]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
vhost: make sure used idx is seen before log in vhost_add_used_n()
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
de5dce59 49#include <xen/xen.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4
LT
75#include "internal.h"
76
c8e251fa
CS
77/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 79#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 80
72812019
LS
81#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82DEFINE_PER_CPU(int, numa_node);
83EXPORT_PER_CPU_SYMBOL(numa_node);
84#endif
85
4518085e
KW
86DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87
7aac7898
LS
88#ifdef CONFIG_HAVE_MEMORYLESS_NODES
89/*
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
94 */
95DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 97int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
98#endif
99
bd233f53
MG
100/* work_structs for global per-cpu drains */
101DEFINE_MUTEX(pcpu_drain_mutex);
102DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103
38addce8 104#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 105volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
106EXPORT_SYMBOL(latent_entropy);
107#endif
108
1da177e4 109/*
13808910 110 * Array of node states.
1da177e4 111 */
13808910
CL
112nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115#ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117#ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 119#endif
20b2f52b 120 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
121 [N_CPU] = { { [0] = 1UL } },
122#endif /* NUMA */
123};
124EXPORT_SYMBOL(node_states);
125
c3d5f5f0
JL
126/* Protect totalram_pages and zone->managed_pages */
127static DEFINE_SPINLOCK(managed_page_count_lock);
128
6c231b7b 129unsigned long totalram_pages __read_mostly;
cb45b0e9 130unsigned long totalreserve_pages __read_mostly;
e48322ab 131unsigned long totalcma_pages __read_mostly;
ab8fabd4 132
1b76b02f 133int percpu_pagelist_fraction;
dcce284a 134gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 135
bb14c2c7
VB
136/*
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
143 */
144static inline int get_pcppage_migratetype(struct page *page)
145{
146 return page->index;
147}
148
149static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150{
151 page->index = migratetype;
152}
153
452aa699
RW
154#ifdef CONFIG_PM_SLEEP
155/*
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
162 */
c9e664f1
RW
163
164static gfp_t saved_gfp_mask;
165
166void pm_restore_gfp_mask(void)
452aa699
RW
167{
168 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
452aa699
RW
173}
174
c9e664f1 175void pm_restrict_gfp_mask(void)
452aa699 176{
452aa699 177 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
d0164adc 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 181}
f90ac398
MG
182
183bool pm_suspended_storage(void)
184{
d0164adc 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
186 return false;
187 return true;
188}
452aa699
RW
189#endif /* CONFIG_PM_SLEEP */
190
d9c23400 191#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 192unsigned int pageblock_order __read_mostly;
d9c23400
MG
193#endif
194
d98c7a09 195static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 196
1da177e4
LT
197/*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
1da177e4 207 */
2f1b6248 208int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
2f1b6248 210 256,
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
2f1b6248 213 256,
fb0e7942 214#endif
e53ef38d 215#ifdef CONFIG_HIGHMEM
2a1e274a 216 32,
e53ef38d 217#endif
2a1e274a 218 32,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
2c85f51d
JB
268static unsigned long __meminitdata nr_kernel_pages;
269static unsigned long __meminitdata nr_all_pages;
a3142c8e 270static unsigned long __meminitdata dma_reserve;
1da177e4 271
0ee332c1
TH
272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275static unsigned long __initdata required_kernelcore;
276static unsigned long __initdata required_movablecore;
277static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 278static bool mirrored_kernelcore;
0ee332c1
TH
279
280/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281int movable_zone;
282EXPORT_SYMBOL(movable_zone);
283#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 284
418508c1
MS
285#if MAX_NUMNODES > 1
286int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 287int nr_online_nodes __read_mostly = 1;
418508c1 288EXPORT_SYMBOL(nr_node_ids);
62bc62a8 289EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
290#endif
291
9ef9acb0
MG
292int page_group_by_mobility_disabled __read_mostly;
293
3a80a7fa 294#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
d135e575
PT
295
296/*
297 * Determine how many pages need to be initialized durig early boot
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
301 */
3a80a7fa
MG
302static inline void reset_deferred_meminit(pg_data_t *pgdat)
303{
d135e575
PT
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
864b9a39
MH
307
308 /*
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
311 */
d135e575
PT
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
864b9a39
MH
314
315 /*
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
319 */
d135e575
PT
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
864b9a39 324
d135e575 325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
326 pgdat->first_deferred_pfn = ULONG_MAX;
327}
328
329/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 330static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 331{
ef70b6f4
MG
332 int nid = early_pfn_to_nid(pfn);
333
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
335 return true;
336
337 return false;
338}
339
340/*
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
343 */
344static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
347{
348 /* Always populate low zones for address-contrained allocations */
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
de5dce59
JG
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
3a80a7fa 354 (*nr_initialised)++;
d135e575 355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
359 }
360
361 return true;
362}
363#else
364static inline void reset_deferred_meminit(pg_data_t *pgdat)
365{
366}
367
368static inline bool early_page_uninitialised(unsigned long pfn)
369{
370 return false;
371}
372
373static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
376{
377 return true;
378}
379#endif
380
0b423ca2
MG
381/* Return a pointer to the bitmap storing bits affecting a block of pages */
382static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
384{
385#ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387#else
388 return page_zone(page)->pageblock_flags;
389#endif /* CONFIG_SPARSEMEM */
390}
391
392static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393{
394#ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397#else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400#endif /* CONFIG_SPARSEMEM */
401}
402
403/**
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
409 *
410 * Return: pageblock_bits flags
411 */
412static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416{
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
420
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
425
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429}
430
431unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434{
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436}
437
438static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439{
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441}
442
443/**
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
450 */
451void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455{
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
459
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
466
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
472
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
479 }
480}
3a80a7fa 481
ee6f509c 482void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 483{
5d0f3f72
KM
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
486 migratetype = MIGRATE_UNMOVABLE;
487
b2a0ac88
MG
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
490}
491
13e7444b 492#ifdef CONFIG_DEBUG_VM
c6a57e19 493static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 494{
bdc8cb98
DH
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 498 unsigned long sp, start_pfn;
c6a57e19 499
bdc8cb98
DH
500 do {
501 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
108bcc96 504 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
507
b5e6a5a2 508 if (ret)
613813e8
DH
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
b5e6a5a2 512
bdc8cb98 513 return ret;
c6a57e19
DH
514}
515
516static int page_is_consistent(struct zone *zone, struct page *page)
517{
14e07298 518 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 519 return 0;
1da177e4 520 if (zone != page_zone(page))
c6a57e19
DH
521 return 0;
522
523 return 1;
524}
525/*
526 * Temporary debugging check for pages not lying within a given zone.
527 */
d73d3c9f 528static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
529{
530 if (page_outside_zone_boundaries(zone, page))
1da177e4 531 return 1;
c6a57e19
DH
532 if (!page_is_consistent(zone, page))
533 return 1;
534
1da177e4
LT
535 return 0;
536}
13e7444b 537#else
d73d3c9f 538static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
539{
540 return 0;
541}
542#endif
543
d230dec1
KS
544static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
1da177e4 546{
d936cf9b
HD
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
550
551 /*
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
554 */
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
559 }
560 if (nr_unshown) {
ff8e8116 561 pr_alert(
1e9e6365 562 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
563 nr_unshown);
564 nr_unshown = 0;
565 }
566 nr_shown = 0;
567 }
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
570
ff8e8116 571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 572 current->comm, page_to_pfn(page));
ff8e8116
VB
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
4e462112 578 dump_page_owner(page);
3dc14741 579
4f31888c 580 print_modules();
1da177e4 581 dump_stack();
d936cf9b 582out:
8cc3b392 583 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 584 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
586}
587
1da177e4
LT
588/*
589 * Higher-order pages are called "compound pages". They are structured thusly:
590 *
1d798ca3 591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 592 *
1d798ca3
KS
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 595 *
1d798ca3
KS
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
1da177e4 598 *
1d798ca3 599 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 600 * This usage means that zero-order pages may not be compound.
1da177e4 601 */
d98c7a09 602
9a982250 603void free_compound_page(struct page *page)
d98c7a09 604{
d85f3385 605 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
606}
607
d00181b9 608void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
609{
610 int i;
611 int nr_pages = 1 << order;
612
f1e61557 613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
58a84aa9 618 set_page_count(p, 0);
1c290f64 619 p->mapping = TAIL_MAPPING;
1d798ca3 620 set_compound_head(p, page);
18229df5 621 }
53f9263b 622 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
623}
624
c0a32fc5
SG
625#ifdef CONFIG_DEBUG_PAGEALLOC
626unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
627bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 629EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
630bool _debug_guardpage_enabled __read_mostly;
631
031bc574
JK
632static int __init early_debug_pagealloc(char *buf)
633{
634 if (!buf)
635 return -EINVAL;
2a138dc7 636 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
637}
638early_param("debug_pagealloc", early_debug_pagealloc);
639
e30825f1
JK
640static bool need_debug_guardpage(void)
641{
031bc574
JK
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
645
f1c1e9f7
JK
646 if (!debug_guardpage_minorder())
647 return false;
648
e30825f1
JK
649 return true;
650}
651
652static void init_debug_guardpage(void)
653{
031bc574
JK
654 if (!debug_pagealloc_enabled())
655 return;
656
f1c1e9f7
JK
657 if (!debug_guardpage_minorder())
658 return;
659
e30825f1
JK
660 _debug_guardpage_enabled = true;
661}
662
663struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
666};
c0a32fc5
SG
667
668static int __init debug_guardpage_minorder_setup(char *buf)
669{
670 unsigned long res;
671
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 673 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
674 return 0;
675 }
676 _debug_guardpage_minorder = res;
1170532b 677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
678 return 0;
679}
f1c1e9f7 680early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 681
acbc15a4 682static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 683 unsigned int order, int migratetype)
c0a32fc5 684{
e30825f1
JK
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
acbc15a4
JK
688 return false;
689
690 if (order >= debug_guardpage_minorder())
691 return false;
e30825f1
JK
692
693 page_ext = lookup_page_ext(page);
f86e4271 694 if (unlikely(!page_ext))
acbc15a4 695 return false;
f86e4271 696
e30825f1
JK
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698
2847cf95
JK
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
703
704 return true;
c0a32fc5
SG
705}
706
2847cf95
JK
707static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
c0a32fc5 709{
e30825f1
JK
710 struct page_ext *page_ext;
711
712 if (!debug_guardpage_enabled())
713 return;
714
715 page_ext = lookup_page_ext(page);
f86e4271
YS
716 if (unlikely(!page_ext))
717 return;
718
e30825f1
JK
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
2847cf95
JK
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
724}
725#else
980ac167 726struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
727static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
2847cf95
JK
729static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
c0a32fc5
SG
731#endif
732
7aeb09f9 733static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 734{
4c21e2f2 735 set_page_private(page, order);
676165a8 736 __SetPageBuddy(page);
1da177e4
LT
737}
738
739static inline void rmv_page_order(struct page *page)
740{
676165a8 741 __ClearPageBuddy(page);
4c21e2f2 742 set_page_private(page, 0);
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
13ad59df 748 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 749 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
676165a8 752 *
cf6fe945
WSH
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
1da177e4 757 *
676165a8 758 * For recording page's order, we use page_private(page).
1da177e4 759 */
cb2b95e1 760static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 761 unsigned int order)
1da177e4 762{
c0a32fc5 763 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
c0a32fc5
SG
769 return 1;
770 }
771
cb2b95e1 772 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
4c5018ce
WY
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
6aa3001b 783 return 1;
676165a8 784 }
6aa3001b 785 return 0;
1da177e4
LT
786}
787
788/*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
1da177e4 804 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
1da177e4 807 * If a block is freed, and its buddy is also free, then this
5f63b720 808 * triggers coalescing into a block of larger size.
1da177e4 809 *
6d49e352 810 * -- nyc
1da177e4
LT
811 */
812
48db57f8 813static inline void __free_one_page(struct page *page,
dc4b0caf 814 unsigned long pfn,
ed0ae21d
MG
815 struct zone *zone, unsigned int order,
816 int migratetype)
1da177e4 817{
76741e77
VB
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 820 struct page *buddy;
d9dddbf5
VB
821 unsigned int max_order;
822
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 824
d29bb978 825 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 827
ed0ae21d 828 VM_BUG_ON(migratetype == -1);
d9dddbf5 829 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 831
76741e77 832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 834
d9dddbf5 835continue_merging:
3c605096 836 while (order < max_order - 1) {
76741e77
VB
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
839
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
cb2b95e1 842 if (!page_is_buddy(page, buddy, order))
d9dddbf5 843 goto done_merging;
c0a32fc5
SG
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy)) {
2847cf95 849 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
854 }
76741e77
VB
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
1da177e4
LT
858 order++;
859 }
d9dddbf5
VB
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
865 *
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
868 */
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
871
76741e77
VB
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
874 buddy_mt = get_pageblock_migratetype(buddy);
875
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
880 }
881 max_order++;
882 goto continue_merging;
883 }
884
885done_merging:
1da177e4 886 set_page_order(page, order);
6dda9d55
CZ
887
888 /*
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
895 */
13ad59df 896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 897 struct page *higher_page, *higher_buddy;
76741e77
VB
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
907 }
908 }
909
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911out:
1da177e4
LT
912 zone->free_area[order].nr_free++;
913}
914
7bfec6f4
MG
915/*
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
919 */
920static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
922{
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
925
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928#ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930#endif
931 (page->flags & check_flags)))
932 return false;
933
934 return true;
935}
936
bb552ac6 937static void free_pages_check_bad(struct page *page)
1da177e4 938{
7bfec6f4
MG
939 const char *bad_reason;
940 unsigned long bad_flags;
941
7bfec6f4
MG
942 bad_reason = NULL;
943 bad_flags = 0;
f0b791a3 944
53f9263b 945 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
fe896d18 949 if (unlikely(page_ref_count(page) != 0))
0139aa7b 950 bad_reason = "nonzero _refcount";
f0b791a3
DH
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 }
9edad6ea
JW
955#ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958#endif
7bfec6f4 959 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
960}
961
962static inline int free_pages_check(struct page *page)
963{
da838d4f 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 965 return 0;
bb552ac6
MG
966
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
7bfec6f4 969 return 1;
1da177e4
LT
970}
971
4db7548c
MG
972static int free_tail_pages_check(struct page *head_page, struct page *page)
973{
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
992 }
993 break;
994 case 2:
995 /*
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
998 */
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1004 }
1005 break;
1006 }
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1010 }
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1014 }
1015 ret = 0;
1016out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1020}
1021
e2769dbd
MG
1022static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
4db7548c 1024{
e2769dbd 1025 int bad = 0;
4db7548c 1026
4db7548c
MG
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1028
e2769dbd 1029 trace_mm_page_free(page, order);
e2769dbd
MG
1030
1031 /*
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1034 */
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1038
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1040
9a73f61b
KS
1041 if (compound)
1042 ClearPageDoubleMap(page);
e2769dbd
MG
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1049 }
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 }
1052 }
bda807d4 1053 if (PageMappingFlags(page))
4db7548c 1054 page->mapping = NULL;
c4159a75 1055 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1056 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
4db7548c 1061
e2769dbd
MG
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
4db7548c
MG
1065
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
e2769dbd 1068 PAGE_SIZE << order);
4db7548c 1069 debug_check_no_obj_freed(page_address(page),
e2769dbd 1070 PAGE_SIZE << order);
4db7548c 1071 }
e2769dbd
MG
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
29b52de1 1075 kasan_free_pages(page, order);
4db7548c 1076
4db7548c
MG
1077 return true;
1078}
1079
e2769dbd
MG
1080#ifdef CONFIG_DEBUG_VM
1081static inline bool free_pcp_prepare(struct page *page)
1082{
1083 return free_pages_prepare(page, 0, true);
1084}
1085
1086static inline bool bulkfree_pcp_prepare(struct page *page)
1087{
1088 return false;
1089}
1090#else
1091static bool free_pcp_prepare(struct page *page)
1092{
1093 return free_pages_prepare(page, 0, false);
1094}
1095
4db7548c
MG
1096static bool bulkfree_pcp_prepare(struct page *page)
1097{
1098 return free_pages_check(page);
1099}
1100#endif /* CONFIG_DEBUG_VM */
1101
1da177e4 1102/*
5f8dcc21 1103 * Frees a number of pages from the PCP lists
1da177e4 1104 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1105 * count is the number of pages to free.
1da177e4
LT
1106 *
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1109 *
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1112 */
5f8dcc21
MG
1113static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1da177e4 1115{
5f8dcc21 1116 int migratetype = 0;
a6f9edd6 1117 int batch_free = 0;
3777999d 1118 bool isolated_pageblocks;
5f8dcc21 1119
d34b0733 1120 spin_lock(&zone->lock);
3777999d 1121 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1122
e5b31ac2 1123 while (count) {
48db57f8 1124 struct page *page;
5f8dcc21
MG
1125 struct list_head *list;
1126
1127 /*
a6f9edd6
MG
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
5f8dcc21
MG
1133 */
1134 do {
a6f9edd6 1135 batch_free++;
5f8dcc21
MG
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
48db57f8 1140
1d16871d
NK
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1143 batch_free = count;
1d16871d 1144
a6f9edd6 1145 do {
770c8aaa
BZ
1146 int mt; /* migratetype of the to-be-freed page */
1147
a16601c5 1148 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
aa016d14 1151
bb14c2c7 1152 mt = get_pcppage_migratetype(page);
aa016d14
VB
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
3777999d 1156 if (unlikely(isolated_pageblocks))
51bb1a40 1157 mt = get_pageblock_migratetype(page);
51bb1a40 1158
4db7548c
MG
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1161
dc4b0caf 1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1163 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1164 } while (--count && --batch_free && !list_empty(list));
1da177e4 1165 }
d34b0733 1166 spin_unlock(&zone->lock);
1da177e4
LT
1167}
1168
dc4b0caf
MG
1169static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
7aeb09f9 1171 unsigned int order,
ed0ae21d 1172 int migratetype)
1da177e4 1173{
d34b0733 1174 spin_lock(&zone->lock);
ad53f92e
JK
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1178 }
dc4b0caf 1179 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1180 spin_unlock(&zone->lock);
48db57f8
NP
1181}
1182
1e8ce83c 1183static void __meminit __init_single_page(struct page *page, unsigned long pfn,
9ff9dd45 1184 unsigned long zone, int nid, bool zero)
1e8ce83c 1185{
9ff9dd45
MH
1186 if (zero)
1187 mm_zero_struct_page(page);
1e8ce83c 1188 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1e8ce83c 1192
1e8ce83c
RH
1193 INIT_LIST_HEAD(&page->lru);
1194#ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198#endif
1199}
1200
1201static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
9ff9dd45 1202 int nid, bool zero)
1e8ce83c 1203{
9ff9dd45 1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1e8ce83c
RH
1205}
1206
7e18adb4 1207#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1208static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1209{
1210 pg_data_t *pgdat;
1211 int nid, zid;
1212
1213 if (!early_page_uninitialised(pfn))
1214 return;
1215
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1218
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1221
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1224 }
9ff9dd45 1225 __init_single_pfn(pfn, zid, nid, true);
7e18adb4
MG
1226}
1227#else
1228static inline void init_reserved_page(unsigned long pfn)
1229{
1230}
1231#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
92923ca3
NZ
1233/*
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1238 */
4b50bcc7 1239void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1240{
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1243
7e18adb4
MG
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1247
1248 init_reserved_page(start_pfn);
1d798ca3
KS
1249
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1252
7e18adb4
MG
1253 SetPageReserved(page);
1254 }
1255 }
92923ca3
NZ
1256}
1257
ec95f53a
KM
1258static void __free_pages_ok(struct page *page, unsigned int order)
1259{
d34b0733 1260 unsigned long flags;
95e34412 1261 int migratetype;
dc4b0caf 1262 unsigned long pfn = page_to_pfn(page);
ec95f53a 1263
e2769dbd 1264 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1265 return;
1266
cfc47a28 1267 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1271 local_irq_restore(flags);
1da177e4
LT
1272}
1273
949698a3 1274static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1275{
c3993076 1276 unsigned int nr_pages = 1 << order;
e2d0bd2b 1277 struct page *p = page;
c3993076 1278 unsigned int loop;
a226f6c8 1279
e2d0bd2b
YL
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
c3993076
JW
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
a226f6c8 1285 }
e2d0bd2b
YL
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
c3993076 1288
e2d0bd2b 1289 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
a226f6c8
DH
1292}
1293
75a592a4
MG
1294#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1296
75a592a4
MG
1297static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299int __meminit early_pfn_to_nid(unsigned long pfn)
1300{
7ace9917 1301 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1302 int nid;
1303
7ace9917 1304 spin_lock(&early_pfn_lock);
75a592a4 1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1306 if (nid < 0)
e4568d38 1307 nid = first_online_node;
7ace9917
MG
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
75a592a4
MG
1311}
1312#endif
1313
1314#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1315static inline bool __meminit __maybe_unused
1316meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
75a592a4
MG
1318{
1319 int nid;
1320
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1325}
1326
1327/* Only safe to use early in boot when initialisation is single-threaded */
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331}
1332
1333#else
1334
1335static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336{
1337 return true;
1338}
d73d3c9f
MK
1339static inline bool __meminit __maybe_unused
1340meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
75a592a4
MG
1342{
1343 return true;
1344}
1345#endif
1346
1347
0e1cc95b 1348void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1349 unsigned int order)
1350{
1351 if (early_page_uninitialised(pfn))
1352 return;
949698a3 1353 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1354}
1355
7cf91a98
JK
1356/*
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1362 *
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364 *
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1372 */
1373struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375{
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1384
2d070eab
MH
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
7cf91a98
JK
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399}
1400
1401void set_zone_contiguous(struct zone *zone)
1402{
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1405
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1410
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1416 }
1417
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1420}
1421
1422void clear_zone_contiguous(struct zone *zone)
1423{
1424 zone->contiguous = false;
1425}
1426
7e18adb4 1427#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1428static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
a4de83dd 1430{
2f47a91f
PT
1431 struct page *page;
1432 unsigned long i;
a4de83dd 1433
2f47a91f 1434 if (!nr_pages)
a4de83dd
MG
1435 return;
1436
2f47a91f
PT
1437 page = pfn_to_page(pfn);
1438
a4de83dd 1439 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1443 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1444 return;
1445 }
1446
e780149b
XQ
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1450 __free_pages_boot_core(page, 0);
e780149b 1451 }
a4de83dd
MG
1452}
1453
d3cd131d
NS
1454/* Completion tracking for deferred_init_memmap() threads */
1455static atomic_t pgdat_init_n_undone __initdata;
1456static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457
1458static inline void __init pgdat_init_report_one_done(void)
1459{
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1462}
0e1cc95b 1463
2f47a91f
PT
1464/*
1465 * Helper for deferred_init_range, free the given range, reset the counters, and
1466 * return number of pages freed.
1467 */
1468static inline unsigned long __init __def_free(unsigned long *nr_free,
1469 unsigned long *free_base_pfn,
1470 struct page **page)
1471{
1472 unsigned long nr = *nr_free;
1473
1474 deferred_free_range(*free_base_pfn, nr);
1475 *free_base_pfn = 0;
1476 *nr_free = 0;
1477 *page = NULL;
1478
1479 return nr;
1480}
1481
1482static unsigned long __init deferred_init_range(int nid, int zid,
1483 unsigned long start_pfn,
1484 unsigned long end_pfn)
1485{
1486 struct mminit_pfnnid_cache nid_init_state = { };
1487 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1488 unsigned long free_base_pfn = 0;
1489 unsigned long nr_pages = 0;
1490 unsigned long nr_free = 0;
1491 struct page *page = NULL;
1492 unsigned long pfn;
1493
1494 /*
1495 * First we check if pfn is valid on architectures where it is possible
1496 * to have holes within pageblock_nr_pages. On systems where it is not
1497 * possible, this function is optimized out.
1498 *
1499 * Then, we check if a current large page is valid by only checking the
1500 * validity of the head pfn.
1501 *
1502 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1503 * within a node: a pfn is between start and end of a node, but does not
1504 * belong to this memory node.
1505 *
1506 * Finally, we minimize pfn page lookups and scheduler checks by
1507 * performing it only once every pageblock_nr_pages.
1508 *
1509 * We do it in two loops: first we initialize struct page, than free to
1510 * buddy allocator, becuse while we are freeing pages we can access
1511 * pages that are ahead (computing buddy page in __free_one_page()).
1512 */
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn))
1515 continue;
1516 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1517 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 if (page && (pfn & nr_pgmask))
1519 page++;
1520 else
1521 page = pfn_to_page(pfn);
9ff9dd45 1522 __init_single_page(page, pfn, zid, nid, true);
2f47a91f
PT
1523 cond_resched();
1524 }
1525 }
1526 }
1527
1528 page = NULL;
1529 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1530 if (!pfn_valid_within(pfn)) {
1531 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1532 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1533 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1534 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 } else if (page && (pfn & nr_pgmask)) {
1537 page++;
1538 nr_free++;
1539 } else {
1540 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1541 page = pfn_to_page(pfn);
1542 free_base_pfn = pfn;
1543 nr_free = 1;
1544 cond_resched();
1545 }
1546 }
1547 /* Free the last block of pages to allocator */
1548 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1549
1550 return nr_pages;
1551}
1552
7e18adb4 1553/* Initialise remaining memory on a node */
0e1cc95b 1554static int __init deferred_init_memmap(void *data)
7e18adb4 1555{
0e1cc95b
MG
1556 pg_data_t *pgdat = data;
1557 int nid = pgdat->node_id;
7e18adb4
MG
1558 unsigned long start = jiffies;
1559 unsigned long nr_pages = 0;
2f47a91f
PT
1560 unsigned long spfn, epfn;
1561 phys_addr_t spa, epa;
1562 int zid;
7e18adb4 1563 struct zone *zone;
7e18adb4 1564 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1565 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1566 u64 i;
7e18adb4 1567
0e1cc95b 1568 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1569 pgdat_init_report_one_done();
0e1cc95b
MG
1570 return 0;
1571 }
1572
1573 /* Bind memory initialisation thread to a local node if possible */
1574 if (!cpumask_empty(cpumask))
1575 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1576
1577 /* Sanity check boundaries */
1578 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1579 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1580 pgdat->first_deferred_pfn = ULONG_MAX;
1581
1582 /* Only the highest zone is deferred so find it */
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 zone = pgdat->node_zones + zid;
1585 if (first_init_pfn < zone_end_pfn(zone))
1586 break;
1587 }
2f47a91f 1588 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1589
2f47a91f
PT
1590 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1591 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1592 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1593 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1594 }
1595
1596 /* Sanity check that the next zone really is unpopulated */
1597 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1598
0e1cc95b 1599 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1600 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1601
1602 pgdat_init_report_one_done();
0e1cc95b
MG
1603 return 0;
1604}
7cf91a98 1605#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1606
1607void __init page_alloc_init_late(void)
1608{
7cf91a98
JK
1609 struct zone *zone;
1610
1611#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1612 int nid;
1613
d3cd131d
NS
1614 /* There will be num_node_state(N_MEMORY) threads */
1615 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1616 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1617 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1618 }
1619
1620 /* Block until all are initialised */
d3cd131d 1621 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1622
1623 /* Reinit limits that are based on free pages after the kernel is up */
1624 files_maxfiles_init();
7cf91a98 1625#endif
3010f876
PT
1626#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1627 /* Discard memblock private memory */
1628 memblock_discard();
1629#endif
7cf91a98
JK
1630
1631 for_each_populated_zone(zone)
1632 set_zone_contiguous(zone);
7e18adb4 1633}
7e18adb4 1634
47118af0 1635#ifdef CONFIG_CMA
9cf510a5 1636/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1637void __init init_cma_reserved_pageblock(struct page *page)
1638{
1639 unsigned i = pageblock_nr_pages;
1640 struct page *p = page;
1641
1642 do {
1643 __ClearPageReserved(p);
1644 set_page_count(p, 0);
1645 } while (++p, --i);
1646
47118af0 1647 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1648
1649 if (pageblock_order >= MAX_ORDER) {
1650 i = pageblock_nr_pages;
1651 p = page;
1652 do {
1653 set_page_refcounted(p);
1654 __free_pages(p, MAX_ORDER - 1);
1655 p += MAX_ORDER_NR_PAGES;
1656 } while (i -= MAX_ORDER_NR_PAGES);
1657 } else {
1658 set_page_refcounted(page);
1659 __free_pages(page, pageblock_order);
1660 }
1661
3dcc0571 1662 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1663}
1664#endif
1da177e4
LT
1665
1666/*
1667 * The order of subdivision here is critical for the IO subsystem.
