]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
Merge tag 'wireless-drivers-for-davem-2018-01-17' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53
MG
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
38addce8 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 104volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
1da177e4 108/*
13808910 109 * Array of node states.
1da177e4 110 */
13808910
CL
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 118#endif
20b2f52b 119 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
c3d5f5f0
JL
125/* Protect totalram_pages and zone->managed_pages */
126static DEFINE_SPINLOCK(managed_page_count_lock);
127
6c231b7b 128unsigned long totalram_pages __read_mostly;
cb45b0e9 129unsigned long totalreserve_pages __read_mostly;
e48322ab 130unsigned long totalcma_pages __read_mostly;
ab8fabd4 131
1b76b02f 132int percpu_pagelist_fraction;
dcce284a 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 134
bb14c2c7
VB
135/*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143static inline int get_pcppage_migratetype(struct page *page)
144{
145 return page->index;
146}
147
148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149{
150 page->index = migratetype;
151}
152
452aa699
RW
153#ifdef CONFIG_PM_SLEEP
154/*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
161 */
c9e664f1
RW
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
452aa699
RW
166{
167 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
452aa699
RW
172}
173
c9e664f1 174void pm_restrict_gfp_mask(void)
452aa699 175{
452aa699 176 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
d0164adc 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 180}
f90ac398
MG
181
182bool pm_suspended_storage(void)
183{
d0164adc 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
185 return false;
186 return true;
187}
452aa699
RW
188#endif /* CONFIG_PM_SLEEP */
189
d9c23400 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 191unsigned int pageblock_order __read_mostly;
d9c23400
MG
192#endif
193
d98c7a09 194static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 195
1da177e4
LT
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
1da177e4 206 */
2f1b6248 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 208#ifdef CONFIG_ZONE_DMA
2f1b6248 209 256,
4b51d669 210#endif
fb0e7942 211#ifdef CONFIG_ZONE_DMA32
2f1b6248 212 256,
fb0e7942 213#endif
e53ef38d 214#ifdef CONFIG_HIGHMEM
2a1e274a 215 32,
e53ef38d 216#endif
2a1e274a 217 32,
2f1b6248 218};
1da177e4
LT
219
220EXPORT_SYMBOL(totalram_pages);
1da177e4 221
15ad7cdc 222static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 223#ifdef CONFIG_ZONE_DMA
2f1b6248 224 "DMA",
4b51d669 225#endif
fb0e7942 226#ifdef CONFIG_ZONE_DMA32
2f1b6248 227 "DMA32",
fb0e7942 228#endif
2f1b6248 229 "Normal",
e53ef38d 230#ifdef CONFIG_HIGHMEM
2a1e274a 231 "HighMem",
e53ef38d 232#endif
2a1e274a 233 "Movable",
033fbae9
DW
234#ifdef CONFIG_ZONE_DEVICE
235 "Device",
236#endif
2f1b6248
CL
237};
238
60f30350
VB
239char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244#ifdef CONFIG_CMA
245 "CMA",
246#endif
247#ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249#endif
250};
251
f1e61557
KS
252compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255#ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257#endif
9a982250
KS
258#ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260#endif
f1e61557
KS
261};
262
1da177e4 263int min_free_kbytes = 1024;
42aa83cb 264int user_min_free_kbytes = -1;
795ae7a0 265int watermark_scale_factor = 10;
1da177e4 266
2c85f51d
JB
267static unsigned long __meminitdata nr_kernel_pages;
268static unsigned long __meminitdata nr_all_pages;
a3142c8e 269static unsigned long __meminitdata dma_reserve;
1da177e4 270
0ee332c1
TH
271#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274static unsigned long __initdata required_kernelcore;
275static unsigned long __initdata required_movablecore;
276static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 277static bool mirrored_kernelcore;
0ee332c1
TH
278
279/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280int movable_zone;
281EXPORT_SYMBOL(movable_zone);
282#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 283
418508c1
MS
284#if MAX_NUMNODES > 1
285int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 286int nr_online_nodes __read_mostly = 1;
418508c1 287EXPORT_SYMBOL(nr_node_ids);
62bc62a8 288EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
289#endif
290
9ef9acb0
MG
291int page_group_by_mobility_disabled __read_mostly;
292
3a80a7fa 293#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
d135e575
PT
294
295/*
296 * Determine how many pages need to be initialized durig early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
300 */
3a80a7fa
MG
301static inline void reset_deferred_meminit(pg_data_t *pgdat)
302{
d135e575
PT
303 phys_addr_t start_addr, end_addr;
304 unsigned long max_pgcnt;
305 unsigned long reserved;
864b9a39
MH
306
307 /*
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
310 */
d135e575
PT
311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 (pgdat->node_spanned_pages >> 8));
864b9a39
MH
313
314 /*
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
317 * memory to boot.
318 */
d135e575
PT
319 start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 max_pgcnt += PHYS_PFN(reserved);
864b9a39 323
d135e575 324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
325 pgdat->first_deferred_pfn = ULONG_MAX;
326}
327
328/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 329static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 330{
ef70b6f4
MG
331 int nid = early_pfn_to_nid(pfn);
332
333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
334 return true;
335
336 return false;
337}
338
339/*
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
342 */
343static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346{
347 /* Always populate low zones for address-contrained allocations */
348 if (zone_end < pgdat_end_pfn(pgdat))
349 return true;
3a80a7fa 350 (*nr_initialised)++;
d135e575 351 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
352 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 pgdat->first_deferred_pfn = pfn;
354 return false;
355 }
356
357 return true;
358}
359#else
360static inline void reset_deferred_meminit(pg_data_t *pgdat)
361{
362}
363
364static inline bool early_page_uninitialised(unsigned long pfn)
365{
366 return false;
367}
368
369static inline bool update_defer_init(pg_data_t *pgdat,
370 unsigned long pfn, unsigned long zone_end,
371 unsigned long *nr_initialised)
372{
373 return true;
374}
375#endif
376
0b423ca2
MG
377/* Return a pointer to the bitmap storing bits affecting a block of pages */
378static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 unsigned long pfn)
380{
381#ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn)->pageblock_flags;
383#else
384 return page_zone(page)->pageblock_flags;
385#endif /* CONFIG_SPARSEMEM */
386}
387
388static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
389{
390#ifdef CONFIG_SPARSEMEM
391 pfn &= (PAGES_PER_SECTION-1);
392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393#else
394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396#endif /* CONFIG_SPARSEMEM */
397}
398
399/**
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
405 *
406 * Return: pageblock_bits flags
407 */
408static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 unsigned long pfn,
410 unsigned long end_bitidx,
411 unsigned long mask)
412{
413 unsigned long *bitmap;
414 unsigned long bitidx, word_bitidx;
415 unsigned long word;
416
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
421
422 word = bitmap[word_bitidx];
423 bitidx += end_bitidx;
424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425}
426
427unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430{
431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432}
433
434static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
435{
436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
437}
438
439/**
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
446 */
447void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 unsigned long pfn,
449 unsigned long end_bitidx,
450 unsigned long mask)
451{
452 unsigned long *bitmap;
453 unsigned long bitidx, word_bitidx;
454 unsigned long old_word, word;
455
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
457
458 bitmap = get_pageblock_bitmap(page, pfn);
459 bitidx = pfn_to_bitidx(page, pfn);
460 word_bitidx = bitidx / BITS_PER_LONG;
461 bitidx &= (BITS_PER_LONG-1);
462
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
464
465 bitidx += end_bitidx;
466 mask <<= (BITS_PER_LONG - bitidx - 1);
467 flags <<= (BITS_PER_LONG - bitidx - 1);
468
469 word = READ_ONCE(bitmap[word_bitidx]);
470 for (;;) {
471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 if (word == old_word)
473 break;
474 word = old_word;
475 }
476}
3a80a7fa 477
ee6f509c 478void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 479{
5d0f3f72
KM
480 if (unlikely(page_group_by_mobility_disabled &&
481 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
482 migratetype = MIGRATE_UNMOVABLE;
483
b2a0ac88
MG
484 set_pageblock_flags_group(page, (unsigned long)migratetype,
485 PB_migrate, PB_migrate_end);
486}
487
13e7444b 488#ifdef CONFIG_DEBUG_VM
c6a57e19 489static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 490{
bdc8cb98
DH
491 int ret = 0;
492 unsigned seq;
493 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 494 unsigned long sp, start_pfn;
c6a57e19 495
bdc8cb98
DH
496 do {
497 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
498 start_pfn = zone->zone_start_pfn;
499 sp = zone->spanned_pages;
108bcc96 500 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
501 ret = 1;
502 } while (zone_span_seqretry(zone, seq));
503
b5e6a5a2 504 if (ret)
613813e8
DH
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn, zone_to_nid(zone), zone->name,
507 start_pfn, start_pfn + sp);
b5e6a5a2 508
bdc8cb98 509 return ret;
c6a57e19
DH
510}
511
512static int page_is_consistent(struct zone *zone, struct page *page)
513{
14e07298 514 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 515 return 0;
1da177e4 516 if (zone != page_zone(page))
c6a57e19
DH
517 return 0;
518
519 return 1;
520}
521/*
522 * Temporary debugging check for pages not lying within a given zone.
523 */
d73d3c9f 524static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
525{
526 if (page_outside_zone_boundaries(zone, page))
1da177e4 527 return 1;
c6a57e19
DH
528 if (!page_is_consistent(zone, page))
529 return 1;
530
1da177e4
LT
531 return 0;
532}
13e7444b 533#else
d73d3c9f 534static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
535{
536 return 0;
537}
538#endif
539
d230dec1
KS
540static void bad_page(struct page *page, const char *reason,
541 unsigned long bad_flags)
1da177e4 542{
d936cf9b
HD
543 static unsigned long resume;
544 static unsigned long nr_shown;
545 static unsigned long nr_unshown;
546
547 /*
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
550 */
551 if (nr_shown == 60) {
552 if (time_before(jiffies, resume)) {
553 nr_unshown++;
554 goto out;
555 }
556 if (nr_unshown) {
ff8e8116 557 pr_alert(
1e9e6365 558 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
559 nr_unshown);
560 nr_unshown = 0;
561 }
562 nr_shown = 0;
563 }
564 if (nr_shown++ == 0)
565 resume = jiffies + 60 * HZ;
566
ff8e8116 567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 568 current->comm, page_to_pfn(page));
ff8e8116
VB
569 __dump_page(page, reason);
570 bad_flags &= page->flags;
571 if (bad_flags)
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags, &bad_flags);
4e462112 574 dump_page_owner(page);
3dc14741 575
4f31888c 576 print_modules();
1da177e4 577 dump_stack();
d936cf9b 578out:
8cc3b392 579 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 580 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
582}
583
1da177e4
LT
584/*
585 * Higher-order pages are called "compound pages". They are structured thusly:
586 *
1d798ca3 587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 588 *
1d798ca3
KS
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 591 *
1d798ca3
KS
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
1da177e4 594 *
1d798ca3 595 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 596 * This usage means that zero-order pages may not be compound.
1da177e4 597 */
d98c7a09 598
9a982250 599void free_compound_page(struct page *page)
d98c7a09 600{
d85f3385 601 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
602}
603
d00181b9 604void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
605{
606 int i;
607 int nr_pages = 1 << order;
608
f1e61557 609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
610 set_compound_order(page, order);
611 __SetPageHead(page);
612 for (i = 1; i < nr_pages; i++) {
613 struct page *p = page + i;
58a84aa9 614 set_page_count(p, 0);
1c290f64 615 p->mapping = TAIL_MAPPING;
1d798ca3 616 set_compound_head(p, page);
18229df5 617 }
53f9263b 618 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
619}
620
c0a32fc5
SG
621#ifdef CONFIG_DEBUG_PAGEALLOC
622unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
623bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 625EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
626bool _debug_guardpage_enabled __read_mostly;
627
031bc574
JK
628static int __init early_debug_pagealloc(char *buf)
629{
630 if (!buf)
631 return -EINVAL;
2a138dc7 632 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
633}
634early_param("debug_pagealloc", early_debug_pagealloc);
635
e30825f1
JK
636static bool need_debug_guardpage(void)
637{
031bc574
JK
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
640 return false;
641
f1c1e9f7
JK
642 if (!debug_guardpage_minorder())
643 return false;
644
e30825f1
JK
645 return true;
646}
647
648static void init_debug_guardpage(void)
649{
031bc574
JK
650 if (!debug_pagealloc_enabled())
651 return;
652
f1c1e9f7
JK
653 if (!debug_guardpage_minorder())
654 return;
655
e30825f1
JK
656 _debug_guardpage_enabled = true;
657}
658
659struct page_ext_operations debug_guardpage_ops = {
660 .need = need_debug_guardpage,
661 .init = init_debug_guardpage,
662};
c0a32fc5
SG
663
664static int __init debug_guardpage_minorder_setup(char *buf)
665{
666 unsigned long res;
667
668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 669 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
670 return 0;
671 }
672 _debug_guardpage_minorder = res;
1170532b 673 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
674 return 0;
675}
f1c1e9f7 676early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 677
acbc15a4 678static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 679 unsigned int order, int migratetype)
c0a32fc5 680{
e30825f1
JK
681 struct page_ext *page_ext;
682
683 if (!debug_guardpage_enabled())
acbc15a4
JK
684 return false;
685
686 if (order >= debug_guardpage_minorder())
687 return false;
e30825f1
JK
688
689 page_ext = lookup_page_ext(page);
f86e4271 690 if (unlikely(!page_ext))
acbc15a4 691 return false;
f86e4271 692
e30825f1
JK
693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
2847cf95
JK
695 INIT_LIST_HEAD(&page->lru);
696 set_page_private(page, order);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
699
700 return true;
c0a32fc5
SG
701}
702
2847cf95
JK
703static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
c0a32fc5 705{
e30825f1
JK
706 struct page_ext *page_ext;
707
708 if (!debug_guardpage_enabled())
709 return;
710
711 page_ext = lookup_page_ext(page);
f86e4271
YS
712 if (unlikely(!page_ext))
713 return;
714
e30825f1
JK
715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
716
2847cf95
JK
717 set_page_private(page, 0);
718 if (!is_migrate_isolate(migratetype))
719 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
720}
721#else
980ac167 722struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
723static inline bool set_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) { return false; }
2847cf95
JK
725static inline void clear_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype) {}
c0a32fc5
SG
727#endif
728
7aeb09f9 729static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 730{
4c21e2f2 731 set_page_private(page, order);
676165a8 732 __SetPageBuddy(page);
1da177e4
LT
733}
734
735static inline void rmv_page_order(struct page *page)
736{
676165a8 737 __ClearPageBuddy(page);
4c21e2f2 738 set_page_private(page, 0);
1da177e4
LT
739}
740
1da177e4
LT
741/*
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
13ad59df 744 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 745 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
676165a8 748 *
cf6fe945
WSH
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
1da177e4 753 *
676165a8 754 * For recording page's order, we use page_private(page).
1da177e4 755 */
cb2b95e1 756static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 757 unsigned int order)
1da177e4 758{
c0a32fc5 759 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
760 if (page_zone_id(page) != page_zone_id(buddy))
761 return 0;
762
4c5018ce
WY
763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764
c0a32fc5
SG
765 return 1;
766 }
767
cb2b95e1 768 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
769 /*
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
772 * never merge.
773 */
774 if (page_zone_id(page) != page_zone_id(buddy))
775 return 0;
776
4c5018ce
WY
777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
778
6aa3001b 779 return 1;
676165a8 780 }
6aa3001b 781 return 0;
1da177e4
LT
782}
783
784/*
785 * Freeing function for a buddy system allocator.
786 *
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799 * field.
1da177e4 800 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
1da177e4 803 * If a block is freed, and its buddy is also free, then this
5f63b720 804 * triggers coalescing into a block of larger size.
1da177e4 805 *
6d49e352 806 * -- nyc
1da177e4
LT
807 */
808
48db57f8 809static inline void __free_one_page(struct page *page,
dc4b0caf 810 unsigned long pfn,
ed0ae21d
MG
811 struct zone *zone, unsigned int order,
812 int migratetype)
1da177e4 813{
76741e77
VB
814 unsigned long combined_pfn;
815 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 816 struct page *buddy;
d9dddbf5
VB
817 unsigned int max_order;
818
819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 820
d29bb978 821 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 823
ed0ae21d 824 VM_BUG_ON(migratetype == -1);
d9dddbf5 825 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 826 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 827
76741e77 828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 829 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 830
d9dddbf5 831continue_merging:
3c605096 832 while (order < max_order - 1) {
76741e77
VB
833 buddy_pfn = __find_buddy_pfn(pfn, order);
834 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
835
836 if (!pfn_valid_within(buddy_pfn))
837 goto done_merging;
cb2b95e1 838 if (!page_is_buddy(page, buddy, order))
d9dddbf5 839 goto done_merging;
c0a32fc5
SG
840 /*
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
843 */
844 if (page_is_guard(buddy)) {
2847cf95 845 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
846 } else {
847 list_del(&buddy->lru);
848 zone->free_area[order].nr_free--;
849 rmv_page_order(buddy);
850 }
76741e77
VB
851 combined_pfn = buddy_pfn & pfn;
852 page = page + (combined_pfn - pfn);
853 pfn = combined_pfn;
1da177e4
LT
854 order++;
855 }
d9dddbf5
VB
856 if (max_order < MAX_ORDER) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
861 *
862 * We don't want to hit this code for the more frequent
863 * low-order merging.
864 */
865 if (unlikely(has_isolate_pageblock(zone))) {
866 int buddy_mt;
867
76741e77
VB
868 buddy_pfn = __find_buddy_pfn(pfn, order);
869 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
870 buddy_mt = get_pageblock_migratetype(buddy);
871
872 if (migratetype != buddy_mt
873 && (is_migrate_isolate(migratetype) ||
874 is_migrate_isolate(buddy_mt)))
875 goto done_merging;
876 }
877 max_order++;
878 goto continue_merging;
879 }
880
881done_merging:
1da177e4 882 set_page_order(page, order);
6dda9d55
CZ
883
884 /*
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
891 */
13ad59df 892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 893 struct page *higher_page, *higher_buddy;
76741e77
VB
894 combined_pfn = buddy_pfn & pfn;
895 higher_page = page + (combined_pfn - pfn);
896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
898 if (pfn_valid_within(buddy_pfn) &&
899 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
900 list_add_tail(&page->lru,
901 &zone->free_area[order].free_list[migratetype]);
902 goto out;
903 }
904 }
905
906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907out:
1da177e4
LT
908 zone->free_area[order].nr_free++;
909}
910
7bfec6f4
MG
911/*
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
915 */
916static inline bool page_expected_state(struct page *page,
917 unsigned long check_flags)
918{
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 return false;
921
922 if (unlikely((unsigned long)page->mapping |
923 page_ref_count(page) |
924#ifdef CONFIG_MEMCG
925 (unsigned long)page->mem_cgroup |
926#endif
927 (page->flags & check_flags)))
928 return false;
929
930 return true;
931}
932
bb552ac6 933static void free_pages_check_bad(struct page *page)
1da177e4 934{
7bfec6f4
MG
935 const char *bad_reason;
936 unsigned long bad_flags;
937
7bfec6f4
MG
938 bad_reason = NULL;
939 bad_flags = 0;
f0b791a3 940
53f9263b 941 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
942 bad_reason = "nonzero mapcount";
943 if (unlikely(page->mapping != NULL))
944 bad_reason = "non-NULL mapping";
fe896d18 945 if (unlikely(page_ref_count(page) != 0))
0139aa7b 946 bad_reason = "nonzero _refcount";
f0b791a3
DH
947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
950 }
9edad6ea
JW
951#ifdef CONFIG_MEMCG
952 if (unlikely(page->mem_cgroup))
953 bad_reason = "page still charged to cgroup";
954#endif
7bfec6f4 955 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
956}
957
958static inline int free_pages_check(struct page *page)
959{
da838d4f 960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 961 return 0;
bb552ac6
MG
962
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page);
7bfec6f4 965 return 1;
1da177e4
LT
966}
967
4db7548c
MG
968static int free_tail_pages_check(struct page *head_page, struct page *page)
969{
970 int ret = 1;
971
972 /*
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
975 */
976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
977
978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 ret = 0;
980 goto out;
981 }
982 switch (page - head_page) {
983 case 1:
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page))) {
986 bad_page(page, "nonzero compound_mapcount", 0);
987 goto out;
988 }
989 break;
990 case 2:
991 /*
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
994 */
995 break;
996 default:
997 if (page->mapping != TAIL_MAPPING) {
998 bad_page(page, "corrupted mapping in tail page", 0);
999 goto out;
1000 }
1001 break;
1002 }
1003 if (unlikely(!PageTail(page))) {
1004 bad_page(page, "PageTail not set", 0);
1005 goto out;
1006 }
1007 if (unlikely(compound_head(page) != head_page)) {
1008 bad_page(page, "compound_head not consistent", 0);
1009 goto out;
1010 }
1011 ret = 0;
1012out:
1013 page->mapping = NULL;
1014 clear_compound_head(page);
1015 return ret;
1016}
1017
e2769dbd
MG
1018static __always_inline bool free_pages_prepare(struct page *page,
1019 unsigned int order, bool check_free)
4db7548c 1020{
e2769dbd 1021 int bad = 0;
4db7548c 1022
4db7548c
MG
1023 VM_BUG_ON_PAGE(PageTail(page), page);
1024
e2769dbd 1025 trace_mm_page_free(page, order);
e2769dbd
MG
1026
1027 /*
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1030 */
1031 if (unlikely(order)) {
1032 bool compound = PageCompound(page);
1033 int i;
1034
1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1036
9a73f61b
KS
1037 if (compound)
1038 ClearPageDoubleMap(page);
e2769dbd
MG
1039 for (i = 1; i < (1 << order); i++) {
1040 if (compound)
1041 bad += free_tail_pages_check(page, page + i);
1042 if (unlikely(free_pages_check(page + i))) {
1043 bad++;
1044 continue;
1045 }
1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1047 }
1048 }
bda807d4 1049 if (PageMappingFlags(page))
4db7548c 1050 page->mapping = NULL;
c4159a75 1051 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1052 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1053 if (check_free)
1054 bad += free_pages_check(page);
1055 if (bad)
1056 return false;
4db7548c 1057
e2769dbd
MG
1058 page_cpupid_reset_last(page);
1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 reset_page_owner(page, order);
4db7548c
MG
1061
1062 if (!PageHighMem(page)) {
1063 debug_check_no_locks_freed(page_address(page),
e2769dbd 1064 PAGE_SIZE << order);
4db7548c 1065 debug_check_no_obj_freed(page_address(page),
e2769dbd 1066 PAGE_SIZE << order);
4db7548c 1067 }
e2769dbd
MG
1068 arch_free_page(page, order);
1069 kernel_poison_pages(page, 1 << order, 0);
1070 kernel_map_pages(page, 1 << order, 0);
29b52de1 1071 kasan_free_pages(page, order);
4db7548c 1072
4db7548c
MG
1073 return true;
1074}
1075
e2769dbd
MG
1076#ifdef CONFIG_DEBUG_VM
1077static inline bool free_pcp_prepare(struct page *page)
1078{
1079 return free_pages_prepare(page, 0, true);
1080}
1081
1082static inline bool bulkfree_pcp_prepare(struct page *page)
1083{
1084 return false;
1085}
1086#else
1087static bool free_pcp_prepare(struct page *page)
1088{
1089 return free_pages_prepare(page, 0, false);
1090}
1091
4db7548c
MG
1092static bool bulkfree_pcp_prepare(struct page *page)
1093{
1094 return free_pages_check(page);
1095}
1096#endif /* CONFIG_DEBUG_VM */
1097
1da177e4 1098/*
5f8dcc21 1099 * Frees a number of pages from the PCP lists
1da177e4 1100 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1101 * count is the number of pages to free.
