690 return ret;
041d3a8c 7691
8ef5849f
JK
7692 /*
7693 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7694 * So, just fall through. test_pages_isolated() has a tracepoint
7695 * which will report the busy page.
7696 *
7697 * It is possible that busy pages could become available before
7698 * the call to test_pages_isolated, and the range will actually be
7699 * allocated. So, if we fall through be sure to clear ret so that
7700 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7701 */
bb13ffeb 7702 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7703 if (ret && ret != -EBUSY)
041d3a8c 7704 goto done;
63cd4489 7705 ret =0;
041d3a8c
MN
7706
7707 /*
7708 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7709 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7710 * more, all pages in [start, end) are free in page allocator.
7711 * What we are going to do is to allocate all pages from
7712 * [start, end) (that is remove them from page allocator).
7713 *
7714 * The only problem is that pages at the beginning and at the
7715 * end of interesting range may be not aligned with pages that
7716 * page allocator holds, ie. they can be part of higher order
7717 * pages. Because of this, we reserve the bigger range and
7718 * once this is done free the pages we are not interested in.
7719 *
7720 * We don't have to hold zone->lock here because the pages are
7721 * isolated thus they won't get removed from buddy.
7722 */
7723
7724 lru_add_drain_all();
510f5507 7725 drain_all_pages(cc.zone);
041d3a8c
MN
7726
7727 order = 0;
7728 outer_start = start;
7729 while (!PageBuddy(pfn_to_page(outer_start))) {
7730 if (++order >= MAX_ORDER) {
8ef5849f
JK
7731 outer_start = start;
7732 break;
041d3a8c
MN
7733 }
7734 outer_start &= ~0UL << order;
7735 }
7736
8ef5849f
JK
7737 if (outer_start != start) {
7738 order = page_order(pfn_to_page(outer_start));
7739
7740 /*
7741 * outer_start page could be small order buddy page and
7742 * it doesn't include start page. Adjust outer_start
7743 * in this case to report failed page properly
7744 * on tracepoint in test_pages_isolated()
7745 */
7746 if (outer_start + (1UL << order) <= start)
7747 outer_start = start;
7748 }
7749
041d3a8c 7750 /* Make sure the range is really isolated. */
b023f468 7751 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7752 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7753 __func__, outer_start, end);
041d3a8c
MN
7754 ret = -EBUSY;
7755 goto done;
7756 }
7757
49f223a9 7758 /* Grab isolated pages from freelists. */
bb13ffeb 7759 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7760 if (!outer_end) {
7761 ret = -EBUSY;
7762 goto done;
7763 }
7764
7765 /* Free head and tail (if any) */
7766 if (start != outer_start)
7767 free_contig_range(outer_start, start - outer_start);
7768 if (end != outer_end)
7769 free_contig_range(end, outer_end - end);
7770
7771done:
7772 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7773 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7774 return ret;
7775}
7776
7777void free_contig_range(unsigned long pfn, unsigned nr_pages)
7778{
bcc2b02f
MS
7779 unsigned int count = 0;
7780
7781 for (; nr_pages--; pfn++) {
7782 struct page *page = pfn_to_page(pfn);
7783
7784 count += page_count(page) != 1;
7785 __free_page(page);
7786 }
7787 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7788}
7789#endif
7790
0a647f38
CS
7791/*
7792 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7793 * page high values need to be recalulated.
7794 */
4ed7e022
JL
7795void __meminit zone_pcp_update(struct zone *zone)
7796{
0a647f38 7797 unsigned cpu;
c8e251fa 7798 mutex_lock(&pcp_batch_high_lock);
0a647f38 7799 for_each_possible_cpu(cpu)
169f6c19
CS
7800 pageset_set_high_and_batch(zone,
7801 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7802 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 7803}
4ed7e022 7804
340175b7
JL
7805void zone_pcp_reset(struct zone *zone)
7806{
7807 unsigned long flags;
5a883813
MK
7808 int cpu;
7809 struct per_cpu_pageset *pset;
340175b7
JL
7810
7811 /* avoid races with drain_pages() */
7812 local_irq_save(flags);
7813 if (zone->pageset != &boot_pageset) {
5a883813
MK
7814 for_each_online_cpu(cpu) {
7815 pset = per_cpu_ptr(zone->pageset, cpu);
7816 drain_zonestat(zone, pset);
7817 }
340175b7
JL
7818 free_percpu(zone->pageset);
7819 zone->pageset = &boot_pageset;
7820 }
7821 local_irq_restore(flags);
7822}
7823
6dcd73d7 7824#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7825/*
b9eb6319
JK
7826 * All pages in the range must be in a single zone and isolated
7827 * before calling this.
0c0e6195
KH
7828 */
7829void
7830__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7831{
7832 struct page *page;
7833 struct zone *zone;
7aeb09f9 7834 unsigned int order, i;
0c0e6195
KH
7835 unsigned long pfn;
7836 unsigned long flags;
7837 /* find the first valid pfn */
7838 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7839 if (pfn_valid(pfn))
7840 break;
7841 if (pfn == end_pfn)
7842 return;
2d070eab 7843 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7844 zone = page_zone(pfn_to_page(pfn));
7845 spin_lock_irqsave(&zone->lock, flags);
7846 pfn = start_pfn;
7847 while (pfn < end_pfn) {
7848 if (!pfn_valid(pfn)) {
7849 pfn++;
7850 continue;
7851 }
7852 page = pfn_to_page(pfn);
b023f468
WC
7853 /*
7854 * The HWPoisoned page may be not in buddy system, and
7855 * page_count() is not 0.
7856 */
7857 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7858 pfn++;
7859 SetPageReserved(page);
7860 continue;
7861 }
7862
0c0e6195
KH
7863 BUG_ON(page_count(page));
7864 BUG_ON(!PageBuddy(page));
7865 order = page_order(page);
7866#ifdef CONFIG_DEBUG_VM
1170532b
JP
7867 pr_info("remove from free list %lx %d %lx\n",
7868 pfn, 1 << order, end_pfn);
0c0e6195
KH
7869#endif
7870 list_del(&page->lru);
7871 rmv_page_order(page);
7872 zone->free_area[order].nr_free--;
0c0e6195
KH
7873 for (i = 0; i < (1 << order); i++)
7874 SetPageReserved((page+i));
7875 pfn += (1 << order);
7876 }
7877 spin_unlock_irqrestore(&zone->lock, flags);
7878}
7879#endif
8d22ba1b 7880
8d22ba1b
WF
7881bool is_free_buddy_page(struct page *page)
7882{
7883 struct zone *zone = page_zone(page);
7884 unsigned long pfn = page_to_pfn(page);
7885 unsigned long flags;
7aeb09f9 7886 unsigned int order;
8d22ba1b
WF
7887
7888 spin_lock_irqsave(&zone->lock, flags);
7889 for (order = 0; order < MAX_ORDER; order++) {
7890 struct page *page_head = page - (pfn & ((1 << order) - 1));
7891
7892 if (PageBuddy(page_head) && page_order(page_head) >= order)
7893 break;
7894 }
7895 spin_unlock_irqrestore(&zone->lock, flags);
7896
7897 return order < MAX_ORDER;
7898}