1668 * Please do not alter this order without good reasons and regression
1669 * testing. Specifically, as large blocks of memory are subdivided,
1670 * the order in which smaller blocks are delivered depends on the order
1671 * they're subdivided in this function. This is the primary factor
1672 * influencing the order in which pages are delivered to the IO
1673 * subsystem according to empirical testing, and this is also justified
1674 * by considering the behavior of a buddy system containing a single
1675 * large block of memory acted on by a series of small allocations.
1676 * This behavior is a critical factor in sglist merging's success.
1677 *
6d49e352 1678 * -- nyc
1da177e4 1679 */
085cc7d5 1680static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1681 int low, int high, struct free_area *area,
1682 int migratetype)
1da177e4
LT
1683{
1684 unsigned long size = 1 << high;
1685
1686 while (high > low) {
1687 area--;
1688 high--;
1689 size >>= 1;
309381fe 1690 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1691
acbc15a4
JK
1692 /*
1693 * Mark as guard pages (or page), that will allow to
1694 * merge back to allocator when buddy will be freed.
1695 * Corresponding page table entries will not be touched,
1696 * pages will stay not present in virtual address space
1697 */
1698 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1699 continue;
acbc15a4 1700
b2a0ac88 1701 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1702 area->nr_free++;
1703 set_page_order(&page[size], high);
1704 }
1da177e4
LT
1705}
1706
4e611801 1707static void check_new_page_bad(struct page *page)
1da177e4 1708{
4e611801
VB
1709 const char *bad_reason = NULL;
1710 unsigned long bad_flags = 0;
7bfec6f4 1711
53f9263b 1712 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1713 bad_reason = "nonzero mapcount";
1714 if (unlikely(page->mapping != NULL))
1715 bad_reason = "non-NULL mapping";
fe896d18 1716 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1717 bad_reason = "nonzero _count";
f4c18e6f
NH
1718 if (unlikely(page->flags & __PG_HWPOISON)) {
1719 bad_reason = "HWPoisoned (hardware-corrupted)";
1720 bad_flags = __PG_HWPOISON;
e570f56c
NH
1721 /* Don't complain about hwpoisoned pages */
1722 page_mapcount_reset(page); /* remove PageBuddy */
1723 return;
f4c18e6f 1724 }
f0b791a3
DH
1725 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1726 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1727 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1728 }
9edad6ea
JW
1729#ifdef CONFIG_MEMCG
1730 if (unlikely(page->mem_cgroup))
1731 bad_reason = "page still charged to cgroup";
1732#endif
4e611801
VB
1733 bad_page(page, bad_reason, bad_flags);
1734}
1735
1736/*
1737 * This page is about to be returned from the page allocator
1738 */
1739static inline int check_new_page(struct page *page)
1740{
1741 if (likely(page_expected_state(page,
1742 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1743 return 0;
1744
1745 check_new_page_bad(page);
1746 return 1;
2a7684a2
WF
1747}
1748
bd33ef36 1749static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1750{
1751 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1752 page_poisoning_enabled();
1414c7f4
LA
1753}
1754
479f854a
MG
1755#ifdef CONFIG_DEBUG_VM
1756static bool check_pcp_refill(struct page *page)
1757{
1758 return false;
1759}
1760
1761static bool check_new_pcp(struct page *page)
1762{
1763 return check_new_page(page);
1764}
1765#else
1766static bool check_pcp_refill(struct page *page)
1767{
1768 return check_new_page(page);
1769}
1770static bool check_new_pcp(struct page *page)
1771{
1772 return false;
1773}
1774#endif /* CONFIG_DEBUG_VM */
1775
1776static bool check_new_pages(struct page *page, unsigned int order)
1777{
1778 int i;
1779 for (i = 0; i < (1 << order); i++) {
1780 struct page *p = page + i;
1781
1782 if (unlikely(check_new_page(p)))
1783 return true;
1784 }
1785
1786 return false;
1787}
1788
46f24fd8
JK
1789inline void post_alloc_hook(struct page *page, unsigned int order,
1790 gfp_t gfp_flags)
1791{
1792 set_page_private(page, 0);
1793 set_page_refcounted(page);
1794
1795 arch_alloc_page(page, order);
1796 kernel_map_pages(page, 1 << order, 1);
1797 kernel_poison_pages(page, 1 << order, 1);
1798 kasan_alloc_pages(page, order);
1799 set_page_owner(page, order, gfp_flags);
1800}
1801
479f854a 1802static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1803 unsigned int alloc_flags)
2a7684a2
WF
1804{
1805 int i;
689bcebf 1806
46f24fd8 1807 post_alloc_hook(page, order, gfp_flags);
17cf4406 1808
bd33ef36 1809 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1810 for (i = 0; i < (1 << order); i++)
1811 clear_highpage(page + i);
17cf4406
NP
1812
1813 if (order && (gfp_flags & __GFP_COMP))
1814 prep_compound_page(page, order);
1815
75379191 1816 /*
2f064f34 1817 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1818 * allocate the page. The expectation is that the caller is taking
1819 * steps that will free more memory. The caller should avoid the page
1820 * being used for !PFMEMALLOC purposes.
1821 */
2f064f34
MH
1822 if (alloc_flags & ALLOC_NO_WATERMARKS)
1823 set_page_pfmemalloc(page);
1824 else
1825 clear_page_pfmemalloc(page);
1da177e4
LT
1826}
1827
56fd56b8
MG
1828/*
1829 * Go through the free lists for the given migratetype and remove
1830 * the smallest available page from the freelists
1831 */
85ccc8fa 1832static __always_inline
728ec980 1833struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1834 int migratetype)
1835{
1836 unsigned int current_order;
b8af2941 1837 struct free_area *area;
56fd56b8
MG
1838 struct page *page;
1839
1840 /* Find a page of the appropriate size in the preferred list */
1841 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1842 area = &(zone->free_area[current_order]);
a16601c5 1843 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1844 struct page, lru);
a16601c5
GT
1845 if (!page)
1846 continue;
56fd56b8
MG
1847 list_del(&page->lru);
1848 rmv_page_order(page);
1849 area->nr_free--;
56fd56b8 1850 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1851 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1852 return page;
1853 }
1854
1855 return NULL;
1856}
1857
1858
b2a0ac88
MG
1859/*
1860 * This array describes the order lists are fallen back to when
1861 * the free lists for the desirable migrate type are depleted
1862 */
47118af0 1863static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1864 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1865 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1866 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1867#ifdef CONFIG_CMA
974a786e 1868 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1869#endif
194159fb 1870#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1871 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1872#endif
b2a0ac88
MG
1873};
1874
dc67647b 1875#ifdef CONFIG_CMA
85ccc8fa 1876static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1877 unsigned int order)
1878{
1879 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1880}
1881#else
1882static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1883 unsigned int order) { return NULL; }
1884#endif
1885
c361be55
MG
1886/*
1887 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1888 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1889 * boundary. If alignment is required, use move_freepages_block()
1890 */
02aa0cdd 1891static int move_freepages(struct zone *zone,
b69a7288 1892 struct page *start_page, struct page *end_page,
02aa0cdd 1893 int migratetype, int *num_movable)
c361be55
MG
1894{
1895 struct page *page;
d00181b9 1896 unsigned int order;
d100313f 1897 int pages_moved = 0;
c361be55
MG
1898
1899#ifndef CONFIG_HOLES_IN_ZONE
1900 /*
1901 * page_zone is not safe to call in this context when
1902 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1903 * anyway as we check zone boundaries in move_freepages_block().
1904 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1905 * grouping pages by mobility
c361be55 1906 */
97ee4ba7 1907 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1908#endif
1909
02aa0cdd
VB
1910 if (num_movable)
1911 *num_movable = 0;
1912
c361be55
MG
1913 for (page = start_page; page <= end_page;) {
1914 if (!pfn_valid_within(page_to_pfn(page))) {
1915 page++;
1916 continue;
1917 }
1918
f073bdc5
AB
1919 /* Make sure we are not inadvertently changing nodes */
1920 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1921
c361be55 1922 if (!PageBuddy(page)) {
02aa0cdd
VB
1923 /*
1924 * We assume that pages that could be isolated for
1925 * migration are movable. But we don't actually try
1926 * isolating, as that would be expensive.
1927 */
1928 if (num_movable &&
1929 (PageLRU(page) || __PageMovable(page)))
1930 (*num_movable)++;
1931
c361be55
MG
1932 page++;
1933 continue;
1934 }
1935
1936 order = page_order(page);
84be48d8
KS
1937 list_move(&page->lru,
1938 &zone->free_area[order].free_list[migratetype]);
c361be55 1939 page += 1 << order;
d100313f 1940 pages_moved += 1 << order;
c361be55
MG
1941 }
1942
d100313f 1943 return pages_moved;
c361be55
MG
1944}
1945
ee6f509c 1946int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1947 int migratetype, int *num_movable)
c361be55
MG
1948{
1949 unsigned long start_pfn, end_pfn;
1950 struct page *start_page, *end_page;
1951
1952 start_pfn = page_to_pfn(page);
d9c23400 1953 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1954 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1955 end_page = start_page + pageblock_nr_pages - 1;
1956 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1957
1958 /* Do not cross zone boundaries */
108bcc96 1959 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1960 start_page = page;
108bcc96 1961 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1962 return 0;
1963
02aa0cdd
VB
1964 return move_freepages(zone, start_page, end_page, migratetype,
1965 num_movable);
c361be55
MG
1966}
1967
2f66a68f
MG
1968static void change_pageblock_range(struct page *pageblock_page,
1969 int start_order, int migratetype)
1970{
1971 int nr_pageblocks = 1 << (start_order - pageblock_order);
1972
1973 while (nr_pageblocks--) {
1974 set_pageblock_migratetype(pageblock_page, migratetype);
1975 pageblock_page += pageblock_nr_pages;
1976 }
1977}
1978
fef903ef 1979/*
9c0415eb
VB
1980 * When we are falling back to another migratetype during allocation, try to
1981 * steal extra free pages from the same pageblocks to satisfy further
1982 * allocations, instead of polluting multiple pageblocks.
1983 *
1984 * If we are stealing a relatively large buddy page, it is likely there will
1985 * be more free pages in the pageblock, so try to steal them all. For
1986 * reclaimable and unmovable allocations, we steal regardless of page size,
1987 * as fragmentation caused by those allocations polluting movable pageblocks
1988 * is worse than movable allocations stealing from unmovable and reclaimable
1989 * pageblocks.
fef903ef 1990 */
4eb7dce6
JK
1991static bool can_steal_fallback(unsigned int order, int start_mt)
1992{
1993 /*
1994 * Leaving this order check is intended, although there is
1995 * relaxed order check in next check. The reason is that
1996 * we can actually steal whole pageblock if this condition met,
1997 * but, below check doesn't guarantee it and that is just heuristic
1998 * so could be changed anytime.
1999 */
2000 if (order >= pageblock_order)
2001 return true;
2002
2003 if (order >= pageblock_order / 2 ||
2004 start_mt == MIGRATE_RECLAIMABLE ||
2005 start_mt == MIGRATE_UNMOVABLE ||
2006 page_group_by_mobility_disabled)
2007 return true;
2008
2009 return false;
2010}
2011
2012/*
2013 * This function implements actual steal behaviour. If order is large enough,
2014 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2015 * pageblock to our migratetype and determine how many already-allocated pages
2016 * are there in the pageblock with a compatible migratetype. If at least half
2017 * of pages are free or compatible, we can change migratetype of the pageblock
2018 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2019 */
2020static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2021 int start_type, bool whole_block)
fef903ef 2022{
d00181b9 2023 unsigned int current_order = page_order(page);
3bc48f96 2024 struct free_area *area;
02aa0cdd
VB
2025 int free_pages, movable_pages, alike_pages;
2026 int old_block_type;
2027
2028 old_block_type = get_pageblock_migratetype(page);
fef903ef 2029
3bc48f96
VB
2030 /*
2031 * This can happen due to races and we want to prevent broken
2032 * highatomic accounting.
2033 */
02aa0cdd 2034 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2035 goto single_page;
2036
fef903ef
SB
2037 /* Take ownership for orders >= pageblock_order */
2038 if (current_order >= pageblock_order) {
2039 change_pageblock_range(page, current_order, start_type);
3bc48f96 2040 goto single_page;
fef903ef
SB
2041 }
2042
3bc48f96
VB
2043 /* We are not allowed to try stealing from the whole block */
2044 if (!whole_block)
2045 goto single_page;
2046
02aa0cdd
VB
2047 free_pages = move_freepages_block(zone, page, start_type,
2048 &movable_pages);
2049 /*
2050 * Determine how many pages are compatible with our allocation.
2051 * For movable allocation, it's the number of movable pages which
2052 * we just obtained. For other types it's a bit more tricky.
2053 */
2054 if (start_type == MIGRATE_MOVABLE) {
2055 alike_pages = movable_pages;
2056 } else {
2057 /*
2058 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2059 * to MOVABLE pageblock, consider all non-movable pages as
2060 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2061 * vice versa, be conservative since we can't distinguish the
2062 * exact migratetype of non-movable pages.
2063 */
2064 if (old_block_type == MIGRATE_MOVABLE)
2065 alike_pages = pageblock_nr_pages
2066 - (free_pages + movable_pages);
2067 else
2068 alike_pages = 0;
2069 }
2070
3bc48f96 2071 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2072 if (!free_pages)
3bc48f96 2073 goto single_page;
fef903ef 2074
02aa0cdd
VB
2075 /*
2076 * If a sufficient number of pages in the block are either free or of
2077 * comparable migratability as our allocation, claim the whole block.
2078 */
2079 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2080 page_group_by_mobility_disabled)
2081 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2082
2083 return;
2084
2085single_page:
2086 area = &zone->free_area[current_order];
2087 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2088}
2089
2149cdae
JK
2090/*
2091 * Check whether there is a suitable fallback freepage with requested order.
2092 * If only_stealable is true, this function returns fallback_mt only if
2093 * we can steal other freepages all together. This would help to reduce
2094 * fragmentation due to mixed migratetype pages in one pageblock.
2095 */
2096int find_suitable_fallback(struct free_area *area, unsigned int order,
2097 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2098{
2099 int i;
2100 int fallback_mt;
2101
2102 if (area->nr_free == 0)
2103 return -1;
2104
2105 *can_steal = false;
2106 for (i = 0;; i++) {
2107 fallback_mt = fallbacks[migratetype][i];
974a786e 2108 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2109 break;
2110
2111 if (list_empty(&area->free_list[fallback_mt]))
2112 continue;
fef903ef 2113
4eb7dce6
JK
2114 if (can_steal_fallback(order, migratetype))
2115 *can_steal = true;
2116
2149cdae
JK
2117 if (!only_stealable)
2118 return fallback_mt;
2119
2120 if (*can_steal)
2121 return fallback_mt;
fef903ef 2122 }
4eb7dce6
JK
2123
2124 return -1;
fef903ef
SB
2125}
2126
0aaa29a5
MG
2127/*
2128 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2129 * there are no empty page blocks that contain a page with a suitable order
2130 */
2131static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2132 unsigned int alloc_order)
2133{
2134 int mt;
2135 unsigned long max_managed, flags;
2136
2137 /*
2138 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2139 * Check is race-prone but harmless.
2140 */
2141 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2142 if (zone->nr_reserved_highatomic >= max_managed)
2143 return;
2144
2145 spin_lock_irqsave(&zone->lock, flags);
2146
2147 /* Recheck the nr_reserved_highatomic limit under the lock */
2148 if (zone->nr_reserved_highatomic >= max_managed)
2149 goto out_unlock;
2150
2151 /* Yoink! */
2152 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2153 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2154 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2155 zone->nr_reserved_highatomic += pageblock_nr_pages;
2156 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2157 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2158 }
2159
2160out_unlock:
2161 spin_unlock_irqrestore(&zone->lock, flags);
2162}
2163
2164/*
2165 * Used when an allocation is about to fail under memory pressure. This
2166 * potentially hurts the reliability of high-order allocations when under
2167 * intense memory pressure but failed atomic allocations should be easier
2168 * to recover from than an OOM.
29fac03b
MK
2169 *
2170 * If @force is true, try to unreserve a pageblock even though highatomic
2171 * pageblock is exhausted.
0aaa29a5 2172 */
29fac03b
MK
2173static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2174 bool force)
0aaa29a5
MG
2175{
2176 struct zonelist *zonelist = ac->zonelist;
2177 unsigned long flags;
2178 struct zoneref *z;
2179 struct zone *zone;
2180 struct page *page;
2181 int order;
04c8716f 2182 bool ret;
0aaa29a5
MG
2183
2184 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2185 ac->nodemask) {
29fac03b
MK
2186 /*
2187 * Preserve at least one pageblock unless memory pressure
2188 * is really high.
2189 */
2190 if (!force && zone->nr_reserved_highatomic <=
2191 pageblock_nr_pages)
0aaa29a5
MG
2192 continue;
2193
2194 spin_lock_irqsave(&zone->lock, flags);
2195 for (order = 0; order < MAX_ORDER; order++) {
2196 struct free_area *area = &(zone->free_area[order]);
2197
a16601c5
GT
2198 page = list_first_entry_or_null(
2199 &area->free_list[MIGRATE_HIGHATOMIC],
2200 struct page, lru);
2201 if (!page)
0aaa29a5
MG
2202 continue;
2203
0aaa29a5 2204 /*
4855e4a7
MK
2205 * In page freeing path, migratetype change is racy so
2206 * we can counter several free pages in a pageblock
2207 * in this loop althoug we changed the pageblock type
2208 * from highatomic to ac->migratetype. So we should
2209 * adjust the count once.
0aaa29a5 2210 */
a6ffdc07 2211 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2212 /*
2213 * It should never happen but changes to
2214 * locking could inadvertently allow a per-cpu
2215 * drain to add pages to MIGRATE_HIGHATOMIC
2216 * while unreserving so be safe and watch for
2217 * underflows.
2218 */
2219 zone->nr_reserved_highatomic -= min(
2220 pageblock_nr_pages,
2221 zone->nr_reserved_highatomic);
2222 }
0aaa29a5
MG
2223
2224 /*
2225 * Convert to ac->migratetype and avoid the normal
2226 * pageblock stealing heuristics. Minimally, the caller
2227 * is doing the work and needs the pages. More
2228 * importantly, if the block was always converted to
2229 * MIGRATE_UNMOVABLE or another type then the number
2230 * of pageblocks that cannot be completely freed
2231 * may increase.
2232 */
2233 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2234 ret = move_freepages_block(zone, page, ac->migratetype,
2235 NULL);
29fac03b
MK
2236 if (ret) {
2237 spin_unlock_irqrestore(&zone->lock, flags);
2238 return ret;
2239 }
0aaa29a5
MG
2240 }
2241 spin_unlock_irqrestore(&zone->lock, flags);
2242 }
04c8716f
MK
2243
2244 return false;
0aaa29a5
MG
2245}
2246
3bc48f96
VB
2247/*
2248 * Try finding a free buddy page on the fallback list and put it on the free
2249 * list of requested migratetype, possibly along with other pages from the same
2250 * block, depending on fragmentation avoidance heuristics. Returns true if
2251 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2252 *
2253 * The use of signed ints for order and current_order is a deliberate
2254 * deviation from the rest of this file, to make the for loop
2255 * condition simpler.
3bc48f96 2256 */
85ccc8fa 2257static __always_inline bool
b002529d 2258__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2259{
b8af2941 2260 struct free_area *area;
b002529d 2261 int current_order;
b2a0ac88 2262 struct page *page;
4eb7dce6
JK
2263 int fallback_mt;
2264 bool can_steal;
b2a0ac88 2265
7a8f58f3
VB
2266 /*
2267 * Find the largest available free page in the other list. This roughly
2268 * approximates finding the pageblock with the most free pages, which
2269 * would be too costly to do exactly.
2270 */
b002529d 2271 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2272 --current_order) {
4eb7dce6
JK
2273 area = &(zone->free_area[current_order]);
2274 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2275 start_migratetype, false, &can_steal);
4eb7dce6
JK
2276 if (fallback_mt == -1)
2277 continue;
b2a0ac88 2278
7a8f58f3
VB
2279 /*
2280 * We cannot steal all free pages from the pageblock and the
2281 * requested migratetype is movable. In that case it's better to
2282 * steal and split the smallest available page instead of the
2283 * largest available page, because even if the next movable
2284 * allocation falls back into a different pageblock than this
2285 * one, it won't cause permanent fragmentation.
2286 */
2287 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2288 && current_order > order)
2289 goto find_smallest;
b2a0ac88 2290
7a8f58f3
VB
2291 goto do_steal;
2292 }
e0fff1bd 2293
7a8f58f3 2294 return false;
e0fff1bd 2295
7a8f58f3
VB
2296find_smallest:
2297 for (current_order = order; current_order < MAX_ORDER;
2298 current_order++) {
2299 area = &(zone->free_area[current_order]);
2300 fallback_mt = find_suitable_fallback(area, current_order,
2301 start_migratetype, false, &can_steal);
2302 if (fallback_mt != -1)
2303 break;
b2a0ac88
MG
2304 }
2305
7a8f58f3
VB
2306 /*
2307 * This should not happen - we already found a suitable fallback
2308 * when looking for the largest page.
2309 */
2310 VM_BUG_ON(current_order == MAX_ORDER);
2311
2312do_steal:
2313 page = list_first_entry(&area->free_list[fallback_mt],
2314 struct page, lru);
2315
2316 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2317
2318 trace_mm_page_alloc_extfrag(page, order, current_order,
2319 start_migratetype, fallback_mt);
2320
2321 return true;
2322
b2a0ac88
MG
2323}
2324
56fd56b8 2325/*
1da177e4
LT
2326 * Do the hard work of removing an element from the buddy allocator.
2327 * Call me with the zone->lock already held.
2328 */
85ccc8fa
AL
2329static __always_inline struct page *
2330__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2331{
1da177e4
LT
2332 struct page *page;
2333
3bc48f96 2334retry:
56fd56b8 2335 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2336 if (unlikely(!page)) {
dc67647b
JK
2337 if (migratetype == MIGRATE_MOVABLE)
2338 page = __rmqueue_cma_fallback(zone, order);
2339
3bc48f96
VB
2340 if (!page && __rmqueue_fallback(zone, order, migratetype))
2341 goto retry;
728ec980
MG
2342 }
2343
0d3d062a 2344 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2345 return page;
1da177e4
LT
2346}
2347
5f63b720 2348/*
1da177e4
LT
2349 * Obtain a specified number of elements from the buddy allocator, all under
2350 * a single hold of the lock, for efficiency. Add them to the supplied list.
2351 * Returns the number of new pages which were placed at *list.
2352 */
5f63b720 2353static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2354 unsigned long count, struct list_head *list,
453f85d4 2355 int migratetype)
1da177e4 2356{
a6de734b 2357 int i, alloced = 0;
5f63b720 2358
d34b0733 2359 spin_lock(&zone->lock);
1da177e4 2360 for (i = 0; i < count; ++i) {
6ac0206b 2361 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2362 if (unlikely(page == NULL))
1da177e4 2363 break;
81eabcbe 2364
479f854a
MG
2365 if (unlikely(check_pcp_refill(page)))
2366 continue;
2367
81eabcbe 2368 /*
0fac3ba5
VB
2369 * Split buddy pages returned by expand() are received here in
2370 * physical page order. The page is added to the tail of
2371 * caller's list. From the callers perspective, the linked list
2372 * is ordered by page number under some conditions. This is
2373 * useful for IO devices that can forward direction from the
2374 * head, thus also in the physical page order. This is useful
2375 * for IO devices that can merge IO requests if the physical
2376 * pages are ordered properly.
81eabcbe 2377 */
0fac3ba5 2378 list_add_tail(&page->lru, list);
a6de734b 2379 alloced++;
bb14c2c7 2380 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2381 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2382 -(1 << order));
1da177e4 2383 }
a6de734b
MG
2384
2385 /*
2386 * i pages were removed from the buddy list even if some leak due
2387 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2388 * on i. Do not confuse with 'alloced' which is the number of
2389 * pages added to the pcp list.
2390 */
f2260e6b 2391 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2392 spin_unlock(&zone->lock);
a6de734b 2393 return alloced;
1da177e4
LT
2394}
2395
4ae7c039 2396#ifdef CONFIG_NUMA
8fce4d8e 2397/*
4037d452
CL
2398 * Called from the vmstat counter updater to drain pagesets of this
2399 * currently executing processor on remote nodes after they have
2400 * expired.
2401 *
879336c3
CL
2402 * Note that this function must be called with the thread pinned to
2403 * a single processor.
8fce4d8e 2404 */
4037d452 2405void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2406{
4ae7c039 2407 unsigned long flags;
7be12fc9 2408 int to_drain, batch;
4ae7c039 2409
4037d452 2410 local_irq_save(flags);
4db0c3c2 2411 batch = READ_ONCE(pcp->batch);
7be12fc9 2412 to_drain = min(pcp->count, batch);
2a13515c
KM
2413 if (to_drain > 0) {
2414 free_pcppages_bulk(zone, to_drain, pcp);
2415 pcp->count -= to_drain;
2416 }
4037d452 2417 local_irq_restore(flags);
4ae7c039
CL
2418}
2419#endif
2420
9f8f2172 2421/*
93481ff0 2422 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2423 *
2424 * The processor must either be the current processor and the
2425 * thread pinned to the current processor or a processor that
2426 * is not online.
2427 */
93481ff0 2428static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2429{
c54ad30c 2430 unsigned long flags;
93481ff0
VB
2431 struct per_cpu_pageset *pset;
2432 struct per_cpu_pages *pcp;
1da177e4 2433
93481ff0
VB
2434 local_irq_save(flags);
2435 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2436
93481ff0
VB
2437 pcp = &pset->pcp;
2438 if (pcp->count) {
2439 free_pcppages_bulk(zone, pcp->count, pcp);
2440 pcp->count = 0;
2441 }
2442 local_irq_restore(flags);
2443}
3dfa5721 2444
93481ff0
VB
2445/*
2446 * Drain pcplists of all zones on the indicated processor.
2447 *
2448 * The processor must either be the current processor and the
2449 * thread pinned to the current processor or a processor that
2450 * is not online.
2451 */
2452static void drain_pages(unsigned int cpu)
2453{
2454 struct zone *zone;
2455
2456 for_each_populated_zone(zone) {
2457 drain_pages_zone(cpu, zone);
1da177e4
LT
2458 }
2459}
1da177e4 2460
9f8f2172
CL
2461/*
2462 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2463 *
2464 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2465 * the single zone's pages.
9f8f2172 2466 */
93481ff0 2467void drain_local_pages(struct zone *zone)
9f8f2172 2468{
93481ff0
VB
2469 int cpu = smp_processor_id();
2470
2471 if (zone)
2472 drain_pages_zone(cpu, zone);
2473 else
2474 drain_pages(cpu);
9f8f2172
CL
2475}
2476
0ccce3b9
MG
2477static void drain_local_pages_wq(struct work_struct *work)
2478{
a459eeb7
MH
2479 /*
2480 * drain_all_pages doesn't use proper cpu hotplug protection so
2481 * we can race with cpu offline when the WQ can move this from
2482 * a cpu pinned worker to an unbound one. We can operate on a different
2483 * cpu which is allright but we also have to make sure to not move to
2484 * a different one.
2485 */
2486 preempt_disable();
0ccce3b9 2487 drain_local_pages(NULL);
a459eeb7 2488 preempt_enable();
0ccce3b9
MG
2489}
2490
9f8f2172 2491/*
74046494
GBY
2492 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2493 *
93481ff0
VB
2494 * When zone parameter is non-NULL, spill just the single zone's pages.
2495 *
0ccce3b9 2496 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2497 */
93481ff0 2498void drain_all_pages(struct zone *zone)
9f8f2172 2499{
74046494 2500 int cpu;
74046494
GBY
2501
2502 /*
2503 * Allocate in the BSS so we wont require allocation in
2504 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2505 */
2506 static cpumask_t cpus_with_pcps;
2507
ce612879
MH
2508 /*
2509 * Make sure nobody triggers this path before mm_percpu_wq is fully
2510 * initialized.
2511 */
2512 if (WARN_ON_ONCE(!mm_percpu_wq))
2513 return;
2514
bd233f53
MG
2515 /*
2516 * Do not drain if one is already in progress unless it's specific to
2517 * a zone. Such callers are primarily CMA and memory hotplug and need
2518 * the drain to be complete when the call returns.