1da177e4
LT
1102 *
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1105 *
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1108 */
5f8dcc21
MG
1109static void free_pcppages_bulk(struct zone *zone, int count,
1110 struct per_cpu_pages *pcp)
1da177e4 1111{
5f8dcc21 1112 int migratetype = 0;
a6f9edd6 1113 int batch_free = 0;
3777999d 1114 bool isolated_pageblocks;
5f8dcc21 1115
d34b0733 1116 spin_lock(&zone->lock);
3777999d 1117 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1118
e5b31ac2 1119 while (count) {
48db57f8 1120 struct page *page;
5f8dcc21
MG
1121 struct list_head *list;
1122
1123 /*
a6f9edd6
MG
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1128 * lists
5f8dcc21
MG
1129 */
1130 do {
a6f9edd6 1131 batch_free++;
5f8dcc21
MG
1132 if (++migratetype == MIGRATE_PCPTYPES)
1133 migratetype = 0;
1134 list = &pcp->lists[migratetype];
1135 } while (list_empty(list));
48db57f8 1136
1d16871d
NK
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1139 batch_free = count;
1d16871d 1140
a6f9edd6 1141 do {
770c8aaa
BZ
1142 int mt; /* migratetype of the to-be-freed page */
1143
a16601c5 1144 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page->lru);
aa016d14 1147
bb14c2c7 1148 mt = get_pcppage_migratetype(page);
aa016d14
VB
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 /* Pageblock could have been isolated meanwhile */
3777999d 1152 if (unlikely(isolated_pageblocks))
51bb1a40 1153 mt = get_pageblock_migratetype(page);
51bb1a40 1154
4db7548c
MG
1155 if (bulkfree_pcp_prepare(page))
1156 continue;
1157
dc4b0caf 1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1159 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1160 } while (--count && --batch_free && !list_empty(list));
1da177e4 1161 }
d34b0733 1162 spin_unlock(&zone->lock);
1da177e4
LT
1163}
1164
dc4b0caf
MG
1165static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
7aeb09f9 1167 unsigned int order,
ed0ae21d 1168 int migratetype)
1da177e4 1169{
d34b0733 1170 spin_lock(&zone->lock);
ad53f92e
JK
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1174 }
dc4b0caf 1175 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1176 spin_unlock(&zone->lock);
48db57f8
NP
1177}
1178
1e8ce83c
RH
1179static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 unsigned long zone, int nid)
1181{
f7f99100 1182 mm_zero_struct_page(page);
1e8ce83c 1183 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1184 init_page_count(page);
1185 page_mapcount_reset(page);
1186 page_cpupid_reset_last(page);
1e8ce83c 1187
1e8ce83c
RH
1188 INIT_LIST_HEAD(&page->lru);
1189#ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1193#endif
1194}
1195
1196static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1197 int nid)
1198{
1199 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1200}
1201
7e18adb4 1202#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1203static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1204{
1205 pg_data_t *pgdat;
1206 int nid, zid;
1207
1208 if (!early_page_uninitialised(pfn))
1209 return;
1210
1211 nid = early_pfn_to_nid(pfn);
1212 pgdat = NODE_DATA(nid);
1213
1214 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1215 struct zone *zone = &pgdat->node_zones[zid];
1216
1217 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1218 break;
1219 }
1220 __init_single_pfn(pfn, zid, nid);
1221}
1222#else
1223static inline void init_reserved_page(unsigned long pfn)
1224{
1225}
1226#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1227
92923ca3
NZ
1228/*
1229 * Initialised pages do not have PageReserved set. This function is
1230 * called for each range allocated by the bootmem allocator and
1231 * marks the pages PageReserved. The remaining valid pages are later
1232 * sent to the buddy page allocator.
1233 */
4b50bcc7 1234void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1235{
1236 unsigned long start_pfn = PFN_DOWN(start);
1237 unsigned long end_pfn = PFN_UP(end);
1238
7e18adb4
MG
1239 for (; start_pfn < end_pfn; start_pfn++) {
1240 if (pfn_valid(start_pfn)) {
1241 struct page *page = pfn_to_page(start_pfn);
1242
1243 init_reserved_page(start_pfn);
1d798ca3
KS
1244
1245 /* Avoid false-positive PageTail() */
1246 INIT_LIST_HEAD(&page->lru);
1247
7e18adb4
MG
1248 SetPageReserved(page);
1249 }
1250 }
92923ca3
NZ
1251}
1252
ec95f53a
KM
1253static void __free_pages_ok(struct page *page, unsigned int order)
1254{
d34b0733 1255 unsigned long flags;
95e34412 1256 int migratetype;
dc4b0caf 1257 unsigned long pfn = page_to_pfn(page);
ec95f53a 1258
e2769dbd 1259 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1260 return;
1261
cfc47a28 1262 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1263 local_irq_save(flags);
1264 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1265 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1266 local_irq_restore(flags);
1da177e4
LT
1267}
1268
949698a3 1269static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1270{
c3993076 1271 unsigned int nr_pages = 1 << order;
e2d0bd2b 1272 struct page *p = page;
c3993076 1273 unsigned int loop;
a226f6c8 1274
e2d0bd2b
YL
1275 prefetchw(p);
1276 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1277 prefetchw(p + 1);
c3993076
JW
1278 __ClearPageReserved(p);
1279 set_page_count(p, 0);
a226f6c8 1280 }
e2d0bd2b
YL
1281 __ClearPageReserved(p);
1282 set_page_count(p, 0);
c3993076 1283
e2d0bd2b 1284 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1285 set_page_refcounted(page);
1286 __free_pages(page, order);
a226f6c8
DH
1287}
1288
75a592a4
MG
1289#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1290 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1291
75a592a4
MG
1292static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1293
1294int __meminit early_pfn_to_nid(unsigned long pfn)
1295{
7ace9917 1296 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1297 int nid;
1298
7ace9917 1299 spin_lock(&early_pfn_lock);
75a592a4 1300 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1301 if (nid < 0)
e4568d38 1302 nid = first_online_node;
7ace9917
MG
1303 spin_unlock(&early_pfn_lock);
1304
1305 return nid;
75a592a4
MG
1306}
1307#endif
1308
1309#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1310static inline bool __meminit __maybe_unused
1311meminit_pfn_in_nid(unsigned long pfn, int node,
1312 struct mminit_pfnnid_cache *state)
75a592a4
MG
1313{
1314 int nid;
1315
1316 nid = __early_pfn_to_nid(pfn, state);
1317 if (nid >= 0 && nid != node)
1318 return false;
1319 return true;
1320}
1321
1322/* Only safe to use early in boot when initialisation is single-threaded */
1323static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1324{
1325 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1326}
1327
1328#else
1329
1330static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1331{
1332 return true;
1333}
d73d3c9f
MK
1334static inline bool __meminit __maybe_unused
1335meminit_pfn_in_nid(unsigned long pfn, int node,
1336 struct mminit_pfnnid_cache *state)
75a592a4
MG
1337{
1338 return true;
1339}
1340#endif
1341
1342
0e1cc95b 1343void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1344 unsigned int order)
1345{
1346 if (early_page_uninitialised(pfn))
1347 return;
949698a3 1348 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1349}
1350
7cf91a98
JK
1351/*
1352 * Check that the whole (or subset of) a pageblock given by the interval of
1353 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1354 * with the migration of free compaction scanner. The scanners then need to
1355 * use only pfn_valid_within() check for arches that allow holes within
1356 * pageblocks.
1357 *
1358 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359 *
1360 * It's possible on some configurations to have a setup like node0 node1 node0
1361 * i.e. it's possible that all pages within a zones range of pages do not
1362 * belong to a single zone. We assume that a border between node0 and node1
1363 * can occur within a single pageblock, but not a node0 node1 node0
1364 * interleaving within a single pageblock. It is therefore sufficient to check
1365 * the first and last page of a pageblock and avoid checking each individual
1366 * page in a pageblock.
1367 */
1368struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1369 unsigned long end_pfn, struct zone *zone)
1370{
1371 struct page *start_page;
1372 struct page *end_page;
1373
1374 /* end_pfn is one past the range we are checking */
1375 end_pfn--;
1376
1377 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1378 return NULL;
1379
2d070eab
MH
1380 start_page = pfn_to_online_page(start_pfn);
1381 if (!start_page)
1382 return NULL;
7cf91a98
JK
1383
1384 if (page_zone(start_page) != zone)
1385 return NULL;
1386
1387 end_page = pfn_to_page(end_pfn);
1388
1389 /* This gives a shorter code than deriving page_zone(end_page) */
1390 if (page_zone_id(start_page) != page_zone_id(end_page))
1391 return NULL;
1392
1393 return start_page;
1394}
1395
1396void set_zone_contiguous(struct zone *zone)
1397{
1398 unsigned long block_start_pfn = zone->zone_start_pfn;
1399 unsigned long block_end_pfn;
1400
1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 for (; block_start_pfn < zone_end_pfn(zone);
1403 block_start_pfn = block_end_pfn,
1404 block_end_pfn += pageblock_nr_pages) {
1405
1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407
1408 if (!__pageblock_pfn_to_page(block_start_pfn,
1409 block_end_pfn, zone))
1410 return;
1411 }
1412
1413 /* We confirm that there is no hole */
1414 zone->contiguous = true;
1415}
1416
1417void clear_zone_contiguous(struct zone *zone)
1418{
1419 zone->contiguous = false;
1420}
1421
7e18adb4 1422#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1423static void __init deferred_free_range(unsigned long pfn,
1424 unsigned long nr_pages)
a4de83dd 1425{
2f47a91f
PT
1426 struct page *page;
1427 unsigned long i;
a4de83dd 1428
2f47a91f 1429 if (!nr_pages)
a4de83dd
MG
1430 return;
1431
2f47a91f
PT
1432 page = pfn_to_page(pfn);
1433
a4de83dd 1434 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1435 if (nr_pages == pageblock_nr_pages &&
1436 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1438 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1439 return;
1440 }
1441
e780149b
XQ
1442 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1443 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1445 __free_pages_boot_core(page, 0);
e780149b 1446 }
a4de83dd
MG
1447}
1448
d3cd131d
NS
1449/* Completion tracking for deferred_init_memmap() threads */
1450static atomic_t pgdat_init_n_undone __initdata;
1451static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452
1453static inline void __init pgdat_init_report_one_done(void)
1454{
1455 if (atomic_dec_and_test(&pgdat_init_n_undone))
1456 complete(&pgdat_init_all_done_comp);
1457}
0e1cc95b 1458
2f47a91f
PT
1459/*
1460 * Helper for deferred_init_range, free the given range, reset the counters, and
1461 * return number of pages freed.
1462 */
1463static inline unsigned long __init __def_free(unsigned long *nr_free,
1464 unsigned long *free_base_pfn,
1465 struct page **page)
1466{
1467 unsigned long nr = *nr_free;
1468
1469 deferred_free_range(*free_base_pfn, nr);
1470 *free_base_pfn = 0;
1471 *nr_free = 0;
1472 *page = NULL;
1473
1474 return nr;
1475}
1476
1477static unsigned long __init deferred_init_range(int nid, int zid,
1478 unsigned long start_pfn,
1479 unsigned long end_pfn)
1480{
1481 struct mminit_pfnnid_cache nid_init_state = { };
1482 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1483 unsigned long free_base_pfn = 0;
1484 unsigned long nr_pages = 0;
1485 unsigned long nr_free = 0;
1486 struct page *page = NULL;
1487 unsigned long pfn;
1488
1489 /*
1490 * First we check if pfn is valid on architectures where it is possible
1491 * to have holes within pageblock_nr_pages. On systems where it is not
1492 * possible, this function is optimized out.
1493 *
1494 * Then, we check if a current large page is valid by only checking the
1495 * validity of the head pfn.
1496 *
1497 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1498 * within a node: a pfn is between start and end of a node, but does not
1499 * belong to this memory node.
1500 *
1501 * Finally, we minimize pfn page lookups and scheduler checks by
1502 * performing it only once every pageblock_nr_pages.
1503 *
1504 * We do it in two loops: first we initialize struct page, than free to
1505 * buddy allocator, becuse while we are freeing pages we can access
1506 * pages that are ahead (computing buddy page in __free_one_page()).
1507 */
1508 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1509 if (!pfn_valid_within(pfn))
1510 continue;
1511 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1512 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 if (page && (pfn & nr_pgmask))
1514 page++;
1515 else
1516 page = pfn_to_page(pfn);
1517 __init_single_page(page, pfn, zid, nid);
1518 cond_resched();
1519 }
1520 }
1521 }
1522
1523 page = NULL;
1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 if (!pfn_valid_within(pfn)) {
1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1527 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1528 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1529 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1530 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1531 } else if (page && (pfn & nr_pgmask)) {
1532 page++;
1533 nr_free++;
1534 } else {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 page = pfn_to_page(pfn);
1537 free_base_pfn = pfn;
1538 nr_free = 1;
1539 cond_resched();
1540 }
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1544
1545 return nr_pages;
1546}
1547
7e18adb4 1548/* Initialise remaining memory on a node */
0e1cc95b 1549static int __init deferred_init_memmap(void *data)
7e18adb4 1550{
0e1cc95b
MG
1551 pg_data_t *pgdat = data;
1552 int nid = pgdat->node_id;
7e18adb4
MG
1553 unsigned long start = jiffies;
1554 unsigned long nr_pages = 0;
2f47a91f
PT
1555 unsigned long spfn, epfn;
1556 phys_addr_t spa, epa;
1557 int zid;
7e18adb4 1558 struct zone *zone;
7e18adb4 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1561 u64 i;
7e18adb4 1562
0e1cc95b 1563 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1564 pgdat_init_report_one_done();
0e1cc95b
MG
1565 return 0;
1566 }
1567
1568 /* Bind memory initialisation thread to a local node if possible */
1569 if (!cpumask_empty(cpumask))
1570 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1571
1572 /* Sanity check boundaries */
1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 pgdat->first_deferred_pfn = ULONG_MAX;
1576
1577 /* Only the highest zone is deferred so find it */
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 zone = pgdat->node_zones + zid;
1580 if (first_init_pfn < zone_end_pfn(zone))
1581 break;
1582 }
2f47a91f 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1584
2f47a91f
PT
1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1589 }
1590
1591 /* Sanity check that the next zone really is unpopulated */
1592 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1593
0e1cc95b 1594 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1595 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1596
1597 pgdat_init_report_one_done();
0e1cc95b
MG
1598 return 0;
1599}
7cf91a98 1600#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1601
1602void __init page_alloc_init_late(void)
1603{
7cf91a98
JK
1604 struct zone *zone;
1605
1606#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1607 int nid;
1608
d3cd131d
NS
1609 /* There will be num_node_state(N_MEMORY) threads */
1610 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1611 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1612 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1613 }
1614
1615 /* Block until all are initialised */
d3cd131d 1616 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1617
1618 /* Reinit limits that are based on free pages after the kernel is up */
1619 files_maxfiles_init();
7cf91a98 1620#endif
3010f876
PT
1621#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1622 /* Discard memblock private memory */
1623 memblock_discard();
1624#endif
7cf91a98
JK
1625
1626 for_each_populated_zone(zone)
1627 set_zone_contiguous(zone);
7e18adb4 1628}
7e18adb4 1629
47118af0 1630#ifdef CONFIG_CMA
9cf510a5 1631/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1632void __init init_cma_reserved_pageblock(struct page *page)
1633{
1634 unsigned i = pageblock_nr_pages;
1635 struct page *p = page;
1636
1637 do {
1638 __ClearPageReserved(p);
1639 set_page_count(p, 0);
1640 } while (++p, --i);
1641
47118af0 1642 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1643
1644 if (pageblock_order >= MAX_ORDER) {
1645 i = pageblock_nr_pages;
1646 p = page;
1647 do {
1648 set_page_refcounted(p);
1649 __free_pages(p, MAX_ORDER - 1);
1650 p += MAX_ORDER_NR_PAGES;
1651 } while (i -= MAX_ORDER_NR_PAGES);
1652 } else {
1653 set_page_refcounted(page);
1654 __free_pages(page, pageblock_order);
1655 }
1656
3dcc0571 1657 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1658}
1659#endif
1da177e4
LT
1660
1661/*
1662 * The order of subdivision here is critical for the IO subsystem.
1663 * Please do not alter this order without good reasons and regression
1664 * testing. Specifically, as large blocks of memory are subdivided,
1665 * the order in which smaller blocks are delivered depends on the order
1666 * they're subdivided in this function. This is the primary factor
1667 * influencing the order in which pages are delivered to the IO
1668 * subsystem according to empirical testing, and this is also justified
1669 * by considering the behavior of a buddy system containing a single
1670 * large block of memory acted on by a series of small allocations.
1671 * This behavior is a critical factor in sglist merging's success.
1672 *
6d49e352 1673 * -- nyc
1da177e4 1674 */
085cc7d5 1675static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1676 int low, int high, struct free_area *area,
1677 int migratetype)
1da177e4
LT
1678{
1679 unsigned long size = 1 << high;
1680
1681 while (high > low) {
1682 area--;
1683 high--;
1684 size >>= 1;
309381fe 1685 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1686
acbc15a4
JK
1687 /*
1688 * Mark as guard pages (or page), that will allow to
1689 * merge back to allocator when buddy will be freed.
1690 * Corresponding page table entries will not be touched,
1691 * pages will stay not present in virtual address space
1692 */
1693 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1694 continue;
acbc15a4 1695
b2a0ac88 1696 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1697 area->nr_free++;
1698 set_page_order(&page[size], high);
1699 }
1da177e4
LT
1700}
1701
4e611801 1702static void check_new_page_bad(struct page *page)
1da177e4 1703{
4e611801
VB
1704 const char *bad_reason = NULL;
1705 unsigned long bad_flags = 0;
7bfec6f4 1706
53f9263b 1707 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1708 bad_reason = "nonzero mapcount";
1709 if (unlikely(page->mapping != NULL))
1710 bad_reason = "non-NULL mapping";
fe896d18 1711 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1712 bad_reason = "nonzero _count";
f4c18e6f
NH
1713 if (unlikely(page->flags & __PG_HWPOISON)) {
1714 bad_reason = "HWPoisoned (hardware-corrupted)";
1715 bad_flags = __PG_HWPOISON;
e570f56c
NH
1716 /* Don't complain about hwpoisoned pages */
1717 page_mapcount_reset(page); /* remove PageBuddy */
1718 return;
f4c18e6f 1719 }
f0b791a3
DH
1720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1721 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1722 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1723 }
9edad6ea
JW
1724#ifdef CONFIG_MEMCG
1725 if (unlikely(page->mem_cgroup))
1726 bad_reason = "page still charged to cgroup";
1727#endif
4e611801
VB
1728 bad_page(page, bad_reason, bad_flags);
1729}
1730
1731/*
1732 * This page is about to be returned from the page allocator
1733 */
1734static inline int check_new_page(struct page *page)
1735{
1736 if (likely(page_expected_state(page,
1737 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1738 return 0;
1739
1740 check_new_page_bad(page);
1741 return 1;
2a7684a2
WF
1742}
1743
bd33ef36 1744static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1745{
1746 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1747 page_poisoning_enabled();
1414c7f4
LA
1748}
1749
479f854a
MG
1750#ifdef CONFIG_DEBUG_VM
1751static bool check_pcp_refill(struct page *page)
1752{
1753 return false;
1754}
1755
1756static bool check_new_pcp(struct page *page)
1757{
1758 return check_new_page(page);
1759}
1760#else
1761static bool check_pcp_refill(struct page *page)
1762{
1763 return check_new_page(page);
1764}
1765static bool check_new_pcp(struct page *page)
1766{
1767 return false;
1768}
1769#endif /* CONFIG_DEBUG_VM */
1770
1771static bool check_new_pages(struct page *page, unsigned int order)
1772{
1773 int i;
1774 for (i = 0; i < (1 << order); i++) {
1775 struct page *p = page + i;
1776
1777 if (unlikely(check_new_page(p)))
1778 return true;
1779 }
1780
1781 return false;
1782}
1783
46f24fd8
JK
1784inline void post_alloc_hook(struct page *page, unsigned int order,
1785 gfp_t gfp_flags)
1786{
1787 set_page_private(page, 0);
1788 set_page_refcounted(page);
1789
1790 arch_alloc_page(page, order);
1791 kernel_map_pages(page, 1 << order, 1);
1792 kernel_poison_pages(page, 1 << order, 1);
1793 kasan_alloc_pages(page, order);
1794 set_page_owner(page, order, gfp_flags);
1795}
1796
479f854a 1797static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1798 unsigned int alloc_flags)
2a7684a2
WF
1799{
1800 int i;
689bcebf 1801
46f24fd8 1802 post_alloc_hook(page, order, gfp_flags);
17cf4406 1803
bd33ef36 1804 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1805 for (i = 0; i < (1 << order); i++)
1806 clear_highpage(page + i);
17cf4406
NP
1807
1808 if (order && (gfp_flags & __GFP_COMP))
1809 prep_compound_page(page, order);
1810
75379191 1811 /*
2f064f34 1812 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1813 * allocate the page. The expectation is that the caller is taking
1814 * steps that will free more memory. The caller should avoid the page
1815 * being used for !PFMEMALLOC purposes.
1816 */
2f064f34
MH
1817 if (alloc_flags & ALLOC_NO_WATERMARKS)
1818 set_page_pfmemalloc(page);
1819 else
1820 clear_page_pfmemalloc(page);
1da177e4
LT
1821}
1822
56fd56b8
MG
1823/*
1824 * Go through the free lists for the given migratetype and remove
1825 * the smallest available page from the freelists
1826 */
85ccc8fa 1827static __always_inline
728ec980 1828struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1829 int migratetype)
1830{
1831 unsigned int current_order;
b8af2941 1832 struct free_area *area;
56fd56b8
MG
1833 struct page *page;
1834
1835 /* Find a page of the appropriate size in the preferred list */
1836 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1837 area = &(zone->free_area[current_order]);
a16601c5 1838 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1839 struct page, lru);
a16601c5
GT
1840 if (!page)
1841 continue;
56fd56b8
MG
1842 list_del(&page->lru);
1843 rmv_page_order(page);
1844 area->nr_free--;
56fd56b8 1845 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1846 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1847 return page;
1848 }
1849
1850 return NULL;
1851}
1852
1853
b2a0ac88
MG
1854/*
1855 * This array describes the order lists are fallen back to when
1856 * the free lists for the desirable migrate type are depleted
1857 */
47118af0 1858static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1859 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1860 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1861 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1862#ifdef CONFIG_CMA
974a786e 1863 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1864#endif
194159fb 1865#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1866 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1867#endif
b2a0ac88
MG
1868};
1869
dc67647b 1870#ifdef CONFIG_CMA
85ccc8fa 1871static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1872 unsigned int order)
1873{
1874 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1875}
1876#else
1877static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1878 unsigned int order) { return NULL; }
1879#endif
1880
c361be55
MG
1881/*
1882 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1883 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1884 * boundary. If alignment is required, use move_freepages_block()
1885 */
02aa0cdd 1886static int move_freepages(struct zone *zone,
b69a7288 1887 struct page *start_page, struct page *end_page,
02aa0cdd 1888 int migratetype, int *num_movable)
c361be55
MG
1889{
1890 struct page *page;
d00181b9 1891 unsigned int order;
d100313f 1892 int pages_moved = 0;
c361be55
MG
1893
1894#ifndef CONFIG_HOLES_IN_ZONE
1895 /*
1896 * page_zone is not safe to call in this context when
1897 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1898 * anyway as we check zone boundaries in move_freepages_block().
1899 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1900 * grouping pages by mobility
c361be55 1901 */
97ee4ba7 1902 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1903#endif
1904
02aa0cdd
VB
1905 if (num_movable)
1906 *num_movable = 0;
1907
c361be55
MG
1908 for (page = start_page; page <= end_page;) {
1909 if (!pfn_valid_within(page_to_pfn(page))) {
1910 page++;
1911 continue;
1912 }
1913
f073bdc5
AB
1914 /* Make sure we are not inadvertently changing nodes */
1915 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1916
c361be55 1917 if (!PageBuddy(page)) {
02aa0cdd
VB
1918 /*
1919 * We assume that pages that could be isolated for
1920 * migration are movable. But we don't actually try
1921 * isolating, as that would be expensive.
