]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
1da177e4 75
7ee3d4e8 76#include <asm/sections.h>
1da177e4 77#include <asm/tlbflush.h>
ac924c60 78#include <asm/div64.h>
1da177e4 79#include "internal.h"
e900a918 80#include "shuffle.h"
36e66c55 81#include "page_reporting.h"
1da177e4 82
f04a5d5d
DH
83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84typedef int __bitwise fpi_t;
85
86/* No special request */
87#define FPI_NONE ((__force fpi_t)0)
88
89/*
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
96 */
97#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
98
47b6a24a
DH
99/*
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
103 *
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
108 */
109#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
110
c8e251fa
CS
111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 113#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 114
72812019
LS
115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116DEFINE_PER_CPU(int, numa_node);
117EXPORT_PER_CPU_SYMBOL(numa_node);
118#endif
119
4518085e
KW
120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121
7aac7898
LS
122#ifdef CONFIG_HAVE_MEMORYLESS_NODES
123/*
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
128 */
129DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131#endif
132
bd233f53 133/* work_structs for global per-cpu drains */
d9367bd0
WY
134struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
137};
8b885f53
JY
138static DEFINE_MUTEX(pcpu_drain_mutex);
139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 140
38addce8 141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 142volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
143EXPORT_SYMBOL(latent_entropy);
144#endif
145
1da177e4 146/*
13808910 147 * Array of node states.
1da177e4 148 */
13808910
CL
149nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152#ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154#ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 156#endif
20b2f52b 157 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
158 [N_CPU] = { { [0] = 1UL } },
159#endif /* NUMA */
160};
161EXPORT_SYMBOL(node_states);
162
ca79b0c2
AK
163atomic_long_t _totalram_pages __read_mostly;
164EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 165unsigned long totalreserve_pages __read_mostly;
e48322ab 166unsigned long totalcma_pages __read_mostly;
ab8fabd4 167
1b76b02f 168int percpu_pagelist_fraction;
dcce284a 169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 170DEFINE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
171EXPORT_SYMBOL(init_on_alloc);
172
6471384a 173DEFINE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
174EXPORT_SYMBOL(init_on_free);
175
04013513
VB
176static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
178static int __init early_init_on_alloc(char *buf)
179{
6471384a 180
04013513 181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
182}
183early_param("init_on_alloc", early_init_on_alloc);
184
04013513
VB
185static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
187static int __init early_init_on_free(char *buf)
188{
04013513 189 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
190}
191early_param("init_on_free", early_init_on_free);
1da177e4 192
bb14c2c7
VB
193/*
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
200 */
201static inline int get_pcppage_migratetype(struct page *page)
202{
203 return page->index;
204}
205
206static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207{
208 page->index = migratetype;
209}
210
452aa699
RW
211#ifdef CONFIG_PM_SLEEP
212/*
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
452aa699 220 */
c9e664f1
RW
221
222static gfp_t saved_gfp_mask;
223
224void pm_restore_gfp_mask(void)
452aa699 225{
55f2503c 226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
230 }
452aa699
RW
231}
232
c9e664f1 233void pm_restrict_gfp_mask(void)
452aa699 234{
55f2503c 235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
d0164adc 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 239}
f90ac398
MG
240
241bool pm_suspended_storage(void)
242{
d0164adc 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
244 return false;
245 return true;
246}
452aa699
RW
247#endif /* CONFIG_PM_SLEEP */
248
d9c23400 249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 250unsigned int pageblock_order __read_mostly;
d9c23400
MG
251#endif
252
7fef431b
DH
253static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
a226f6c8 255
1da177e4
LT
256/*
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
263 *
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
1da177e4 266 */
d3cda233 267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 268#ifdef CONFIG_ZONE_DMA
d3cda233 269 [ZONE_DMA] = 256,
4b51d669 270#endif
fb0e7942 271#ifdef CONFIG_ZONE_DMA32
d3cda233 272 [ZONE_DMA32] = 256,
fb0e7942 273#endif
d3cda233 274 [ZONE_NORMAL] = 32,
e53ef38d 275#ifdef CONFIG_HIGHMEM
d3cda233 276 [ZONE_HIGHMEM] = 0,
e53ef38d 277#endif
d3cda233 278 [ZONE_MOVABLE] = 0,
2f1b6248 279};
1da177e4 280
15ad7cdc 281static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 282#ifdef CONFIG_ZONE_DMA
2f1b6248 283 "DMA",
4b51d669 284#endif
fb0e7942 285#ifdef CONFIG_ZONE_DMA32
2f1b6248 286 "DMA32",
fb0e7942 287#endif
2f1b6248 288 "Normal",
e53ef38d 289#ifdef CONFIG_HIGHMEM
2a1e274a 290 "HighMem",
e53ef38d 291#endif
2a1e274a 292 "Movable",
033fbae9
DW
293#ifdef CONFIG_ZONE_DEVICE
294 "Device",
295#endif
2f1b6248
CL
296};
297
c999fbd3 298const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303#ifdef CONFIG_CMA
304 "CMA",
305#endif
306#ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308#endif
309};
310
ae70eddd
AK
311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 314#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 315 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 316#endif
9a982250 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 319#endif
f1e61557
KS
320};
321
1da177e4 322int min_free_kbytes = 1024;
42aa83cb 323int user_min_free_kbytes = -1;
24512228 324int watermark_boost_factor __read_mostly;
795ae7a0 325int watermark_scale_factor = 10;
1da177e4 326
bbe5d993
OS
327static unsigned long nr_kernel_pages __initdata;
328static unsigned long nr_all_pages __initdata;
329static unsigned long dma_reserve __initdata;
1da177e4 330
bbe5d993
OS
331static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
332static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 333static unsigned long required_kernelcore __initdata;
a5c6d650 334static unsigned long required_kernelcore_percent __initdata;
7f16f91f 335static unsigned long required_movablecore __initdata;
a5c6d650 336static unsigned long required_movablecore_percent __initdata;
bbe5d993 337static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 338static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
339
340/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
341int movable_zone;
342EXPORT_SYMBOL(movable_zone);
c713216d 343
418508c1 344#if MAX_NUMNODES > 1
b9726c26 345unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 346unsigned int nr_online_nodes __read_mostly = 1;
418508c1 347EXPORT_SYMBOL(nr_node_ids);
62bc62a8 348EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
349#endif
350
9ef9acb0
MG
351int page_group_by_mobility_disabled __read_mostly;
352
3a80a7fa 353#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
354/*
355 * During boot we initialize deferred pages on-demand, as needed, but once
356 * page_alloc_init_late() has finished, the deferred pages are all initialized,
357 * and we can permanently disable that path.
358 */
359static DEFINE_STATIC_KEY_TRUE(deferred_pages);
360
361/*
362 * Calling kasan_free_pages() only after deferred memory initialization
363 * has completed. Poisoning pages during deferred memory init will greatly
364 * lengthen the process and cause problem in large memory systems as the
365 * deferred pages initialization is done with interrupt disabled.
366 *
367 * Assuming that there will be no reference to those newly initialized
368 * pages before they are ever allocated, this should have no effect on
369 * KASAN memory tracking as the poison will be properly inserted at page
370 * allocation time. The only corner case is when pages are allocated by
371 * on-demand allocation and then freed again before the deferred pages
372 * initialization is done, but this is not likely to happen.
373 */
374static inline void kasan_free_nondeferred_pages(struct page *page, int order)
375{
376 if (!static_branch_unlikely(&deferred_pages))
377 kasan_free_pages(page, order);
378}
379
3a80a7fa 380/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 381static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 382{
ef70b6f4
MG
383 int nid = early_pfn_to_nid(pfn);
384
385 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
386 return true;
387
388 return false;
389}
390
391/*
d3035be4 392 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
393 * later in the boot cycle when it can be parallelised.
394 */
d3035be4
PT
395static bool __meminit
396defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 397{
d3035be4
PT
398 static unsigned long prev_end_pfn, nr_initialised;
399
400 /*
401 * prev_end_pfn static that contains the end of previous zone
402 * No need to protect because called very early in boot before smp_init.
403 */
404 if (prev_end_pfn != end_pfn) {
405 prev_end_pfn = end_pfn;
406 nr_initialised = 0;
407 }
408
3c2c6488 409 /* Always populate low zones for address-constrained allocations */
d3035be4 410 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 411 return false;
23b68cfa 412
dc2da7b4
BH
413 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
414 return true;
23b68cfa
WY
415 /*
416 * We start only with one section of pages, more pages are added as
417 * needed until the rest of deferred pages are initialized.
418 */
d3035be4 419 nr_initialised++;
23b68cfa 420 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
421 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
422 NODE_DATA(nid)->first_deferred_pfn = pfn;
423 return true;
3a80a7fa 424 }
d3035be4 425 return false;
3a80a7fa
MG
426}
427#else
3c0c12cc
WL
428#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
429
3a80a7fa
MG
430static inline bool early_page_uninitialised(unsigned long pfn)
431{
432 return false;
433}
434
d3035be4 435static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 436{
d3035be4 437 return false;
3a80a7fa
MG
438}
439#endif
440
0b423ca2
MG
441/* Return a pointer to the bitmap storing bits affecting a block of pages */
442static inline unsigned long *get_pageblock_bitmap(struct page *page,
443 unsigned long pfn)
444{
445#ifdef CONFIG_SPARSEMEM
f1eca35a 446 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
447#else
448 return page_zone(page)->pageblock_flags;
449#endif /* CONFIG_SPARSEMEM */
450}
451
452static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
453{
454#ifdef CONFIG_SPARSEMEM
455 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
456#else
457 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 458#endif /* CONFIG_SPARSEMEM */
399b795b 459 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
460}
461
535b81e2
WY
462static __always_inline
463unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 464 unsigned long pfn,
0b423ca2
MG
465 unsigned long mask)
466{
467 unsigned long *bitmap;
468 unsigned long bitidx, word_bitidx;
469 unsigned long word;
470
471 bitmap = get_pageblock_bitmap(page, pfn);
472 bitidx = pfn_to_bitidx(page, pfn);
473 word_bitidx = bitidx / BITS_PER_LONG;
474 bitidx &= (BITS_PER_LONG-1);
475
476 word = bitmap[word_bitidx];
d93d5ab9 477 return (word >> bitidx) & mask;
0b423ca2
MG
478}
479
a00cda3f
MCC
480/**
481 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
482 * @page: The page within the block of interest
483 * @pfn: The target page frame number
484 * @mask: mask of bits that the caller is interested in
485 *
486 * Return: pageblock_bits flags
487 */
0b423ca2 488unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
489 unsigned long mask)
490{
535b81e2 491 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
492}
493
494static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
495{
535b81e2 496 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
497}
498
499/**
500 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
501 * @page: The page within the block of interest
502 * @flags: The flags to set
503 * @pfn: The target page frame number
0b423ca2
MG
504 * @mask: mask of bits that the caller is interested in
505 */
506void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
507 unsigned long pfn,
0b423ca2
MG
508 unsigned long mask)
509{
510 unsigned long *bitmap;
511 unsigned long bitidx, word_bitidx;
512 unsigned long old_word, word;
513
514 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 515 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
516
517 bitmap = get_pageblock_bitmap(page, pfn);
518 bitidx = pfn_to_bitidx(page, pfn);
519 word_bitidx = bitidx / BITS_PER_LONG;
520 bitidx &= (BITS_PER_LONG-1);
521
522 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
523
d93d5ab9
WY
524 mask <<= bitidx;
525 flags <<= bitidx;
0b423ca2
MG
526
527 word = READ_ONCE(bitmap[word_bitidx]);
528 for (;;) {
529 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
530 if (word == old_word)
531 break;
532 word = old_word;
533 }
534}
3a80a7fa 535
ee6f509c 536void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 537{
5d0f3f72
KM
538 if (unlikely(page_group_by_mobility_disabled &&
539 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
540 migratetype = MIGRATE_UNMOVABLE;
541
d93d5ab9 542 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 543 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
544}
545
13e7444b 546#ifdef CONFIG_DEBUG_VM
c6a57e19 547static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 548{
bdc8cb98
DH
549 int ret = 0;
550 unsigned seq;
551 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 552 unsigned long sp, start_pfn;
c6a57e19 553
bdc8cb98
DH
554 do {
555 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
556 start_pfn = zone->zone_start_pfn;
557 sp = zone->spanned_pages;
108bcc96 558 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
559 ret = 1;
560 } while (zone_span_seqretry(zone, seq));
561
b5e6a5a2 562 if (ret)
613813e8
DH
563 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
564 pfn, zone_to_nid(zone), zone->name,
565 start_pfn, start_pfn + sp);
b5e6a5a2 566
bdc8cb98 567 return ret;
c6a57e19
DH
568}
569
570static int page_is_consistent(struct zone *zone, struct page *page)
571{
14e07298 572 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 573 return 0;
1da177e4 574 if (zone != page_zone(page))
c6a57e19
DH
575 return 0;
576
577 return 1;
578}
579/*
580 * Temporary debugging check for pages not lying within a given zone.
581 */
d73d3c9f 582static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
583{
584 if (page_outside_zone_boundaries(zone, page))
1da177e4 585 return 1;
c6a57e19
DH
586 if (!page_is_consistent(zone, page))
587 return 1;
588
1da177e4
LT
589 return 0;
590}
13e7444b 591#else
d73d3c9f 592static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
593{
594 return 0;
595}
596#endif
597
82a3241a 598static void bad_page(struct page *page, const char *reason)
1da177e4 599{
d936cf9b
HD
600 static unsigned long resume;
601 static unsigned long nr_shown;
602 static unsigned long nr_unshown;
603
604 /*
605 * Allow a burst of 60 reports, then keep quiet for that minute;
606 * or allow a steady drip of one report per second.
607 */
608 if (nr_shown == 60) {
609 if (time_before(jiffies, resume)) {
610 nr_unshown++;
611 goto out;
612 }
613 if (nr_unshown) {
ff8e8116 614 pr_alert(
1e9e6365 615 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
616 nr_unshown);
617 nr_unshown = 0;
618 }
619 nr_shown = 0;
620 }
621 if (nr_shown++ == 0)
622 resume = jiffies + 60 * HZ;
623
ff8e8116 624 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 625 current->comm, page_to_pfn(page));
ff8e8116 626 __dump_page(page, reason);
4e462112 627 dump_page_owner(page);
3dc14741 628
4f31888c 629 print_modules();
1da177e4 630 dump_stack();
d936cf9b 631out:
8cc3b392 632 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 633 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 634 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
635}
636
1da177e4
LT
637/*
638 * Higher-order pages are called "compound pages". They are structured thusly:
639 *
1d798ca3 640 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 641 *
1d798ca3
KS
642 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
643 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 644 *
1d798ca3
KS
645 * The first tail page's ->compound_dtor holds the offset in array of compound
646 * page destructors. See compound_page_dtors.
1da177e4 647 *
1d798ca3 648 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 649 * This usage means that zero-order pages may not be compound.
1da177e4 650 */
d98c7a09 651
9a982250 652void free_compound_page(struct page *page)
d98c7a09 653{
7ae88534 654 mem_cgroup_uncharge(page);
7fef431b 655 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
656}
657
d00181b9 658void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
659{
660 int i;
661 int nr_pages = 1 << order;
662
18229df5
AW
663 __SetPageHead(page);
664 for (i = 1; i < nr_pages; i++) {
665 struct page *p = page + i;
58a84aa9 666 set_page_count(p, 0);
1c290f64 667 p->mapping = TAIL_MAPPING;
1d798ca3 668 set_compound_head(p, page);
18229df5 669 }
1378a5ee
MWO
670
671 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
672 set_compound_order(page, order);
53f9263b 673 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
674 if (hpage_pincount_available(page))
675 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
676}
677
c0a32fc5
SG
678#ifdef CONFIG_DEBUG_PAGEALLOC
679unsigned int _debug_guardpage_minorder;
96a2b03f 680
8e57f8ac
VB
681bool _debug_pagealloc_enabled_early __read_mostly
682 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
683EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 684DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 685EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
686
687DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 688
031bc574
JK
689static int __init early_debug_pagealloc(char *buf)
690{
8e57f8ac 691 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
692}
693early_param("debug_pagealloc", early_debug_pagealloc);
694
c0a32fc5
SG
695static int __init debug_guardpage_minorder_setup(char *buf)
696{
697 unsigned long res;
698
699 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 700 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
701 return 0;
702 }
703 _debug_guardpage_minorder = res;
1170532b 704 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
705 return 0;
706}
f1c1e9f7 707early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 708
acbc15a4 709static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 710 unsigned int order, int migratetype)
c0a32fc5 711{
e30825f1 712 if (!debug_guardpage_enabled())
acbc15a4
JK
713 return false;
714
715 if (order >= debug_guardpage_minorder())
716 return false;
e30825f1 717
3972f6bb 718 __SetPageGuard(page);
2847cf95
JK
719 INIT_LIST_HEAD(&page->lru);
720 set_page_private(page, order);
721 /* Guard pages are not available for any usage */
722 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
723
724 return true;
c0a32fc5
SG
725}
726
2847cf95
JK
727static inline void clear_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype)
c0a32fc5 729{
e30825f1
JK
730 if (!debug_guardpage_enabled())
731 return;
732
3972f6bb 733 __ClearPageGuard(page);
e30825f1 734
2847cf95
JK
735 set_page_private(page, 0);
736 if (!is_migrate_isolate(migratetype))
737 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
738}
739#else
acbc15a4
JK
740static inline bool set_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype) { return false; }
2847cf95
JK
742static inline void clear_page_guard(struct zone *zone, struct page *page,
743 unsigned int order, int migratetype) {}
c0a32fc5
SG
744#endif
745
04013513
VB
746/*
747 * Enable static keys related to various memory debugging and hardening options.
748 * Some override others, and depend on early params that are evaluated in the
749 * order of appearance. So we need to first gather the full picture of what was
750 * enabled, and then make decisions.
751 */
752void init_mem_debugging_and_hardening(void)
753{
3f1bc543
ST
754 bool page_poisoning_requested = false;
755
756#ifdef CONFIG_PAGE_POISONING
757 /*
758 * Page poisoning is debug page alloc for some arches. If
759 * either of those options are enabled, enable poisoning.
760 */
761 if (page_poisoning_enabled() ||
762 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
763 debug_pagealloc_enabled())) {
764 static_branch_enable(&_page_poisoning_enabled);
765 page_poisoning_requested = true;
766 }
767#endif
768
04013513 769 if (_init_on_alloc_enabled_early) {
3f1bc543 770 if (page_poisoning_requested)
04013513
VB
771 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
772 "will take precedence over init_on_alloc\n");
773 else
774 static_branch_enable(&init_on_alloc);
775 }
776 if (_init_on_free_enabled_early) {
3f1bc543 777 if (page_poisoning_requested)
04013513
VB
778 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
779 "will take precedence over init_on_free\n");
780 else
781 static_branch_enable(&init_on_free);
782 }
783
784#ifdef CONFIG_DEBUG_PAGEALLOC
785 if (!debug_pagealloc_enabled())
786 return;
787
788 static_branch_enable(&_debug_pagealloc_enabled);
789
790 if (!debug_guardpage_minorder())
791 return;
792
793 static_branch_enable(&_debug_guardpage_enabled);
794#endif
795}
796
ab130f91 797static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 798{
4c21e2f2 799 set_page_private(page, order);
676165a8 800 __SetPageBuddy(page);
1da177e4
LT
801}
802
1da177e4
LT
803/*
804 * This function checks whether a page is free && is the buddy
6e292b9b 805 * we can coalesce a page and its buddy if
13ad59df 806 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 807 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
808 * (c) a page and its buddy have the same order &&
809 * (d) a page and its buddy are in the same zone.
676165a8 810 *
6e292b9b
MW
811 * For recording whether a page is in the buddy system, we set PageBuddy.
812 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 813 *
676165a8 814 * For recording page's order, we use page_private(page).
1da177e4 815 */
fe925c0c 816static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 817 unsigned int order)
1da177e4 818{
fe925c0c 819 if (!page_is_guard(buddy) && !PageBuddy(buddy))
820 return false;
4c5018ce 821
ab130f91 822 if (buddy_order(buddy) != order)
fe925c0c 823 return false;
c0a32fc5 824
fe925c0c 825 /*
826 * zone check is done late to avoid uselessly calculating
827 * zone/node ids for pages that could never merge.
828 */
829 if (page_zone_id(page) != page_zone_id(buddy))
830 return false;
d34c5fa0 831
fe925c0c 832 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 833
fe925c0c 834 return true;
1da177e4
LT
835}
836
5e1f0f09
MG
837#ifdef CONFIG_COMPACTION
838static inline struct capture_control *task_capc(struct zone *zone)
839{
840 struct capture_control *capc = current->capture_control;
841
deba0487 842 return unlikely(capc) &&
5e1f0f09
MG
843 !(current->flags & PF_KTHREAD) &&
844 !capc->page &&
deba0487 845 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 if (!capc || order != capc->cc->order)
853 return false;
854
855 /* Do not accidentally pollute CMA or isolated regions*/
856 if (is_migrate_cma(migratetype) ||
857 is_migrate_isolate(migratetype))
858 return false;
859
860 /*
861 * Do not let lower order allocations polluate a movable pageblock.
862 * This might let an unmovable request use a reclaimable pageblock
863 * and vice-versa but no more than normal fallback logic which can
864 * have trouble finding a high-order free page.
865 */
866 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
867 return false;
868
869 capc->page = page;
870 return true;
871}
872
873#else
874static inline struct capture_control *task_capc(struct zone *zone)
875{
876 return NULL;
877}
878
879static inline bool
880compaction_capture(struct capture_control *capc, struct page *page,
881 int order, int migratetype)
882{
883 return false;
884}
885#endif /* CONFIG_COMPACTION */
886
6ab01363
AD
887/* Used for pages not on another list */
888static inline void add_to_free_list(struct page *page, struct zone *zone,
889 unsigned int order, int migratetype)
890{
891 struct free_area *area = &zone->free_area[order];
892
893 list_add(&page->lru, &area->free_list[migratetype]);
894 area->nr_free++;
895}
896
897/* Used for pages not on another list */
898static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
899 unsigned int order, int migratetype)
900{
901 struct free_area *area = &zone->free_area[order];
902
903 list_add_tail(&page->lru, &area->free_list[migratetype]);
904 area->nr_free++;
905}
906
293ffa5e
DH
907/*
908 * Used for pages which are on another list. Move the pages to the tail
909 * of the list - so the moved pages won't immediately be considered for
910 * allocation again (e.g., optimization for memory onlining).
911 */
6ab01363
AD
912static inline void move_to_free_list(struct page *page, struct zone *zone,
913 unsigned int order, int migratetype)
914{
915 struct free_area *area = &zone->free_area[order];
916
293ffa5e 917 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
918}
919
920static inline void del_page_from_free_list(struct page *page, struct zone *zone,
921 unsigned int order)
922{
36e66c55
AD
923 /* clear reported state and update reported page count */
924 if (page_reported(page))
925 __ClearPageReported(page);
926
6ab01363
AD
927 list_del(&page->lru);
928 __ClearPageBuddy(page);
929 set_page_private(page, 0);
930 zone->free_area[order].nr_free--;
931}
932
a2129f24
AD
933/*
934 * If this is not the largest possible page, check if the buddy
935 * of the next-highest order is free. If it is, it's possible
936 * that pages are being freed that will coalesce soon. In case,
937 * that is happening, add the free page to the tail of the list
938 * so it's less likely to be used soon and more likely to be merged
939 * as a higher order page
940 */
941static inline bool
942buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
943 struct page *page, unsigned int order)
944{
945 struct page *higher_page, *higher_buddy;
946 unsigned long combined_pfn;
947
948 if (order >= MAX_ORDER - 2)
949 return false;
950
951 if (!pfn_valid_within(buddy_pfn))
952 return false;
953
954 combined_pfn = buddy_pfn & pfn;
955 higher_page = page + (combined_pfn - pfn);
956 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
957 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
958
959 return pfn_valid_within(buddy_pfn) &&
960 page_is_buddy(higher_page, higher_buddy, order + 1);
961}
962
1da177e4
LT
963/*
964 * Freeing function for a buddy system allocator.
965 *
966 * The concept of a buddy system is to maintain direct-mapped table
967 * (containing bit values) for memory blocks of various "orders".
968 * The bottom level table contains the map for the smallest allocatable
969 * units of memory (here, pages), and each level above it describes
970 * pairs of units from the levels below, hence, "buddies".
971 * At a high level, all that happens here is marking the table entry
972 * at the bottom level available, and propagating the changes upward
973 * as necessary, plus some accounting needed to play nicely with other
974 * parts of the VM system.
975 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
976 * free pages of length of (1 << order) and marked with PageBuddy.
977 * Page's order is recorded in page_private(page) field.
1da177e4 978 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
979 * other. That is, if we allocate a small block, and both were
980 * free, the remainder of the region must be split into blocks.
1da177e4 981 * If a block is freed, and its buddy is also free, then this
5f63b720 982 * triggers coalescing into a block of larger size.
1da177e4 983 *
6d49e352 984 * -- nyc
1da177e4
LT
985 */
986
48db57f8 987static inline void __free_one_page(struct page *page,
dc4b0caf 988 unsigned long pfn,
ed0ae21d 989 struct zone *zone, unsigned int order,
f04a5d5d 990 int migratetype, fpi_t fpi_flags)
1da177e4 991{
a2129f24 992 struct capture_control *capc = task_capc(zone);
3f649ab7 993 unsigned long buddy_pfn;
a2129f24 994 unsigned long combined_pfn;
d9dddbf5 995 unsigned int max_order;
a2129f24
AD
996 struct page *buddy;
997 bool to_tail;
d9dddbf5 998
7ad69832 999 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1000
d29bb978 1001 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1002 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1003
ed0ae21d 1004 VM_BUG_ON(migratetype == -1);
d9dddbf5 1005 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1006 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1007
76741e77 1008 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1009 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1010
d9dddbf5 1011continue_merging:
7ad69832 1012 while (order < max_order) {
5e1f0f09
MG
1013 if (compaction_capture(capc, page, order, migratetype)) {
1014 __mod_zone_freepage_state(zone, -(1 << order),
1015 migratetype);
1016 return;
1017 }
76741e77
VB
1018 buddy_pfn = __find_buddy_pfn(pfn, order);
1019 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1020
1021 if (!pfn_valid_within(buddy_pfn))
1022 goto done_merging;
cb2b95e1 1023 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1024 goto done_merging;
c0a32fc5
SG
1025 /*
1026 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1027 * merge with it and move up one order.
1028 */
b03641af 1029 if (page_is_guard(buddy))
2847cf95 1030 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1031 else
6ab01363 1032 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1033 combined_pfn = buddy_pfn & pfn;
1034 page = page + (combined_pfn - pfn);
1035 pfn = combined_pfn;
1da177e4
LT
1036 order++;
1037 }
7ad69832 1038 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1039 /* If we are here, it means order is >= pageblock_order.
1040 * We want to prevent merge between freepages on isolate
1041 * pageblock and normal pageblock. Without this, pageblock
1042 * isolation could cause incorrect freepage or CMA accounting.
1043 *
1044 * We don't want to hit this code for the more frequent
1045 * low-order merging.
1046 */
1047 if (unlikely(has_isolate_pageblock(zone))) {
1048 int buddy_mt;
1049
76741e77
VB
1050 buddy_pfn = __find_buddy_pfn(pfn, order);
1051 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1052 buddy_mt = get_pageblock_migratetype(buddy);
1053
1054 if (migratetype != buddy_mt
1055 && (is_migrate_isolate(migratetype) ||
1056 is_migrate_isolate(buddy_mt)))
1057 goto done_merging;
1058 }
7ad69832 1059 max_order = order + 1;
d9dddbf5
VB
1060 goto continue_merging;
1061 }
1062
1063done_merging:
ab130f91 1064 set_buddy_order(page, order);
6dda9d55 1065
47b6a24a
DH
1066 if (fpi_flags & FPI_TO_TAIL)
1067 to_tail = true;
1068 else if (is_shuffle_order(order))
a2129f24 1069 to_tail = shuffle_pick_tail();
97500a4a 1070 else
a2129f24 1071 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1072
a2129f24 1073 if (to_tail)
6ab01363 1074 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1075 else
6ab01363 1076 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1077
1078 /* Notify page reporting subsystem of freed page */
f04a5d5d 1079 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1080 page_reporting_notify_free(order);
1da177e4
LT
1081}
1082
7bfec6f4
MG
1083/*
1084 * A bad page could be due to a number of fields. Instead of multiple branches,
1085 * try and check multiple fields with one check. The caller must do a detailed
1086 * check if necessary.
1087 */
1088static inline bool page_expected_state(struct page *page,
1089 unsigned long check_flags)
1090{
1091 if (unlikely(atomic_read(&page->_mapcount) != -1))
1092 return false;
1093
1094 if (unlikely((unsigned long)page->mapping |
1095 page_ref_count(page) |
1096#ifdef CONFIG_MEMCG
bcfe06bf 1097 (unsigned long)page_memcg(page) |
7bfec6f4
MG
1098#endif
1099 (page->flags & check_flags)))
1100 return false;
1101
1102 return true;
1103}
1104
58b7f119 1105static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1106{
82a3241a 1107 const char *bad_reason = NULL;
f0b791a3 1108
53f9263b 1109 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1110 bad_reason = "nonzero mapcount";
1111 if (unlikely(page->mapping != NULL))
1112 bad_reason = "non-NULL mapping";
fe896d18 1113 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1114 bad_reason = "nonzero _refcount";
58b7f119
WY
1115 if (unlikely(page->flags & flags)) {
1116 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1117 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1118 else
1119 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1120 }
9edad6ea 1121#ifdef CONFIG_MEMCG
bcfe06bf 1122 if (unlikely(page_memcg(page)))
9edad6ea
JW
1123 bad_reason = "page still charged to cgroup";
1124#endif
58b7f119
WY
1125 return bad_reason;
1126}
1127
1128static void check_free_page_bad(struct page *page)
1129{
1130 bad_page(page,
1131 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1132}
1133
534fe5e3 1134static inline int check_free_page(struct page *page)
bb552ac6 1135{
da838d4f 1136 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1137 return 0;
bb552ac6
MG
1138
1139 /* Something has gone sideways, find it */
0d0c48a2 1140 check_free_page_bad(page);
7bfec6f4 1141 return 1;
1da177e4
LT
1142}
1143
4db7548c
MG
1144static int free_tail_pages_check(struct page *head_page, struct page *page)
1145{
1146 int ret = 1;
1147
1148 /*
1149 * We rely page->lru.next never has bit 0 set, unless the page
1150 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1151 */
1152 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1153
1154 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1155 ret = 0;
1156 goto out;
1157 }
1158 switch (page - head_page) {
1159 case 1:
4da1984e 1160 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1161 if (unlikely(compound_mapcount(page))) {
82a3241a 1162 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1163 goto out;
1164 }
1165 break;
1166 case 2:
1167 /*
1168 * the second tail page: ->mapping is
fa3015b7 1169 * deferred_list.next -- ignore value.
4db7548c
MG
1170 */
1171 break;
1172 default:
1173 if (page->mapping != TAIL_MAPPING) {
82a3241a 1174 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1175 goto out;
1176 }
1177 break;
1178 }
1179 if (unlikely(!PageTail(page))) {
82a3241a 1180 bad_page(page, "PageTail not set");
4db7548c
MG
1181 goto out;
1182 }
1183 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1184 bad_page(page, "compound_head not consistent");
4db7548c
MG
1185 goto out;
1186 }
1187 ret = 0;
1188out:
1189 page->mapping = NULL;
1190 clear_compound_head(page);
1191 return ret;
1192}
1193
6471384a
AP
1194static void kernel_init_free_pages(struct page *page, int numpages)
1195{
1196 int i;
1197
9e15afa5
QC
1198 /* s390's use of memset() could override KASAN redzones. */
1199 kasan_disable_current();
aa1ef4d7 1200 for (i = 0; i < numpages; i++) {
acb35b17 1201 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1202 page_kasan_tag_reset(page + i);
6471384a 1203 clear_highpage(page + i);
acb35b17 1204 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1205 }
9e15afa5 1206 kasan_enable_current();
6471384a
AP
1207}
1208
e2769dbd
MG
1209static __always_inline bool free_pages_prepare(struct page *page,
1210 unsigned int order, bool check_free)
4db7548c 1211{
e2769dbd 1212 int bad = 0;
4db7548c 1213
4db7548c
MG
1214 VM_BUG_ON_PAGE(PageTail(page), page);
1215
e2769dbd 1216 trace_mm_page_free(page, order);
e2769dbd 1217
79f5f8fa
OS
1218 if (unlikely(PageHWPoison(page)) && !order) {
1219 /*
1220 * Do not let hwpoison pages hit pcplists/buddy
1221 * Untie memcg state and reset page's owner
1222 */
18b2db3b 1223 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1224 __memcg_kmem_uncharge_page(page, order);
1225 reset_page_owner(page, order);
1226 return false;
1227 }
1228
e2769dbd
MG
1229 /*
1230 * Check tail pages before head page information is cleared to
1231 * avoid checking PageCompound for order-0 pages.
1232 */
1233 if (unlikely(order)) {
1234 bool compound = PageCompound(page);
1235 int i;
1236
1237 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1238
9a73f61b
KS
1239 if (compound)
1240 ClearPageDoubleMap(page);
e2769dbd
MG
1241 for (i = 1; i < (1 << order); i++) {
1242 if (compound)
1243 bad += free_tail_pages_check(page, page + i);
534fe5e3 1244 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1245 bad++;
1246 continue;
1247 }
1248 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1249 }
1250 }
bda807d4 1251 if (PageMappingFlags(page))
4db7548c 1252 page->mapping = NULL;
18b2db3b 1253 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1254 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1255 if (check_free)
534fe5e3 1256 bad += check_free_page(page);
e2769dbd
MG
1257 if (bad)
1258 return false;
4db7548c 1259
e2769dbd
MG
1260 page_cpupid_reset_last(page);
1261 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1262 reset_page_owner(page, order);
4db7548c
MG
1263
1264 if (!PageHighMem(page)) {
1265 debug_check_no_locks_freed(page_address(page),
e2769dbd 1266 PAGE_SIZE << order);
4db7548c 1267 debug_check_no_obj_freed(page_address(page),
e2769dbd 1268 PAGE_SIZE << order);
4db7548c 1269 }
6471384a
AP
1270 if (want_init_on_free())
1271 kernel_init_free_pages(page, 1 << order);
1272
8db26a3d
VB
1273 kernel_poison_pages(page, 1 << order);
1274
b7e894c7
AK
1275 /*
1276 * With hardware tag-based KASAN, memory tags must be set before the
1277 * page becomes unavailable via debug_pagealloc or arch_free_page.
1278 */
1279 kasan_free_nondeferred_pages(page, order);
1280
234fdce8
QC
1281 /*
1282 * arch_free_page() can make the page's contents inaccessible. s390
1283 * does this. So nothing which can access the page's contents should
1284 * happen after this.
1285 */
1286 arch_free_page(page, order);
1287
77bc7fd6 1288 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1289
4db7548c
MG
1290 return true;
1291}
1292
e2769dbd 1293#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1294/*
1295 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1296 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1297 * moved from pcp lists to free lists.