2519 */
2520 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2521 if (!zone)
2522 return;
2523 mutex_lock(&pcpu_drain_mutex);
2524 }
0ccce3b9 2525
74046494
GBY
2526 /*
2527 * We don't care about racing with CPU hotplug event
2528 * as offline notification will cause the notified
2529 * cpu to drain that CPU pcps and on_each_cpu_mask
2530 * disables preemption as part of its processing
2531 */
2532 for_each_online_cpu(cpu) {
93481ff0
VB
2533 struct per_cpu_pageset *pcp;
2534 struct zone *z;
74046494 2535 bool has_pcps = false;
93481ff0
VB
2536
2537 if (zone) {
74046494 2538 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2539 if (pcp->pcp.count)
74046494 2540 has_pcps = true;
93481ff0
VB
2541 } else {
2542 for_each_populated_zone(z) {
2543 pcp = per_cpu_ptr(z->pageset, cpu);
2544 if (pcp->pcp.count) {
2545 has_pcps = true;
2546 break;
2547 }
74046494
GBY
2548 }
2549 }
93481ff0 2550
74046494
GBY
2551 if (has_pcps)
2552 cpumask_set_cpu(cpu, &cpus_with_pcps);
2553 else
2554 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2555 }
0ccce3b9 2556
bd233f53
MG
2557 for_each_cpu(cpu, &cpus_with_pcps) {
2558 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2559 INIT_WORK(work, drain_local_pages_wq);
ce612879 2560 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2561 }
bd233f53
MG
2562 for_each_cpu(cpu, &cpus_with_pcps)
2563 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2564
2565 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2566}
2567
296699de 2568#ifdef CONFIG_HIBERNATION
1da177e4 2569
556b969a
CY
2570/*
2571 * Touch the watchdog for every WD_PAGE_COUNT pages.
2572 */
2573#define WD_PAGE_COUNT (128*1024)
2574
1da177e4
LT
2575void mark_free_pages(struct zone *zone)
2576{
556b969a 2577 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2578 unsigned long flags;
7aeb09f9 2579 unsigned int order, t;
86760a2c 2580 struct page *page;
1da177e4 2581
8080fc03 2582 if (zone_is_empty(zone))
1da177e4
LT
2583 return;
2584
2585 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2586
108bcc96 2587 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2588 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2589 if (pfn_valid(pfn)) {
86760a2c 2590 page = pfn_to_page(pfn);
ba6b0979 2591
556b969a
CY
2592 if (!--page_count) {
2593 touch_nmi_watchdog();
2594 page_count = WD_PAGE_COUNT;
2595 }
2596
ba6b0979
JK
2597 if (page_zone(page) != zone)
2598 continue;
2599
7be98234
RW
2600 if (!swsusp_page_is_forbidden(page))
2601 swsusp_unset_page_free(page);
f623f0db 2602 }
1da177e4 2603
b2a0ac88 2604 for_each_migratetype_order(order, t) {
86760a2c
GT
2605 list_for_each_entry(page,
2606 &zone->free_area[order].free_list[t], lru) {
f623f0db 2607 unsigned long i;
1da177e4 2608
86760a2c 2609 pfn = page_to_pfn(page);
556b969a
CY
2610 for (i = 0; i < (1UL << order); i++) {
2611 if (!--page_count) {
2612 touch_nmi_watchdog();
2613 page_count = WD_PAGE_COUNT;
2614 }
7be98234 2615 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2616 }
f623f0db 2617 }
b2a0ac88 2618 }
1da177e4
LT
2619 spin_unlock_irqrestore(&zone->lock, flags);
2620}
e2c55dc8 2621#endif /* CONFIG_PM */
1da177e4 2622
2d4894b5 2623static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2624{
5f8dcc21 2625 int migratetype;
1da177e4 2626
4db7548c 2627 if (!free_pcp_prepare(page))
9cca35d4 2628 return false;
689bcebf 2629
dc4b0caf 2630 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2631 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2632 return true;
2633}
2634
2d4894b5 2635static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2636{
2637 struct zone *zone = page_zone(page);
2638 struct per_cpu_pages *pcp;
2639 int migratetype;
2640
2641 migratetype = get_pcppage_migratetype(page);
d34b0733 2642 __count_vm_event(PGFREE);
da456f14 2643
5f8dcc21
MG
2644 /*
2645 * We only track unmovable, reclaimable and movable on pcp lists.
2646 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2647 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2648 * areas back if necessary. Otherwise, we may have to free
2649 * excessively into the page allocator
2650 */
2651 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2652 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2653 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2654 return;
5f8dcc21
MG
2655 }
2656 migratetype = MIGRATE_MOVABLE;
2657 }
2658
99dcc3e5 2659 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2660 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2661 pcp->count++;
48db57f8 2662 if (pcp->count >= pcp->high) {
4db0c3c2 2663 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2664 free_pcppages_bulk(zone, batch, pcp);
2665 pcp->count -= batch;
48db57f8 2666 }
9cca35d4 2667}
5f8dcc21 2668
9cca35d4
MG
2669/*
2670 * Free a 0-order page
9cca35d4 2671 */
2d4894b5 2672void free_unref_page(struct page *page)
9cca35d4
MG
2673{
2674 unsigned long flags;
2675 unsigned long pfn = page_to_pfn(page);
2676
2d4894b5 2677 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2678 return;
2679
2680 local_irq_save(flags);
2d4894b5 2681 free_unref_page_commit(page, pfn);
d34b0733 2682 local_irq_restore(flags);
1da177e4
LT
2683}
2684
cc59850e
KK
2685/*
2686 * Free a list of 0-order pages
2687 */
2d4894b5 2688void free_unref_page_list(struct list_head *list)
cc59850e
KK
2689{
2690 struct page *page, *next;
9cca35d4 2691 unsigned long flags, pfn;
c24ad77d 2692 int batch_count = 0;
9cca35d4
MG
2693
2694 /* Prepare pages for freeing */
2695 list_for_each_entry_safe(page, next, list, lru) {
2696 pfn = page_to_pfn(page);
2d4894b5 2697 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2698 list_del(&page->lru);
2699 set_page_private(page, pfn);
2700 }
cc59850e 2701
9cca35d4 2702 local_irq_save(flags);
cc59850e 2703 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2704 unsigned long pfn = page_private(page);
2705
2706 set_page_private(page, 0);
2d4894b5
MG
2707 trace_mm_page_free_batched(page);
2708 free_unref_page_commit(page, pfn);
c24ad77d
LS
2709
2710 /*
2711 * Guard against excessive IRQ disabled times when we get
2712 * a large list of pages to free.
2713 */
2714 if (++batch_count == SWAP_CLUSTER_MAX) {
2715 local_irq_restore(flags);
2716 batch_count = 0;
2717 local_irq_save(flags);
2718 }
cc59850e 2719 }
9cca35d4 2720 local_irq_restore(flags);
cc59850e
KK
2721}
2722
8dfcc9ba
NP
2723/*
2724 * split_page takes a non-compound higher-order page, and splits it into
2725 * n (1<<order) sub-pages: page[0..n]
2726 * Each sub-page must be freed individually.
2727 *
2728 * Note: this is probably too low level an operation for use in drivers.
2729 * Please consult with lkml before using this in your driver.
2730 */
2731void split_page(struct page *page, unsigned int order)
2732{
2733 int i;
2734
309381fe
SL
2735 VM_BUG_ON_PAGE(PageCompound(page), page);
2736 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2737
a9627bc5 2738 for (i = 1; i < (1 << order); i++)
7835e98b 2739 set_page_refcounted(page + i);
a9627bc5 2740 split_page_owner(page, order);
8dfcc9ba 2741}
5853ff23 2742EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2743
3c605096 2744int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2745{
748446bb
MG
2746 unsigned long watermark;
2747 struct zone *zone;
2139cbe6 2748 int mt;
748446bb
MG
2749
2750 BUG_ON(!PageBuddy(page));
2751
2752 zone = page_zone(page);
2e30abd1 2753 mt = get_pageblock_migratetype(page);
748446bb 2754
194159fb 2755 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2756 /*
2757 * Obey watermarks as if the page was being allocated. We can
2758 * emulate a high-order watermark check with a raised order-0
2759 * watermark, because we already know our high-order page
2760 * exists.
2761 */
2762 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2763 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2764 return 0;
2765
8fb74b9f 2766 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2767 }
748446bb
MG
2768
2769 /* Remove page from free list */
2770 list_del(&page->lru);
2771 zone->free_area[order].nr_free--;
2772 rmv_page_order(page);
2139cbe6 2773
400bc7fd 2774 /*
2775 * Set the pageblock if the isolated page is at least half of a
2776 * pageblock
2777 */
748446bb
MG
2778 if (order >= pageblock_order - 1) {
2779 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2780 for (; page < endpage; page += pageblock_nr_pages) {
2781 int mt = get_pageblock_migratetype(page);
88ed365e 2782 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2783 && !is_migrate_highatomic(mt))
47118af0
MN
2784 set_pageblock_migratetype(page,
2785 MIGRATE_MOVABLE);
2786 }
748446bb
MG
2787 }
2788
f3a14ced 2789
8fb74b9f 2790 return 1UL << order;
1fb3f8ca
MG
2791}
2792
060e7417
MG
2793/*
2794 * Update NUMA hit/miss statistics
2795 *
2796 * Must be called with interrupts disabled.
060e7417 2797 */
41b6167e 2798static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2799{
2800#ifdef CONFIG_NUMA
3a321d2a 2801 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2802
4518085e
KW
2803 /* skip numa counters update if numa stats is disabled */
2804 if (!static_branch_likely(&vm_numa_stat_key))
2805 return;
2806
2df26639 2807 if (z->node != numa_node_id())
060e7417 2808 local_stat = NUMA_OTHER;
060e7417 2809
2df26639 2810 if (z->node == preferred_zone->node)
3a321d2a 2811 __inc_numa_state(z, NUMA_HIT);
2df26639 2812 else {
3a321d2a
KW
2813 __inc_numa_state(z, NUMA_MISS);
2814 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2815 }
3a321d2a 2816 __inc_numa_state(z, local_stat);
060e7417
MG
2817#endif
2818}
2819
066b2393
MG
2820/* Remove page from the per-cpu list, caller must protect the list */
2821static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2822 struct per_cpu_pages *pcp,
066b2393
MG
2823 struct list_head *list)
2824{
2825 struct page *page;
2826
2827 do {
2828 if (list_empty(list)) {
2829 pcp->count += rmqueue_bulk(zone, 0,
2830 pcp->batch, list,
453f85d4 2831 migratetype);
066b2393
MG
2832 if (unlikely(list_empty(list)))
2833 return NULL;
2834 }
2835
453f85d4 2836 page = list_first_entry(list, struct page, lru);
066b2393
MG
2837 list_del(&page->lru);
2838 pcp->count--;
2839 } while (check_new_pcp(page));
2840
2841 return page;
2842}
2843
2844/* Lock and remove page from the per-cpu list */
2845static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2846 struct zone *zone, unsigned int order,
2847 gfp_t gfp_flags, int migratetype)
2848{
2849 struct per_cpu_pages *pcp;
2850 struct list_head *list;
066b2393 2851 struct page *page;
d34b0733 2852 unsigned long flags;
066b2393 2853
d34b0733 2854 local_irq_save(flags);
066b2393
MG
2855 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2856 list = &pcp->lists[migratetype];
453f85d4 2857 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2858 if (page) {
2859 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2860 zone_statistics(preferred_zone, zone);
2861 }
d34b0733 2862 local_irq_restore(flags);
066b2393
MG
2863 return page;
2864}
2865
1da177e4 2866/*
75379191 2867 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2868 */
0a15c3e9 2869static inline
066b2393 2870struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2871 struct zone *zone, unsigned int order,
c603844b
MG
2872 gfp_t gfp_flags, unsigned int alloc_flags,
2873 int migratetype)
1da177e4
LT
2874{
2875 unsigned long flags;
689bcebf 2876 struct page *page;
1da177e4 2877
d34b0733 2878 if (likely(order == 0)) {
066b2393
MG
2879 page = rmqueue_pcplist(preferred_zone, zone, order,
2880 gfp_flags, migratetype);
2881 goto out;
2882 }
83b9355b 2883
066b2393
MG
2884 /*
2885 * We most definitely don't want callers attempting to
2886 * allocate greater than order-1 page units with __GFP_NOFAIL.
2887 */
2888 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2889 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2890
066b2393
MG
2891 do {
2892 page = NULL;
2893 if (alloc_flags & ALLOC_HARDER) {
2894 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2895 if (page)
2896 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2897 }
a74609fa 2898 if (!page)
066b2393
MG
2899 page = __rmqueue(zone, order, migratetype);
2900 } while (page && check_new_pages(page, order));
2901 spin_unlock(&zone->lock);
2902 if (!page)
2903 goto failed;
2904 __mod_zone_freepage_state(zone, -(1 << order),
2905 get_pcppage_migratetype(page));
1da177e4 2906
16709d1d 2907 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2908 zone_statistics(preferred_zone, zone);
a74609fa 2909 local_irq_restore(flags);
1da177e4 2910
066b2393
MG
2911out:
2912 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2913 return page;
a74609fa
NP
2914
2915failed:
2916 local_irq_restore(flags);
a74609fa 2917 return NULL;
1da177e4
LT
2918}
2919
933e312e
AM
2920#ifdef CONFIG_FAIL_PAGE_ALLOC
2921
b2588c4b 2922static struct {
933e312e
AM
2923 struct fault_attr attr;
2924
621a5f7a 2925 bool ignore_gfp_highmem;
71baba4b 2926 bool ignore_gfp_reclaim;
54114994 2927 u32 min_order;
933e312e
AM
2928} fail_page_alloc = {
2929 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2930 .ignore_gfp_reclaim = true,
621a5f7a 2931 .ignore_gfp_highmem = true,
54114994 2932 .min_order = 1,
933e312e
AM
2933};
2934
2935static int __init setup_fail_page_alloc(char *str)
2936{
2937 return setup_fault_attr(&fail_page_alloc.attr, str);
2938}
2939__setup("fail_page_alloc=", setup_fail_page_alloc);
2940
deaf386e 2941static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2942{
54114994 2943 if (order < fail_page_alloc.min_order)
deaf386e 2944 return false;
933e312e 2945 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2946 return false;
933e312e 2947 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2948 return false;
71baba4b
MG
2949 if (fail_page_alloc.ignore_gfp_reclaim &&
2950 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2951 return false;
933e312e
AM
2952
2953 return should_fail(&fail_page_alloc.attr, 1 << order);
2954}
2955
2956#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2957
2958static int __init fail_page_alloc_debugfs(void)
2959{
f4ae40a6 2960 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2961 struct dentry *dir;
933e312e 2962
dd48c085
AM
2963 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2964 &fail_page_alloc.attr);
2965 if (IS_ERR(dir))
2966 return PTR_ERR(dir);
933e312e 2967
b2588c4b 2968 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2969 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2970 goto fail;
2971 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2972 &fail_page_alloc.ignore_gfp_highmem))
2973 goto fail;
2974 if (!debugfs_create_u32("min-order", mode, dir,
2975 &fail_page_alloc.min_order))
2976 goto fail;
2977
2978 return 0;
2979fail:
dd48c085 2980 debugfs_remove_recursive(dir);
933e312e 2981
b2588c4b 2982 return -ENOMEM;
933e312e
AM
2983}
2984
2985late_initcall(fail_page_alloc_debugfs);
2986
2987#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2988
2989#else /* CONFIG_FAIL_PAGE_ALLOC */
2990
deaf386e 2991static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2992{
deaf386e 2993 return false;
933e312e
AM
2994}
2995
2996#endif /* CONFIG_FAIL_PAGE_ALLOC */
2997
1da177e4 2998/*
97a16fc8
MG
2999 * Return true if free base pages are above 'mark'. For high-order checks it
3000 * will return true of the order-0 watermark is reached and there is at least
3001 * one free page of a suitable size. Checking now avoids taking the zone lock
3002 * to check in the allocation paths if no pages are free.
1da177e4 3003 */
86a294a8
MH
3004bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3005 int classzone_idx, unsigned int alloc_flags,
3006 long free_pages)
1da177e4 3007{
d23ad423 3008 long min = mark;
1da177e4 3009 int o;
cd04ae1e 3010 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3011
0aaa29a5 3012 /* free_pages may go negative - that's OK */
df0a6daa 3013 free_pages -= (1 << order) - 1;
0aaa29a5 3014
7fb1d9fc 3015 if (alloc_flags & ALLOC_HIGH)
1da177e4 3016 min -= min / 2;
0aaa29a5
MG
3017
3018 /*
3019 * If the caller does not have rights to ALLOC_HARDER then subtract
3020 * the high-atomic reserves. This will over-estimate the size of the
3021 * atomic reserve but it avoids a search.
3022 */
cd04ae1e 3023 if (likely(!alloc_harder)) {
0aaa29a5 3024 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3025 } else {
3026 /*
3027 * OOM victims can try even harder than normal ALLOC_HARDER
3028 * users on the grounds that it's definitely going to be in
3029 * the exit path shortly and free memory. Any allocation it
3030 * makes during the free path will be small and short-lived.
3031 */
3032 if (alloc_flags & ALLOC_OOM)
3033 min -= min / 2;
3034 else
3035 min -= min / 4;
3036 }
3037
e2b19197 3038
d95ea5d1
BZ
3039#ifdef CONFIG_CMA
3040 /* If allocation can't use CMA areas don't use free CMA pages */
3041 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3042 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3043#endif
026b0814 3044
97a16fc8
MG
3045 /*
3046 * Check watermarks for an order-0 allocation request. If these
3047 * are not met, then a high-order request also cannot go ahead
3048 * even if a suitable page happened to be free.
3049 */
3050 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3051 return false;
1da177e4 3052
97a16fc8
MG
3053 /* If this is an order-0 request then the watermark is fine */
3054 if (!order)
3055 return true;
3056
3057 /* For a high-order request, check at least one suitable page is free */
3058 for (o = order; o < MAX_ORDER; o++) {
3059 struct free_area *area = &z->free_area[o];
3060 int mt;
3061
3062 if (!area->nr_free)
3063 continue;
3064
97a16fc8
MG
3065 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3066 if (!list_empty(&area->free_list[mt]))
3067 return true;
3068 }
3069
3070#ifdef CONFIG_CMA
3071 if ((alloc_flags & ALLOC_CMA) &&
3072 !list_empty(&area->free_list[MIGRATE_CMA])) {
3073 return true;
3074 }
3075#endif
b050e376
VB
3076 if (alloc_harder &&
3077 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3078 return true;
1da177e4 3079 }
97a16fc8 3080 return false;
88f5acf8
MG
3081}
3082
7aeb09f9 3083bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3084 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3085{
3086 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3087 zone_page_state(z, NR_FREE_PAGES));
3088}
3089
48ee5f36
MG
3090static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3091 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3092{
3093 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3094 long cma_pages = 0;
3095
3096#ifdef CONFIG_CMA
3097 /* If allocation can't use CMA areas don't use free CMA pages */
3098 if (!(alloc_flags & ALLOC_CMA))
3099 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3100#endif
3101
3102 /*
3103 * Fast check for order-0 only. If this fails then the reserves
3104 * need to be calculated. There is a corner case where the check
3105 * passes but only the high-order atomic reserve are free. If
3106 * the caller is !atomic then it'll uselessly search the free
3107 * list. That corner case is then slower but it is harmless.
3108 */
3109 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3110 return true;
3111
3112 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3113 free_pages);
3114}
3115
7aeb09f9 3116bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3117 unsigned long mark, int classzone_idx)
88f5acf8
MG
3118{
3119 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3120
3121 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3122 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3123
e2b19197 3124 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3125 free_pages);
1da177e4
LT
3126}
3127
9276b1bc 3128#ifdef CONFIG_NUMA
957f822a
DR
3129static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3130{
e02dc017 3131 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3132 RECLAIM_DISTANCE;
957f822a 3133}
9276b1bc 3134#else /* CONFIG_NUMA */
957f822a
DR
3135static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3136{
3137 return true;
3138}
9276b1bc
PJ
3139#endif /* CONFIG_NUMA */
3140
7fb1d9fc 3141/*
0798e519 3142 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3143 * a page.
3144 */
3145static struct page *
a9263751
VB
3146get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3147 const struct alloc_context *ac)
753ee728 3148{
c33d6c06 3149 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3150 struct zone *zone;
3b8c0be4
MG
3151 struct pglist_data *last_pgdat_dirty_limit = NULL;
3152
7fb1d9fc 3153 /*
9276b1bc 3154 * Scan zonelist, looking for a zone with enough free.
344736f2 3155 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3156 */
c33d6c06 3157 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3158 ac->nodemask) {
be06af00 3159 struct page *page;
e085dbc5
JW
3160 unsigned long mark;
3161
664eedde
MG
3162 if (cpusets_enabled() &&
3163 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3164 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3165 continue;
a756cf59
JW
3166 /*
3167 * When allocating a page cache page for writing, we
281e3726
MG
3168 * want to get it from a node that is within its dirty
3169 * limit, such that no single node holds more than its
a756cf59 3170 * proportional share of globally allowed dirty pages.
281e3726 3171 * The dirty limits take into account the node's
a756cf59
JW
3172 * lowmem reserves and high watermark so that kswapd
3173 * should be able to balance it without having to
3174 * write pages from its LRU list.
3175 *
a756cf59 3176 * XXX: For now, allow allocations to potentially
281e3726 3177 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3178 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3179 * which is important when on a NUMA setup the allowed
281e3726 3180 * nodes are together not big enough to reach the
a756cf59 3181 * global limit. The proper fix for these situations
281e3726 3182 * will require awareness of nodes in the
a756cf59
JW
3183 * dirty-throttling and the flusher threads.
3184 */
3b8c0be4
MG
3185 if (ac->spread_dirty_pages) {
3186 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3187 continue;
3188
3189 if (!node_dirty_ok(zone->zone_pgdat)) {
3190 last_pgdat_dirty_limit = zone->zone_pgdat;
3191 continue;
3192 }
3193 }
7fb1d9fc 3194
e085dbc5 3195 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3196 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3197 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3198 int ret;
3199
5dab2911
MG
3200 /* Checked here to keep the fast path fast */
3201 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3202 if (alloc_flags & ALLOC_NO_WATERMARKS)
3203 goto try_this_zone;
3204
a5f5f91d 3205 if (node_reclaim_mode == 0 ||
c33d6c06 3206 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3207 continue;
3208
a5f5f91d 3209 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3210 switch (ret) {
a5f5f91d 3211 case NODE_RECLAIM_NOSCAN:
fa5e084e 3212 /* did not scan */
cd38b115 3213 continue;
a5f5f91d 3214 case NODE_RECLAIM_FULL:
fa5e084e 3215 /* scanned but unreclaimable */
cd38b115 3216 continue;
fa5e084e
MG
3217 default:
3218 /* did we reclaim enough */
fed2719e 3219 if (zone_watermark_ok(zone, order, mark,
93ea9964 3220 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3221 goto try_this_zone;
3222
fed2719e 3223 continue;
0798e519 3224 }
7fb1d9fc
RS
3225 }
3226
fa5e084e 3227try_this_zone:
066b2393 3228 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3229 gfp_mask, alloc_flags, ac->migratetype);
75379191 3230 if (page) {
479f854a 3231 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3232
3233 /*
3234 * If this is a high-order atomic allocation then check
3235 * if the pageblock should be reserved for the future
3236 */
3237 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3238 reserve_highatomic_pageblock(page, zone, order);
3239
75379191
VB
3240 return page;
3241 }
54a6eb5c 3242 }
9276b1bc 3243
4ffeaf35 3244 return NULL;
753ee728
MH
3245}
3246
29423e77
DR
3247/*
3248 * Large machines with many possible nodes should not always dump per-node
3249 * meminfo in irq context.
3250 */
3251static inline bool should_suppress_show_mem(void)
3252{
3253 bool ret = false;
3254
3255#if NODES_SHIFT > 8
3256 ret = in_interrupt();
3257#endif
3258 return ret;
3259}
3260
9af744d7 3261static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3262{
a238ab5b 3263 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3264 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3265
aa187507 3266 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3267 return;
3268
3269 /*
3270 * This documents exceptions given to allocations in certain
3271 * contexts that are allowed to allocate outside current's set
3272 * of allowed nodes.
3273 */
3274 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3275 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3276 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3277 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3278 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3279 filter &= ~SHOW_MEM_FILTER_NODES;
3280
9af744d7 3281 show_mem(filter, nodemask);
aa187507
MH
3282}
3283
a8e99259 3284void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3285{
3286 struct va_format vaf;
3287 va_list args;
3288 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3289 DEFAULT_RATELIMIT_BURST);
3290
0f7896f1 3291 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3292 return;
3293
7877cdcc
MH
3294 va_start(args, fmt);
3295 vaf.fmt = fmt;
3296 vaf.va = &args;
0205f755
MH
3297 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3298 current->comm, &vaf, gfp_mask, &gfp_mask,
3299 nodemask_pr_args(nodemask));
7877cdcc 3300 va_end(args);
3ee9a4f0 3301
a8e99259 3302 cpuset_print_current_mems_allowed();
3ee9a4f0 3303
a238ab5b 3304 dump_stack();
685dbf6f 3305 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3306}
3307
6c18ba7a
MH
3308static inline struct page *
3309__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3310 unsigned int alloc_flags,
3311 const struct alloc_context *ac)
3312{
3313 struct page *page;
3314
3315 page = get_page_from_freelist(gfp_mask, order,
3316 alloc_flags|ALLOC_CPUSET, ac);
3317 /*
3318 * fallback to ignore cpuset restriction if our nodes
3319 * are depleted
3320 */
3321 if (!page)
3322 page = get_page_from_freelist(gfp_mask, order,
3323 alloc_flags, ac);
3324
3325 return page;
3326}
3327
11e33f6a
MG
3328static inline struct page *
3329__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3330 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3331{
6e0fc46d
DR
3332 struct oom_control oc = {
3333 .zonelist = ac->zonelist,
3334 .nodemask = ac->nodemask,
2a966b77 3335 .memcg = NULL,
6e0fc46d
DR
3336 .gfp_mask = gfp_mask,
3337 .order = order,
6e0fc46d 3338 };
11e33f6a
MG
3339 struct page *page;
3340
9879de73
JW
3341 *did_some_progress = 0;
3342
9879de73 3343 /*
dc56401f
JW
3344 * Acquire the oom lock. If that fails, somebody else is
3345 * making progress for us.
9879de73 3346 */
dc56401f 3347 if (!mutex_trylock(&oom_lock)) {
9879de73 3348 *did_some_progress = 1;
11e33f6a 3349 schedule_timeout_uninterruptible(1);
1da177e4
LT
3350 return NULL;
3351 }
6b1de916 3352
11e33f6a
MG
3353 /*
3354 * Go through the zonelist yet one more time, keep very high watermark
3355 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3356 * we're still under heavy pressure. But make sure that this reclaim
3357 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3358 * allocation which will never fail due to oom_lock already held.
11e33f6a 3359 */
e746bf73
TH
3360 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3361 ~__GFP_DIRECT_RECLAIM, order,
3362 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3363 if (page)
11e33f6a
MG
3364 goto out;
3365
06ad276a
MH
3366 /* Coredumps can quickly deplete all memory reserves */
3367 if (current->flags & PF_DUMPCORE)
3368 goto out;
3369 /* The OOM killer will not help higher order allocs */
3370 if (order > PAGE_ALLOC_COSTLY_ORDER)
3371 goto out;
dcda9b04
MH
3372 /*
3373 * We have already exhausted all our reclaim opportunities without any
3374 * success so it is time to admit defeat. We will skip the OOM killer
3375 * because it is very likely that the caller has a more reasonable
3376 * fallback than shooting a random task.
3377 */
3378 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3379 goto out;
06ad276a
MH
3380 /* The OOM killer does not needlessly kill tasks for lowmem */
3381 if (ac->high_zoneidx < ZONE_NORMAL)
3382 goto out;
3383 if (pm_suspended_storage())
3384 goto out;
3385 /*
3386 * XXX: GFP_NOFS allocations should rather fail than rely on
3387 * other request to make a forward progress.
3388 * We are in an unfortunate situation where out_of_memory cannot
3389 * do much for this context but let's try it to at least get
3390 * access to memory reserved if the current task is killed (see
3391 * out_of_memory). Once filesystems are ready to handle allocation
3392 * failures more gracefully we should just bail out here.
3393 */
3394
3395 /* The OOM killer may not free memory on a specific node */
3396 if (gfp_mask & __GFP_THISNODE)
3397 goto out;
3da88fb3 3398
11e33f6a 3399 /* Exhausted what can be done so it's blamo time */
5020e285 3400 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3401 *did_some_progress = 1;
5020e285 3402
6c18ba7a
MH
3403 /*
3404 * Help non-failing allocations by giving them access to memory
3405 * reserves
3406 */
3407 if (gfp_mask & __GFP_NOFAIL)
3408 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3409 ALLOC_NO_WATERMARKS, ac);
5020e285 3410 }
11e33f6a 3411out:
dc56401f 3412 mutex_unlock(&oom_lock);
11e33f6a
MG
3413 return page;
3414}
3415
33c2d214
MH
3416/*
3417 * Maximum number of compaction retries wit a progress before OOM
3418 * killer is consider as the only way to move forward.