1922 */
1923 if (num_movable &&
1924 (PageLRU(page) || __PageMovable(page)))
1925 (*num_movable)++;
1926
c361be55
MG
1927 page++;
1928 continue;
1929 }
1930
1931 order = page_order(page);
84be48d8
KS
1932 list_move(&page->lru,
1933 &zone->free_area[order].free_list[migratetype]);
c361be55 1934 page += 1 << order;
d100313f 1935 pages_moved += 1 << order;
c361be55
MG
1936 }
1937
d100313f 1938 return pages_moved;
c361be55
MG
1939}
1940
ee6f509c 1941int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1942 int migratetype, int *num_movable)
c361be55
MG
1943{
1944 unsigned long start_pfn, end_pfn;
1945 struct page *start_page, *end_page;
1946
1947 start_pfn = page_to_pfn(page);
d9c23400 1948 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1949 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1950 end_page = start_page + pageblock_nr_pages - 1;
1951 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1952
1953 /* Do not cross zone boundaries */
108bcc96 1954 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1955 start_page = page;
108bcc96 1956 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1957 return 0;
1958
02aa0cdd
VB
1959 return move_freepages(zone, start_page, end_page, migratetype,
1960 num_movable);
c361be55
MG
1961}
1962
2f66a68f
MG
1963static void change_pageblock_range(struct page *pageblock_page,
1964 int start_order, int migratetype)
1965{
1966 int nr_pageblocks = 1 << (start_order - pageblock_order);
1967
1968 while (nr_pageblocks--) {
1969 set_pageblock_migratetype(pageblock_page, migratetype);
1970 pageblock_page += pageblock_nr_pages;
1971 }
1972}
1973
fef903ef 1974/*
9c0415eb
VB
1975 * When we are falling back to another migratetype during allocation, try to
1976 * steal extra free pages from the same pageblocks to satisfy further
1977 * allocations, instead of polluting multiple pageblocks.
1978 *
1979 * If we are stealing a relatively large buddy page, it is likely there will
1980 * be more free pages in the pageblock, so try to steal them all. For
1981 * reclaimable and unmovable allocations, we steal regardless of page size,
1982 * as fragmentation caused by those allocations polluting movable pageblocks
1983 * is worse than movable allocations stealing from unmovable and reclaimable
1984 * pageblocks.
fef903ef 1985 */
4eb7dce6
JK
1986static bool can_steal_fallback(unsigned int order, int start_mt)
1987{
1988 /*
1989 * Leaving this order check is intended, although there is
1990 * relaxed order check in next check. The reason is that
1991 * we can actually steal whole pageblock if this condition met,
1992 * but, below check doesn't guarantee it and that is just heuristic
1993 * so could be changed anytime.
1994 */
1995 if (order >= pageblock_order)
1996 return true;
1997
1998 if (order >= pageblock_order / 2 ||
1999 start_mt == MIGRATE_RECLAIMABLE ||
2000 start_mt == MIGRATE_UNMOVABLE ||
2001 page_group_by_mobility_disabled)
2002 return true;
2003
2004 return false;
2005}
2006
2007/*
2008 * This function implements actual steal behaviour. If order is large enough,
2009 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2010 * pageblock to our migratetype and determine how many already-allocated pages
2011 * are there in the pageblock with a compatible migratetype. If at least half
2012 * of pages are free or compatible, we can change migratetype of the pageblock
2013 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2014 */
2015static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2016 int start_type, bool whole_block)
fef903ef 2017{
d00181b9 2018 unsigned int current_order = page_order(page);
3bc48f96 2019 struct free_area *area;
02aa0cdd
VB
2020 int free_pages, movable_pages, alike_pages;
2021 int old_block_type;
2022
2023 old_block_type = get_pageblock_migratetype(page);
fef903ef 2024
3bc48f96
VB
2025 /*
2026 * This can happen due to races and we want to prevent broken
2027 * highatomic accounting.
2028 */
02aa0cdd 2029 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2030 goto single_page;
2031
fef903ef
SB
2032 /* Take ownership for orders >= pageblock_order */
2033 if (current_order >= pageblock_order) {
2034 change_pageblock_range(page, current_order, start_type);
3bc48f96 2035 goto single_page;
fef903ef
SB
2036 }
2037
3bc48f96
VB
2038 /* We are not allowed to try stealing from the whole block */
2039 if (!whole_block)
2040 goto single_page;
2041
02aa0cdd
VB
2042 free_pages = move_freepages_block(zone, page, start_type,
2043 &movable_pages);
2044 /*
2045 * Determine how many pages are compatible with our allocation.
2046 * For movable allocation, it's the number of movable pages which
2047 * we just obtained. For other types it's a bit more tricky.
2048 */
2049 if (start_type == MIGRATE_MOVABLE) {
2050 alike_pages = movable_pages;
2051 } else {
2052 /*
2053 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2054 * to MOVABLE pageblock, consider all non-movable pages as
2055 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2056 * vice versa, be conservative since we can't distinguish the
2057 * exact migratetype of non-movable pages.
2058 */
2059 if (old_block_type == MIGRATE_MOVABLE)
2060 alike_pages = pageblock_nr_pages
2061 - (free_pages + movable_pages);
2062 else
2063 alike_pages = 0;
2064 }
2065
3bc48f96 2066 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2067 if (!free_pages)
3bc48f96 2068 goto single_page;
fef903ef 2069
02aa0cdd
VB
2070 /*
2071 * If a sufficient number of pages in the block are either free or of
2072 * comparable migratability as our allocation, claim the whole block.
2073 */
2074 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2075 page_group_by_mobility_disabled)
2076 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2077
2078 return;
2079
2080single_page:
2081 area = &zone->free_area[current_order];
2082 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2083}
2084
2149cdae
JK
2085/*
2086 * Check whether there is a suitable fallback freepage with requested order.
2087 * If only_stealable is true, this function returns fallback_mt only if
2088 * we can steal other freepages all together. This would help to reduce
2089 * fragmentation due to mixed migratetype pages in one pageblock.
2090 */
2091int find_suitable_fallback(struct free_area *area, unsigned int order,
2092 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2093{
2094 int i;
2095 int fallback_mt;
2096
2097 if (area->nr_free == 0)
2098 return -1;
2099
2100 *can_steal = false;
2101 for (i = 0;; i++) {
2102 fallback_mt = fallbacks[migratetype][i];
974a786e 2103 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2104 break;
2105
2106 if (list_empty(&area->free_list[fallback_mt]))
2107 continue;
fef903ef 2108
4eb7dce6
JK
2109 if (can_steal_fallback(order, migratetype))
2110 *can_steal = true;
2111
2149cdae
JK
2112 if (!only_stealable)
2113 return fallback_mt;
2114
2115 if (*can_steal)
2116 return fallback_mt;
fef903ef 2117 }
4eb7dce6
JK
2118
2119 return -1;
fef903ef
SB
2120}
2121
0aaa29a5
MG
2122/*
2123 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2124 * there are no empty page blocks that contain a page with a suitable order
2125 */
2126static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2127 unsigned int alloc_order)
2128{
2129 int mt;
2130 unsigned long max_managed, flags;
2131
2132 /*
2133 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2134 * Check is race-prone but harmless.
2135 */
2136 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2137 if (zone->nr_reserved_highatomic >= max_managed)
2138 return;
2139
2140 spin_lock_irqsave(&zone->lock, flags);
2141
2142 /* Recheck the nr_reserved_highatomic limit under the lock */
2143 if (zone->nr_reserved_highatomic >= max_managed)
2144 goto out_unlock;
2145
2146 /* Yoink! */
2147 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2148 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2149 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2150 zone->nr_reserved_highatomic += pageblock_nr_pages;
2151 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2152 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2153 }
2154
2155out_unlock:
2156 spin_unlock_irqrestore(&zone->lock, flags);
2157}
2158
2159/*
2160 * Used when an allocation is about to fail under memory pressure. This
2161 * potentially hurts the reliability of high-order allocations when under
2162 * intense memory pressure but failed atomic allocations should be easier
2163 * to recover from than an OOM.
29fac03b
MK
2164 *
2165 * If @force is true, try to unreserve a pageblock even though highatomic
2166 * pageblock is exhausted.
0aaa29a5 2167 */
29fac03b
MK
2168static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2169 bool force)
0aaa29a5
MG
2170{
2171 struct zonelist *zonelist = ac->zonelist;
2172 unsigned long flags;
2173 struct zoneref *z;
2174 struct zone *zone;
2175 struct page *page;
2176 int order;
04c8716f 2177 bool ret;
0aaa29a5
MG
2178
2179 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2180 ac->nodemask) {
29fac03b
MK
2181 /*
2182 * Preserve at least one pageblock unless memory pressure
2183 * is really high.
2184 */
2185 if (!force && zone->nr_reserved_highatomic <=
2186 pageblock_nr_pages)
0aaa29a5
MG
2187 continue;
2188
2189 spin_lock_irqsave(&zone->lock, flags);
2190 for (order = 0; order < MAX_ORDER; order++) {
2191 struct free_area *area = &(zone->free_area[order]);
2192
a16601c5
GT
2193 page = list_first_entry_or_null(
2194 &area->free_list[MIGRATE_HIGHATOMIC],
2195 struct page, lru);
2196 if (!page)
0aaa29a5
MG
2197 continue;
2198
0aaa29a5 2199 /*
4855e4a7
MK
2200 * In page freeing path, migratetype change is racy so
2201 * we can counter several free pages in a pageblock
2202 * in this loop althoug we changed the pageblock type
2203 * from highatomic to ac->migratetype. So we should
2204 * adjust the count once.
0aaa29a5 2205 */
a6ffdc07 2206 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2207 /*
2208 * It should never happen but changes to
2209 * locking could inadvertently allow a per-cpu
2210 * drain to add pages to MIGRATE_HIGHATOMIC
2211 * while unreserving so be safe and watch for
2212 * underflows.
2213 */
2214 zone->nr_reserved_highatomic -= min(
2215 pageblock_nr_pages,
2216 zone->nr_reserved_highatomic);
2217 }
0aaa29a5
MG
2218
2219 /*
2220 * Convert to ac->migratetype and avoid the normal
2221 * pageblock stealing heuristics. Minimally, the caller
2222 * is doing the work and needs the pages. More
2223 * importantly, if the block was always converted to
2224 * MIGRATE_UNMOVABLE or another type then the number
2225 * of pageblocks that cannot be completely freed
2226 * may increase.
2227 */
2228 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2229 ret = move_freepages_block(zone, page, ac->migratetype,
2230 NULL);
29fac03b
MK
2231 if (ret) {
2232 spin_unlock_irqrestore(&zone->lock, flags);
2233 return ret;
2234 }
0aaa29a5
MG
2235 }
2236 spin_unlock_irqrestore(&zone->lock, flags);
2237 }
04c8716f
MK
2238
2239 return false;
0aaa29a5
MG
2240}
2241
3bc48f96
VB
2242/*
2243 * Try finding a free buddy page on the fallback list and put it on the free
2244 * list of requested migratetype, possibly along with other pages from the same
2245 * block, depending on fragmentation avoidance heuristics. Returns true if
2246 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2247 *
2248 * The use of signed ints for order and current_order is a deliberate
2249 * deviation from the rest of this file, to make the for loop
2250 * condition simpler.
3bc48f96 2251 */
85ccc8fa 2252static __always_inline bool
b002529d 2253__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2254{
b8af2941 2255 struct free_area *area;
b002529d 2256 int current_order;
b2a0ac88 2257 struct page *page;
4eb7dce6
JK
2258 int fallback_mt;
2259 bool can_steal;
b2a0ac88 2260
7a8f58f3
VB
2261 /*
2262 * Find the largest available free page in the other list. This roughly
2263 * approximates finding the pageblock with the most free pages, which
2264 * would be too costly to do exactly.
2265 */
b002529d 2266 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2267 --current_order) {
4eb7dce6
JK
2268 area = &(zone->free_area[current_order]);
2269 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2270 start_migratetype, false, &can_steal);
4eb7dce6
JK
2271 if (fallback_mt == -1)
2272 continue;
b2a0ac88 2273
7a8f58f3
VB
2274 /*
2275 * We cannot steal all free pages from the pageblock and the
2276 * requested migratetype is movable. In that case it's better to
2277 * steal and split the smallest available page instead of the
2278 * largest available page, because even if the next movable
2279 * allocation falls back into a different pageblock than this
2280 * one, it won't cause permanent fragmentation.
2281 */
2282 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2283 && current_order > order)
2284 goto find_smallest;
b2a0ac88 2285
7a8f58f3
VB
2286 goto do_steal;
2287 }
e0fff1bd 2288
7a8f58f3 2289 return false;
e0fff1bd 2290
7a8f58f3
VB
2291find_smallest:
2292 for (current_order = order; current_order < MAX_ORDER;
2293 current_order++) {
2294 area = &(zone->free_area[current_order]);
2295 fallback_mt = find_suitable_fallback(area, current_order,
2296 start_migratetype, false, &can_steal);
2297 if (fallback_mt != -1)
2298 break;
b2a0ac88
MG
2299 }
2300
7a8f58f3
VB
2301 /*
2302 * This should not happen - we already found a suitable fallback
2303 * when looking for the largest page.
2304 */
2305 VM_BUG_ON(current_order == MAX_ORDER);
2306
2307do_steal:
2308 page = list_first_entry(&area->free_list[fallback_mt],
2309 struct page, lru);
2310
2311 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2312
2313 trace_mm_page_alloc_extfrag(page, order, current_order,
2314 start_migratetype, fallback_mt);
2315
2316 return true;
2317
b2a0ac88
MG
2318}
2319
56fd56b8 2320/*
1da177e4
LT
2321 * Do the hard work of removing an element from the buddy allocator.
2322 * Call me with the zone->lock already held.
2323 */
85ccc8fa
AL
2324static __always_inline struct page *
2325__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2326{
1da177e4
LT
2327 struct page *page;
2328
3bc48f96 2329retry:
56fd56b8 2330 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2331 if (unlikely(!page)) {
dc67647b
JK
2332 if (migratetype == MIGRATE_MOVABLE)
2333 page = __rmqueue_cma_fallback(zone, order);
2334
3bc48f96
VB
2335 if (!page && __rmqueue_fallback(zone, order, migratetype))
2336 goto retry;
728ec980
MG
2337 }
2338
0d3d062a 2339 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2340 return page;
1da177e4
LT
2341}
2342
5f63b720 2343/*
1da177e4
LT
2344 * Obtain a specified number of elements from the buddy allocator, all under
2345 * a single hold of the lock, for efficiency. Add them to the supplied list.
2346 * Returns the number of new pages which were placed at *list.
2347 */
5f63b720 2348static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2349 unsigned long count, struct list_head *list,
453f85d4 2350 int migratetype)
1da177e4 2351{
a6de734b 2352 int i, alloced = 0;
5f63b720 2353
d34b0733 2354 spin_lock(&zone->lock);
1da177e4 2355 for (i = 0; i < count; ++i) {
6ac0206b 2356 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2357 if (unlikely(page == NULL))
1da177e4 2358 break;
81eabcbe 2359
479f854a
MG
2360 if (unlikely(check_pcp_refill(page)))
2361 continue;
2362
81eabcbe 2363 /*
0fac3ba5
VB
2364 * Split buddy pages returned by expand() are received here in
2365 * physical page order. The page is added to the tail of
2366 * caller's list. From the callers perspective, the linked list
2367 * is ordered by page number under some conditions. This is
2368 * useful for IO devices that can forward direction from the
2369 * head, thus also in the physical page order. This is useful
2370 * for IO devices that can merge IO requests if the physical
2371 * pages are ordered properly.
81eabcbe 2372 */
0fac3ba5 2373 list_add_tail(&page->lru, list);
a6de734b 2374 alloced++;
bb14c2c7 2375 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2376 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2377 -(1 << order));
1da177e4 2378 }
a6de734b
MG
2379
2380 /*
2381 * i pages were removed from the buddy list even if some leak due
2382 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2383 * on i. Do not confuse with 'alloced' which is the number of
2384 * pages added to the pcp list.
2385 */
f2260e6b 2386 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2387 spin_unlock(&zone->lock);
a6de734b 2388 return alloced;
1da177e4
LT
2389}
2390
4ae7c039 2391#ifdef CONFIG_NUMA
8fce4d8e 2392/*
4037d452
CL
2393 * Called from the vmstat counter updater to drain pagesets of this
2394 * currently executing processor on remote nodes after they have
2395 * expired.
2396 *
879336c3
CL
2397 * Note that this function must be called with the thread pinned to
2398 * a single processor.
8fce4d8e 2399 */
4037d452 2400void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2401{
4ae7c039 2402 unsigned long flags;
7be12fc9 2403 int to_drain, batch;
4ae7c039 2404
4037d452 2405 local_irq_save(flags);
4db0c3c2 2406 batch = READ_ONCE(pcp->batch);
7be12fc9 2407 to_drain = min(pcp->count, batch);
2a13515c
KM
2408 if (to_drain > 0) {
2409 free_pcppages_bulk(zone, to_drain, pcp);
2410 pcp->count -= to_drain;
2411 }
4037d452 2412 local_irq_restore(flags);
4ae7c039
CL
2413}
2414#endif
2415
9f8f2172 2416/*
93481ff0 2417 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2418 *
2419 * The processor must either be the current processor and the
2420 * thread pinned to the current processor or a processor that
2421 * is not online.
2422 */
93481ff0 2423static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2424{
c54ad30c 2425 unsigned long flags;
93481ff0
VB
2426 struct per_cpu_pageset *pset;
2427 struct per_cpu_pages *pcp;
1da177e4 2428
93481ff0
VB
2429 local_irq_save(flags);
2430 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2431
93481ff0
VB
2432 pcp = &pset->pcp;
2433 if (pcp->count) {
2434 free_pcppages_bulk(zone, pcp->count, pcp);
2435 pcp->count = 0;
2436 }
2437 local_irq_restore(flags);
2438}
3dfa5721 2439
93481ff0
VB
2440/*
2441 * Drain pcplists of all zones on the indicated processor.
2442 *
2443 * The processor must either be the current processor and the
2444 * thread pinned to the current processor or a processor that
2445 * is not online.
2446 */
2447static void drain_pages(unsigned int cpu)
2448{
2449 struct zone *zone;
2450
2451 for_each_populated_zone(zone) {
2452 drain_pages_zone(cpu, zone);
1da177e4
LT
2453 }
2454}
1da177e4 2455
9f8f2172
CL
2456/*
2457 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2458 *
2459 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2460 * the single zone's pages.
9f8f2172 2461 */
93481ff0 2462void drain_local_pages(struct zone *zone)
9f8f2172 2463{
93481ff0
VB
2464 int cpu = smp_processor_id();
2465
2466 if (zone)
2467 drain_pages_zone(cpu, zone);
2468 else
2469 drain_pages(cpu);
9f8f2172
CL
2470}
2471
0ccce3b9
MG
2472static void drain_local_pages_wq(struct work_struct *work)
2473{
a459eeb7
MH
2474 /*
2475 * drain_all_pages doesn't use proper cpu hotplug protection so
2476 * we can race with cpu offline when the WQ can move this from
2477 * a cpu pinned worker to an unbound one. We can operate on a different
2478 * cpu which is allright but we also have to make sure to not move to
2479 * a different one.
2480 */
2481 preempt_disable();
0ccce3b9 2482 drain_local_pages(NULL);
a459eeb7 2483 preempt_enable();
0ccce3b9
MG
2484}
2485
9f8f2172 2486/*
74046494
GBY
2487 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2488 *
93481ff0
VB
2489 * When zone parameter is non-NULL, spill just the single zone's pages.
2490 *
0ccce3b9 2491 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2492 */
93481ff0 2493void drain_all_pages(struct zone *zone)
9f8f2172 2494{
74046494 2495 int cpu;
74046494
GBY
2496
2497 /*
2498 * Allocate in the BSS so we wont require allocation in
2499 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2500 */
2501 static cpumask_t cpus_with_pcps;
2502
ce612879
MH
2503 /*
2504 * Make sure nobody triggers this path before mm_percpu_wq is fully
2505 * initialized.
2506 */
2507 if (WARN_ON_ONCE(!mm_percpu_wq))
2508 return;
2509
bd233f53
MG
2510 /*
2511 * Do not drain if one is already in progress unless it's specific to
2512 * a zone. Such callers are primarily CMA and memory hotplug and need
2513 * the drain to be complete when the call returns.
2514 */
2515 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2516 if (!zone)
2517 return;
2518 mutex_lock(&pcpu_drain_mutex);
2519 }
0ccce3b9 2520
74046494
GBY
2521 /*
2522 * We don't care about racing with CPU hotplug event
2523 * as offline notification will cause the notified
2524 * cpu to drain that CPU pcps and on_each_cpu_mask
2525 * disables preemption as part of its processing
2526 */
2527 for_each_online_cpu(cpu) {
93481ff0
VB
2528 struct per_cpu_pageset *pcp;
2529 struct zone *z;
74046494 2530 bool has_pcps = false;
93481ff0
VB
2531
2532 if (zone) {
74046494 2533 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2534 if (pcp->pcp.count)
74046494 2535 has_pcps = true;
93481ff0
VB
2536 } else {
2537 for_each_populated_zone(z) {
2538 pcp = per_cpu_ptr(z->pageset, cpu);
2539 if (pcp->pcp.count) {
2540 has_pcps = true;
2541 break;
2542 }
74046494
GBY
2543 }
2544 }
93481ff0 2545
74046494
GBY
2546 if (has_pcps)
2547 cpumask_set_cpu(cpu, &cpus_with_pcps);
2548 else
2549 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2550 }
0ccce3b9 2551
bd233f53
MG
2552 for_each_cpu(cpu, &cpus_with_pcps) {
2553 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2554 INIT_WORK(work, drain_local_pages_wq);
ce612879 2555 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2556 }
bd233f53
MG
2557 for_each_cpu(cpu, &cpus_with_pcps)
2558 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2559
2560 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2561}
2562
296699de 2563#ifdef CONFIG_HIBERNATION
1da177e4 2564
556b969a
CY
2565/*
2566 * Touch the watchdog for every WD_PAGE_COUNT pages.
2567 */
2568#define WD_PAGE_COUNT (128*1024)
2569
1da177e4
LT
2570void mark_free_pages(struct zone *zone)
2571{
556b969a 2572 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2573 unsigned long flags;
7aeb09f9 2574 unsigned int order, t;
86760a2c 2575 struct page *page;
1da177e4 2576
8080fc03 2577 if (zone_is_empty(zone))
1da177e4
LT
2578 return;
2579
2580 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2581
108bcc96 2582 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2583 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2584 if (pfn_valid(pfn)) {
86760a2c 2585 page = pfn_to_page(pfn);
ba6b0979 2586
556b969a
CY
2587 if (!--page_count) {
2588 touch_nmi_watchdog();
2589 page_count = WD_PAGE_COUNT;
2590 }
2591
ba6b0979
JK
2592 if (page_zone(page) != zone)
2593 continue;
2594
7be98234
RW
2595 if (!swsusp_page_is_forbidden(page))
2596 swsusp_unset_page_free(page);
f623f0db 2597 }
1da177e4 2598
b2a0ac88 2599 for_each_migratetype_order(order, t) {
86760a2c
GT
2600 list_for_each_entry(page,
2601 &zone->free_area[order].free_list[t], lru) {
f623f0db 2602 unsigned long i;
1da177e4 2603
86760a2c 2604 pfn = page_to_pfn(page);
556b969a
CY
2605 for (i = 0; i < (1UL << order); i++) {
2606 if (!--page_count) {
2607 touch_nmi_watchdog();
2608 page_count = WD_PAGE_COUNT;
2609 }
7be98234 2610 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2611 }
f623f0db 2612 }
b2a0ac88 2613 }
1da177e4
LT
2614 spin_unlock_irqrestore(&zone->lock, flags);
2615}
e2c55dc8 2616#endif /* CONFIG_PM */
1da177e4 2617
2d4894b5 2618static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2619{
5f8dcc21 2620 int migratetype;
1da177e4 2621
4db7548c 2622 if (!free_pcp_prepare(page))
9cca35d4 2623 return false;
689bcebf 2624
dc4b0caf 2625 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2626 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2627 return true;
2628}
2629
2d4894b5 2630static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2631{
2632 struct zone *zone = page_zone(page);
2633 struct per_cpu_pages *pcp;
2634 int migratetype;
2635
2636 migratetype = get_pcppage_migratetype(page);
d34b0733 2637 __count_vm_event(PGFREE);
da456f14 2638
5f8dcc21
MG
2639 /*
2640 * We only track unmovable, reclaimable and movable on pcp lists.