1298 */
1299static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1300{
1301 return free_pages_prepare(page, 0, true);
1302}
1303
4462b32c 1304static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1305{
8e57f8ac 1306 if (debug_pagealloc_enabled_static())
534fe5e3 1307 return check_free_page(page);
4462b32c
VB
1308 else
1309 return false;
e2769dbd
MG
1310}
1311#else
4462b32c
VB
1312/*
1313 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1314 * moving from pcp lists to free list in order to reduce overhead. With
1315 * debug_pagealloc enabled, they are checked also immediately when being freed
1316 * to the pcp lists.
1317 */
e2769dbd
MG
1318static bool free_pcp_prepare(struct page *page)
1319{
8e57f8ac 1320 if (debug_pagealloc_enabled_static())
4462b32c
VB
1321 return free_pages_prepare(page, 0, true);
1322 else
1323 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1324}
1325
4db7548c
MG
1326static bool bulkfree_pcp_prepare(struct page *page)
1327{
534fe5e3 1328 return check_free_page(page);
4db7548c
MG
1329}
1330#endif /* CONFIG_DEBUG_VM */
1331
97334162
AL
1332static inline void prefetch_buddy(struct page *page)
1333{
1334 unsigned long pfn = page_to_pfn(page);
1335 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1336 struct page *buddy = page + (buddy_pfn - pfn);
1337
1338 prefetch(buddy);
1339}
1340
1da177e4 1341/*
5f8dcc21 1342 * Frees a number of pages from the PCP lists
1da177e4 1343 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1344 * count is the number of pages to free.
1da177e4
LT
1345 *
1346 * If the zone was previously in an "all pages pinned" state then look to
1347 * see if this freeing clears that state.
1348 *
1349 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1350 * pinned" detection logic.
1351 */
5f8dcc21
MG
1352static void free_pcppages_bulk(struct zone *zone, int count,
1353 struct per_cpu_pages *pcp)
1da177e4 1354{
5f8dcc21 1355 int migratetype = 0;
a6f9edd6 1356 int batch_free = 0;
5c3ad2eb 1357 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1358 bool isolated_pageblocks;
0a5f4e5b
AL
1359 struct page *page, *tmp;
1360 LIST_HEAD(head);
f2260e6b 1361
88e8ac11
CTR
1362 /*
1363 * Ensure proper count is passed which otherwise would stuck in the
1364 * below while (list_empty(list)) loop.
1365 */
1366 count = min(pcp->count, count);
e5b31ac2 1367 while (count) {
5f8dcc21
MG
1368 struct list_head *list;
1369
1370 /*
a6f9edd6
MG
1371 * Remove pages from lists in a round-robin fashion. A
1372 * batch_free count is maintained that is incremented when an
1373 * empty list is encountered. This is so more pages are freed
1374 * off fuller lists instead of spinning excessively around empty
1375 * lists
5f8dcc21
MG
1376 */
1377 do {
a6f9edd6 1378 batch_free++;
5f8dcc21
MG
1379 if (++migratetype == MIGRATE_PCPTYPES)
1380 migratetype = 0;
1381 list = &pcp->lists[migratetype];
1382 } while (list_empty(list));
48db57f8 1383
1d16871d
NK
1384 /* This is the only non-empty list. Free them all. */
1385 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1386 batch_free = count;
1d16871d 1387
a6f9edd6 1388 do {
a16601c5 1389 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1390 /* must delete to avoid corrupting pcp list */
a6f9edd6 1391 list_del(&page->lru);
77ba9062 1392 pcp->count--;
aa016d14 1393
4db7548c
MG
1394 if (bulkfree_pcp_prepare(page))
1395 continue;
1396
0a5f4e5b 1397 list_add_tail(&page->lru, &head);
97334162
AL
1398
1399 /*
1400 * We are going to put the page back to the global
1401 * pool, prefetch its buddy to speed up later access
1402 * under zone->lock. It is believed the overhead of
1403 * an additional test and calculating buddy_pfn here
1404 * can be offset by reduced memory latency later. To
1405 * avoid excessive prefetching due to large count, only
1406 * prefetch buddy for the first pcp->batch nr of pages.
1407 */
5c3ad2eb 1408 if (prefetch_nr) {
97334162 1409 prefetch_buddy(page);
5c3ad2eb
VB
1410 prefetch_nr--;
1411 }
e5b31ac2 1412 } while (--count && --batch_free && !list_empty(list));
1da177e4 1413 }
0a5f4e5b
AL
1414
1415 spin_lock(&zone->lock);
1416 isolated_pageblocks = has_isolate_pageblock(zone);
1417
1418 /*
1419 * Use safe version since after __free_one_page(),
1420 * page->lru.next will not point to original list.
1421 */
1422 list_for_each_entry_safe(page, tmp, &head, lru) {
1423 int mt = get_pcppage_migratetype(page);
1424 /* MIGRATE_ISOLATE page should not go to pcplists */
1425 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1426 /* Pageblock could have been isolated meanwhile */
1427 if (unlikely(isolated_pageblocks))
1428 mt = get_pageblock_migratetype(page);
1429
f04a5d5d 1430 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1431 trace_mm_page_pcpu_drain(page, 0, mt);
1432 }
d34b0733 1433 spin_unlock(&zone->lock);
1da177e4
LT
1434}
1435
dc4b0caf
MG
1436static void free_one_page(struct zone *zone,
1437 struct page *page, unsigned long pfn,
7aeb09f9 1438 unsigned int order,
7fef431b 1439 int migratetype, fpi_t fpi_flags)
1da177e4 1440{
d34b0733 1441 spin_lock(&zone->lock);
ad53f92e
JK
1442 if (unlikely(has_isolate_pageblock(zone) ||
1443 is_migrate_isolate(migratetype))) {
1444 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1445 }
7fef431b 1446 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1447 spin_unlock(&zone->lock);
48db57f8
NP
1448}
1449
1e8ce83c 1450static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1451 unsigned long zone, int nid)
1e8ce83c 1452{
d0dc12e8 1453 mm_zero_struct_page(page);
1e8ce83c 1454 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1455 init_page_count(page);
1456 page_mapcount_reset(page);
1457 page_cpupid_reset_last(page);
2813b9c0 1458 page_kasan_tag_reset(page);
1e8ce83c 1459
1e8ce83c
RH
1460 INIT_LIST_HEAD(&page->lru);
1461#ifdef WANT_PAGE_VIRTUAL
1462 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1463 if (!is_highmem_idx(zone))
1464 set_page_address(page, __va(pfn << PAGE_SHIFT));
1465#endif
1466}
1467
7e18adb4 1468#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1469static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1470{
1471 pg_data_t *pgdat;
1472 int nid, zid;
1473
1474 if (!early_page_uninitialised(pfn))
1475 return;
1476
1477 nid = early_pfn_to_nid(pfn);
1478 pgdat = NODE_DATA(nid);
1479
1480 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1481 struct zone *zone = &pgdat->node_zones[zid];
1482
1483 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1484 break;
1485 }
d0dc12e8 1486 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1487}
1488#else
1489static inline void init_reserved_page(unsigned long pfn)
1490{
1491}
1492#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1493
92923ca3
NZ
1494/*
1495 * Initialised pages do not have PageReserved set. This function is
1496 * called for each range allocated by the bootmem allocator and
1497 * marks the pages PageReserved. The remaining valid pages are later
1498 * sent to the buddy page allocator.
1499 */
4b50bcc7 1500void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1501{
1502 unsigned long start_pfn = PFN_DOWN(start);
1503 unsigned long end_pfn = PFN_UP(end);
1504
7e18adb4
MG
1505 for (; start_pfn < end_pfn; start_pfn++) {
1506 if (pfn_valid(start_pfn)) {
1507 struct page *page = pfn_to_page(start_pfn);
1508
1509 init_reserved_page(start_pfn);
1d798ca3
KS
1510
1511 /* Avoid false-positive PageTail() */
1512 INIT_LIST_HEAD(&page->lru);
1513
d483da5b
AD
1514 /*
1515 * no need for atomic set_bit because the struct
1516 * page is not visible yet so nobody should
1517 * access it yet.
1518 */
1519 __SetPageReserved(page);
7e18adb4
MG
1520 }
1521 }
92923ca3
NZ
1522}
1523
7fef431b
DH
1524static void __free_pages_ok(struct page *page, unsigned int order,
1525 fpi_t fpi_flags)
ec95f53a 1526{
d34b0733 1527 unsigned long flags;
95e34412 1528 int migratetype;
dc4b0caf 1529 unsigned long pfn = page_to_pfn(page);
ec95f53a 1530
e2769dbd 1531 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1532 return;
1533
cfc47a28 1534 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1535 local_irq_save(flags);
1536 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1537 free_one_page(page_zone(page), page, pfn, order, migratetype,
1538 fpi_flags);
d34b0733 1539 local_irq_restore(flags);
1da177e4
LT
1540}
1541
a9cd410a 1542void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1543{
c3993076 1544 unsigned int nr_pages = 1 << order;
e2d0bd2b 1545 struct page *p = page;
c3993076 1546 unsigned int loop;
a226f6c8 1547
7fef431b
DH
1548 /*
1549 * When initializing the memmap, __init_single_page() sets the refcount
1550 * of all pages to 1 ("allocated"/"not free"). We have to set the
1551 * refcount of all involved pages to 0.
1552 */
e2d0bd2b
YL
1553 prefetchw(p);
1554 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1555 prefetchw(p + 1);
c3993076
JW
1556 __ClearPageReserved(p);
1557 set_page_count(p, 0);
a226f6c8 1558 }
e2d0bd2b
YL
1559 __ClearPageReserved(p);
1560 set_page_count(p, 0);
c3993076 1561
9705bea5 1562 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1563
1564 /*
1565 * Bypass PCP and place fresh pages right to the tail, primarily
1566 * relevant for memory onlining.
1567 */
1568 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1569}
1570
3f08a302 1571#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1572
03e92a5e
MR
1573/*
1574 * During memory init memblocks map pfns to nids. The search is expensive and
1575 * this caches recent lookups. The implementation of __early_pfn_to_nid
1576 * treats start/end as pfns.
1577 */
1578struct mminit_pfnnid_cache {
1579 unsigned long last_start;
1580 unsigned long last_end;
1581 int last_nid;
1582};
75a592a4 1583
03e92a5e 1584static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1585
1586/*
1587 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1588 */
03e92a5e 1589static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1590 struct mminit_pfnnid_cache *state)
75a592a4 1591{
6f24fbd3 1592 unsigned long start_pfn, end_pfn;
75a592a4
MG
1593 int nid;
1594
6f24fbd3
MR
1595 if (state->last_start <= pfn && pfn < state->last_end)
1596 return state->last_nid;
1597
1598 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1599 if (nid != NUMA_NO_NODE) {
1600 state->last_start = start_pfn;
1601 state->last_end = end_pfn;
1602 state->last_nid = nid;
1603 }
7ace9917
MG
1604
1605 return nid;
75a592a4 1606}
75a592a4 1607
75a592a4 1608int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1609{
7ace9917 1610 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1611 int nid;
1612
7ace9917 1613 spin_lock(&early_pfn_lock);
56ec43d8 1614 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1615 if (nid < 0)
e4568d38 1616 nid = first_online_node;
7ace9917 1617 spin_unlock(&early_pfn_lock);
75a592a4 1618
7ace9917 1619 return nid;
75a592a4 1620}
3f08a302 1621#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1622
7c2ee349 1623void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1624 unsigned int order)
1625{
1626 if (early_page_uninitialised(pfn))
1627 return;
a9cd410a 1628 __free_pages_core(page, order);
3a80a7fa
MG
1629}
1630
7cf91a98
JK
1631/*
1632 * Check that the whole (or subset of) a pageblock given by the interval of
1633 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1634 * with the migration of free compaction scanner. The scanners then need to
1635 * use only pfn_valid_within() check for arches that allow holes within
1636 * pageblocks.
1637 *
1638 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1639 *
1640 * It's possible on some configurations to have a setup like node0 node1 node0
1641 * i.e. it's possible that all pages within a zones range of pages do not
1642 * belong to a single zone. We assume that a border between node0 and node1
1643 * can occur within a single pageblock, but not a node0 node1 node0
1644 * interleaving within a single pageblock. It is therefore sufficient to check
1645 * the first and last page of a pageblock and avoid checking each individual
1646 * page in a pageblock.
1647 */
1648struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1649 unsigned long end_pfn, struct zone *zone)
1650{
1651 struct page *start_page;
1652 struct page *end_page;
1653
1654 /* end_pfn is one past the range we are checking */
1655 end_pfn--;
1656
1657 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1658 return NULL;
1659
2d070eab
MH
1660 start_page = pfn_to_online_page(start_pfn);
1661 if (!start_page)
1662 return NULL;
7cf91a98
JK
1663
1664 if (page_zone(start_page) != zone)
1665 return NULL;
1666
1667 end_page = pfn_to_page(end_pfn);
1668
1669 /* This gives a shorter code than deriving page_zone(end_page) */
1670 if (page_zone_id(start_page) != page_zone_id(end_page))
1671 return NULL;
1672
1673 return start_page;
1674}
1675
1676void set_zone_contiguous(struct zone *zone)
1677{
1678 unsigned long block_start_pfn = zone->zone_start_pfn;
1679 unsigned long block_end_pfn;
1680
1681 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1682 for (; block_start_pfn < zone_end_pfn(zone);
1683 block_start_pfn = block_end_pfn,
1684 block_end_pfn += pageblock_nr_pages) {
1685
1686 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1687
1688 if (!__pageblock_pfn_to_page(block_start_pfn,
1689 block_end_pfn, zone))
1690 return;
e84fe99b 1691 cond_resched();
7cf91a98
JK
1692 }
1693
1694 /* We confirm that there is no hole */
1695 zone->contiguous = true;
1696}
1697
1698void clear_zone_contiguous(struct zone *zone)
1699{
1700 zone->contiguous = false;
1701}
1702
7e18adb4 1703#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1704static void __init deferred_free_range(unsigned long pfn,
1705 unsigned long nr_pages)
a4de83dd 1706{
2f47a91f
PT
1707 struct page *page;
1708 unsigned long i;
a4de83dd 1709
2f47a91f 1710 if (!nr_pages)
a4de83dd
MG
1711 return;
1712
2f47a91f
PT
1713 page = pfn_to_page(pfn);
1714
a4de83dd 1715 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1716 if (nr_pages == pageblock_nr_pages &&
1717 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1718 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1719 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1720 return;
1721 }
1722
e780149b
XQ
1723 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1724 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1725 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1726 __free_pages_core(page, 0);
e780149b 1727 }
a4de83dd
MG
1728}
1729
d3cd131d
NS
1730/* Completion tracking for deferred_init_memmap() threads */
1731static atomic_t pgdat_init_n_undone __initdata;
1732static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1733
1734static inline void __init pgdat_init_report_one_done(void)
1735{
1736 if (atomic_dec_and_test(&pgdat_init_n_undone))
1737 complete(&pgdat_init_all_done_comp);
1738}
0e1cc95b 1739
2f47a91f 1740/*
80b1f41c
PT
1741 * Returns true if page needs to be initialized or freed to buddy allocator.
1742 *
1743 * First we check if pfn is valid on architectures where it is possible to have
1744 * holes within pageblock_nr_pages. On systems where it is not possible, this
1745 * function is optimized out.
1746 *
1747 * Then, we check if a current large page is valid by only checking the validity
1748 * of the head pfn.
2f47a91f 1749 */
56ec43d8 1750static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1751{
80b1f41c
PT
1752 if (!pfn_valid_within(pfn))
1753 return false;
1754 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1755 return false;
80b1f41c
PT
1756 return true;
1757}
2f47a91f 1758
80b1f41c
PT
1759/*
1760 * Free pages to buddy allocator. Try to free aligned pages in
1761 * pageblock_nr_pages sizes.
1762 */
56ec43d8 1763static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1764 unsigned long end_pfn)
1765{
80b1f41c
PT
1766 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1767 unsigned long nr_free = 0;
2f47a91f 1768
80b1f41c 1769 for (; pfn < end_pfn; pfn++) {
56ec43d8 1770 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1771 deferred_free_range(pfn - nr_free, nr_free);
1772 nr_free = 0;
1773 } else if (!(pfn & nr_pgmask)) {
1774 deferred_free_range(pfn - nr_free, nr_free);
1775 nr_free = 1;
80b1f41c
PT
1776 } else {
1777 nr_free++;
1778 }
1779 }
1780 /* Free the last block of pages to allocator */
1781 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1782}
1783
80b1f41c
PT
1784/*
1785 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1786 * by performing it only once every pageblock_nr_pages.
1787 * Return number of pages initialized.
1788 */
56ec43d8 1789static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1790 unsigned long pfn,
1791 unsigned long end_pfn)
2f47a91f 1792{
2f47a91f 1793 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1794 int nid = zone_to_nid(zone);
2f47a91f 1795 unsigned long nr_pages = 0;
56ec43d8 1796 int zid = zone_idx(zone);
2f47a91f 1797 struct page *page = NULL;
2f47a91f 1798
80b1f41c 1799 for (; pfn < end_pfn; pfn++) {
56ec43d8 1800 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1801 page = NULL;
2f47a91f 1802 continue;
80b1f41c 1803 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1804 page = pfn_to_page(pfn);
80b1f41c
PT
1805 } else {
1806 page++;
2f47a91f 1807 }
d0dc12e8 1808 __init_single_page(page, pfn, zid, nid);
80b1f41c 1809 nr_pages++;
2f47a91f 1810 }
80b1f41c 1811 return (nr_pages);
2f47a91f
PT
1812}
1813
0e56acae
AD
1814/*
1815 * This function is meant to pre-load the iterator for the zone init.
1816 * Specifically it walks through the ranges until we are caught up to the
1817 * first_init_pfn value and exits there. If we never encounter the value we
1818 * return false indicating there are no valid ranges left.
1819 */
1820static bool __init
1821deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1822 unsigned long *spfn, unsigned long *epfn,
1823 unsigned long first_init_pfn)
1824{
1825 u64 j;
1826
1827 /*
1828 * Start out by walking through the ranges in this zone that have
1829 * already been initialized. We don't need to do anything with them
1830 * so we just need to flush them out of the system.
1831 */
1832 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1833 if (*epfn <= first_init_pfn)
1834 continue;
1835 if (*spfn < first_init_pfn)
1836 *spfn = first_init_pfn;
1837 *i = j;
1838 return true;
1839 }
1840
1841 return false;
1842}
1843
1844/*
1845 * Initialize and free pages. We do it in two loops: first we initialize
1846 * struct page, then free to buddy allocator, because while we are
1847 * freeing pages we can access pages that are ahead (computing buddy
1848 * page in __free_one_page()).
1849 *
1850 * In order to try and keep some memory in the cache we have the loop
1851 * broken along max page order boundaries. This way we will not cause
1852 * any issues with the buddy page computation.
1853 */
1854static unsigned long __init
1855deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1856 unsigned long *end_pfn)
1857{
1858 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1859 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1860 unsigned long nr_pages = 0;
1861 u64 j = *i;
1862
1863 /* First we loop through and initialize the page values */
1864 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1865 unsigned long t;
1866
1867 if (mo_pfn <= *start_pfn)
1868 break;
1869
1870 t = min(mo_pfn, *end_pfn);
1871 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1872
1873 if (mo_pfn < *end_pfn) {
1874 *start_pfn = mo_pfn;
1875 break;
1876 }
1877 }
1878
1879 /* Reset values and now loop through freeing pages as needed */
1880 swap(j, *i);
1881
1882 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1883 unsigned long t;
1884
1885 if (mo_pfn <= spfn)
1886 break;
1887
1888 t = min(mo_pfn, epfn);
1889 deferred_free_pages(spfn, t);
1890
1891 if (mo_pfn <= epfn)
1892 break;
1893 }
1894
1895 return nr_pages;
1896}
1897
e4443149
DJ
1898static void __init
1899deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1900 void *arg)
1901{
1902 unsigned long spfn, epfn;
1903 struct zone *zone = arg;
1904 u64 i;
1905
1906 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1907
1908 /*
1909 * Initialize and free pages in MAX_ORDER sized increments so that we
1910 * can avoid introducing any issues with the buddy allocator.
1911 */
1912 while (spfn < end_pfn) {
1913 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1914 cond_resched();
1915 }
1916}
1917
ecd09650
DJ
1918/* An arch may override for more concurrency. */
1919__weak int __init
1920deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1921{
1922 return 1;
1923}
1924
7e18adb4 1925/* Initialise remaining memory on a node */
0e1cc95b 1926static int __init deferred_init_memmap(void *data)
7e18adb4 1927{
0e1cc95b 1928 pg_data_t *pgdat = data;
0e56acae 1929 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1930 unsigned long spfn = 0, epfn = 0;
0e56acae 1931 unsigned long first_init_pfn, flags;
7e18adb4 1932 unsigned long start = jiffies;
7e18adb4 1933 struct zone *zone;
e4443149 1934 int zid, max_threads;
2f47a91f 1935 u64 i;
7e18adb4 1936
3a2d7fa8
PT
1937 /* Bind memory initialisation thread to a local node if possible */
1938 if (!cpumask_empty(cpumask))
1939 set_cpus_allowed_ptr(current, cpumask);
1940
1941 pgdat_resize_lock(pgdat, &flags);
1942 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1943 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1944 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1945 pgdat_init_report_one_done();
0e1cc95b
MG
1946 return 0;
1947 }
1948
7e18adb4
MG
1949 /* Sanity check boundaries */
1950 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1951 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1952 pgdat->first_deferred_pfn = ULONG_MAX;
1953
3d060856
PT
1954 /*
1955 * Once we unlock here, the zone cannot be grown anymore, thus if an
1956 * interrupt thread must allocate this early in boot, zone must be
1957 * pre-grown prior to start of deferred page initialization.
1958 */
1959 pgdat_resize_unlock(pgdat, &flags);
1960
7e18adb4
MG
1961 /* Only the highest zone is deferred so find it */
1962 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1963 zone = pgdat->node_zones + zid;
1964 if (first_init_pfn < zone_end_pfn(zone))
1965 break;
1966 }
0e56acae
AD
1967
1968 /* If the zone is empty somebody else may have cleared out the zone */
1969 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1970 first_init_pfn))
1971 goto zone_empty;
7e18adb4 1972
ecd09650 1973 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1974
117003c3 1975 while (spfn < epfn) {
e4443149
DJ
1976 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1977 struct padata_mt_job job = {
1978 .thread_fn = deferred_init_memmap_chunk,
1979 .fn_arg = zone,
1980 .start = spfn,
1981 .size = epfn_align - spfn,
1982 .align = PAGES_PER_SECTION,
1983 .min_chunk = PAGES_PER_SECTION,
1984 .max_threads = max_threads,
1985 };
1986
1987 padata_do_multithreaded(&job);
1988 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1989 epfn_align);
117003c3 1990 }
0e56acae 1991zone_empty:
7e18adb4
MG
1992 /* Sanity check that the next zone really is unpopulated */
1993 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1994
89c7c402
DJ
1995 pr_info("node %d deferred pages initialised in %ums\n",
1996 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1997
1998 pgdat_init_report_one_done();
0e1cc95b
MG
1999 return 0;
2000}
c9e97a19 2001
c9e97a19
PT
2002/*
2003 * If this zone has deferred pages, try to grow it by initializing enough
2004 * deferred pages to satisfy the allocation specified by order, rounded up to
2005 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2006 * of SECTION_SIZE bytes by initializing struct pages in increments of
2007 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2008 *
2009 * Return true when zone was grown, otherwise return false. We return true even
2010 * when we grow less than requested, to let the caller decide if there are
2011 * enough pages to satisfy the allocation.
2012 *
2013 * Note: We use noinline because this function is needed only during boot, and
2014 * it is called from a __ref function _deferred_grow_zone. This way we are
2015 * making sure that it is not inlined into permanent text section.
2016 */
2017static noinline bool __init
2018deferred_grow_zone(struct zone *zone, unsigned int order)
2019{
c9e97a19 2020 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2021 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2022 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2023 unsigned long spfn, epfn, flags;
2024 unsigned long nr_pages = 0;
c9e97a19
PT
2025 u64 i;
2026
2027 /* Only the last zone may have deferred pages */
2028 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2029 return false;
2030
2031 pgdat_resize_lock(pgdat, &flags);
2032
c9e97a19
PT
2033 /*
2034 * If someone grew this zone while we were waiting for spinlock, return
2035 * true, as there might be enough pages already.
2036 */
2037 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2038 pgdat_resize_unlock(pgdat, &flags);
2039 return true;
2040 }
2041
0e56acae
AD
2042 /* If the zone is empty somebody else may have cleared out the zone */
2043 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2044 first_deferred_pfn)) {
2045 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2046 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2047 /* Retry only once. */
2048 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2049 }
2050
0e56acae
AD
2051 /*
2052 * Initialize and free pages in MAX_ORDER sized increments so
2053 * that we can avoid introducing any issues with the buddy
2054 * allocator.
2055 */
2056 while (spfn < epfn) {
2057 /* update our first deferred PFN for this section */
2058 first_deferred_pfn = spfn;
2059
2060 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2061 touch_nmi_watchdog();
c9e97a19 2062
0e56acae
AD
2063 /* We should only stop along section boundaries */
2064 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2065 continue;
c9e97a19 2066
0e56acae 2067 /* If our quota has been met we can stop here */
c9e97a19
PT
2068 if (nr_pages >= nr_pages_needed)
2069 break;
2070 }
2071
0e56acae 2072 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2073 pgdat_resize_unlock(pgdat, &flags);
2074
2075 return nr_pages > 0;
2076}
2077
2078/*
2079 * deferred_grow_zone() is __init, but it is called from
2080 * get_page_from_freelist() during early boot until deferred_pages permanently
2081 * disables this call. This is why we have refdata wrapper to avoid warning,
2082 * and to ensure that the function body gets unloaded.
2083 */
2084static bool __ref
2085_deferred_grow_zone(struct zone *zone, unsigned int order)
2086{
2087 return deferred_grow_zone(zone, order);
2088}
2089
7cf91a98 2090#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2091
2092void __init page_alloc_init_late(void)
2093{
7cf91a98 2094 struct zone *zone;
e900a918 2095 int nid;
7cf91a98
JK
2096
2097#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2098
d3cd131d
NS
2099 /* There will be num_node_state(N_MEMORY) threads */
2100 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2101 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2102 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2103 }
2104
2105 /* Block until all are initialised */
d3cd131d 2106 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2107
3e8fc007
MG
2108 /*
2109 * The number of managed pages has changed due to the initialisation
2110 * so the pcpu batch and high limits needs to be updated or the limits
2111 * will be artificially small.
2112 */
2113 for_each_populated_zone(zone)
2114 zone_pcp_update(zone);
2115
c9e97a19
PT
2116 /*
2117 * We initialized the rest of the deferred pages. Permanently disable
2118 * on-demand struct page initialization.
2119 */
2120 static_branch_disable(&deferred_pages);
2121
4248b0da
MG
2122 /* Reinit limits that are based on free pages after the kernel is up */
2123 files_maxfiles_init();
7cf91a98 2124#endif
350e88ba 2125
ba8f3587
LF
2126 buffer_init();
2127
3010f876
PT
2128 /* Discard memblock private memory */
2129 memblock_discard();
7cf91a98 2130
e900a918
DW
2131 for_each_node_state(nid, N_MEMORY)
2132 shuffle_free_memory(NODE_DATA(nid));
2133
7cf91a98
JK
2134 for_each_populated_zone(zone)
2135 set_zone_contiguous(zone);
7e18adb4 2136}
7e18adb4 2137
47118af0 2138#ifdef CONFIG_CMA
9cf510a5 2139/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2140void __init init_cma_reserved_pageblock(struct page *page)
2141{
2142 unsigned i = pageblock_nr_pages;
2143 struct page *p = page;
2144
2145 do {
2146 __ClearPageReserved(p);
2147 set_page_count(p, 0);
d883c6cf 2148 } while (++p, --i);
47118af0 2149
47118af0 2150 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2151
2152 if (pageblock_order >= MAX_ORDER) {
2153 i = pageblock_nr_pages;
2154 p = page;
2155 do {
2156 set_page_refcounted(p);
2157 __free_pages(p, MAX_ORDER - 1);
2158 p += MAX_ORDER_NR_PAGES;
2159 } while (i -= MAX_ORDER_NR_PAGES);
2160 } else {
2161 set_page_refcounted(page);
2162 __free_pages(page, pageblock_order);
2163 }
2164
3dcc0571 2165 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2166}
2167#endif
1da177e4
LT
2168
2169/*
2170 * The order of subdivision here is critical for the IO subsystem.
2171 * Please do not alter this order without good reasons and regression
2172 * testing. Specifically, as large blocks of memory are subdivided,
2173 * the order in which smaller blocks are delivered depends on the order
2174 * they're subdivided in this function. This is the primary factor
2175 * influencing the order in which pages are delivered to the IO
2176 * subsystem according to empirical testing, and this is also justified
2177 * by considering the behavior of a buddy system containing a single
2178 * large block of memory acted on by a series of small allocations.
2179 * This behavior is a critical factor in sglist merging's success.
2180 *
6d49e352 2181 * -- nyc
1da177e4 2182 */
085cc7d5 2183static inline void expand(struct zone *zone, struct page *page,
6ab01363 2184 int low, int high, int migratetype)
1da177e4
LT
2185{
2186 unsigned long size = 1 << high;
2187
2188 while (high > low) {
1da177e4
LT
2189 high--;
2190 size >>= 1;
309381fe 2191 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2192
acbc15a4
JK
2193 /*
2194 * Mark as guard pages (or page), that will allow to
2195 * merge back to allocator when buddy will be freed.
2196 * Corresponding page table entries will not be touched,
2197 * pages will stay not present in virtual address space
2198 */
2199 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2200 continue;
acbc15a4 2201
6ab01363 2202 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2203 set_buddy_order(&page[size], high);
1da177e4 2204 }
1da177e4
LT
2205}
2206
4e611801 2207static void check_new_page_bad(struct page *page)
1da177e4 2208{
f4c18e6f 2209 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2210 /* Don't complain about hwpoisoned pages */
2211 page_mapcount_reset(page); /* remove PageBuddy */
2212 return;
f4c18e6f 2213 }
58b7f119
WY
2214
2215 bad_page(page,
2216 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2217}
2218
2219/*
2220 * This page is about to be returned from the page allocator
2221 */
2222static inline int check_new_page(struct page *page)
2223{
2224 if (likely(page_expected_state(page,
2225 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2226 return 0;
2227
2228 check_new_page_bad(page);
2229 return 1;
2a7684a2
WF
2230}
2231
479f854a 2232#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2233/*
2234 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2235 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2236 * also checked when pcp lists are refilled from the free lists.
2237 */
2238static inline bool check_pcp_refill(struct page *page)
479f854a 2239{
8e57f8ac 2240 if (debug_pagealloc_enabled_static())
4462b32c
VB
2241 return check_new_page(page);
2242 else
2243 return false;
479f854a
MG
2244}
2245
4462b32c 2246static inline bool check_new_pcp(struct page *page)
479f854a
MG
2247{
2248 return check_new_page(page);
2249}
2250#else
4462b32c
VB
2251/*
2252 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2253 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2254 * enabled, they are also checked when being allocated from the pcp lists.
2255 */
2256static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2257{
2258 return check_new_page(page);
2259}
4462b32c 2260static inline bool check_new_pcp(struct page *page)
479f854a 2261{
8e57f8ac 2262 if (debug_pagealloc_enabled_static())
4462b32c
VB
2263 return check_new_page(page);
2264 else
2265 return false;
479f854a
MG
2266}
2267#endif /* CONFIG_DEBUG_VM */
2268
2269static bool check_new_pages(struct page *page, unsigned int order)
2270{
2271 int i;
2272 for (i = 0; i < (1 << order); i++) {
2273 struct page *p = page + i;
2274
2275 if (unlikely(check_new_page(p)))
2276 return true;
2277 }
2278
2279 return false;
2280}
2281
46f24fd8
JK
2282inline void post_alloc_hook(struct page *page, unsigned int order,
2283 gfp_t gfp_flags)
2284{
2285 set_page_private(page, 0);
2286 set_page_refcounted(page);
2287
2288 arch_alloc_page(page, order);
77bc7fd6 2289 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2290 kasan_alloc_pages(page, order);
8db26a3d 2291 kernel_unpoison_pages(page, 1 << order);
46f24fd8 2292 set_page_owner(page, order, gfp_flags);
862b6dee 2293
f289041e 2294 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
862b6dee 2295 kernel_init_free_pages(page, 1 << order);
46f24fd8
JK
2296}
2297
479f854a 2298static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2299 unsigned int alloc_flags)
2a7684a2 2300{
46f24fd8 2301 post_alloc_hook(page, order, gfp_flags);
17cf4406 2302
17cf4406
NP
2303 if (order && (gfp_flags & __GFP_COMP))
2304 prep_compound_page(page, order);
2305
75379191 2306 /*
2f064f34 2307 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2308 * allocate the page. The expectation is that the caller is taking
2309 * steps that will free more memory. The caller should avoid the page
2310 * being used for !PFMEMALLOC purposes.
2311 */
2f064f34
MH
2312 if (alloc_flags & ALLOC_NO_WATERMARKS)
2313 set_page_pfmemalloc(page);
2314 else
2315 clear_page_pfmemalloc(page);
1da177e4
LT
2316}
2317
56fd56b8
MG
2318/*
2319 * Go through the free lists for the given migratetype and remove
2320 * the smallest available page from the freelists
2321 */
85ccc8fa 2322static __always_inline
728ec980 2323struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2324 int migratetype)
2325{
2326 unsigned int current_order;
b8af2941 2327 struct free_area *area;
56fd56b8
MG
2328 struct page *page;
2329
2330 /* Find a page of the appropriate size in the preferred list */
2331 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2332 area = &(zone->free_area[current_order]);
b03641af 2333 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2334 if (!page)
2335 continue;
6ab01363
AD
2336 del_page_from_free_list(page, zone, current_order);
2337 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2338 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2339 return page;
2340 }
2341
2342 return NULL;
2343}
2344
2345
b2a0ac88
MG
2346/*
2347 * This array describes the order lists are fallen back to when
2348 * the free lists for the desirable migrate type are depleted
2349 */
da415663 2350static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2351 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2352 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2353 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2354#ifdef CONFIG_CMA
974a786e 2355 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2356#endif
194159fb 2357#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2358 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2359#endif
b2a0ac88
MG
2360};
2361
dc67647b 2362#ifdef CONFIG_CMA
85ccc8fa 2363static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2364 unsigned int order)
2365{
2366 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2367}
2368#else
2369static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2370 unsigned int order) { return NULL; }
2371#endif
2372
c361be55 2373/*
293ffa5e 2374 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2375 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2376 * boundary. If alignment is required, use move_freepages_block()
2377 */
02aa0cdd 2378static int move_freepages(struct zone *zone,
b69a7288 2379 struct page *start_page, struct page *end_page,
02aa0cdd 2380 int migratetype, int *num_movable)
c361be55
MG
2381{
2382 struct page *page;
d00181b9 2383 unsigned int order;
d100313f 2384 int pages_moved = 0;
c361be55 2385
c361be55
MG
2386 for (page = start_page; page <= end_page;) {
2387 if (!pfn_valid_within(page_to_pfn(page))) {
2388 page++;
2389 continue;
2390 }
2391
2392 if (!PageBuddy(page)) {
02aa0cdd
VB
2393 /*
2394 * We assume that pages that could be isolated for
2395 * migration are movable. But we don't actually try
2396 * isolating, as that would be expensive.