3419 */
3420#define MAX_COMPACT_RETRIES 16
3421
56de7263
MG
3422#ifdef CONFIG_COMPACTION
3423/* Try memory compaction for high-order allocations before reclaim */
3424static struct page *
3425__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3426 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3427 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3428{
98dd3b48 3429 struct page *page;
499118e9 3430 unsigned int noreclaim_flag;
53853e2d
VB
3431
3432 if (!order)
66199712 3433 return NULL;
66199712 3434
499118e9 3435 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3436 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3437 prio);
499118e9 3438 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3439
c5d01d0d 3440 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3441 return NULL;
53853e2d 3442
98dd3b48
VB
3443 /*
3444 * At least in one zone compaction wasn't deferred or skipped, so let's
3445 * count a compaction stall
3446 */
3447 count_vm_event(COMPACTSTALL);
8fb74b9f 3448
31a6c190 3449 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3450
98dd3b48
VB
3451 if (page) {
3452 struct zone *zone = page_zone(page);
53853e2d 3453
98dd3b48
VB
3454 zone->compact_blockskip_flush = false;
3455 compaction_defer_reset(zone, order, true);
3456 count_vm_event(COMPACTSUCCESS);
3457 return page;
3458 }
56de7263 3459
98dd3b48
VB
3460 /*
3461 * It's bad if compaction run occurs and fails. The most likely reason
3462 * is that pages exist, but not enough to satisfy watermarks.
3463 */
3464 count_vm_event(COMPACTFAIL);
66199712 3465
98dd3b48 3466 cond_resched();
56de7263
MG
3467
3468 return NULL;
3469}
33c2d214 3470
3250845d
VB
3471static inline bool
3472should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3473 enum compact_result compact_result,
3474 enum compact_priority *compact_priority,
d9436498 3475 int *compaction_retries)
3250845d
VB
3476{
3477 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3478 int min_priority;
65190cff
MH
3479 bool ret = false;
3480 int retries = *compaction_retries;
3481 enum compact_priority priority = *compact_priority;
3250845d
VB
3482
3483 if (!order)
3484 return false;
3485
d9436498
VB
3486 if (compaction_made_progress(compact_result))
3487 (*compaction_retries)++;
3488
3250845d
VB
3489 /*
3490 * compaction considers all the zone as desperately out of memory
3491 * so it doesn't really make much sense to retry except when the
3492 * failure could be caused by insufficient priority
3493 */
d9436498
VB
3494 if (compaction_failed(compact_result))
3495 goto check_priority;
3250845d
VB
3496
3497 /*
3498 * make sure the compaction wasn't deferred or didn't bail out early
3499 * due to locks contention before we declare that we should give up.
3500 * But do not retry if the given zonelist is not suitable for
3501 * compaction.
3502 */
65190cff
MH
3503 if (compaction_withdrawn(compact_result)) {
3504 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3505 goto out;
3506 }
3250845d
VB
3507
3508 /*
dcda9b04 3509 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3510 * costly ones because they are de facto nofail and invoke OOM
3511 * killer to move on while costly can fail and users are ready
3512 * to cope with that. 1/4 retries is rather arbitrary but we
3513 * would need much more detailed feedback from compaction to
3514 * make a better decision.
3515 */
3516 if (order > PAGE_ALLOC_COSTLY_ORDER)
3517 max_retries /= 4;
65190cff
MH
3518 if (*compaction_retries <= max_retries) {
3519 ret = true;
3520 goto out;
3521 }
3250845d 3522
d9436498
VB
3523 /*
3524 * Make sure there are attempts at the highest priority if we exhausted
3525 * all retries or failed at the lower priorities.
3526 */
3527check_priority:
c2033b00
VB
3528 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3529 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3530
c2033b00 3531 if (*compact_priority > min_priority) {
d9436498
VB
3532 (*compact_priority)--;
3533 *compaction_retries = 0;
65190cff 3534 ret = true;
d9436498 3535 }
65190cff
MH
3536out:
3537 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3538 return ret;
3250845d 3539}
56de7263
MG
3540#else
3541static inline struct page *
3542__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3543 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3544 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3545{
33c2d214 3546 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3547 return NULL;
3548}
33c2d214
MH
3549
3550static inline bool
86a294a8
MH
3551should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3552 enum compact_result compact_result,
a5508cd8 3553 enum compact_priority *compact_priority,
d9436498 3554 int *compaction_retries)
33c2d214 3555{
31e49bfd
MH
3556 struct zone *zone;
3557 struct zoneref *z;
3558
3559 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3560 return false;
3561
3562 /*
3563 * There are setups with compaction disabled which would prefer to loop
3564 * inside the allocator rather than hit the oom killer prematurely.
3565 * Let's give them a good hope and keep retrying while the order-0
3566 * watermarks are OK.
3567 */
3568 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3569 ac->nodemask) {
3570 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3571 ac_classzone_idx(ac), alloc_flags))
3572 return true;
3573 }
33c2d214
MH
3574 return false;
3575}
3250845d 3576#endif /* CONFIG_COMPACTION */
56de7263 3577
d92a8cfc
PZ
3578#ifdef CONFIG_LOCKDEP
3579struct lockdep_map __fs_reclaim_map =
3580 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3581
3582static bool __need_fs_reclaim(gfp_t gfp_mask)
3583{
3584 gfp_mask = current_gfp_context(gfp_mask);
3585
3586 /* no reclaim without waiting on it */
3587 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3588 return false;
3589
3590 /* this guy won't enter reclaim */
474f9844 3591 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3592 return false;
3593
3594 /* We're only interested __GFP_FS allocations for now */
3595 if (!(gfp_mask & __GFP_FS))
3596 return false;
3597
3598 if (gfp_mask & __GFP_NOLOCKDEP)
3599 return false;
3600
3601 return true;
3602}
3603
3604void fs_reclaim_acquire(gfp_t gfp_mask)
3605{
3606 if (__need_fs_reclaim(gfp_mask))
3607 lock_map_acquire(&__fs_reclaim_map);
3608}
3609EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3610
3611void fs_reclaim_release(gfp_t gfp_mask)
3612{
3613 if (__need_fs_reclaim(gfp_mask))
3614 lock_map_release(&__fs_reclaim_map);
3615}
3616EXPORT_SYMBOL_GPL(fs_reclaim_release);
3617#endif
3618
bba90710
MS
3619/* Perform direct synchronous page reclaim */
3620static int
a9263751
VB
3621__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3622 const struct alloc_context *ac)
11e33f6a 3623{
11e33f6a 3624 struct reclaim_state reclaim_state;
bba90710 3625 int progress;
499118e9 3626 unsigned int noreclaim_flag;
11e33f6a
MG
3627
3628 cond_resched();
3629
3630 /* We now go into synchronous reclaim */
3631 cpuset_memory_pressure_bump();
499118e9 3632 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3633 fs_reclaim_acquire(gfp_mask);
11e33f6a 3634 reclaim_state.reclaimed_slab = 0;
c06b1fca 3635 current->reclaim_state = &reclaim_state;
11e33f6a 3636
a9263751
VB
3637 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3638 ac->nodemask);
11e33f6a 3639
c06b1fca 3640 current->reclaim_state = NULL;
d92a8cfc 3641 fs_reclaim_release(gfp_mask);
499118e9 3642 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3643
3644 cond_resched();
3645
bba90710
MS
3646 return progress;
3647}
3648
3649/* The really slow allocator path where we enter direct reclaim */
3650static inline struct page *
3651__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3652 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3653 unsigned long *did_some_progress)
bba90710
MS
3654{
3655 struct page *page = NULL;
3656 bool drained = false;
3657
a9263751 3658 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3659 if (unlikely(!(*did_some_progress)))
3660 return NULL;
11e33f6a 3661
9ee493ce 3662retry:
31a6c190 3663 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3664
3665 /*
3666 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3667 * pages are pinned on the per-cpu lists or in high alloc reserves.
3668 * Shrink them them and try again
9ee493ce
MG
3669 */
3670 if (!page && !drained) {
29fac03b 3671 unreserve_highatomic_pageblock(ac, false);
93481ff0 3672 drain_all_pages(NULL);
9ee493ce
MG
3673 drained = true;
3674 goto retry;
3675 }
3676
11e33f6a
MG
3677 return page;
3678}
3679
a9263751 3680static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3681{
3682 struct zoneref *z;
3683 struct zone *zone;
e1a55637 3684 pg_data_t *last_pgdat = NULL;
3a025760 3685
a9263751 3686 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3687 ac->high_zoneidx, ac->nodemask) {
3688 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3689 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3690 last_pgdat = zone->zone_pgdat;
3691 }
3a025760
JW
3692}
3693
c603844b 3694static inline unsigned int
341ce06f
PZ
3695gfp_to_alloc_flags(gfp_t gfp_mask)
3696{
c603844b 3697 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3698
a56f57ff 3699 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3700 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3701
341ce06f
PZ
3702 /*
3703 * The caller may dip into page reserves a bit more if the caller
3704 * cannot run direct reclaim, or if the caller has realtime scheduling
3705 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3706 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3707 */
e6223a3b 3708 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3709
d0164adc 3710 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3711 /*
b104a35d
DR
3712 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3713 * if it can't schedule.
5c3240d9 3714 */
b104a35d 3715 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3716 alloc_flags |= ALLOC_HARDER;
523b9458 3717 /*
b104a35d 3718 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3719 * comment for __cpuset_node_allowed().
523b9458 3720 */
341ce06f 3721 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3722 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3723 alloc_flags |= ALLOC_HARDER;
3724
d95ea5d1 3725#ifdef CONFIG_CMA
43e7a34d 3726 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3727 alloc_flags |= ALLOC_CMA;
3728#endif
341ce06f
PZ
3729 return alloc_flags;
3730}
3731
cd04ae1e 3732static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3733{
cd04ae1e
MH
3734 if (!tsk_is_oom_victim(tsk))
3735 return false;
3736
3737 /*
3738 * !MMU doesn't have oom reaper so give access to memory reserves
3739 * only to the thread with TIF_MEMDIE set
3740 */
3741 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3742 return false;
3743
cd04ae1e
MH
3744 return true;
3745}
3746
3747/*
3748 * Distinguish requests which really need access to full memory
3749 * reserves from oom victims which can live with a portion of it
3750 */
3751static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3752{
3753 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3754 return 0;
31a6c190 3755 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3756 return ALLOC_NO_WATERMARKS;
31a6c190 3757 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3758 return ALLOC_NO_WATERMARKS;
3759 if (!in_interrupt()) {
3760 if (current->flags & PF_MEMALLOC)
3761 return ALLOC_NO_WATERMARKS;
3762 else if (oom_reserves_allowed(current))
3763 return ALLOC_OOM;
3764 }
31a6c190 3765
cd04ae1e
MH
3766 return 0;
3767}
3768
3769bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3770{
3771 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3772}
3773
0a0337e0
MH
3774/*
3775 * Checks whether it makes sense to retry the reclaim to make a forward progress
3776 * for the given allocation request.
491d79ae
JW
3777 *
3778 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3779 * without success, or when we couldn't even meet the watermark if we
3780 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3781 *
3782 * Returns true if a retry is viable or false to enter the oom path.
3783 */
3784static inline bool
3785should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3786 struct alloc_context *ac, int alloc_flags,
423b452e 3787 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3788{
3789 struct zone *zone;
3790 struct zoneref *z;
3791
423b452e
VB
3792 /*
3793 * Costly allocations might have made a progress but this doesn't mean
3794 * their order will become available due to high fragmentation so
3795 * always increment the no progress counter for them
3796 */
3797 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3798 *no_progress_loops = 0;
3799 else
3800 (*no_progress_loops)++;
3801
0a0337e0
MH
3802 /*
3803 * Make sure we converge to OOM if we cannot make any progress
3804 * several times in the row.
3805 */
04c8716f
MK
3806 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3807 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3808 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3809 }
0a0337e0 3810
bca67592
MG
3811 /*
3812 * Keep reclaiming pages while there is a chance this will lead
3813 * somewhere. If none of the target zones can satisfy our allocation
3814 * request even if all reclaimable pages are considered then we are
3815 * screwed and have to go OOM.
0a0337e0
MH
3816 */
3817 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3818 ac->nodemask) {
3819 unsigned long available;
ede37713 3820 unsigned long reclaimable;
d379f01d
MH
3821 unsigned long min_wmark = min_wmark_pages(zone);
3822 bool wmark;
0a0337e0 3823
5a1c84b4 3824 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3825 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3826
3827 /*
491d79ae
JW
3828 * Would the allocation succeed if we reclaimed all
3829 * reclaimable pages?
0a0337e0 3830 */
d379f01d
MH
3831 wmark = __zone_watermark_ok(zone, order, min_wmark,
3832 ac_classzone_idx(ac), alloc_flags, available);
3833 trace_reclaim_retry_zone(z, order, reclaimable,
3834 available, min_wmark, *no_progress_loops, wmark);
3835 if (wmark) {
ede37713
MH
3836 /*
3837 * If we didn't make any progress and have a lot of
3838 * dirty + writeback pages then we should wait for
3839 * an IO to complete to slow down the reclaim and
3840 * prevent from pre mature OOM
3841 */
3842 if (!did_some_progress) {
11fb9989 3843 unsigned long write_pending;
ede37713 3844
5a1c84b4
MG
3845 write_pending = zone_page_state_snapshot(zone,
3846 NR_ZONE_WRITE_PENDING);
ede37713 3847
11fb9989 3848 if (2 * write_pending > reclaimable) {
ede37713
MH
3849 congestion_wait(BLK_RW_ASYNC, HZ/10);
3850 return true;
3851 }
3852 }
5a1c84b4 3853
ede37713
MH
3854 /*
3855 * Memory allocation/reclaim might be called from a WQ
3856 * context and the current implementation of the WQ
3857 * concurrency control doesn't recognize that
3858 * a particular WQ is congested if the worker thread is
3859 * looping without ever sleeping. Therefore we have to
3860 * do a short sleep here rather than calling
3861 * cond_resched().
3862 */
3863 if (current->flags & PF_WQ_WORKER)
3864 schedule_timeout_uninterruptible(1);
3865 else
3866 cond_resched();
3867
0a0337e0
MH
3868 return true;
3869 }
3870 }
3871
3872 return false;
3873}
3874
902b6281
VB
3875static inline bool
3876check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3877{
3878 /*
3879 * It's possible that cpuset's mems_allowed and the nodemask from
3880 * mempolicy don't intersect. This should be normally dealt with by
3881 * policy_nodemask(), but it's possible to race with cpuset update in
3882 * such a way the check therein was true, and then it became false
3883 * before we got our cpuset_mems_cookie here.
3884 * This assumes that for all allocations, ac->nodemask can come only
3885 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3886 * when it does not intersect with the cpuset restrictions) or the
3887 * caller can deal with a violated nodemask.
3888 */
3889 if (cpusets_enabled() && ac->nodemask &&
3890 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3891 ac->nodemask = NULL;
3892 return true;
3893 }
3894
3895 /*
3896 * When updating a task's mems_allowed or mempolicy nodemask, it is
3897 * possible to race with parallel threads in such a way that our
3898 * allocation can fail while the mask is being updated. If we are about
3899 * to fail, check if the cpuset changed during allocation and if so,
3900 * retry.
3901 */
3902 if (read_mems_allowed_retry(cpuset_mems_cookie))
3903 return true;
3904
3905 return false;
3906}
3907
11e33f6a
MG
3908static inline struct page *
3909__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3910 struct alloc_context *ac)
11e33f6a 3911{
d0164adc 3912 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3913 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3914 struct page *page = NULL;
c603844b 3915 unsigned int alloc_flags;
11e33f6a 3916 unsigned long did_some_progress;
5ce9bfef 3917 enum compact_priority compact_priority;
c5d01d0d 3918 enum compact_result compact_result;
5ce9bfef
VB
3919 int compaction_retries;
3920 int no_progress_loops;
5ce9bfef 3921 unsigned int cpuset_mems_cookie;
cd04ae1e 3922 int reserve_flags;
1da177e4 3923
d0164adc
MG
3924 /*
3925 * We also sanity check to catch abuse of atomic reserves being used by
3926 * callers that are not in atomic context.
3927 */
3928 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3929 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3930 gfp_mask &= ~__GFP_ATOMIC;
3931
5ce9bfef
VB
3932retry_cpuset:
3933 compaction_retries = 0;
3934 no_progress_loops = 0;
3935 compact_priority = DEF_COMPACT_PRIORITY;
3936 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3937
3938 /*
3939 * The fast path uses conservative alloc_flags to succeed only until
3940 * kswapd needs to be woken up, and to avoid the cost of setting up
3941 * alloc_flags precisely. So we do that now.
3942 */
3943 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3944
e47483bc
VB
3945 /*
3946 * We need to recalculate the starting point for the zonelist iterator
3947 * because we might have used different nodemask in the fast path, or
3948 * there was a cpuset modification and we are retrying - otherwise we
3949 * could end up iterating over non-eligible zones endlessly.
3950 */
3951 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3952 ac->high_zoneidx, ac->nodemask);
3953 if (!ac->preferred_zoneref->zone)
3954 goto nopage;
3955
23771235
VB
3956 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3957 wake_all_kswapds(order, ac);
3958
3959 /*
3960 * The adjusted alloc_flags might result in immediate success, so try
3961 * that first
3962 */
3963 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3964 if (page)
3965 goto got_pg;
3966
a8161d1e
VB
3967 /*
3968 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3969 * that we have enough base pages and don't need to reclaim. For non-
3970 * movable high-order allocations, do that as well, as compaction will
3971 * try prevent permanent fragmentation by migrating from blocks of the
3972 * same migratetype.
3973 * Don't try this for allocations that are allowed to ignore
3974 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3975 */
282722b0
VB
3976 if (can_direct_reclaim &&
3977 (costly_order ||
3978 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3979 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3980 page = __alloc_pages_direct_compact(gfp_mask, order,
3981 alloc_flags, ac,
a5508cd8 3982 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3983 &compact_result);
3984 if (page)
3985 goto got_pg;
3986
3eb2771b
VB
3987 /*
3988 * Checks for costly allocations with __GFP_NORETRY, which
3989 * includes THP page fault allocations
3990 */
282722b0 3991 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3992 /*
3993 * If compaction is deferred for high-order allocations,
3994 * it is because sync compaction recently failed. If
3995 * this is the case and the caller requested a THP
3996 * allocation, we do not want to heavily disrupt the
3997 * system, so we fail the allocation instead of entering
3998 * direct reclaim.
3999 */
4000 if (compact_result == COMPACT_DEFERRED)
4001 goto nopage;
4002
a8161d1e 4003 /*
3eb2771b
VB
4004 * Looks like reclaim/compaction is worth trying, but
4005 * sync compaction could be very expensive, so keep
25160354 4006 * using async compaction.
a8161d1e 4007 */
a5508cd8 4008 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4009 }
4010 }
23771235 4011
31a6c190 4012retry:
23771235 4013 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4014 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4015 wake_all_kswapds(order, ac);
4016
cd04ae1e
MH
4017 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4018 if (reserve_flags)
4019 alloc_flags = reserve_flags;
23771235 4020
e46e7b77
MG
4021 /*
4022 * Reset the zonelist iterators if memory policies can be ignored.
4023 * These allocations are high priority and system rather than user
4024 * orientated.
4025 */
cd04ae1e 4026 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4027 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4028 ac->high_zoneidx, ac->nodemask);
4029 }
4030
23771235 4031 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4032 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4033 if (page)
4034 goto got_pg;
1da177e4 4035
d0164adc 4036 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4037 if (!can_direct_reclaim)
1da177e4
LT
4038 goto nopage;
4039
9a67f648
MH
4040 /* Avoid recursion of direct reclaim */
4041 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4042 goto nopage;
4043
a8161d1e
VB
4044 /* Try direct reclaim and then allocating */
4045 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4046 &did_some_progress);
4047 if (page)
4048 goto got_pg;
4049
4050 /* Try direct compaction and then allocating */
a9263751 4051 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4052 compact_priority, &compact_result);
56de7263
MG
4053 if (page)
4054 goto got_pg;
75f30861 4055
9083905a
JW
4056 /* Do not loop if specifically requested */
4057 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4058 goto nopage;
9083905a 4059
0a0337e0
MH
4060 /*
4061 * Do not retry costly high order allocations unless they are
dcda9b04 4062 * __GFP_RETRY_MAYFAIL
0a0337e0 4063 */
dcda9b04 4064 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4065 goto nopage;
0a0337e0 4066
0a0337e0 4067 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4068 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4069 goto retry;
4070
33c2d214
MH
4071 /*
4072 * It doesn't make any sense to retry for the compaction if the order-0
4073 * reclaim is not able to make any progress because the current
4074 * implementation of the compaction depends on the sufficient amount
4075 * of free memory (see __compaction_suitable)
4076 */
4077 if (did_some_progress > 0 &&
86a294a8 4078 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4079 compact_result, &compact_priority,
d9436498 4080 &compaction_retries))
33c2d214
MH
4081 goto retry;
4082
902b6281
VB
4083
4084 /* Deal with possible cpuset update races before we start OOM killing */
4085 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4086 goto retry_cpuset;
4087
9083905a
JW
4088 /* Reclaim has failed us, start killing things */
4089 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4090 if (page)
4091 goto got_pg;
4092
9a67f648 4093 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4094 if (tsk_is_oom_victim(current) &&
4095 (alloc_flags == ALLOC_OOM ||
c288983d 4096 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4097 goto nopage;
4098
9083905a 4099 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4100 if (did_some_progress) {
4101 no_progress_loops = 0;
9083905a 4102 goto retry;
0a0337e0 4103 }
9083905a 4104
1da177e4 4105nopage:
902b6281
VB
4106 /* Deal with possible cpuset update races before we fail */
4107 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4108 goto retry_cpuset;
4109
9a67f648
MH
4110 /*
4111 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4112 * we always retry
4113 */
4114 if (gfp_mask & __GFP_NOFAIL) {
4115 /*
4116 * All existing users of the __GFP_NOFAIL are blockable, so warn
4117 * of any new users that actually require GFP_NOWAIT
4118 */
4119 if (WARN_ON_ONCE(!can_direct_reclaim))
4120 goto fail;
4121
4122 /*
4123 * PF_MEMALLOC request from this context is rather bizarre
4124 * because we cannot reclaim anything and only can loop waiting
4125 * for somebody to do a work for us
4126 */
4127 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4128
4129 /*
4130 * non failing costly orders are a hard requirement which we
4131 * are not prepared for much so let's warn about these users
4132 * so that we can identify them and convert them to something
4133 * else.
4134 */
4135 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4136
6c18ba7a
MH
4137 /*
4138 * Help non-failing allocations by giving them access to memory
4139 * reserves but do not use ALLOC_NO_WATERMARKS because this
4140 * could deplete whole memory reserves which would just make
4141 * the situation worse
4142 */
4143 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4144 if (page)
4145 goto got_pg;
4146
9a67f648
MH
4147 cond_resched();
4148 goto retry;
4149 }
4150fail:
a8e99259 4151 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4152 "page allocation failure: order:%u", order);
1da177e4 4153got_pg:
072bb0aa 4154 return page;
1da177e4 4155}
11e33f6a 4156
9cd75558 4157static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4158 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4159 struct alloc_context *ac, gfp_t *alloc_mask,
4160 unsigned int *alloc_flags)
11e33f6a 4161{
9cd75558 4162 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4163 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4164 ac->nodemask = nodemask;
4165 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4166
682a3385 4167 if (cpusets_enabled()) {
9cd75558 4168 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4169 if (!ac->nodemask)
4170 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4171 else
4172 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4173 }
4174
d92a8cfc
PZ
4175 fs_reclaim_acquire(gfp_mask);
4176 fs_reclaim_release(gfp_mask);
11e33f6a 4177
d0164adc 4178 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4179
4180 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4181 return false;
11e33f6a 4182
9cd75558
MG
4183 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4184 *alloc_flags |= ALLOC_CMA;
4185
4186 return true;
4187}
21bb9bd1 4188
9cd75558
MG
4189/* Determine whether to spread dirty pages and what the first usable zone */
4190static inline void finalise_ac(gfp_t gfp_mask,
4191 unsigned int order, struct alloc_context *ac)
4192{
c9ab0c4f 4193 /* Dirty zone balancing only done in the fast path */
9cd75558 4194 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4195
e46e7b77
MG
4196 /*
4197 * The preferred zone is used for statistics but crucially it is
4198 * also used as the starting point for the zonelist iterator. It
4199 * may get reset for allocations that ignore memory policies.
4200 */
9cd75558
MG
4201 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4202 ac->high_zoneidx, ac->nodemask);
4203}
4204
4205/*
4206 * This is the 'heart' of the zoned buddy allocator.
4207 */
4208struct page *
04ec6264
VB
4209__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4210 nodemask_t *nodemask)
9cd75558
MG
4211{
4212 struct page *page;
4213 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4214 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4215 struct alloc_context ac = { };
4216
12161adb
MH
4217 /*
4218 * There are several places where we assume that the order value is sane
4219 * so bail out early if the request is out of bound.
4220 */
4221 if (unlikely(order >= MAX_ORDER)) {
4222 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4223 return NULL;
4224 }
4225
9cd75558 4226 gfp_mask &= gfp_allowed_mask;
f19360f0 4227 alloc_mask = gfp_mask;
04ec6264 4228 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4229 return NULL;
4230
4231 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4232
5117f45d 4233 /* First allocation attempt */
a9263751 4234 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4235 if (likely(page))
4236 goto out;
11e33f6a 4237
4fcb0971 4238 /*
7dea19f9
MH
4239 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4240 * resp. GFP_NOIO which has to be inherited for all allocation requests
4241 * from a particular context which has been marked by
4242 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4243 */
7dea19f9 4244 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4245 ac.spread_dirty_pages = false;
23f086f9 4246
4741526b
MG
4247 /*
4248 * Restore the original nodemask if it was potentially replaced with
4249 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4250 */
e47483bc 4251 if (unlikely(ac.nodemask != nodemask))
4741526b 4252 ac.nodemask = nodemask;
16096c25 4253
4fcb0971 4254 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4255
4fcb0971 4256out:
c4159a75
VD
4257 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4258 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4259 __free_pages(page, order);
4260 page = NULL;
4949148a
VD
4261 }
4262
4fcb0971
MG
4263 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4264
11e33f6a 4265 return page;
1da177e4 4266}
d239171e 4267EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4268
4269/*
4270 * Common helper functions.
4271 */
920c7a5d 4272unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4273{
945a1113
AM
4274 struct page *page;
4275
4276 /*
4277 * __get_free_pages() returns a 32-bit address, which cannot represent
4278 * a highmem page
4279 */
4280 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4281
1da177e4
LT
4282 page = alloc_pages(gfp_mask, order);
4283 if (!page)
4284 return 0;
4285 return (unsigned long) page_address(page);
4286}
1da177e4
LT
4287EXPORT_SYMBOL(__get_free_pages);
4288
920c7a5d 4289unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4290{
945a1113 4291 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4292}
1da177e4
LT
4293EXPORT_SYMBOL(get_zeroed_page);
4294
920c7a5d 4295void __free_pages(struct page *page, unsigned int order)
1da177e4 4296{
b5810039 4297 if (put_page_testzero(page)) {
1da177e4 4298 if (order == 0)
2d4894b5 4299 free_unref_page(page);
1da177e4
LT
4300 else
4301 __free_pages_ok(page, order);
4302 }
4303}
4304
4305EXPORT_SYMBOL(__free_pages);
4306
920c7a5d 4307void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4308{
4309 if (addr != 0) {
725d704e 4310 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4311 __free_pages(virt_to_page((void *)addr), order);
4312 }
4313}
4314
4315EXPORT_SYMBOL(free_pages);
4316
b63ae8ca
AD
4317/*
4318 * Page Fragment:
4319 * An arbitrary-length arbitrary-offset area of memory which resides
4320 * within a 0 or higher order page. Multiple fragments within that page
4321 * are individually refcounted, in the page's reference counter.
4322 *
4323 * The page_frag functions below provide a simple allocation framework for
4324 * page fragments. This is used by the network stack and network device
4325 * drivers to provide a backing region of memory for use as either an
4326 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4327 */
2976db80
AD
4328static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4329 gfp_t gfp_mask)
b63ae8ca
AD
4330{
4331 struct page *page = NULL;
4332 gfp_t gfp = gfp_mask;
4333
4334#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4335 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4336 __GFP_NOMEMALLOC;
4337 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4338 PAGE_FRAG_CACHE_MAX_ORDER);
4339 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4340#endif
4341 if (unlikely(!page))
4342 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4343
4344 nc->va = page ? page_address(page) : NULL;
4345
4346 return page;
4347}
4348
2976db80 4349void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4350{
4351 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4352
4353 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4354 unsigned int order = compound_order(page);
4355
44fdffd7 4356 if (order == 0)
2d4894b5 4357 free_unref_page(page);
44fdffd7
AD
4358 else
4359 __free_pages_ok(page, order);
4360 }
4361}
2976db80 4362EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4363
8c2dd3e4
AD
4364void *page_frag_alloc(struct page_frag_cache *nc,
4365 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4366{
4367 unsigned int size = PAGE_SIZE;
4368 struct page *page;
4369 int offset;
4370
4371 if (unlikely(!nc->va)) {
4372refill:
2976db80 4373 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4374 if (!page)
4375 return NULL;
4376
4377#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4378 /* if size can vary use size else just use PAGE_SIZE */
4379 size = nc->size;
4380#endif
4381 /* Even if we own the page, we do not use atomic_set().