2641 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2642 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2643 * areas back if necessary. Otherwise, we may have to free
2644 * excessively into the page allocator
2645 */
2646 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2647 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2648 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2649 return;
5f8dcc21
MG
2650 }
2651 migratetype = MIGRATE_MOVABLE;
2652 }
2653
99dcc3e5 2654 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2655 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2656 pcp->count++;
48db57f8 2657 if (pcp->count >= pcp->high) {
4db0c3c2 2658 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2659 free_pcppages_bulk(zone, batch, pcp);
2660 pcp->count -= batch;
48db57f8 2661 }
9cca35d4 2662}
5f8dcc21 2663
9cca35d4
MG
2664/*
2665 * Free a 0-order page
9cca35d4 2666 */
2d4894b5 2667void free_unref_page(struct page *page)
9cca35d4
MG
2668{
2669 unsigned long flags;
2670 unsigned long pfn = page_to_pfn(page);
2671
2d4894b5 2672 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2673 return;
2674
2675 local_irq_save(flags);
2d4894b5 2676 free_unref_page_commit(page, pfn);
d34b0733 2677 local_irq_restore(flags);
1da177e4
LT
2678}
2679
cc59850e
KK
2680/*
2681 * Free a list of 0-order pages
2682 */
2d4894b5 2683void free_unref_page_list(struct list_head *list)
cc59850e
KK
2684{
2685 struct page *page, *next;
9cca35d4 2686 unsigned long flags, pfn;
c24ad77d 2687 int batch_count = 0;
9cca35d4
MG
2688
2689 /* Prepare pages for freeing */
2690 list_for_each_entry_safe(page, next, list, lru) {
2691 pfn = page_to_pfn(page);
2d4894b5 2692 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2693 list_del(&page->lru);
2694 set_page_private(page, pfn);
2695 }
cc59850e 2696
9cca35d4 2697 local_irq_save(flags);
cc59850e 2698 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2699 unsigned long pfn = page_private(page);
2700
2701 set_page_private(page, 0);
2d4894b5
MG
2702 trace_mm_page_free_batched(page);
2703 free_unref_page_commit(page, pfn);
c24ad77d
LS
2704
2705 /*
2706 * Guard against excessive IRQ disabled times when we get
2707 * a large list of pages to free.
2708 */
2709 if (++batch_count == SWAP_CLUSTER_MAX) {
2710 local_irq_restore(flags);
2711 batch_count = 0;
2712 local_irq_save(flags);
2713 }
cc59850e 2714 }
9cca35d4 2715 local_irq_restore(flags);
cc59850e
KK
2716}
2717
8dfcc9ba
NP
2718/*
2719 * split_page takes a non-compound higher-order page, and splits it into
2720 * n (1<<order) sub-pages: page[0..n]
2721 * Each sub-page must be freed individually.
2722 *
2723 * Note: this is probably too low level an operation for use in drivers.
2724 * Please consult with lkml before using this in your driver.
2725 */
2726void split_page(struct page *page, unsigned int order)
2727{
2728 int i;
2729
309381fe
SL
2730 VM_BUG_ON_PAGE(PageCompound(page), page);
2731 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2732
a9627bc5 2733 for (i = 1; i < (1 << order); i++)
7835e98b 2734 set_page_refcounted(page + i);
a9627bc5 2735 split_page_owner(page, order);
8dfcc9ba 2736}
5853ff23 2737EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2738
3c605096 2739int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2740{
748446bb
MG
2741 unsigned long watermark;
2742 struct zone *zone;
2139cbe6 2743 int mt;
748446bb
MG
2744
2745 BUG_ON(!PageBuddy(page));
2746
2747 zone = page_zone(page);
2e30abd1 2748 mt = get_pageblock_migratetype(page);
748446bb 2749
194159fb 2750 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2751 /*
2752 * Obey watermarks as if the page was being allocated. We can
2753 * emulate a high-order watermark check with a raised order-0
2754 * watermark, because we already know our high-order page
2755 * exists.
2756 */
2757 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2758 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2759 return 0;
2760
8fb74b9f 2761 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2762 }
748446bb
MG
2763
2764 /* Remove page from free list */
2765 list_del(&page->lru);
2766 zone->free_area[order].nr_free--;
2767 rmv_page_order(page);
2139cbe6 2768
400bc7fd 2769 /*
2770 * Set the pageblock if the isolated page is at least half of a
2771 * pageblock
2772 */
748446bb
MG
2773 if (order >= pageblock_order - 1) {
2774 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2775 for (; page < endpage; page += pageblock_nr_pages) {
2776 int mt = get_pageblock_migratetype(page);
88ed365e 2777 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2778 && !is_migrate_highatomic(mt))
47118af0
MN
2779 set_pageblock_migratetype(page,
2780 MIGRATE_MOVABLE);
2781 }
748446bb
MG
2782 }
2783
f3a14ced 2784
8fb74b9f 2785 return 1UL << order;
1fb3f8ca
MG
2786}
2787
060e7417
MG
2788/*
2789 * Update NUMA hit/miss statistics
2790 *
2791 * Must be called with interrupts disabled.
060e7417 2792 */
41b6167e 2793static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2794{
2795#ifdef CONFIG_NUMA
3a321d2a 2796 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2797
4518085e
KW
2798 /* skip numa counters update if numa stats is disabled */
2799 if (!static_branch_likely(&vm_numa_stat_key))
2800 return;
2801
2df26639 2802 if (z->node != numa_node_id())
060e7417 2803 local_stat = NUMA_OTHER;
060e7417 2804
2df26639 2805 if (z->node == preferred_zone->node)
3a321d2a 2806 __inc_numa_state(z, NUMA_HIT);
2df26639 2807 else {
3a321d2a
KW
2808 __inc_numa_state(z, NUMA_MISS);
2809 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2810 }
3a321d2a 2811 __inc_numa_state(z, local_stat);
060e7417
MG
2812#endif
2813}
2814
066b2393
MG
2815/* Remove page from the per-cpu list, caller must protect the list */
2816static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2817 struct per_cpu_pages *pcp,
066b2393
MG
2818 struct list_head *list)
2819{
2820 struct page *page;
2821
2822 do {
2823 if (list_empty(list)) {
2824 pcp->count += rmqueue_bulk(zone, 0,
2825 pcp->batch, list,
453f85d4 2826 migratetype);
066b2393
MG
2827 if (unlikely(list_empty(list)))
2828 return NULL;
2829 }
2830
453f85d4 2831 page = list_first_entry(list, struct page, lru);
066b2393
MG
2832 list_del(&page->lru);
2833 pcp->count--;
2834 } while (check_new_pcp(page));
2835
2836 return page;
2837}
2838
2839/* Lock and remove page from the per-cpu list */
2840static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2841 struct zone *zone, unsigned int order,
2842 gfp_t gfp_flags, int migratetype)
2843{
2844 struct per_cpu_pages *pcp;
2845 struct list_head *list;
066b2393 2846 struct page *page;
d34b0733 2847 unsigned long flags;
066b2393 2848
d34b0733 2849 local_irq_save(flags);
066b2393
MG
2850 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2851 list = &pcp->lists[migratetype];
453f85d4 2852 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2853 if (page) {
2854 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2855 zone_statistics(preferred_zone, zone);
2856 }
d34b0733 2857 local_irq_restore(flags);
066b2393
MG
2858 return page;
2859}
2860
1da177e4 2861/*
75379191 2862 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2863 */
0a15c3e9 2864static inline
066b2393 2865struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2866 struct zone *zone, unsigned int order,
c603844b
MG
2867 gfp_t gfp_flags, unsigned int alloc_flags,
2868 int migratetype)
1da177e4
LT
2869{
2870 unsigned long flags;
689bcebf 2871 struct page *page;
1da177e4 2872
d34b0733 2873 if (likely(order == 0)) {
066b2393
MG
2874 page = rmqueue_pcplist(preferred_zone, zone, order,
2875 gfp_flags, migratetype);
2876 goto out;
2877 }
83b9355b 2878
066b2393
MG
2879 /*
2880 * We most definitely don't want callers attempting to
2881 * allocate greater than order-1 page units with __GFP_NOFAIL.
2882 */
2883 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2884 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2885
066b2393
MG
2886 do {
2887 page = NULL;
2888 if (alloc_flags & ALLOC_HARDER) {
2889 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2890 if (page)
2891 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2892 }
a74609fa 2893 if (!page)
066b2393
MG
2894 page = __rmqueue(zone, order, migratetype);
2895 } while (page && check_new_pages(page, order));
2896 spin_unlock(&zone->lock);
2897 if (!page)
2898 goto failed;
2899 __mod_zone_freepage_state(zone, -(1 << order),
2900 get_pcppage_migratetype(page));
1da177e4 2901
16709d1d 2902 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2903 zone_statistics(preferred_zone, zone);
a74609fa 2904 local_irq_restore(flags);
1da177e4 2905
066b2393
MG
2906out:
2907 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2908 return page;
a74609fa
NP
2909
2910failed:
2911 local_irq_restore(flags);
a74609fa 2912 return NULL;
1da177e4
LT
2913}
2914
933e312e
AM
2915#ifdef CONFIG_FAIL_PAGE_ALLOC
2916
b2588c4b 2917static struct {
933e312e
AM
2918 struct fault_attr attr;
2919
621a5f7a 2920 bool ignore_gfp_highmem;
71baba4b 2921 bool ignore_gfp_reclaim;
54114994 2922 u32 min_order;
933e312e
AM
2923} fail_page_alloc = {
2924 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2925 .ignore_gfp_reclaim = true,
621a5f7a 2926 .ignore_gfp_highmem = true,
54114994 2927 .min_order = 1,
933e312e
AM
2928};
2929
2930static int __init setup_fail_page_alloc(char *str)
2931{
2932 return setup_fault_attr(&fail_page_alloc.attr, str);
2933}
2934__setup("fail_page_alloc=", setup_fail_page_alloc);
2935
deaf386e 2936static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2937{
54114994 2938 if (order < fail_page_alloc.min_order)
deaf386e 2939 return false;
933e312e 2940 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2941 return false;
933e312e 2942 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2943 return false;
71baba4b
MG
2944 if (fail_page_alloc.ignore_gfp_reclaim &&
2945 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2946 return false;
933e312e
AM
2947
2948 return should_fail(&fail_page_alloc.attr, 1 << order);
2949}
2950
2951#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2952
2953static int __init fail_page_alloc_debugfs(void)
2954{
f4ae40a6 2955 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2956 struct dentry *dir;
933e312e 2957
dd48c085
AM
2958 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2959 &fail_page_alloc.attr);
2960 if (IS_ERR(dir))
2961 return PTR_ERR(dir);
933e312e 2962
b2588c4b 2963 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2964 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2965 goto fail;
2966 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2967 &fail_page_alloc.ignore_gfp_highmem))
2968 goto fail;
2969 if (!debugfs_create_u32("min-order", mode, dir,
2970 &fail_page_alloc.min_order))
2971 goto fail;
2972
2973 return 0;
2974fail:
dd48c085 2975 debugfs_remove_recursive(dir);
933e312e 2976
b2588c4b 2977 return -ENOMEM;
933e312e
AM
2978}
2979
2980late_initcall(fail_page_alloc_debugfs);
2981
2982#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2983
2984#else /* CONFIG_FAIL_PAGE_ALLOC */
2985
deaf386e 2986static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2987{
deaf386e 2988 return false;
933e312e
AM
2989}
2990
2991#endif /* CONFIG_FAIL_PAGE_ALLOC */
2992
1da177e4 2993/*
97a16fc8
MG
2994 * Return true if free base pages are above 'mark'. For high-order checks it
2995 * will return true of the order-0 watermark is reached and there is at least
2996 * one free page of a suitable size. Checking now avoids taking the zone lock
2997 * to check in the allocation paths if no pages are free.
1da177e4 2998 */
86a294a8
MH
2999bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3000 int classzone_idx, unsigned int alloc_flags,
3001 long free_pages)
1da177e4 3002{
d23ad423 3003 long min = mark;
1da177e4 3004 int o;
cd04ae1e 3005 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3006
0aaa29a5 3007 /* free_pages may go negative - that's OK */
df0a6daa 3008 free_pages -= (1 << order) - 1;
0aaa29a5 3009
7fb1d9fc 3010 if (alloc_flags & ALLOC_HIGH)
1da177e4 3011 min -= min / 2;
0aaa29a5
MG
3012
3013 /*
3014 * If the caller does not have rights to ALLOC_HARDER then subtract
3015 * the high-atomic reserves. This will over-estimate the size of the
3016 * atomic reserve but it avoids a search.
3017 */
cd04ae1e 3018 if (likely(!alloc_harder)) {
0aaa29a5 3019 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3020 } else {
3021 /*
3022 * OOM victims can try even harder than normal ALLOC_HARDER
3023 * users on the grounds that it's definitely going to be in
3024 * the exit path shortly and free memory. Any allocation it
3025 * makes during the free path will be small and short-lived.
3026 */
3027 if (alloc_flags & ALLOC_OOM)
3028 min -= min / 2;
3029 else
3030 min -= min / 4;
3031 }
3032
e2b19197 3033
d95ea5d1
BZ
3034#ifdef CONFIG_CMA
3035 /* If allocation can't use CMA areas don't use free CMA pages */
3036 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3037 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3038#endif
026b0814 3039
97a16fc8
MG
3040 /*
3041 * Check watermarks for an order-0 allocation request. If these
3042 * are not met, then a high-order request also cannot go ahead
3043 * even if a suitable page happened to be free.
3044 */
3045 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3046 return false;
1da177e4 3047
97a16fc8
MG
3048 /* If this is an order-0 request then the watermark is fine */
3049 if (!order)
3050 return true;
3051
3052 /* For a high-order request, check at least one suitable page is free */
3053 for (o = order; o < MAX_ORDER; o++) {
3054 struct free_area *area = &z->free_area[o];
3055 int mt;
3056
3057 if (!area->nr_free)
3058 continue;
3059
97a16fc8
MG
3060 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3061 if (!list_empty(&area->free_list[mt]))
3062 return true;
3063 }
3064
3065#ifdef CONFIG_CMA
3066 if ((alloc_flags & ALLOC_CMA) &&
3067 !list_empty(&area->free_list[MIGRATE_CMA])) {
3068 return true;
3069 }
3070#endif
b050e376
VB
3071 if (alloc_harder &&
3072 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3073 return true;
1da177e4 3074 }
97a16fc8 3075 return false;
88f5acf8
MG
3076}
3077
7aeb09f9 3078bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3079 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3080{
3081 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3082 zone_page_state(z, NR_FREE_PAGES));
3083}
3084
48ee5f36
MG
3085static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3086 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3087{
3088 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3089 long cma_pages = 0;
3090
3091#ifdef CONFIG_CMA
3092 /* If allocation can't use CMA areas don't use free CMA pages */
3093 if (!(alloc_flags & ALLOC_CMA))
3094 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3095#endif
3096
3097 /*
3098 * Fast check for order-0 only. If this fails then the reserves
3099 * need to be calculated. There is a corner case where the check
3100 * passes but only the high-order atomic reserve are free. If
3101 * the caller is !atomic then it'll uselessly search the free
3102 * list. That corner case is then slower but it is harmless.
3103 */
3104 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3105 return true;
3106
3107 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3108 free_pages);
3109}
3110
7aeb09f9 3111bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3112 unsigned long mark, int classzone_idx)
88f5acf8
MG
3113{
3114 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3115
3116 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3117 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3118
e2b19197 3119 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3120 free_pages);
1da177e4
LT
3121}
3122
9276b1bc 3123#ifdef CONFIG_NUMA
957f822a
DR
3124static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3125{
e02dc017 3126 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3127 RECLAIM_DISTANCE;
957f822a 3128}
9276b1bc 3129#else /* CONFIG_NUMA */
957f822a
DR
3130static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3131{
3132 return true;
3133}
9276b1bc
PJ
3134#endif /* CONFIG_NUMA */
3135
7fb1d9fc 3136/*
0798e519 3137 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3138 * a page.
3139 */
3140static struct page *
a9263751
VB
3141get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3142 const struct alloc_context *ac)
753ee728 3143{
c33d6c06 3144 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3145 struct zone *zone;
3b8c0be4
MG
3146 struct pglist_data *last_pgdat_dirty_limit = NULL;
3147
7fb1d9fc 3148 /*
9276b1bc 3149 * Scan zonelist, looking for a zone with enough free.
344736f2 3150 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3151 */
c33d6c06 3152 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3153 ac->nodemask) {
be06af00 3154 struct page *page;
e085dbc5
JW
3155 unsigned long mark;
3156
664eedde
MG
3157 if (cpusets_enabled() &&
3158 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3159 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3160 continue;
a756cf59
JW
3161 /*
3162 * When allocating a page cache page for writing, we
281e3726
MG
3163 * want to get it from a node that is within its dirty
3164 * limit, such that no single node holds more than its
a756cf59 3165 * proportional share of globally allowed dirty pages.
281e3726 3166 * The dirty limits take into account the node's
a756cf59
JW
3167 * lowmem reserves and high watermark so that kswapd
3168 * should be able to balance it without having to
3169 * write pages from its LRU list.
3170 *
a756cf59 3171 * XXX: For now, allow allocations to potentially
281e3726 3172 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3173 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3174 * which is important when on a NUMA setup the allowed
281e3726 3175 * nodes are together not big enough to reach the
a756cf59 3176 * global limit. The proper fix for these situations
281e3726 3177 * will require awareness of nodes in the
a756cf59
JW
3178 * dirty-throttling and the flusher threads.
3179 */
3b8c0be4
MG
3180 if (ac->spread_dirty_pages) {
3181 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3182 continue;
3183
3184 if (!node_dirty_ok(zone->zone_pgdat)) {
3185 last_pgdat_dirty_limit = zone->zone_pgdat;
3186 continue;
3187 }
3188 }
7fb1d9fc 3189
e085dbc5 3190 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3191 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3192 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3193 int ret;
3194
5dab2911
MG
3195 /* Checked here to keep the fast path fast */
3196 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3197 if (alloc_flags & ALLOC_NO_WATERMARKS)
3198 goto try_this_zone;
3199
a5f5f91d 3200 if (node_reclaim_mode == 0 ||
c33d6c06 3201 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3202 continue;
3203
a5f5f91d 3204 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3205 switch (ret) {
a5f5f91d 3206 case NODE_RECLAIM_NOSCAN:
fa5e084e 3207 /* did not scan */
cd38b115 3208 continue;
a5f5f91d 3209 case NODE_RECLAIM_FULL:
fa5e084e 3210 /* scanned but unreclaimable */
cd38b115 3211 continue;
fa5e084e
MG
3212 default:
3213 /* did we reclaim enough */
fed2719e 3214 if (zone_watermark_ok(zone, order, mark,
93ea9964 3215 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3216 goto try_this_zone;
3217
fed2719e 3218 continue;
0798e519 3219 }
7fb1d9fc
RS
3220 }
3221
fa5e084e 3222try_this_zone:
066b2393 3223 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3224 gfp_mask, alloc_flags, ac->migratetype);
75379191 3225 if (page) {
479f854a 3226 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3227
3228 /*
3229 * If this is a high-order atomic allocation then check
3230 * if the pageblock should be reserved for the future
3231 */
3232 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3233 reserve_highatomic_pageblock(page, zone, order);
3234
75379191
VB
3235 return page;
3236 }
54a6eb5c 3237 }
9276b1bc 3238
4ffeaf35 3239 return NULL;
753ee728
MH
3240}
3241
29423e77
DR
3242/*
3243 * Large machines with many possible nodes should not always dump per-node
3244 * meminfo in irq context.
3245 */
3246static inline bool should_suppress_show_mem(void)
3247{
3248 bool ret = false;
3249
3250#if NODES_SHIFT > 8
3251 ret = in_interrupt();
3252#endif
3253 return ret;
3254}
3255
9af744d7 3256static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3257{
a238ab5b 3258 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3259 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3260
aa187507 3261 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3262 return;
3263
3264 /*
3265 * This documents exceptions given to allocations in certain
3266 * contexts that are allowed to allocate outside current's set
3267 * of allowed nodes.
3268 */
3269 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3270 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3271 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3272 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3273 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3274 filter &= ~SHOW_MEM_FILTER_NODES;
3275
9af744d7 3276 show_mem(filter, nodemask);
aa187507
MH
3277}
3278
a8e99259 3279void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3280{
3281 struct va_format vaf;
3282 va_list args;
3283 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3284 DEFAULT_RATELIMIT_BURST);
3285
0f7896f1 3286 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3287 return;
3288
7877cdcc
MH
3289 va_start(args, fmt);
3290 vaf.fmt = fmt;
3291 vaf.va = &args;
0205f755
MH
3292 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3293 current->comm, &vaf, gfp_mask, &gfp_mask,
3294 nodemask_pr_args(nodemask));
7877cdcc 3295 va_end(args);
3ee9a4f0 3296
a8e99259 3297 cpuset_print_current_mems_allowed();
3ee9a4f0 3298
a238ab5b 3299 dump_stack();
685dbf6f 3300 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3301}
3302
6c18ba7a
MH
3303static inline struct page *
3304__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3305 unsigned int alloc_flags,
3306 const struct alloc_context *ac)
3307{
3308 struct page *page;
3309
3310 page = get_page_from_freelist(gfp_mask, order,
3311 alloc_flags|ALLOC_CPUSET, ac);
3312 /*
3313 * fallback to ignore cpuset restriction if our nodes
3314 * are depleted
3315 */
3316 if (!page)
3317 page = get_page_from_freelist(gfp_mask, order,
3318 alloc_flags, ac);
3319
3320 return page;
3321}
3322
11e33f6a
MG
3323static inline struct page *
3324__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3325 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3326{
6e0fc46d
DR
3327 struct oom_control oc = {
3328 .zonelist = ac->zonelist,
3329 .nodemask = ac->nodemask,
2a966b77 3330 .memcg = NULL,
6e0fc46d
DR
3331 .gfp_mask = gfp_mask,
3332 .order = order,
6e0fc46d 3333 };
11e33f6a
MG
3334 struct page *page;
3335
9879de73
JW
3336 *did_some_progress = 0;
3337
9879de73 3338 /*
dc56401f
JW
3339 * Acquire the oom lock. If that fails, somebody else is
3340 * making progress for us.
9879de73 3341 */
dc56401f 3342 if (!mutex_trylock(&oom_lock)) {
9879de73 3343 *did_some_progress = 1;
11e33f6a 3344 schedule_timeout_uninterruptible(1);
1da177e4
LT
3345 return NULL;
3346 }
6b1de916 3347
11e33f6a
MG
3348 /*
3349 * Go through the zonelist yet one more time, keep very high watermark
3350 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3351 * we're still under heavy pressure. But make sure that this reclaim
3352 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3353 * allocation which will never fail due to oom_lock already held.
11e33f6a 3354 */
e746bf73
TH
3355 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3356 ~__GFP_DIRECT_RECLAIM, order,
3357 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3358 if (page)
11e33f6a
MG
3359 goto out;
3360
06ad276a
MH
3361 /* Coredumps can quickly deplete all memory reserves */
3362 if (current->flags & PF_DUMPCORE)
3363 goto out;
3364 /* The OOM killer will not help higher order allocs */
3365 if (order > PAGE_ALLOC_COSTLY_ORDER)
3366 goto out;
dcda9b04
MH
3367 /*
3368 * We have already exhausted all our reclaim opportunities without any
3369 * success so it is time to admit defeat. We will skip the OOM killer
3370 * because it is very likely that the caller has a more reasonable
3371 * fallback than shooting a random task.
3372 */
3373 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3374 goto out;
06ad276a
MH
3375 /* The OOM killer does not needlessly kill tasks for lowmem */
3376 if (ac->high_zoneidx < ZONE_NORMAL)
3377 goto out;
3378 if (pm_suspended_storage())
3379 goto out;
3380 /*
3381 * XXX: GFP_NOFS allocations should rather fail than rely on
3382 * other request to make a forward progress.
3383 * We are in an unfortunate situation where out_of_memory cannot
3384 * do much for this context but let's try it to at least get
3385 * access to memory reserved if the current task is killed (see
3386 * out_of_memory). Once filesystems are ready to handle allocation
3387 * failures more gracefully we should just bail out here.