2397 */
2398 if (num_movable &&
2399 (PageLRU(page) || __PageMovable(page)))
2400 (*num_movable)++;
2401
c361be55
MG
2402 page++;
2403 continue;
2404 }
2405
cd961038
DR
2406 /* Make sure we are not inadvertently changing nodes */
2407 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2408 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2409
ab130f91 2410 order = buddy_order(page);
6ab01363 2411 move_to_free_list(page, zone, order, migratetype);
c361be55 2412 page += 1 << order;
d100313f 2413 pages_moved += 1 << order;
c361be55
MG
2414 }
2415
d100313f 2416 return pages_moved;
c361be55
MG
2417}
2418
ee6f509c 2419int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2420 int migratetype, int *num_movable)
c361be55
MG
2421{
2422 unsigned long start_pfn, end_pfn;
2423 struct page *start_page, *end_page;
2424
4a222127
DR
2425 if (num_movable)
2426 *num_movable = 0;
2427
c361be55 2428 start_pfn = page_to_pfn(page);
d9c23400 2429 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2430 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2431 end_page = start_page + pageblock_nr_pages - 1;
2432 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2433
2434 /* Do not cross zone boundaries */
108bcc96 2435 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2436 start_page = page;
108bcc96 2437 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2438 return 0;
2439
02aa0cdd
VB
2440 return move_freepages(zone, start_page, end_page, migratetype,
2441 num_movable);
c361be55
MG
2442}
2443
2f66a68f
MG
2444static void change_pageblock_range(struct page *pageblock_page,
2445 int start_order, int migratetype)
2446{
2447 int nr_pageblocks = 1 << (start_order - pageblock_order);
2448
2449 while (nr_pageblocks--) {
2450 set_pageblock_migratetype(pageblock_page, migratetype);
2451 pageblock_page += pageblock_nr_pages;
2452 }
2453}
2454
fef903ef 2455/*
9c0415eb
VB
2456 * When we are falling back to another migratetype during allocation, try to
2457 * steal extra free pages from the same pageblocks to satisfy further
2458 * allocations, instead of polluting multiple pageblocks.
2459 *
2460 * If we are stealing a relatively large buddy page, it is likely there will
2461 * be more free pages in the pageblock, so try to steal them all. For
2462 * reclaimable and unmovable allocations, we steal regardless of page size,
2463 * as fragmentation caused by those allocations polluting movable pageblocks
2464 * is worse than movable allocations stealing from unmovable and reclaimable
2465 * pageblocks.
fef903ef 2466 */
4eb7dce6
JK
2467static bool can_steal_fallback(unsigned int order, int start_mt)
2468{
2469 /*
2470 * Leaving this order check is intended, although there is
2471 * relaxed order check in next check. The reason is that
2472 * we can actually steal whole pageblock if this condition met,
2473 * but, below check doesn't guarantee it and that is just heuristic
2474 * so could be changed anytime.
2475 */
2476 if (order >= pageblock_order)
2477 return true;
2478
2479 if (order >= pageblock_order / 2 ||
2480 start_mt == MIGRATE_RECLAIMABLE ||
2481 start_mt == MIGRATE_UNMOVABLE ||
2482 page_group_by_mobility_disabled)
2483 return true;
2484
2485 return false;
2486}
2487
597c8920 2488static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2489{
2490 unsigned long max_boost;
2491
2492 if (!watermark_boost_factor)
597c8920 2493 return false;
14f69140
HW
2494 /*
2495 * Don't bother in zones that are unlikely to produce results.
2496 * On small machines, including kdump capture kernels running
2497 * in a small area, boosting the watermark can cause an out of
2498 * memory situation immediately.
2499 */
2500 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2501 return false;
1c30844d
MG
2502
2503 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2504 watermark_boost_factor, 10000);
94b3334c
MG
2505
2506 /*
2507 * high watermark may be uninitialised if fragmentation occurs
2508 * very early in boot so do not boost. We do not fall
2509 * through and boost by pageblock_nr_pages as failing
2510 * allocations that early means that reclaim is not going
2511 * to help and it may even be impossible to reclaim the
2512 * boosted watermark resulting in a hang.
2513 */
2514 if (!max_boost)
597c8920 2515 return false;
94b3334c 2516
1c30844d
MG
2517 max_boost = max(pageblock_nr_pages, max_boost);
2518
2519 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2520 max_boost);
597c8920
JW
2521
2522 return true;
1c30844d
MG
2523}
2524
4eb7dce6
JK
2525/*
2526 * This function implements actual steal behaviour. If order is large enough,
2527 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2528 * pageblock to our migratetype and determine how many already-allocated pages
2529 * are there in the pageblock with a compatible migratetype. If at least half
2530 * of pages are free or compatible, we can change migratetype of the pageblock
2531 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2532 */
2533static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2534 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2535{
ab130f91 2536 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2537 int free_pages, movable_pages, alike_pages;
2538 int old_block_type;
2539
2540 old_block_type = get_pageblock_migratetype(page);
fef903ef 2541
3bc48f96
VB
2542 /*
2543 * This can happen due to races and we want to prevent broken
2544 * highatomic accounting.
2545 */
02aa0cdd 2546 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2547 goto single_page;
2548
fef903ef
SB
2549 /* Take ownership for orders >= pageblock_order */
2550 if (current_order >= pageblock_order) {
2551 change_pageblock_range(page, current_order, start_type);
3bc48f96 2552 goto single_page;
fef903ef
SB
2553 }
2554
1c30844d
MG
2555 /*
2556 * Boost watermarks to increase reclaim pressure to reduce the
2557 * likelihood of future fallbacks. Wake kswapd now as the node
2558 * may be balanced overall and kswapd will not wake naturally.
2559 */
597c8920 2560 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2561 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2562
3bc48f96
VB
2563 /* We are not allowed to try stealing from the whole block */
2564 if (!whole_block)
2565 goto single_page;
2566
02aa0cdd
VB
2567 free_pages = move_freepages_block(zone, page, start_type,
2568 &movable_pages);
2569 /*
2570 * Determine how many pages are compatible with our allocation.
2571 * For movable allocation, it's the number of movable pages which
2572 * we just obtained. For other types it's a bit more tricky.
2573 */
2574 if (start_type == MIGRATE_MOVABLE) {
2575 alike_pages = movable_pages;
2576 } else {
2577 /*
2578 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2579 * to MOVABLE pageblock, consider all non-movable pages as
2580 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2581 * vice versa, be conservative since we can't distinguish the
2582 * exact migratetype of non-movable pages.
2583 */
2584 if (old_block_type == MIGRATE_MOVABLE)
2585 alike_pages = pageblock_nr_pages
2586 - (free_pages + movable_pages);
2587 else
2588 alike_pages = 0;
2589 }
2590
3bc48f96 2591 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2592 if (!free_pages)
3bc48f96 2593 goto single_page;
fef903ef 2594
02aa0cdd
VB
2595 /*
2596 * If a sufficient number of pages in the block are either free or of
2597 * comparable migratability as our allocation, claim the whole block.
2598 */
2599 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2600 page_group_by_mobility_disabled)
2601 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2602
2603 return;
2604
2605single_page:
6ab01363 2606 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2607}
2608
2149cdae
JK
2609/*
2610 * Check whether there is a suitable fallback freepage with requested order.
2611 * If only_stealable is true, this function returns fallback_mt only if
2612 * we can steal other freepages all together. This would help to reduce
2613 * fragmentation due to mixed migratetype pages in one pageblock.
2614 */
2615int find_suitable_fallback(struct free_area *area, unsigned int order,
2616 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2617{
2618 int i;
2619 int fallback_mt;
2620
2621 if (area->nr_free == 0)
2622 return -1;
2623
2624 *can_steal = false;
2625 for (i = 0;; i++) {
2626 fallback_mt = fallbacks[migratetype][i];
974a786e 2627 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2628 break;
2629
b03641af 2630 if (free_area_empty(area, fallback_mt))
4eb7dce6 2631 continue;
fef903ef 2632
4eb7dce6
JK
2633 if (can_steal_fallback(order, migratetype))
2634 *can_steal = true;
2635
2149cdae
JK
2636 if (!only_stealable)
2637 return fallback_mt;
2638
2639 if (*can_steal)
2640 return fallback_mt;
fef903ef 2641 }
4eb7dce6
JK
2642
2643 return -1;
fef903ef
SB
2644}
2645
0aaa29a5
MG
2646/*
2647 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2648 * there are no empty page blocks that contain a page with a suitable order
2649 */
2650static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2651 unsigned int alloc_order)
2652{
2653 int mt;
2654 unsigned long max_managed, flags;
2655
2656 /*
2657 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2658 * Check is race-prone but harmless.
2659 */
9705bea5 2660 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2661 if (zone->nr_reserved_highatomic >= max_managed)
2662 return;
2663
2664 spin_lock_irqsave(&zone->lock, flags);
2665
2666 /* Recheck the nr_reserved_highatomic limit under the lock */
2667 if (zone->nr_reserved_highatomic >= max_managed)
2668 goto out_unlock;
2669
2670 /* Yoink! */
2671 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2672 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2673 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2674 zone->nr_reserved_highatomic += pageblock_nr_pages;
2675 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2676 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2677 }
2678
2679out_unlock:
2680 spin_unlock_irqrestore(&zone->lock, flags);
2681}
2682
2683/*
2684 * Used when an allocation is about to fail under memory pressure. This
2685 * potentially hurts the reliability of high-order allocations when under
2686 * intense memory pressure but failed atomic allocations should be easier
2687 * to recover from than an OOM.
29fac03b
MK
2688 *
2689 * If @force is true, try to unreserve a pageblock even though highatomic
2690 * pageblock is exhausted.
0aaa29a5 2691 */
29fac03b
MK
2692static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2693 bool force)
0aaa29a5
MG
2694{
2695 struct zonelist *zonelist = ac->zonelist;
2696 unsigned long flags;
2697 struct zoneref *z;
2698 struct zone *zone;
2699 struct page *page;
2700 int order;
04c8716f 2701 bool ret;
0aaa29a5 2702
97a225e6 2703 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2704 ac->nodemask) {
29fac03b
MK
2705 /*
2706 * Preserve at least one pageblock unless memory pressure
2707 * is really high.
2708 */
2709 if (!force && zone->nr_reserved_highatomic <=
2710 pageblock_nr_pages)
0aaa29a5
MG
2711 continue;
2712
2713 spin_lock_irqsave(&zone->lock, flags);
2714 for (order = 0; order < MAX_ORDER; order++) {
2715 struct free_area *area = &(zone->free_area[order]);
2716
b03641af 2717 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2718 if (!page)
0aaa29a5
MG
2719 continue;
2720
0aaa29a5 2721 /*
4855e4a7
MK
2722 * In page freeing path, migratetype change is racy so
2723 * we can counter several free pages in a pageblock
2724 * in this loop althoug we changed the pageblock type
2725 * from highatomic to ac->migratetype. So we should
2726 * adjust the count once.
0aaa29a5 2727 */
a6ffdc07 2728 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2729 /*
2730 * It should never happen but changes to
2731 * locking could inadvertently allow a per-cpu
2732 * drain to add pages to MIGRATE_HIGHATOMIC
2733 * while unreserving so be safe and watch for
2734 * underflows.
2735 */
2736 zone->nr_reserved_highatomic -= min(
2737 pageblock_nr_pages,
2738 zone->nr_reserved_highatomic);
2739 }
0aaa29a5
MG
2740
2741 /*
2742 * Convert to ac->migratetype and avoid the normal
2743 * pageblock stealing heuristics. Minimally, the caller
2744 * is doing the work and needs the pages. More
2745 * importantly, if the block was always converted to
2746 * MIGRATE_UNMOVABLE or another type then the number
2747 * of pageblocks that cannot be completely freed
2748 * may increase.
2749 */
2750 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2751 ret = move_freepages_block(zone, page, ac->migratetype,
2752 NULL);
29fac03b
MK
2753 if (ret) {
2754 spin_unlock_irqrestore(&zone->lock, flags);
2755 return ret;
2756 }
0aaa29a5
MG
2757 }
2758 spin_unlock_irqrestore(&zone->lock, flags);
2759 }
04c8716f
MK
2760
2761 return false;
0aaa29a5
MG
2762}
2763
3bc48f96
VB
2764/*
2765 * Try finding a free buddy page on the fallback list and put it on the free
2766 * list of requested migratetype, possibly along with other pages from the same
2767 * block, depending on fragmentation avoidance heuristics. Returns true if
2768 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2769 *
2770 * The use of signed ints for order and current_order is a deliberate
2771 * deviation from the rest of this file, to make the for loop
2772 * condition simpler.
3bc48f96 2773 */
85ccc8fa 2774static __always_inline bool
6bb15450
MG
2775__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2776 unsigned int alloc_flags)
b2a0ac88 2777{
b8af2941 2778 struct free_area *area;
b002529d 2779 int current_order;
6bb15450 2780 int min_order = order;
b2a0ac88 2781 struct page *page;
4eb7dce6
JK
2782 int fallback_mt;
2783 bool can_steal;
b2a0ac88 2784
6bb15450
MG
2785 /*
2786 * Do not steal pages from freelists belonging to other pageblocks
2787 * i.e. orders < pageblock_order. If there are no local zones free,
2788 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2789 */
2790 if (alloc_flags & ALLOC_NOFRAGMENT)
2791 min_order = pageblock_order;
2792
7a8f58f3
VB
2793 /*
2794 * Find the largest available free page in the other list. This roughly
2795 * approximates finding the pageblock with the most free pages, which
2796 * would be too costly to do exactly.
2797 */
6bb15450 2798 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2799 --current_order) {
4eb7dce6
JK
2800 area = &(zone->free_area[current_order]);
2801 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2802 start_migratetype, false, &can_steal);
4eb7dce6
JK
2803 if (fallback_mt == -1)
2804 continue;
b2a0ac88 2805
7a8f58f3
VB
2806 /*
2807 * We cannot steal all free pages from the pageblock and the
2808 * requested migratetype is movable. In that case it's better to
2809 * steal and split the smallest available page instead of the
2810 * largest available page, because even if the next movable
2811 * allocation falls back into a different pageblock than this
2812 * one, it won't cause permanent fragmentation.
2813 */
2814 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2815 && current_order > order)
2816 goto find_smallest;
b2a0ac88 2817
7a8f58f3
VB
2818 goto do_steal;
2819 }
e0fff1bd 2820
7a8f58f3 2821 return false;
e0fff1bd 2822
7a8f58f3
VB
2823find_smallest:
2824 for (current_order = order; current_order < MAX_ORDER;
2825 current_order++) {
2826 area = &(zone->free_area[current_order]);
2827 fallback_mt = find_suitable_fallback(area, current_order,
2828 start_migratetype, false, &can_steal);
2829 if (fallback_mt != -1)
2830 break;
b2a0ac88
MG
2831 }
2832
7a8f58f3
VB
2833 /*
2834 * This should not happen - we already found a suitable fallback
2835 * when looking for the largest page.
2836 */
2837 VM_BUG_ON(current_order == MAX_ORDER);
2838
2839do_steal:
b03641af 2840 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2841
1c30844d
MG
2842 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2843 can_steal);
7a8f58f3
VB
2844
2845 trace_mm_page_alloc_extfrag(page, order, current_order,
2846 start_migratetype, fallback_mt);
2847
2848 return true;
2849
b2a0ac88
MG
2850}
2851
56fd56b8 2852/*
1da177e4
LT
2853 * Do the hard work of removing an element from the buddy allocator.
2854 * Call me with the zone->lock already held.
2855 */
85ccc8fa 2856static __always_inline struct page *
6bb15450
MG
2857__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2858 unsigned int alloc_flags)
1da177e4 2859{
1da177e4
LT
2860 struct page *page;
2861
ce8f86ee
H
2862 if (IS_ENABLED(CONFIG_CMA)) {
2863 /*
2864 * Balance movable allocations between regular and CMA areas by
2865 * allocating from CMA when over half of the zone's free memory
2866 * is in the CMA area.
2867 */
2868 if (alloc_flags & ALLOC_CMA &&
2869 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2870 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2871 page = __rmqueue_cma_fallback(zone, order);
2872 if (page)
2873 goto out;
2874 }
16867664 2875 }
3bc48f96 2876retry:
56fd56b8 2877 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2878 if (unlikely(!page)) {
8510e69c 2879 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2880 page = __rmqueue_cma_fallback(zone, order);
2881
6bb15450
MG
2882 if (!page && __rmqueue_fallback(zone, order, migratetype,
2883 alloc_flags))
3bc48f96 2884 goto retry;
728ec980 2885 }
ce8f86ee
H
2886out:
2887 if (page)
2888 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2889 return page;
1da177e4
LT
2890}
2891
5f63b720 2892/*
1da177e4
LT
2893 * Obtain a specified number of elements from the buddy allocator, all under
2894 * a single hold of the lock, for efficiency. Add them to the supplied list.
2895 * Returns the number of new pages which were placed at *list.
2896 */
5f63b720 2897static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2898 unsigned long count, struct list_head *list,
6bb15450 2899 int migratetype, unsigned int alloc_flags)
1da177e4 2900{
a6de734b 2901 int i, alloced = 0;
5f63b720 2902
d34b0733 2903 spin_lock(&zone->lock);
1da177e4 2904 for (i = 0; i < count; ++i) {
6bb15450
MG
2905 struct page *page = __rmqueue(zone, order, migratetype,
2906 alloc_flags);
085cc7d5 2907 if (unlikely(page == NULL))
1da177e4 2908 break;
81eabcbe 2909
479f854a
MG
2910 if (unlikely(check_pcp_refill(page)))
2911 continue;
2912
81eabcbe 2913 /*
0fac3ba5
VB
2914 * Split buddy pages returned by expand() are received here in
2915 * physical page order. The page is added to the tail of
2916 * caller's list. From the callers perspective, the linked list
2917 * is ordered by page number under some conditions. This is
2918 * useful for IO devices that can forward direction from the
2919 * head, thus also in the physical page order. This is useful
2920 * for IO devices that can merge IO requests if the physical
2921 * pages are ordered properly.
81eabcbe 2922 */
0fac3ba5 2923 list_add_tail(&page->lru, list);
a6de734b 2924 alloced++;
bb14c2c7 2925 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2926 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2927 -(1 << order));
1da177e4 2928 }
a6de734b
MG
2929
2930 /*
2931 * i pages were removed from the buddy list even if some leak due
2932 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2933 * on i. Do not confuse with 'alloced' which is the number of
2934 * pages added to the pcp list.
2935 */
f2260e6b 2936 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2937 spin_unlock(&zone->lock);
a6de734b 2938 return alloced;
1da177e4
LT
2939}
2940
4ae7c039 2941#ifdef CONFIG_NUMA
8fce4d8e 2942/*
4037d452
CL
2943 * Called from the vmstat counter updater to drain pagesets of this
2944 * currently executing processor on remote nodes after they have
2945 * expired.
2946 *
879336c3
CL
2947 * Note that this function must be called with the thread pinned to
2948 * a single processor.
8fce4d8e 2949 */
4037d452 2950void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2951{
4ae7c039 2952 unsigned long flags;
7be12fc9 2953 int to_drain, batch;
4ae7c039 2954
4037d452 2955 local_irq_save(flags);
4db0c3c2 2956 batch = READ_ONCE(pcp->batch);
7be12fc9 2957 to_drain = min(pcp->count, batch);
77ba9062 2958 if (to_drain > 0)
2a13515c 2959 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2960 local_irq_restore(flags);
4ae7c039
CL
2961}
2962#endif
2963
9f8f2172 2964/*
93481ff0 2965 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2966 *
2967 * The processor must either be the current processor and the
2968 * thread pinned to the current processor or a processor that
2969 * is not online.
2970 */
93481ff0 2971static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2972{
c54ad30c 2973 unsigned long flags;
93481ff0
VB
2974 struct per_cpu_pageset *pset;
2975 struct per_cpu_pages *pcp;
1da177e4 2976
93481ff0
VB
2977 local_irq_save(flags);
2978 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2979
93481ff0 2980 pcp = &pset->pcp;
77ba9062 2981 if (pcp->count)
93481ff0 2982 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2983 local_irq_restore(flags);
2984}
3dfa5721 2985
93481ff0
VB
2986/*
2987 * Drain pcplists of all zones on the indicated processor.
2988 *
2989 * The processor must either be the current processor and the
2990 * thread pinned to the current processor or a processor that
2991 * is not online.
2992 */
2993static void drain_pages(unsigned int cpu)
2994{
2995 struct zone *zone;
2996
2997 for_each_populated_zone(zone) {
2998 drain_pages_zone(cpu, zone);
1da177e4
LT
2999 }
3000}
1da177e4 3001
9f8f2172
CL
3002/*
3003 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3004 *
3005 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3006 * the single zone's pages.
9f8f2172 3007 */
93481ff0 3008void drain_local_pages(struct zone *zone)
9f8f2172 3009{
93481ff0
VB
3010 int cpu = smp_processor_id();
3011
3012 if (zone)
3013 drain_pages_zone(cpu, zone);
3014 else
3015 drain_pages(cpu);
9f8f2172
CL
3016}
3017
0ccce3b9
MG
3018static void drain_local_pages_wq(struct work_struct *work)
3019{
d9367bd0
WY
3020 struct pcpu_drain *drain;
3021
3022 drain = container_of(work, struct pcpu_drain, work);
3023
a459eeb7
MH
3024 /*
3025 * drain_all_pages doesn't use proper cpu hotplug protection so
3026 * we can race with cpu offline when the WQ can move this from
3027 * a cpu pinned worker to an unbound one. We can operate on a different
3028 * cpu which is allright but we also have to make sure to not move to
3029 * a different one.
3030 */
3031 preempt_disable();
d9367bd0 3032 drain_local_pages(drain->zone);
a459eeb7 3033 preempt_enable();
0ccce3b9
MG
3034}
3035
9f8f2172 3036/*
ec6e8c7e
VB
3037 * The implementation of drain_all_pages(), exposing an extra parameter to
3038 * drain on all cpus.
93481ff0 3039 *
ec6e8c7e
VB
3040 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3041 * not empty. The check for non-emptiness can however race with a free to
3042 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3043 * that need the guarantee that every CPU has drained can disable the
3044 * optimizing racy check.
9f8f2172 3045 */
3b1f3658 3046static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3047{
74046494 3048 int cpu;
74046494
GBY
3049
3050 /*
3051 * Allocate in the BSS so we wont require allocation in
3052 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3053 */
3054 static cpumask_t cpus_with_pcps;
3055
ce612879
MH
3056 /*
3057 * Make sure nobody triggers this path before mm_percpu_wq is fully
3058 * initialized.
3059 */
3060 if (WARN_ON_ONCE(!mm_percpu_wq))
3061 return;
3062
bd233f53
MG
3063 /*
3064 * Do not drain if one is already in progress unless it's specific to
3065 * a zone. Such callers are primarily CMA and memory hotplug and need
3066 * the drain to be complete when the call returns.
3067 */
3068 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3069 if (!zone)
3070 return;
3071 mutex_lock(&pcpu_drain_mutex);
3072 }
0ccce3b9 3073
74046494
GBY
3074 /*
3075 * We don't care about racing with CPU hotplug event
3076 * as offline notification will cause the notified
3077 * cpu to drain that CPU pcps and on_each_cpu_mask
3078 * disables preemption as part of its processing
3079 */
3080 for_each_online_cpu(cpu) {
93481ff0
VB
3081 struct per_cpu_pageset *pcp;
3082 struct zone *z;
74046494 3083 bool has_pcps = false;
93481ff0 3084
ec6e8c7e
VB
3085 if (force_all_cpus) {
3086 /*
3087 * The pcp.count check is racy, some callers need a
3088 * guarantee that no cpu is missed.
3089 */
3090 has_pcps = true;
3091 } else if (zone) {
74046494 3092 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3093 if (pcp->pcp.count)
74046494 3094 has_pcps = true;
93481ff0
VB
3095 } else {
3096 for_each_populated_zone(z) {
3097 pcp = per_cpu_ptr(z->pageset, cpu);
3098 if (pcp->pcp.count) {
3099 has_pcps = true;
3100 break;
3101 }
74046494
GBY
3102 }
3103 }
93481ff0 3104
74046494
GBY
3105 if (has_pcps)
3106 cpumask_set_cpu(cpu, &cpus_with_pcps);
3107 else
3108 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3109 }
0ccce3b9 3110
bd233f53 3111 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3112 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3113
3114 drain->zone = zone;
3115 INIT_WORK(&drain->work, drain_local_pages_wq);
3116 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3117 }
bd233f53 3118 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3119 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3120
3121 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3122}
3123
ec6e8c7e
VB
3124/*
3125 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3126 *
3127 * When zone parameter is non-NULL, spill just the single zone's pages.
3128 *
3129 * Note that this can be extremely slow as the draining happens in a workqueue.
3130 */
3131void drain_all_pages(struct zone *zone)
3132{
3133 __drain_all_pages(zone, false);
3134}
3135
296699de 3136#ifdef CONFIG_HIBERNATION
1da177e4 3137
556b969a
CY
3138/*
3139 * Touch the watchdog for every WD_PAGE_COUNT pages.
3140 */
3141#define WD_PAGE_COUNT (128*1024)
3142
1da177e4
LT
3143void mark_free_pages(struct zone *zone)
3144{
556b969a 3145 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3146 unsigned long flags;
7aeb09f9 3147 unsigned int order, t;
86760a2c 3148 struct page *page;
1da177e4 3149
8080fc03 3150 if (zone_is_empty(zone))
1da177e4
LT
3151 return;
3152
3153 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3154
108bcc96 3155 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3156 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3157 if (pfn_valid(pfn)) {
86760a2c 3158 page = pfn_to_page(pfn);
ba6b0979 3159
556b969a
CY
3160 if (!--page_count) {
3161 touch_nmi_watchdog();
3162 page_count = WD_PAGE_COUNT;
3163 }
3164
ba6b0979
JK
3165 if (page_zone(page) != zone)
3166 continue;
3167
7be98234
RW
3168 if (!swsusp_page_is_forbidden(page))
3169 swsusp_unset_page_free(page);
f623f0db 3170 }
1da177e4 3171
b2a0ac88 3172 for_each_migratetype_order(order, t) {
86760a2c
GT
3173 list_for_each_entry(page,
3174 &zone->free_area[order].free_list[t], lru) {
f623f0db 3175 unsigned long i;
1da177e4 3176
86760a2c 3177 pfn = page_to_pfn(page);
556b969a
CY
3178 for (i = 0; i < (1UL << order); i++) {
3179 if (!--page_count) {
3180 touch_nmi_watchdog();
3181 page_count = WD_PAGE_COUNT;
3182 }
7be98234 3183 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3184 }
f623f0db 3185 }
b2a0ac88 3186 }
1da177e4
LT
3187 spin_unlock_irqrestore(&zone->lock, flags);
3188}
e2c55dc8 3189#endif /* CONFIG_PM */
1da177e4 3190
2d4894b5 3191static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3192{
5f8dcc21 3193 int migratetype;
1da177e4 3194
4db7548c 3195 if (!free_pcp_prepare(page))
9cca35d4 3196 return false;
689bcebf 3197
dc4b0caf 3198 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3199 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3200 return true;
3201}
3202
2d4894b5 3203static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3204{
3205 struct zone *zone = page_zone(page);
3206 struct per_cpu_pages *pcp;
3207 int migratetype;
3208
3209 migratetype = get_pcppage_migratetype(page);
d34b0733 3210 __count_vm_event(PGFREE);
da456f14 3211
5f8dcc21
MG
3212 /*
3213 * We only track unmovable, reclaimable and movable on pcp lists.
3214 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3215 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3216 * areas back if necessary. Otherwise, we may have to free
3217 * excessively into the page allocator
3218 */
3219 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3220 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3221 free_one_page(zone, page, pfn, 0, migratetype,
3222 FPI_NONE);
9cca35d4 3223 return;
5f8dcc21
MG
3224 }
3225 migratetype = MIGRATE_MOVABLE;
3226 }
3227
99dcc3e5 3228 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3229 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3230 pcp->count++;
5c3ad2eb
VB
3231 if (pcp->count >= READ_ONCE(pcp->high))
3232 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3233}
5f8dcc21 3234
9cca35d4
MG
3235/*
3236 * Free a 0-order page
9cca35d4 3237 */
2d4894b5 3238void free_unref_page(struct page *page)
9cca35d4
MG
3239{
3240 unsigned long flags;
3241 unsigned long pfn = page_to_pfn(page);
3242
2d4894b5 3243 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3244 return;
3245
3246 local_irq_save(flags);
2d4894b5 3247 free_unref_page_commit(page, pfn);
d34b0733 3248 local_irq_restore(flags);
1da177e4
LT
3249}
3250
cc59850e
KK
3251/*
3252 * Free a list of 0-order pages
3253 */
2d4894b5 3254void free_unref_page_list(struct list_head *list)
cc59850e
KK
3255{
3256 struct page *page, *next;
9cca35d4 3257 unsigned long flags, pfn;
c24ad77d 3258 int batch_count = 0;
9cca35d4
MG
3259
3260 /* Prepare pages for freeing */
3261 list_for_each_entry_safe(page, next, list, lru) {
3262 pfn = page_to_pfn(page);
2d4894b5 3263 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3264 list_del(&page->lru);
3265 set_page_private(page, pfn);
3266 }
cc59850e 3267
9cca35d4 3268 local_irq_save(flags);
cc59850e 3269 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3270 unsigned long pfn = page_private(page);
3271
3272 set_page_private(page, 0);
2d4894b5
MG
3273 trace_mm_page_free_batched(page);
3274 free_unref_page_commit(page, pfn);
c24ad77d
LS
3275
3276 /*
3277 * Guard against excessive IRQ disabled times when we get
3278 * a large list of pages to free.
3279 */
3280 if (++batch_count == SWAP_CLUSTER_MAX) {
3281 local_irq_restore(flags);
3282 batch_count = 0;
3283 local_irq_save(flags);
3284 }
cc59850e 3285 }
9cca35d4 3286 local_irq_restore(flags);
cc59850e
KK
3287}
3288
8dfcc9ba
NP
3289/*
3290 * split_page takes a non-compound higher-order page, and splits it into
3291 * n (1<<order) sub-pages: page[0..n]
3292 * Each sub-page must be freed individually.
3293 *
3294 * Note: this is probably too low level an operation for use in drivers.
3295 * Please consult with lkml before using this in your driver.
3296 */
3297void split_page(struct page *page, unsigned int order)
3298{
3299 int i;
3300
309381fe
SL
3301 VM_BUG_ON_PAGE(PageCompound(page), page);
3302 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3303
a9627bc5 3304 for (i = 1; i < (1 << order); i++)
7835e98b 3305 set_page_refcounted(page + i);
8fb156c9 3306 split_page_owner(page, 1 << order);
b0ee955e 3307 split_page_memcg(page, 1 << order);
8dfcc9ba 3308}
5853ff23 3309EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3310
3c605096 3311int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3312{
748446bb
MG
3313 unsigned long watermark;
3314 struct zone *zone;
2139cbe6 3315 int mt;
748446bb
MG
3316
3317 BUG_ON(!PageBuddy(page));
3318
3319 zone = page_zone(page);
2e30abd1 3320 mt = get_pageblock_migratetype(page);
748446bb 3321
194159fb 3322 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3323 /*
3324 * Obey watermarks as if the page was being allocated. We can
3325 * emulate a high-order watermark check with a raised order-0
3326 * watermark, because we already know our high-order page
3327 * exists.
3328 */
fd1444b2 3329 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3330 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3331 return 0;
3332
8fb74b9f 3333 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3334 }
748446bb
MG
3335
3336 /* Remove page from free list */
b03641af 3337
6ab01363 3338 del_page_from_free_list(page, zone, order);
2139cbe6 3339
400bc7fd 3340 /*
3341 * Set the pageblock if the isolated page is at least half of a
3342 * pageblock
3343 */
748446bb
MG
3344 if (order >= pageblock_order - 1) {
3345 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3346 for (; page < endpage; page += pageblock_nr_pages) {
3347 int mt = get_pageblock_migratetype(page);
88ed365e 3348 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3349 && !is_migrate_highatomic(mt))
47118af0
MN
3350 set_pageblock_migratetype(page,
3351 MIGRATE_MOVABLE);
3352 }
748446bb
MG
3353 }
3354
f3a14ced 3355
8fb74b9f 3356 return 1UL << order;
1fb3f8ca
MG
3357}
3358
624f58d8
AD
3359/**
3360 * __putback_isolated_page - Return a now-isolated page back where we got it
3361 * @page: Page that was isolated
3362 * @order: Order of the isolated page
e6a0a7ad 3363 * @mt: The page's pageblock's migratetype
624f58d8
AD
3364 *
3365 * This function is meant to return a page pulled from the free lists via
3366 * __isolate_free_page back to the free lists they were pulled from.
3367 */
3368void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3369{
3370 struct zone *zone = page_zone(page);
3371
3372 /* zone lock should be held when this function is called */
3373 lockdep_assert_held(&zone->lock);
3374
3375 /* Return isolated page to tail of freelist. */
f04a5d5d 3376 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3377 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3378}
3379
060e7417
MG
3380/*
3381 * Update NUMA hit/miss statistics
3382 *
3383 * Must be called with interrupts disabled.
060e7417 3384 */
41b6167e 3385static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3386{
3387#ifdef CONFIG_NUMA
3a321d2a 3388 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3389
4518085e
KW
3390 /* skip numa counters update if numa stats is disabled */
3391 if (!static_branch_likely(&vm_numa_stat_key))
3392 return;
3393
c1093b74 3394 if (zone_to_nid(z) != numa_node_id())
060e7417 3395 local_stat = NUMA_OTHER;
060e7417 3396
c1093b74 3397 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3398 __inc_numa_state(z, NUMA_HIT);
2df26639 3399 else {
3a321d2a
KW
3400 __inc_numa_state(z, NUMA_MISS);
3401 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3402 }
3a321d2a 3403 __inc_numa_state(z, local_stat);
060e7417
MG
3404#endif
3405}
3406
066b2393
MG
3407/* Remove page from the per-cpu list, caller must protect the list */
3408static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3409 unsigned int alloc_flags,
453f85d4 3410 struct per_cpu_pages *pcp,
066b2393
MG
3411 struct list_head *list)
3412{
3413 struct page *page;
3414
3415 do {
3416 if (list_empty(list)) {
3417 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3418 READ_ONCE(pcp->batch), list,
6bb15450 3419 migratetype, alloc_flags);
066b2393
MG
3420 if (unlikely(list_empty(list)))
3421 return NULL;
3422 }
3423
453f85d4 3424 page = list_first_entry(list, struct page, lru);
066b2393
MG
3425 list_del(&page->lru);
3426 pcp->count--;
3427 } while (check_new_pcp(page));
3428
3429 return page;
3430}
3431
3432/* Lock and remove page from the per-cpu list */
3433static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3434 struct zone *zone, gfp_t gfp_flags,
3435 int migratetype, unsigned int alloc_flags)
066b2393
MG
3436{
3437 struct per_cpu_pages *pcp;
3438 struct list_head *list;
066b2393 3439 struct page *page;
d34b0733 3440 unsigned long flags;
066b2393 3441
d34b0733 3442 local_irq_save(flags);
066b2393
MG
3443 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3444 list = &pcp->lists[migratetype];
6bb15450 3445 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3446 if (page) {
1c52e6d0 3447 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3448 zone_statistics(preferred_zone, zone);
3449 }
d34b0733 3450 local_irq_restore(flags);
066b2393
MG
3451 return page;
3452}
3453
1da177e4 3454/*
75379191 3455 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3456 */
0a15c3e9 3457static inline
066b2393 3458struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3459 struct zone *zone, unsigned int order,
c603844b
MG
3460 gfp_t gfp_flags, unsigned int alloc_flags,
3461 int migratetype)
1da177e4
LT
3462{
3463 unsigned long flags;
689bcebf 3464 struct page *page;
1da177e4 3465
d34b0733 3466 if (likely(order == 0)) {
1d91df85
JK
3467 /*
3468 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3469 * we need to skip it when CMA area isn't allowed.