4382 * This would break get_page_unless_zero() users.
4383 */
fe896d18 4384 page_ref_add(page, size - 1);
b63ae8ca
AD
4385
4386 /* reset page count bias and offset to start of new frag */
2f064f34 4387 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4388 nc->pagecnt_bias = size;
4389 nc->offset = size;
4390 }
4391
4392 offset = nc->offset - fragsz;
4393 if (unlikely(offset < 0)) {
4394 page = virt_to_page(nc->va);
4395
fe896d18 4396 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4397 goto refill;
4398
4399#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4400 /* if size can vary use size else just use PAGE_SIZE */
4401 size = nc->size;
4402#endif
4403 /* OK, page count is 0, we can safely set it */
fe896d18 4404 set_page_count(page, size);
b63ae8ca
AD
4405
4406 /* reset page count bias and offset to start of new frag */
4407 nc->pagecnt_bias = size;
4408 offset = size - fragsz;
4409 }
4410
4411 nc->pagecnt_bias--;
4412 nc->offset = offset;
4413
4414 return nc->va + offset;
4415}
8c2dd3e4 4416EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4417
4418/*
4419 * Frees a page fragment allocated out of either a compound or order 0 page.
4420 */
8c2dd3e4 4421void page_frag_free(void *addr)
b63ae8ca
AD
4422{
4423 struct page *page = virt_to_head_page(addr);
4424
4425 if (unlikely(put_page_testzero(page)))
4426 __free_pages_ok(page, compound_order(page));
4427}
8c2dd3e4 4428EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4429
d00181b9
KS
4430static void *make_alloc_exact(unsigned long addr, unsigned int order,
4431 size_t size)
ee85c2e1
AK
4432{
4433 if (addr) {
4434 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4435 unsigned long used = addr + PAGE_ALIGN(size);
4436
4437 split_page(virt_to_page((void *)addr), order);
4438 while (used < alloc_end) {
4439 free_page(used);
4440 used += PAGE_SIZE;
4441 }
4442 }
4443 return (void *)addr;
4444}
4445
2be0ffe2
TT
4446/**
4447 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4448 * @size: the number of bytes to allocate
4449 * @gfp_mask: GFP flags for the allocation
4450 *
4451 * This function is similar to alloc_pages(), except that it allocates the
4452 * minimum number of pages to satisfy the request. alloc_pages() can only
4453 * allocate memory in power-of-two pages.
4454 *
4455 * This function is also limited by MAX_ORDER.
4456 *
4457 * Memory allocated by this function must be released by free_pages_exact().
4458 */
4459void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4460{
4461 unsigned int order = get_order(size);
4462 unsigned long addr;
4463
4464 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4465 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4466}
4467EXPORT_SYMBOL(alloc_pages_exact);
4468
ee85c2e1
AK
4469/**
4470 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4471 * pages on a node.
b5e6ab58 4472 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4473 * @size: the number of bytes to allocate
4474 * @gfp_mask: GFP flags for the allocation
4475 *
4476 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4477 * back.
ee85c2e1 4478 */
e1931811 4479void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4480{
d00181b9 4481 unsigned int order = get_order(size);
ee85c2e1
AK
4482 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4483 if (!p)
4484 return NULL;
4485 return make_alloc_exact((unsigned long)page_address(p), order, size);
4486}
ee85c2e1 4487
2be0ffe2
TT
4488/**
4489 * free_pages_exact - release memory allocated via alloc_pages_exact()
4490 * @virt: the value returned by alloc_pages_exact.
4491 * @size: size of allocation, same value as passed to alloc_pages_exact().
4492 *
4493 * Release the memory allocated by a previous call to alloc_pages_exact.
4494 */
4495void free_pages_exact(void *virt, size_t size)
4496{
4497 unsigned long addr = (unsigned long)virt;
4498 unsigned long end = addr + PAGE_ALIGN(size);
4499
4500 while (addr < end) {
4501 free_page(addr);
4502 addr += PAGE_SIZE;
4503 }
4504}
4505EXPORT_SYMBOL(free_pages_exact);
4506
e0fb5815
ZY
4507/**
4508 * nr_free_zone_pages - count number of pages beyond high watermark
4509 * @offset: The zone index of the highest zone
4510 *
4511 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4512 * high watermark within all zones at or below a given zone index. For each
4513 * zone, the number of pages is calculated as:
0e056eb5
MCC
4514 *
4515 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4516 */
ebec3862 4517static unsigned long nr_free_zone_pages(int offset)
1da177e4 4518{
dd1a239f 4519 struct zoneref *z;
54a6eb5c
MG
4520 struct zone *zone;
4521
e310fd43 4522 /* Just pick one node, since fallback list is circular */
ebec3862 4523 unsigned long sum = 0;
1da177e4 4524
0e88460d 4525 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4526
54a6eb5c 4527 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4528 unsigned long size = zone->managed_pages;
41858966 4529 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4530 if (size > high)
4531 sum += size - high;
1da177e4
LT
4532 }
4533
4534 return sum;
4535}
4536
e0fb5815
ZY
4537/**
4538 * nr_free_buffer_pages - count number of pages beyond high watermark
4539 *
4540 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4541 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4542 */
ebec3862 4543unsigned long nr_free_buffer_pages(void)
1da177e4 4544{
af4ca457 4545 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4546}
c2f1a551 4547EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4548
e0fb5815
ZY
4549/**
4550 * nr_free_pagecache_pages - count number of pages beyond high watermark
4551 *
4552 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4553 * high watermark within all zones.
1da177e4 4554 */
ebec3862 4555unsigned long nr_free_pagecache_pages(void)
1da177e4 4556{
2a1e274a 4557 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4558}
08e0f6a9
CL
4559
4560static inline void show_node(struct zone *zone)
1da177e4 4561{
e5adfffc 4562 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4563 printk("Node %d ", zone_to_nid(zone));
1da177e4 4564}
1da177e4 4565
d02bd27b
IR
4566long si_mem_available(void)
4567{
4568 long available;
4569 unsigned long pagecache;
4570 unsigned long wmark_low = 0;
4571 unsigned long pages[NR_LRU_LISTS];
4572 struct zone *zone;
4573 int lru;
4574
4575 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4576 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4577
4578 for_each_zone(zone)
4579 wmark_low += zone->watermark[WMARK_LOW];
4580
4581 /*
4582 * Estimate the amount of memory available for userspace allocations,
4583 * without causing swapping.
4584 */
c41f012a 4585 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4586
4587 /*
4588 * Not all the page cache can be freed, otherwise the system will
4589 * start swapping. Assume at least half of the page cache, or the
4590 * low watermark worth of cache, needs to stay.
4591 */
4592 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4593 pagecache -= min(pagecache / 2, wmark_low);
4594 available += pagecache;
4595
4596 /*
4597 * Part of the reclaimable slab consists of items that are in use,
4598 * and cannot be freed. Cap this estimate at the low watermark.
4599 */
d507e2eb
JW
4600 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4601 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4602 wmark_low);
d02bd27b 4603
14f18fb5
RG
4604 /*
4605 * Part of the kernel memory, which can be released under memory
4606 * pressure.
4607 */
4608 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4609 PAGE_SHIFT;
4610
d02bd27b
IR
4611 if (available < 0)
4612 available = 0;
4613 return available;
4614}
4615EXPORT_SYMBOL_GPL(si_mem_available);
4616
1da177e4
LT
4617void si_meminfo(struct sysinfo *val)
4618{
4619 val->totalram = totalram_pages;
11fb9989 4620 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4621 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4622 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4623 val->totalhigh = totalhigh_pages;
4624 val->freehigh = nr_free_highpages();
1da177e4
LT
4625 val->mem_unit = PAGE_SIZE;
4626}
4627
4628EXPORT_SYMBOL(si_meminfo);
4629
4630#ifdef CONFIG_NUMA
4631void si_meminfo_node(struct sysinfo *val, int nid)
4632{
cdd91a77
JL
4633 int zone_type; /* needs to be signed */
4634 unsigned long managed_pages = 0;
fc2bd799
JK
4635 unsigned long managed_highpages = 0;
4636 unsigned long free_highpages = 0;
1da177e4
LT
4637 pg_data_t *pgdat = NODE_DATA(nid);
4638
cdd91a77
JL
4639 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4640 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4641 val->totalram = managed_pages;
11fb9989 4642 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4643 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4644#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4645 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4646 struct zone *zone = &pgdat->node_zones[zone_type];
4647
4648 if (is_highmem(zone)) {
4649 managed_highpages += zone->managed_pages;
4650 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4651 }
4652 }
4653 val->totalhigh = managed_highpages;
4654 val->freehigh = free_highpages;
98d2b0eb 4655#else
fc2bd799
JK
4656 val->totalhigh = managed_highpages;
4657 val->freehigh = free_highpages;
98d2b0eb 4658#endif
1da177e4
LT
4659 val->mem_unit = PAGE_SIZE;
4660}
4661#endif
4662
ddd588b5 4663/*
7bf02ea2
DR
4664 * Determine whether the node should be displayed or not, depending on whether
4665 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4666 */
9af744d7 4667static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4668{
ddd588b5 4669 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4670 return false;
ddd588b5 4671
9af744d7
MH
4672 /*
4673 * no node mask - aka implicit memory numa policy. Do not bother with
4674 * the synchronization - read_mems_allowed_begin - because we do not
4675 * have to be precise here.
4676 */
4677 if (!nodemask)
4678 nodemask = &cpuset_current_mems_allowed;
4679
4680 return !node_isset(nid, *nodemask);
ddd588b5
DR
4681}
4682
1da177e4
LT
4683#define K(x) ((x) << (PAGE_SHIFT-10))
4684
377e4f16
RV
4685static void show_migration_types(unsigned char type)
4686{
4687 static const char types[MIGRATE_TYPES] = {
4688 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4689 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4690 [MIGRATE_RECLAIMABLE] = 'E',
4691 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4692#ifdef CONFIG_CMA
4693 [MIGRATE_CMA] = 'C',
4694#endif
194159fb 4695#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4696 [MIGRATE_ISOLATE] = 'I',
194159fb 4697#endif
377e4f16
RV
4698 };
4699 char tmp[MIGRATE_TYPES + 1];
4700 char *p = tmp;
4701 int i;
4702
4703 for (i = 0; i < MIGRATE_TYPES; i++) {
4704 if (type & (1 << i))
4705 *p++ = types[i];
4706 }
4707
4708 *p = '\0';
1f84a18f 4709 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4710}
4711
1da177e4
LT
4712/*
4713 * Show free area list (used inside shift_scroll-lock stuff)
4714 * We also calculate the percentage fragmentation. We do this by counting the
4715 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4716 *
4717 * Bits in @filter:
4718 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4719 * cpuset.
1da177e4 4720 */
9af744d7 4721void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4722{
d1bfcdb8 4723 unsigned long free_pcp = 0;
c7241913 4724 int cpu;
1da177e4 4725 struct zone *zone;
599d0c95 4726 pg_data_t *pgdat;
1da177e4 4727
ee99c71c 4728 for_each_populated_zone(zone) {
9af744d7 4729 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4730 continue;
d1bfcdb8 4731
761b0677
KK
4732 for_each_online_cpu(cpu)
4733 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4734 }
4735
a731286d
KM
4736 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4737 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4738 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4739 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4740 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4741 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4742 global_node_page_state(NR_ACTIVE_ANON),
4743 global_node_page_state(NR_INACTIVE_ANON),
4744 global_node_page_state(NR_ISOLATED_ANON),
4745 global_node_page_state(NR_ACTIVE_FILE),
4746 global_node_page_state(NR_INACTIVE_FILE),
4747 global_node_page_state(NR_ISOLATED_FILE),
4748 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4749 global_node_page_state(NR_FILE_DIRTY),
4750 global_node_page_state(NR_WRITEBACK),
4751 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4752 global_node_page_state(NR_SLAB_RECLAIMABLE),
4753 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4754 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4755 global_node_page_state(NR_SHMEM),
c41f012a
MH
4756 global_zone_page_state(NR_PAGETABLE),
4757 global_zone_page_state(NR_BOUNCE),
4758 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4759 free_pcp,
c41f012a 4760 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4761
599d0c95 4762 for_each_online_pgdat(pgdat) {
9af744d7 4763 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4764 continue;
4765
599d0c95
MG
4766 printk("Node %d"
4767 " active_anon:%lukB"
4768 " inactive_anon:%lukB"
4769 " active_file:%lukB"
4770 " inactive_file:%lukB"
4771 " unevictable:%lukB"
4772 " isolated(anon):%lukB"
4773 " isolated(file):%lukB"
50658e2e 4774 " mapped:%lukB"
11fb9989
MG
4775 " dirty:%lukB"
4776 " writeback:%lukB"
4777 " shmem:%lukB"
4778#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4779 " shmem_thp: %lukB"
4780 " shmem_pmdmapped: %lukB"
4781 " anon_thp: %lukB"
4782#endif
4783 " writeback_tmp:%lukB"
4784 " unstable:%lukB"
599d0c95
MG
4785 " all_unreclaimable? %s"
4786 "\n",
4787 pgdat->node_id,
4788 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4789 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4790 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4791 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4792 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4793 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4794 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4795 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4796 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4797 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4798 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4800 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4801 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4802 * HPAGE_PMD_NR),
4803 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4804#endif
11fb9989
MG
4805 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4806 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4807 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4808 "yes" : "no");
599d0c95
MG
4809 }
4810
ee99c71c 4811 for_each_populated_zone(zone) {
1da177e4
LT
4812 int i;
4813
9af744d7 4814 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4815 continue;
d1bfcdb8
KK
4816
4817 free_pcp = 0;
4818 for_each_online_cpu(cpu)
4819 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4820
1da177e4 4821 show_node(zone);
1f84a18f
JP
4822 printk(KERN_CONT
4823 "%s"
1da177e4
LT
4824 " free:%lukB"
4825 " min:%lukB"
4826 " low:%lukB"
4827 " high:%lukB"
71c799f4
MK
4828 " active_anon:%lukB"
4829 " inactive_anon:%lukB"
4830 " active_file:%lukB"
4831 " inactive_file:%lukB"
4832 " unevictable:%lukB"
5a1c84b4 4833 " writepending:%lukB"
1da177e4 4834 " present:%lukB"
9feedc9d 4835 " managed:%lukB"
4a0aa73f 4836 " mlocked:%lukB"
c6a7f572 4837 " kernel_stack:%lukB"
4a0aa73f 4838 " pagetables:%lukB"
4a0aa73f 4839 " bounce:%lukB"
d1bfcdb8
KK
4840 " free_pcp:%lukB"
4841 " local_pcp:%ukB"
d1ce749a 4842 " free_cma:%lukB"
1da177e4
LT
4843 "\n",
4844 zone->name,
88f5acf8 4845 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4846 K(min_wmark_pages(zone)),
4847 K(low_wmark_pages(zone)),
4848 K(high_wmark_pages(zone)),
71c799f4
MK
4849 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4850 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4851 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4852 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4853 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4854 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4855 K(zone->present_pages),
9feedc9d 4856 K(zone->managed_pages),
4a0aa73f 4857 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4858 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4859 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4860 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4861 K(free_pcp),
4862 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4863 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4864 printk("lowmem_reserve[]:");
4865 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4866 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4867 printk(KERN_CONT "\n");
1da177e4
LT
4868 }
4869
ee99c71c 4870 for_each_populated_zone(zone) {
d00181b9
KS
4871 unsigned int order;
4872 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4873 unsigned char types[MAX_ORDER];
1da177e4 4874
9af744d7 4875 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4876 continue;
1da177e4 4877 show_node(zone);
1f84a18f 4878 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4879
4880 spin_lock_irqsave(&zone->lock, flags);
4881 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4882 struct free_area *area = &zone->free_area[order];
4883 int type;
4884
4885 nr[order] = area->nr_free;
8f9de51a 4886 total += nr[order] << order;
377e4f16
RV
4887
4888 types[order] = 0;
4889 for (type = 0; type < MIGRATE_TYPES; type++) {
4890 if (!list_empty(&area->free_list[type]))
4891 types[order] |= 1 << type;
4892 }
1da177e4
LT
4893 }
4894 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4895 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4896 printk(KERN_CONT "%lu*%lukB ",
4897 nr[order], K(1UL) << order);
377e4f16
RV
4898 if (nr[order])
4899 show_migration_types(types[order]);
4900 }
1f84a18f 4901 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4902 }
4903
949f7ec5
DR
4904 hugetlb_show_meminfo();
4905
11fb9989 4906 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4907
1da177e4
LT
4908 show_swap_cache_info();
4909}
4910
19770b32
MG
4911static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4912{
4913 zoneref->zone = zone;
4914 zoneref->zone_idx = zone_idx(zone);
4915}
4916
1da177e4
LT
4917/*
4918 * Builds allocation fallback zone lists.
1a93205b
CL
4919 *
4920 * Add all populated zones of a node to the zonelist.
1da177e4 4921 */
9d3be21b 4922static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4923{
1a93205b 4924 struct zone *zone;
bc732f1d 4925 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4926 int nr_zones = 0;
02a68a5e
CL
4927
4928 do {
2f6726e5 4929 zone_type--;
070f8032 4930 zone = pgdat->node_zones + zone_type;
6aa303de 4931 if (managed_zone(zone)) {
9d3be21b 4932 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4933 check_highest_zone(zone_type);
1da177e4 4934 }
2f6726e5 4935 } while (zone_type);
bc732f1d 4936
070f8032 4937 return nr_zones;
1da177e4
LT
4938}
4939
4940#ifdef CONFIG_NUMA
f0c0b2b8
KH
4941
4942static int __parse_numa_zonelist_order(char *s)
4943{
c9bff3ee
MH
4944 /*
4945 * We used to support different zonlists modes but they turned
4946 * out to be just not useful. Let's keep the warning in place
4947 * if somebody still use the cmd line parameter so that we do
4948 * not fail it silently
4949 */
4950 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4951 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4952 return -EINVAL;
4953 }
4954 return 0;
4955}
4956
4957static __init int setup_numa_zonelist_order(char *s)
4958{
ecb256f8
VL
4959 if (!s)
4960 return 0;
4961
c9bff3ee 4962 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4963}
4964early_param("numa_zonelist_order", setup_numa_zonelist_order);
4965
c9bff3ee
MH
4966char numa_zonelist_order[] = "Node";
4967
f0c0b2b8
KH
4968/*
4969 * sysctl handler for numa_zonelist_order
4970 */
cccad5b9 4971int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4972 void __user *buffer, size_t *length,
f0c0b2b8
KH
4973 loff_t *ppos)
4974{
c9bff3ee 4975 char *str;
f0c0b2b8
KH
4976 int ret;
4977
c9bff3ee
MH
4978 if (!write)
4979 return proc_dostring(table, write, buffer, length, ppos);
4980 str = memdup_user_nul(buffer, 16);
4981 if (IS_ERR(str))
4982 return PTR_ERR(str);
dacbde09 4983
c9bff3ee
MH
4984 ret = __parse_numa_zonelist_order(str);
4985 kfree(str);
443c6f14 4986 return ret;
f0c0b2b8
KH
4987}
4988
4989
62bc62a8 4990#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4991static int node_load[MAX_NUMNODES];
4992
1da177e4 4993/**
4dc3b16b 4994 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4995 * @node: node whose fallback list we're appending
4996 * @used_node_mask: nodemask_t of already used nodes
4997 *
4998 * We use a number of factors to determine which is the next node that should
4999 * appear on a given node's fallback list. The node should not have appeared
5000 * already in @node's fallback list, and it should be the next closest node
5001 * according to the distance array (which contains arbitrary distance values
5002 * from each node to each node in the system), and should also prefer nodes
5003 * with no CPUs, since presumably they'll have very little allocation pressure
5004 * on them otherwise.
5005 * It returns -1 if no node is found.
5006 */
f0c0b2b8 5007static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5008{
4cf808eb 5009 int n, val;
1da177e4 5010 int min_val = INT_MAX;
00ef2d2f 5011 int best_node = NUMA_NO_NODE;
a70f7302 5012 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5013
4cf808eb
LT
5014 /* Use the local node if we haven't already */
5015 if (!node_isset(node, *used_node_mask)) {
5016 node_set(node, *used_node_mask);
5017 return node;
5018 }
1da177e4 5019
4b0ef1fe 5020 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5021
5022 /* Don't want a node to appear more than once */
5023 if (node_isset(n, *used_node_mask))
5024 continue;
5025
1da177e4
LT
5026 /* Use the distance array to find the distance */
5027 val = node_distance(node, n);
5028
4cf808eb
LT
5029 /* Penalize nodes under us ("prefer the next node") */
5030 val += (n < node);
5031
1da177e4 5032 /* Give preference to headless and unused nodes */
a70f7302
RR
5033 tmp = cpumask_of_node(n);
5034 if (!cpumask_empty(tmp))
1da177e4
LT
5035 val += PENALTY_FOR_NODE_WITH_CPUS;
5036
5037 /* Slight preference for less loaded node */
5038 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5039 val += node_load[n];
5040
5041 if (val < min_val) {
5042 min_val = val;
5043 best_node = n;
5044 }
5045 }
5046
5047 if (best_node >= 0)
5048 node_set(best_node, *used_node_mask);
5049
5050 return best_node;
5051}
5052
f0c0b2b8
KH
5053
5054/*
5055 * Build zonelists ordered by node and zones within node.
5056 * This results in maximum locality--normal zone overflows into local
5057 * DMA zone, if any--but risks exhausting DMA zone.
5058 */
9d3be21b
MH
5059static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5060 unsigned nr_nodes)
1da177e4 5061{
9d3be21b
MH
5062 struct zoneref *zonerefs;
5063 int i;
5064
5065 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5066
5067 for (i = 0; i < nr_nodes; i++) {
5068 int nr_zones;
5069
5070 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5071
9d3be21b
MH
5072 nr_zones = build_zonerefs_node(node, zonerefs);
5073 zonerefs += nr_zones;
5074 }
5075 zonerefs->zone = NULL;
5076 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5077}
5078
523b9458
CL
5079/*
5080 * Build gfp_thisnode zonelists
5081 */
5082static void build_thisnode_zonelists(pg_data_t *pgdat)
5083{
9d3be21b
MH
5084 struct zoneref *zonerefs;
5085 int nr_zones;
523b9458 5086
9d3be21b
MH
5087 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5088 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5089 zonerefs += nr_zones;
5090 zonerefs->zone = NULL;
5091 zonerefs->zone_idx = 0;
523b9458
CL
5092}
5093
f0c0b2b8
KH
5094/*
5095 * Build zonelists ordered by zone and nodes within zones.
5096 * This results in conserving DMA zone[s] until all Normal memory is
5097 * exhausted, but results in overflowing to remote node while memory
5098 * may still exist in local DMA zone.
5099 */
f0c0b2b8 5100
f0c0b2b8
KH
5101static void build_zonelists(pg_data_t *pgdat)
5102{
9d3be21b
MH
5103 static int node_order[MAX_NUMNODES];
5104 int node, load, nr_nodes = 0;
1da177e4 5105 nodemask_t used_mask;
f0c0b2b8 5106 int local_node, prev_node;
1da177e4
LT
5107
5108 /* NUMA-aware ordering of nodes */
5109 local_node = pgdat->node_id;
62bc62a8 5110 load = nr_online_nodes;
1da177e4
LT
5111 prev_node = local_node;
5112 nodes_clear(used_mask);
f0c0b2b8 5113
f0c0b2b8 5114 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5115 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5116 /*
5117 * We don't want to pressure a particular node.
5118 * So adding penalty to the first node in same
5119 * distance group to make it round-robin.
5120 */
957f822a
DR
5121 if (node_distance(local_node, node) !=
5122 node_distance(local_node, prev_node))
f0c0b2b8
KH
5123 node_load[node] = load;
5124
9d3be21b 5125 node_order[nr_nodes++] = node;
1da177e4
LT
5126 prev_node = node;
5127 load--;
1da177e4 5128 }
523b9458 5129
9d3be21b 5130 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5131 build_thisnode_zonelists(pgdat);
1da177e4
LT
5132}
5133
7aac7898
LS
5134#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5135/*
5136 * Return node id of node used for "local" allocations.
5137 * I.e., first node id of first zone in arg node's generic zonelist.
5138 * Used for initializing percpu 'numa_mem', which is used primarily
5139 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5140 */
5141int local_memory_node(int node)
5142{
c33d6c06 5143 struct zoneref *z;
7aac7898 5144
c33d6c06 5145 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5146 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5147 NULL);
5148 return z->zone->node;
7aac7898
LS
5149}
5150#endif
f0c0b2b8 5151
6423aa81
JK
5152static void setup_min_unmapped_ratio(void);
5153static void setup_min_slab_ratio(void);
1da177e4
LT
5154#else /* CONFIG_NUMA */
5155
f0c0b2b8 5156static void build_zonelists(pg_data_t *pgdat)
1da177e4 5157{
19655d34 5158 int node, local_node;
9d3be21b
MH
5159 struct zoneref *zonerefs;
5160 int nr_zones;
1da177e4
LT
5161
5162 local_node = pgdat->node_id;
1da177e4 5163
9d3be21b
MH
5164 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5165 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5166 zonerefs += nr_zones;
1da177e4 5167
54a6eb5c
MG
5168 /*
5169 * Now we build the zonelist so that it contains the zones
5170 * of all the other nodes.
5171 * We don't want to pressure a particular node, so when
5172 * building the zones for node N, we make sure that the
5173 * zones coming right after the local ones are those from
5174 * node N+1 (modulo N)
5175 */
5176 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5177 if (!node_online(node))
5178 continue;
9d3be21b
MH
5179 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5180 zonerefs += nr_zones;
1da177e4 5181 }
54a6eb5c
MG
5182 for (node = 0; node < local_node; node++) {
5183 if (!node_online(node))
5184 continue;
9d3be21b
MH
5185 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5186 zonerefs += nr_zones;
54a6eb5c
MG
5187 }
5188
9d3be21b
MH
5189 zonerefs->zone = NULL;
5190 zonerefs->zone_idx = 0;
1da177e4
LT
5191}
5192
5193#endif /* CONFIG_NUMA */
5194
99dcc3e5
CL
5195/*
5196 * Boot pageset table. One per cpu which is going to be used for all
5197 * zones and all nodes. The parameters will be set in such a way
5198 * that an item put on a list will immediately be handed over to
5199 * the buddy list. This is safe since pageset manipulation is done
5200 * with interrupts disabled.
5201 *
5202 * The boot_pagesets must be kept even after bootup is complete for
5203 * unused processors and/or zones. They do play a role for bootstrapping
5204 * hotplugged processors.
5205 *
5206 * zoneinfo_show() and maybe other functions do
5207 * not check if the processor is online before following the pageset pointer.
5208 * Other parts of the kernel may not check if the zone is available.
5209 */
5210static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5211static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5212static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5213
11cd8638 5214static void __build_all_zonelists(void *data)
1da177e4 5215{
6811378e 5216 int nid;
afb6ebb3 5217 int __maybe_unused cpu;
9adb62a5 5218 pg_data_t *self = data;
b93e0f32
MH
5219 static DEFINE_SPINLOCK(lock);
5220
5221 spin_lock(&lock);
9276b1bc 5222
7f9cfb31
BL
5223#ifdef CONFIG_NUMA
5224 memset(node_load, 0, sizeof(node_load));
5225#endif
9adb62a5 5226
c1152583
WY
5227 /*
5228 * This node is hotadded and no memory is yet present. So just
5229 * building zonelists is fine - no need to touch other nodes.
5230 */
9adb62a5
JL
5231 if (self && !node_online(self->node_id)) {
5232 build_zonelists(self);
c1152583
WY
5233 } else {
5234 for_each_online_node(nid) {
5235 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5236
c1152583
WY
5237 build_zonelists(pgdat);
5238 }
99dcc3e5 5239
7aac7898
LS
5240#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5241 /*
5242 * We now know the "local memory node" for each node--
5243 * i.e., the node of the first zone in the generic zonelist.
5244 * Set up numa_mem percpu variable for on-line cpus. During
5245 * boot, only the boot cpu should be on-line; we'll init the
5246 * secondary cpus' numa_mem as they come on-line. During
5247 * node/memory hotplug, we'll fixup all on-line cpus.