3388 */
3389
3390 /* The OOM killer may not free memory on a specific node */
3391 if (gfp_mask & __GFP_THISNODE)
3392 goto out;
3da88fb3 3393
11e33f6a 3394 /* Exhausted what can be done so it's blamo time */
5020e285 3395 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3396 *did_some_progress = 1;
5020e285 3397
6c18ba7a
MH
3398 /*
3399 * Help non-failing allocations by giving them access to memory
3400 * reserves
3401 */
3402 if (gfp_mask & __GFP_NOFAIL)
3403 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3404 ALLOC_NO_WATERMARKS, ac);
5020e285 3405 }
11e33f6a 3406out:
dc56401f 3407 mutex_unlock(&oom_lock);
11e33f6a
MG
3408 return page;
3409}
3410
33c2d214
MH
3411/*
3412 * Maximum number of compaction retries wit a progress before OOM
3413 * killer is consider as the only way to move forward.
3414 */
3415#define MAX_COMPACT_RETRIES 16
3416
56de7263
MG
3417#ifdef CONFIG_COMPACTION
3418/* Try memory compaction for high-order allocations before reclaim */
3419static struct page *
3420__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3421 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3422 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3423{
98dd3b48 3424 struct page *page;
499118e9 3425 unsigned int noreclaim_flag;
53853e2d
VB
3426
3427 if (!order)
66199712 3428 return NULL;
66199712 3429
499118e9 3430 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3431 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3432 prio);
499118e9 3433 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3434
c5d01d0d 3435 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3436 return NULL;
53853e2d 3437
98dd3b48
VB
3438 /*
3439 * At least in one zone compaction wasn't deferred or skipped, so let's
3440 * count a compaction stall
3441 */
3442 count_vm_event(COMPACTSTALL);
8fb74b9f 3443
31a6c190 3444 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3445
98dd3b48
VB
3446 if (page) {
3447 struct zone *zone = page_zone(page);
53853e2d 3448
98dd3b48
VB
3449 zone->compact_blockskip_flush = false;
3450 compaction_defer_reset(zone, order, true);
3451 count_vm_event(COMPACTSUCCESS);
3452 return page;
3453 }
56de7263 3454
98dd3b48
VB
3455 /*
3456 * It's bad if compaction run occurs and fails. The most likely reason
3457 * is that pages exist, but not enough to satisfy watermarks.
3458 */
3459 count_vm_event(COMPACTFAIL);
66199712 3460
98dd3b48 3461 cond_resched();
56de7263
MG
3462
3463 return NULL;
3464}
33c2d214 3465
3250845d
VB
3466static inline bool
3467should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3468 enum compact_result compact_result,
3469 enum compact_priority *compact_priority,
d9436498 3470 int *compaction_retries)
3250845d
VB
3471{
3472 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3473 int min_priority;
65190cff
MH
3474 bool ret = false;
3475 int retries = *compaction_retries;
3476 enum compact_priority priority = *compact_priority;
3250845d
VB
3477
3478 if (!order)
3479 return false;
3480
d9436498
VB
3481 if (compaction_made_progress(compact_result))
3482 (*compaction_retries)++;
3483
3250845d
VB
3484 /*
3485 * compaction considers all the zone as desperately out of memory
3486 * so it doesn't really make much sense to retry except when the
3487 * failure could be caused by insufficient priority
3488 */
d9436498
VB
3489 if (compaction_failed(compact_result))
3490 goto check_priority;
3250845d
VB
3491
3492 /*
3493 * make sure the compaction wasn't deferred or didn't bail out early
3494 * due to locks contention before we declare that we should give up.
3495 * But do not retry if the given zonelist is not suitable for
3496 * compaction.
3497 */
65190cff
MH
3498 if (compaction_withdrawn(compact_result)) {
3499 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3500 goto out;
3501 }
3250845d
VB
3502
3503 /*
dcda9b04 3504 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3505 * costly ones because they are de facto nofail and invoke OOM
3506 * killer to move on while costly can fail and users are ready
3507 * to cope with that. 1/4 retries is rather arbitrary but we
3508 * would need much more detailed feedback from compaction to
3509 * make a better decision.
3510 */
3511 if (order > PAGE_ALLOC_COSTLY_ORDER)
3512 max_retries /= 4;
65190cff
MH
3513 if (*compaction_retries <= max_retries) {
3514 ret = true;
3515 goto out;
3516 }
3250845d 3517
d9436498
VB
3518 /*
3519 * Make sure there are attempts at the highest priority if we exhausted
3520 * all retries or failed at the lower priorities.
3521 */
3522check_priority:
c2033b00
VB
3523 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3524 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3525
c2033b00 3526 if (*compact_priority > min_priority) {
d9436498
VB
3527 (*compact_priority)--;
3528 *compaction_retries = 0;
65190cff 3529 ret = true;
d9436498 3530 }
65190cff
MH
3531out:
3532 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3533 return ret;
3250845d 3534}
56de7263
MG
3535#else
3536static inline struct page *
3537__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3538 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3539 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3540{
33c2d214 3541 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3542 return NULL;
3543}
33c2d214
MH
3544
3545static inline bool
86a294a8
MH
3546should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3547 enum compact_result compact_result,
a5508cd8 3548 enum compact_priority *compact_priority,
d9436498 3549 int *compaction_retries)
33c2d214 3550{
31e49bfd
MH
3551 struct zone *zone;
3552 struct zoneref *z;
3553
3554 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3555 return false;
3556
3557 /*
3558 * There are setups with compaction disabled which would prefer to loop
3559 * inside the allocator rather than hit the oom killer prematurely.
3560 * Let's give them a good hope and keep retrying while the order-0
3561 * watermarks are OK.
3562 */
3563 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3564 ac->nodemask) {
3565 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3566 ac_classzone_idx(ac), alloc_flags))
3567 return true;
3568 }
33c2d214
MH
3569 return false;
3570}
3250845d 3571#endif /* CONFIG_COMPACTION */
56de7263 3572
d92a8cfc
PZ
3573#ifdef CONFIG_LOCKDEP
3574struct lockdep_map __fs_reclaim_map =
3575 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3576
3577static bool __need_fs_reclaim(gfp_t gfp_mask)
3578{
3579 gfp_mask = current_gfp_context(gfp_mask);
3580
3581 /* no reclaim without waiting on it */
3582 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3583 return false;
3584
3585 /* this guy won't enter reclaim */
3586 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3587 return false;
3588
3589 /* We're only interested __GFP_FS allocations for now */
3590 if (!(gfp_mask & __GFP_FS))
3591 return false;
3592
3593 if (gfp_mask & __GFP_NOLOCKDEP)
3594 return false;
3595
3596 return true;
3597}
3598
3599void fs_reclaim_acquire(gfp_t gfp_mask)
3600{
3601 if (__need_fs_reclaim(gfp_mask))
3602 lock_map_acquire(&__fs_reclaim_map);
3603}
3604EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3605
3606void fs_reclaim_release(gfp_t gfp_mask)
3607{
3608 if (__need_fs_reclaim(gfp_mask))
3609 lock_map_release(&__fs_reclaim_map);
3610}
3611EXPORT_SYMBOL_GPL(fs_reclaim_release);
3612#endif
3613
bba90710
MS
3614/* Perform direct synchronous page reclaim */
3615static int
a9263751
VB
3616__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3617 const struct alloc_context *ac)
11e33f6a 3618{
11e33f6a 3619 struct reclaim_state reclaim_state;
bba90710 3620 int progress;
499118e9 3621 unsigned int noreclaim_flag;
11e33f6a
MG
3622
3623 cond_resched();
3624
3625 /* We now go into synchronous reclaim */
3626 cpuset_memory_pressure_bump();
499118e9 3627 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3628 fs_reclaim_acquire(gfp_mask);
11e33f6a 3629 reclaim_state.reclaimed_slab = 0;
c06b1fca 3630 current->reclaim_state = &reclaim_state;
11e33f6a 3631
a9263751
VB
3632 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3633 ac->nodemask);
11e33f6a 3634
c06b1fca 3635 current->reclaim_state = NULL;
d92a8cfc 3636 fs_reclaim_release(gfp_mask);
499118e9 3637 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3638
3639 cond_resched();
3640
bba90710
MS
3641 return progress;
3642}
3643
3644/* The really slow allocator path where we enter direct reclaim */
3645static inline struct page *
3646__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3647 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3648 unsigned long *did_some_progress)
bba90710
MS
3649{
3650 struct page *page = NULL;
3651 bool drained = false;
3652
a9263751 3653 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3654 if (unlikely(!(*did_some_progress)))
3655 return NULL;
11e33f6a 3656
9ee493ce 3657retry:
31a6c190 3658 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3659
3660 /*
3661 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3662 * pages are pinned on the per-cpu lists or in high alloc reserves.
3663 * Shrink them them and try again
9ee493ce
MG
3664 */
3665 if (!page && !drained) {
29fac03b 3666 unreserve_highatomic_pageblock(ac, false);
93481ff0 3667 drain_all_pages(NULL);
9ee493ce
MG
3668 drained = true;
3669 goto retry;
3670 }
3671
11e33f6a
MG
3672 return page;
3673}
3674
a9263751 3675static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3676{
3677 struct zoneref *z;
3678 struct zone *zone;
e1a55637 3679 pg_data_t *last_pgdat = NULL;
3a025760 3680
a9263751 3681 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3682 ac->high_zoneidx, ac->nodemask) {
3683 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3684 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3685 last_pgdat = zone->zone_pgdat;
3686 }
3a025760
JW
3687}
3688
c603844b 3689static inline unsigned int
341ce06f
PZ
3690gfp_to_alloc_flags(gfp_t gfp_mask)
3691{
c603844b 3692 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3693
a56f57ff 3694 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3695 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3696
341ce06f
PZ
3697 /*
3698 * The caller may dip into page reserves a bit more if the caller
3699 * cannot run direct reclaim, or if the caller has realtime scheduling
3700 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3701 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3702 */
e6223a3b 3703 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3704
d0164adc 3705 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3706 /*
b104a35d
DR
3707 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3708 * if it can't schedule.
5c3240d9 3709 */
b104a35d 3710 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3711 alloc_flags |= ALLOC_HARDER;
523b9458 3712 /*
b104a35d 3713 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3714 * comment for __cpuset_node_allowed().
523b9458 3715 */
341ce06f 3716 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3717 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3718 alloc_flags |= ALLOC_HARDER;
3719
d95ea5d1 3720#ifdef CONFIG_CMA
43e7a34d 3721 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3722 alloc_flags |= ALLOC_CMA;
3723#endif
341ce06f
PZ
3724 return alloc_flags;
3725}
3726
cd04ae1e 3727static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3728{
cd04ae1e
MH
3729 if (!tsk_is_oom_victim(tsk))
3730 return false;
3731
3732 /*
3733 * !MMU doesn't have oom reaper so give access to memory reserves
3734 * only to the thread with TIF_MEMDIE set
3735 */
3736 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3737 return false;
3738
cd04ae1e
MH
3739 return true;
3740}
3741
3742/*
3743 * Distinguish requests which really need access to full memory
3744 * reserves from oom victims which can live with a portion of it
3745 */
3746static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3747{
3748 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3749 return 0;
31a6c190 3750 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3751 return ALLOC_NO_WATERMARKS;
31a6c190 3752 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3753 return ALLOC_NO_WATERMARKS;
3754 if (!in_interrupt()) {
3755 if (current->flags & PF_MEMALLOC)
3756 return ALLOC_NO_WATERMARKS;
3757 else if (oom_reserves_allowed(current))
3758 return ALLOC_OOM;
3759 }
31a6c190 3760
cd04ae1e
MH
3761 return 0;
3762}
3763
3764bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3765{
3766 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3767}
3768
0a0337e0
MH
3769/*
3770 * Checks whether it makes sense to retry the reclaim to make a forward progress
3771 * for the given allocation request.
491d79ae
JW
3772 *
3773 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3774 * without success, or when we couldn't even meet the watermark if we
3775 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3776 *
3777 * Returns true if a retry is viable or false to enter the oom path.
3778 */
3779static inline bool
3780should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3781 struct alloc_context *ac, int alloc_flags,
423b452e 3782 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3783{
3784 struct zone *zone;
3785 struct zoneref *z;
3786
423b452e
VB
3787 /*
3788 * Costly allocations might have made a progress but this doesn't mean
3789 * their order will become available due to high fragmentation so
3790 * always increment the no progress counter for them
3791 */
3792 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3793 *no_progress_loops = 0;
3794 else
3795 (*no_progress_loops)++;
3796
0a0337e0
MH
3797 /*
3798 * Make sure we converge to OOM if we cannot make any progress
3799 * several times in the row.
3800 */
04c8716f
MK
3801 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3802 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3803 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3804 }
0a0337e0 3805
bca67592
MG
3806 /*
3807 * Keep reclaiming pages while there is a chance this will lead
3808 * somewhere. If none of the target zones can satisfy our allocation
3809 * request even if all reclaimable pages are considered then we are
3810 * screwed and have to go OOM.
0a0337e0
MH
3811 */
3812 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3813 ac->nodemask) {
3814 unsigned long available;
ede37713 3815 unsigned long reclaimable;
d379f01d
MH
3816 unsigned long min_wmark = min_wmark_pages(zone);
3817 bool wmark;
0a0337e0 3818
5a1c84b4 3819 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3820 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3821
3822 /*
491d79ae
JW
3823 * Would the allocation succeed if we reclaimed all
3824 * reclaimable pages?
0a0337e0 3825 */
d379f01d
MH
3826 wmark = __zone_watermark_ok(zone, order, min_wmark,
3827 ac_classzone_idx(ac), alloc_flags, available);
3828 trace_reclaim_retry_zone(z, order, reclaimable,
3829 available, min_wmark, *no_progress_loops, wmark);
3830 if (wmark) {
ede37713
MH
3831 /*
3832 * If we didn't make any progress and have a lot of
3833 * dirty + writeback pages then we should wait for
3834 * an IO to complete to slow down the reclaim and
3835 * prevent from pre mature OOM
3836 */
3837 if (!did_some_progress) {
11fb9989 3838 unsigned long write_pending;
ede37713 3839
5a1c84b4
MG
3840 write_pending = zone_page_state_snapshot(zone,
3841 NR_ZONE_WRITE_PENDING);
ede37713 3842
11fb9989 3843 if (2 * write_pending > reclaimable) {
ede37713
MH
3844 congestion_wait(BLK_RW_ASYNC, HZ/10);
3845 return true;
3846 }
3847 }
5a1c84b4 3848
ede37713
MH
3849 /*
3850 * Memory allocation/reclaim might be called from a WQ
3851 * context and the current implementation of the WQ
3852 * concurrency control doesn't recognize that
3853 * a particular WQ is congested if the worker thread is
3854 * looping without ever sleeping. Therefore we have to
3855 * do a short sleep here rather than calling
3856 * cond_resched().
3857 */
3858 if (current->flags & PF_WQ_WORKER)
3859 schedule_timeout_uninterruptible(1);
3860 else
3861 cond_resched();
3862
0a0337e0
MH
3863 return true;
3864 }
3865 }
3866
3867 return false;
3868}
3869
902b6281
VB
3870static inline bool
3871check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3872{
3873 /*
3874 * It's possible that cpuset's mems_allowed and the nodemask from
3875 * mempolicy don't intersect. This should be normally dealt with by
3876 * policy_nodemask(), but it's possible to race with cpuset update in
3877 * such a way the check therein was true, and then it became false
3878 * before we got our cpuset_mems_cookie here.
3879 * This assumes that for all allocations, ac->nodemask can come only
3880 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3881 * when it does not intersect with the cpuset restrictions) or the
3882 * caller can deal with a violated nodemask.
3883 */
3884 if (cpusets_enabled() && ac->nodemask &&
3885 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3886 ac->nodemask = NULL;
3887 return true;
3888 }
3889
3890 /*
3891 * When updating a task's mems_allowed or mempolicy nodemask, it is
3892 * possible to race with parallel threads in such a way that our
3893 * allocation can fail while the mask is being updated. If we are about
3894 * to fail, check if the cpuset changed during allocation and if so,
3895 * retry.
3896 */
3897 if (read_mems_allowed_retry(cpuset_mems_cookie))
3898 return true;
3899
3900 return false;
3901}
3902
11e33f6a
MG
3903static inline struct page *
3904__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3905 struct alloc_context *ac)
11e33f6a 3906{
d0164adc 3907 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3908 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3909 struct page *page = NULL;
c603844b 3910 unsigned int alloc_flags;
11e33f6a 3911 unsigned long did_some_progress;
5ce9bfef 3912 enum compact_priority compact_priority;
c5d01d0d 3913 enum compact_result compact_result;
5ce9bfef
VB
3914 int compaction_retries;
3915 int no_progress_loops;
5ce9bfef 3916 unsigned int cpuset_mems_cookie;
cd04ae1e 3917 int reserve_flags;
1da177e4 3918
72807a74
MG
3919 /*
3920 * In the slowpath, we sanity check order to avoid ever trying to
3921 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3922 * be using allocators in order of preference for an area that is
3923 * too large.
3924 */
1fc28b70
MG
3925 if (order >= MAX_ORDER) {
3926 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3927 return NULL;
1fc28b70 3928 }
1da177e4 3929
d0164adc
MG
3930 /*
3931 * We also sanity check to catch abuse of atomic reserves being used by
3932 * callers that are not in atomic context.
3933 */
3934 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3935 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3936 gfp_mask &= ~__GFP_ATOMIC;
3937
5ce9bfef
VB
3938retry_cpuset:
3939 compaction_retries = 0;
3940 no_progress_loops = 0;
3941 compact_priority = DEF_COMPACT_PRIORITY;
3942 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3943
3944 /*
3945 * The fast path uses conservative alloc_flags to succeed only until
3946 * kswapd needs to be woken up, and to avoid the cost of setting up
3947 * alloc_flags precisely. So we do that now.
3948 */
3949 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3950
e47483bc
VB
3951 /*
3952 * We need to recalculate the starting point for the zonelist iterator
3953 * because we might have used different nodemask in the fast path, or
3954 * there was a cpuset modification and we are retrying - otherwise we
3955 * could end up iterating over non-eligible zones endlessly.
3956 */
3957 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3958 ac->high_zoneidx, ac->nodemask);
3959 if (!ac->preferred_zoneref->zone)
3960 goto nopage;
3961
23771235
VB
3962 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3963 wake_all_kswapds(order, ac);
3964
3965 /*
3966 * The adjusted alloc_flags might result in immediate success, so try
3967 * that first
3968 */
3969 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3970 if (page)
3971 goto got_pg;
3972
a8161d1e
VB
3973 /*
3974 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3975 * that we have enough base pages and don't need to reclaim. For non-
3976 * movable high-order allocations, do that as well, as compaction will
3977 * try prevent permanent fragmentation by migrating from blocks of the
3978 * same migratetype.
3979 * Don't try this for allocations that are allowed to ignore
3980 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3981 */
282722b0
VB
3982 if (can_direct_reclaim &&
3983 (costly_order ||
3984 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3985 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3986 page = __alloc_pages_direct_compact(gfp_mask, order,
3987 alloc_flags, ac,
a5508cd8 3988 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3989 &compact_result);
3990 if (page)
3991 goto got_pg;
3992
3eb2771b
VB
3993 /*
3994 * Checks for costly allocations with __GFP_NORETRY, which
3995 * includes THP page fault allocations
3996 */
282722b0 3997 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3998 /*
3999 * If compaction is deferred for high-order allocations,
4000 * it is because sync compaction recently failed. If
4001 * this is the case and the caller requested a THP
4002 * allocation, we do not want to heavily disrupt the
4003 * system, so we fail the allocation instead of entering
4004 * direct reclaim.
4005 */
4006 if (compact_result == COMPACT_DEFERRED)
4007 goto nopage;
4008
a8161d1e 4009 /*
3eb2771b
VB
4010 * Looks like reclaim/compaction is worth trying, but
4011 * sync compaction could be very expensive, so keep
25160354 4012 * using async compaction.
a8161d1e 4013 */
a5508cd8 4014 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4015 }
4016 }
23771235 4017
31a6c190 4018retry:
23771235 4019 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4020 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4021 wake_all_kswapds(order, ac);
4022
cd04ae1e
MH
4023 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4024 if (reserve_flags)
4025 alloc_flags = reserve_flags;
23771235 4026
e46e7b77
MG
4027 /*
4028 * Reset the zonelist iterators if memory policies can be ignored.
4029 * These allocations are high priority and system rather than user
4030 * orientated.
4031 */
cd04ae1e 4032 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4033 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4034 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4035 ac->high_zoneidx, ac->nodemask);
4036 }
4037
23771235 4038 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4039 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4040 if (page)
4041 goto got_pg;
1da177e4 4042
d0164adc 4043 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4044 if (!can_direct_reclaim)
1da177e4
LT
4045 goto nopage;
4046
9a67f648
MH
4047 /* Avoid recursion of direct reclaim */
4048 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4049 goto nopage;
4050
a8161d1e
VB
4051 /* Try direct reclaim and then allocating */
4052 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4053 &did_some_progress);
4054 if (page)
4055 goto got_pg;
4056
4057 /* Try direct compaction and then allocating */
a9263751 4058 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4059 compact_priority, &compact_result);
56de7263
MG
4060 if (page)
4061 goto got_pg;
75f30861 4062
9083905a
JW
4063 /* Do not loop if specifically requested */
4064 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4065 goto nopage;
9083905a 4066
0a0337e0
MH
4067 /*
4068 * Do not retry costly high order allocations unless they are
dcda9b04 4069 * __GFP_RETRY_MAYFAIL
0a0337e0 4070 */
dcda9b04 4071 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4072 goto nopage;
0a0337e0 4073
0a0337e0 4074 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4075 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4076 goto retry;
4077
33c2d214
MH
4078 /*
4079 * It doesn't make any sense to retry for the compaction if the order-0
4080 * reclaim is not able to make any progress because the current
4081 * implementation of the compaction depends on the sufficient amount
4082 * of free memory (see __compaction_suitable)
4083 */
4084 if (did_some_progress > 0 &&
86a294a8 4085 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4086 compact_result, &compact_priority,
d9436498 4087 &compaction_retries))
33c2d214
MH
4088 goto retry;
4089
902b6281
VB
4090
4091 /* Deal with possible cpuset update races before we start OOM killing */
4092 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4093 goto retry_cpuset;
4094
9083905a
JW
4095 /* Reclaim has failed us, start killing things */
4096 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4097 if (page)
4098 goto got_pg;
4099
9a67f648 4100 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4101 if (tsk_is_oom_victim(current) &&
4102 (alloc_flags == ALLOC_OOM ||
c288983d 4103 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4104 goto nopage;
4105
9083905a 4106 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4107 if (did_some_progress) {
4108 no_progress_loops = 0;
9083905a 4109 goto retry;
0a0337e0 4110 }
9083905a 4111
1da177e4 4112nopage:
902b6281
VB
4113 /* Deal with possible cpuset update races before we fail */
4114 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4115 goto retry_cpuset;
4116
9a67f648
MH
4117 /*
4118 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4119 * we always retry
4120 */
4121 if (gfp_mask & __GFP_NOFAIL) {
4122 /*
4123 * All existing users of the __GFP_NOFAIL are blockable, so warn
4124 * of any new users that actually require GFP_NOWAIT
4125 */
4126 if (WARN_ON_ONCE(!can_direct_reclaim))
4127 goto fail;
4128
4129 /*
4130 * PF_MEMALLOC request from this context is rather bizarre
4131 * because we cannot reclaim anything and only can loop waiting
4132 * for somebody to do a work for us
4133 */
4134 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4135
4136 /*
4137 * non failing costly orders are a hard requirement which we
4138 * are not prepared for much so let's warn about these users
4139 * so that we can identify them and convert them to something
4140 * else.