3470 */
3471 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3472 migratetype != MIGRATE_MOVABLE) {
3473 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3474 migratetype, alloc_flags);
1d91df85
JK
3475 goto out;
3476 }
066b2393 3477 }
83b9355b 3478
066b2393
MG
3479 /*
3480 * We most definitely don't want callers attempting to
3481 * allocate greater than order-1 page units with __GFP_NOFAIL.
3482 */
3483 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3484 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3485
066b2393
MG
3486 do {
3487 page = NULL;
1d91df85
JK
3488 /*
3489 * order-0 request can reach here when the pcplist is skipped
3490 * due to non-CMA allocation context. HIGHATOMIC area is
3491 * reserved for high-order atomic allocation, so order-0
3492 * request should skip it.
3493 */
3494 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3495 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3496 if (page)
3497 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3498 }
a74609fa 3499 if (!page)
6bb15450 3500 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3501 } while (page && check_new_pages(page, order));
3502 spin_unlock(&zone->lock);
3503 if (!page)
3504 goto failed;
3505 __mod_zone_freepage_state(zone, -(1 << order),
3506 get_pcppage_migratetype(page));
1da177e4 3507
16709d1d 3508 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3509 zone_statistics(preferred_zone, zone);
a74609fa 3510 local_irq_restore(flags);
1da177e4 3511
066b2393 3512out:
73444bc4
MG
3513 /* Separate test+clear to avoid unnecessary atomics */
3514 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3515 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3516 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3517 }
3518
066b2393 3519 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3520 return page;
a74609fa
NP
3521
3522failed:
3523 local_irq_restore(flags);
a74609fa 3524 return NULL;
1da177e4
LT
3525}
3526
933e312e
AM
3527#ifdef CONFIG_FAIL_PAGE_ALLOC
3528
b2588c4b 3529static struct {
933e312e
AM
3530 struct fault_attr attr;
3531
621a5f7a 3532 bool ignore_gfp_highmem;
71baba4b 3533 bool ignore_gfp_reclaim;
54114994 3534 u32 min_order;
933e312e
AM
3535} fail_page_alloc = {
3536 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3537 .ignore_gfp_reclaim = true,
621a5f7a 3538 .ignore_gfp_highmem = true,
54114994 3539 .min_order = 1,
933e312e
AM
3540};
3541
3542static int __init setup_fail_page_alloc(char *str)
3543{
3544 return setup_fault_attr(&fail_page_alloc.attr, str);
3545}
3546__setup("fail_page_alloc=", setup_fail_page_alloc);
3547
af3b8544 3548static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3549{
54114994 3550 if (order < fail_page_alloc.min_order)
deaf386e 3551 return false;
933e312e 3552 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3553 return false;
933e312e 3554 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3555 return false;
71baba4b
MG
3556 if (fail_page_alloc.ignore_gfp_reclaim &&
3557 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3558 return false;
933e312e
AM
3559
3560 return should_fail(&fail_page_alloc.attr, 1 << order);
3561}
3562
3563#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3564
3565static int __init fail_page_alloc_debugfs(void)
3566{
0825a6f9 3567 umode_t mode = S_IFREG | 0600;
933e312e 3568 struct dentry *dir;
933e312e 3569
dd48c085
AM
3570 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3571 &fail_page_alloc.attr);
b2588c4b 3572
d9f7979c
GKH
3573 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3574 &fail_page_alloc.ignore_gfp_reclaim);
3575 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3576 &fail_page_alloc.ignore_gfp_highmem);
3577 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3578
d9f7979c 3579 return 0;
933e312e
AM
3580}
3581
3582late_initcall(fail_page_alloc_debugfs);
3583
3584#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3585
3586#else /* CONFIG_FAIL_PAGE_ALLOC */
3587
af3b8544 3588static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3589{
deaf386e 3590 return false;
933e312e
AM
3591}
3592
3593#endif /* CONFIG_FAIL_PAGE_ALLOC */
3594
76cd6173 3595noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3596{
3597 return __should_fail_alloc_page(gfp_mask, order);
3598}
3599ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3600
f27ce0e1
JK
3601static inline long __zone_watermark_unusable_free(struct zone *z,
3602 unsigned int order, unsigned int alloc_flags)
3603{
3604 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3605 long unusable_free = (1 << order) - 1;
3606
3607 /*
3608 * If the caller does not have rights to ALLOC_HARDER then subtract
3609 * the high-atomic reserves. This will over-estimate the size of the
3610 * atomic reserve but it avoids a search.
3611 */
3612 if (likely(!alloc_harder))
3613 unusable_free += z->nr_reserved_highatomic;
3614
3615#ifdef CONFIG_CMA
3616 /* If allocation can't use CMA areas don't use free CMA pages */
3617 if (!(alloc_flags & ALLOC_CMA))
3618 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3619#endif
3620
3621 return unusable_free;
3622}
3623
1da177e4 3624/*
97a16fc8
MG
3625 * Return true if free base pages are above 'mark'. For high-order checks it
3626 * will return true of the order-0 watermark is reached and there is at least
3627 * one free page of a suitable size. Checking now avoids taking the zone lock
3628 * to check in the allocation paths if no pages are free.
1da177e4 3629 */
86a294a8 3630bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3631 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3632 long free_pages)
1da177e4 3633{
d23ad423 3634 long min = mark;
1da177e4 3635 int o;
cd04ae1e 3636 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3637
0aaa29a5 3638 /* free_pages may go negative - that's OK */
f27ce0e1 3639 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3640
7fb1d9fc 3641 if (alloc_flags & ALLOC_HIGH)
1da177e4 3642 min -= min / 2;
0aaa29a5 3643
f27ce0e1 3644 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3645 /*
3646 * OOM victims can try even harder than normal ALLOC_HARDER
3647 * users on the grounds that it's definitely going to be in
3648 * the exit path shortly and free memory. Any allocation it
3649 * makes during the free path will be small and short-lived.
3650 */
3651 if (alloc_flags & ALLOC_OOM)
3652 min -= min / 2;
3653 else
3654 min -= min / 4;
3655 }
3656
97a16fc8
MG
3657 /*
3658 * Check watermarks for an order-0 allocation request. If these
3659 * are not met, then a high-order request also cannot go ahead
3660 * even if a suitable page happened to be free.
3661 */
97a225e6 3662 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3663 return false;
1da177e4 3664
97a16fc8
MG
3665 /* If this is an order-0 request then the watermark is fine */
3666 if (!order)
3667 return true;
3668
3669 /* For a high-order request, check at least one suitable page is free */
3670 for (o = order; o < MAX_ORDER; o++) {
3671 struct free_area *area = &z->free_area[o];
3672 int mt;
3673
3674 if (!area->nr_free)
3675 continue;
3676
97a16fc8 3677 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3678 if (!free_area_empty(area, mt))
97a16fc8
MG
3679 return true;
3680 }
3681
3682#ifdef CONFIG_CMA
d883c6cf 3683 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3684 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3685 return true;
d883c6cf 3686 }
97a16fc8 3687#endif
76089d00 3688 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3689 return true;
1da177e4 3690 }
97a16fc8 3691 return false;
88f5acf8
MG
3692}
3693
7aeb09f9 3694bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3695 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3696{
97a225e6 3697 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3698 zone_page_state(z, NR_FREE_PAGES));
3699}
3700
48ee5f36 3701static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3702 unsigned long mark, int highest_zoneidx,
f80b08fc 3703 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3704{
f27ce0e1 3705 long free_pages;
d883c6cf 3706
f27ce0e1 3707 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3708
3709 /*
3710 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3711 * need to be calculated.
48ee5f36 3712 */
f27ce0e1
JK
3713 if (!order) {
3714 long fast_free;
3715
3716 fast_free = free_pages;
3717 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3718 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3719 return true;
3720 }
48ee5f36 3721
f80b08fc
CTR
3722 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3723 free_pages))
3724 return true;
3725 /*
3726 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3727 * when checking the min watermark. The min watermark is the
3728 * point where boosting is ignored so that kswapd is woken up
3729 * when below the low watermark.
3730 */
3731 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3732 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3733 mark = z->_watermark[WMARK_MIN];
3734 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3735 alloc_flags, free_pages);
3736 }
3737
3738 return false;
48ee5f36
MG
3739}
3740
7aeb09f9 3741bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3742 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3743{
3744 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3745
3746 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3747 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3748
97a225e6 3749 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3750 free_pages);
1da177e4
LT
3751}
3752
9276b1bc 3753#ifdef CONFIG_NUMA
957f822a
DR
3754static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3755{
e02dc017 3756 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3757 node_reclaim_distance;
957f822a 3758}
9276b1bc 3759#else /* CONFIG_NUMA */
957f822a
DR
3760static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3761{
3762 return true;
3763}
9276b1bc
PJ
3764#endif /* CONFIG_NUMA */
3765
6bb15450
MG
3766/*
3767 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3768 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3769 * premature use of a lower zone may cause lowmem pressure problems that
3770 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3771 * probably too small. It only makes sense to spread allocations to avoid
3772 * fragmentation between the Normal and DMA32 zones.
3773 */
3774static inline unsigned int
0a79cdad 3775alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3776{
736838e9 3777 unsigned int alloc_flags;
0a79cdad 3778
736838e9
MN
3779 /*
3780 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3781 * to save a branch.
3782 */
3783 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3784
3785#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3786 if (!zone)
3787 return alloc_flags;
3788
6bb15450 3789 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3790 return alloc_flags;
6bb15450
MG
3791
3792 /*
3793 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3794 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3795 * on UMA that if Normal is populated then so is DMA32.
3796 */
3797 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3798 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3799 return alloc_flags;
6bb15450 3800
8118b82e 3801 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3802#endif /* CONFIG_ZONE_DMA32 */
3803 return alloc_flags;
6bb15450 3804}
6bb15450 3805
8510e69c
JK
3806static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3807 unsigned int alloc_flags)
3808{
3809#ifdef CONFIG_CMA
3810 unsigned int pflags = current->flags;
3811
3812 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3813 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3814 alloc_flags |= ALLOC_CMA;
3815
3816#endif
3817 return alloc_flags;
3818}
3819
7fb1d9fc 3820/*
0798e519 3821 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3822 * a page.
3823 */
3824static struct page *
a9263751
VB
3825get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3826 const struct alloc_context *ac)
753ee728 3827{
6bb15450 3828 struct zoneref *z;
5117f45d 3829 struct zone *zone;
3b8c0be4 3830 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3831 bool no_fallback;
3b8c0be4 3832
6bb15450 3833retry:
7fb1d9fc 3834 /*
9276b1bc 3835 * Scan zonelist, looking for a zone with enough free.
344736f2 3836 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3837 */
6bb15450
MG
3838 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3839 z = ac->preferred_zoneref;
30d8ec73
MN
3840 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3841 ac->nodemask) {
be06af00 3842 struct page *page;
e085dbc5
JW
3843 unsigned long mark;
3844
664eedde
MG
3845 if (cpusets_enabled() &&
3846 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3847 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3848 continue;
a756cf59
JW
3849 /*
3850 * When allocating a page cache page for writing, we
281e3726
MG
3851 * want to get it from a node that is within its dirty
3852 * limit, such that no single node holds more than its
a756cf59 3853 * proportional share of globally allowed dirty pages.
281e3726 3854 * The dirty limits take into account the node's
a756cf59
JW
3855 * lowmem reserves and high watermark so that kswapd
3856 * should be able to balance it without having to
3857 * write pages from its LRU list.
3858 *
a756cf59 3859 * XXX: For now, allow allocations to potentially
281e3726 3860 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3861 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3862 * which is important when on a NUMA setup the allowed
281e3726 3863 * nodes are together not big enough to reach the
a756cf59 3864 * global limit. The proper fix for these situations
281e3726 3865 * will require awareness of nodes in the
a756cf59
JW
3866 * dirty-throttling and the flusher threads.
3867 */
3b8c0be4
MG
3868 if (ac->spread_dirty_pages) {
3869 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3870 continue;
3871
3872 if (!node_dirty_ok(zone->zone_pgdat)) {
3873 last_pgdat_dirty_limit = zone->zone_pgdat;
3874 continue;
3875 }
3876 }
7fb1d9fc 3877
6bb15450
MG
3878 if (no_fallback && nr_online_nodes > 1 &&
3879 zone != ac->preferred_zoneref->zone) {
3880 int local_nid;
3881
3882 /*
3883 * If moving to a remote node, retry but allow
3884 * fragmenting fallbacks. Locality is more important
3885 * than fragmentation avoidance.
3886 */
3887 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3888 if (zone_to_nid(zone) != local_nid) {
3889 alloc_flags &= ~ALLOC_NOFRAGMENT;
3890 goto retry;
3891 }
3892 }
3893
a9214443 3894 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3895 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3896 ac->highest_zoneidx, alloc_flags,
3897 gfp_mask)) {
fa5e084e
MG
3898 int ret;
3899
c9e97a19
PT
3900#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3901 /*
3902 * Watermark failed for this zone, but see if we can
3903 * grow this zone if it contains deferred pages.
3904 */
3905 if (static_branch_unlikely(&deferred_pages)) {
3906 if (_deferred_grow_zone(zone, order))
3907 goto try_this_zone;
3908 }
3909#endif
5dab2911
MG
3910 /* Checked here to keep the fast path fast */
3911 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3912 if (alloc_flags & ALLOC_NO_WATERMARKS)
3913 goto try_this_zone;
3914
a5f5f91d 3915 if (node_reclaim_mode == 0 ||
c33d6c06 3916 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3917 continue;
3918
a5f5f91d 3919 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3920 switch (ret) {
a5f5f91d 3921 case NODE_RECLAIM_NOSCAN:
fa5e084e 3922 /* did not scan */
cd38b115 3923 continue;
a5f5f91d 3924 case NODE_RECLAIM_FULL:
fa5e084e 3925 /* scanned but unreclaimable */
cd38b115 3926 continue;
fa5e084e
MG
3927 default:
3928 /* did we reclaim enough */
fed2719e 3929 if (zone_watermark_ok(zone, order, mark,
97a225e6 3930 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3931 goto try_this_zone;
3932
fed2719e 3933 continue;
0798e519 3934 }
7fb1d9fc
RS
3935 }
3936
fa5e084e 3937try_this_zone:
066b2393 3938 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3939 gfp_mask, alloc_flags, ac->migratetype);
75379191 3940 if (page) {
479f854a 3941 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3942
3943 /*
3944 * If this is a high-order atomic allocation then check
3945 * if the pageblock should be reserved for the future
3946 */
3947 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3948 reserve_highatomic_pageblock(page, zone, order);
3949
75379191 3950 return page;
c9e97a19
PT
3951 } else {
3952#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3953 /* Try again if zone has deferred pages */
3954 if (static_branch_unlikely(&deferred_pages)) {
3955 if (_deferred_grow_zone(zone, order))
3956 goto try_this_zone;
3957 }
3958#endif
75379191 3959 }
54a6eb5c 3960 }
9276b1bc 3961
6bb15450
MG
3962 /*
3963 * It's possible on a UMA machine to get through all zones that are
3964 * fragmented. If avoiding fragmentation, reset and try again.
3965 */
3966 if (no_fallback) {
3967 alloc_flags &= ~ALLOC_NOFRAGMENT;
3968 goto retry;
3969 }
3970
4ffeaf35 3971 return NULL;
753ee728
MH
3972}
3973
9af744d7 3974static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3975{
a238ab5b 3976 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3977
3978 /*
3979 * This documents exceptions given to allocations in certain
3980 * contexts that are allowed to allocate outside current's set
3981 * of allowed nodes.
3982 */
3983 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3984 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3985 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3986 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3987 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3988 filter &= ~SHOW_MEM_FILTER_NODES;
3989
9af744d7 3990 show_mem(filter, nodemask);
aa187507
MH
3991}
3992
a8e99259 3993void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3994{
3995 struct va_format vaf;
3996 va_list args;
1be334e5 3997 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3998
0f7896f1 3999 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4000 return;
4001
7877cdcc
MH
4002 va_start(args, fmt);
4003 vaf.fmt = fmt;
4004 vaf.va = &args;
ef8444ea 4005 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4006 current->comm, &vaf, gfp_mask, &gfp_mask,
4007 nodemask_pr_args(nodemask));
7877cdcc 4008 va_end(args);
3ee9a4f0 4009
a8e99259 4010 cpuset_print_current_mems_allowed();
ef8444ea 4011 pr_cont("\n");
a238ab5b 4012 dump_stack();
685dbf6f 4013 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4014}
4015
6c18ba7a
MH
4016static inline struct page *
4017__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4018 unsigned int alloc_flags,
4019 const struct alloc_context *ac)
4020{
4021 struct page *page;
4022
4023 page = get_page_from_freelist(gfp_mask, order,
4024 alloc_flags|ALLOC_CPUSET, ac);
4025 /*
4026 * fallback to ignore cpuset restriction if our nodes
4027 * are depleted
4028 */
4029 if (!page)
4030 page = get_page_from_freelist(gfp_mask, order,
4031 alloc_flags, ac);
4032
4033 return page;
4034}
4035
11e33f6a
MG
4036static inline struct page *
4037__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4038 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4039{
6e0fc46d
DR
4040 struct oom_control oc = {
4041 .zonelist = ac->zonelist,
4042 .nodemask = ac->nodemask,
2a966b77 4043 .memcg = NULL,
6e0fc46d
DR
4044 .gfp_mask = gfp_mask,
4045 .order = order,
6e0fc46d 4046 };
11e33f6a
MG
4047 struct page *page;
4048
9879de73
JW
4049 *did_some_progress = 0;
4050
9879de73 4051 /*
dc56401f
JW
4052 * Acquire the oom lock. If that fails, somebody else is
4053 * making progress for us.
9879de73 4054 */
dc56401f 4055 if (!mutex_trylock(&oom_lock)) {
9879de73 4056 *did_some_progress = 1;
11e33f6a 4057 schedule_timeout_uninterruptible(1);
1da177e4
LT
4058 return NULL;
4059 }
6b1de916 4060
11e33f6a
MG
4061 /*
4062 * Go through the zonelist yet one more time, keep very high watermark
4063 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4064 * we're still under heavy pressure. But make sure that this reclaim
4065 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4066 * allocation which will never fail due to oom_lock already held.
11e33f6a 4067 */
e746bf73
TH
4068 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4069 ~__GFP_DIRECT_RECLAIM, order,
4070 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4071 if (page)
11e33f6a
MG
4072 goto out;
4073
06ad276a
MH
4074 /* Coredumps can quickly deplete all memory reserves */
4075 if (current->flags & PF_DUMPCORE)
4076 goto out;
4077 /* The OOM killer will not help higher order allocs */
4078 if (order > PAGE_ALLOC_COSTLY_ORDER)
4079 goto out;
dcda9b04
MH
4080 /*
4081 * We have already exhausted all our reclaim opportunities without any
4082 * success so it is time to admit defeat. We will skip the OOM killer
4083 * because it is very likely that the caller has a more reasonable
4084 * fallback than shooting a random task.
cfb4a541
MN
4085 *
4086 * The OOM killer may not free memory on a specific node.
dcda9b04 4087 */
cfb4a541 4088 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4089 goto out;
06ad276a 4090 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4091 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4092 goto out;
4093 if (pm_suspended_storage())
4094 goto out;
4095 /*
4096 * XXX: GFP_NOFS allocations should rather fail than rely on
4097 * other request to make a forward progress.
4098 * We are in an unfortunate situation where out_of_memory cannot
4099 * do much for this context but let's try it to at least get
4100 * access to memory reserved if the current task is killed (see
4101 * out_of_memory). Once filesystems are ready to handle allocation
4102 * failures more gracefully we should just bail out here.
4103 */
4104
3c2c6488 4105 /* Exhausted what can be done so it's blame time */
5020e285 4106 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4107 *did_some_progress = 1;
5020e285 4108
6c18ba7a
MH
4109 /*
4110 * Help non-failing allocations by giving them access to memory
4111 * reserves
4112 */
4113 if (gfp_mask & __GFP_NOFAIL)
4114 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4115 ALLOC_NO_WATERMARKS, ac);
5020e285 4116 }
11e33f6a 4117out:
dc56401f 4118 mutex_unlock(&oom_lock);
11e33f6a
MG
4119 return page;
4120}
4121
33c2d214
MH
4122/*
4123 * Maximum number of compaction retries wit a progress before OOM
4124 * killer is consider as the only way to move forward.
4125 */
4126#define MAX_COMPACT_RETRIES 16
4127
56de7263
MG
4128#ifdef CONFIG_COMPACTION
4129/* Try memory compaction for high-order allocations before reclaim */
4130static struct page *
4131__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4132 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4133 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4134{
5e1f0f09 4135 struct page *page = NULL;
eb414681 4136 unsigned long pflags;
499118e9 4137 unsigned int noreclaim_flag;
53853e2d
VB
4138
4139 if (!order)
66199712 4140 return NULL;
66199712 4141
eb414681 4142 psi_memstall_enter(&pflags);
499118e9 4143 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4144
c5d01d0d 4145 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4146 prio, &page);
eb414681 4147
499118e9 4148 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4149 psi_memstall_leave(&pflags);
56de7263 4150
98dd3b48
VB
4151 /*
4152 * At least in one zone compaction wasn't deferred or skipped, so let's
4153 * count a compaction stall
4154 */
4155 count_vm_event(COMPACTSTALL);
8fb74b9f 4156
5e1f0f09
MG
4157 /* Prep a captured page if available */
4158 if (page)
4159 prep_new_page(page, order, gfp_mask, alloc_flags);
4160
4161 /* Try get a page from the freelist if available */
4162 if (!page)
4163 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4164
98dd3b48
VB
4165 if (page) {
4166 struct zone *zone = page_zone(page);
53853e2d 4167
98dd3b48
VB
4168 zone->compact_blockskip_flush = false;
4169 compaction_defer_reset(zone, order, true);
4170 count_vm_event(COMPACTSUCCESS);
4171 return page;
4172 }
56de7263 4173
98dd3b48
VB
4174 /*
4175 * It's bad if compaction run occurs and fails. The most likely reason
4176 * is that pages exist, but not enough to satisfy watermarks.
4177 */
4178 count_vm_event(COMPACTFAIL);
66199712 4179
98dd3b48 4180 cond_resched();
56de7263
MG
4181
4182 return NULL;
4183}
33c2d214 4184
3250845d
VB
4185static inline bool
4186should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4187 enum compact_result compact_result,
4188 enum compact_priority *compact_priority,
d9436498 4189 int *compaction_retries)
3250845d
VB
4190{
4191 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4192 int min_priority;
65190cff
MH
4193 bool ret = false;
4194 int retries = *compaction_retries;
4195 enum compact_priority priority = *compact_priority;
3250845d
VB
4196
4197 if (!order)
4198 return false;
4199
d9436498
VB
4200 if (compaction_made_progress(compact_result))
4201 (*compaction_retries)++;
4202
3250845d
VB
4203 /*
4204 * compaction considers all the zone as desperately out of memory
4205 * so it doesn't really make much sense to retry except when the
4206 * failure could be caused by insufficient priority
4207 */
d9436498
VB
4208 if (compaction_failed(compact_result))
4209 goto check_priority;
3250845d 4210
49433085
VB
4211 /*
4212 * compaction was skipped because there are not enough order-0 pages
4213 * to work with, so we retry only if it looks like reclaim can help.
4214 */
4215 if (compaction_needs_reclaim(compact_result)) {
4216 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4217 goto out;
4218 }
4219
3250845d
VB
4220 /*
4221 * make sure the compaction wasn't deferred or didn't bail out early
4222 * due to locks contention before we declare that we should give up.
49433085
VB
4223 * But the next retry should use a higher priority if allowed, so
4224 * we don't just keep bailing out endlessly.
3250845d 4225 */
65190cff 4226 if (compaction_withdrawn(compact_result)) {
49433085 4227 goto check_priority;
65190cff 4228 }
3250845d
VB
4229
4230 /*
dcda9b04 4231 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4232 * costly ones because they are de facto nofail and invoke OOM
4233 * killer to move on while costly can fail and users are ready
4234 * to cope with that. 1/4 retries is rather arbitrary but we
4235 * would need much more detailed feedback from compaction to
4236 * make a better decision.
4237 */
4238 if (order > PAGE_ALLOC_COSTLY_ORDER)
4239 max_retries /= 4;
65190cff
MH
4240 if (*compaction_retries <= max_retries) {
4241 ret = true;
4242 goto out;
4243 }
3250845d 4244
d9436498
VB
4245 /*
4246 * Make sure there are attempts at the highest priority if we exhausted
4247 * all retries or failed at the lower priorities.
4248 */
4249check_priority:
c2033b00
VB
4250 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4251 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4252
c2033b00 4253 if (*compact_priority > min_priority) {
d9436498
VB
4254 (*compact_priority)--;
4255 *compaction_retries = 0;
65190cff 4256 ret = true;
d9436498 4257 }
65190cff
MH
4258out:
4259 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4260 return ret;
3250845d 4261}
56de7263
MG
4262#else
4263static inline struct page *
4264__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4265 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4266 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4267{
33c2d214 4268 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4269 return NULL;
4270}
33c2d214
MH
4271
4272static inline bool
86a294a8
MH
4273should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4274 enum compact_result compact_result,
a5508cd8 4275 enum compact_priority *compact_priority,
d9436498 4276 int *compaction_retries)
33c2d214 4277{
31e49bfd
MH
4278 struct zone *zone;
4279 struct zoneref *z;
4280
4281 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4282 return false;
4283
4284 /*
4285 * There are setups with compaction disabled which would prefer to loop
4286 * inside the allocator rather than hit the oom killer prematurely.
4287 * Let's give them a good hope and keep retrying while the order-0
4288 * watermarks are OK.
4289 */
97a225e6
JK
4290 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4291 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4292 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4293 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4294 return true;
4295 }
33c2d214
MH
4296 return false;
4297}
3250845d 4298#endif /* CONFIG_COMPACTION */
56de7263 4299
d92a8cfc 4300#ifdef CONFIG_LOCKDEP
93781325 4301static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4302 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4303
f920e413 4304static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4305{
d92a8cfc
PZ
4306 /* no reclaim without waiting on it */
4307 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4308 return false;
4309
4310 /* this guy won't enter reclaim */
2e517d68 4311 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4312 return false;
4313
d92a8cfc
PZ
4314 if (gfp_mask & __GFP_NOLOCKDEP)
4315 return false;
4316
4317 return true;
4318}
4319
93781325
OS
4320void __fs_reclaim_acquire(void)
4321{
4322 lock_map_acquire(&__fs_reclaim_map);
4323}
4324
4325void __fs_reclaim_release(void)
4326{
4327 lock_map_release(&__fs_reclaim_map);
4328}
4329
d92a8cfc
PZ
4330void fs_reclaim_acquire(gfp_t gfp_mask)
4331{
f920e413
DV
4332 gfp_mask = current_gfp_context(gfp_mask);
4333
4334 if (__need_reclaim(gfp_mask)) {
4335 if (gfp_mask & __GFP_FS)
4336 __fs_reclaim_acquire();
4337
4338#ifdef CONFIG_MMU_NOTIFIER
4339 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4340 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4341#endif
4342
4343 }
d92a8cfc
PZ
4344}
4345EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4346
4347void fs_reclaim_release(gfp_t gfp_mask)
4348{
f920e413
DV
4349 gfp_mask = current_gfp_context(gfp_mask);
4350
4351 if (__need_reclaim(gfp_mask)) {
4352 if (gfp_mask & __GFP_FS)
4353 __fs_reclaim_release();
4354 }
d92a8cfc
PZ
4355}
4356EXPORT_SYMBOL_GPL(fs_reclaim_release);
4357#endif
4358
bba90710 4359/* Perform direct synchronous page reclaim */
2187e17b 4360static unsigned long
a9263751
VB
4361__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4362 const struct alloc_context *ac)
11e33f6a 4363{
499118e9 4364 unsigned int noreclaim_flag;
2187e17b 4365 unsigned long pflags, progress;
11e33f6a
MG
4366
4367 cond_resched();
4368
4369 /* We now go into synchronous reclaim */
4370 cpuset_memory_pressure_bump();
eb414681 4371 psi_memstall_enter(&pflags);
d92a8cfc 4372 fs_reclaim_acquire(gfp_mask);
93781325 4373 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4374
a9263751
VB
4375 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4376 ac->nodemask);
11e33f6a 4377
499118e9 4378 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4379 fs_reclaim_release(gfp_mask);
eb414681 4380 psi_memstall_leave(&pflags);
11e33f6a
MG
4381
4382 cond_resched();
4383
bba90710
MS
4384 return progress;
4385}
4386
4387/* The really slow allocator path where we enter direct reclaim */
4388static inline struct page *
4389__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4390 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4391 unsigned long *did_some_progress)
bba90710
MS
4392{
4393 struct page *page = NULL;
4394 bool drained = false;
4395
a9263751 4396 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4397 if (unlikely(!(*did_some_progress)))
4398 return NULL;
11e33f6a 4399
9ee493ce 4400retry:
31a6c190 4401 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4402
4403 /*
4404 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4405 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4406 * Shrink them and try again
9ee493ce
MG
4407 */
4408 if (!page && !drained) {
29fac03b 4409 unreserve_highatomic_pageblock(ac, false);
93481ff0 4410 drain_all_pages(NULL);
9ee493ce
MG
4411 drained = true;
4412 goto retry;
4413 }
4414
11e33f6a
MG
4415 return page;
4416}
4417
5ecd9d40
DR
4418static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4419 const struct alloc_context *ac)
3a025760
JW
4420{
4421 struct zoneref *z;
4422 struct zone *zone;
e1a55637 4423 pg_data_t *last_pgdat = NULL;
97a225e6 4424 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4425
97a225e6 4426 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4427 ac->nodemask) {
e1a55637 4428 if (last_pgdat != zone->zone_pgdat)
97a225e6 4429 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4430 last_pgdat = zone->zone_pgdat;
4431 }
3a025760
JW
4432}
4433
c603844b 4434static inline unsigned int
341ce06f
PZ
4435gfp_to_alloc_flags(gfp_t gfp_mask)
4436{
c603844b 4437 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4438
736838e9
MN
4439 /*
4440 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4441 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4442 * to save two branches.
4443 */
e6223a3b 4444 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4445 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4446
341ce06f
PZ
4447 /*
4448 * The caller may dip into page reserves a bit more if the caller
4449 * cannot run direct reclaim, or if the caller has realtime scheduling
4450 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4451 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4452 */
736838e9
MN
4453 alloc_flags |= (__force int)
4454 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4455
d0164adc 4456 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4457 /*
b104a35d
DR
4458 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4459 * if it can't schedule.
5c3240d9 4460 */
b104a35d 4461 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4462 alloc_flags |= ALLOC_HARDER;
523b9458 4463 /*
b104a35d 4464 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4465 * comment for __cpuset_node_allowed().
523b9458 4466 */
341ce06f 4467 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4468 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4469 alloc_flags |= ALLOC_HARDER;
4470
8510e69c
JK
4471 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4472
341ce06f
PZ
4473 return alloc_flags;
4474}
4475
cd04ae1e 4476static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4477{
cd04ae1e
MH
4478 if (!tsk_is_oom_victim(tsk))
4479 return false;
4480
4481 /*
4482 * !MMU doesn't have oom reaper so give access to memory reserves
4483 * only to the thread with TIF_MEMDIE set
4484 */
4485 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4486 return false;
4487
cd04ae1e
MH
4488 return true;
4489}
4490
4491/*
4492 * Distinguish requests which really need access to full memory
4493 * reserves from oom victims which can live with a portion of it
4494 */
4495static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4496{
4497 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4498 return 0;
31a6c190 4499 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4500 return ALLOC_NO_WATERMARKS;
31a6c190 4501 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4502 return ALLOC_NO_WATERMARKS;
4503 if (!in_interrupt()) {
4504 if (current->flags & PF_MEMALLOC)
4505 return ALLOC_NO_WATERMARKS;
4506 else if (oom_reserves_allowed(current))
4507 return ALLOC_OOM;
4508 }
31a6c190 4509
cd04ae1e
MH
4510 return 0;
4511}
4512
4513bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4514{
4515 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4516}
4517
0a0337e0
MH
4518/*
4519 * Checks whether it makes sense to retry the reclaim to make a forward progress
4520 * for the given allocation request.
491d79ae
JW
4521 *
4522 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4523 * without success, or when we couldn't even meet the watermark if we
4524 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4525 *
4526 * Returns true if a retry is viable or false to enter the oom path.
4527 */
4528static inline bool
4529should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4530 struct alloc_context *ac, int alloc_flags,
423b452e 4531 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4532{
4533 struct zone *zone;
4534 struct zoneref *z;
15f570bf 4535 bool ret = false;
0a0337e0 4536
423b452e
VB
4537 /*
4538 * Costly allocations might have made a progress but this doesn't mean
4539 * their order will become available due to high fragmentation so
4540 * always increment the no progress counter for them
4541 */
4542 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4543 *no_progress_loops = 0;
4544 else
4545 (*no_progress_loops)++;
4546
0a0337e0
MH
4547 /*
4548 * Make sure we converge to OOM if we cannot make any progress
4549 * several times in the row.
4550 */
04c8716f
MK
4551 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4552 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4553 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4554 }
0a0337e0 4555
bca67592
MG
4556 /*
4557 * Keep reclaiming pages while there is a chance this will lead
4558 * somewhere. If none of the target zones can satisfy our allocation
4559 * request even if all reclaimable pages are considered then we are
4560 * screwed and have to go OOM.
0a0337e0 4561 */
97a225e6
JK
4562 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4563 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4564 unsigned long available;
ede37713 4565 unsigned long reclaimable;
d379f01d
MH
4566 unsigned long min_wmark = min_wmark_pages(zone);
4567 bool wmark;
0a0337e0 4568
5a1c84b4 4569 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4570 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4571
4572 /*
491d79ae
JW
4573 * Would the allocation succeed if we reclaimed all
4574 * reclaimable pages?