5248 */
d9c9a0b9 5249 for_each_online_cpu(cpu)
7aac7898 5250 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5251#endif
d9c9a0b9 5252 }
b93e0f32
MH
5253
5254 spin_unlock(&lock);
6811378e
YG
5255}
5256
061f67bc
RV
5257static noinline void __init
5258build_all_zonelists_init(void)
5259{
afb6ebb3
MH
5260 int cpu;
5261
061f67bc 5262 __build_all_zonelists(NULL);
afb6ebb3
MH
5263
5264 /*
5265 * Initialize the boot_pagesets that are going to be used
5266 * for bootstrapping processors. The real pagesets for
5267 * each zone will be allocated later when the per cpu
5268 * allocator is available.
5269 *
5270 * boot_pagesets are used also for bootstrapping offline
5271 * cpus if the system is already booted because the pagesets
5272 * are needed to initialize allocators on a specific cpu too.
5273 * F.e. the percpu allocator needs the page allocator which
5274 * needs the percpu allocator in order to allocate its pagesets
5275 * (a chicken-egg dilemma).
5276 */
5277 for_each_possible_cpu(cpu)
5278 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5279
061f67bc
RV
5280 mminit_verify_zonelist();
5281 cpuset_init_current_mems_allowed();
5282}
5283
4eaf3f64 5284/*
4eaf3f64 5285 * unless system_state == SYSTEM_BOOTING.
061f67bc 5286 *
72675e13 5287 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5288 * [protected by SYSTEM_BOOTING].
4eaf3f64 5289 */
72675e13 5290void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5291{
5292 if (system_state == SYSTEM_BOOTING) {
061f67bc 5293 build_all_zonelists_init();
6811378e 5294 } else {
11cd8638 5295 __build_all_zonelists(pgdat);
6811378e
YG
5296 /* cpuset refresh routine should be here */
5297 }
bd1e22b8 5298 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5299 /*
5300 * Disable grouping by mobility if the number of pages in the
5301 * system is too low to allow the mechanism to work. It would be
5302 * more accurate, but expensive to check per-zone. This check is
5303 * made on memory-hotadd so a system can start with mobility
5304 * disabled and enable it later
5305 */
d9c23400 5306 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5307 page_group_by_mobility_disabled = 1;
5308 else
5309 page_group_by_mobility_disabled = 0;
5310
c9bff3ee 5311 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5312 nr_online_nodes,
756a025f
JP
5313 page_group_by_mobility_disabled ? "off" : "on",
5314 vm_total_pages);
f0c0b2b8 5315#ifdef CONFIG_NUMA
f88dfff5 5316 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5317#endif
1da177e4
LT
5318}
5319
1da177e4
LT
5320/*
5321 * Initially all pages are reserved - free ones are freed
5322 * up by free_all_bootmem() once the early boot process is
5323 * done. Non-atomic initialization, single-pass.
5324 */
c09b4240 5325void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5326 unsigned long start_pfn, enum memmap_context context)
1da177e4 5327{
4b94ffdc 5328 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5329 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5330 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5331 unsigned long pfn;
3a80a7fa 5332 unsigned long nr_initialised = 0;
342332e6
TI
5333#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5334 struct memblock_region *r = NULL, *tmp;
5335#endif
1da177e4 5336
22b31eec
HD
5337 if (highest_memmap_pfn < end_pfn - 1)
5338 highest_memmap_pfn = end_pfn - 1;
5339
4b94ffdc
DW
5340 /*
5341 * Honor reservation requested by the driver for this ZONE_DEVICE
5342 * memory
5343 */
5344 if (altmap && start_pfn == altmap->base_pfn)
5345 start_pfn += altmap->reserve;
5346
cbe8dd4a 5347 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5348 /*
b72d0ffb
AM
5349 * There can be holes in boot-time mem_map[]s handed to this
5350 * function. They do not exist on hotplugged memory.
a2f3aa02 5351 */
b72d0ffb
AM
5352 if (context != MEMMAP_EARLY)
5353 goto not_early;
5354
2e30df12 5355 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5356 continue;
5357 if (!early_pfn_in_nid(pfn, nid))
5358 continue;
5359 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5360 break;
342332e6
TI
5361
5362#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5363 /*
5364 * Check given memblock attribute by firmware which can affect
5365 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5366 * mirrored, it's an overlapped memmap init. skip it.
5367 */
5368 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5369 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5370 for_each_memblock(memory, tmp)
5371 if (pfn < memblock_region_memory_end_pfn(tmp))
5372 break;
5373 r = tmp;
5374 }
5375 if (pfn >= memblock_region_memory_base_pfn(r) &&
5376 memblock_is_mirror(r)) {
5377 /* already initialized as NORMAL */
5378 pfn = memblock_region_memory_end_pfn(r);
5379 continue;
342332e6 5380 }
a2f3aa02 5381 }
b72d0ffb 5382#endif
ac5d2539 5383
b72d0ffb 5384not_early:
ac5d2539
MG
5385 /*
5386 * Mark the block movable so that blocks are reserved for
5387 * movable at startup. This will force kernel allocations
5388 * to reserve their blocks rather than leaking throughout
5389 * the address space during boot when many long-lived
974a786e 5390 * kernel allocations are made.
ac5d2539
MG
5391 *
5392 * bitmap is created for zone's valid pfn range. but memmap
5393 * can be created for invalid pages (for alignment)
5394 * check here not to call set_pageblock_migratetype() against
5395 * pfn out of zone.
9ff9dd45
MH
5396 *
5397 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5398 * because this is done early in sparse_add_one_section
ac5d2539
MG
5399 */
5400 if (!(pfn & (pageblock_nr_pages - 1))) {
5401 struct page *page = pfn_to_page(pfn);
5402
9ff9dd45
MH
5403 __init_single_page(page, pfn, zone, nid,
5404 context != MEMMAP_HOTPLUG);
ac5d2539 5405 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5406 cond_resched();
ac5d2539 5407 } else {
9ff9dd45
MH
5408 __init_single_pfn(pfn, zone, nid,
5409 context != MEMMAP_HOTPLUG);
ac5d2539 5410 }
1da177e4
LT
5411 }
5412}
5413
1e548deb 5414static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5415{
7aeb09f9 5416 unsigned int order, t;
b2a0ac88
MG
5417 for_each_migratetype_order(order, t) {
5418 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5419 zone->free_area[order].nr_free = 0;
5420 }
5421}
5422
5423#ifndef __HAVE_ARCH_MEMMAP_INIT
5424#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5425 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5426#endif
5427
7cd2b0a3 5428static int zone_batchsize(struct zone *zone)
e7c8d5c9 5429{
3a6be87f 5430#ifdef CONFIG_MMU
e7c8d5c9
CL
5431 int batch;
5432
5433 /*
5434 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5435 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5436 *
5437 * OK, so we don't know how big the cache is. So guess.
5438 */
b40da049 5439 batch = zone->managed_pages / 1024;
ba56e91c
SR
5440 if (batch * PAGE_SIZE > 512 * 1024)
5441 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5442 batch /= 4; /* We effectively *= 4 below */
5443 if (batch < 1)
5444 batch = 1;
5445
5446 /*
0ceaacc9
NP
5447 * Clamp the batch to a 2^n - 1 value. Having a power
5448 * of 2 value was found to be more likely to have
5449 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5450 *
0ceaacc9
NP
5451 * For example if 2 tasks are alternately allocating
5452 * batches of pages, one task can end up with a lot
5453 * of pages of one half of the possible page colors
5454 * and the other with pages of the other colors.
e7c8d5c9 5455 */
9155203a 5456 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5457
e7c8d5c9 5458 return batch;
3a6be87f
DH
5459
5460#else
5461 /* The deferral and batching of frees should be suppressed under NOMMU
5462 * conditions.
5463 *
5464 * The problem is that NOMMU needs to be able to allocate large chunks
5465 * of contiguous memory as there's no hardware page translation to
5466 * assemble apparent contiguous memory from discontiguous pages.
5467 *
5468 * Queueing large contiguous runs of pages for batching, however,
5469 * causes the pages to actually be freed in smaller chunks. As there
5470 * can be a significant delay between the individual batches being
5471 * recycled, this leads to the once large chunks of space being
5472 * fragmented and becoming unavailable for high-order allocations.
5473 */
5474 return 0;
5475#endif
e7c8d5c9
CL
5476}
5477
8d7a8fa9
CS
5478/*
5479 * pcp->high and pcp->batch values are related and dependent on one another:
5480 * ->batch must never be higher then ->high.
5481 * The following function updates them in a safe manner without read side
5482 * locking.
5483 *
5484 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5485 * those fields changing asynchronously (acording the the above rule).
5486 *
5487 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5488 * outside of boot time (or some other assurance that no concurrent updaters
5489 * exist).
5490 */
5491static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5492 unsigned long batch)
5493{
5494 /* start with a fail safe value for batch */
5495 pcp->batch = 1;
5496 smp_wmb();
5497
5498 /* Update high, then batch, in order */
5499 pcp->high = high;
5500 smp_wmb();
5501
5502 pcp->batch = batch;
5503}
5504
3664033c 5505/* a companion to pageset_set_high() */
4008bab7
CS
5506static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5507{
8d7a8fa9 5508 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5509}
5510
88c90dbc 5511static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5512{
5513 struct per_cpu_pages *pcp;
5f8dcc21 5514 int migratetype;
2caaad41 5515
1c6fe946
MD
5516 memset(p, 0, sizeof(*p));
5517
3dfa5721 5518 pcp = &p->pcp;
2caaad41 5519 pcp->count = 0;
5f8dcc21
MG
5520 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5521 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5522}
5523
88c90dbc
CS
5524static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5525{
5526 pageset_init(p);
5527 pageset_set_batch(p, batch);
5528}
5529
8ad4b1fb 5530/*
3664033c 5531 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5532 * to the value high for the pageset p.
5533 */
3664033c 5534static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5535 unsigned long high)
5536{
8d7a8fa9
CS
5537 unsigned long batch = max(1UL, high / 4);
5538 if ((high / 4) > (PAGE_SHIFT * 8))
5539 batch = PAGE_SHIFT * 8;
8ad4b1fb 5540
8d7a8fa9 5541 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5542}
5543
7cd2b0a3
DR
5544static void pageset_set_high_and_batch(struct zone *zone,
5545 struct per_cpu_pageset *pcp)
56cef2b8 5546{
56cef2b8 5547 if (percpu_pagelist_fraction)
3664033c 5548 pageset_set_high(pcp,
56cef2b8
CS
5549 (zone->managed_pages /
5550 percpu_pagelist_fraction));
5551 else
5552 pageset_set_batch(pcp, zone_batchsize(zone));
5553}
5554
169f6c19
CS
5555static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5556{
5557 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5558
5559 pageset_init(pcp);
5560 pageset_set_high_and_batch(zone, pcp);
5561}
5562
72675e13 5563void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5564{
5565 int cpu;
319774e2 5566 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5567 for_each_possible_cpu(cpu)
5568 zone_pageset_init(zone, cpu);
319774e2
WF
5569}
5570
2caaad41 5571/*
99dcc3e5
CL
5572 * Allocate per cpu pagesets and initialize them.
5573 * Before this call only boot pagesets were available.
e7c8d5c9 5574 */
99dcc3e5 5575void __init setup_per_cpu_pageset(void)
e7c8d5c9 5576{
b4911ea2 5577 struct pglist_data *pgdat;
99dcc3e5 5578 struct zone *zone;
e7c8d5c9 5579
319774e2
WF
5580 for_each_populated_zone(zone)
5581 setup_zone_pageset(zone);
b4911ea2
MG
5582
5583 for_each_online_pgdat(pgdat)
5584 pgdat->per_cpu_nodestats =
5585 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5586}
5587
c09b4240 5588static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5589{
99dcc3e5
CL
5590 /*
5591 * per cpu subsystem is not up at this point. The following code
5592 * relies on the ability of the linker to provide the
5593 * offset of a (static) per cpu variable into the per cpu area.
5594 */
5595 zone->pageset = &boot_pageset;
ed8ece2e 5596
b38a8725 5597 if (populated_zone(zone))
99dcc3e5
CL
5598 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5599 zone->name, zone->present_pages,
5600 zone_batchsize(zone));
ed8ece2e
DH
5601}
5602
dc0bbf3b 5603void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5604 unsigned long zone_start_pfn,
b171e409 5605 unsigned long size)
ed8ece2e
DH
5606{
5607 struct pglist_data *pgdat = zone->zone_pgdat;
0c39c822 5608 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5609
0c39c822
WY
5610 if (zone_idx > pgdat->nr_zones)
5611 pgdat->nr_zones = zone_idx;
ed8ece2e 5612
ed8ece2e
DH
5613 zone->zone_start_pfn = zone_start_pfn;
5614
708614e6
MG
5615 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5616 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5617 pgdat->node_id,
5618 (unsigned long)zone_idx(zone),
5619 zone_start_pfn, (zone_start_pfn + size));
5620
1e548deb 5621 zone_init_free_lists(zone);
9dcb8b68 5622 zone->initialized = 1;
ed8ece2e
DH
5623}
5624
0ee332c1 5625#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5626#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5627
c713216d
MG
5628/*
5629 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5630 */
8a942fde
MG
5631int __meminit __early_pfn_to_nid(unsigned long pfn,
5632 struct mminit_pfnnid_cache *state)
c713216d 5633{
c13291a5 5634 unsigned long start_pfn, end_pfn;
e76b63f8 5635 int nid;
7c243c71 5636
8a942fde
MG
5637 if (state->last_start <= pfn && pfn < state->last_end)
5638 return state->last_nid;
c713216d 5639
e76b63f8
YL
5640 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5641 if (nid != -1) {
8a942fde
MG
5642 state->last_start = start_pfn;
5643 state->last_end = end_pfn;
5644 state->last_nid = nid;
e76b63f8
YL
5645 }
5646
5647 return nid;
c713216d
MG
5648}
5649#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5650
c713216d 5651/**
6782832e 5652 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5653 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5654 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5655 *
7d018176
ZZ
5656 * If an architecture guarantees that all ranges registered contain no holes
5657 * and may be freed, this this function may be used instead of calling
5658 * memblock_free_early_nid() manually.
c713216d 5659 */
c13291a5 5660void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5661{
c13291a5
TH
5662 unsigned long start_pfn, end_pfn;
5663 int i, this_nid;
edbe7d23 5664
c13291a5
TH
5665 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5666 start_pfn = min(start_pfn, max_low_pfn);
5667 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5668
c13291a5 5669 if (start_pfn < end_pfn)
6782832e
SS
5670 memblock_free_early_nid(PFN_PHYS(start_pfn),
5671 (end_pfn - start_pfn) << PAGE_SHIFT,
5672 this_nid);
edbe7d23 5673 }
edbe7d23 5674}
edbe7d23 5675
c713216d
MG
5676/**
5677 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5678 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5679 *
7d018176
ZZ
5680 * If an architecture guarantees that all ranges registered contain no holes and may
5681 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5682 */
5683void __init sparse_memory_present_with_active_regions(int nid)
5684{
c13291a5
TH
5685 unsigned long start_pfn, end_pfn;
5686 int i, this_nid;
c713216d 5687
c13291a5
TH
5688 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5689 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5690}
5691
5692/**
5693 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5694 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5695 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5696 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5697 *
5698 * It returns the start and end page frame of a node based on information
7d018176 5699 * provided by memblock_set_node(). If called for a node
c713216d 5700 * with no available memory, a warning is printed and the start and end
88ca3b94 5701 * PFNs will be 0.
c713216d 5702 */
a3142c8e 5703void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5704 unsigned long *start_pfn, unsigned long *end_pfn)
5705{
c13291a5 5706 unsigned long this_start_pfn, this_end_pfn;
c713216d 5707 int i;
c13291a5 5708
c713216d
MG
5709 *start_pfn = -1UL;
5710 *end_pfn = 0;
5711
c13291a5
TH
5712 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5713 *start_pfn = min(*start_pfn, this_start_pfn);
5714 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5715 }
5716
633c0666 5717 if (*start_pfn == -1UL)
c713216d 5718 *start_pfn = 0;
c713216d
MG
5719}
5720
2a1e274a
MG
5721/*
5722 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5723 * assumption is made that zones within a node are ordered in monotonic
5724 * increasing memory addresses so that the "highest" populated zone is used
5725 */
b69a7288 5726static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5727{
5728 int zone_index;
5729 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5730 if (zone_index == ZONE_MOVABLE)
5731 continue;
5732
5733 if (arch_zone_highest_possible_pfn[zone_index] >
5734 arch_zone_lowest_possible_pfn[zone_index])
5735 break;
5736 }
5737
5738 VM_BUG_ON(zone_index == -1);
5739 movable_zone = zone_index;
5740}
5741
5742/*
5743 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5744 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5745 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5746 * in each node depending on the size of each node and how evenly kernelcore
5747 * is distributed. This helper function adjusts the zone ranges
5748 * provided by the architecture for a given node by using the end of the
5749 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5750 * zones within a node are in order of monotonic increases memory addresses
5751 */
b69a7288 5752static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5753 unsigned long zone_type,
5754 unsigned long node_start_pfn,
5755 unsigned long node_end_pfn,
5756 unsigned long *zone_start_pfn,
5757 unsigned long *zone_end_pfn)
5758{
5759 /* Only adjust if ZONE_MOVABLE is on this node */
5760 if (zone_movable_pfn[nid]) {
5761 /* Size ZONE_MOVABLE */
5762 if (zone_type == ZONE_MOVABLE) {
5763 *zone_start_pfn = zone_movable_pfn[nid];
5764 *zone_end_pfn = min(node_end_pfn,
5765 arch_zone_highest_possible_pfn[movable_zone]);
5766
e506b996
XQ
5767 /* Adjust for ZONE_MOVABLE starting within this range */
5768 } else if (!mirrored_kernelcore &&
5769 *zone_start_pfn < zone_movable_pfn[nid] &&
5770 *zone_end_pfn > zone_movable_pfn[nid]) {
5771 *zone_end_pfn = zone_movable_pfn[nid];
5772
2a1e274a
MG
5773 /* Check if this whole range is within ZONE_MOVABLE */
5774 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5775 *zone_start_pfn = *zone_end_pfn;
5776 }
5777}
5778
c713216d
MG
5779/*
5780 * Return the number of pages a zone spans in a node, including holes
5781 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5782 */
6ea6e688 5783static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5784 unsigned long zone_type,
7960aedd
ZY
5785 unsigned long node_start_pfn,
5786 unsigned long node_end_pfn,
d91749c1
TI
5787 unsigned long *zone_start_pfn,
5788 unsigned long *zone_end_pfn,
c713216d
MG
5789 unsigned long *ignored)
5790{
b5685e92 5791 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5792 if (!node_start_pfn && !node_end_pfn)
5793 return 0;
5794
7960aedd 5795 /* Get the start and end of the zone */
d91749c1
TI
5796 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5797 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5798 adjust_zone_range_for_zone_movable(nid, zone_type,
5799 node_start_pfn, node_end_pfn,
d91749c1 5800 zone_start_pfn, zone_end_pfn);
c713216d
MG
5801
5802 /* Check that this node has pages within the zone's required range */
d91749c1 5803 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5804 return 0;
5805
5806 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5807 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5808 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5809
5810 /* Return the spanned pages */
d91749c1 5811 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5812}
5813
5814/*
5815 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5816 * then all holes in the requested range will be accounted for.
c713216d 5817 */
32996250 5818unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5819 unsigned long range_start_pfn,
5820 unsigned long range_end_pfn)
5821{
96e907d1
TH
5822 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5823 unsigned long start_pfn, end_pfn;
5824 int i;
c713216d 5825
96e907d1
TH
5826 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5827 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5828 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5829 nr_absent -= end_pfn - start_pfn;
c713216d 5830 }
96e907d1 5831 return nr_absent;
c713216d
MG
5832}
5833
5834/**
5835 * absent_pages_in_range - Return number of page frames in holes within a range
5836 * @start_pfn: The start PFN to start searching for holes
5837 * @end_pfn: The end PFN to stop searching for holes
5838 *
88ca3b94 5839 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5840 */
5841unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5842 unsigned long end_pfn)
5843{
5844 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5845}
5846
5847/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5848static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5849 unsigned long zone_type,
7960aedd
ZY
5850 unsigned long node_start_pfn,
5851 unsigned long node_end_pfn,
c713216d
MG
5852 unsigned long *ignored)
5853{
96e907d1
TH
5854 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5855 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5856 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5857 unsigned long nr_absent;
9c7cd687 5858
b5685e92 5859 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5860 if (!node_start_pfn && !node_end_pfn)
5861 return 0;
5862
96e907d1
TH
5863 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5864 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5865
2a1e274a
MG
5866 adjust_zone_range_for_zone_movable(nid, zone_type,
5867 node_start_pfn, node_end_pfn,
5868 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5869 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5870
5871 /*
5872 * ZONE_MOVABLE handling.
5873 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5874 * and vice versa.
5875 */
e506b996
XQ
5876 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5877 unsigned long start_pfn, end_pfn;
5878 struct memblock_region *r;
5879
5880 for_each_memblock(memory, r) {
5881 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5882 zone_start_pfn, zone_end_pfn);
5883 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5884 zone_start_pfn, zone_end_pfn);
5885
5886 if (zone_type == ZONE_MOVABLE &&
5887 memblock_is_mirror(r))
5888 nr_absent += end_pfn - start_pfn;
5889
5890 if (zone_type == ZONE_NORMAL &&
5891 !memblock_is_mirror(r))
5892 nr_absent += end_pfn - start_pfn;
342332e6
TI
5893 }
5894 }
5895
5896 return nr_absent;
c713216d 5897}
0e0b864e 5898
0ee332c1 5899#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5900static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5901 unsigned long zone_type,
7960aedd
ZY
5902 unsigned long node_start_pfn,
5903 unsigned long node_end_pfn,
d91749c1
TI
5904 unsigned long *zone_start_pfn,
5905 unsigned long *zone_end_pfn,
c713216d
MG
5906 unsigned long *zones_size)
5907{
d91749c1
TI
5908 unsigned int zone;
5909
5910 *zone_start_pfn = node_start_pfn;
5911 for (zone = 0; zone < zone_type; zone++)
5912 *zone_start_pfn += zones_size[zone];
5913
5914 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5915
c713216d
MG
5916 return zones_size[zone_type];
5917}
5918
6ea6e688 5919static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5920 unsigned long zone_type,
7960aedd
ZY
5921 unsigned long node_start_pfn,
5922 unsigned long node_end_pfn,
c713216d
MG
5923 unsigned long *zholes_size)
5924{
5925 if (!zholes_size)
5926 return 0;
5927
5928 return zholes_size[zone_type];
5929}
20e6926d 5930
0ee332c1 5931#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5932
a3142c8e 5933static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5934 unsigned long node_start_pfn,
5935 unsigned long node_end_pfn,
5936 unsigned long *zones_size,
5937 unsigned long *zholes_size)
c713216d 5938{
febd5949 5939 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5940 enum zone_type i;
5941
febd5949
GZ
5942 for (i = 0; i < MAX_NR_ZONES; i++) {
5943 struct zone *zone = pgdat->node_zones + i;
d91749c1 5944 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5945 unsigned long size, real_size;
c713216d 5946
febd5949
GZ
5947 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5948 node_start_pfn,
5949 node_end_pfn,
d91749c1
TI
5950 &zone_start_pfn,
5951 &zone_end_pfn,
febd5949
GZ
5952 zones_size);
5953 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5954 node_start_pfn, node_end_pfn,
5955 zholes_size);
d91749c1
TI
5956 if (size)
5957 zone->zone_start_pfn = zone_start_pfn;
5958 else
5959 zone->zone_start_pfn = 0;
febd5949
GZ
5960 zone->spanned_pages = size;
5961 zone->present_pages = real_size;
5962
5963 totalpages += size;
5964 realtotalpages += real_size;
5965 }
5966
5967 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5968 pgdat->node_present_pages = realtotalpages;
5969 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5970 realtotalpages);
5971}
5972
835c134e
MG
5973#ifndef CONFIG_SPARSEMEM
5974/*
5975 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5976 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5977 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5978 * round what is now in bits to nearest long in bits, then return it in
5979 * bytes.
5980 */
7c45512d 5981static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5982{
5983 unsigned long usemapsize;
5984
7c45512d 5985 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5986 usemapsize = roundup(zonesize, pageblock_nr_pages);
5987 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5988 usemapsize *= NR_PAGEBLOCK_BITS;
5989 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5990
5991 return usemapsize / 8;
5992}
5993
5994static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5995 struct zone *zone,
5996 unsigned long zone_start_pfn,
5997 unsigned long zonesize)
835c134e 5998{
7c45512d 5999 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6000 zone->pageblock_flags = NULL;
58a01a45 6001 if (usemapsize)
6782832e
SS
6002 zone->pageblock_flags =
6003 memblock_virt_alloc_node_nopanic(usemapsize,
6004 pgdat->node_id);
835c134e
MG
6005}
6006#else
7c45512d
LT
6007static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6008 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6009#endif /* CONFIG_SPARSEMEM */
6010
d9c23400 6011#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6012
d9c23400 6013/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6014void __paginginit set_pageblock_order(void)
d9c23400 6015{
955c1cd7
AM
6016 unsigned int order;
6017
d9c23400
MG
6018 /* Check that pageblock_nr_pages has not already been setup */
6019 if (pageblock_order)
6020 return;
6021
955c1cd7
AM
6022 if (HPAGE_SHIFT > PAGE_SHIFT)
6023 order = HUGETLB_PAGE_ORDER;
6024 else
6025 order = MAX_ORDER - 1;
6026
d9c23400
MG
6027 /*
6028 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6029 * This value may be variable depending on boot parameters on IA64 and
6030 * powerpc.
d9c23400
MG
6031 */
6032 pageblock_order = order;
6033}
6034#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6035
ba72cb8c
MG
6036/*
6037 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6038 * is unused as pageblock_order is set at compile-time. See
6039 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6040 * the kernel config
ba72cb8c 6041 */
15ca220e 6042void __paginginit set_pageblock_order(void)
ba72cb8c 6043{
ba72cb8c 6044}
d9c23400
MG
6045
6046#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6047
01cefaef
JL
6048static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6049 unsigned long present_pages)
6050{
6051 unsigned long pages = spanned_pages;
6052
6053 /*
6054 * Provide a more accurate estimation if there are holes within
6055 * the zone and SPARSEMEM is in use. If there are holes within the
6056 * zone, each populated memory region may cost us one or two extra
6057 * memmap pages due to alignment because memmap pages for each
89d790ab 6058 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6059 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6060 */
6061 if (spanned_pages > present_pages + (present_pages >> 4) &&
6062 IS_ENABLED(CONFIG_SPARSEMEM))
6063 pages = present_pages;
6064
6065 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6066}
6067
1da177e4
LT
6068/*
6069 * Set up the zone data structures:
6070 * - mark all pages reserved
6071 * - mark all memory queues empty
6072 * - clear the memory bitmaps
6527af5d
MK
6073 *
6074 * NOTE: pgdat should get zeroed by caller.
1da177e4 6075 */
7f3eb55b 6076static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6077{
2f1b6248 6078 enum zone_type j;
ed8ece2e 6079 int nid = pgdat->node_id;
1da177e4 6080
208d54e5 6081 pgdat_resize_init(pgdat);
8177a420
AA
6082#ifdef CONFIG_NUMA_BALANCING
6083 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6084 pgdat->numabalancing_migrate_nr_pages = 0;
6085 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6086#endif
6087#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6088 spin_lock_init(&pgdat->split_queue_lock);
6089 INIT_LIST_HEAD(&pgdat->split_queue);
6090 pgdat->split_queue_len = 0;
8177a420 6091#endif
1da177e4 6092 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6093 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6094#ifdef CONFIG_COMPACTION
6095 init_waitqueue_head(&pgdat->kcompactd_wait);
6096#endif
eefa864b 6097 pgdat_page_ext_init(pgdat);
a52633d8 6098 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6099 lruvec_init(node_lruvec(pgdat));
5f63b720 6100
385386cf
JW
6101 pgdat->per_cpu_nodestats = &boot_nodestats;
6102
1da177e4
LT
6103 for (j = 0; j < MAX_NR_ZONES; j++) {
6104 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6105 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6106 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6107
febd5949
GZ
6108 size = zone->spanned_pages;
6109 realsize = freesize = zone->present_pages;
1da177e4 6110
0e0b864e 6111 /*
9feedc9d 6112 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6113 * is used by this zone for memmap. This affects the watermark
6114 * and per-cpu initialisations
6115 */
01cefaef 6116 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6117 if (!is_highmem_idx(j)) {
6118 if (freesize >= memmap_pages) {
6119 freesize -= memmap_pages;
6120 if (memmap_pages)
6121 printk(KERN_DEBUG
6122 " %s zone: %lu pages used for memmap\n",
6123 zone_names[j], memmap_pages);
6124 } else
1170532b 6125 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6126 zone_names[j], memmap_pages, freesize);
6127 }
0e0b864e 6128
6267276f 6129 /* Account for reserved pages */
9feedc9d
JL
6130 if (j == 0 && freesize > dma_reserve) {
6131 freesize -= dma_reserve;
d903ef9f 6132 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6133 zone_names[0], dma_reserve);
0e0b864e
MG
6134 }
6135
98d2b0eb 6136 if (!is_highmem_idx(j))
9feedc9d 6137 nr_kernel_pages += freesize;
01cefaef
JL
6138 /* Charge for highmem memmap if there are enough kernel pages */
6139 else if (nr_kernel_pages > memmap_pages * 2)
6140 nr_kernel_pages -= memmap_pages;
9feedc9d 6141 nr_all_pages += freesize;
1da177e4 6142
9feedc9d
JL
6143 /*
6144 * Set an approximate value for lowmem here, it will be adjusted
6145 * when the bootmem allocator frees pages into the buddy system.