4141 */
4142 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4143
6c18ba7a
MH
4144 /*
4145 * Help non-failing allocations by giving them access to memory
4146 * reserves but do not use ALLOC_NO_WATERMARKS because this
4147 * could deplete whole memory reserves which would just make
4148 * the situation worse
4149 */
4150 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4151 if (page)
4152 goto got_pg;
4153
9a67f648
MH
4154 cond_resched();
4155 goto retry;
4156 }
4157fail:
a8e99259 4158 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4159 "page allocation failure: order:%u", order);
1da177e4 4160got_pg:
072bb0aa 4161 return page;
1da177e4 4162}
11e33f6a 4163
9cd75558 4164static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4165 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4166 struct alloc_context *ac, gfp_t *alloc_mask,
4167 unsigned int *alloc_flags)
11e33f6a 4168{
9cd75558 4169 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4170 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4171 ac->nodemask = nodemask;
4172 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4173
682a3385 4174 if (cpusets_enabled()) {
9cd75558 4175 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4176 if (!ac->nodemask)
4177 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4178 else
4179 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4180 }
4181
d92a8cfc
PZ
4182 fs_reclaim_acquire(gfp_mask);
4183 fs_reclaim_release(gfp_mask);
11e33f6a 4184
d0164adc 4185 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4186
4187 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4188 return false;
11e33f6a 4189
9cd75558
MG
4190 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4191 *alloc_flags |= ALLOC_CMA;
4192
4193 return true;
4194}
21bb9bd1 4195
9cd75558
MG
4196/* Determine whether to spread dirty pages and what the first usable zone */
4197static inline void finalise_ac(gfp_t gfp_mask,
4198 unsigned int order, struct alloc_context *ac)
4199{
c9ab0c4f 4200 /* Dirty zone balancing only done in the fast path */
9cd75558 4201 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4202
e46e7b77
MG
4203 /*
4204 * The preferred zone is used for statistics but crucially it is
4205 * also used as the starting point for the zonelist iterator. It
4206 * may get reset for allocations that ignore memory policies.
4207 */
9cd75558
MG
4208 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4209 ac->high_zoneidx, ac->nodemask);
4210}
4211
4212/*
4213 * This is the 'heart' of the zoned buddy allocator.
4214 */
4215struct page *
04ec6264
VB
4216__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4217 nodemask_t *nodemask)
9cd75558
MG
4218{
4219 struct page *page;
4220 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4221 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4222 struct alloc_context ac = { };
4223
4224 gfp_mask &= gfp_allowed_mask;
f19360f0 4225 alloc_mask = gfp_mask;
04ec6264 4226 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4227 return NULL;
4228
4229 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4230
5117f45d 4231 /* First allocation attempt */
a9263751 4232 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4233 if (likely(page))
4234 goto out;
11e33f6a 4235
4fcb0971 4236 /*
7dea19f9
MH
4237 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4238 * resp. GFP_NOIO which has to be inherited for all allocation requests
4239 * from a particular context which has been marked by
4240 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4241 */
7dea19f9 4242 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4243 ac.spread_dirty_pages = false;
23f086f9 4244
4741526b
MG
4245 /*
4246 * Restore the original nodemask if it was potentially replaced with
4247 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4248 */
e47483bc 4249 if (unlikely(ac.nodemask != nodemask))
4741526b 4250 ac.nodemask = nodemask;
16096c25 4251
4fcb0971 4252 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4253
4fcb0971 4254out:
c4159a75
VD
4255 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4256 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4257 __free_pages(page, order);
4258 page = NULL;
4949148a
VD
4259 }
4260
4fcb0971
MG
4261 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4262
11e33f6a 4263 return page;
1da177e4 4264}
d239171e 4265EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4266
4267/*
4268 * Common helper functions.
4269 */
920c7a5d 4270unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4271{
945a1113
AM
4272 struct page *page;
4273
4274 /*
4275 * __get_free_pages() returns a 32-bit address, which cannot represent
4276 * a highmem page
4277 */
4278 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4279
1da177e4
LT
4280 page = alloc_pages(gfp_mask, order);
4281 if (!page)
4282 return 0;
4283 return (unsigned long) page_address(page);
4284}
1da177e4
LT
4285EXPORT_SYMBOL(__get_free_pages);
4286
920c7a5d 4287unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4288{
945a1113 4289 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4290}
1da177e4
LT
4291EXPORT_SYMBOL(get_zeroed_page);
4292
920c7a5d 4293void __free_pages(struct page *page, unsigned int order)
1da177e4 4294{
b5810039 4295 if (put_page_testzero(page)) {
1da177e4 4296 if (order == 0)
2d4894b5 4297 free_unref_page(page);
1da177e4
LT
4298 else
4299 __free_pages_ok(page, order);
4300 }
4301}
4302
4303EXPORT_SYMBOL(__free_pages);
4304
920c7a5d 4305void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4306{
4307 if (addr != 0) {
725d704e 4308 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4309 __free_pages(virt_to_page((void *)addr), order);
4310 }
4311}
4312
4313EXPORT_SYMBOL(free_pages);
4314
b63ae8ca
AD
4315/*
4316 * Page Fragment:
4317 * An arbitrary-length arbitrary-offset area of memory which resides
4318 * within a 0 or higher order page. Multiple fragments within that page
4319 * are individually refcounted, in the page's reference counter.
4320 *
4321 * The page_frag functions below provide a simple allocation framework for
4322 * page fragments. This is used by the network stack and network device
4323 * drivers to provide a backing region of memory for use as either an
4324 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4325 */
2976db80
AD
4326static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4327 gfp_t gfp_mask)
b63ae8ca
AD
4328{
4329 struct page *page = NULL;
4330 gfp_t gfp = gfp_mask;
4331
4332#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4333 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4334 __GFP_NOMEMALLOC;
4335 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4336 PAGE_FRAG_CACHE_MAX_ORDER);
4337 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4338#endif
4339 if (unlikely(!page))
4340 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4341
4342 nc->va = page ? page_address(page) : NULL;
4343
4344 return page;
4345}
4346
2976db80 4347void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4348{
4349 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4350
4351 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4352 unsigned int order = compound_order(page);
4353
44fdffd7 4354 if (order == 0)
2d4894b5 4355 free_unref_page(page);
44fdffd7
AD
4356 else
4357 __free_pages_ok(page, order);
4358 }
4359}
2976db80 4360EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4361
8c2dd3e4
AD
4362void *page_frag_alloc(struct page_frag_cache *nc,
4363 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4364{
4365 unsigned int size = PAGE_SIZE;
4366 struct page *page;
4367 int offset;
4368
4369 if (unlikely(!nc->va)) {
4370refill:
2976db80 4371 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4372 if (!page)
4373 return NULL;
4374
4375#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4376 /* if size can vary use size else just use PAGE_SIZE */
4377 size = nc->size;
4378#endif
4379 /* Even if we own the page, we do not use atomic_set().
4380 * This would break get_page_unless_zero() users.
4381 */
fe896d18 4382 page_ref_add(page, size - 1);
b63ae8ca
AD
4383
4384 /* reset page count bias and offset to start of new frag */
2f064f34 4385 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4386 nc->pagecnt_bias = size;
4387 nc->offset = size;
4388 }
4389
4390 offset = nc->offset - fragsz;
4391 if (unlikely(offset < 0)) {
4392 page = virt_to_page(nc->va);
4393
fe896d18 4394 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4395 goto refill;
4396
4397#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4398 /* if size can vary use size else just use PAGE_SIZE */
4399 size = nc->size;
4400#endif
4401 /* OK, page count is 0, we can safely set it */
fe896d18 4402 set_page_count(page, size);
b63ae8ca
AD
4403
4404 /* reset page count bias and offset to start of new frag */
4405 nc->pagecnt_bias = size;
4406 offset = size - fragsz;
4407 }
4408
4409 nc->pagecnt_bias--;
4410 nc->offset = offset;
4411
4412 return nc->va + offset;
4413}
8c2dd3e4 4414EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4415
4416/*
4417 * Frees a page fragment allocated out of either a compound or order 0 page.
4418 */
8c2dd3e4 4419void page_frag_free(void *addr)
b63ae8ca
AD
4420{
4421 struct page *page = virt_to_head_page(addr);
4422
4423 if (unlikely(put_page_testzero(page)))
4424 __free_pages_ok(page, compound_order(page));
4425}
8c2dd3e4 4426EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4427
d00181b9
KS
4428static void *make_alloc_exact(unsigned long addr, unsigned int order,
4429 size_t size)
ee85c2e1
AK
4430{
4431 if (addr) {
4432 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4433 unsigned long used = addr + PAGE_ALIGN(size);
4434
4435 split_page(virt_to_page((void *)addr), order);
4436 while (used < alloc_end) {
4437 free_page(used);
4438 used += PAGE_SIZE;
4439 }
4440 }
4441 return (void *)addr;
4442}
4443
2be0ffe2
TT
4444/**
4445 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4446 * @size: the number of bytes to allocate
4447 * @gfp_mask: GFP flags for the allocation
4448 *
4449 * This function is similar to alloc_pages(), except that it allocates the
4450 * minimum number of pages to satisfy the request. alloc_pages() can only
4451 * allocate memory in power-of-two pages.
4452 *
4453 * This function is also limited by MAX_ORDER.
4454 *
4455 * Memory allocated by this function must be released by free_pages_exact().
4456 */
4457void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4458{
4459 unsigned int order = get_order(size);
4460 unsigned long addr;
4461
4462 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4463 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4464}
4465EXPORT_SYMBOL(alloc_pages_exact);
4466
ee85c2e1
AK
4467/**
4468 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4469 * pages on a node.
b5e6ab58 4470 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4471 * @size: the number of bytes to allocate
4472 * @gfp_mask: GFP flags for the allocation
4473 *
4474 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4475 * back.
ee85c2e1 4476 */
e1931811 4477void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4478{
d00181b9 4479 unsigned int order = get_order(size);
ee85c2e1
AK
4480 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4481 if (!p)
4482 return NULL;
4483 return make_alloc_exact((unsigned long)page_address(p), order, size);
4484}
ee85c2e1 4485
2be0ffe2
TT
4486/**
4487 * free_pages_exact - release memory allocated via alloc_pages_exact()
4488 * @virt: the value returned by alloc_pages_exact.
4489 * @size: size of allocation, same value as passed to alloc_pages_exact().
4490 *
4491 * Release the memory allocated by a previous call to alloc_pages_exact.
4492 */
4493void free_pages_exact(void *virt, size_t size)
4494{
4495 unsigned long addr = (unsigned long)virt;
4496 unsigned long end = addr + PAGE_ALIGN(size);
4497
4498 while (addr < end) {
4499 free_page(addr);
4500 addr += PAGE_SIZE;
4501 }
4502}
4503EXPORT_SYMBOL(free_pages_exact);
4504
e0fb5815
ZY
4505/**
4506 * nr_free_zone_pages - count number of pages beyond high watermark
4507 * @offset: The zone index of the highest zone
4508 *
4509 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4510 * high watermark within all zones at or below a given zone index. For each
4511 * zone, the number of pages is calculated as:
0e056eb5
MCC
4512 *
4513 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4514 */
ebec3862 4515static unsigned long nr_free_zone_pages(int offset)
1da177e4 4516{
dd1a239f 4517 struct zoneref *z;
54a6eb5c
MG
4518 struct zone *zone;
4519
e310fd43 4520 /* Just pick one node, since fallback list is circular */
ebec3862 4521 unsigned long sum = 0;
1da177e4 4522
0e88460d 4523 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4524
54a6eb5c 4525 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4526 unsigned long size = zone->managed_pages;
41858966 4527 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4528 if (size > high)
4529 sum += size - high;
1da177e4
LT
4530 }
4531
4532 return sum;
4533}
4534
e0fb5815
ZY
4535/**
4536 * nr_free_buffer_pages - count number of pages beyond high watermark
4537 *
4538 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4539 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4540 */
ebec3862 4541unsigned long nr_free_buffer_pages(void)
1da177e4 4542{
af4ca457 4543 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4544}
c2f1a551 4545EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4546
e0fb5815
ZY
4547/**
4548 * nr_free_pagecache_pages - count number of pages beyond high watermark
4549 *
4550 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4551 * high watermark within all zones.
1da177e4 4552 */
ebec3862 4553unsigned long nr_free_pagecache_pages(void)
1da177e4 4554{
2a1e274a 4555 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4556}
08e0f6a9
CL
4557
4558static inline void show_node(struct zone *zone)
1da177e4 4559{
e5adfffc 4560 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4561 printk("Node %d ", zone_to_nid(zone));
1da177e4 4562}
1da177e4 4563
d02bd27b
IR
4564long si_mem_available(void)
4565{
4566 long available;
4567 unsigned long pagecache;
4568 unsigned long wmark_low = 0;
4569 unsigned long pages[NR_LRU_LISTS];
4570 struct zone *zone;
4571 int lru;
4572
4573 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4574 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4575
4576 for_each_zone(zone)
4577 wmark_low += zone->watermark[WMARK_LOW];
4578
4579 /*
4580 * Estimate the amount of memory available for userspace allocations,
4581 * without causing swapping.
4582 */
c41f012a 4583 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4584
4585 /*
4586 * Not all the page cache can be freed, otherwise the system will
4587 * start swapping. Assume at least half of the page cache, or the
4588 * low watermark worth of cache, needs to stay.
4589 */
4590 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4591 pagecache -= min(pagecache / 2, wmark_low);
4592 available += pagecache;
4593
4594 /*
4595 * Part of the reclaimable slab consists of items that are in use,
4596 * and cannot be freed. Cap this estimate at the low watermark.
4597 */
d507e2eb
JW
4598 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4599 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4600 wmark_low);
d02bd27b
IR
4601
4602 if (available < 0)
4603 available = 0;
4604 return available;
4605}
4606EXPORT_SYMBOL_GPL(si_mem_available);
4607
1da177e4
LT
4608void si_meminfo(struct sysinfo *val)
4609{
4610 val->totalram = totalram_pages;
11fb9989 4611 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4612 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4613 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4614 val->totalhigh = totalhigh_pages;
4615 val->freehigh = nr_free_highpages();
1da177e4
LT
4616 val->mem_unit = PAGE_SIZE;
4617}
4618
4619EXPORT_SYMBOL(si_meminfo);
4620
4621#ifdef CONFIG_NUMA
4622void si_meminfo_node(struct sysinfo *val, int nid)
4623{
cdd91a77
JL
4624 int zone_type; /* needs to be signed */
4625 unsigned long managed_pages = 0;
fc2bd799
JK
4626 unsigned long managed_highpages = 0;
4627 unsigned long free_highpages = 0;
1da177e4
LT
4628 pg_data_t *pgdat = NODE_DATA(nid);
4629
cdd91a77
JL
4630 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4631 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4632 val->totalram = managed_pages;
11fb9989 4633 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4634 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4635#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4636 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4637 struct zone *zone = &pgdat->node_zones[zone_type];
4638
4639 if (is_highmem(zone)) {
4640 managed_highpages += zone->managed_pages;
4641 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4642 }
4643 }
4644 val->totalhigh = managed_highpages;
4645 val->freehigh = free_highpages;
98d2b0eb 4646#else
fc2bd799
JK
4647 val->totalhigh = managed_highpages;
4648 val->freehigh = free_highpages;
98d2b0eb 4649#endif
1da177e4
LT
4650 val->mem_unit = PAGE_SIZE;
4651}
4652#endif
4653
ddd588b5 4654/*
7bf02ea2
DR
4655 * Determine whether the node should be displayed or not, depending on whether
4656 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4657 */
9af744d7 4658static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4659{
ddd588b5 4660 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4661 return false;
ddd588b5 4662
9af744d7
MH
4663 /*
4664 * no node mask - aka implicit memory numa policy. Do not bother with
4665 * the synchronization - read_mems_allowed_begin - because we do not
4666 * have to be precise here.
4667 */
4668 if (!nodemask)
4669 nodemask = &cpuset_current_mems_allowed;
4670
4671 return !node_isset(nid, *nodemask);
ddd588b5
DR
4672}
4673
1da177e4
LT
4674#define K(x) ((x) << (PAGE_SHIFT-10))
4675
377e4f16
RV
4676static void show_migration_types(unsigned char type)
4677{
4678 static const char types[MIGRATE_TYPES] = {
4679 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4680 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4681 [MIGRATE_RECLAIMABLE] = 'E',
4682 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4683#ifdef CONFIG_CMA
4684 [MIGRATE_CMA] = 'C',
4685#endif
194159fb 4686#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4687 [MIGRATE_ISOLATE] = 'I',
194159fb 4688#endif
377e4f16
RV
4689 };
4690 char tmp[MIGRATE_TYPES + 1];
4691 char *p = tmp;
4692 int i;
4693
4694 for (i = 0; i < MIGRATE_TYPES; i++) {
4695 if (type & (1 << i))
4696 *p++ = types[i];
4697 }
4698
4699 *p = '\0';
1f84a18f 4700 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4701}
4702
1da177e4
LT
4703/*
4704 * Show free area list (used inside shift_scroll-lock stuff)
4705 * We also calculate the percentage fragmentation. We do this by counting the
4706 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4707 *
4708 * Bits in @filter:
4709 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4710 * cpuset.
1da177e4 4711 */
9af744d7 4712void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4713{
d1bfcdb8 4714 unsigned long free_pcp = 0;
c7241913 4715 int cpu;
1da177e4 4716 struct zone *zone;
599d0c95 4717 pg_data_t *pgdat;
1da177e4 4718
ee99c71c 4719 for_each_populated_zone(zone) {
9af744d7 4720 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4721 continue;
d1bfcdb8 4722
761b0677
KK
4723 for_each_online_cpu(cpu)
4724 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4725 }
4726
a731286d
KM
4727 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4728 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4729 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4730 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4731 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4732 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4733 global_node_page_state(NR_ACTIVE_ANON),
4734 global_node_page_state(NR_INACTIVE_ANON),
4735 global_node_page_state(NR_ISOLATED_ANON),
4736 global_node_page_state(NR_ACTIVE_FILE),
4737 global_node_page_state(NR_INACTIVE_FILE),
4738 global_node_page_state(NR_ISOLATED_FILE),
4739 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4740 global_node_page_state(NR_FILE_DIRTY),
4741 global_node_page_state(NR_WRITEBACK),
4742 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4743 global_node_page_state(NR_SLAB_RECLAIMABLE),
4744 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4745 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4746 global_node_page_state(NR_SHMEM),
c41f012a
MH
4747 global_zone_page_state(NR_PAGETABLE),
4748 global_zone_page_state(NR_BOUNCE),
4749 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4750 free_pcp,
c41f012a 4751 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4752
599d0c95 4753 for_each_online_pgdat(pgdat) {
9af744d7 4754 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4755 continue;
4756
599d0c95
MG
4757 printk("Node %d"
4758 " active_anon:%lukB"
4759 " inactive_anon:%lukB"
4760 " active_file:%lukB"
4761 " inactive_file:%lukB"
4762 " unevictable:%lukB"
4763 " isolated(anon):%lukB"
4764 " isolated(file):%lukB"
50658e2e 4765 " mapped:%lukB"
11fb9989
MG
4766 " dirty:%lukB"
4767 " writeback:%lukB"
4768 " shmem:%lukB"
4769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4770 " shmem_thp: %lukB"
4771 " shmem_pmdmapped: %lukB"
4772 " anon_thp: %lukB"
4773#endif
4774 " writeback_tmp:%lukB"
4775 " unstable:%lukB"
599d0c95
MG
4776 " all_unreclaimable? %s"
4777 "\n",
4778 pgdat->node_id,
4779 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4780 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4781 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4782 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4783 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4784 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4785 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4786 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4787 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4788 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4789 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4790#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4791 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4792 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4793 * HPAGE_PMD_NR),
4794 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4795#endif
11fb9989
MG
4796 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4797 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4798 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4799 "yes" : "no");
599d0c95
MG
4800 }
4801
ee99c71c 4802 for_each_populated_zone(zone) {
1da177e4
LT
4803 int i;
4804
9af744d7 4805 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4806 continue;
d1bfcdb8
KK
4807
4808 free_pcp = 0;
4809 for_each_online_cpu(cpu)
4810 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4811
1da177e4 4812 show_node(zone);
1f84a18f
JP
4813 printk(KERN_CONT
4814 "%s"
1da177e4
LT
4815 " free:%lukB"
4816 " min:%lukB"
4817 " low:%lukB"
4818 " high:%lukB"
71c799f4
MK
4819 " active_anon:%lukB"
4820 " inactive_anon:%lukB"
4821 " active_file:%lukB"
4822 " inactive_file:%lukB"
4823 " unevictable:%lukB"
5a1c84b4 4824 " writepending:%lukB"
1da177e4 4825 " present:%lukB"
9feedc9d 4826 " managed:%lukB"
4a0aa73f 4827 " mlocked:%lukB"
c6a7f572 4828 " kernel_stack:%lukB"
4a0aa73f 4829 " pagetables:%lukB"
4a0aa73f 4830 " bounce:%lukB"
d1bfcdb8
KK
4831 " free_pcp:%lukB"
4832 " local_pcp:%ukB"
d1ce749a 4833 " free_cma:%lukB"
1da177e4
LT
4834 "\n",
4835 zone->name,
88f5acf8 4836 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4837 K(min_wmark_pages(zone)),
4838 K(low_wmark_pages(zone)),
4839 K(high_wmark_pages(zone)),
71c799f4
MK
4840 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4841 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4842 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4843 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4844 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4845 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4846 K(zone->present_pages),
9feedc9d 4847 K(zone->managed_pages),
4a0aa73f 4848 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4849 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4850 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4851 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4852 K(free_pcp),
4853 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4854 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4855 printk("lowmem_reserve[]:");
4856 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4857 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4858 printk(KERN_CONT "\n");
1da177e4
LT
4859 }
4860
ee99c71c 4861 for_each_populated_zone(zone) {
d00181b9
KS
4862 unsigned int order;
4863 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4864 unsigned char types[MAX_ORDER];
1da177e4 4865
9af744d7 4866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4867 continue;
1da177e4 4868 show_node(zone);
1f84a18f 4869 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4870
4871 spin_lock_irqsave(&zone->lock, flags);
4872 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4873 struct free_area *area = &zone->free_area[order];
4874 int type;
4875
4876 nr[order] = area->nr_free;
8f9de51a 4877 total += nr[order] << order;
377e4f16
RV
4878
4879 types[order] = 0;
4880 for (type = 0; type < MIGRATE_TYPES; type++) {
4881 if (!list_empty(&area->free_list[type]))
4882 types[order] |= 1 << type;
4883 }
1da177e4
LT
4884 }
4885 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4886 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4887 printk(KERN_CONT "%lu*%lukB ",
4888 nr[order], K(1UL) << order);
377e4f16
RV
4889 if (nr[order])
4890 show_migration_types(types[order]);
4891 }
1f84a18f 4892 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4893 }
4894
949f7ec5
DR
4895 hugetlb_show_meminfo();
4896
11fb9989 4897 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4898
1da177e4
LT
4899 show_swap_cache_info();
4900}
4901
19770b32
MG
4902static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4903{
4904 zoneref->zone = zone;
4905 zoneref->zone_idx = zone_idx(zone);
4906}
4907
1da177e4
LT
4908/*
4909 * Builds allocation fallback zone lists.
1a93205b
CL
4910 *
4911 * Add all populated zones of a node to the zonelist.
1da177e4 4912 */
9d3be21b 4913static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4914{
1a93205b 4915 struct zone *zone;
bc732f1d 4916 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4917 int nr_zones = 0;
02a68a5e
CL
4918
4919 do {
2f6726e5 4920 zone_type--;
070f8032 4921 zone = pgdat->node_zones + zone_type;
6aa303de 4922 if (managed_zone(zone)) {
9d3be21b 4923 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4924 check_highest_zone(zone_type);
1da177e4 4925 }
2f6726e5 4926 } while (zone_type);
bc732f1d 4927
070f8032 4928 return nr_zones;
1da177e4
LT
4929}
4930
4931#ifdef CONFIG_NUMA
f0c0b2b8
KH
4932
4933static int __parse_numa_zonelist_order(char *s)
4934{
c9bff3ee
MH
4935 /*
4936 * We used to support different zonlists modes but they turned
4937 * out to be just not useful. Let's keep the warning in place
4938 * if somebody still use the cmd line parameter so that we do
4939 * not fail it silently
4940 */
4941 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4942 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4943 return -EINVAL;
4944 }
4945 return 0;
4946}
4947
4948static __init int setup_numa_zonelist_order(char *s)
4949{
ecb256f8
VL
4950 if (!s)
4951 return 0;
4952
c9bff3ee 4953 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4954}
4955early_param("numa_zonelist_order", setup_numa_zonelist_order);
4956
c9bff3ee
MH
4957char numa_zonelist_order[] = "Node";
4958
f0c0b2b8
KH
4959/*
4960 * sysctl handler for numa_zonelist_order
4961 */
cccad5b9 4962int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4963 void __user *buffer, size_t *length,
f0c0b2b8
KH
4964 loff_t *ppos)
4965{
c9bff3ee 4966 char *str;
f0c0b2b8
KH
4967 int ret;
4968
c9bff3ee
MH
4969 if (!write)
4970 return proc_dostring(table, write, buffer, length, ppos);
4971 str = memdup_user_nul(buffer, 16);
4972 if (IS_ERR(str))
4973 return PTR_ERR(str);
dacbde09 4974
c9bff3ee
MH
4975 ret = __parse_numa_zonelist_order(str);
4976 kfree(str);
443c6f14 4977 return ret;
f0c0b2b8
KH
4978}
4979
4980
62bc62a8 4981#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4982static int node_load[MAX_NUMNODES];
4983
1da177e4 4984/**
4dc3b16b 4985 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4986 * @node: node whose fallback list we're appending
4987 * @used_node_mask: nodemask_t of already used nodes
4988 *
4989 * We use a number of factors to determine which is the next node that should
4990 * appear on a given node's fallback list. The node should not have appeared
4991 * already in @node's fallback list, and it should be the next closest node
4992 * according to the distance array (which contains arbitrary distance values
4993 * from each node to each node in the system), and should also prefer nodes
4994 * with no CPUs, since presumably they'll have very little allocation pressure
4995 * on them otherwise.