0a0337e0 4575 */
d379f01d 4576 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4577 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4578 trace_reclaim_retry_zone(z, order, reclaimable,
4579 available, min_wmark, *no_progress_loops, wmark);
4580 if (wmark) {
ede37713
MH
4581 /*
4582 * If we didn't make any progress and have a lot of
4583 * dirty + writeback pages then we should wait for
4584 * an IO to complete to slow down the reclaim and
4585 * prevent from pre mature OOM
4586 */
4587 if (!did_some_progress) {
11fb9989 4588 unsigned long write_pending;
ede37713 4589
5a1c84b4
MG
4590 write_pending = zone_page_state_snapshot(zone,
4591 NR_ZONE_WRITE_PENDING);
ede37713 4592
11fb9989 4593 if (2 * write_pending > reclaimable) {
ede37713
MH
4594 congestion_wait(BLK_RW_ASYNC, HZ/10);
4595 return true;
4596 }
4597 }
5a1c84b4 4598
15f570bf
MH
4599 ret = true;
4600 goto out;
0a0337e0
MH
4601 }
4602 }
4603
15f570bf
MH
4604out:
4605 /*
4606 * Memory allocation/reclaim might be called from a WQ context and the
4607 * current implementation of the WQ concurrency control doesn't
4608 * recognize that a particular WQ is congested if the worker thread is
4609 * looping without ever sleeping. Therefore we have to do a short sleep
4610 * here rather than calling cond_resched().
4611 */
4612 if (current->flags & PF_WQ_WORKER)
4613 schedule_timeout_uninterruptible(1);
4614 else
4615 cond_resched();
4616 return ret;
0a0337e0
MH
4617}
4618
902b6281
VB
4619static inline bool
4620check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4621{
4622 /*
4623 * It's possible that cpuset's mems_allowed and the nodemask from
4624 * mempolicy don't intersect. This should be normally dealt with by
4625 * policy_nodemask(), but it's possible to race with cpuset update in
4626 * such a way the check therein was true, and then it became false
4627 * before we got our cpuset_mems_cookie here.
4628 * This assumes that for all allocations, ac->nodemask can come only
4629 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4630 * when it does not intersect with the cpuset restrictions) or the
4631 * caller can deal with a violated nodemask.
4632 */
4633 if (cpusets_enabled() && ac->nodemask &&
4634 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4635 ac->nodemask = NULL;
4636 return true;
4637 }
4638
4639 /*
4640 * When updating a task's mems_allowed or mempolicy nodemask, it is
4641 * possible to race with parallel threads in such a way that our
4642 * allocation can fail while the mask is being updated. If we are about
4643 * to fail, check if the cpuset changed during allocation and if so,
4644 * retry.
4645 */
4646 if (read_mems_allowed_retry(cpuset_mems_cookie))
4647 return true;
4648
4649 return false;
4650}
4651
11e33f6a
MG
4652static inline struct page *
4653__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4654 struct alloc_context *ac)
11e33f6a 4655{
d0164adc 4656 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4657 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4658 struct page *page = NULL;
c603844b 4659 unsigned int alloc_flags;
11e33f6a 4660 unsigned long did_some_progress;
5ce9bfef 4661 enum compact_priority compact_priority;
c5d01d0d 4662 enum compact_result compact_result;
5ce9bfef
VB
4663 int compaction_retries;
4664 int no_progress_loops;
5ce9bfef 4665 unsigned int cpuset_mems_cookie;
cd04ae1e 4666 int reserve_flags;
1da177e4 4667
d0164adc
MG
4668 /*
4669 * We also sanity check to catch abuse of atomic reserves being used by
4670 * callers that are not in atomic context.
4671 */
4672 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4673 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4674 gfp_mask &= ~__GFP_ATOMIC;
4675
5ce9bfef
VB
4676retry_cpuset:
4677 compaction_retries = 0;
4678 no_progress_loops = 0;
4679 compact_priority = DEF_COMPACT_PRIORITY;
4680 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4681
4682 /*
4683 * The fast path uses conservative alloc_flags to succeed only until
4684 * kswapd needs to be woken up, and to avoid the cost of setting up
4685 * alloc_flags precisely. So we do that now.
4686 */
4687 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4688
e47483bc
VB
4689 /*
4690 * We need to recalculate the starting point for the zonelist iterator
4691 * because we might have used different nodemask in the fast path, or
4692 * there was a cpuset modification and we are retrying - otherwise we
4693 * could end up iterating over non-eligible zones endlessly.
4694 */
4695 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4696 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4697 if (!ac->preferred_zoneref->zone)
4698 goto nopage;
4699
0a79cdad 4700 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4701 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4702
4703 /*
4704 * The adjusted alloc_flags might result in immediate success, so try
4705 * that first
4706 */
4707 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4708 if (page)
4709 goto got_pg;
4710
a8161d1e
VB
4711 /*
4712 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4713 * that we have enough base pages and don't need to reclaim. For non-
4714 * movable high-order allocations, do that as well, as compaction will
4715 * try prevent permanent fragmentation by migrating from blocks of the
4716 * same migratetype.
4717 * Don't try this for allocations that are allowed to ignore
4718 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4719 */
282722b0
VB
4720 if (can_direct_reclaim &&
4721 (costly_order ||
4722 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4723 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4724 page = __alloc_pages_direct_compact(gfp_mask, order,
4725 alloc_flags, ac,
a5508cd8 4726 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4727 &compact_result);
4728 if (page)
4729 goto got_pg;
4730
cc638f32
VB
4731 /*
4732 * Checks for costly allocations with __GFP_NORETRY, which
4733 * includes some THP page fault allocations
4734 */
4735 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4736 /*
4737 * If allocating entire pageblock(s) and compaction
4738 * failed because all zones are below low watermarks
4739 * or is prohibited because it recently failed at this
3f36d866
DR
4740 * order, fail immediately unless the allocator has
4741 * requested compaction and reclaim retry.
b39d0ee2
DR
4742 *
4743 * Reclaim is
4744 * - potentially very expensive because zones are far
4745 * below their low watermarks or this is part of very
4746 * bursty high order allocations,
4747 * - not guaranteed to help because isolate_freepages()
4748 * may not iterate over freed pages as part of its
4749 * linear scan, and
4750 * - unlikely to make entire pageblocks free on its
4751 * own.
4752 */
4753 if (compact_result == COMPACT_SKIPPED ||
4754 compact_result == COMPACT_DEFERRED)
4755 goto nopage;
a8161d1e 4756
a8161d1e 4757 /*
3eb2771b
VB
4758 * Looks like reclaim/compaction is worth trying, but
4759 * sync compaction could be very expensive, so keep
25160354 4760 * using async compaction.
a8161d1e 4761 */
a5508cd8 4762 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4763 }
4764 }
23771235 4765
31a6c190 4766retry:
23771235 4767 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4768 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4769 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4770
cd04ae1e
MH
4771 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4772 if (reserve_flags)
8510e69c 4773 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4774
e46e7b77 4775 /*
d6a24df0
VB
4776 * Reset the nodemask and zonelist iterators if memory policies can be
4777 * ignored. These allocations are high priority and system rather than
4778 * user oriented.
e46e7b77 4779 */
cd04ae1e 4780 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4781 ac->nodemask = NULL;
e46e7b77 4782 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4783 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4784 }
4785
23771235 4786 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4787 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4788 if (page)
4789 goto got_pg;
1da177e4 4790
d0164adc 4791 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4792 if (!can_direct_reclaim)
1da177e4
LT
4793 goto nopage;
4794
9a67f648
MH
4795 /* Avoid recursion of direct reclaim */
4796 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4797 goto nopage;
4798
a8161d1e
VB
4799 /* Try direct reclaim and then allocating */
4800 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4801 &did_some_progress);
4802 if (page)
4803 goto got_pg;
4804
4805 /* Try direct compaction and then allocating */
a9263751 4806 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4807 compact_priority, &compact_result);
56de7263
MG
4808 if (page)
4809 goto got_pg;
75f30861 4810
9083905a
JW
4811 /* Do not loop if specifically requested */
4812 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4813 goto nopage;
9083905a 4814
0a0337e0
MH
4815 /*
4816 * Do not retry costly high order allocations unless they are
dcda9b04 4817 * __GFP_RETRY_MAYFAIL
0a0337e0 4818 */
dcda9b04 4819 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4820 goto nopage;
0a0337e0 4821
0a0337e0 4822 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4823 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4824 goto retry;
4825
33c2d214
MH
4826 /*
4827 * It doesn't make any sense to retry for the compaction if the order-0
4828 * reclaim is not able to make any progress because the current
4829 * implementation of the compaction depends on the sufficient amount
4830 * of free memory (see __compaction_suitable)
4831 */
4832 if (did_some_progress > 0 &&
86a294a8 4833 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4834 compact_result, &compact_priority,
d9436498 4835 &compaction_retries))
33c2d214
MH
4836 goto retry;
4837
902b6281
VB
4838
4839 /* Deal with possible cpuset update races before we start OOM killing */
4840 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4841 goto retry_cpuset;
4842
9083905a
JW
4843 /* Reclaim has failed us, start killing things */
4844 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4845 if (page)
4846 goto got_pg;
4847
9a67f648 4848 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4849 if (tsk_is_oom_victim(current) &&
8510e69c 4850 (alloc_flags & ALLOC_OOM ||
c288983d 4851 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4852 goto nopage;
4853
9083905a 4854 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4855 if (did_some_progress) {
4856 no_progress_loops = 0;
9083905a 4857 goto retry;
0a0337e0 4858 }
9083905a 4859
1da177e4 4860nopage:
902b6281
VB
4861 /* Deal with possible cpuset update races before we fail */
4862 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4863 goto retry_cpuset;
4864
9a67f648
MH
4865 /*
4866 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4867 * we always retry
4868 */
4869 if (gfp_mask & __GFP_NOFAIL) {
4870 /*
4871 * All existing users of the __GFP_NOFAIL are blockable, so warn
4872 * of any new users that actually require GFP_NOWAIT
4873 */
4874 if (WARN_ON_ONCE(!can_direct_reclaim))
4875 goto fail;
4876
4877 /*
4878 * PF_MEMALLOC request from this context is rather bizarre
4879 * because we cannot reclaim anything and only can loop waiting
4880 * for somebody to do a work for us
4881 */
4882 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4883
4884 /*
4885 * non failing costly orders are a hard requirement which we
4886 * are not prepared for much so let's warn about these users
4887 * so that we can identify them and convert them to something
4888 * else.
4889 */
4890 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4891
6c18ba7a
MH
4892 /*
4893 * Help non-failing allocations by giving them access to memory
4894 * reserves but do not use ALLOC_NO_WATERMARKS because this
4895 * could deplete whole memory reserves which would just make
4896 * the situation worse
4897 */
4898 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4899 if (page)
4900 goto got_pg;
4901
9a67f648
MH
4902 cond_resched();
4903 goto retry;
4904 }
4905fail:
a8e99259 4906 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4907 "page allocation failure: order:%u", order);
1da177e4 4908got_pg:
072bb0aa 4909 return page;
1da177e4 4910}
11e33f6a 4911
9cd75558 4912static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4913 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4914 struct alloc_context *ac, gfp_t *alloc_mask,
4915 unsigned int *alloc_flags)
11e33f6a 4916{
97a225e6 4917 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4918 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4919 ac->nodemask = nodemask;
01c0bfe0 4920 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4921
682a3385 4922 if (cpusets_enabled()) {
9cd75558 4923 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4924 /*
4925 * When we are in the interrupt context, it is irrelevant
4926 * to the current task context. It means that any node ok.
4927 */
4928 if (!in_interrupt() && !ac->nodemask)
9cd75558 4929 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4930 else
4931 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4932 }
4933
d92a8cfc
PZ
4934 fs_reclaim_acquire(gfp_mask);
4935 fs_reclaim_release(gfp_mask);
11e33f6a 4936
d0164adc 4937 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4938
4939 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4940 return false;
11e33f6a 4941
8510e69c 4942 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4943
c9ab0c4f 4944 /* Dirty zone balancing only done in the fast path */
9cd75558 4945 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4946
e46e7b77
MG
4947 /*
4948 * The preferred zone is used for statistics but crucially it is
4949 * also used as the starting point for the zonelist iterator. It
4950 * may get reset for allocations that ignore memory policies.
4951 */
9cd75558 4952 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4953 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4954
4955 return true;
9cd75558
MG
4956}
4957
4958/*
4959 * This is the 'heart' of the zoned buddy allocator.
4960 */
4961struct page *
04ec6264
VB
4962__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4963 nodemask_t *nodemask)
9cd75558
MG
4964{
4965 struct page *page;
4966 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4967 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4968 struct alloc_context ac = { };
4969
c63ae43b
MH
4970 /*
4971 * There are several places where we assume that the order value is sane
4972 * so bail out early if the request is out of bound.
4973 */
4974 if (unlikely(order >= MAX_ORDER)) {
4975 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4976 return NULL;
4977 }
4978
9cd75558 4979 gfp_mask &= gfp_allowed_mask;
f19360f0 4980 alloc_mask = gfp_mask;
04ec6264 4981 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4982 return NULL;
4983
6bb15450
MG
4984 /*
4985 * Forbid the first pass from falling back to types that fragment
4986 * memory until all local zones are considered.
4987 */
0a79cdad 4988 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4989
5117f45d 4990 /* First allocation attempt */
a9263751 4991 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4992 if (likely(page))
4993 goto out;
11e33f6a 4994
4fcb0971 4995 /*
7dea19f9
MH
4996 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4997 * resp. GFP_NOIO which has to be inherited for all allocation requests
4998 * from a particular context which has been marked by
4999 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 5000 */
7dea19f9 5001 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 5002 ac.spread_dirty_pages = false;
23f086f9 5003
4741526b
MG
5004 /*
5005 * Restore the original nodemask if it was potentially replaced with
5006 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5007 */
97ce86f9 5008 ac.nodemask = nodemask;
16096c25 5009
4fcb0971 5010 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 5011
4fcb0971 5012out:
c4159a75 5013 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 5014 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
5015 __free_pages(page, order);
5016 page = NULL;
4949148a
VD
5017 }
5018
4fcb0971
MG
5019 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5020
11e33f6a 5021 return page;
1da177e4 5022}
d239171e 5023EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
5024
5025/*
9ea9a680
MH
5026 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5027 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5028 * you need to access high mem.
1da177e4 5029 */
920c7a5d 5030unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5031{
945a1113
AM
5032 struct page *page;
5033
9ea9a680 5034 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5035 if (!page)
5036 return 0;
5037 return (unsigned long) page_address(page);
5038}
1da177e4
LT
5039EXPORT_SYMBOL(__get_free_pages);
5040
920c7a5d 5041unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5042{
945a1113 5043 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5044}
1da177e4
LT
5045EXPORT_SYMBOL(get_zeroed_page);
5046
742aa7fb 5047static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5048{
742aa7fb
AL
5049 if (order == 0) /* Via pcp? */
5050 free_unref_page(page);
5051 else
7fef431b 5052 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5053}
5054
7f194fbb
MWO
5055/**
5056 * __free_pages - Free pages allocated with alloc_pages().
5057 * @page: The page pointer returned from alloc_pages().
5058 * @order: The order of the allocation.
5059 *
5060 * This function can free multi-page allocations that are not compound
5061 * pages. It does not check that the @order passed in matches that of
5062 * the allocation, so it is easy to leak memory. Freeing more memory
5063 * than was allocated will probably emit a warning.
5064 *
5065 * If the last reference to this page is speculative, it will be released
5066 * by put_page() which only frees the first page of a non-compound
5067 * allocation. To prevent the remaining pages from being leaked, we free
5068 * the subsequent pages here. If you want to use the page's reference
5069 * count to decide when to free the allocation, you should allocate a
5070 * compound page, and use put_page() instead of __free_pages().
5071 *
5072 * Context: May be called in interrupt context or while holding a normal
5073 * spinlock, but not in NMI context or while holding a raw spinlock.
5074 */
742aa7fb
AL
5075void __free_pages(struct page *page, unsigned int order)
5076{
5077 if (put_page_testzero(page))
5078 free_the_page(page, order);
e320d301
MWO
5079 else if (!PageHead(page))
5080 while (order-- > 0)
5081 free_the_page(page + (1 << order), order);
742aa7fb 5082}
1da177e4
LT
5083EXPORT_SYMBOL(__free_pages);
5084
920c7a5d 5085void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5086{
5087 if (addr != 0) {
725d704e 5088 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5089 __free_pages(virt_to_page((void *)addr), order);
5090 }
5091}
5092
5093EXPORT_SYMBOL(free_pages);
5094
b63ae8ca
AD
5095/*
5096 * Page Fragment:
5097 * An arbitrary-length arbitrary-offset area of memory which resides
5098 * within a 0 or higher order page. Multiple fragments within that page
5099 * are individually refcounted, in the page's reference counter.
5100 *
5101 * The page_frag functions below provide a simple allocation framework for
5102 * page fragments. This is used by the network stack and network device
5103 * drivers to provide a backing region of memory for use as either an
5104 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5105 */
2976db80
AD
5106static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5107 gfp_t gfp_mask)
b63ae8ca
AD
5108{
5109 struct page *page = NULL;
5110 gfp_t gfp = gfp_mask;
5111
5112#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5113 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5114 __GFP_NOMEMALLOC;
5115 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5116 PAGE_FRAG_CACHE_MAX_ORDER);
5117 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5118#endif
5119 if (unlikely(!page))
5120 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5121
5122 nc->va = page ? page_address(page) : NULL;
5123
5124 return page;
5125}
5126
2976db80 5127void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5128{
5129 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5130
742aa7fb
AL
5131 if (page_ref_sub_and_test(page, count))
5132 free_the_page(page, compound_order(page));
44fdffd7 5133}
2976db80 5134EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5135
8c2dd3e4
AD
5136void *page_frag_alloc(struct page_frag_cache *nc,
5137 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5138{
5139 unsigned int size = PAGE_SIZE;
5140 struct page *page;
5141 int offset;
5142
5143 if (unlikely(!nc->va)) {
5144refill:
2976db80 5145 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5146 if (!page)
5147 return NULL;
5148
5149#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5150 /* if size can vary use size else just use PAGE_SIZE */
5151 size = nc->size;
5152#endif
5153 /* Even if we own the page, we do not use atomic_set().
5154 * This would break get_page_unless_zero() users.
5155 */
86447726 5156 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5157
5158 /* reset page count bias and offset to start of new frag */
2f064f34 5159 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5160 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5161 nc->offset = size;
5162 }
5163
5164 offset = nc->offset - fragsz;
5165 if (unlikely(offset < 0)) {
5166 page = virt_to_page(nc->va);
5167
fe896d18 5168 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5169 goto refill;
5170
d8c19014
DZ
5171 if (unlikely(nc->pfmemalloc)) {
5172 free_the_page(page, compound_order(page));
5173 goto refill;
5174 }
5175
b63ae8ca
AD
5176#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5177 /* if size can vary use size else just use PAGE_SIZE */
5178 size = nc->size;
5179#endif
5180 /* OK, page count is 0, we can safely set it */
86447726 5181 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5182
5183 /* reset page count bias and offset to start of new frag */
86447726 5184 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5185 offset = size - fragsz;
5186 }
5187
5188 nc->pagecnt_bias--;
5189 nc->offset = offset;
5190
5191 return nc->va + offset;
5192}
8c2dd3e4 5193EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5194
5195/*
5196 * Frees a page fragment allocated out of either a compound or order 0 page.
5197 */
8c2dd3e4 5198void page_frag_free(void *addr)
b63ae8ca
AD
5199{
5200 struct page *page = virt_to_head_page(addr);
5201
742aa7fb
AL
5202 if (unlikely(put_page_testzero(page)))
5203 free_the_page(page, compound_order(page));
b63ae8ca 5204}
8c2dd3e4 5205EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5206
d00181b9
KS
5207static void *make_alloc_exact(unsigned long addr, unsigned int order,
5208 size_t size)
ee85c2e1
AK
5209{
5210 if (addr) {
5211 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5212 unsigned long used = addr + PAGE_ALIGN(size);
5213
5214 split_page(virt_to_page((void *)addr), order);
5215 while (used < alloc_end) {
5216 free_page(used);
5217 used += PAGE_SIZE;
5218 }
5219 }
5220 return (void *)addr;
5221}
5222
2be0ffe2
TT
5223/**
5224 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5225 * @size: the number of bytes to allocate
63931eb9 5226 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5227 *
5228 * This function is similar to alloc_pages(), except that it allocates the
5229 * minimum number of pages to satisfy the request. alloc_pages() can only
5230 * allocate memory in power-of-two pages.
5231 *
5232 * This function is also limited by MAX_ORDER.
5233 *
5234 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5235 *
5236 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5237 */
5238void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5239{
5240 unsigned int order = get_order(size);
5241 unsigned long addr;
5242
63931eb9
VB
5243 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5244 gfp_mask &= ~__GFP_COMP;
5245
2be0ffe2 5246 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5247 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5248}
5249EXPORT_SYMBOL(alloc_pages_exact);
5250
ee85c2e1
AK
5251/**
5252 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5253 * pages on a node.
b5e6ab58 5254 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5255 * @size: the number of bytes to allocate
63931eb9 5256 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5257 *
5258 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5259 * back.
a862f68a
MR
5260 *
5261 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5262 */
e1931811 5263void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5264{
d00181b9 5265 unsigned int order = get_order(size);
63931eb9
VB
5266 struct page *p;
5267
5268 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5269 gfp_mask &= ~__GFP_COMP;
5270
5271 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5272 if (!p)
5273 return NULL;
5274 return make_alloc_exact((unsigned long)page_address(p), order, size);
5275}
ee85c2e1 5276
2be0ffe2
TT
5277/**
5278 * free_pages_exact - release memory allocated via alloc_pages_exact()
5279 * @virt: the value returned by alloc_pages_exact.
5280 * @size: size of allocation, same value as passed to alloc_pages_exact().
5281 *
5282 * Release the memory allocated by a previous call to alloc_pages_exact.
5283 */
5284void free_pages_exact(void *virt, size_t size)
5285{
5286 unsigned long addr = (unsigned long)virt;
5287 unsigned long end = addr + PAGE_ALIGN(size);
5288
5289 while (addr < end) {
5290 free_page(addr);
5291 addr += PAGE_SIZE;
5292 }
5293}
5294EXPORT_SYMBOL(free_pages_exact);
5295
e0fb5815
ZY
5296/**
5297 * nr_free_zone_pages - count number of pages beyond high watermark
5298 * @offset: The zone index of the highest zone
5299 *
a862f68a 5300 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5301 * high watermark within all zones at or below a given zone index. For each
5302 * zone, the number of pages is calculated as:
0e056eb5
MCC
5303 *
5304 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5305 *
5306 * Return: number of pages beyond high watermark.
e0fb5815 5307 */
ebec3862 5308static unsigned long nr_free_zone_pages(int offset)
1da177e4 5309{
dd1a239f 5310 struct zoneref *z;
54a6eb5c
MG
5311 struct zone *zone;
5312
e310fd43 5313 /* Just pick one node, since fallback list is circular */
ebec3862 5314 unsigned long sum = 0;
1da177e4 5315
0e88460d 5316 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5317
54a6eb5c 5318 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5319 unsigned long size = zone_managed_pages(zone);
41858966 5320 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5321 if (size > high)
5322 sum += size - high;
1da177e4
LT
5323 }
5324
5325 return sum;
5326}
5327
e0fb5815
ZY
5328/**
5329 * nr_free_buffer_pages - count number of pages beyond high watermark
5330 *
5331 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5332 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5333 *
5334 * Return: number of pages beyond high watermark within ZONE_DMA and
5335 * ZONE_NORMAL.
1da177e4 5336 */
ebec3862 5337unsigned long nr_free_buffer_pages(void)
1da177e4 5338{
af4ca457 5339 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5340}
c2f1a551 5341EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5342
08e0f6a9 5343static inline void show_node(struct zone *zone)
1da177e4 5344{
e5adfffc 5345 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5346 printk("Node %d ", zone_to_nid(zone));
1da177e4 5347}
1da177e4 5348
d02bd27b
IR
5349long si_mem_available(void)
5350{
5351 long available;
5352 unsigned long pagecache;
5353 unsigned long wmark_low = 0;
5354 unsigned long pages[NR_LRU_LISTS];
b29940c1 5355 unsigned long reclaimable;
d02bd27b
IR
5356 struct zone *zone;
5357 int lru;
5358
5359 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5360 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5361
5362 for_each_zone(zone)
a9214443 5363 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5364
5365 /*
5366 * Estimate the amount of memory available for userspace allocations,
5367 * without causing swapping.
5368 */
c41f012a 5369 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5370
5371 /*
5372 * Not all the page cache can be freed, otherwise the system will
5373 * start swapping. Assume at least half of the page cache, or the
5374 * low watermark worth of cache, needs to stay.
5375 */
5376 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5377 pagecache -= min(pagecache / 2, wmark_low);
5378 available += pagecache;
5379
5380 /*
b29940c1
VB
5381 * Part of the reclaimable slab and other kernel memory consists of
5382 * items that are in use, and cannot be freed. Cap this estimate at the
5383 * low watermark.
d02bd27b 5384 */
d42f3245
RG
5385 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5386 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5387 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5388
d02bd27b
IR
5389 if (available < 0)
5390 available = 0;
5391 return available;
5392}
5393EXPORT_SYMBOL_GPL(si_mem_available);
5394
1da177e4
LT
5395void si_meminfo(struct sysinfo *val)
5396{
ca79b0c2 5397 val->totalram = totalram_pages();
11fb9989 5398 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5399 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5400 val->bufferram = nr_blockdev_pages();
ca79b0c2 5401 val->totalhigh = totalhigh_pages();
1da177e4 5402 val->freehigh = nr_free_highpages();
1da177e4
LT
5403 val->mem_unit = PAGE_SIZE;
5404}
5405
5406EXPORT_SYMBOL(si_meminfo);
5407
5408#ifdef CONFIG_NUMA
5409void si_meminfo_node(struct sysinfo *val, int nid)
5410{
cdd91a77
JL
5411 int zone_type; /* needs to be signed */
5412 unsigned long managed_pages = 0;
fc2bd799
JK
5413 unsigned long managed_highpages = 0;
5414 unsigned long free_highpages = 0;
1da177e4
LT
5415 pg_data_t *pgdat = NODE_DATA(nid);
5416
cdd91a77 5417 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5418 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5419 val->totalram = managed_pages;
11fb9989 5420 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5421 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5422#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5423 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5424 struct zone *zone = &pgdat->node_zones[zone_type];
5425
5426 if (is_highmem(zone)) {
9705bea5 5427 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5428 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5429 }
5430 }
5431 val->totalhigh = managed_highpages;
5432 val->freehigh = free_highpages;
98d2b0eb 5433#else
fc2bd799
JK
5434 val->totalhigh = managed_highpages;
5435 val->freehigh = free_highpages;
98d2b0eb 5436#endif
1da177e4
LT
5437 val->mem_unit = PAGE_SIZE;
5438}
5439#endif
5440
ddd588b5 5441/*
7bf02ea2
DR
5442 * Determine whether the node should be displayed or not, depending on whether
5443 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5444 */
9af744d7 5445static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5446{
ddd588b5 5447 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5448 return false;
ddd588b5 5449
9af744d7
MH
5450 /*
5451 * no node mask - aka implicit memory numa policy. Do not bother with
5452 * the synchronization - read_mems_allowed_begin - because we do not
5453 * have to be precise here.
5454 */
5455 if (!nodemask)
5456 nodemask = &cpuset_current_mems_allowed;
5457
5458 return !node_isset(nid, *nodemask);
ddd588b5
DR
5459}
5460
1da177e4
LT
5461#define K(x) ((x) << (PAGE_SHIFT-10))
5462
377e4f16
RV
5463static void show_migration_types(unsigned char type)
5464{
5465 static const char types[MIGRATE_TYPES] = {
5466 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5467 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5468 [MIGRATE_RECLAIMABLE] = 'E',
5469 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5470#ifdef CONFIG_CMA
5471 [MIGRATE_CMA] = 'C',
5472#endif
194159fb 5473#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5474 [MIGRATE_ISOLATE] = 'I',
194159fb 5475#endif
377e4f16
RV
5476 };
5477 char tmp[MIGRATE_TYPES + 1];
5478 char *p = tmp;
5479 int i;
5480
5481 for (i = 0; i < MIGRATE_TYPES; i++) {
5482 if (type & (1 << i))
5483 *p++ = types[i];
5484 }
5485
5486 *p = '\0';
1f84a18f 5487 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5488}
5489
1da177e4
LT
5490/*
5491 * Show free area list (used inside shift_scroll-lock stuff)
5492 * We also calculate the percentage fragmentation. We do this by counting the
5493 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5494 *
5495 * Bits in @filter:
5496 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5497 * cpuset.
1da177e4 5498 */
9af744d7 5499void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5500{
d1bfcdb8 5501 unsigned long free_pcp = 0;
c7241913 5502 int cpu;
1da177e4 5503 struct zone *zone;
599d0c95 5504 pg_data_t *pgdat;
1da177e4 5505
ee99c71c 5506 for_each_populated_zone(zone) {
9af744d7 5507 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5508 continue;
d1bfcdb8 5509
761b0677
KK
5510 for_each_online_cpu(cpu)
5511 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5512 }
5513
a731286d
KM
5514 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5515 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5516 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5517 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5518 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5519 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5520 global_node_page_state(NR_ACTIVE_ANON),
5521 global_node_page_state(NR_INACTIVE_ANON),
5522 global_node_page_state(NR_ISOLATED_ANON),
5523 global_node_page_state(NR_ACTIVE_FILE),
5524 global_node_page_state(NR_INACTIVE_FILE),
5525 global_node_page_state(NR_ISOLATED_FILE),
5526 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5527 global_node_page_state(NR_FILE_DIRTY),
5528 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5529 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5530 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5531 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5532 global_node_page_state(NR_SHMEM),
f0c0c115 5533 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5534 global_zone_page_state(NR_BOUNCE),
5535 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5536 free_pcp,
c41f012a 5537 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5538
599d0c95 5539 for_each_online_pgdat(pgdat) {
9af744d7 5540 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5541 continue;
5542
599d0c95
MG
5543 printk("Node %d"
5544 " active_anon:%lukB"
5545 " inactive_anon:%lukB"
5546 " active_file:%lukB"
5547 " inactive_file:%lukB"
5548 " unevictable:%lukB"
5549 " isolated(anon):%lukB"
5550 " isolated(file):%lukB"
50658e2e 5551 " mapped:%lukB"
11fb9989
MG
5552 " dirty:%lukB"
5553 " writeback:%lukB"
5554 " shmem:%lukB"
5555#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5556 " shmem_thp: %lukB"
5557 " shmem_pmdmapped: %lukB"
5558 " anon_thp: %lukB"
5559#endif
5560 " writeback_tmp:%lukB"
991e7673
SB
5561 " kernel_stack:%lukB"
5562#ifdef CONFIG_SHADOW_CALL_STACK
5563 " shadow_call_stack:%lukB"
5564#endif
f0c0c115 5565 " pagetables:%lukB"
599d0c95
MG
5566 " all_unreclaimable? %s"
5567 "\n",
5568 pgdat->node_id,
5569 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5570 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5571 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5572 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5573 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5574 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5575 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5576 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5577 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5578 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5579 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5580#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5581 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5582 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5583 * HPAGE_PMD_NR),
5584 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5585#endif
11fb9989 5586 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5587 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5588#ifdef CONFIG_SHADOW_CALL_STACK
5589 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5590#endif
f0c0c115 5591 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5592 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5593 "yes" : "no");
599d0c95
MG
5594 }
5595
ee99c71c 5596 for_each_populated_zone(zone) {
1da177e4
LT
5597 int i;
5598
9af744d7 5599 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5600 continue;
d1bfcdb8
KK
5601
5602 free_pcp = 0;
5603 for_each_online_cpu(cpu)
5604 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5605
1da177e4 5606 show_node(zone);
1f84a18f
JP
5607 printk(KERN_CONT
5608 "%s"
1da177e4
LT
5609 " free:%lukB"
5610 " min:%lukB"
5611 " low:%lukB"
5612 " high:%lukB"
e47b346a 5613 " reserved_highatomic:%luKB"
71c799f4
MK
5614 " active_anon:%lukB"
5615 " inactive_anon:%lukB"
5616 " active_file:%lukB"
5617 " inactive_file:%lukB"
5618 " unevictable:%lukB"
5a1c84b4 5619 " writepending:%lukB"
1da177e4 5620 " present:%lukB"
9feedc9d 5621 " managed:%lukB"
4a0aa73f 5622 " mlocked:%lukB"
4a0aa73f 5623 " bounce:%lukB"
d1bfcdb8
KK
5624 " free_pcp:%lukB"
5625 " local_pcp:%ukB"
d1ce749a 5626 " free_cma:%lukB"
1da177e4
LT
5627 "\n",
5628 zone->name,
88f5acf8 5629 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5630 K(min_wmark_pages(zone)),
5631 K(low_wmark_pages(zone)),
5632 K(high_wmark_pages(zone)),
e47b346a 5633 K(zone->nr_reserved_highatomic),
71c799f4
MK
5634 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5635 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5636 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5637 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5638 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5639 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5640 K(zone->present_pages),
9705bea5 5641 K(zone_managed_pages(zone)),
4a0aa73f 5642 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5643 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5644 K(free_pcp),
5645 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5646 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5647 printk("lowmem_reserve[]:");
5648 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5649 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5650 printk(KERN_CONT "\n");
1da177e4
LT
5651 }
5652
ee99c71c 5653 for_each_populated_zone(zone) {
d00181b9
KS
5654 unsigned int order;
5655 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5656 unsigned char types[MAX_ORDER];
1da177e4 5657
9af744d7 5658 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5659 continue;
1da177e4 5660 show_node(zone);
1f84a18f 5661 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5662
5663 spin_lock_irqsave(&zone->lock, flags);
5664 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5665 struct free_area *area = &zone->free_area[order];
5666 int type;
5667
5668 nr[order] = area->nr_free;
8f9de51a 5669 total += nr[order] << order;
377e4f16
RV
5670
5671 types[order] = 0;
5672 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5673 if (!free_area_empty(area, type))
377e4f16
RV
5674 types[order] |= 1 << type;
5675 }
1da177e4
LT
5676 }
5677 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5678 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5679 printk(KERN_CONT "%lu*%lukB ",
5680 nr[order], K(1UL) << order);
377e4f16
RV
5681 if (nr[order])
5682 show_migration_types(types[order]);
5683 }
1f84a18f 5684 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5685 }
5686
949f7ec5
DR
5687 hugetlb_show_meminfo();
5688
11fb9989 5689 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5690
1da177e4
LT
5691 show_swap_cache_info();
5692}
5693
19770b32
MG
5694static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5695{
5696 zoneref->zone = zone;
5697 zoneref->zone_idx = zone_idx(zone);
5698}
5699
1da177e4
LT
5700/*
5701 * Builds allocation fallback zone lists.
1a93205b
CL
5702 *
5703 * Add all populated zones of a node to the zonelist.