6146 * And all highmem pages will be managed by the buddy system.
6147 */
6148 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6149#ifdef CONFIG_NUMA
d5f541ed 6150 zone->node = nid;
9614634f 6151#endif
1da177e4 6152 zone->name = zone_names[j];
a52633d8 6153 zone->zone_pgdat = pgdat;
1da177e4 6154 spin_lock_init(&zone->lock);
bdc8cb98 6155 zone_seqlock_init(zone);
ed8ece2e 6156 zone_pcp_init(zone);
81c0a2bb 6157
1da177e4
LT
6158 if (!size)
6159 continue;
6160
955c1cd7 6161 set_pageblock_order();
7c45512d 6162 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6163 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6164 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6165 }
6166}
6167
0cd842f9 6168#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6169static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6170{
b0aeba74 6171 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6172 unsigned long __maybe_unused offset = 0;
6173
1da177e4
LT
6174 /* Skip empty nodes */
6175 if (!pgdat->node_spanned_pages)
6176 return;
6177
b0aeba74
TL
6178 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6179 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6180 /* ia64 gets its own node_mem_map, before this, without bootmem */
6181 if (!pgdat->node_mem_map) {
b0aeba74 6182 unsigned long size, end;
d41dee36
AW
6183 struct page *map;
6184
e984bb43
BP
6185 /*
6186 * The zone's endpoints aren't required to be MAX_ORDER
6187 * aligned but the node_mem_map endpoints must be in order
6188 * for the buddy allocator to function correctly.
6189 */
108bcc96 6190 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6191 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6192 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6193 map = alloc_remap(pgdat->node_id, size);
6194 if (!map)
6782832e
SS
6195 map = memblock_virt_alloc_node_nopanic(size,
6196 pgdat->node_id);
a1c34a3b 6197 pgdat->node_mem_map = map + offset;
1da177e4 6198 }
0cd842f9
OS
6199 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6200 __func__, pgdat->node_id, (unsigned long)pgdat,
6201 (unsigned long)pgdat->node_mem_map);
12d810c1 6202#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6203 /*
6204 * With no DISCONTIG, the global mem_map is just set as node 0's
6205 */
c713216d 6206 if (pgdat == NODE_DATA(0)) {
1da177e4 6207 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6208#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6209 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6210 mem_map -= offset;
0ee332c1 6211#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6212 }
1da177e4
LT
6213#endif
6214}
0cd842f9
OS
6215#else
6216static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6217#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6218
9109fb7b
JW
6219void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6220 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6221{
9109fb7b 6222 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6223 unsigned long start_pfn = 0;
6224 unsigned long end_pfn = 0;
9109fb7b 6225
88fdf75d 6226 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6227 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6228
1da177e4
LT
6229 pgdat->node_id = nid;
6230 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6231 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6232#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6233 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6234 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6235 (u64)start_pfn << PAGE_SHIFT,
6236 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6237#else
6238 start_pfn = node_start_pfn;
7960aedd
ZY
6239#endif
6240 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6241 zones_size, zholes_size);
1da177e4
LT
6242
6243 alloc_node_mem_map(pgdat);
6244
864b9a39 6245 reset_deferred_meminit(pgdat);
7f3eb55b 6246 free_area_init_core(pgdat);
1da177e4
LT
6247}
6248
afa11cd3 6249#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
6250/*
6251 * Only struct pages that are backed by physical memory are zeroed and
6252 * initialized by going through __init_single_page(). But, there are some
6253 * struct pages which are reserved in memblock allocator and their fields
6254 * may be accessed (for example page_to_pfn() on some configuration accesses
6255 * flags). We must explicitly zero those struct pages.
6256 */
6257void __paginginit zero_resv_unavail(void)
6258{
6259 phys_addr_t start, end;
6260 unsigned long pfn;
6261 u64 i, pgcnt;
6262
6263 /*
6264 * Loop through ranges that are reserved, but do not have reported
6265 * physical memory backing.
6266 */
6267 pgcnt = 0;
6268 for_each_resv_unavail_range(i, &start, &end) {
6269 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
e8c24773
DY
6270 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6271 continue;
a4a3ede2
PT
6272 mm_zero_struct_page(pfn_to_page(pfn));
6273 pgcnt++;
6274 }
6275 }
6276
6277 /*
6278 * Struct pages that do not have backing memory. This could be because
6279 * firmware is using some of this memory, or for some other reasons.
6280 * Once memblock is changed so such behaviour is not allowed: i.e.
6281 * list of "reserved" memory must be a subset of list of "memory", then
6282 * this code can be removed.
6283 */
6284 if (pgcnt)
6285 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6286}
afa11cd3 6287#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6288
0ee332c1 6289#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6290
6291#if MAX_NUMNODES > 1
6292/*
6293 * Figure out the number of possible node ids.
6294 */
f9872caf 6295void __init setup_nr_node_ids(void)
418508c1 6296{
904a9553 6297 unsigned int highest;
418508c1 6298
904a9553 6299 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6300 nr_node_ids = highest + 1;
6301}
418508c1
MS
6302#endif
6303
1e01979c
TH
6304/**
6305 * node_map_pfn_alignment - determine the maximum internode alignment
6306 *
6307 * This function should be called after node map is populated and sorted.
6308 * It calculates the maximum power of two alignment which can distinguish
6309 * all the nodes.
6310 *
6311 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6312 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6313 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6314 * shifted, 1GiB is enough and this function will indicate so.
6315 *
6316 * This is used to test whether pfn -> nid mapping of the chosen memory
6317 * model has fine enough granularity to avoid incorrect mapping for the
6318 * populated node map.
6319 *
6320 * Returns the determined alignment in pfn's. 0 if there is no alignment
6321 * requirement (single node).
6322 */
6323unsigned long __init node_map_pfn_alignment(void)
6324{
6325 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6326 unsigned long start, end, mask;
1e01979c 6327 int last_nid = -1;
c13291a5 6328 int i, nid;
1e01979c 6329
c13291a5 6330 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6331 if (!start || last_nid < 0 || last_nid == nid) {
6332 last_nid = nid;
6333 last_end = end;
6334 continue;
6335 }
6336
6337 /*
6338 * Start with a mask granular enough to pin-point to the
6339 * start pfn and tick off bits one-by-one until it becomes
6340 * too coarse to separate the current node from the last.
6341 */
6342 mask = ~((1 << __ffs(start)) - 1);
6343 while (mask && last_end <= (start & (mask << 1)))
6344 mask <<= 1;
6345
6346 /* accumulate all internode masks */
6347 accl_mask |= mask;
6348 }
6349
6350 /* convert mask to number of pages */
6351 return ~accl_mask + 1;
6352}
6353
a6af2bc3 6354/* Find the lowest pfn for a node */
b69a7288 6355static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6356{
a6af2bc3 6357 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6358 unsigned long start_pfn;
6359 int i;
1abbfb41 6360
c13291a5
TH
6361 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6362 min_pfn = min(min_pfn, start_pfn);
c713216d 6363
a6af2bc3 6364 if (min_pfn == ULONG_MAX) {
1170532b 6365 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6366 return 0;
6367 }
6368
6369 return min_pfn;
c713216d
MG
6370}
6371
6372/**
6373 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6374 *
6375 * It returns the minimum PFN based on information provided via
7d018176 6376 * memblock_set_node().
c713216d
MG
6377 */
6378unsigned long __init find_min_pfn_with_active_regions(void)
6379{
6380 return find_min_pfn_for_node(MAX_NUMNODES);
6381}
6382
37b07e41
LS
6383/*
6384 * early_calculate_totalpages()
6385 * Sum pages in active regions for movable zone.
4b0ef1fe 6386 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6387 */
484f51f8 6388static unsigned long __init early_calculate_totalpages(void)
7e63efef 6389{
7e63efef 6390 unsigned long totalpages = 0;
c13291a5
TH
6391 unsigned long start_pfn, end_pfn;
6392 int i, nid;
6393
6394 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6395 unsigned long pages = end_pfn - start_pfn;
7e63efef 6396
37b07e41
LS
6397 totalpages += pages;
6398 if (pages)
4b0ef1fe 6399 node_set_state(nid, N_MEMORY);
37b07e41 6400 }
b8af2941 6401 return totalpages;
7e63efef
MG
6402}
6403
2a1e274a
MG
6404/*
6405 * Find the PFN the Movable zone begins in each node. Kernel memory
6406 * is spread evenly between nodes as long as the nodes have enough
6407 * memory. When they don't, some nodes will have more kernelcore than
6408 * others
6409 */
b224ef85 6410static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6411{
6412 int i, nid;
6413 unsigned long usable_startpfn;
6414 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6415 /* save the state before borrow the nodemask */
4b0ef1fe 6416 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6417 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6418 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6419 struct memblock_region *r;
b2f3eebe
TC
6420
6421 /* Need to find movable_zone earlier when movable_node is specified. */
6422 find_usable_zone_for_movable();
6423
6424 /*
6425 * If movable_node is specified, ignore kernelcore and movablecore
6426 * options.
6427 */
6428 if (movable_node_is_enabled()) {
136199f0
EM
6429 for_each_memblock(memory, r) {
6430 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6431 continue;
6432
136199f0 6433 nid = r->nid;
b2f3eebe 6434
136199f0 6435 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6436 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6437 min(usable_startpfn, zone_movable_pfn[nid]) :
6438 usable_startpfn;
6439 }
6440
6441 goto out2;
6442 }
2a1e274a 6443
342332e6
TI
6444 /*
6445 * If kernelcore=mirror is specified, ignore movablecore option
6446 */
6447 if (mirrored_kernelcore) {
6448 bool mem_below_4gb_not_mirrored = false;
6449
6450 for_each_memblock(memory, r) {
6451 if (memblock_is_mirror(r))
6452 continue;
6453
6454 nid = r->nid;
6455
6456 usable_startpfn = memblock_region_memory_base_pfn(r);
6457
6458 if (usable_startpfn < 0x100000) {
6459 mem_below_4gb_not_mirrored = true;
6460 continue;
6461 }
6462
6463 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6464 min(usable_startpfn, zone_movable_pfn[nid]) :
6465 usable_startpfn;
6466 }
6467
6468 if (mem_below_4gb_not_mirrored)
6469 pr_warn("This configuration results in unmirrored kernel memory.");
6470
6471 goto out2;
6472 }
6473
7e63efef 6474 /*
b2f3eebe 6475 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6476 * kernelcore that corresponds so that memory usable for
6477 * any allocation type is evenly spread. If both kernelcore
6478 * and movablecore are specified, then the value of kernelcore
6479 * will be used for required_kernelcore if it's greater than
6480 * what movablecore would have allowed.
6481 */
6482 if (required_movablecore) {
7e63efef
MG
6483 unsigned long corepages;
6484
6485 /*
6486 * Round-up so that ZONE_MOVABLE is at least as large as what
6487 * was requested by the user
6488 */
6489 required_movablecore =
6490 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6491 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6492 corepages = totalpages - required_movablecore;
6493
6494 required_kernelcore = max(required_kernelcore, corepages);
6495 }
6496
bde304bd
XQ
6497 /*
6498 * If kernelcore was not specified or kernelcore size is larger
6499 * than totalpages, there is no ZONE_MOVABLE.
6500 */
6501 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6502 goto out;
2a1e274a
MG
6503
6504 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6505 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6506
6507restart:
6508 /* Spread kernelcore memory as evenly as possible throughout nodes */
6509 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6510 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6511 unsigned long start_pfn, end_pfn;
6512
2a1e274a
MG
6513 /*
6514 * Recalculate kernelcore_node if the division per node
6515 * now exceeds what is necessary to satisfy the requested
6516 * amount of memory for the kernel
6517 */
6518 if (required_kernelcore < kernelcore_node)
6519 kernelcore_node = required_kernelcore / usable_nodes;
6520
6521 /*
6522 * As the map is walked, we track how much memory is usable
6523 * by the kernel using kernelcore_remaining. When it is
6524 * 0, the rest of the node is usable by ZONE_MOVABLE
6525 */
6526 kernelcore_remaining = kernelcore_node;
6527
6528 /* Go through each range of PFNs within this node */
c13291a5 6529 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6530 unsigned long size_pages;
6531
c13291a5 6532 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6533 if (start_pfn >= end_pfn)
6534 continue;
6535
6536 /* Account for what is only usable for kernelcore */
6537 if (start_pfn < usable_startpfn) {
6538 unsigned long kernel_pages;
6539 kernel_pages = min(end_pfn, usable_startpfn)
6540 - start_pfn;
6541
6542 kernelcore_remaining -= min(kernel_pages,
6543 kernelcore_remaining);
6544 required_kernelcore -= min(kernel_pages,
6545 required_kernelcore);
6546
6547 /* Continue if range is now fully accounted */
6548 if (end_pfn <= usable_startpfn) {
6549
6550 /*
6551 * Push zone_movable_pfn to the end so
6552 * that if we have to rebalance
6553 * kernelcore across nodes, we will
6554 * not double account here
6555 */
6556 zone_movable_pfn[nid] = end_pfn;
6557 continue;
6558 }
6559 start_pfn = usable_startpfn;
6560 }
6561
6562 /*
6563 * The usable PFN range for ZONE_MOVABLE is from
6564 * start_pfn->end_pfn. Calculate size_pages as the
6565 * number of pages used as kernelcore
6566 */
6567 size_pages = end_pfn - start_pfn;
6568 if (size_pages > kernelcore_remaining)
6569 size_pages = kernelcore_remaining;
6570 zone_movable_pfn[nid] = start_pfn + size_pages;
6571
6572 /*
6573 * Some kernelcore has been met, update counts and
6574 * break if the kernelcore for this node has been
b8af2941 6575 * satisfied
2a1e274a
MG
6576 */
6577 required_kernelcore -= min(required_kernelcore,
6578 size_pages);
6579 kernelcore_remaining -= size_pages;
6580 if (!kernelcore_remaining)
6581 break;
6582 }
6583 }
6584
6585 /*
6586 * If there is still required_kernelcore, we do another pass with one
6587 * less node in the count. This will push zone_movable_pfn[nid] further
6588 * along on the nodes that still have memory until kernelcore is
b8af2941 6589 * satisfied
2a1e274a
MG
6590 */
6591 usable_nodes--;
6592 if (usable_nodes && required_kernelcore > usable_nodes)
6593 goto restart;
6594
b2f3eebe 6595out2:
2a1e274a
MG
6596 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6597 for (nid = 0; nid < MAX_NUMNODES; nid++)
6598 zone_movable_pfn[nid] =
6599 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6600
20e6926d 6601out:
66918dcd 6602 /* restore the node_state */
4b0ef1fe 6603 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6604}
6605
4b0ef1fe
LJ
6606/* Any regular or high memory on that node ? */
6607static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6608{
37b07e41
LS
6609 enum zone_type zone_type;
6610
4b0ef1fe
LJ
6611 if (N_MEMORY == N_NORMAL_MEMORY)
6612 return;
6613
6614 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6615 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6616 if (populated_zone(zone)) {
4b0ef1fe
LJ
6617 node_set_state(nid, N_HIGH_MEMORY);
6618 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6619 zone_type <= ZONE_NORMAL)
6620 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6621 break;
6622 }
37b07e41 6623 }
37b07e41
LS
6624}
6625
c713216d
MG
6626/**
6627 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6628 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6629 *
6630 * This will call free_area_init_node() for each active node in the system.
7d018176 6631 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6632 * zone in each node and their holes is calculated. If the maximum PFN
6633 * between two adjacent zones match, it is assumed that the zone is empty.
6634 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6635 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6636 * starts where the previous one ended. For example, ZONE_DMA32 starts
6637 * at arch_max_dma_pfn.
6638 */
6639void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6640{
c13291a5
TH
6641 unsigned long start_pfn, end_pfn;
6642 int i, nid;
a6af2bc3 6643
c713216d
MG
6644 /* Record where the zone boundaries are */
6645 memset(arch_zone_lowest_possible_pfn, 0,
6646 sizeof(arch_zone_lowest_possible_pfn));
6647 memset(arch_zone_highest_possible_pfn, 0,
6648 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6649
6650 start_pfn = find_min_pfn_with_active_regions();
6651
6652 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6653 if (i == ZONE_MOVABLE)
6654 continue;
90cae1fe
OH
6655
6656 end_pfn = max(max_zone_pfn[i], start_pfn);
6657 arch_zone_lowest_possible_pfn[i] = start_pfn;
6658 arch_zone_highest_possible_pfn[i] = end_pfn;
6659
6660 start_pfn = end_pfn;
c713216d 6661 }
2a1e274a
MG
6662
6663 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6664 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6665 find_zone_movable_pfns_for_nodes();
c713216d 6666
c713216d 6667 /* Print out the zone ranges */
f88dfff5 6668 pr_info("Zone ranges:\n");
2a1e274a
MG
6669 for (i = 0; i < MAX_NR_ZONES; i++) {
6670 if (i == ZONE_MOVABLE)
6671 continue;
f88dfff5 6672 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6673 if (arch_zone_lowest_possible_pfn[i] ==
6674 arch_zone_highest_possible_pfn[i])
f88dfff5 6675 pr_cont("empty\n");
72f0ba02 6676 else
8d29e18a
JG
6677 pr_cont("[mem %#018Lx-%#018Lx]\n",
6678 (u64)arch_zone_lowest_possible_pfn[i]
6679 << PAGE_SHIFT,
6680 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6681 << PAGE_SHIFT) - 1);
2a1e274a
MG
6682 }
6683
6684 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6685 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6686 for (i = 0; i < MAX_NUMNODES; i++) {
6687 if (zone_movable_pfn[i])
8d29e18a
JG
6688 pr_info(" Node %d: %#018Lx\n", i,
6689 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6690 }
c713216d 6691
f2d52fe5 6692 /* Print out the early node map */
f88dfff5 6693 pr_info("Early memory node ranges\n");
c13291a5 6694 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6695 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6696 (u64)start_pfn << PAGE_SHIFT,
6697 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6698
6699 /* Initialise every node */
708614e6 6700 mminit_verify_pageflags_layout();
8ef82866 6701 setup_nr_node_ids();
a6e2dae0 6702 zero_resv_unavail();
c713216d
MG
6703 for_each_online_node(nid) {
6704 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6705 free_area_init_node(nid, NULL,
c713216d 6706 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6707
6708 /* Any memory on that node */
6709 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6710 node_set_state(nid, N_MEMORY);
6711 check_for_memory(pgdat, nid);
c713216d
MG
6712 }
6713}
2a1e274a 6714
7e63efef 6715static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6716{
6717 unsigned long long coremem;
6718 if (!p)
6719 return -EINVAL;
6720
6721 coremem = memparse(p, &p);
7e63efef 6722 *core = coremem >> PAGE_SHIFT;
2a1e274a 6723
7e63efef 6724 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6725 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6726
6727 return 0;
6728}
ed7ed365 6729
7e63efef
MG
6730/*
6731 * kernelcore=size sets the amount of memory for use for allocations that
6732 * cannot be reclaimed or migrated.
6733 */
6734static int __init cmdline_parse_kernelcore(char *p)
6735{
342332e6
TI
6736 /* parse kernelcore=mirror */
6737 if (parse_option_str(p, "mirror")) {
6738 mirrored_kernelcore = true;
6739 return 0;
6740 }
6741
7e63efef
MG
6742 return cmdline_parse_core(p, &required_kernelcore);
6743}
6744
6745/*
6746 * movablecore=size sets the amount of memory for use for allocations that
6747 * can be reclaimed or migrated.
6748 */
6749static int __init cmdline_parse_movablecore(char *p)
6750{
6751 return cmdline_parse_core(p, &required_movablecore);
6752}
6753
ed7ed365 6754early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6755early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6756
0ee332c1 6757#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6758
c3d5f5f0
JL
6759void adjust_managed_page_count(struct page *page, long count)
6760{
6761 spin_lock(&managed_page_count_lock);
6762 page_zone(page)->managed_pages += count;
6763 totalram_pages += count;
3dcc0571
JL
6764#ifdef CONFIG_HIGHMEM
6765 if (PageHighMem(page))
6766 totalhigh_pages += count;
6767#endif
c3d5f5f0
JL
6768 spin_unlock(&managed_page_count_lock);
6769}
3dcc0571 6770EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6771
11199692 6772unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6773{
11199692
JL
6774 void *pos;
6775 unsigned long pages = 0;
69afade7 6776
11199692
JL
6777 start = (void *)PAGE_ALIGN((unsigned long)start);
6778 end = (void *)((unsigned long)end & PAGE_MASK);
6779 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
34239c54
DH
6780 struct page *page = virt_to_page(pos);
6781 void *direct_map_addr;
6782
6783 /*
6784 * 'direct_map_addr' might be different from 'pos'
6785 * because some architectures' virt_to_page()
6786 * work with aliases. Getting the direct map
6787 * address ensures that we get a _writeable_
6788 * alias for the memset().
6789 */
6790 direct_map_addr = page_address(page);
dbe67df4 6791 if ((unsigned int)poison <= 0xFF)
34239c54
DH
6792 memset(direct_map_addr, poison, PAGE_SIZE);
6793
6794 free_reserved_page(page);
69afade7
JL
6795 }
6796
6797 if (pages && s)
adb1fe9a
JP
6798 pr_info("Freeing %s memory: %ldK\n",
6799 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6800
6801 return pages;
6802}
11199692 6803EXPORT_SYMBOL(free_reserved_area);
69afade7 6804
cfa11e08
JL
6805#ifdef CONFIG_HIGHMEM
6806void free_highmem_page(struct page *page)
6807{
6808 __free_reserved_page(page);
6809 totalram_pages++;
7b4b2a0d 6810 page_zone(page)->managed_pages++;
cfa11e08
JL
6811 totalhigh_pages++;
6812}
6813#endif
6814
7ee3d4e8
JL
6815
6816void __init mem_init_print_info(const char *str)
6817{
6818 unsigned long physpages, codesize, datasize, rosize, bss_size;
6819 unsigned long init_code_size, init_data_size;
6820
6821 physpages = get_num_physpages();
6822 codesize = _etext - _stext;
6823 datasize = _edata - _sdata;
6824 rosize = __end_rodata - __start_rodata;
6825 bss_size = __bss_stop - __bss_start;
6826 init_data_size = __init_end - __init_begin;
6827 init_code_size = _einittext - _sinittext;
6828
6829 /*
6830 * Detect special cases and adjust section sizes accordingly:
6831 * 1) .init.* may be embedded into .data sections
6832 * 2) .init.text.* may be out of [__init_begin, __init_end],
6833 * please refer to arch/tile/kernel/vmlinux.lds.S.
6834 * 3) .rodata.* may be embedded into .text or .data sections.
6835 */
6836#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6837 do { \
6838 if (start <= pos && pos < end && size > adj) \
6839 size -= adj; \
6840 } while (0)
7ee3d4e8
JL
6841
6842 adj_init_size(__init_begin, __init_end, init_data_size,
6843 _sinittext, init_code_size);
6844 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6845 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6846 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6847 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6848
6849#undef adj_init_size
6850
756a025f 6851 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6852#ifdef CONFIG_HIGHMEM
756a025f 6853 ", %luK highmem"
7ee3d4e8 6854#endif
756a025f
JP
6855 "%s%s)\n",
6856 nr_free_pages() << (PAGE_SHIFT - 10),
6857 physpages << (PAGE_SHIFT - 10),
6858 codesize >> 10, datasize >> 10, rosize >> 10,
6859 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6860 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6861 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6862#ifdef CONFIG_HIGHMEM
756a025f 6863 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6864#endif
756a025f 6865 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6866}
6867
0e0b864e 6868/**
88ca3b94
RD
6869 * set_dma_reserve - set the specified number of pages reserved in the first zone
6870 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6871 *
013110a7 6872 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6873 * In the DMA zone, a significant percentage may be consumed by kernel image
6874 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6875 * function may optionally be used to account for unfreeable pages in the
6876 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6877 * smaller per-cpu batchsize.
0e0b864e
MG
6878 */
6879void __init set_dma_reserve(unsigned long new_dma_reserve)
6880{
6881 dma_reserve = new_dma_reserve;
6882}
6883
1da177e4
LT
6884void __init free_area_init(unsigned long *zones_size)
6885{
a6e2dae0 6886 zero_resv_unavail();
9109fb7b 6887 free_area_init_node(0, zones_size,
1da177e4
LT
6888 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6889}
1da177e4 6890
005fd4bb 6891static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6892{
1da177e4 6893
005fd4bb
SAS
6894 lru_add_drain_cpu(cpu);
6895 drain_pages(cpu);
9f8f2172 6896
005fd4bb
SAS
6897 /*
6898 * Spill the event counters of the dead processor
6899 * into the current processors event counters.
6900 * This artificially elevates the count of the current
6901 * processor.
6902 */
6903 vm_events_fold_cpu(cpu);
9f8f2172 6904
005fd4bb
SAS
6905 /*
6906 * Zero the differential counters of the dead processor
6907 * so that the vm statistics are consistent.
6908 *
6909 * This is only okay since the processor is dead and cannot
6910 * race with what we are doing.
6911 */
6912 cpu_vm_stats_fold(cpu);
6913 return 0;
1da177e4 6914}
1da177e4
LT
6915
6916void __init page_alloc_init(void)
6917{
005fd4bb
SAS
6918 int ret;
6919
6920 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6921 "mm/page_alloc:dead", NULL,
6922 page_alloc_cpu_dead);
6923 WARN_ON(ret < 0);
1da177e4
LT
6924}
6925
cb45b0e9 6926/*
34b10060 6927 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6928 * or min_free_kbytes changes.
6929 */
6930static void calculate_totalreserve_pages(void)
6931{
6932 struct pglist_data *pgdat;
6933 unsigned long reserve_pages = 0;
2f6726e5 6934 enum zone_type i, j;
cb45b0e9
HA
6935
6936 for_each_online_pgdat(pgdat) {
281e3726
MG
6937
6938 pgdat->totalreserve_pages = 0;
6939
cb45b0e9
HA
6940 for (i = 0; i < MAX_NR_ZONES; i++) {
6941 struct zone *zone = pgdat->node_zones + i;
3484b2de 6942 long max = 0;
cb45b0e9
HA
6943
6944 /* Find valid and maximum lowmem_reserve in the zone */
6945 for (j = i; j < MAX_NR_ZONES; j++) {
6946 if (zone->lowmem_reserve[j] > max)
6947 max = zone->lowmem_reserve[j];
6948 }
6949
41858966
MG
6950 /* we treat the high watermark as reserved pages. */
6951 max += high_wmark_pages(zone);
cb45b0e9 6952
b40da049
JL
6953 if (max > zone->managed_pages)
6954 max = zone->managed_pages;
a8d01437 6955
281e3726 6956 pgdat->totalreserve_pages += max;
a8d01437 6957
cb45b0e9
HA
6958 reserve_pages += max;
6959 }
6960 }
6961 totalreserve_pages = reserve_pages;
6962}
6963
1da177e4
LT
6964/*
6965 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6966 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6967 * has a correct pages reserved value, so an adequate number of
6968 * pages are left in the zone after a successful __alloc_pages().