4996 * It returns -1 if no node is found.
4997 */
f0c0b2b8 4998static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4999{
4cf808eb 5000 int n, val;
1da177e4 5001 int min_val = INT_MAX;
00ef2d2f 5002 int best_node = NUMA_NO_NODE;
a70f7302 5003 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5004
4cf808eb
LT
5005 /* Use the local node if we haven't already */
5006 if (!node_isset(node, *used_node_mask)) {
5007 node_set(node, *used_node_mask);
5008 return node;
5009 }
1da177e4 5010
4b0ef1fe 5011 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5012
5013 /* Don't want a node to appear more than once */
5014 if (node_isset(n, *used_node_mask))
5015 continue;
5016
1da177e4
LT
5017 /* Use the distance array to find the distance */
5018 val = node_distance(node, n);
5019
4cf808eb
LT
5020 /* Penalize nodes under us ("prefer the next node") */
5021 val += (n < node);
5022
1da177e4 5023 /* Give preference to headless and unused nodes */
a70f7302
RR
5024 tmp = cpumask_of_node(n);
5025 if (!cpumask_empty(tmp))
1da177e4
LT
5026 val += PENALTY_FOR_NODE_WITH_CPUS;
5027
5028 /* Slight preference for less loaded node */
5029 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5030 val += node_load[n];
5031
5032 if (val < min_val) {
5033 min_val = val;
5034 best_node = n;
5035 }
5036 }
5037
5038 if (best_node >= 0)
5039 node_set(best_node, *used_node_mask);
5040
5041 return best_node;
5042}
5043
f0c0b2b8
KH
5044
5045/*
5046 * Build zonelists ordered by node and zones within node.
5047 * This results in maximum locality--normal zone overflows into local
5048 * DMA zone, if any--but risks exhausting DMA zone.
5049 */
9d3be21b
MH
5050static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5051 unsigned nr_nodes)
1da177e4 5052{
9d3be21b
MH
5053 struct zoneref *zonerefs;
5054 int i;
5055
5056 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5057
5058 for (i = 0; i < nr_nodes; i++) {
5059 int nr_zones;
5060
5061 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5062
9d3be21b
MH
5063 nr_zones = build_zonerefs_node(node, zonerefs);
5064 zonerefs += nr_zones;
5065 }
5066 zonerefs->zone = NULL;
5067 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5068}
5069
523b9458
CL
5070/*
5071 * Build gfp_thisnode zonelists
5072 */
5073static void build_thisnode_zonelists(pg_data_t *pgdat)
5074{
9d3be21b
MH
5075 struct zoneref *zonerefs;
5076 int nr_zones;
523b9458 5077
9d3be21b
MH
5078 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5079 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5080 zonerefs += nr_zones;
5081 zonerefs->zone = NULL;
5082 zonerefs->zone_idx = 0;
523b9458
CL
5083}
5084
f0c0b2b8
KH
5085/*
5086 * Build zonelists ordered by zone and nodes within zones.
5087 * This results in conserving DMA zone[s] until all Normal memory is
5088 * exhausted, but results in overflowing to remote node while memory
5089 * may still exist in local DMA zone.
5090 */
f0c0b2b8 5091
f0c0b2b8
KH
5092static void build_zonelists(pg_data_t *pgdat)
5093{
9d3be21b
MH
5094 static int node_order[MAX_NUMNODES];
5095 int node, load, nr_nodes = 0;
1da177e4 5096 nodemask_t used_mask;
f0c0b2b8 5097 int local_node, prev_node;
1da177e4
LT
5098
5099 /* NUMA-aware ordering of nodes */
5100 local_node = pgdat->node_id;
62bc62a8 5101 load = nr_online_nodes;
1da177e4
LT
5102 prev_node = local_node;
5103 nodes_clear(used_mask);
f0c0b2b8 5104
f0c0b2b8 5105 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5106 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5107 /*
5108 * We don't want to pressure a particular node.
5109 * So adding penalty to the first node in same
5110 * distance group to make it round-robin.
5111 */
957f822a
DR
5112 if (node_distance(local_node, node) !=
5113 node_distance(local_node, prev_node))
f0c0b2b8
KH
5114 node_load[node] = load;
5115
9d3be21b 5116 node_order[nr_nodes++] = node;
1da177e4
LT
5117 prev_node = node;
5118 load--;
1da177e4 5119 }
523b9458 5120
9d3be21b 5121 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5122 build_thisnode_zonelists(pgdat);
1da177e4
LT
5123}
5124
7aac7898
LS
5125#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5126/*
5127 * Return node id of node used for "local" allocations.
5128 * I.e., first node id of first zone in arg node's generic zonelist.
5129 * Used for initializing percpu 'numa_mem', which is used primarily
5130 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5131 */
5132int local_memory_node(int node)
5133{
c33d6c06 5134 struct zoneref *z;
7aac7898 5135
c33d6c06 5136 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5137 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5138 NULL);
5139 return z->zone->node;
7aac7898
LS
5140}
5141#endif
f0c0b2b8 5142
6423aa81
JK
5143static void setup_min_unmapped_ratio(void);
5144static void setup_min_slab_ratio(void);
1da177e4
LT
5145#else /* CONFIG_NUMA */
5146
f0c0b2b8 5147static void build_zonelists(pg_data_t *pgdat)
1da177e4 5148{
19655d34 5149 int node, local_node;
9d3be21b
MH
5150 struct zoneref *zonerefs;
5151 int nr_zones;
1da177e4
LT
5152
5153 local_node = pgdat->node_id;
1da177e4 5154
9d3be21b
MH
5155 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5156 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5157 zonerefs += nr_zones;
1da177e4 5158
54a6eb5c
MG
5159 /*
5160 * Now we build the zonelist so that it contains the zones
5161 * of all the other nodes.
5162 * We don't want to pressure a particular node, so when
5163 * building the zones for node N, we make sure that the
5164 * zones coming right after the local ones are those from
5165 * node N+1 (modulo N)
5166 */
5167 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5168 if (!node_online(node))
5169 continue;
9d3be21b
MH
5170 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5171 zonerefs += nr_zones;
1da177e4 5172 }
54a6eb5c
MG
5173 for (node = 0; node < local_node; node++) {
5174 if (!node_online(node))
5175 continue;
9d3be21b
MH
5176 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5177 zonerefs += nr_zones;
54a6eb5c
MG
5178 }
5179
9d3be21b
MH
5180 zonerefs->zone = NULL;
5181 zonerefs->zone_idx = 0;
1da177e4
LT
5182}
5183
5184#endif /* CONFIG_NUMA */
5185
99dcc3e5
CL
5186/*
5187 * Boot pageset table. One per cpu which is going to be used for all
5188 * zones and all nodes. The parameters will be set in such a way
5189 * that an item put on a list will immediately be handed over to
5190 * the buddy list. This is safe since pageset manipulation is done
5191 * with interrupts disabled.
5192 *
5193 * The boot_pagesets must be kept even after bootup is complete for
5194 * unused processors and/or zones. They do play a role for bootstrapping
5195 * hotplugged processors.
5196 *
5197 * zoneinfo_show() and maybe other functions do
5198 * not check if the processor is online before following the pageset pointer.
5199 * Other parts of the kernel may not check if the zone is available.
5200 */
5201static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5202static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5203static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5204
11cd8638 5205static void __build_all_zonelists(void *data)
1da177e4 5206{
6811378e 5207 int nid;
afb6ebb3 5208 int __maybe_unused cpu;
9adb62a5 5209 pg_data_t *self = data;
b93e0f32
MH
5210 static DEFINE_SPINLOCK(lock);
5211
5212 spin_lock(&lock);
9276b1bc 5213
7f9cfb31
BL
5214#ifdef CONFIG_NUMA
5215 memset(node_load, 0, sizeof(node_load));
5216#endif
9adb62a5 5217
c1152583
WY
5218 /*
5219 * This node is hotadded and no memory is yet present. So just
5220 * building zonelists is fine - no need to touch other nodes.
5221 */
9adb62a5
JL
5222 if (self && !node_online(self->node_id)) {
5223 build_zonelists(self);
c1152583
WY
5224 } else {
5225 for_each_online_node(nid) {
5226 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5227
c1152583
WY
5228 build_zonelists(pgdat);
5229 }
99dcc3e5 5230
7aac7898
LS
5231#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5232 /*
5233 * We now know the "local memory node" for each node--
5234 * i.e., the node of the first zone in the generic zonelist.
5235 * Set up numa_mem percpu variable for on-line cpus. During
5236 * boot, only the boot cpu should be on-line; we'll init the
5237 * secondary cpus' numa_mem as they come on-line. During
5238 * node/memory hotplug, we'll fixup all on-line cpus.
5239 */
d9c9a0b9 5240 for_each_online_cpu(cpu)
7aac7898 5241 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5242#endif
d9c9a0b9 5243 }
b93e0f32
MH
5244
5245 spin_unlock(&lock);
6811378e
YG
5246}
5247
061f67bc
RV
5248static noinline void __init
5249build_all_zonelists_init(void)
5250{
afb6ebb3
MH
5251 int cpu;
5252
061f67bc 5253 __build_all_zonelists(NULL);
afb6ebb3
MH
5254
5255 /*
5256 * Initialize the boot_pagesets that are going to be used
5257 * for bootstrapping processors. The real pagesets for
5258 * each zone will be allocated later when the per cpu
5259 * allocator is available.
5260 *
5261 * boot_pagesets are used also for bootstrapping offline
5262 * cpus if the system is already booted because the pagesets
5263 * are needed to initialize allocators on a specific cpu too.
5264 * F.e. the percpu allocator needs the page allocator which
5265 * needs the percpu allocator in order to allocate its pagesets
5266 * (a chicken-egg dilemma).
5267 */
5268 for_each_possible_cpu(cpu)
5269 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5270
061f67bc
RV
5271 mminit_verify_zonelist();
5272 cpuset_init_current_mems_allowed();
5273}
5274
4eaf3f64 5275/*
4eaf3f64 5276 * unless system_state == SYSTEM_BOOTING.
061f67bc 5277 *
72675e13 5278 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5279 * [protected by SYSTEM_BOOTING].
4eaf3f64 5280 */
72675e13 5281void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5282{
5283 if (system_state == SYSTEM_BOOTING) {
061f67bc 5284 build_all_zonelists_init();
6811378e 5285 } else {
11cd8638 5286 __build_all_zonelists(pgdat);
6811378e
YG
5287 /* cpuset refresh routine should be here */
5288 }
bd1e22b8 5289 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5290 /*
5291 * Disable grouping by mobility if the number of pages in the
5292 * system is too low to allow the mechanism to work. It would be
5293 * more accurate, but expensive to check per-zone. This check is
5294 * made on memory-hotadd so a system can start with mobility
5295 * disabled and enable it later
5296 */
d9c23400 5297 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5298 page_group_by_mobility_disabled = 1;
5299 else
5300 page_group_by_mobility_disabled = 0;
5301
c9bff3ee 5302 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5303 nr_online_nodes,
756a025f
JP
5304 page_group_by_mobility_disabled ? "off" : "on",
5305 vm_total_pages);
f0c0b2b8 5306#ifdef CONFIG_NUMA
f88dfff5 5307 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5308#endif
1da177e4
LT
5309}
5310
1da177e4
LT
5311/*
5312 * Initially all pages are reserved - free ones are freed
5313 * up by free_all_bootmem() once the early boot process is
5314 * done. Non-atomic initialization, single-pass.
5315 */
c09b4240 5316void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5317 unsigned long start_pfn, enum memmap_context context)
1da177e4 5318{
4b94ffdc 5319 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5320 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5321 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5322 unsigned long pfn;
3a80a7fa 5323 unsigned long nr_initialised = 0;
342332e6
TI
5324#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 struct memblock_region *r = NULL, *tmp;
5326#endif
1da177e4 5327
22b31eec
HD
5328 if (highest_memmap_pfn < end_pfn - 1)
5329 highest_memmap_pfn = end_pfn - 1;
5330
4b94ffdc
DW
5331 /*
5332 * Honor reservation requested by the driver for this ZONE_DEVICE
5333 * memory
5334 */
5335 if (altmap && start_pfn == altmap->base_pfn)
5336 start_pfn += altmap->reserve;
5337
cbe8dd4a 5338 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5339 /*
b72d0ffb
AM
5340 * There can be holes in boot-time mem_map[]s handed to this
5341 * function. They do not exist on hotplugged memory.
a2f3aa02 5342 */
b72d0ffb
AM
5343 if (context != MEMMAP_EARLY)
5344 goto not_early;
5345
b92df1de
PB
5346 if (!early_pfn_valid(pfn)) {
5347#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5348 /*
5349 * Skip to the pfn preceding the next valid one (or
5350 * end_pfn), such that we hit a valid pfn (or end_pfn)
5351 * on our next iteration of the loop.
5352 */
5353 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5354#endif
b72d0ffb 5355 continue;
b92df1de 5356 }
b72d0ffb
AM
5357 if (!early_pfn_in_nid(pfn, nid))
5358 continue;
5359 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5360 break;
342332e6
TI
5361
5362#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5363 /*
5364 * Check given memblock attribute by firmware which can affect
5365 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5366 * mirrored, it's an overlapped memmap init. skip it.
5367 */
5368 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5369 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5370 for_each_memblock(memory, tmp)
5371 if (pfn < memblock_region_memory_end_pfn(tmp))
5372 break;
5373 r = tmp;
5374 }
5375 if (pfn >= memblock_region_memory_base_pfn(r) &&
5376 memblock_is_mirror(r)) {
5377 /* already initialized as NORMAL */
5378 pfn = memblock_region_memory_end_pfn(r);
5379 continue;
342332e6 5380 }
a2f3aa02 5381 }
b72d0ffb 5382#endif
ac5d2539 5383
b72d0ffb 5384not_early:
ac5d2539
MG
5385 /*
5386 * Mark the block movable so that blocks are reserved for
5387 * movable at startup. This will force kernel allocations
5388 * to reserve their blocks rather than leaking throughout
5389 * the address space during boot when many long-lived
974a786e 5390 * kernel allocations are made.
ac5d2539
MG
5391 *
5392 * bitmap is created for zone's valid pfn range. but memmap
5393 * can be created for invalid pages (for alignment)
5394 * check here not to call set_pageblock_migratetype() against
5395 * pfn out of zone.
5396 */
5397 if (!(pfn & (pageblock_nr_pages - 1))) {
5398 struct page *page = pfn_to_page(pfn);
5399
5400 __init_single_page(page, pfn, zone, nid);
5401 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5402 cond_resched();
ac5d2539
MG
5403 } else {
5404 __init_single_pfn(pfn, zone, nid);
5405 }
1da177e4
LT
5406 }
5407}
5408
1e548deb 5409static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5410{
7aeb09f9 5411 unsigned int order, t;
b2a0ac88
MG
5412 for_each_migratetype_order(order, t) {
5413 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5414 zone->free_area[order].nr_free = 0;
5415 }
5416}
5417
5418#ifndef __HAVE_ARCH_MEMMAP_INIT
5419#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5420 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5421#endif
5422
7cd2b0a3 5423static int zone_batchsize(struct zone *zone)
e7c8d5c9 5424{
3a6be87f 5425#ifdef CONFIG_MMU
e7c8d5c9
CL
5426 int batch;
5427
5428 /*
5429 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5430 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5431 *
5432 * OK, so we don't know how big the cache is. So guess.
5433 */
b40da049 5434 batch = zone->managed_pages / 1024;
ba56e91c
SR
5435 if (batch * PAGE_SIZE > 512 * 1024)
5436 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5437 batch /= 4; /* We effectively *= 4 below */
5438 if (batch < 1)
5439 batch = 1;
5440
5441 /*
0ceaacc9
NP
5442 * Clamp the batch to a 2^n - 1 value. Having a power
5443 * of 2 value was found to be more likely to have
5444 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5445 *
0ceaacc9
NP
5446 * For example if 2 tasks are alternately allocating
5447 * batches of pages, one task can end up with a lot
5448 * of pages of one half of the possible page colors
5449 * and the other with pages of the other colors.
e7c8d5c9 5450 */
9155203a 5451 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5452
e7c8d5c9 5453 return batch;
3a6be87f
DH
5454
5455#else
5456 /* The deferral and batching of frees should be suppressed under NOMMU
5457 * conditions.
5458 *
5459 * The problem is that NOMMU needs to be able to allocate large chunks
5460 * of contiguous memory as there's no hardware page translation to
5461 * assemble apparent contiguous memory from discontiguous pages.
5462 *
5463 * Queueing large contiguous runs of pages for batching, however,
5464 * causes the pages to actually be freed in smaller chunks. As there
5465 * can be a significant delay between the individual batches being
5466 * recycled, this leads to the once large chunks of space being
5467 * fragmented and becoming unavailable for high-order allocations.
5468 */
5469 return 0;
5470#endif
e7c8d5c9
CL
5471}
5472
8d7a8fa9
CS
5473/*
5474 * pcp->high and pcp->batch values are related and dependent on one another:
5475 * ->batch must never be higher then ->high.
5476 * The following function updates them in a safe manner without read side
5477 * locking.
5478 *
5479 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5480 * those fields changing asynchronously (acording the the above rule).
5481 *
5482 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5483 * outside of boot time (or some other assurance that no concurrent updaters
5484 * exist).
5485 */
5486static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5487 unsigned long batch)
5488{
5489 /* start with a fail safe value for batch */
5490 pcp->batch = 1;
5491 smp_wmb();
5492
5493 /* Update high, then batch, in order */
5494 pcp->high = high;
5495 smp_wmb();
5496
5497 pcp->batch = batch;
5498}
5499
3664033c 5500/* a companion to pageset_set_high() */
4008bab7
CS
5501static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5502{
8d7a8fa9 5503 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5504}
5505
88c90dbc 5506static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5507{
5508 struct per_cpu_pages *pcp;
5f8dcc21 5509 int migratetype;
2caaad41 5510
1c6fe946
MD
5511 memset(p, 0, sizeof(*p));
5512
3dfa5721 5513 pcp = &p->pcp;
2caaad41 5514 pcp->count = 0;
5f8dcc21
MG
5515 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5516 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5517}
5518
88c90dbc
CS
5519static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5520{
5521 pageset_init(p);
5522 pageset_set_batch(p, batch);
5523}
5524
8ad4b1fb 5525/*
3664033c 5526 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5527 * to the value high for the pageset p.
5528 */
3664033c 5529static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5530 unsigned long high)
5531{
8d7a8fa9
CS
5532 unsigned long batch = max(1UL, high / 4);
5533 if ((high / 4) > (PAGE_SHIFT * 8))
5534 batch = PAGE_SHIFT * 8;
8ad4b1fb 5535
8d7a8fa9 5536 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5537}
5538
7cd2b0a3
DR
5539static void pageset_set_high_and_batch(struct zone *zone,
5540 struct per_cpu_pageset *pcp)
56cef2b8 5541{
56cef2b8 5542 if (percpu_pagelist_fraction)
3664033c 5543 pageset_set_high(pcp,
56cef2b8
CS
5544 (zone->managed_pages /
5545 percpu_pagelist_fraction));
5546 else
5547 pageset_set_batch(pcp, zone_batchsize(zone));
5548}
5549
169f6c19
CS
5550static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5551{
5552 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5553
5554 pageset_init(pcp);
5555 pageset_set_high_and_batch(zone, pcp);
5556}
5557
72675e13 5558void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5559{
5560 int cpu;
319774e2 5561 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5562 for_each_possible_cpu(cpu)
5563 zone_pageset_init(zone, cpu);
319774e2
WF
5564}
5565
2caaad41 5566/*
99dcc3e5
CL
5567 * Allocate per cpu pagesets and initialize them.
5568 * Before this call only boot pagesets were available.
e7c8d5c9 5569 */
99dcc3e5 5570void __init setup_per_cpu_pageset(void)
e7c8d5c9 5571{
b4911ea2 5572 struct pglist_data *pgdat;
99dcc3e5 5573 struct zone *zone;
e7c8d5c9 5574
319774e2
WF
5575 for_each_populated_zone(zone)
5576 setup_zone_pageset(zone);
b4911ea2
MG
5577
5578 for_each_online_pgdat(pgdat)
5579 pgdat->per_cpu_nodestats =
5580 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5581}
5582
c09b4240 5583static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5584{
99dcc3e5
CL
5585 /*
5586 * per cpu subsystem is not up at this point. The following code
5587 * relies on the ability of the linker to provide the
5588 * offset of a (static) per cpu variable into the per cpu area.