1da177e4 5704 */
9d3be21b 5705static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5706{
1a93205b 5707 struct zone *zone;
bc732f1d 5708 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5709 int nr_zones = 0;
02a68a5e
CL
5710
5711 do {
2f6726e5 5712 zone_type--;
070f8032 5713 zone = pgdat->node_zones + zone_type;
6aa303de 5714 if (managed_zone(zone)) {
9d3be21b 5715 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5716 check_highest_zone(zone_type);
1da177e4 5717 }
2f6726e5 5718 } while (zone_type);
bc732f1d 5719
070f8032 5720 return nr_zones;
1da177e4
LT
5721}
5722
5723#ifdef CONFIG_NUMA
f0c0b2b8
KH
5724
5725static int __parse_numa_zonelist_order(char *s)
5726{
c9bff3ee
MH
5727 /*
5728 * We used to support different zonlists modes but they turned
5729 * out to be just not useful. Let's keep the warning in place
5730 * if somebody still use the cmd line parameter so that we do
5731 * not fail it silently
5732 */
5733 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5734 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5735 return -EINVAL;
5736 }
5737 return 0;
5738}
5739
c9bff3ee
MH
5740char numa_zonelist_order[] = "Node";
5741
f0c0b2b8
KH
5742/*
5743 * sysctl handler for numa_zonelist_order
5744 */
cccad5b9 5745int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5746 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5747{
32927393
CH
5748 if (write)
5749 return __parse_numa_zonelist_order(buffer);
5750 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5751}
5752
5753
62bc62a8 5754#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5755static int node_load[MAX_NUMNODES];
5756
1da177e4 5757/**
4dc3b16b 5758 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5759 * @node: node whose fallback list we're appending
5760 * @used_node_mask: nodemask_t of already used nodes
5761 *
5762 * We use a number of factors to determine which is the next node that should
5763 * appear on a given node's fallback list. The node should not have appeared
5764 * already in @node's fallback list, and it should be the next closest node
5765 * according to the distance array (which contains arbitrary distance values
5766 * from each node to each node in the system), and should also prefer nodes
5767 * with no CPUs, since presumably they'll have very little allocation pressure
5768 * on them otherwise.
a862f68a
MR
5769 *
5770 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5771 */
f0c0b2b8 5772static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5773{
4cf808eb 5774 int n, val;
1da177e4 5775 int min_val = INT_MAX;
00ef2d2f 5776 int best_node = NUMA_NO_NODE;
1da177e4 5777
4cf808eb
LT
5778 /* Use the local node if we haven't already */
5779 if (!node_isset(node, *used_node_mask)) {
5780 node_set(node, *used_node_mask);
5781 return node;
5782 }
1da177e4 5783
4b0ef1fe 5784 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5785
5786 /* Don't want a node to appear more than once */
5787 if (node_isset(n, *used_node_mask))
5788 continue;
5789
1da177e4
LT
5790 /* Use the distance array to find the distance */
5791 val = node_distance(node, n);
5792
4cf808eb
LT
5793 /* Penalize nodes under us ("prefer the next node") */
5794 val += (n < node);
5795
1da177e4 5796 /* Give preference to headless and unused nodes */
b630749f 5797 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5798 val += PENALTY_FOR_NODE_WITH_CPUS;
5799
5800 /* Slight preference for less loaded node */
5801 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5802 val += node_load[n];
5803
5804 if (val < min_val) {
5805 min_val = val;
5806 best_node = n;
5807 }
5808 }
5809
5810 if (best_node >= 0)
5811 node_set(best_node, *used_node_mask);
5812
5813 return best_node;
5814}
5815
f0c0b2b8
KH
5816
5817/*
5818 * Build zonelists ordered by node and zones within node.
5819 * This results in maximum locality--normal zone overflows into local
5820 * DMA zone, if any--but risks exhausting DMA zone.
5821 */
9d3be21b
MH
5822static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5823 unsigned nr_nodes)
1da177e4 5824{
9d3be21b
MH
5825 struct zoneref *zonerefs;
5826 int i;
5827
5828 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5829
5830 for (i = 0; i < nr_nodes; i++) {
5831 int nr_zones;
5832
5833 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5834
9d3be21b
MH
5835 nr_zones = build_zonerefs_node(node, zonerefs);
5836 zonerefs += nr_zones;
5837 }
5838 zonerefs->zone = NULL;
5839 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5840}
5841
523b9458
CL
5842/*
5843 * Build gfp_thisnode zonelists
5844 */
5845static void build_thisnode_zonelists(pg_data_t *pgdat)
5846{
9d3be21b
MH
5847 struct zoneref *zonerefs;
5848 int nr_zones;
523b9458 5849
9d3be21b
MH
5850 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5851 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5852 zonerefs += nr_zones;
5853 zonerefs->zone = NULL;
5854 zonerefs->zone_idx = 0;
523b9458
CL
5855}
5856
f0c0b2b8
KH
5857/*
5858 * Build zonelists ordered by zone and nodes within zones.
5859 * This results in conserving DMA zone[s] until all Normal memory is
5860 * exhausted, but results in overflowing to remote node while memory
5861 * may still exist in local DMA zone.
5862 */
f0c0b2b8 5863
f0c0b2b8
KH
5864static void build_zonelists(pg_data_t *pgdat)
5865{
9d3be21b
MH
5866 static int node_order[MAX_NUMNODES];
5867 int node, load, nr_nodes = 0;
d0ddf49b 5868 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5869 int local_node, prev_node;
1da177e4
LT
5870
5871 /* NUMA-aware ordering of nodes */
5872 local_node = pgdat->node_id;
62bc62a8 5873 load = nr_online_nodes;
1da177e4 5874 prev_node = local_node;
f0c0b2b8 5875
f0c0b2b8 5876 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5877 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5878 /*
5879 * We don't want to pressure a particular node.
5880 * So adding penalty to the first node in same
5881 * distance group to make it round-robin.
5882 */
957f822a
DR
5883 if (node_distance(local_node, node) !=
5884 node_distance(local_node, prev_node))
f0c0b2b8
KH
5885 node_load[node] = load;
5886
9d3be21b 5887 node_order[nr_nodes++] = node;
1da177e4
LT
5888 prev_node = node;
5889 load--;
1da177e4 5890 }
523b9458 5891
9d3be21b 5892 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5893 build_thisnode_zonelists(pgdat);
1da177e4
LT
5894}
5895
7aac7898
LS
5896#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5897/*
5898 * Return node id of node used for "local" allocations.
5899 * I.e., first node id of first zone in arg node's generic zonelist.
5900 * Used for initializing percpu 'numa_mem', which is used primarily
5901 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5902 */
5903int local_memory_node(int node)
5904{
c33d6c06 5905 struct zoneref *z;
7aac7898 5906
c33d6c06 5907 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5908 gfp_zone(GFP_KERNEL),
c33d6c06 5909 NULL);
c1093b74 5910 return zone_to_nid(z->zone);
7aac7898
LS
5911}
5912#endif
f0c0b2b8 5913
6423aa81
JK
5914static void setup_min_unmapped_ratio(void);
5915static void setup_min_slab_ratio(void);
1da177e4
LT
5916#else /* CONFIG_NUMA */
5917
f0c0b2b8 5918static void build_zonelists(pg_data_t *pgdat)
1da177e4 5919{
19655d34 5920 int node, local_node;
9d3be21b
MH
5921 struct zoneref *zonerefs;
5922 int nr_zones;
1da177e4
LT
5923
5924 local_node = pgdat->node_id;
1da177e4 5925
9d3be21b
MH
5926 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5927 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5928 zonerefs += nr_zones;
1da177e4 5929
54a6eb5c
MG
5930 /*
5931 * Now we build the zonelist so that it contains the zones
5932 * of all the other nodes.
5933 * We don't want to pressure a particular node, so when
5934 * building the zones for node N, we make sure that the
5935 * zones coming right after the local ones are those from
5936 * node N+1 (modulo N)
5937 */
5938 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5939 if (!node_online(node))
5940 continue;
9d3be21b
MH
5941 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5942 zonerefs += nr_zones;
1da177e4 5943 }
54a6eb5c
MG
5944 for (node = 0; node < local_node; node++) {
5945 if (!node_online(node))
5946 continue;
9d3be21b
MH
5947 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5948 zonerefs += nr_zones;
54a6eb5c
MG
5949 }
5950
9d3be21b
MH
5951 zonerefs->zone = NULL;
5952 zonerefs->zone_idx = 0;
1da177e4
LT
5953}
5954
5955#endif /* CONFIG_NUMA */
5956
99dcc3e5
CL
5957/*
5958 * Boot pageset table. One per cpu which is going to be used for all
5959 * zones and all nodes. The parameters will be set in such a way
5960 * that an item put on a list will immediately be handed over to
5961 * the buddy list. This is safe since pageset manipulation is done
5962 * with interrupts disabled.
5963 *
5964 * The boot_pagesets must be kept even after bootup is complete for
5965 * unused processors and/or zones. They do play a role for bootstrapping
5966 * hotplugged processors.
5967 *
5968 * zoneinfo_show() and maybe other functions do
5969 * not check if the processor is online before following the pageset pointer.
5970 * Other parts of the kernel may not check if the zone is available.
5971 */
69a8396a 5972static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
5973/* These effectively disable the pcplists in the boot pageset completely */
5974#define BOOT_PAGESET_HIGH 0
5975#define BOOT_PAGESET_BATCH 1
99dcc3e5 5976static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5977static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5978
11cd8638 5979static void __build_all_zonelists(void *data)
1da177e4 5980{
6811378e 5981 int nid;
afb6ebb3 5982 int __maybe_unused cpu;
9adb62a5 5983 pg_data_t *self = data;
b93e0f32
MH
5984 static DEFINE_SPINLOCK(lock);
5985
5986 spin_lock(&lock);
9276b1bc 5987
7f9cfb31
BL
5988#ifdef CONFIG_NUMA
5989 memset(node_load, 0, sizeof(node_load));
5990#endif
9adb62a5 5991
c1152583
WY
5992 /*
5993 * This node is hotadded and no memory is yet present. So just
5994 * building zonelists is fine - no need to touch other nodes.
5995 */
9adb62a5
JL
5996 if (self && !node_online(self->node_id)) {
5997 build_zonelists(self);
c1152583
WY
5998 } else {
5999 for_each_online_node(nid) {
6000 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6001
c1152583
WY
6002 build_zonelists(pgdat);
6003 }
99dcc3e5 6004
7aac7898
LS
6005#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6006 /*
6007 * We now know the "local memory node" for each node--
6008 * i.e., the node of the first zone in the generic zonelist.
6009 * Set up numa_mem percpu variable for on-line cpus. During
6010 * boot, only the boot cpu should be on-line; we'll init the
6011 * secondary cpus' numa_mem as they come on-line. During
6012 * node/memory hotplug, we'll fixup all on-line cpus.
6013 */
d9c9a0b9 6014 for_each_online_cpu(cpu)
7aac7898 6015 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6016#endif
d9c9a0b9 6017 }
b93e0f32
MH
6018
6019 spin_unlock(&lock);
6811378e
YG
6020}
6021
061f67bc
RV
6022static noinline void __init
6023build_all_zonelists_init(void)
6024{
afb6ebb3
MH
6025 int cpu;
6026
061f67bc 6027 __build_all_zonelists(NULL);
afb6ebb3
MH
6028
6029 /*
6030 * Initialize the boot_pagesets that are going to be used
6031 * for bootstrapping processors. The real pagesets for
6032 * each zone will be allocated later when the per cpu
6033 * allocator is available.
6034 *
6035 * boot_pagesets are used also for bootstrapping offline
6036 * cpus if the system is already booted because the pagesets
6037 * are needed to initialize allocators on a specific cpu too.
6038 * F.e. the percpu allocator needs the page allocator which
6039 * needs the percpu allocator in order to allocate its pagesets
6040 * (a chicken-egg dilemma).
6041 */
6042 for_each_possible_cpu(cpu)
69a8396a 6043 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6044
061f67bc
RV
6045 mminit_verify_zonelist();
6046 cpuset_init_current_mems_allowed();
6047}
6048
4eaf3f64 6049/*
4eaf3f64 6050 * unless system_state == SYSTEM_BOOTING.
061f67bc 6051 *
72675e13 6052 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6053 * [protected by SYSTEM_BOOTING].
4eaf3f64 6054 */
72675e13 6055void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6056{
0a18e607
DH
6057 unsigned long vm_total_pages;
6058
6811378e 6059 if (system_state == SYSTEM_BOOTING) {
061f67bc 6060 build_all_zonelists_init();
6811378e 6061 } else {
11cd8638 6062 __build_all_zonelists(pgdat);
6811378e
YG
6063 /* cpuset refresh routine should be here */
6064 }
56b9413b
DH
6065 /* Get the number of free pages beyond high watermark in all zones. */
6066 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6067 /*
6068 * Disable grouping by mobility if the number of pages in the
6069 * system is too low to allow the mechanism to work. It would be
6070 * more accurate, but expensive to check per-zone. This check is
6071 * made on memory-hotadd so a system can start with mobility
6072 * disabled and enable it later
6073 */
d9c23400 6074 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6075 page_group_by_mobility_disabled = 1;
6076 else
6077 page_group_by_mobility_disabled = 0;
6078
ce0725f7 6079 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6080 nr_online_nodes,
756a025f
JP
6081 page_group_by_mobility_disabled ? "off" : "on",
6082 vm_total_pages);
f0c0b2b8 6083#ifdef CONFIG_NUMA
f88dfff5 6084 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6085#endif
1da177e4
LT
6086}
6087
a9a9e77f
PT
6088/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6089static bool __meminit
6090overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6091{
a9a9e77f
PT
6092 static struct memblock_region *r;
6093
6094 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6095 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6096 for_each_mem_region(r) {
a9a9e77f
PT
6097 if (*pfn < memblock_region_memory_end_pfn(r))
6098 break;
6099 }
6100 }
6101 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6102 memblock_is_mirror(r)) {
6103 *pfn = memblock_region_memory_end_pfn(r);
6104 return true;
6105 }
6106 }
a9a9e77f
PT
6107 return false;
6108}
6109
1da177e4
LT
6110/*
6111 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6112 * up by memblock_free_all() once the early boot process is
1da177e4 6113 * done. Non-atomic initialization, single-pass.
d882c006
DH
6114 *
6115 * All aligned pageblocks are initialized to the specified migratetype
6116 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6117 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6118 */
c09b4240 6119void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6120 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6121 enum meminit_context context,
6122 struct vmem_altmap *altmap, int migratetype)
1da177e4 6123{
a9a9e77f 6124 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6125 struct page *page;
1da177e4 6126
22b31eec
HD
6127 if (highest_memmap_pfn < end_pfn - 1)
6128 highest_memmap_pfn = end_pfn - 1;
6129
966cf44f 6130#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6131 /*
6132 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6133 * memory. We limit the total number of pages to initialize to just
6134 * those that might contain the memory mapping. We will defer the
6135 * ZONE_DEVICE page initialization until after we have released
6136 * the hotplug lock.
4b94ffdc 6137 */
966cf44f
AD
6138 if (zone == ZONE_DEVICE) {
6139 if (!altmap)
6140 return;
6141
6142 if (start_pfn == altmap->base_pfn)
6143 start_pfn += altmap->reserve;
6144 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6145 }
6146#endif
4b94ffdc 6147
948c436e 6148 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6149 /*
b72d0ffb
AM
6150 * There can be holes in boot-time mem_map[]s handed to this
6151 * function. They do not exist on hotplugged memory.
a2f3aa02 6152 */
c1d0da83 6153 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6154 if (overlap_memmap_init(zone, &pfn))
6155 continue;
dc2da7b4 6156 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6157 break;
a2f3aa02 6158 }
ac5d2539 6159
d0dc12e8
PT
6160 page = pfn_to_page(pfn);
6161 __init_single_page(page, pfn, zone, nid);
c1d0da83 6162 if (context == MEMINIT_HOTPLUG)
d483da5b 6163 __SetPageReserved(page);
d0dc12e8 6164
ac5d2539 6165 /*
d882c006
DH
6166 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6167 * such that unmovable allocations won't be scattered all
6168 * over the place during system boot.
ac5d2539 6169 */
4eb29bd9 6170 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6171 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6172 cond_resched();
ac5d2539 6173 }
948c436e 6174 pfn++;
1da177e4
LT
6175 }
6176}
6177
966cf44f
AD
6178#ifdef CONFIG_ZONE_DEVICE
6179void __ref memmap_init_zone_device(struct zone *zone,
6180 unsigned long start_pfn,
1f8d75c1 6181 unsigned long nr_pages,
966cf44f
AD
6182 struct dev_pagemap *pgmap)
6183{
1f8d75c1 6184 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6185 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6186 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6187 unsigned long zone_idx = zone_idx(zone);
6188 unsigned long start = jiffies;
6189 int nid = pgdat->node_id;
6190
46d945ae 6191 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6192 return;
6193
6194 /*
6195 * The call to memmap_init_zone should have already taken care
6196 * of the pages reserved for the memmap, so we can just jump to
6197 * the end of that region and start processing the device pages.
6198 */
514caf23 6199 if (altmap) {
966cf44f 6200 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6201 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6202 }
6203
6204 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6205 struct page *page = pfn_to_page(pfn);
6206
6207 __init_single_page(page, pfn, zone_idx, nid);
6208
6209 /*
6210 * Mark page reserved as it will need to wait for onlining
6211 * phase for it to be fully associated with a zone.
6212 *
6213 * We can use the non-atomic __set_bit operation for setting
6214 * the flag as we are still initializing the pages.
6215 */
6216 __SetPageReserved(page);
6217
6218 /*
8a164fef
CH
6219 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6220 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6221 * ever freed or placed on a driver-private list.
966cf44f
AD
6222 */
6223 page->pgmap = pgmap;
8a164fef 6224 page->zone_device_data = NULL;
966cf44f
AD
6225
6226 /*
6227 * Mark the block movable so that blocks are reserved for
6228 * movable at startup. This will force kernel allocations
6229 * to reserve their blocks rather than leaking throughout
6230 * the address space during boot when many long-lived
6231 * kernel allocations are made.
6232 *
c1d0da83 6233 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6234 * because this is done early in section_activate()
966cf44f 6235 */
4eb29bd9 6236 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6237 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6238 cond_resched();
6239 }
6240 }
6241
fdc029b1 6242 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6243 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6244}
6245
6246#endif
1e548deb 6247static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6248{
7aeb09f9 6249 unsigned int order, t;
b2a0ac88
MG
6250 for_each_migratetype_order(order, t) {
6251 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6252 zone->free_area[order].nr_free = 0;
6253 }
6254}
6255
2f2818d2
MR
6256#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6257/*
6258 * Only struct pages that correspond to ranges defined by memblock.memory
6259 * are zeroed and initialized by going through __init_single_page() during
6260 * memmap_init_zone().
6261 *
6262 * But, there could be struct pages that correspond to holes in
6263 * memblock.memory. This can happen because of the following reasons:
6264 * - physical memory bank size is not necessarily the exact multiple of the
6265 * arbitrary section size
6266 * - early reserved memory may not be listed in memblock.memory
6267 * - memory layouts defined with memmap= kernel parameter may not align
6268 * nicely with memmap sections
6269 *
6270 * Explicitly initialize those struct pages so that:
6271 * - PG_Reserved is set
6272 * - zone and node links point to zone and node that span the page if the
6273 * hole is in the middle of a zone
6274 * - zone and node links point to adjacent zone/node if the hole falls on
6275 * the zone boundary; the pages in such holes will be prepended to the
6276 * zone/node above the hole except for the trailing pages in the last
6277 * section that will be appended to the zone/node below.
6278 */
6279static u64 __meminit init_unavailable_range(unsigned long spfn,
6280 unsigned long epfn,
6281 int zone, int node)
6282{
6283 unsigned long pfn;
6284 u64 pgcnt = 0;
6285
6286 for (pfn = spfn; pfn < epfn; pfn++) {
6287 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6288 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6289 + pageblock_nr_pages - 1;
6290 continue;
6291 }
6292 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6293 __SetPageReserved(pfn_to_page(pfn));
6294 pgcnt++;
6295 }
6296
6297 return pgcnt;
6298}
6299#else
6300static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6301 int zone, int node)
6302{
6303 return 0;
6304}
6305#endif
6306
dfb3ccd0 6307void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6308 unsigned long zone,
6309 unsigned long range_start_pfn)
dfb3ccd0 6310{
2f2818d2 6311 static unsigned long hole_pfn;
73a6e474
BH
6312 unsigned long start_pfn, end_pfn;
6313 unsigned long range_end_pfn = range_start_pfn + size;
6314 int i;
2f2818d2 6315 u64 pgcnt = 0;
73a6e474
BH
6316
6317 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6318 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6319 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6320
6321 if (end_pfn > start_pfn) {
6322 size = end_pfn - start_pfn;
dc2da7b4 6323 memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn,
d882c006 6324 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474 6325 }
2f2818d2
MR
6326
6327 if (hole_pfn < start_pfn)
6328 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6329 zone, nid);
6330 hole_pfn = end_pfn;
73a6e474 6331 }
2f2818d2
MR
6332
6333#ifdef CONFIG_SPARSEMEM
6334 /*
6335 * Initialize the hole in the range [zone_end_pfn, section_end].
6336 * If zone boundary falls in the middle of a section, this hole
6337 * will be re-initialized during the call to this function for the
6338 * higher zone.
6339 */
6340 end_pfn = round_up(range_end_pfn, PAGES_PER_SECTION);
6341 if (hole_pfn < end_pfn)
6342 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6343 zone, nid);
6344#endif
6345
6346 if (pgcnt)
6347 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6348 zone_names[zone], pgcnt);
dfb3ccd0 6349}
1da177e4 6350
7cd2b0a3 6351static int zone_batchsize(struct zone *zone)
e7c8d5c9 6352{
3a6be87f 6353#ifdef CONFIG_MMU
e7c8d5c9
CL
6354 int batch;
6355
6356 /*
6357 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6358 * size of the zone.
e7c8d5c9 6359 */
9705bea5 6360 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6361 /* But no more than a meg. */
6362 if (batch * PAGE_SIZE > 1024 * 1024)
6363 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6364 batch /= 4; /* We effectively *= 4 below */
6365 if (batch < 1)
6366 batch = 1;
6367
6368 /*
0ceaacc9
NP
6369 * Clamp the batch to a 2^n - 1 value. Having a power
6370 * of 2 value was found to be more likely to have
6371 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6372 *
0ceaacc9
NP
6373 * For example if 2 tasks are alternately allocating
6374 * batches of pages, one task can end up with a lot
6375 * of pages of one half of the possible page colors
6376 * and the other with pages of the other colors.
e7c8d5c9 6377 */
9155203a 6378 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6379
e7c8d5c9 6380 return batch;
3a6be87f
DH
6381
6382#else
6383 /* The deferral and batching of frees should be suppressed under NOMMU
6384 * conditions.
6385 *
6386 * The problem is that NOMMU needs to be able to allocate large chunks
6387 * of contiguous memory as there's no hardware page translation to
6388 * assemble apparent contiguous memory from discontiguous pages.
6389 *
6390 * Queueing large contiguous runs of pages for batching, however,
6391 * causes the pages to actually be freed in smaller chunks. As there
6392 * can be a significant delay between the individual batches being
6393 * recycled, this leads to the once large chunks of space being
6394 * fragmented and becoming unavailable for high-order allocations.
6395 */
6396 return 0;
6397#endif
e7c8d5c9
CL
6398}
6399
8d7a8fa9 6400/*
5c3ad2eb
VB
6401 * pcp->high and pcp->batch values are related and generally batch is lower
6402 * than high. They are also related to pcp->count such that count is lower
6403 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6404 *
5c3ad2eb
VB
6405 * However, guaranteeing these relations at all times would require e.g. write
6406 * barriers here but also careful usage of read barriers at the read side, and
6407 * thus be prone to error and bad for performance. Thus the update only prevents
6408 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6409 * can cope with those fields changing asynchronously, and fully trust only the
6410 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6411 *
6412 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6413 * outside of boot time (or some other assurance that no concurrent updaters
6414 * exist).
6415 */
6416static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6417 unsigned long batch)
6418{
5c3ad2eb
VB
6419 WRITE_ONCE(pcp->batch, batch);
6420 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6421}
6422
88c90dbc 6423static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6424{
6425 struct per_cpu_pages *pcp;
5f8dcc21 6426 int migratetype;
2caaad41 6427
1c6fe946
MD
6428 memset(p, 0, sizeof(*p));
6429
3dfa5721 6430 pcp = &p->pcp;
5f8dcc21
MG
6431 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6432 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6433
69a8396a
VB
6434 /*
6435 * Set batch and high values safe for a boot pageset. A true percpu
6436 * pageset's initialization will update them subsequently. Here we don't
6437 * need to be as careful as pageset_update() as nobody can access the
6438 * pageset yet.
6439 */
952eaf81
VB
6440 pcp->high = BOOT_PAGESET_HIGH;
6441 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6442}
6443
3b1f3658 6444static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6445 unsigned long batch)
6446{
6447 struct per_cpu_pageset *p;
6448 int cpu;
6449
6450 for_each_possible_cpu(cpu) {
6451 p = per_cpu_ptr(zone->pageset, cpu);
6452 pageset_update(&p->pcp, high, batch);
6453 }
6454}
6455
8ad4b1fb 6456/*
0a8b4f1d 6457 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6458 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6459 */
0a8b4f1d 6460static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6461{
7115ac6e
VB
6462 unsigned long new_high, new_batch;
6463
6464 if (percpu_pagelist_fraction) {
6465 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6466 new_batch = max(1UL, new_high / 4);
6467 if ((new_high / 4) > (PAGE_SHIFT * 8))
6468 new_batch = PAGE_SHIFT * 8;
6469 } else {
6470 new_batch = zone_batchsize(zone);
6471 new_high = 6 * new_batch;
6472 new_batch = max(1UL, 1 * new_batch);
6473 }
169f6c19 6474
952eaf81
VB
6475 if (zone->pageset_high == new_high &&
6476 zone->pageset_batch == new_batch)
6477 return;
6478
6479 zone->pageset_high = new_high;
6480 zone->pageset_batch = new_batch;
6481
ec6e8c7e 6482 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6483}
6484
72675e13 6485void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6486{
0a8b4f1d 6487 struct per_cpu_pageset *p;
319774e2 6488 int cpu;
0a8b4f1d 6489
319774e2 6490 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6491 for_each_possible_cpu(cpu) {
6492 p = per_cpu_ptr(zone->pageset, cpu);
6493 pageset_init(p);
6494 }
6495
6496 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6497}
6498
2caaad41 6499/*
99dcc3e5
CL
6500 * Allocate per cpu pagesets and initialize them.
6501 * Before this call only boot pagesets were available.
e7c8d5c9 6502 */
99dcc3e5 6503void __init setup_per_cpu_pageset(void)
e7c8d5c9 6504{
b4911ea2 6505 struct pglist_data *pgdat;
99dcc3e5 6506 struct zone *zone;
b418a0f9 6507 int __maybe_unused cpu;
e7c8d5c9 6508
319774e2
WF
6509 for_each_populated_zone(zone)
6510 setup_zone_pageset(zone);
b4911ea2 6511
b418a0f9
SD
6512#ifdef CONFIG_NUMA
6513 /*
6514 * Unpopulated zones continue using the boot pagesets.
6515 * The numa stats for these pagesets need to be reset.
6516 * Otherwise, they will end up skewing the stats of
6517 * the nodes these zones are associated with.
6518 */
6519 for_each_possible_cpu(cpu) {
6520 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6521 memset(pcp->vm_numa_stat_diff, 0,
6522 sizeof(pcp->vm_numa_stat_diff));
6523 }
6524#endif
6525
b4911ea2
MG
6526 for_each_online_pgdat(pgdat)
6527 pgdat->per_cpu_nodestats =
6528 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6529}
6530
c09b4240 6531static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6532{
99dcc3e5
CL
6533 /*
6534 * per cpu subsystem is not up at this point. The following code
6535 * relies on the ability of the linker to provide the
6536 * offset of a (static) per cpu variable into the per cpu area.
6537 */
6538 zone->pageset = &boot_pageset;
952eaf81
VB
6539 zone->pageset_high = BOOT_PAGESET_HIGH;
6540 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6541
b38a8725 6542 if (populated_zone(zone))
99dcc3e5
CL
6543 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6544 zone->name, zone->present_pages,
6545 zone_batchsize(zone));
ed8ece2e
DH
6546}
6547
dc0bbf3b 6548void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6549 unsigned long zone_start_pfn,
b171e409 6550 unsigned long size)
ed8ece2e
DH
6551{
6552 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6553 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6554
8f416836
WY
6555 if (zone_idx > pgdat->nr_zones)
6556 pgdat->nr_zones = zone_idx;
ed8ece2e 6557
ed8ece2e
DH
6558 zone->zone_start_pfn = zone_start_pfn;
6559
708614e6
MG
6560 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6561 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6562 pgdat->node_id,
6563 (unsigned long)zone_idx(zone),
6564 zone_start_pfn, (zone_start_pfn + size));
6565
1e548deb 6566 zone_init_free_lists(zone);
9dcb8b68 6567 zone->initialized = 1;
ed8ece2e
DH
6568}
6569
c713216d
MG
6570/**
6571 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6572 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6573 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6574 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6575 *
6576 * It returns the start and end page frame of a node based on information
7d018176 6577 * provided by memblock_set_node(). If called for a node
c713216d 6578 * with no available memory, a warning is printed and the start and end
88ca3b94 6579 * PFNs will be 0.
c713216d 6580 */
bbe5d993 6581void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6582 unsigned long *start_pfn, unsigned long *end_pfn)
6583{
c13291a5 6584 unsigned long this_start_pfn, this_end_pfn;
c713216d 6585 int i;
c13291a5 6586
c713216d
MG
6587 *start_pfn = -1UL;
6588 *end_pfn = 0;
6589
c13291a5
TH
6590 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6591 *start_pfn = min(*start_pfn, this_start_pfn);
6592 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6593 }
6594
633c0666 6595 if (*start_pfn == -1UL)
c713216d 6596 *start_pfn = 0;
c713216d
MG
6597}
6598
2a1e274a
MG
6599/*
6600 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6601 * assumption is made that zones within a node are ordered in monotonic
6602 * increasing memory addresses so that the "highest" populated zone is used
6603 */
b69a7288 6604static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6605{
6606 int zone_index;
6607 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6608 if (zone_index == ZONE_MOVABLE)
6609 continue;
6610
6611 if (arch_zone_highest_possible_pfn[zone_index] >
6612 arch_zone_lowest_possible_pfn[zone_index])
6613 break;
6614 }
6615
6616 VM_BUG_ON(zone_index == -1);
6617 movable_zone = zone_index;
6618}
6619
6620/*
6621 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6622 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6623 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6624 * in each node depending on the size of each node and how evenly kernelcore
6625 * is distributed. This helper function adjusts the zone ranges
6626 * provided by the architecture for a given node by using the end of the
6627 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6628 * zones within a node are in order of monotonic increases memory addresses
6629 */
bbe5d993 6630static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6631 unsigned long zone_type,
6632 unsigned long node_start_pfn,
6633 unsigned long node_end_pfn,
6634 unsigned long *zone_start_pfn,
6635 unsigned long *zone_end_pfn)
6636{
6637 /* Only adjust if ZONE_MOVABLE is on this node */
6638 if (zone_movable_pfn[nid]) {
6639 /* Size ZONE_MOVABLE */
6640 if (zone_type == ZONE_MOVABLE) {
6641 *zone_start_pfn = zone_movable_pfn[nid];
6642 *zone_end_pfn = min(node_end_pfn,
6643 arch_zone_highest_possible_pfn[movable_zone]);
6644
e506b996
XQ
6645 /* Adjust for ZONE_MOVABLE starting within this range */
6646 } else if (!mirrored_kernelcore &&
6647 *zone_start_pfn < zone_movable_pfn[nid] &&
6648 *zone_end_pfn > zone_movable_pfn[nid]) {
6649 *zone_end_pfn = zone_movable_pfn[nid];
6650
2a1e274a
MG
6651 /* Check if this whole range is within ZONE_MOVABLE */
6652 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6653 *zone_start_pfn = *zone_end_pfn;
6654 }
6655}
6656
c713216d
MG
6657/*
6658 * Return the number of pages a zone spans in a node, including holes
6659 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6660 */
bbe5d993 6661static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6662 unsigned long zone_type,
7960aedd
ZY
6663 unsigned long node_start_pfn,
6664 unsigned long node_end_pfn,
d91749c1 6665 unsigned long *zone_start_pfn,
854e8848 6666 unsigned long *zone_end_pfn)
c713216d 6667{
299c83dc
LF
6668 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6669 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6670 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6671 if (!node_start_pfn && !node_end_pfn)
6672 return 0;
6673
7960aedd 6674 /* Get the start and end of the zone */
299c83dc
LF
6675 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6676 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6677 adjust_zone_range_for_zone_movable(nid, zone_type,
6678 node_start_pfn, node_end_pfn,
d91749c1 6679 zone_start_pfn, zone_end_pfn);
c713216d
MG
6680
6681 /* Check that this node has pages within the zone's required range */
d91749c1 6682 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6683 return 0;
6684
6685 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6686 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6687 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6688
6689 /* Return the spanned pages */
d91749c1 6690 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6691}
6692
6693/*
6694 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6695 * then all holes in the requested range will be accounted for.
c713216d 6696 */
bbe5d993 6697unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6698 unsigned long range_start_pfn,
6699 unsigned long range_end_pfn)
6700{
96e907d1
TH
6701 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6702 unsigned long start_pfn, end_pfn;
6703 int i;
c713216d 6704
96e907d1
TH
6705 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6706 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6707 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6708 nr_absent -= end_pfn - start_pfn;
c713216d 6709 }
96e907d1 6710 return nr_absent;
c713216d
MG
6711}
6712
6713/**
6714 * absent_pages_in_range - Return number of page frames in holes within a range
6715 * @start_pfn: The start PFN to start searching for holes
6716 * @end_pfn: The end PFN to stop searching for holes
6717 *
a862f68a 6718 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6719 */
6720unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6721 unsigned long end_pfn)
6722{
6723 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6724}
6725
6726/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6727static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6728 unsigned long zone_type,
7960aedd 6729 unsigned long node_start_pfn,
854e8848 6730 unsigned long node_end_pfn)
c713216d 6731{
96e907d1
TH
6732 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6733 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6734 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6735 unsigned long nr_absent;
9c7cd687 6736
b5685e92 6737 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6738 if (!node_start_pfn && !node_end_pfn)
6739 return 0;
6740
96e907d1
TH
6741 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6742 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6743
2a1e274a
MG
6744 adjust_zone_range_for_zone_movable(nid, zone_type,
6745 node_start_pfn, node_end_pfn,
6746 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6747 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6748
6749 /*
6750 * ZONE_MOVABLE handling.
6751 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6752 * and vice versa.