6969 */
6970static void setup_per_zone_lowmem_reserve(void)
6971{
6972 struct pglist_data *pgdat;
2f6726e5 6973 enum zone_type j, idx;
1da177e4 6974
ec936fc5 6975 for_each_online_pgdat(pgdat) {
1da177e4
LT
6976 for (j = 0; j < MAX_NR_ZONES; j++) {
6977 struct zone *zone = pgdat->node_zones + j;
b40da049 6978 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6979
6980 zone->lowmem_reserve[j] = 0;
6981
2f6726e5
CL
6982 idx = j;
6983 while (idx) {
1da177e4
LT
6984 struct zone *lower_zone;
6985
2f6726e5
CL
6986 idx--;
6987
1da177e4
LT
6988 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6989 sysctl_lowmem_reserve_ratio[idx] = 1;
6990
6991 lower_zone = pgdat->node_zones + idx;
b40da049 6992 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6993 sysctl_lowmem_reserve_ratio[idx];
b40da049 6994 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6995 }
6996 }
6997 }
cb45b0e9
HA
6998
6999 /* update totalreserve_pages */
7000 calculate_totalreserve_pages();
1da177e4
LT
7001}
7002
cfd3da1e 7003static void __setup_per_zone_wmarks(void)
1da177e4
LT
7004{
7005 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7006 unsigned long lowmem_pages = 0;
7007 struct zone *zone;
7008 unsigned long flags;
7009
7010 /* Calculate total number of !ZONE_HIGHMEM pages */
7011 for_each_zone(zone) {
7012 if (!is_highmem(zone))
b40da049 7013 lowmem_pages += zone->managed_pages;
1da177e4
LT
7014 }
7015
7016 for_each_zone(zone) {
ac924c60
AM
7017 u64 tmp;
7018
1125b4e3 7019 spin_lock_irqsave(&zone->lock, flags);
b40da049 7020 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7021 do_div(tmp, lowmem_pages);
1da177e4
LT
7022 if (is_highmem(zone)) {
7023 /*
669ed175
NP
7024 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7025 * need highmem pages, so cap pages_min to a small
7026 * value here.
7027 *
41858966 7028 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7029 * deltas control asynch page reclaim, and so should
669ed175 7030 * not be capped for highmem.
1da177e4 7031 */
90ae8d67 7032 unsigned long min_pages;
1da177e4 7033
b40da049 7034 min_pages = zone->managed_pages / 1024;
90ae8d67 7035 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7036 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7037 } else {
669ed175
NP
7038 /*
7039 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7040 * proportionate to the zone's size.
7041 */
41858966 7042 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7043 }
7044
795ae7a0
JW
7045 /*
7046 * Set the kswapd watermarks distance according to the
7047 * scale factor in proportion to available memory, but
7048 * ensure a minimum size on small systems.
7049 */
7050 tmp = max_t(u64, tmp >> 2,
7051 mult_frac(zone->managed_pages,
7052 watermark_scale_factor, 10000));
7053
7054 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7055 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7056
1125b4e3 7057 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7058 }
cb45b0e9
HA
7059
7060 /* update totalreserve_pages */
7061 calculate_totalreserve_pages();
1da177e4
LT
7062}
7063
cfd3da1e
MG
7064/**
7065 * setup_per_zone_wmarks - called when min_free_kbytes changes
7066 * or when memory is hot-{added|removed}
7067 *
7068 * Ensures that the watermark[min,low,high] values for each zone are set
7069 * correctly with respect to min_free_kbytes.
7070 */
7071void setup_per_zone_wmarks(void)
7072{
b93e0f32
MH
7073 static DEFINE_SPINLOCK(lock);
7074
7075 spin_lock(&lock);
cfd3da1e 7076 __setup_per_zone_wmarks();
b93e0f32 7077 spin_unlock(&lock);
cfd3da1e
MG
7078}
7079
1da177e4
LT
7080/*
7081 * Initialise min_free_kbytes.
7082 *
7083 * For small machines we want it small (128k min). For large machines
7084 * we want it large (64MB max). But it is not linear, because network
7085 * bandwidth does not increase linearly with machine size. We use
7086 *
b8af2941 7087 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7088 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7089 *
7090 * which yields
7091 *
7092 * 16MB: 512k
7093 * 32MB: 724k
7094 * 64MB: 1024k
7095 * 128MB: 1448k
7096 * 256MB: 2048k
7097 * 512MB: 2896k
7098 * 1024MB: 4096k
7099 * 2048MB: 5792k
7100 * 4096MB: 8192k
7101 * 8192MB: 11584k
7102 * 16384MB: 16384k
7103 */
1b79acc9 7104int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7105{
7106 unsigned long lowmem_kbytes;
5f12733e 7107 int new_min_free_kbytes;
1da177e4
LT
7108
7109 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7110 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7111
7112 if (new_min_free_kbytes > user_min_free_kbytes) {
7113 min_free_kbytes = new_min_free_kbytes;
7114 if (min_free_kbytes < 128)
7115 min_free_kbytes = 128;
7116 if (min_free_kbytes > 65536)
7117 min_free_kbytes = 65536;
7118 } else {
7119 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7120 new_min_free_kbytes, user_min_free_kbytes);
7121 }
bc75d33f 7122 setup_per_zone_wmarks();
a6cccdc3 7123 refresh_zone_stat_thresholds();
1da177e4 7124 setup_per_zone_lowmem_reserve();
6423aa81
JK
7125
7126#ifdef CONFIG_NUMA
7127 setup_min_unmapped_ratio();
7128 setup_min_slab_ratio();
7129#endif
7130
1da177e4
LT
7131 return 0;
7132}
bc22af74 7133core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7134
7135/*
b8af2941 7136 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7137 * that we can call two helper functions whenever min_free_kbytes
7138 * changes.
7139 */
cccad5b9 7140int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7141 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7142{
da8c757b
HP
7143 int rc;
7144
7145 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7146 if (rc)
7147 return rc;
7148
5f12733e
MH
7149 if (write) {
7150 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7151 setup_per_zone_wmarks();
5f12733e 7152 }
1da177e4
LT
7153 return 0;
7154}
7155
795ae7a0
JW
7156int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7157 void __user *buffer, size_t *length, loff_t *ppos)
7158{
7159 int rc;
7160
7161 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7162 if (rc)
7163 return rc;
7164
7165 if (write)
7166 setup_per_zone_wmarks();
7167
7168 return 0;
7169}
7170
9614634f 7171#ifdef CONFIG_NUMA
6423aa81 7172static void setup_min_unmapped_ratio(void)
9614634f 7173{
6423aa81 7174 pg_data_t *pgdat;
9614634f 7175 struct zone *zone;
9614634f 7176
a5f5f91d 7177 for_each_online_pgdat(pgdat)
81cbcbc2 7178 pgdat->min_unmapped_pages = 0;
a5f5f91d 7179
9614634f 7180 for_each_zone(zone)
a5f5f91d 7181 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7182 sysctl_min_unmapped_ratio) / 100;
9614634f 7183}
0ff38490 7184
6423aa81
JK
7185
7186int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7187 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7188{
0ff38490
CL
7189 int rc;
7190
8d65af78 7191 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7192 if (rc)
7193 return rc;
7194
6423aa81
JK
7195 setup_min_unmapped_ratio();
7196
7197 return 0;
7198}
7199
7200static void setup_min_slab_ratio(void)
7201{
7202 pg_data_t *pgdat;
7203 struct zone *zone;
7204
a5f5f91d
MG
7205 for_each_online_pgdat(pgdat)
7206 pgdat->min_slab_pages = 0;
7207
0ff38490 7208 for_each_zone(zone)
a5f5f91d 7209 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7210 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7211}
7212
7213int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7214 void __user *buffer, size_t *length, loff_t *ppos)
7215{
7216 int rc;
7217
7218 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7219 if (rc)
7220 return rc;
7221
7222 setup_min_slab_ratio();
7223
0ff38490
CL
7224 return 0;
7225}
9614634f
CL
7226#endif
7227
1da177e4
LT
7228/*
7229 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7230 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7231 * whenever sysctl_lowmem_reserve_ratio changes.
7232 *
7233 * The reserve ratio obviously has absolutely no relation with the
41858966 7234 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7235 * if in function of the boot time zone sizes.
7236 */
cccad5b9 7237int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7238 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7239{
8d65af78 7240 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7241 setup_per_zone_lowmem_reserve();
7242 return 0;
7243}
7244
8ad4b1fb
RS
7245/*
7246 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7247 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7248 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7249 */
cccad5b9 7250int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7251 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7252{
7253 struct zone *zone;
7cd2b0a3 7254 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7255 int ret;
7256
7cd2b0a3
DR
7257 mutex_lock(&pcp_batch_high_lock);
7258 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7259
8d65af78 7260 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7261 if (!write || ret < 0)
7262 goto out;
7263
7264 /* Sanity checking to avoid pcp imbalance */
7265 if (percpu_pagelist_fraction &&
7266 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7267 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7268 ret = -EINVAL;
7269 goto out;
7270 }
7271
7272 /* No change? */
7273 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7274 goto out;
c8e251fa 7275
364df0eb 7276 for_each_populated_zone(zone) {
7cd2b0a3
DR
7277 unsigned int cpu;
7278
22a7f12b 7279 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7280 pageset_set_high_and_batch(zone,
7281 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7282 }
7cd2b0a3 7283out:
c8e251fa 7284 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7285 return ret;
8ad4b1fb
RS
7286}
7287
a9919c79 7288#ifdef CONFIG_NUMA
f034b5d4 7289int hashdist = HASHDIST_DEFAULT;
1da177e4 7290
1da177e4
LT
7291static int __init set_hashdist(char *str)
7292{
7293 if (!str)
7294 return 0;
7295 hashdist = simple_strtoul(str, &str, 0);
7296 return 1;
7297}
7298__setup("hashdist=", set_hashdist);
7299#endif
7300
f6f34b43
SD
7301#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7302/*
7303 * Returns the number of pages that arch has reserved but
7304 * is not known to alloc_large_system_hash().
7305 */
7306static unsigned long __init arch_reserved_kernel_pages(void)
7307{
7308 return 0;
7309}
7310#endif
7311
9017217b
PT
7312/*
7313 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7314 * machines. As memory size is increased the scale is also increased but at
7315 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7316 * quadruples the scale is increased by one, which means the size of hash table
7317 * only doubles, instead of quadrupling as well.
7318 * Because 32-bit systems cannot have large physical memory, where this scaling
7319 * makes sense, it is disabled on such platforms.
7320 */
7321#if __BITS_PER_LONG > 32
7322#define ADAPT_SCALE_BASE (64ul << 30)
7323#define ADAPT_SCALE_SHIFT 2
7324#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7325#endif
7326
1da177e4
LT
7327/*
7328 * allocate a large system hash table from bootmem
7329 * - it is assumed that the hash table must contain an exact power-of-2
7330 * quantity of entries
7331 * - limit is the number of hash buckets, not the total allocation size
7332 */
7333void *__init alloc_large_system_hash(const char *tablename,
7334 unsigned long bucketsize,
7335 unsigned long numentries,
7336 int scale,
7337 int flags,
7338 unsigned int *_hash_shift,
7339 unsigned int *_hash_mask,
31fe62b9
TB
7340 unsigned long low_limit,
7341 unsigned long high_limit)
1da177e4 7342{
31fe62b9 7343 unsigned long long max = high_limit;
1da177e4
LT
7344 unsigned long log2qty, size;
7345 void *table = NULL;
3749a8f0 7346 gfp_t gfp_flags;
1da177e4
LT
7347
7348 /* allow the kernel cmdline to have a say */
7349 if (!numentries) {
7350 /* round applicable memory size up to nearest megabyte */
04903664 7351 numentries = nr_kernel_pages;
f6f34b43 7352 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7353
7354 /* It isn't necessary when PAGE_SIZE >= 1MB */
7355 if (PAGE_SHIFT < 20)
7356 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7357
9017217b
PT
7358#if __BITS_PER_LONG > 32
7359 if (!high_limit) {
7360 unsigned long adapt;
7361
7362 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7363 adapt <<= ADAPT_SCALE_SHIFT)
7364 scale++;
7365 }
7366#endif
7367
1da177e4
LT
7368 /* limit to 1 bucket per 2^scale bytes of low memory */
7369 if (scale > PAGE_SHIFT)
7370 numentries >>= (scale - PAGE_SHIFT);
7371 else
7372 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7373
7374 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7375 if (unlikely(flags & HASH_SMALL)) {
7376 /* Makes no sense without HASH_EARLY */
7377 WARN_ON(!(flags & HASH_EARLY));
7378 if (!(numentries >> *_hash_shift)) {
7379 numentries = 1UL << *_hash_shift;
7380 BUG_ON(!numentries);
7381 }
7382 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7383 numentries = PAGE_SIZE / bucketsize;
1da177e4 7384 }
6e692ed3 7385 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7386
7387 /* limit allocation size to 1/16 total memory by default */
7388 if (max == 0) {
7389 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7390 do_div(max, bucketsize);
7391 }
074b8517 7392 max = min(max, 0x80000000ULL);
1da177e4 7393
31fe62b9
TB
7394 if (numentries < low_limit)
7395 numentries = low_limit;
1da177e4
LT
7396 if (numentries > max)
7397 numentries = max;
7398
f0d1b0b3 7399 log2qty = ilog2(numentries);
1da177e4 7400
3749a8f0 7401 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7402 do {
7403 size = bucketsize << log2qty;
ea1f5f37
PT
7404 if (flags & HASH_EARLY) {
7405 if (flags & HASH_ZERO)
7406 table = memblock_virt_alloc_nopanic(size, 0);
7407 else
7408 table = memblock_virt_alloc_raw(size, 0);
7409 } else if (hashdist) {
3749a8f0 7410 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7411 } else {
1037b83b
ED
7412 /*
7413 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7414 * some pages at the end of hash table which
7415 * alloc_pages_exact() automatically does
1037b83b 7416 */
264ef8a9 7417 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7418 table = alloc_pages_exact(size, gfp_flags);
7419 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7420 }
1da177e4
LT
7421 }
7422 } while (!table && size > PAGE_SIZE && --log2qty);
7423
7424 if (!table)
7425 panic("Failed to allocate %s hash table\n", tablename);
7426
1170532b
JP
7427 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7428 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7429
7430 if (_hash_shift)
7431 *_hash_shift = log2qty;
7432 if (_hash_mask)
7433 *_hash_mask = (1 << log2qty) - 1;
7434
7435 return table;
7436}
a117e66e 7437
a5d76b54 7438/*
80934513
MK
7439 * This function checks whether pageblock includes unmovable pages or not.
7440 * If @count is not zero, it is okay to include less @count unmovable pages
7441 *
b8af2941 7442 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7443 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7444 * check without lock_page also may miss some movable non-lru pages at
7445 * race condition. So you can't expect this function should be exact.
a5d76b54 7446 */
b023f468 7447bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7448 int migratetype,
b023f468 7449 bool skip_hwpoisoned_pages)
49ac8255
KH
7450{
7451 unsigned long pfn, iter, found;
47118af0 7452
49ac8255
KH
7453 /*
7454 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7455 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7456 */
7457 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7458 return false;
49ac8255 7459
4da2ce25
MH
7460 /*
7461 * CMA allocations (alloc_contig_range) really need to mark isolate
7462 * CMA pageblocks even when they are not movable in fact so consider
7463 * them movable here.
7464 */
7465 if (is_migrate_cma(migratetype) &&
7466 is_migrate_cma(get_pageblock_migratetype(page)))
7467 return false;
7468
49ac8255
KH
7469 pfn = page_to_pfn(page);
7470 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7471 unsigned long check = pfn + iter;
7472
29723fcc 7473 if (!pfn_valid_within(check))
49ac8255 7474 continue;
29723fcc 7475
49ac8255 7476 page = pfn_to_page(check);
c8721bbb 7477
d7ab3672
MH
7478 if (PageReserved(page))
7479 return true;
7480
c8721bbb
NH
7481 /*
7482 * Hugepages are not in LRU lists, but they're movable.
7483 * We need not scan over tail pages bacause we don't
7484 * handle each tail page individually in migration.
7485 */
7486 if (PageHuge(page)) {
7487 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7488 continue;
7489 }
7490
97d255c8
MK
7491 /*
7492 * We can't use page_count without pin a page
7493 * because another CPU can free compound page.
7494 * This check already skips compound tails of THP
0139aa7b 7495 * because their page->_refcount is zero at all time.
97d255c8 7496 */
fe896d18 7497 if (!page_ref_count(page)) {
49ac8255
KH
7498 if (PageBuddy(page))
7499 iter += (1 << page_order(page)) - 1;
7500 continue;
7501 }
97d255c8 7502
b023f468
WC
7503 /*
7504 * The HWPoisoned page may be not in buddy system, and
7505 * page_count() is not 0.
7506 */
7507 if (skip_hwpoisoned_pages && PageHWPoison(page))
7508 continue;
7509
0efadf48
YX
7510 if (__PageMovable(page))
7511 continue;
7512
49ac8255
KH
7513 if (!PageLRU(page))
7514 found++;
7515 /*
6b4f7799
JW
7516 * If there are RECLAIMABLE pages, we need to check
7517 * it. But now, memory offline itself doesn't call
7518 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7519 */
7520 /*
7521 * If the page is not RAM, page_count()should be 0.
7522 * we don't need more check. This is an _used_ not-movable page.
7523 *
7524 * The problematic thing here is PG_reserved pages. PG_reserved
7525 * is set to both of a memory hole page and a _used_ kernel
7526 * page at boot.
7527 */
7528 if (found > count)
80934513 7529 return true;
49ac8255 7530 }
80934513 7531 return false;
49ac8255
KH
7532}
7533
7534bool is_pageblock_removable_nolock(struct page *page)
7535{
656a0706
MH
7536 struct zone *zone;
7537 unsigned long pfn;
687875fb
MH
7538
7539 /*
7540 * We have to be careful here because we are iterating over memory
7541 * sections which are not zone aware so we might end up outside of
7542 * the zone but still within the section.
656a0706
MH
7543 * We have to take care about the node as well. If the node is offline
7544 * its NODE_DATA will be NULL - see page_zone.
687875fb 7545 */
656a0706
MH
7546 if (!node_online(page_to_nid(page)))
7547 return false;
7548
7549 zone = page_zone(page);
7550 pfn = page_to_pfn(page);
108bcc96 7551 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7552 return false;
7553
4da2ce25 7554 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7555}
0c0e6195 7556
080fe206 7557#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7558
7559static unsigned long pfn_max_align_down(unsigned long pfn)
7560{
7561 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7562 pageblock_nr_pages) - 1);
7563}
7564
7565static unsigned long pfn_max_align_up(unsigned long pfn)
7566{
7567 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7568 pageblock_nr_pages));
7569}
7570
041d3a8c 7571/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7572static int __alloc_contig_migrate_range(struct compact_control *cc,
7573 unsigned long start, unsigned long end)
041d3a8c
MN
7574{
7575 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7576 unsigned long nr_reclaimed;
041d3a8c
MN
7577 unsigned long pfn = start;
7578 unsigned int tries = 0;
7579 int ret = 0;
7580
be49a6e1 7581 migrate_prep();
041d3a8c 7582
bb13ffeb 7583 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7584 if (fatal_signal_pending(current)) {
7585 ret = -EINTR;
7586 break;
7587 }
7588
bb13ffeb
MG
7589 if (list_empty(&cc->migratepages)) {
7590 cc->nr_migratepages = 0;
edc2ca61 7591 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7592 if (!pfn) {
7593 ret = -EINTR;
7594 break;
7595 }
7596 tries = 0;
7597 } else if (++tries == 5) {
7598 ret = ret < 0 ? ret : -EBUSY;
7599 break;
7600 }
7601
beb51eaa
MK
7602 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7603 &cc->migratepages);
7604 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7605
9c620e2b 7606 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7607 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7608 }
2a6f5124
SP
7609 if (ret < 0) {
7610 putback_movable_pages(&cc->migratepages);
7611 return ret;
7612 }
7613 return 0;
041d3a8c
MN
7614}
7615
7616/**
7617 * alloc_contig_range() -- tries to allocate given range of pages
7618 * @start: start PFN to allocate
7619 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7620 * @migratetype: migratetype of the underlaying pageblocks (either
7621 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7622 * in range must have the same migratetype and it must
7623 * be either of the two.
ca96b625 7624 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7625 *
7626 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7627 * aligned, however it's the caller's responsibility to guarantee that
7628 * we are the only thread that changes migrate type of pageblocks the
7629 * pages fall in.
7630 *
7631 * The PFN range must belong to a single zone.
7632 *
7633 * Returns zero on success or negative error code. On success all
7634 * pages which PFN is in [start, end) are allocated for the caller and
7635 * need to be freed with free_contig_range().
7636 */
0815f3d8 7637int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7638 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7639{
041d3a8c 7640 unsigned long outer_start, outer_end;
d00181b9
KS
7641 unsigned int order;
7642 int ret = 0;
041d3a8c 7643
bb13ffeb
MG
7644 struct compact_control cc = {
7645 .nr_migratepages = 0,
7646 .order = -1,
7647 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7648 .mode = MIGRATE_SYNC,
bb13ffeb 7649 .ignore_skip_hint = true,
2583d671 7650 .no_set_skip_hint = true,
7dea19f9 7651 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7652 };
7653 INIT_LIST_HEAD(&cc.migratepages);
7654
041d3a8c
MN
7655 /*
7656 * What we do here is we mark all pageblocks in range as
7657 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7658 * have different sizes, and due to the way page allocator
7659 * work, we align the range to biggest of the two pages so
7660 * that page allocator won't try to merge buddies from
7661 * different pageblocks and change MIGRATE_ISOLATE to some
7662 * other migration type.
7663 *
7664 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7665 * migrate the pages from an unaligned range (ie. pages that
7666 * we are interested in). This will put all the pages in
7667 * range back to page allocator as MIGRATE_ISOLATE.
7668 *
7669 * When this is done, we take the pages in range from page
7670 * allocator removing them from the buddy system. This way
7671 * page allocator will never consider using them.
7672 *
7673 * This lets us mark the pageblocks back as
7674 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7675 * aligned range but not in the unaligned, original range are
7676 * put back to page allocator so that buddy can use them.
7677 */
7678
7679 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7680 pfn_max_align_up(end), migratetype,
7681 false);
041d3a8c 7682 if (ret)
86a595f9 7683 return ret;
041d3a8c 7684
8ef5849f
JK
7685 /*
7686 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7687 * So, just fall through. test_pages_isolated() has a tracepoint
7688 * which will report the busy page.
7689 *
7690 * It is possible that busy pages could become available before
7691 * the call to test_pages_isolated, and the range will actually be
7692 * allocated. So, if we fall through be sure to clear ret so that
7693 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7694 */
bb13ffeb 7695 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7696 if (ret && ret != -EBUSY)
041d3a8c 7697 goto done;
63cd4489 7698 ret =0;
041d3a8c
MN
7699
7700 /*
7701 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7702 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7703 * more, all pages in [start, end) are free in page allocator.
7704 * What we are going to do is to allocate all pages from
7705 * [start, end) (that is remove them from page allocator).
7706 *
7707 * The only problem is that pages at the beginning and at the
7708 * end of interesting range may be not aligned with pages that
7709 * page allocator holds, ie. they can be part of higher order
7710 * pages. Because of this, we reserve the bigger range and
7711 * once this is done free the pages we are not interested in.
7712 *
7713 * We don't have to hold zone->lock here because the pages are
7714 * isolated thus they won't get removed from buddy.
7715 */
7716
7717 lru_add_drain_all();
510f5507 7718 drain_all_pages(cc.zone);
041d3a8c
MN
7719
7720 order = 0;
7721 outer_start = start;
7722 while (!PageBuddy(pfn_to_page(outer_start))) {
7723 if (++order >= MAX_ORDER) {
8ef5849f
JK
7724 outer_start = start;
7725 break;
041d3a8c
MN
7726 }
7727 outer_start &= ~0UL << order;
7728 }
7729
8ef5849f
JK
7730 if (outer_start != start) {
7731 order = page_order(pfn_to_page(outer_start));
7732
7733 /*
7734 * outer_start page could be small order buddy page and
7735 * it doesn't include start page. Adjust outer_start
7736 * in this case to report failed page properly
7737 * on tracepoint in test_pages_isolated()
7738 */
7739 if (outer_start + (1UL << order) <= start)
7740 outer_start = start;
7741 }
7742
041d3a8c 7743 /* Make sure the range is really isolated. */
b023f468 7744 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7745 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7746 __func__, outer_start, end);
041d3a8c
MN
7747 ret = -EBUSY;
7748 goto done;
7749 }
7750
49f223a9 7751 /* Grab isolated pages from freelists. */
bb13ffeb 7752 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7753 if (!outer_end) {
7754 ret = -EBUSY;
7755 goto done;
7756 }
7757
7758 /* Free head and tail (if any) */
7759 if (start != outer_start)
7760 free_contig_range(outer_start, start - outer_start);
7761 if (end != outer_end)
7762 free_contig_range(end, outer_end - end);
7763
7764done:
7765 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7766 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7767 return ret;
7768}
7769
7770void free_contig_range(unsigned long pfn, unsigned nr_pages)
7771{
bcc2b02f
MS
7772 unsigned int count = 0;
7773
7774 for (; nr_pages--; pfn++) {
7775 struct page *page = pfn_to_page(pfn);
7776
7777 count += page_count(page) != 1;
7778 __free_page(page);
7779 }
7780 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7781}
7782#endif
7783
4ed7e022 7784#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7785/*
7786 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7787 * page high values need to be recalulated.
7788 */
4ed7e022
JL
7789void __meminit zone_pcp_update(struct zone *zone)
7790{
0a647f38 7791 unsigned cpu;
c8e251fa 7792 mutex_lock(&pcp_batch_high_lock);
0a647f38 7793 for_each_possible_cpu(cpu)
169f6c19
CS
7794 pageset_set_high_and_batch(zone,
7795 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7796 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7797}
7798#endif
7799
340175b7
JL
7800void zone_pcp_reset(struct zone *zone)
7801{
7802 unsigned long flags;
5a883813
MK
7803 int cpu;
7804 struct per_cpu_pageset *pset;
340175b7
JL
7805
7806 /* avoid races with drain_pages() */
7807 local_irq_save(flags);
7808 if (zone->pageset != &boot_pageset) {
5a883813
MK
7809 for_each_online_cpu(cpu) {
7810 pset = per_cpu_ptr(zone->pageset, cpu);
7811 drain_zonestat(zone, pset);
7812 }
340175b7
JL
7813 free_percpu(zone->pageset);
7814 zone->pageset = &boot_pageset;
7815 }
7816 local_irq_restore(flags);
7817}
7818
6dcd73d7 7819#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7820/*
b9eb6319
JK
7821 * All pages in the range must be in a single zone and isolated
7822 * before calling this.
0c0e6195
KH
7823 */
7824void
7825__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7826{
7827 struct page *page;
7828 struct zone *zone;
7aeb09f9 7829 unsigned int order, i;
0c0e6195
KH
7830 unsigned long pfn;
7831 unsigned long flags;
7832 /* find the first valid pfn */
7833 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7834 if (pfn_valid(pfn))
7835 break;
7836 if (pfn == end_pfn)
7837 return;
2d070eab 7838 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7839 zone = page_zone(pfn_to_page(pfn));
7840 spin_lock_irqsave(&zone->lock, flags);
7841 pfn = start_pfn;
7842 while (pfn < end_pfn) {
7843 if (!pfn_valid(pfn)) {
7844 pfn++;
7845 continue;
7846 }
7847 page = pfn_to_page(pfn);
b023f468
WC
7848 /*
7849 * The HWPoisoned page may be not in buddy system, and
7850 * page_count() is not 0.
7851 */
7852 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7853 pfn++;
7854 SetPageReserved(page);
7855 continue;
7856 }
7857
0c0e6195
KH
7858 BUG_ON(page_count(page));
7859 BUG_ON(!PageBuddy(page));
7860 order = page_order(page);
7861#ifdef CONFIG_DEBUG_VM
1170532b
JP
7862 pr_info("remove from free list %lx %d %lx\n",
7863 pfn, 1 << order, end_pfn);
0c0e6195
KH
7864#endif
7865 list_del(&page->lru);
7866 rmv_page_order(page);
7867 zone->free_area[order].nr_free--;
0c0e6195
KH
7868 for (i = 0; i < (1 << order); i++)
7869 SetPageReserved((page+i));
7870 pfn += (1 << order);
7871 }
7872 spin_unlock_irqrestore(&zone->lock, flags);
7873}
7874#endif
8d22ba1b 7875
8d22ba1b
WF
7876bool is_free_buddy_page(struct page *page)
7877{
7878 struct zone *zone = page_zone(page);
7879 unsigned long pfn = page_to_pfn(page);
7880 unsigned long flags;
7aeb09f9 7881 unsigned int order;
8d22ba1b
WF
7882
7883 spin_lock_irqsave(&zone->lock, flags);
7884 for (order = 0; order < MAX_ORDER; order++) {
7885 struct page *page_head = page - (pfn & ((1 << order) - 1));
7886
7887 if (PageBuddy(page_head) && page_order(page_head) >= order)
7888 break;
7889 }
7890 spin_unlock_irqrestore(&zone->lock, flags);
7891
7892 return order < MAX_ORDER;
7893}