6753 */
e506b996
XQ
6754 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6755 unsigned long start_pfn, end_pfn;
6756 struct memblock_region *r;
6757
cc6de168 6758 for_each_mem_region(r) {
e506b996
XQ
6759 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6760 zone_start_pfn, zone_end_pfn);
6761 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6762 zone_start_pfn, zone_end_pfn);
6763
6764 if (zone_type == ZONE_MOVABLE &&
6765 memblock_is_mirror(r))
6766 nr_absent += end_pfn - start_pfn;
6767
6768 if (zone_type == ZONE_NORMAL &&
6769 !memblock_is_mirror(r))
6770 nr_absent += end_pfn - start_pfn;
342332e6
TI
6771 }
6772 }
6773
6774 return nr_absent;
c713216d 6775}
0e0b864e 6776
bbe5d993 6777static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6778 unsigned long node_start_pfn,
854e8848 6779 unsigned long node_end_pfn)
c713216d 6780{
febd5949 6781 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6782 enum zone_type i;
6783
febd5949
GZ
6784 for (i = 0; i < MAX_NR_ZONES; i++) {
6785 struct zone *zone = pgdat->node_zones + i;
d91749c1 6786 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6787 unsigned long spanned, absent;
febd5949 6788 unsigned long size, real_size;
c713216d 6789
854e8848
MR
6790 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6791 node_start_pfn,
6792 node_end_pfn,
6793 &zone_start_pfn,
6794 &zone_end_pfn);
6795 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6796 node_start_pfn,
6797 node_end_pfn);
3f08a302
MR
6798
6799 size = spanned;
6800 real_size = size - absent;
6801
d91749c1
TI
6802 if (size)
6803 zone->zone_start_pfn = zone_start_pfn;
6804 else
6805 zone->zone_start_pfn = 0;
febd5949
GZ
6806 zone->spanned_pages = size;
6807 zone->present_pages = real_size;
6808
6809 totalpages += size;
6810 realtotalpages += real_size;
6811 }
6812
6813 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6814 pgdat->node_present_pages = realtotalpages;
6815 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6816 realtotalpages);
6817}
6818
835c134e
MG
6819#ifndef CONFIG_SPARSEMEM
6820/*
6821 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6822 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6823 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6824 * round what is now in bits to nearest long in bits, then return it in
6825 * bytes.
6826 */
7c45512d 6827static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6828{
6829 unsigned long usemapsize;
6830
7c45512d 6831 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6832 usemapsize = roundup(zonesize, pageblock_nr_pages);
6833 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6834 usemapsize *= NR_PAGEBLOCK_BITS;
6835 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6836
6837 return usemapsize / 8;
6838}
6839
7cc2a959 6840static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6841 struct zone *zone,
6842 unsigned long zone_start_pfn,
6843 unsigned long zonesize)
835c134e 6844{
7c45512d 6845 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6846 zone->pageblock_flags = NULL;
23a7052a 6847 if (usemapsize) {
6782832e 6848 zone->pageblock_flags =
26fb3dae
MR
6849 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6850 pgdat->node_id);
23a7052a
MR
6851 if (!zone->pageblock_flags)
6852 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6853 usemapsize, zone->name, pgdat->node_id);
6854 }
835c134e
MG
6855}
6856#else
7c45512d
LT
6857static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6858 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6859#endif /* CONFIG_SPARSEMEM */
6860
d9c23400 6861#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6862
d9c23400 6863/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6864void __init set_pageblock_order(void)
d9c23400 6865{
955c1cd7
AM
6866 unsigned int order;
6867
d9c23400
MG
6868 /* Check that pageblock_nr_pages has not already been setup */
6869 if (pageblock_order)
6870 return;
6871
955c1cd7
AM
6872 if (HPAGE_SHIFT > PAGE_SHIFT)
6873 order = HUGETLB_PAGE_ORDER;
6874 else
6875 order = MAX_ORDER - 1;
6876
d9c23400
MG
6877 /*
6878 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6879 * This value may be variable depending on boot parameters on IA64 and
6880 * powerpc.
d9c23400
MG
6881 */
6882 pageblock_order = order;
6883}
6884#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6885
ba72cb8c
MG
6886/*
6887 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6888 * is unused as pageblock_order is set at compile-time. See
6889 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6890 * the kernel config
ba72cb8c 6891 */
03e85f9d 6892void __init set_pageblock_order(void)
ba72cb8c 6893{
ba72cb8c 6894}
d9c23400
MG
6895
6896#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6897
03e85f9d 6898static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6899 unsigned long present_pages)
01cefaef
JL
6900{
6901 unsigned long pages = spanned_pages;
6902
6903 /*
6904 * Provide a more accurate estimation if there are holes within
6905 * the zone and SPARSEMEM is in use. If there are holes within the
6906 * zone, each populated memory region may cost us one or two extra
6907 * memmap pages due to alignment because memmap pages for each
89d790ab 6908 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6909 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6910 */
6911 if (spanned_pages > present_pages + (present_pages >> 4) &&
6912 IS_ENABLED(CONFIG_SPARSEMEM))
6913 pages = present_pages;
6914
6915 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6916}
6917
ace1db39
OS
6918#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6919static void pgdat_init_split_queue(struct pglist_data *pgdat)
6920{
364c1eeb
YS
6921 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6922
6923 spin_lock_init(&ds_queue->split_queue_lock);
6924 INIT_LIST_HEAD(&ds_queue->split_queue);
6925 ds_queue->split_queue_len = 0;
ace1db39
OS
6926}
6927#else
6928static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6929#endif
6930
6931#ifdef CONFIG_COMPACTION
6932static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6933{
6934 init_waitqueue_head(&pgdat->kcompactd_wait);
6935}
6936#else
6937static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6938#endif
6939
03e85f9d 6940static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6941{
208d54e5 6942 pgdat_resize_init(pgdat);
ace1db39 6943
ace1db39
OS
6944 pgdat_init_split_queue(pgdat);
6945 pgdat_init_kcompactd(pgdat);
6946
1da177e4 6947 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6948 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6949
eefa864b 6950 pgdat_page_ext_init(pgdat);
867e5e1d 6951 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6952}
6953
6954static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6955 unsigned long remaining_pages)
6956{
9705bea5 6957 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6958 zone_set_nid(zone, nid);
6959 zone->name = zone_names[idx];
6960 zone->zone_pgdat = NODE_DATA(nid);
6961 spin_lock_init(&zone->lock);
6962 zone_seqlock_init(zone);
6963 zone_pcp_init(zone);
6964}
6965
6966/*
6967 * Set up the zone data structures
6968 * - init pgdat internals
6969 * - init all zones belonging to this node
6970 *
6971 * NOTE: this function is only called during memory hotplug
6972 */
6973#ifdef CONFIG_MEMORY_HOTPLUG
6974void __ref free_area_init_core_hotplug(int nid)
6975{
6976 enum zone_type z;
6977 pg_data_t *pgdat = NODE_DATA(nid);
6978
6979 pgdat_init_internals(pgdat);
6980 for (z = 0; z < MAX_NR_ZONES; z++)
6981 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6982}
6983#endif
6984
6985/*
6986 * Set up the zone data structures:
6987 * - mark all pages reserved
6988 * - mark all memory queues empty
6989 * - clear the memory bitmaps
6990 *
6991 * NOTE: pgdat should get zeroed by caller.
6992 * NOTE: this function is only called during early init.
6993 */
6994static void __init free_area_init_core(struct pglist_data *pgdat)
6995{
6996 enum zone_type j;
6997 int nid = pgdat->node_id;
5f63b720 6998
03e85f9d 6999 pgdat_init_internals(pgdat);
385386cf
JW
7000 pgdat->per_cpu_nodestats = &boot_nodestats;
7001
1da177e4
LT
7002 for (j = 0; j < MAX_NR_ZONES; j++) {
7003 struct zone *zone = pgdat->node_zones + j;
e6943859 7004 unsigned long size, freesize, memmap_pages;
d91749c1 7005 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 7006
febd5949 7007 size = zone->spanned_pages;
e6943859 7008 freesize = zone->present_pages;
1da177e4 7009
0e0b864e 7010 /*
9feedc9d 7011 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7012 * is used by this zone for memmap. This affects the watermark
7013 * and per-cpu initialisations
7014 */
e6943859 7015 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7016 if (!is_highmem_idx(j)) {
7017 if (freesize >= memmap_pages) {
7018 freesize -= memmap_pages;
7019 if (memmap_pages)
7020 printk(KERN_DEBUG
7021 " %s zone: %lu pages used for memmap\n",
7022 zone_names[j], memmap_pages);
7023 } else
1170532b 7024 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
7025 zone_names[j], memmap_pages, freesize);
7026 }
0e0b864e 7027
6267276f 7028 /* Account for reserved pages */
9feedc9d
JL
7029 if (j == 0 && freesize > dma_reserve) {
7030 freesize -= dma_reserve;
d903ef9f 7031 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 7032 zone_names[0], dma_reserve);
0e0b864e
MG
7033 }
7034
98d2b0eb 7035 if (!is_highmem_idx(j))
9feedc9d 7036 nr_kernel_pages += freesize;
01cefaef
JL
7037 /* Charge for highmem memmap if there are enough kernel pages */
7038 else if (nr_kernel_pages > memmap_pages * 2)
7039 nr_kernel_pages -= memmap_pages;
9feedc9d 7040 nr_all_pages += freesize;
1da177e4 7041
9feedc9d
JL
7042 /*
7043 * Set an approximate value for lowmem here, it will be adjusted
7044 * when the bootmem allocator frees pages into the buddy system.
7045 * And all highmem pages will be managed by the buddy system.
7046 */
03e85f9d 7047 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7048
d883c6cf 7049 if (!size)
1da177e4
LT
7050 continue;
7051
955c1cd7 7052 set_pageblock_order();
d883c6cf
JK
7053 setup_usemap(pgdat, zone, zone_start_pfn, size);
7054 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 7055 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
7056 }
7057}
7058
0cd842f9 7059#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 7060static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7061{
b0aeba74 7062 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7063 unsigned long __maybe_unused offset = 0;
7064
1da177e4
LT
7065 /* Skip empty nodes */
7066 if (!pgdat->node_spanned_pages)
7067 return;
7068
b0aeba74
TL
7069 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7070 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7071 /* ia64 gets its own node_mem_map, before this, without bootmem */
7072 if (!pgdat->node_mem_map) {
b0aeba74 7073 unsigned long size, end;
d41dee36
AW
7074 struct page *map;
7075
e984bb43
BP
7076 /*
7077 * The zone's endpoints aren't required to be MAX_ORDER
7078 * aligned but the node_mem_map endpoints must be in order
7079 * for the buddy allocator to function correctly.
7080 */
108bcc96 7081 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7082 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7083 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7084 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7085 pgdat->node_id);
23a7052a
MR
7086 if (!map)
7087 panic("Failed to allocate %ld bytes for node %d memory map\n",
7088 size, pgdat->node_id);
a1c34a3b 7089 pgdat->node_mem_map = map + offset;
1da177e4 7090 }
0cd842f9
OS
7091 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7092 __func__, pgdat->node_id, (unsigned long)pgdat,
7093 (unsigned long)pgdat->node_mem_map);
12d810c1 7094#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7095 /*
7096 * With no DISCONTIG, the global mem_map is just set as node 0's
7097 */
c713216d 7098 if (pgdat == NODE_DATA(0)) {
1da177e4 7099 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7100 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7101 mem_map -= offset;
c713216d 7102 }
1da177e4
LT
7103#endif
7104}
0cd842f9
OS
7105#else
7106static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7107#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7108
0188dc98
OS
7109#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7110static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7111{
0188dc98
OS
7112 pgdat->first_deferred_pfn = ULONG_MAX;
7113}
7114#else
7115static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7116#endif
7117
854e8848 7118static void __init free_area_init_node(int nid)
1da177e4 7119{
9109fb7b 7120 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7121 unsigned long start_pfn = 0;
7122 unsigned long end_pfn = 0;
9109fb7b 7123
88fdf75d 7124 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7125 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7126
854e8848 7127 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7128
1da177e4 7129 pgdat->node_id = nid;
854e8848 7130 pgdat->node_start_pfn = start_pfn;
75ef7184 7131 pgdat->per_cpu_nodestats = NULL;
854e8848 7132
8d29e18a 7133 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7134 (u64)start_pfn << PAGE_SHIFT,
7135 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7136 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7137
7138 alloc_node_mem_map(pgdat);
0188dc98 7139 pgdat_set_deferred_range(pgdat);
1da177e4 7140
7f3eb55b 7141 free_area_init_core(pgdat);
1da177e4
LT
7142}
7143
bc9331a1 7144void __init free_area_init_memoryless_node(int nid)
3f08a302 7145{
854e8848 7146 free_area_init_node(nid);
3f08a302
MR
7147}
7148
418508c1
MS
7149#if MAX_NUMNODES > 1
7150/*
7151 * Figure out the number of possible node ids.
7152 */
f9872caf 7153void __init setup_nr_node_ids(void)
418508c1 7154{
904a9553 7155 unsigned int highest;
418508c1 7156
904a9553 7157 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7158 nr_node_ids = highest + 1;
7159}
418508c1
MS
7160#endif
7161
1e01979c
TH
7162/**
7163 * node_map_pfn_alignment - determine the maximum internode alignment
7164 *
7165 * This function should be called after node map is populated and sorted.
7166 * It calculates the maximum power of two alignment which can distinguish
7167 * all the nodes.
7168 *
7169 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7170 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7171 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7172 * shifted, 1GiB is enough and this function will indicate so.
7173 *
7174 * This is used to test whether pfn -> nid mapping of the chosen memory
7175 * model has fine enough granularity to avoid incorrect mapping for the
7176 * populated node map.
7177 *
a862f68a 7178 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7179 * requirement (single node).
7180 */
7181unsigned long __init node_map_pfn_alignment(void)
7182{
7183 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7184 unsigned long start, end, mask;
98fa15f3 7185 int last_nid = NUMA_NO_NODE;
c13291a5 7186 int i, nid;
1e01979c 7187
c13291a5 7188 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7189 if (!start || last_nid < 0 || last_nid == nid) {
7190 last_nid = nid;
7191 last_end = end;
7192 continue;
7193 }
7194
7195 /*
7196 * Start with a mask granular enough to pin-point to the
7197 * start pfn and tick off bits one-by-one until it becomes
7198 * too coarse to separate the current node from the last.
7199 */
7200 mask = ~((1 << __ffs(start)) - 1);
7201 while (mask && last_end <= (start & (mask << 1)))
7202 mask <<= 1;
7203
7204 /* accumulate all internode masks */
7205 accl_mask |= mask;
7206 }
7207
7208 /* convert mask to number of pages */
7209 return ~accl_mask + 1;
7210}
7211
c713216d
MG
7212/**
7213 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7214 *
a862f68a 7215 * Return: the minimum PFN based on information provided via
7d018176 7216 * memblock_set_node().
c713216d
MG
7217 */
7218unsigned long __init find_min_pfn_with_active_regions(void)
7219{
8a1b25fe 7220 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7221}
7222
37b07e41
LS
7223/*
7224 * early_calculate_totalpages()
7225 * Sum pages in active regions for movable zone.
4b0ef1fe 7226 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7227 */
484f51f8 7228static unsigned long __init early_calculate_totalpages(void)
7e63efef 7229{
7e63efef 7230 unsigned long totalpages = 0;
c13291a5
TH
7231 unsigned long start_pfn, end_pfn;
7232 int i, nid;
7233
7234 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7235 unsigned long pages = end_pfn - start_pfn;
7e63efef 7236
37b07e41
LS
7237 totalpages += pages;
7238 if (pages)
4b0ef1fe 7239 node_set_state(nid, N_MEMORY);
37b07e41 7240 }
b8af2941 7241 return totalpages;
7e63efef
MG
7242}
7243
2a1e274a
MG
7244/*
7245 * Find the PFN the Movable zone begins in each node. Kernel memory
7246 * is spread evenly between nodes as long as the nodes have enough
7247 * memory. When they don't, some nodes will have more kernelcore than
7248 * others
7249 */
b224ef85 7250static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7251{
7252 int i, nid;
7253 unsigned long usable_startpfn;
7254 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7255 /* save the state before borrow the nodemask */
4b0ef1fe 7256 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7257 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7258 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7259 struct memblock_region *r;
b2f3eebe
TC
7260
7261 /* Need to find movable_zone earlier when movable_node is specified. */
7262 find_usable_zone_for_movable();
7263
7264 /*
7265 * If movable_node is specified, ignore kernelcore and movablecore
7266 * options.
7267 */
7268 if (movable_node_is_enabled()) {
cc6de168 7269 for_each_mem_region(r) {
136199f0 7270 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7271 continue;
7272
d622abf7 7273 nid = memblock_get_region_node(r);
b2f3eebe 7274
136199f0 7275 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7276 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7277 min(usable_startpfn, zone_movable_pfn[nid]) :
7278 usable_startpfn;
7279 }
7280
7281 goto out2;
7282 }
2a1e274a 7283
342332e6
TI
7284 /*
7285 * If kernelcore=mirror is specified, ignore movablecore option
7286 */
7287 if (mirrored_kernelcore) {
7288 bool mem_below_4gb_not_mirrored = false;
7289
cc6de168 7290 for_each_mem_region(r) {
342332e6
TI
7291 if (memblock_is_mirror(r))
7292 continue;
7293
d622abf7 7294 nid = memblock_get_region_node(r);
342332e6
TI
7295
7296 usable_startpfn = memblock_region_memory_base_pfn(r);
7297
7298 if (usable_startpfn < 0x100000) {
7299 mem_below_4gb_not_mirrored = true;
7300 continue;
7301 }
7302
7303 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7304 min(usable_startpfn, zone_movable_pfn[nid]) :
7305 usable_startpfn;
7306 }
7307
7308 if (mem_below_4gb_not_mirrored)
633bf2fe 7309 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7310
7311 goto out2;
7312 }
7313
7e63efef 7314 /*
a5c6d650
DR
7315 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7316 * amount of necessary memory.
7317 */
7318 if (required_kernelcore_percent)
7319 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7320 10000UL;
7321 if (required_movablecore_percent)
7322 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7323 10000UL;
7324
7325 /*
7326 * If movablecore= was specified, calculate what size of
7e63efef
MG
7327 * kernelcore that corresponds so that memory usable for
7328 * any allocation type is evenly spread. If both kernelcore
7329 * and movablecore are specified, then the value of kernelcore
7330 * will be used for required_kernelcore if it's greater than
7331 * what movablecore would have allowed.
7332 */
7333 if (required_movablecore) {
7e63efef
MG
7334 unsigned long corepages;
7335
7336 /*
7337 * Round-up so that ZONE_MOVABLE is at least as large as what
7338 * was requested by the user
7339 */
7340 required_movablecore =
7341 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7342 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7343 corepages = totalpages - required_movablecore;
7344
7345 required_kernelcore = max(required_kernelcore, corepages);
7346 }
7347
bde304bd
XQ
7348 /*
7349 * If kernelcore was not specified or kernelcore size is larger
7350 * than totalpages, there is no ZONE_MOVABLE.
7351 */
7352 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7353 goto out;
2a1e274a
MG
7354
7355 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7356 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7357
7358restart:
7359 /* Spread kernelcore memory as evenly as possible throughout nodes */
7360 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7361 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7362 unsigned long start_pfn, end_pfn;
7363
2a1e274a
MG
7364 /*
7365 * Recalculate kernelcore_node if the division per node
7366 * now exceeds what is necessary to satisfy the requested
7367 * amount of memory for the kernel
7368 */
7369 if (required_kernelcore < kernelcore_node)
7370 kernelcore_node = required_kernelcore / usable_nodes;
7371
7372 /*
7373 * As the map is walked, we track how much memory is usable
7374 * by the kernel using kernelcore_remaining. When it is
7375 * 0, the rest of the node is usable by ZONE_MOVABLE
7376 */
7377 kernelcore_remaining = kernelcore_node;
7378
7379 /* Go through each range of PFNs within this node */
c13291a5 7380 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7381 unsigned long size_pages;
7382
c13291a5 7383 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7384 if (start_pfn >= end_pfn)
7385 continue;
7386
7387 /* Account for what is only usable for kernelcore */
7388 if (start_pfn < usable_startpfn) {
7389 unsigned long kernel_pages;
7390 kernel_pages = min(end_pfn, usable_startpfn)
7391 - start_pfn;
7392
7393 kernelcore_remaining -= min(kernel_pages,
7394 kernelcore_remaining);
7395 required_kernelcore -= min(kernel_pages,
7396 required_kernelcore);
7397
7398 /* Continue if range is now fully accounted */
7399 if (end_pfn <= usable_startpfn) {
7400
7401 /*
7402 * Push zone_movable_pfn to the end so
7403 * that if we have to rebalance
7404 * kernelcore across nodes, we will
7405 * not double account here
7406 */
7407 zone_movable_pfn[nid] = end_pfn;
7408 continue;
7409 }
7410 start_pfn = usable_startpfn;
7411 }
7412
7413 /*
7414 * The usable PFN range for ZONE_MOVABLE is from
7415 * start_pfn->end_pfn. Calculate size_pages as the
7416 * number of pages used as kernelcore
7417 */
7418 size_pages = end_pfn - start_pfn;
7419 if (size_pages > kernelcore_remaining)
7420 size_pages = kernelcore_remaining;
7421 zone_movable_pfn[nid] = start_pfn + size_pages;
7422
7423 /*
7424 * Some kernelcore has been met, update counts and
7425 * break if the kernelcore for this node has been
b8af2941 7426 * satisfied
2a1e274a
MG
7427 */
7428 required_kernelcore -= min(required_kernelcore,
7429 size_pages);
7430 kernelcore_remaining -= size_pages;
7431 if (!kernelcore_remaining)
7432 break;
7433 }
7434 }
7435
7436 /*
7437 * If there is still required_kernelcore, we do another pass with one
7438 * less node in the count. This will push zone_movable_pfn[nid] further
7439 * along on the nodes that still have memory until kernelcore is
b8af2941 7440 * satisfied
2a1e274a
MG
7441 */
7442 usable_nodes--;
7443 if (usable_nodes && required_kernelcore > usable_nodes)
7444 goto restart;
7445
b2f3eebe 7446out2:
2a1e274a
MG
7447 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7448 for (nid = 0; nid < MAX_NUMNODES; nid++)
7449 zone_movable_pfn[nid] =
7450 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7451
20e6926d 7452out:
66918dcd 7453 /* restore the node_state */
4b0ef1fe 7454 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7455}
7456
4b0ef1fe
LJ
7457/* Any regular or high memory on that node ? */
7458static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7459{
37b07e41
LS
7460 enum zone_type zone_type;
7461
4b0ef1fe 7462 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7463 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7464 if (populated_zone(zone)) {
7b0e0c0e
OS
7465 if (IS_ENABLED(CONFIG_HIGHMEM))
7466 node_set_state(nid, N_HIGH_MEMORY);
7467 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7468 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7469 break;
7470 }
37b07e41 7471 }
37b07e41
LS
7472}
7473
51930df5
MR
7474/*
7475 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7476 * such cases we allow max_zone_pfn sorted in the descending order
7477 */
7478bool __weak arch_has_descending_max_zone_pfns(void)
7479{
7480 return false;
7481}
7482
c713216d 7483/**
9691a071 7484 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7485 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7486 *
7487 * This will call free_area_init_node() for each active node in the system.
7d018176 7488 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7489 * zone in each node and their holes is calculated. If the maximum PFN
7490 * between two adjacent zones match, it is assumed that the zone is empty.
7491 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7492 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7493 * starts where the previous one ended. For example, ZONE_DMA32 starts
7494 * at arch_max_dma_pfn.
7495 */
9691a071 7496void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7497{
c13291a5 7498 unsigned long start_pfn, end_pfn;
51930df5
MR
7499 int i, nid, zone;
7500 bool descending;
a6af2bc3 7501
c713216d
MG
7502 /* Record where the zone boundaries are */
7503 memset(arch_zone_lowest_possible_pfn, 0,
7504 sizeof(arch_zone_lowest_possible_pfn));
7505 memset(arch_zone_highest_possible_pfn, 0,
7506 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7507
7508 start_pfn = find_min_pfn_with_active_regions();
51930df5 7509 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7510
7511 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7512 if (descending)
7513 zone = MAX_NR_ZONES - i - 1;
7514 else
7515 zone = i;
7516
7517 if (zone == ZONE_MOVABLE)
2a1e274a 7518 continue;
90cae1fe 7519
51930df5
MR
7520 end_pfn = max(max_zone_pfn[zone], start_pfn);
7521 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7522 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7523
7524 start_pfn = end_pfn;
c713216d 7525 }
2a1e274a
MG
7526
7527 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7528 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7529 find_zone_movable_pfns_for_nodes();
c713216d 7530
c713216d 7531 /* Print out the zone ranges */
f88dfff5 7532 pr_info("Zone ranges:\n");
2a1e274a
MG
7533 for (i = 0; i < MAX_NR_ZONES; i++) {
7534 if (i == ZONE_MOVABLE)
7535 continue;
f88dfff5 7536 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7537 if (arch_zone_lowest_possible_pfn[i] ==
7538 arch_zone_highest_possible_pfn[i])
f88dfff5 7539 pr_cont("empty\n");
72f0ba02 7540 else
8d29e18a
JG
7541 pr_cont("[mem %#018Lx-%#018Lx]\n",
7542 (u64)arch_zone_lowest_possible_pfn[i]
7543 << PAGE_SHIFT,
7544 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7545 << PAGE_SHIFT) - 1);
2a1e274a
MG
7546 }
7547
7548 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7549 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7550 for (i = 0; i < MAX_NUMNODES; i++) {
7551 if (zone_movable_pfn[i])
8d29e18a
JG
7552 pr_info(" Node %d: %#018Lx\n", i,
7553 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7554 }
c713216d 7555
f46edbd1
DW
7556 /*
7557 * Print out the early node map, and initialize the
7558 * subsection-map relative to active online memory ranges to
7559 * enable future "sub-section" extensions of the memory map.
7560 */
f88dfff5 7561 pr_info("Early memory node ranges\n");
f46edbd1 7562 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7563 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7564 (u64)start_pfn << PAGE_SHIFT,
7565 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7566 subsection_map_init(start_pfn, end_pfn - start_pfn);
7567 }
c713216d
MG
7568
7569 /* Initialise every node */
708614e6 7570 mminit_verify_pageflags_layout();
8ef82866 7571 setup_nr_node_ids();
c713216d
MG
7572 for_each_online_node(nid) {
7573 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7574 free_area_init_node(nid);
37b07e41
LS
7575
7576 /* Any memory on that node */
7577 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7578 node_set_state(nid, N_MEMORY);
7579 check_for_memory(pgdat, nid);
c713216d
MG
7580 }
7581}
2a1e274a 7582
a5c6d650
DR
7583static int __init cmdline_parse_core(char *p, unsigned long *core,
7584 unsigned long *percent)
2a1e274a
MG
7585{
7586 unsigned long long coremem;
a5c6d650
DR
7587 char *endptr;
7588
2a1e274a
MG
7589 if (!p)
7590 return -EINVAL;
7591
a5c6d650
DR
7592 /* Value may be a percentage of total memory, otherwise bytes */
7593 coremem = simple_strtoull(p, &endptr, 0);
7594 if (*endptr == '%') {
7595 /* Paranoid check for percent values greater than 100 */
7596 WARN_ON(coremem > 100);
2a1e274a 7597
a5c6d650
DR
7598 *percent = coremem;
7599 } else {
7600 coremem = memparse(p, &p);
7601 /* Paranoid check that UL is enough for the coremem value */
7602 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7603
a5c6d650
DR
7604 *core = coremem >> PAGE_SHIFT;
7605 *percent = 0UL;
7606 }
2a1e274a
MG
7607 return 0;
7608}
ed7ed365 7609
7e63efef
MG
7610/*
7611 * kernelcore=size sets the amount of memory for use for allocations that
7612 * cannot be reclaimed or migrated.
7613 */
7614static int __init cmdline_parse_kernelcore(char *p)
7615{
342332e6
TI
7616 /* parse kernelcore=mirror */
7617 if (parse_option_str(p, "mirror")) {
7618 mirrored_kernelcore = true;
7619 return 0;
7620 }
7621
a5c6d650
DR
7622 return cmdline_parse_core(p, &required_kernelcore,
7623 &required_kernelcore_percent);
7e63efef
MG
7624}
7625
7626/*
7627 * movablecore=size sets the amount of memory for use for allocations that
7628 * can be reclaimed or migrated.
7629 */
7630static int __init cmdline_parse_movablecore(char *p)
7631{
a5c6d650
DR
7632 return cmdline_parse_core(p, &required_movablecore,
7633 &required_movablecore_percent);
7e63efef
MG
7634}
7635
ed7ed365 7636early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7637early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7638
c3d5f5f0
JL
7639void adjust_managed_page_count(struct page *page, long count)
7640{
9705bea5 7641 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7642 totalram_pages_add(count);
3dcc0571
JL
7643#ifdef CONFIG_HIGHMEM
7644 if (PageHighMem(page))
ca79b0c2 7645 totalhigh_pages_add(count);
3dcc0571 7646#endif
c3d5f5f0 7647}
3dcc0571 7648EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7649
e5cb113f 7650unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7651{
11199692
JL
7652 void *pos;
7653 unsigned long pages = 0;
69afade7 7654
11199692
JL
7655 start = (void *)PAGE_ALIGN((unsigned long)start);
7656 end = (void *)((unsigned long)end & PAGE_MASK);
7657 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7658 struct page *page = virt_to_page(pos);
7659 void *direct_map_addr;
7660
7661 /*
7662 * 'direct_map_addr' might be different from 'pos'
7663 * because some architectures' virt_to_page()
7664 * work with aliases. Getting the direct map
7665 * address ensures that we get a _writeable_
7666 * alias for the memset().
7667 */
7668 direct_map_addr = page_address(page);
c746170d
VF
7669 /*
7670 * Perform a kasan-unchecked memset() since this memory
7671 * has not been initialized.
7672 */
7673 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7674 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7675 memset(direct_map_addr, poison, PAGE_SIZE);
7676
7677 free_reserved_page(page);
69afade7
JL
7678 }
7679
7680 if (pages && s)
adb1fe9a
JP
7681 pr_info("Freeing %s memory: %ldK\n",
7682 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7683
7684 return pages;
7685}
7686
cfa11e08
JL
7687#ifdef CONFIG_HIGHMEM
7688void free_highmem_page(struct page *page)
7689{
7690 __free_reserved_page(page);
ca79b0c2 7691 totalram_pages_inc();
9705bea5 7692 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7693 totalhigh_pages_inc();
cfa11e08
JL
7694}
7695#endif
7696
7ee3d4e8
JL
7697
7698void __init mem_init_print_info(const char *str)
7699{
7700 unsigned long physpages, codesize, datasize, rosize, bss_size;
7701 unsigned long init_code_size, init_data_size;
7702
7703 physpages = get_num_physpages();
7704 codesize = _etext - _stext;
7705 datasize = _edata - _sdata;
7706 rosize = __end_rodata - __start_rodata;
7707 bss_size = __bss_stop - __bss_start;
7708 init_data_size = __init_end - __init_begin;
7709 init_code_size = _einittext - _sinittext;
7710
7711 /*
7712 * Detect special cases and adjust section sizes accordingly:
7713 * 1) .init.* may be embedded into .data sections
7714 * 2) .init.text.* may be out of [__init_begin, __init_end],
7715 * please refer to arch/tile/kernel/vmlinux.lds.S.
7716 * 3) .rodata.* may be embedded into .text or .data sections.
7717 */
7718#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7719 do { \
7720 if (start <= pos && pos < end && size > adj) \
7721 size -= adj; \
7722 } while (0)
7ee3d4e8
JL
7723
7724 adj_init_size(__init_begin, __init_end, init_data_size,
7725 _sinittext, init_code_size);
7726 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7727 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7728 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7729 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7730
7731#undef adj_init_size
7732
756a025f 7733 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7734#ifdef CONFIG_HIGHMEM
756a025f 7735 ", %luK highmem"
7ee3d4e8 7736#endif
756a025f
JP
7737 "%s%s)\n",
7738 nr_free_pages() << (PAGE_SHIFT - 10),
7739 physpages << (PAGE_SHIFT - 10),
7740 codesize >> 10, datasize >> 10, rosize >> 10,
7741 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7742 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7743 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7744#ifdef CONFIG_HIGHMEM
ca79b0c2 7745 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7746#endif
756a025f 7747 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7748}
7749
0e0b864e 7750/**
88ca3b94
RD
7751 * set_dma_reserve - set the specified number of pages reserved in the first zone
7752 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7753 *
013110a7 7754 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7755 * In the DMA zone, a significant percentage may be consumed by kernel image
7756 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7757 * function may optionally be used to account for unfreeable pages in the
7758 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7759 * smaller per-cpu batchsize.
0e0b864e
MG
7760 */
7761void __init set_dma_reserve(unsigned long new_dma_reserve)
7762{
7763 dma_reserve = new_dma_reserve;
7764}
7765
005fd4bb 7766static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7767{
1da177e4 7768
005fd4bb
SAS
7769 lru_add_drain_cpu(cpu);
7770 drain_pages(cpu);
9f8f2172 7771
005fd4bb
SAS
7772 /*
7773 * Spill the event counters of the dead processor
7774 * into the current processors event counters.
7775 * This artificially elevates the count of the current
7776 * processor.
7777 */
7778 vm_events_fold_cpu(cpu);
9f8f2172 7779
005fd4bb
SAS
7780 /*
7781 * Zero the differential counters of the dead processor
7782 * so that the vm statistics are consistent.
7783 *
7784 * This is only okay since the processor is dead and cannot
7785 * race with what we are doing.
7786 */
7787 cpu_vm_stats_fold(cpu);
7788 return 0;
1da177e4 7789}
1da177e4 7790
e03a5125
NP
7791#ifdef CONFIG_NUMA
7792int hashdist = HASHDIST_DEFAULT;
7793
7794static int __init set_hashdist(char *str)
7795{
7796 if (!str)
7797 return 0;
7798 hashdist = simple_strtoul(str, &str, 0);
7799 return 1;
7800}
7801__setup("hashdist=", set_hashdist);
7802#endif
7803
1da177e4
LT
7804void __init page_alloc_init(void)
7805{
005fd4bb
SAS
7806 int ret;
7807
e03a5125
NP
7808#ifdef CONFIG_NUMA
7809 if (num_node_state(N_MEMORY) == 1)
7810 hashdist = 0;
7811#endif
7812
005fd4bb
SAS
7813 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7814 "mm/page_alloc:dead", NULL,
7815 page_alloc_cpu_dead);
7816 WARN_ON(ret < 0);
1da177e4
LT
7817}
7818
cb45b0e9 7819/*
34b10060 7820 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7821 * or min_free_kbytes changes.
7822 */
7823static void calculate_totalreserve_pages(void)
7824{
7825 struct pglist_data *pgdat;
7826 unsigned long reserve_pages = 0;
2f6726e5 7827 enum zone_type i, j;
cb45b0e9
HA
7828
7829 for_each_online_pgdat(pgdat) {
281e3726
MG
7830
7831 pgdat->totalreserve_pages = 0;
7832
cb45b0e9
HA
7833 for (i = 0; i < MAX_NR_ZONES; i++) {
7834 struct zone *zone = pgdat->node_zones + i;
3484b2de 7835 long max = 0;
9705bea5 7836 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7837
7838 /* Find valid and maximum lowmem_reserve in the zone */
7839 for (j = i; j < MAX_NR_ZONES; j++) {
7840 if (zone->lowmem_reserve[j] > max)
7841 max = zone->lowmem_reserve[j];
7842 }
7843
41858966
MG
7844 /* we treat the high watermark as reserved pages. */
7845 max += high_wmark_pages(zone);
cb45b0e9 7846
3d6357de
AK
7847 if (max > managed_pages)
7848 max = managed_pages;
a8d01437 7849
281e3726 7850 pgdat->totalreserve_pages += max;
a8d01437 7851
cb45b0e9
HA
7852 reserve_pages += max;
7853 }
7854 }
7855 totalreserve_pages = reserve_pages;
7856}
7857
1da177e4
LT
7858/*
7859 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7860 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7861 * has a correct pages reserved value, so an adequate number of
7862 * pages are left in the zone after a successful __alloc_pages().
7863 */
7864static void setup_per_zone_lowmem_reserve(void)
7865{
7866 struct pglist_data *pgdat;
470c61d7 7867 enum zone_type i, j;
1da177e4 7868
ec936fc5 7869 for_each_online_pgdat(pgdat) {
470c61d7
LS
7870 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7871 struct zone *zone = &pgdat->node_zones[i];
7872 int ratio = sysctl_lowmem_reserve_ratio[i];
7873 bool clear = !ratio || !zone_managed_pages(zone);
7874 unsigned long managed_pages = 0;
7875
7876 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7877 if (clear) {
7878 zone->lowmem_reserve[j] = 0;
d3cda233 7879 } else {
470c61d7
LS
7880 struct zone *upper_zone = &pgdat->node_zones[j];
7881
7882 managed_pages += zone_managed_pages(upper_zone);
7883 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 7884 }
1da177e4
LT
7885 }
7886 }
7887 }
cb45b0e9
HA
7888
7889 /* update totalreserve_pages */
7890 calculate_totalreserve_pages();
1da177e4
LT
7891}
7892
cfd3da1e 7893static void __setup_per_zone_wmarks(void)
1da177e4
LT
7894{
7895 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7896 unsigned long lowmem_pages = 0;
7897 struct zone *zone;
7898 unsigned long flags;
7899
7900 /* Calculate total number of !ZONE_HIGHMEM pages */
7901 for_each_zone(zone) {
7902 if (!is_highmem(zone))
9705bea5 7903 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7904 }
7905
7906 for_each_zone(zone) {
ac924c60
AM
7907 u64 tmp;
7908
1125b4e3 7909 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7910 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7911 do_div(tmp, lowmem_pages);
1da177e4
LT
7912 if (is_highmem(zone)) {
7913 /*
669ed175
NP
7914 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7915 * need highmem pages, so cap pages_min to a small
7916 * value here.
7917 *
41858966 7918 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7919 * deltas control async page reclaim, and so should
669ed175 7920 * not be capped for highmem.
1da177e4 7921 */
90ae8d67 7922 unsigned long min_pages;
1da177e4 7923
9705bea5 7924 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7925 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7926 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7927 } else {
669ed175
NP
7928 /*
7929 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7930 * proportionate to the zone's size.
7931 */
a9214443 7932 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7933 }
7934
795ae7a0
JW
7935 /*
7936 * Set the kswapd watermarks distance according to the
7937 * scale factor in proportion to available memory, but
7938 * ensure a minimum size on small systems.
7939 */
7940 tmp = max_t(u64, tmp >> 2,
9705bea5 7941 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7942 watermark_scale_factor, 10000));
7943
aa092591 7944 zone->watermark_boost = 0;
a9214443
MG
7945 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7946 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7947
1125b4e3 7948 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7949 }
cb45b0e9
HA
7950
7951 /* update totalreserve_pages */
7952 calculate_totalreserve_pages();
1da177e4
LT
7953}
7954
cfd3da1e
MG
7955/**
7956 * setup_per_zone_wmarks - called when min_free_kbytes changes
7957 * or when memory is hot-{added|removed}
7958 *
7959 * Ensures that the watermark[min,low,high] values for each zone are set
7960 * correctly with respect to min_free_kbytes.
7961 */
7962void setup_per_zone_wmarks(void)
7963{
b93e0f32
MH
7964 static DEFINE_SPINLOCK(lock);
7965
7966 spin_lock(&lock);
cfd3da1e 7967 __setup_per_zone_wmarks();
b93e0f32 7968 spin_unlock(&lock);
cfd3da1e
MG
7969}
7970
1da177e4
LT
7971/*
7972 * Initialise min_free_kbytes.
7973 *
7974 * For small machines we want it small (128k min). For large machines
8beeae86 7975 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7976 * bandwidth does not increase linearly with machine size. We use
7977 *
b8af2941 7978 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7979 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7980 *
7981 * which yields
7982 *
7983 * 16MB: 512k
7984 * 32MB: 724k
7985 * 64MB: 1024k
7986 * 128MB: 1448k
7987 * 256MB: 2048k
7988 * 512MB: 2896k
7989 * 1024MB: 4096k
7990 * 2048MB: 5792k
7991 * 4096MB: 8192k
7992 * 8192MB: 11584k
7993 * 16384MB: 16384k
7994 */
1b79acc9 7995int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7996{
7997 unsigned long lowmem_kbytes;
5f12733e 7998 int new_min_free_kbytes;
1da177e4
LT
7999
8000 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8001 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8002
8003 if (new_min_free_kbytes > user_min_free_kbytes) {
8004 min_free_kbytes = new_min_free_kbytes;
8005 if (min_free_kbytes < 128)
8006 min_free_kbytes = 128;
ee8eb9a5
JS
8007 if (min_free_kbytes > 262144)
8008 min_free_kbytes = 262144;
5f12733e
MH
8009 } else {
8010 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8011 new_min_free_kbytes, user_min_free_kbytes);
8012 }
bc75d33f 8013 setup_per_zone_wmarks();
a6cccdc3 8014 refresh_zone_stat_thresholds();
1da177e4 8015 setup_per_zone_lowmem_reserve();
6423aa81
JK
8016
8017#ifdef CONFIG_NUMA
8018 setup_min_unmapped_ratio();
8019 setup_min_slab_ratio();
8020#endif
8021
4aab2be0
VB
8022 khugepaged_min_free_kbytes_update();
8023
1da177e4
LT
8024 return 0;
8025}
e08d3fdf 8026postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8027
8028/*
b8af2941 8029 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8030 * that we can call two helper functions whenever min_free_kbytes
8031 * changes.
8032 */
cccad5b9 8033int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8034 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8035{
da8c757b
HP
8036 int rc;
8037
8038 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8039 if (rc)
8040 return rc;
8041
5f12733e
MH
8042 if (write) {
8043 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8044 setup_per_zone_wmarks();
5f12733e 8045 }
1da177e4
LT
8046 return 0;
8047}
8048
795ae7a0 8049int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8050 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8051{
8052 int rc;
8053
8054 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8055 if (rc)
8056 return rc;
8057
8058 if (write)
8059 setup_per_zone_wmarks();
8060
8061 return 0;
8062}
8063
9614634f 8064#ifdef CONFIG_NUMA
6423aa81 8065static void setup_min_unmapped_ratio(void)
9614634f 8066{
6423aa81 8067 pg_data_t *pgdat;
9614634f 8068 struct zone *zone;
9614634f 8069
a5f5f91d 8070 for_each_online_pgdat(pgdat)
81cbcbc2 8071 pgdat->min_unmapped_pages = 0;
a5f5f91d 8072
9614634f 8073 for_each_zone(zone)
9705bea5
AK
8074 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8075 sysctl_min_unmapped_ratio) / 100;
9614634f 8076}
0ff38490 8077
6423aa81
JK
8078
8079int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8080 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8081{
0ff38490
CL
8082 int rc;
8083
8d65af78 8084 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8085 if (rc)
8086 return rc;
8087
6423aa81
JK
8088 setup_min_unmapped_ratio();
8089
8090 return 0;
8091}
8092
8093static void setup_min_slab_ratio(void)
8094{
8095 pg_data_t *pgdat;
8096 struct zone *zone;
8097
a5f5f91d
MG
8098 for_each_online_pgdat(pgdat)
8099 pgdat->min_slab_pages = 0;
8100
0ff38490 8101 for_each_zone(zone)
9705bea5
AK
8102 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8103 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8104}
8105
8106int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8107 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8108{
8109 int rc;
8110
8111 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8112 if (rc)
8113 return rc;
8114
8115 setup_min_slab_ratio();
8116
0ff38490
CL
8117 return 0;
8118}
9614634f
CL
8119#endif
8120
1da177e4
LT
8121/*
8122 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8123 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8124 * whenever sysctl_lowmem_reserve_ratio changes.
8125 *
8126 * The reserve ratio obviously has absolutely no relation with the
41858966 8127 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8128 * if in function of the boot time zone sizes.
8129 */
cccad5b9 8130int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8131 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8132{
86aaf255
BH
8133 int i;
8134
8d65af78 8135 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8136
8137 for (i = 0; i < MAX_NR_ZONES; i++) {
8138 if (sysctl_lowmem_reserve_ratio[i] < 1)
8139 sysctl_lowmem_reserve_ratio[i] = 0;
8140 }
8141
1da177e4
LT
8142 setup_per_zone_lowmem_reserve();
8143 return 0;
8144}
8145
8ad4b1fb
RS
8146/*
8147 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8148 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8149 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8150 */
cccad5b9 8151int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8152 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8153{
8154 struct zone *zone;
7cd2b0a3 8155 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8156 int ret;
8157
7cd2b0a3
DR
8158 mutex_lock(&pcp_batch_high_lock);
8159 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8160
8d65af78 8161 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8162 if (!write || ret < 0)
8163 goto out;
8164
8165 /* Sanity checking to avoid pcp imbalance */
8166 if (percpu_pagelist_fraction &&
8167 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8168 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8169 ret = -EINVAL;
8170 goto out;
8171 }
8172
8173 /* No change? */
8174 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8175 goto out;
c8e251fa 8176
cb1ef534 8177 for_each_populated_zone(zone)
0a8b4f1d 8178 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8179out:
c8e251fa 8180 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8181 return ret;
8ad4b1fb
RS
8182}
8183
f6f34b43
SD
8184#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8185/*
8186 * Returns the number of pages that arch has reserved but
8187 * is not known to alloc_large_system_hash().
8188 */
8189static unsigned long __init arch_reserved_kernel_pages(void)
8190{
8191 return 0;
8192}
8193#endif
8194
9017217b
PT
8195/*
8196 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8197 * machines. As memory size is increased the scale is also increased but at
8198 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8199 * quadruples the scale is increased by one, which means the size of hash table
8200 * only doubles, instead of quadrupling as well.
8201 * Because 32-bit systems cannot have large physical memory, where this scaling
8202 * makes sense, it is disabled on such platforms.
8203 */
8204#if __BITS_PER_LONG > 32
8205#define ADAPT_SCALE_BASE (64ul << 30)
8206#define ADAPT_SCALE_SHIFT 2
8207#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8208#endif
8209
1da177e4
LT
8210/*
8211 * allocate a large system hash table from bootmem
8212 * - it is assumed that the hash table must contain an exact power-of-2
8213 * quantity of entries
8214 * - limit is the number of hash buckets, not the total allocation size
8215 */
8216void *__init alloc_large_system_hash(const char *tablename,
8217 unsigned long bucketsize,
8218 unsigned long numentries,
8219 int scale,
8220 int flags,
8221 unsigned int *_hash_shift,
8222 unsigned int *_hash_mask,
31fe62b9
TB
8223 unsigned long low_limit,
8224 unsigned long high_limit)
1da177e4 8225{
31fe62b9 8226 unsigned long long max = high_limit;
1da177e4
LT
8227 unsigned long log2qty, size;
8228 void *table = NULL;
3749a8f0 8229 gfp_t gfp_flags;
ec11408a 8230 bool virt;
1da177e4
LT
8231
8232 /* allow the kernel cmdline to have a say */
8233 if (!numentries) {
8234 /* round applicable memory size up to nearest megabyte */
04903664 8235 numentries = nr_kernel_pages;
f6f34b43 8236 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8237
8238 /* It isn't necessary when PAGE_SIZE >= 1MB */
8239 if (PAGE_SHIFT < 20)
8240 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8241
9017217b
PT
8242#if __BITS_PER_LONG > 32
8243 if (!high_limit) {
8244 unsigned long adapt;
8245
8246 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8247 adapt <<= ADAPT_SCALE_SHIFT)
8248 scale++;
8249 }
8250#endif
8251
1da177e4
LT
8252 /* limit to 1 bucket per 2^scale bytes of low memory */
8253 if (scale > PAGE_SHIFT)
8254 numentries >>= (scale - PAGE_SHIFT);
8255 else
8256 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8257
8258 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8259 if (unlikely(flags & HASH_SMALL)) {
8260 /* Makes no sense without HASH_EARLY */
8261 WARN_ON(!(flags & HASH_EARLY));
8262 if (!(numentries >> *_hash_shift)) {
8263 numentries = 1UL << *_hash_shift;
8264 BUG_ON(!numentries);
8265 }
8266 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8267 numentries = PAGE_SIZE / bucketsize;
1da177e4 8268 }
6e692ed3 8269 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8270
8271 /* limit allocation size to 1/16 total memory by default */
8272 if (max == 0) {
8273 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8274 do_div(max, bucketsize);
8275 }
074b8517 8276 max = min(max, 0x80000000ULL);
1da177e4 8277
31fe62b9
TB
8278 if (numentries < low_limit)
8279 numentries = low_limit;
1da177e4
LT
8280 if (numentries > max)
8281 numentries = max;
8282
f0d1b0b3 8283 log2qty = ilog2(numentries);
1da177e4 8284
3749a8f0 8285 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8286 do {
ec11408a 8287 virt = false;
1da177e4 8288 size = bucketsize << log2qty;
ea1f5f37
PT
8289 if (flags & HASH_EARLY) {
8290 if (flags & HASH_ZERO)
26fb3dae 8291 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8292 else
7e1c4e27
MR
8293 table = memblock_alloc_raw(size,
8294 SMP_CACHE_BYTES);
ec11408a 8295 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8296 table = __vmalloc(size, gfp_flags);
ec11408a 8297 virt = true;
ea1f5f37 8298 } else {
1037b83b
ED
8299 /*
8300 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8301 * some pages at the end of hash table which
8302 * alloc_pages_exact() automatically does
1037b83b 8303 */
ec11408a
NP
8304 table = alloc_pages_exact(size, gfp_flags);
8305 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8306 }
8307 } while (!table && size > PAGE_SIZE && --log2qty);
8308
8309 if (!table)
8310 panic("Failed to allocate %s hash table\n", tablename);
8311
ec11408a
NP
8312 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8313 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8314 virt ? "vmalloc" : "linear");
1da177e4
LT
8315
8316 if (_hash_shift)
8317 *_hash_shift = log2qty;
8318 if (_hash_mask)
8319 *_hash_mask = (1 << log2qty) - 1;
8320
8321 return table;
8322}
a117e66e 8323
a5d76b54 8324/*
80934513 8325 * This function checks whether pageblock includes unmovable pages or not.
80934513 8326 *
b8af2941 8327 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8328 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8329 * check without lock_page also may miss some movable non-lru pages at
8330 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8331 *
8332 * Returns a page without holding a reference. If the caller wants to
047b9967 8333 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8334 * cannot get removed (e.g., via memory unplug) concurrently.
8335 *
a5d76b54 8336 */
4a55c047
QC
8337struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8338 int migratetype, int flags)
49ac8255 8339{
1a9f2191
QC
8340 unsigned long iter = 0;
8341 unsigned long pfn = page_to_pfn(page);
6a654e36 8342 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8343
1a9f2191
QC
8344 if (is_migrate_cma_page(page)) {
8345 /*
8346 * CMA allocations (alloc_contig_range) really need to mark
8347 * isolate CMA pageblocks even when they are not movable in fact
8348 * so consider them movable here.
8349 */
8350 if (is_migrate_cma(migratetype))
4a55c047 8351 return NULL;
1a9f2191 8352
3d680bdf 8353 return page;
1a9f2191 8354 }
4da2ce25 8355
6a654e36 8356 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8357 if (!pfn_valid_within(pfn + iter))
49ac8255 8358 continue;
29723fcc 8359
fe4c86c9 8360 page = pfn_to_page(pfn + iter);
c8721bbb 8361
c9c510dc
DH
8362 /*
8363 * Both, bootmem allocations and memory holes are marked
8364 * PG_reserved and are unmovable. We can even have unmovable
8365 * allocations inside ZONE_MOVABLE, for example when
8366 * specifying "movablecore".
8367 */
d7ab3672 8368 if (PageReserved(page))
3d680bdf 8369 return page;
d7ab3672 8370
9d789999
MH
8371 /*
8372 * If the zone is movable and we have ruled out all reserved
8373 * pages then it should be reasonably safe to assume the rest
8374 * is movable.
8375 */
8376 if (zone_idx(zone) == ZONE_MOVABLE)
8377 continue;
8378
c8721bbb
NH
8379 /*
8380 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8381 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8382 * We need not scan over tail pages because we don't
c8721bbb
NH
8383 * handle each tail page individually in migration.
8384 */
1da2f328 8385 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8386 struct page *head = compound_head(page);
8387 unsigned int skip_pages;
464c7ffb 8388
1da2f328
RR
8389 if (PageHuge(page)) {
8390 if (!hugepage_migration_supported(page_hstate(head)))
8391 return page;
8392 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8393 return page;
1da2f328 8394 }
464c7ffb 8395
d8c6546b 8396 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8397 iter += skip_pages - 1;
c8721bbb
NH
8398 continue;
8399 }
8400
97d255c8
MK
8401 /*
8402 * We can't use page_count without pin a page
8403 * because another CPU can free compound page.
8404 * This check already skips compound tails of THP
0139aa7b 8405 * because their page->_refcount is zero at all time.
97d255c8 8406 */
fe896d18 8407 if (!page_ref_count(page)) {
49ac8255 8408 if (PageBuddy(page))
ab130f91 8409 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8410 continue;
8411 }
97d255c8 8412
b023f468
WC
8413 /*
8414 * The HWPoisoned page may be not in buddy system, and
8415 * page_count() is not 0.
8416 */
756d25be 8417 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8418 continue;
8419
aa218795
DH
8420 /*
8421 * We treat all PageOffline() pages as movable when offlining
8422 * to give drivers a chance to decrement their reference count
8423 * in MEM_GOING_OFFLINE in order to indicate that these pages
8424 * can be offlined as there are no direct references anymore.
8425 * For actually unmovable PageOffline() where the driver does
8426 * not support this, we will fail later when trying to actually
8427 * move these pages that still have a reference count > 0.
8428 * (false negatives in this function only)
8429 */
8430 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8431 continue;
8432
fe4c86c9 8433 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8434 continue;
8435
49ac8255 8436 /*
6b4f7799
JW
8437 * If there are RECLAIMABLE pages, we need to check
8438 * it. But now, memory offline itself doesn't call
8439 * shrink_node_slabs() and it still to be fixed.
49ac8255 8440 */
3d680bdf 8441 return page;
49ac8255 8442 }
4a55c047 8443 return NULL;
49ac8255
KH
8444}
8445
8df995f6 8446#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8447static unsigned long pfn_max_align_down(unsigned long pfn)
8448{
8449 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8450 pageblock_nr_pages) - 1);
8451}
8452
8453static unsigned long pfn_max_align_up(unsigned long pfn)
8454{
8455 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8456 pageblock_nr_pages));
8457}
8458
041d3a8c 8459/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8460static int __alloc_contig_migrate_range(struct compact_control *cc,
8461 unsigned long start, unsigned long end)
041d3a8c
MN
8462{
8463 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8464 unsigned int nr_reclaimed;
041d3a8c
MN
8465 unsigned long pfn = start;
8466 unsigned int tries = 0;
8467 int ret = 0;
8b94e0b8
JK
8468 struct migration_target_control mtc = {
8469 .nid = zone_to_nid(cc->zone),
8470 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8471 };
041d3a8c 8472
be49a6e1 8473 migrate_prep();
041d3a8c 8474
bb13ffeb 8475 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8476 if (fatal_signal_pending(current)) {
8477 ret = -EINTR;
8478 break;
8479 }
8480
bb13ffeb
MG
8481 if (list_empty(&cc->migratepages)) {
8482 cc->nr_migratepages = 0;
edc2ca61 8483 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8484 if (!pfn) {
8485 ret = -EINTR;
8486 break;
8487 }
8488 tries = 0;
8489 } else if (++tries == 5) {
8490 ret = ret < 0 ? ret : -EBUSY;
8491 break;
8492 }
8493
beb51eaa
MK
8494 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8495 &cc->migratepages);
8496 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8497
8b94e0b8
JK
8498 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8499 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8500 }
2a6f5124
SP
8501 if (ret < 0) {
8502 putback_movable_pages(&cc->migratepages);
8503 return ret;
8504 }
8505 return 0;
041d3a8c
MN
8506}
8507
8508/**
8509 * alloc_contig_range() -- tries to allocate given range of pages
8510 * @start: start PFN to allocate
8511 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8512 * @migratetype: migratetype of the underlaying pageblocks (either
8513 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8514 * in range must have the same migratetype and it must
8515 * be either of the two.
ca96b625 8516 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8517 *
8518 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8519 * aligned. The PFN range must belong to a single zone.
041d3a8c 8520 *
2c7452a0
MK
8521 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8522 * pageblocks in the range. Once isolated, the pageblocks should not
8523 * be modified by others.
041d3a8c 8524 *
a862f68a 8525 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8526 * pages which PFN is in [start, end) are allocated for the caller and
8527 * need to be freed with free_contig_range().
8528 */
0815f3d8 8529int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8530 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8531{
041d3a8c 8532 unsigned long outer_start, outer_end;
d00181b9
KS
8533 unsigned int order;
8534 int ret = 0;
041d3a8c 8535
bb13ffeb
MG
8536 struct compact_control cc = {
8537 .nr_migratepages = 0,
8538 .order = -1,
8539 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8540 .mode = MIGRATE_SYNC,
bb13ffeb 8541 .ignore_skip_hint = true,
2583d671 8542 .no_set_skip_hint = true,
7dea19f9 8543 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8544 .alloc_contig = true,
bb13ffeb
MG
8545 };
8546 INIT_LIST_HEAD(&cc.migratepages);
8547
041d3a8c
MN
8548 /*
8549 * What we do here is we mark all pageblocks in range as
8550 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8551 * have different sizes, and due to the way page allocator
8552 * work, we align the range to biggest of the two pages so
8553 * that page allocator won't try to merge buddies from
8554 * different pageblocks and change MIGRATE_ISOLATE to some
8555 * other migration type.
8556 *
8557 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8558 * migrate the pages from an unaligned range (ie. pages that
8559 * we are interested in). This will put all the pages in
8560 * range back to page allocator as MIGRATE_ISOLATE.
8561 *
8562 * When this is done, we take the pages in range from page
8563 * allocator removing them from the buddy system. This way
8564 * page allocator will never consider using them.
8565 *
8566 * This lets us mark the pageblocks back as
8567 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8568 * aligned range but not in the unaligned, original range are
8569 * put back to page allocator so that buddy can use them.
8570 */
8571
8572 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8573 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8574 if (ret)
86a595f9 8575 return ret;
041d3a8c 8576
7612921f
VB
8577 drain_all_pages(cc.zone);
8578
8ef5849f
JK
8579 /*
8580 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8581 * So, just fall through. test_pages_isolated() has a tracepoint
8582 * which will report the busy page.
8583 *
8584 * It is possible that busy pages could become available before
8585 * the call to test_pages_isolated, and the range will actually be
8586 * allocated. So, if we fall through be sure to clear ret so that
8587 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8588 */
bb13ffeb 8589 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8590 if (ret && ret != -EBUSY)
041d3a8c 8591 goto done;
63cd4489 8592 ret =0;
041d3a8c
MN
8593
8594 /*
8595 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8596 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8597 * more, all pages in [start, end) are free in page allocator.
8598 * What we are going to do is to allocate all pages from
8599 * [start, end) (that is remove them from page allocator).
8600 *
8601 * The only problem is that pages at the beginning and at the
8602 * end of interesting range may be not aligned with pages that
8603 * page allocator holds, ie. they can be part of higher order
8604 * pages. Because of this, we reserve the bigger range and
8605 * once this is done free the pages we are not interested in.
8606 *
8607 * We don't have to hold zone->lock here because the pages are
8608 * isolated thus they won't get removed from buddy.
8609 */
8610
8611 lru_add_drain_all();
041d3a8c
MN
8612
8613 order = 0;
8614 outer_start = start;
8615 while (!PageBuddy(pfn_to_page(outer_start))) {
8616 if (++order >= MAX_ORDER) {
8ef5849f
JK
8617 outer_start = start;
8618 break;
041d3a8c
MN
8619 }
8620 outer_start &= ~0UL << order;
8621 }
8622
8ef5849f 8623 if (outer_start != start) {
ab130f91 8624 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8625
8626 /*
8627 * outer_start page could be small order buddy page and
8628 * it doesn't include start page. Adjust outer_start
8629 * in this case to report failed page properly
8630 * on tracepoint in test_pages_isolated()
8631 */
8632 if (outer_start + (1UL << order) <= start)
8633 outer_start = start;
8634 }
8635
041d3a8c 8636 /* Make sure the range is really isolated. */
756d25be 8637 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8638 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8639 __func__, outer_start, end);
041d3a8c
MN
8640 ret = -EBUSY;
8641 goto done;
8642 }
8643
49f223a9 8644 /* Grab isolated pages from freelists. */
bb13ffeb 8645 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8646 if (!outer_end) {
8647 ret = -EBUSY;
8648 goto done;
8649 }
8650
8651 /* Free head and tail (if any) */
8652 if (start != outer_start)
8653 free_contig_range(outer_start, start - outer_start);
8654 if (end != outer_end)
8655 free_contig_range(end, outer_end - end);
8656
8657done:
8658 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8659 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8660 return ret;
8661}
255f5985 8662EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8663
8664static int __alloc_contig_pages(unsigned long start_pfn,
8665 unsigned long nr_pages, gfp_t gfp_mask)
8666{
8667 unsigned long end_pfn = start_pfn + nr_pages;
8668
8669 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8670 gfp_mask);
8671}
8672
8673static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8674 unsigned long nr_pages)
8675{
8676 unsigned long i, end_pfn = start_pfn + nr_pages;
8677 struct page *page;
8678
8679 for (i = start_pfn; i < end_pfn; i++) {
8680 page = pfn_to_online_page(i);
8681 if (!page)
8682 return false;
8683
8684 if (page_zone(page) != z)
8685 return false;
8686
8687 if (PageReserved(page))
8688 return false;
8689
8690 if (page_count(page) > 0)
8691 return false;
8692
8693 if (PageHuge(page))
8694 return false;
8695 }
8696 return true;
8697}
8698
8699static bool zone_spans_last_pfn(const struct zone *zone,
8700 unsigned long start_pfn, unsigned long nr_pages)
8701{
8702 unsigned long last_pfn = start_pfn + nr_pages - 1;
8703
8704 return zone_spans_pfn(zone, last_pfn);
8705}
8706
8707/**
8708 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8709 * @nr_pages: Number of contiguous pages to allocate
8710 * @gfp_mask: GFP mask to limit search and used during compaction
8711 * @nid: Target node
8712 * @nodemask: Mask for other possible nodes
8713 *
8714 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8715 * on an applicable zonelist to find a contiguous pfn range which can then be
8716 * tried for allocation with alloc_contig_range(). This routine is intended
8717 * for allocation requests which can not be fulfilled with the buddy allocator.
8718 *
8719 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8720 * power of two then the alignment is guaranteed to be to the given nr_pages
8721 * (e.g. 1GB request would be aligned to 1GB).
8722 *
8723 * Allocated pages can be freed with free_contig_range() or by manually calling
8724 * __free_page() on each allocated page.
8725 *
8726 * Return: pointer to contiguous pages on success, or NULL if not successful.
8727 */
8728struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8729 int nid, nodemask_t *nodemask)
8730{
8731 unsigned long ret, pfn, flags;
8732 struct zonelist *zonelist;
8733 struct zone *zone;
8734 struct zoneref *z;
8735
8736 zonelist = node_zonelist(nid, gfp_mask);
8737 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8738 gfp_zone(gfp_mask), nodemask) {
8739 spin_lock_irqsave(&zone->lock, flags);
8740
8741 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8742 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8743 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8744 /*
8745 * We release the zone lock here because
8746 * alloc_contig_range() will also lock the zone
8747 * at some point. If there's an allocation
8748 * spinning on this lock, it may win the race
8749 * and cause alloc_contig_range() to fail...
8750 */
8751 spin_unlock_irqrestore(&zone->lock, flags);
8752 ret = __alloc_contig_pages(pfn, nr_pages,
8753 gfp_mask);
8754 if (!ret)
8755 return pfn_to_page(pfn);
8756 spin_lock_irqsave(&zone->lock, flags);
8757 }
8758 pfn += nr_pages;
8759 }
8760 spin_unlock_irqrestore(&zone->lock, flags);
8761 }
8762 return NULL;
8763}
4eb0716e 8764#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8765
4eb0716e 8766void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8767{
bcc2b02f
MS
8768 unsigned int count = 0;
8769
8770 for (; nr_pages--; pfn++) {
8771 struct page *page = pfn_to_page(pfn);
8772
8773 count += page_count(page) != 1;
8774 __free_page(page);
8775 }
8776 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8777}
255f5985 8778EXPORT_SYMBOL(free_contig_range);
041d3a8c 8779
0a647f38
CS
8780/*
8781 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8782 * page high values need to be recalulated.
8783 */
4ed7e022
JL
8784void __meminit zone_pcp_update(struct zone *zone)
8785{
c8e251fa 8786 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8787 zone_set_pageset_high_and_batch(zone);
c8e251fa 8788 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8789}
4ed7e022 8790
ec6e8c7e
VB
8791/*
8792 * Effectively disable pcplists for the zone by setting the high limit to 0
8793 * and draining all cpus. A concurrent page freeing on another CPU that's about
8794 * to put the page on pcplist will either finish before the drain and the page
8795 * will be drained, or observe the new high limit and skip the pcplist.
8796 *
8797 * Must be paired with a call to zone_pcp_enable().
8798 */
8799void zone_pcp_disable(struct zone *zone)
8800{
8801 mutex_lock(&pcp_batch_high_lock);
8802 __zone_set_pageset_high_and_batch(zone, 0, 1);
8803 __drain_all_pages(zone, true);
8804}
8805
8806void zone_pcp_enable(struct zone *zone)
8807{
8808 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8809 mutex_unlock(&pcp_batch_high_lock);
8810}
8811
340175b7
JL
8812void zone_pcp_reset(struct zone *zone)
8813{
8814 unsigned long flags;
5a883813
MK
8815 int cpu;
8816 struct per_cpu_pageset *pset;
340175b7
JL
8817
8818 /* avoid races with drain_pages() */
8819 local_irq_save(flags);
8820 if (zone->pageset != &boot_pageset) {
5a883813
MK
8821 for_each_online_cpu(cpu) {
8822 pset = per_cpu_ptr(zone->pageset, cpu);
8823 drain_zonestat(zone, pset);
8824 }
340175b7
JL
8825 free_percpu(zone->pageset);
8826 zone->pageset = &boot_pageset;
8827 }
8828 local_irq_restore(flags);
8829}
8830
6dcd73d7 8831#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8832/*
257bea71
DH
8833 * All pages in the range must be in a single zone, must not contain holes,
8834 * must span full sections, and must be isolated before calling this function.
0c0e6195 8835 */
257bea71 8836void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8837{
257bea71 8838 unsigned long pfn = start_pfn;
0c0e6195
KH
8839 struct page *page;
8840 struct zone *zone;
0ee5f4f3 8841 unsigned int order;
0c0e6195 8842 unsigned long flags;
5557c766 8843
2d070eab 8844 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8845 zone = page_zone(pfn_to_page(pfn));
8846 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8847 while (pfn < end_pfn) {
0c0e6195 8848 page = pfn_to_page(pfn);
b023f468
WC
8849 /*
8850 * The HWPoisoned page may be not in buddy system, and
8851 * page_count() is not 0.
8852 */
8853 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8854 pfn++;
b023f468
WC
8855 continue;
8856 }
aa218795
DH
8857 /*
8858 * At this point all remaining PageOffline() pages have a
8859 * reference count of 0 and can simply be skipped.
8860 */
8861 if (PageOffline(page)) {
8862 BUG_ON(page_count(page));
8863 BUG_ON(PageBuddy(page));
8864 pfn++;
aa218795
DH
8865 continue;
8866 }
b023f468 8867
0c0e6195
KH
8868 BUG_ON(page_count(page));
8869 BUG_ON(!PageBuddy(page));
ab130f91 8870 order = buddy_order(page);
6ab01363 8871 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8872 pfn += (1 << order);
8873 }
8874 spin_unlock_irqrestore(&zone->lock, flags);
8875}
8876#endif
8d22ba1b 8877
8d22ba1b
WF
8878bool is_free_buddy_page(struct page *page)
8879{
8880 struct zone *zone = page_zone(page);
8881 unsigned long pfn = page_to_pfn(page);
8882 unsigned long flags;
7aeb09f9 8883 unsigned int order;
8d22ba1b
WF
8884
8885 spin_lock_irqsave(&zone->lock, flags);
8886 for (order = 0; order < MAX_ORDER; order++) {
8887 struct page *page_head = page - (pfn & ((1 << order) - 1));
8888
ab130f91 8889 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8890 break;
8891 }
8892 spin_unlock_irqrestore(&zone->lock, flags);
8893
8894 return order < MAX_ORDER;
8895}
d4ae9916
NH
8896
8897#ifdef CONFIG_MEMORY_FAILURE
8898/*
06be6ff3
OS
8899 * Break down a higher-order page in sub-pages, and keep our target out of
8900 * buddy allocator.
d4ae9916 8901 */
06be6ff3
OS
8902static void break_down_buddy_pages(struct zone *zone, struct page *page,
8903 struct page *target, int low, int high,
8904 int migratetype)
8905{
8906 unsigned long size = 1 << high;
8907 struct page *current_buddy, *next_page;
8908
8909 while (high > low) {
8910 high--;
8911 size >>= 1;
8912
8913 if (target >= &page[size]) {
8914 next_page = page + size;
8915 current_buddy = page;
8916 } else {
8917 next_page = page;
8918 current_buddy = page + size;
8919 }
8920
8921 if (set_page_guard(zone, current_buddy, high, migratetype))
8922 continue;
8923
8924 if (current_buddy != target) {
8925 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8926 set_buddy_order(current_buddy, high);
06be6ff3
OS
8927 page = next_page;
8928 }
8929 }
8930}
8931
8932/*
8933 * Take a page that will be marked as poisoned off the buddy allocator.
8934 */
8935bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8936{
8937 struct zone *zone = page_zone(page);
8938 unsigned long pfn = page_to_pfn(page);
8939 unsigned long flags;
8940 unsigned int order;
06be6ff3 8941 bool ret = false;
d4ae9916
NH
8942
8943 spin_lock_irqsave(&zone->lock, flags);
8944 for (order = 0; order < MAX_ORDER; order++) {
8945 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8946 int page_order = buddy_order(page_head);
d4ae9916 8947
ab130f91 8948 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8949 unsigned long pfn_head = page_to_pfn(page_head);
8950 int migratetype = get_pfnblock_migratetype(page_head,
8951 pfn_head);
8952
ab130f91 8953 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8954 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8955 page_order, migratetype);
06be6ff3 8956 ret = true;
d4ae9916
NH
8957 break;
8958 }
06be6ff3
OS
8959 if (page_count(page_head) > 0)
8960 break;
d4ae9916
NH
8961 }
8962 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8963 return ret;
d4ae9916
NH
8964}
8965#endif