5589 */
5590 zone->pageset = &boot_pageset;
ed8ece2e 5591
b38a8725 5592 if (populated_zone(zone))
99dcc3e5
CL
5593 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5594 zone->name, zone->present_pages,
5595 zone_batchsize(zone));
ed8ece2e
DH
5596}
5597
dc0bbf3b 5598void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5599 unsigned long zone_start_pfn,
b171e409 5600 unsigned long size)
ed8ece2e
DH
5601{
5602 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5603
ed8ece2e
DH
5604 pgdat->nr_zones = zone_idx(zone) + 1;
5605
ed8ece2e
DH
5606 zone->zone_start_pfn = zone_start_pfn;
5607
708614e6
MG
5608 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5609 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5610 pgdat->node_id,
5611 (unsigned long)zone_idx(zone),
5612 zone_start_pfn, (zone_start_pfn + size));
5613
1e548deb 5614 zone_init_free_lists(zone);
9dcb8b68 5615 zone->initialized = 1;
ed8ece2e
DH
5616}
5617
0ee332c1 5618#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5619#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5620
c713216d
MG
5621/*
5622 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5623 */
8a942fde
MG
5624int __meminit __early_pfn_to_nid(unsigned long pfn,
5625 struct mminit_pfnnid_cache *state)
c713216d 5626{
c13291a5 5627 unsigned long start_pfn, end_pfn;
e76b63f8 5628 int nid;
7c243c71 5629
8a942fde
MG
5630 if (state->last_start <= pfn && pfn < state->last_end)
5631 return state->last_nid;
c713216d 5632
e76b63f8
YL
5633 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5634 if (nid != -1) {
8a942fde
MG
5635 state->last_start = start_pfn;
5636 state->last_end = end_pfn;
5637 state->last_nid = nid;
e76b63f8
YL
5638 }
5639
5640 return nid;
c713216d
MG
5641}
5642#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5643
c713216d 5644/**
6782832e 5645 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5646 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5647 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5648 *
7d018176
ZZ
5649 * If an architecture guarantees that all ranges registered contain no holes
5650 * and may be freed, this this function may be used instead of calling
5651 * memblock_free_early_nid() manually.
c713216d 5652 */
c13291a5 5653void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5654{
c13291a5
TH
5655 unsigned long start_pfn, end_pfn;
5656 int i, this_nid;
edbe7d23 5657
c13291a5
TH
5658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5659 start_pfn = min(start_pfn, max_low_pfn);
5660 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5661
c13291a5 5662 if (start_pfn < end_pfn)
6782832e
SS
5663 memblock_free_early_nid(PFN_PHYS(start_pfn),
5664 (end_pfn - start_pfn) << PAGE_SHIFT,
5665 this_nid);
edbe7d23 5666 }
edbe7d23 5667}
edbe7d23 5668
c713216d
MG
5669/**
5670 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5671 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5672 *
7d018176
ZZ
5673 * If an architecture guarantees that all ranges registered contain no holes and may
5674 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5675 */
5676void __init sparse_memory_present_with_active_regions(int nid)
5677{
c13291a5
TH
5678 unsigned long start_pfn, end_pfn;
5679 int i, this_nid;
c713216d 5680
c13291a5
TH
5681 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5682 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5683}
5684
5685/**
5686 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5687 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5688 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5689 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5690 *
5691 * It returns the start and end page frame of a node based on information
7d018176 5692 * provided by memblock_set_node(). If called for a node
c713216d 5693 * with no available memory, a warning is printed and the start and end
88ca3b94 5694 * PFNs will be 0.
c713216d 5695 */
a3142c8e 5696void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5697 unsigned long *start_pfn, unsigned long *end_pfn)
5698{
c13291a5 5699 unsigned long this_start_pfn, this_end_pfn;
c713216d 5700 int i;
c13291a5 5701
c713216d
MG
5702 *start_pfn = -1UL;
5703 *end_pfn = 0;
5704
c13291a5
TH
5705 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5706 *start_pfn = min(*start_pfn, this_start_pfn);
5707 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5708 }
5709
633c0666 5710 if (*start_pfn == -1UL)
c713216d 5711 *start_pfn = 0;
c713216d
MG
5712}
5713
2a1e274a
MG
5714/*
5715 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5716 * assumption is made that zones within a node are ordered in monotonic
5717 * increasing memory addresses so that the "highest" populated zone is used
5718 */
b69a7288 5719static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5720{
5721 int zone_index;
5722 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5723 if (zone_index == ZONE_MOVABLE)
5724 continue;
5725
5726 if (arch_zone_highest_possible_pfn[zone_index] >
5727 arch_zone_lowest_possible_pfn[zone_index])
5728 break;
5729 }
5730
5731 VM_BUG_ON(zone_index == -1);
5732 movable_zone = zone_index;
5733}
5734
5735/*
5736 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5737 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5738 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5739 * in each node depending on the size of each node and how evenly kernelcore
5740 * is distributed. This helper function adjusts the zone ranges
5741 * provided by the architecture for a given node by using the end of the
5742 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5743 * zones within a node are in order of monotonic increases memory addresses
5744 */
b69a7288 5745static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5746 unsigned long zone_type,
5747 unsigned long node_start_pfn,
5748 unsigned long node_end_pfn,
5749 unsigned long *zone_start_pfn,
5750 unsigned long *zone_end_pfn)
5751{
5752 /* Only adjust if ZONE_MOVABLE is on this node */
5753 if (zone_movable_pfn[nid]) {
5754 /* Size ZONE_MOVABLE */
5755 if (zone_type == ZONE_MOVABLE) {
5756 *zone_start_pfn = zone_movable_pfn[nid];
5757 *zone_end_pfn = min(node_end_pfn,
5758 arch_zone_highest_possible_pfn[movable_zone]);
5759
e506b996
XQ
5760 /* Adjust for ZONE_MOVABLE starting within this range */
5761 } else if (!mirrored_kernelcore &&
5762 *zone_start_pfn < zone_movable_pfn[nid] &&
5763 *zone_end_pfn > zone_movable_pfn[nid]) {
5764 *zone_end_pfn = zone_movable_pfn[nid];
5765
2a1e274a
MG
5766 /* Check if this whole range is within ZONE_MOVABLE */
5767 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5768 *zone_start_pfn = *zone_end_pfn;
5769 }
5770}
5771
c713216d
MG
5772/*
5773 * Return the number of pages a zone spans in a node, including holes
5774 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5775 */
6ea6e688 5776static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5777 unsigned long zone_type,
7960aedd
ZY
5778 unsigned long node_start_pfn,
5779 unsigned long node_end_pfn,
d91749c1
TI
5780 unsigned long *zone_start_pfn,
5781 unsigned long *zone_end_pfn,
c713216d
MG
5782 unsigned long *ignored)
5783{
b5685e92 5784 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5785 if (!node_start_pfn && !node_end_pfn)
5786 return 0;
5787
7960aedd 5788 /* Get the start and end of the zone */
d91749c1
TI
5789 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5790 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5791 adjust_zone_range_for_zone_movable(nid, zone_type,
5792 node_start_pfn, node_end_pfn,
d91749c1 5793 zone_start_pfn, zone_end_pfn);
c713216d
MG
5794
5795 /* Check that this node has pages within the zone's required range */
d91749c1 5796 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5797 return 0;
5798
5799 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5800 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5801 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5802
5803 /* Return the spanned pages */
d91749c1 5804 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5805}
5806
5807/*
5808 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5809 * then all holes in the requested range will be accounted for.
c713216d 5810 */
32996250 5811unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5812 unsigned long range_start_pfn,
5813 unsigned long range_end_pfn)
5814{
96e907d1
TH
5815 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5816 unsigned long start_pfn, end_pfn;
5817 int i;
c713216d 5818
96e907d1
TH
5819 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5820 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5821 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5822 nr_absent -= end_pfn - start_pfn;
c713216d 5823 }
96e907d1 5824 return nr_absent;
c713216d
MG
5825}
5826
5827/**
5828 * absent_pages_in_range - Return number of page frames in holes within a range
5829 * @start_pfn: The start PFN to start searching for holes
5830 * @end_pfn: The end PFN to stop searching for holes
5831 *
88ca3b94 5832 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5833 */
5834unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5835 unsigned long end_pfn)
5836{
5837 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5838}
5839
5840/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5841static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5842 unsigned long zone_type,
7960aedd
ZY
5843 unsigned long node_start_pfn,
5844 unsigned long node_end_pfn,
c713216d
MG
5845 unsigned long *ignored)
5846{
96e907d1
TH
5847 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5848 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5849 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5850 unsigned long nr_absent;
9c7cd687 5851
b5685e92 5852 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5853 if (!node_start_pfn && !node_end_pfn)
5854 return 0;
5855
96e907d1
TH
5856 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5857 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5858
2a1e274a
MG
5859 adjust_zone_range_for_zone_movable(nid, zone_type,
5860 node_start_pfn, node_end_pfn,
5861 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5862 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5863
5864 /*
5865 * ZONE_MOVABLE handling.
5866 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5867 * and vice versa.
5868 */
e506b996
XQ
5869 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5870 unsigned long start_pfn, end_pfn;
5871 struct memblock_region *r;
5872
5873 for_each_memblock(memory, r) {
5874 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5875 zone_start_pfn, zone_end_pfn);
5876 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5877 zone_start_pfn, zone_end_pfn);
5878
5879 if (zone_type == ZONE_MOVABLE &&
5880 memblock_is_mirror(r))
5881 nr_absent += end_pfn - start_pfn;
5882
5883 if (zone_type == ZONE_NORMAL &&
5884 !memblock_is_mirror(r))
5885 nr_absent += end_pfn - start_pfn;
342332e6
TI
5886 }
5887 }
5888
5889 return nr_absent;
c713216d 5890}
0e0b864e 5891
0ee332c1 5892#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5893static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5894 unsigned long zone_type,
7960aedd
ZY
5895 unsigned long node_start_pfn,
5896 unsigned long node_end_pfn,
d91749c1
TI
5897 unsigned long *zone_start_pfn,
5898 unsigned long *zone_end_pfn,
c713216d
MG
5899 unsigned long *zones_size)
5900{
d91749c1
TI
5901 unsigned int zone;
5902
5903 *zone_start_pfn = node_start_pfn;
5904 for (zone = 0; zone < zone_type; zone++)
5905 *zone_start_pfn += zones_size[zone];
5906
5907 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5908
c713216d
MG
5909 return zones_size[zone_type];
5910}
5911
6ea6e688 5912static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5913 unsigned long zone_type,
7960aedd
ZY
5914 unsigned long node_start_pfn,
5915 unsigned long node_end_pfn,
c713216d
MG
5916 unsigned long *zholes_size)
5917{
5918 if (!zholes_size)
5919 return 0;
5920
5921 return zholes_size[zone_type];
5922}
20e6926d 5923
0ee332c1 5924#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5925
a3142c8e 5926static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5927 unsigned long node_start_pfn,
5928 unsigned long node_end_pfn,
5929 unsigned long *zones_size,
5930 unsigned long *zholes_size)
c713216d 5931{
febd5949 5932 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5933 enum zone_type i;
5934
febd5949
GZ
5935 for (i = 0; i < MAX_NR_ZONES; i++) {
5936 struct zone *zone = pgdat->node_zones + i;
d91749c1 5937 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5938 unsigned long size, real_size;
c713216d 5939
febd5949
GZ
5940 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5941 node_start_pfn,
5942 node_end_pfn,
d91749c1
TI
5943 &zone_start_pfn,
5944 &zone_end_pfn,
febd5949
GZ
5945 zones_size);
5946 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5947 node_start_pfn, node_end_pfn,
5948 zholes_size);
d91749c1
TI
5949 if (size)
5950 zone->zone_start_pfn = zone_start_pfn;
5951 else
5952 zone->zone_start_pfn = 0;
febd5949
GZ
5953 zone->spanned_pages = size;
5954 zone->present_pages = real_size;
5955
5956 totalpages += size;
5957 realtotalpages += real_size;
5958 }
5959
5960 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5961 pgdat->node_present_pages = realtotalpages;
5962 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5963 realtotalpages);
5964}
5965
835c134e
MG
5966#ifndef CONFIG_SPARSEMEM
5967/*
5968 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5969 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5970 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5971 * round what is now in bits to nearest long in bits, then return it in
5972 * bytes.
5973 */
7c45512d 5974static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5975{
5976 unsigned long usemapsize;
5977
7c45512d 5978 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5979 usemapsize = roundup(zonesize, pageblock_nr_pages);
5980 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5981 usemapsize *= NR_PAGEBLOCK_BITS;
5982 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5983
5984 return usemapsize / 8;
5985}
5986
5987static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5988 struct zone *zone,
5989 unsigned long zone_start_pfn,
5990 unsigned long zonesize)
835c134e 5991{
7c45512d 5992 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5993 zone->pageblock_flags = NULL;
58a01a45 5994 if (usemapsize)
6782832e
SS
5995 zone->pageblock_flags =
5996 memblock_virt_alloc_node_nopanic(usemapsize,
5997 pgdat->node_id);
835c134e
MG
5998}
5999#else
7c45512d
LT
6000static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6001 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6002#endif /* CONFIG_SPARSEMEM */
6003
d9c23400 6004#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6005
d9c23400 6006/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6007void __paginginit set_pageblock_order(void)
d9c23400 6008{
955c1cd7
AM
6009 unsigned int order;
6010
d9c23400
MG
6011 /* Check that pageblock_nr_pages has not already been setup */
6012 if (pageblock_order)
6013 return;
6014
955c1cd7
AM
6015 if (HPAGE_SHIFT > PAGE_SHIFT)
6016 order = HUGETLB_PAGE_ORDER;
6017 else
6018 order = MAX_ORDER - 1;
6019
d9c23400
MG
6020 /*
6021 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6022 * This value may be variable depending on boot parameters on IA64 and
6023 * powerpc.
d9c23400
MG
6024 */
6025 pageblock_order = order;
6026}
6027#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6028
ba72cb8c
MG
6029/*
6030 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6031 * is unused as pageblock_order is set at compile-time. See
6032 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6033 * the kernel config
ba72cb8c 6034 */
15ca220e 6035void __paginginit set_pageblock_order(void)
ba72cb8c 6036{
ba72cb8c 6037}
d9c23400
MG
6038
6039#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6040
01cefaef
JL
6041static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6042 unsigned long present_pages)
6043{
6044 unsigned long pages = spanned_pages;
6045
6046 /*
6047 * Provide a more accurate estimation if there are holes within
6048 * the zone and SPARSEMEM is in use. If there are holes within the
6049 * zone, each populated memory region may cost us one or two extra
6050 * memmap pages due to alignment because memmap pages for each
89d790ab 6051 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6052 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6053 */
6054 if (spanned_pages > present_pages + (present_pages >> 4) &&
6055 IS_ENABLED(CONFIG_SPARSEMEM))
6056 pages = present_pages;
6057
6058 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6059}
6060
1da177e4
LT
6061/*
6062 * Set up the zone data structures:
6063 * - mark all pages reserved
6064 * - mark all memory queues empty
6065 * - clear the memory bitmaps
6527af5d
MK
6066 *
6067 * NOTE: pgdat should get zeroed by caller.
1da177e4 6068 */
7f3eb55b 6069static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6070{
2f1b6248 6071 enum zone_type j;
ed8ece2e 6072 int nid = pgdat->node_id;
1da177e4 6073
208d54e5 6074 pgdat_resize_init(pgdat);
8177a420
AA
6075#ifdef CONFIG_NUMA_BALANCING
6076 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6077 pgdat->numabalancing_migrate_nr_pages = 0;
6078 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6079#endif
6080#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6081 spin_lock_init(&pgdat->split_queue_lock);
6082 INIT_LIST_HEAD(&pgdat->split_queue);
6083 pgdat->split_queue_len = 0;
8177a420 6084#endif
1da177e4 6085 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6086 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6087#ifdef CONFIG_COMPACTION
6088 init_waitqueue_head(&pgdat->kcompactd_wait);
6089#endif
eefa864b 6090 pgdat_page_ext_init(pgdat);
a52633d8 6091 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6092 lruvec_init(node_lruvec(pgdat));
5f63b720 6093
385386cf
JW
6094 pgdat->per_cpu_nodestats = &boot_nodestats;
6095
1da177e4
LT
6096 for (j = 0; j < MAX_NR_ZONES; j++) {
6097 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6098 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6099 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6100
febd5949
GZ
6101 size = zone->spanned_pages;
6102 realsize = freesize = zone->present_pages;
1da177e4 6103
0e0b864e 6104 /*
9feedc9d 6105 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6106 * is used by this zone for memmap. This affects the watermark
6107 * and per-cpu initialisations
6108 */
01cefaef 6109 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6110 if (!is_highmem_idx(j)) {
6111 if (freesize >= memmap_pages) {
6112 freesize -= memmap_pages;
6113 if (memmap_pages)
6114 printk(KERN_DEBUG
6115 " %s zone: %lu pages used for memmap\n",
6116 zone_names[j], memmap_pages);
6117 } else
1170532b 6118 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6119 zone_names[j], memmap_pages, freesize);
6120 }
0e0b864e 6121
6267276f 6122 /* Account for reserved pages */
9feedc9d
JL
6123 if (j == 0 && freesize > dma_reserve) {
6124 freesize -= dma_reserve;
d903ef9f 6125 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6126 zone_names[0], dma_reserve);
0e0b864e
MG
6127 }
6128
98d2b0eb 6129 if (!is_highmem_idx(j))
9feedc9d 6130 nr_kernel_pages += freesize;
01cefaef
JL
6131 /* Charge for highmem memmap if there are enough kernel pages */
6132 else if (nr_kernel_pages > memmap_pages * 2)
6133 nr_kernel_pages -= memmap_pages;
9feedc9d 6134 nr_all_pages += freesize;
1da177e4 6135
9feedc9d
JL
6136 /*
6137 * Set an approximate value for lowmem here, it will be adjusted
6138 * when the bootmem allocator frees pages into the buddy system.
6139 * And all highmem pages will be managed by the buddy system.
6140 */
6141 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6142#ifdef CONFIG_NUMA
d5f541ed 6143 zone->node = nid;
9614634f 6144#endif
1da177e4 6145 zone->name = zone_names[j];
a52633d8 6146 zone->zone_pgdat = pgdat;
1da177e4 6147 spin_lock_init(&zone->lock);
bdc8cb98 6148 zone_seqlock_init(zone);
ed8ece2e 6149 zone_pcp_init(zone);
81c0a2bb 6150
1da177e4
LT
6151 if (!size)
6152 continue;
6153
955c1cd7 6154 set_pageblock_order();
7c45512d 6155 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6156 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6157 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6158 }
6159}
6160
0cd842f9 6161#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6162static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6163{
b0aeba74 6164 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6165 unsigned long __maybe_unused offset = 0;
6166
1da177e4
LT
6167 /* Skip empty nodes */
6168 if (!pgdat->node_spanned_pages)
6169 return;
6170
b0aeba74
TL
6171 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6172 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6173 /* ia64 gets its own node_mem_map, before this, without bootmem */
6174 if (!pgdat->node_mem_map) {
b0aeba74 6175 unsigned long size, end;
d41dee36
AW
6176 struct page *map;
6177
e984bb43
BP
6178 /*
6179 * The zone's endpoints aren't required to be MAX_ORDER
6180 * aligned but the node_mem_map endpoints must be in order
6181 * for the buddy allocator to function correctly.
6182 */
108bcc96 6183 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6184 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6185 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6186 map = alloc_remap(pgdat->node_id, size);
6187 if (!map)
6782832e
SS
6188 map = memblock_virt_alloc_node_nopanic(size,
6189 pgdat->node_id);
a1c34a3b 6190 pgdat->node_mem_map = map + offset;
1da177e4 6191 }
0cd842f9
OS
6192 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6193 __func__, pgdat->node_id, (unsigned long)pgdat,
6194 (unsigned long)pgdat->node_mem_map);
12d810c1 6195#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6196 /*
6197 * With no DISCONTIG, the global mem_map is just set as node 0's
6198 */
c713216d 6199 if (pgdat == NODE_DATA(0)) {
1da177e4 6200 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6201#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6202 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6203 mem_map -= offset;
0ee332c1 6204#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6205 }
1da177e4
LT
6206#endif
6207}
0cd842f9
OS
6208#else
6209static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6210#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6211
9109fb7b
JW
6212void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6213 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6214{
9109fb7b 6215 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6216 unsigned long start_pfn = 0;
6217 unsigned long end_pfn = 0;
9109fb7b 6218
88fdf75d 6219 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6220 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6221
1da177e4
LT
6222 pgdat->node_id = nid;
6223 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6224 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6225#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6226 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6227 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6228 (u64)start_pfn << PAGE_SHIFT,
6229 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6230#else
6231 start_pfn = node_start_pfn;
7960aedd
ZY
6232#endif
6233 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6234 zones_size, zholes_size);
1da177e4
LT
6235
6236 alloc_node_mem_map(pgdat);
6237
864b9a39 6238 reset_deferred_meminit(pgdat);
7f3eb55b 6239 free_area_init_core(pgdat);
1da177e4
LT
6240}
6241
a4a3ede2
PT
6242#ifdef CONFIG_HAVE_MEMBLOCK
6243/*
6244 * Only struct pages that are backed by physical memory are zeroed and
6245 * initialized by going through __init_single_page(). But, there are some
6246 * struct pages which are reserved in memblock allocator and their fields
6247 * may be accessed (for example page_to_pfn() on some configuration accesses
6248 * flags). We must explicitly zero those struct pages.
6249 */
6250void __paginginit zero_resv_unavail(void)
6251{
6252 phys_addr_t start, end;
6253 unsigned long pfn;
6254 u64 i, pgcnt;
6255
6256 /*
6257 * Loop through ranges that are reserved, but do not have reported
6258 * physical memory backing.
6259 */
6260 pgcnt = 0;
6261 for_each_resv_unavail_range(i, &start, &end) {
6262 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
e8c24773
DY
6263 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6264 continue;
a4a3ede2
PT
6265 mm_zero_struct_page(pfn_to_page(pfn));
6266 pgcnt++;
6267 }
6268 }
6269
6270 /*
6271 * Struct pages that do not have backing memory. This could be because
6272 * firmware is using some of this memory, or for some other reasons.
6273 * Once memblock is changed so such behaviour is not allowed: i.e.
6274 * list of "reserved" memory must be a subset of list of "memory", then
6275 * this code can be removed.
6276 */
6277 if (pgcnt)
6278 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6279}
6280#endif /* CONFIG_HAVE_MEMBLOCK */
6281
0ee332c1 6282#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6283
6284#if MAX_NUMNODES > 1
6285/*
6286 * Figure out the number of possible node ids.
6287 */
f9872caf 6288void __init setup_nr_node_ids(void)
418508c1 6289{
904a9553 6290 unsigned int highest;
418508c1 6291
904a9553 6292 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6293 nr_node_ids = highest + 1;
6294}
418508c1
MS
6295#endif
6296
1e01979c
TH
6297/**
6298 * node_map_pfn_alignment - determine the maximum internode alignment
6299 *
6300 * This function should be called after node map is populated and sorted.
6301 * It calculates the maximum power of two alignment which can distinguish
6302 * all the nodes.
6303 *
6304 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6305 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6306 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6307 * shifted, 1GiB is enough and this function will indicate so.
6308 *
6309 * This is used to test whether pfn -> nid mapping of the chosen memory
6310 * model has fine enough granularity to avoid incorrect mapping for the
6311 * populated node map.
6312 *
6313 * Returns the determined alignment in pfn's. 0 if there is no alignment
6314 * requirement (single node).
6315 */
6316unsigned long __init node_map_pfn_alignment(void)
6317{
6318 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6319 unsigned long start, end, mask;
1e01979c 6320 int last_nid = -1;
c13291a5 6321 int i, nid;
1e01979c 6322
c13291a5 6323 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6324 if (!start || last_nid < 0 || last_nid == nid) {
6325 last_nid = nid;
6326 last_end = end;
6327 continue;
6328 }
6329
6330 /*
6331 * Start with a mask granular enough to pin-point to the
6332 * start pfn and tick off bits one-by-one until it becomes
6333 * too coarse to separate the current node from the last.
6334 */
6335 mask = ~((1 << __ffs(start)) - 1);
6336 while (mask && last_end <= (start & (mask << 1)))
6337 mask <<= 1;
6338
6339 /* accumulate all internode masks */
6340 accl_mask |= mask;
6341 }
6342
6343 /* convert mask to number of pages */
6344 return ~accl_mask + 1;
6345}
6346
a6af2bc3 6347/* Find the lowest pfn for a node */
b69a7288 6348static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6349{
a6af2bc3 6350 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6351 unsigned long start_pfn;
6352 int i;
1abbfb41 6353
c13291a5
TH
6354 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6355 min_pfn = min(min_pfn, start_pfn);
c713216d 6356
a6af2bc3 6357 if (min_pfn == ULONG_MAX) {
1170532b 6358 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6359 return 0;
6360 }
6361
6362 return min_pfn;
c713216d
MG
6363}
6364
6365/**
6366 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6367 *
6368 * It returns the minimum PFN based on information provided via
7d018176 6369 * memblock_set_node().
c713216d
MG
6370 */
6371unsigned long __init find_min_pfn_with_active_regions(void)
6372{
6373 return find_min_pfn_for_node(MAX_NUMNODES);
6374}
6375
37b07e41
LS
6376/*
6377 * early_calculate_totalpages()
6378 * Sum pages in active regions for movable zone.
4b0ef1fe 6379 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6380 */
484f51f8 6381static unsigned long __init early_calculate_totalpages(void)
7e63efef 6382{
7e63efef 6383 unsigned long totalpages = 0;
c13291a5
TH
6384 unsigned long start_pfn, end_pfn;
6385 int i, nid;
6386
6387 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6388 unsigned long pages = end_pfn - start_pfn;
7e63efef 6389
37b07e41
LS
6390 totalpages += pages;
6391 if (pages)
4b0ef1fe 6392 node_set_state(nid, N_MEMORY);
37b07e41 6393 }
b8af2941 6394 return totalpages;
7e63efef
MG
6395}
6396
2a1e274a
MG
6397/*
6398 * Find the PFN the Movable zone begins in each node. Kernel memory
6399 * is spread evenly between nodes as long as the nodes have enough
6400 * memory. When they don't, some nodes will have more kernelcore than
6401 * others
6402 */
b224ef85 6403static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6404{
6405 int i, nid;
6406 unsigned long usable_startpfn;
6407 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6408 /* save the state before borrow the nodemask */
4b0ef1fe 6409 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6410 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6411 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6412 struct memblock_region *r;
b2f3eebe
TC
6413
6414 /* Need to find movable_zone earlier when movable_node is specified. */
6415 find_usable_zone_for_movable();
6416
6417 /*
6418 * If movable_node is specified, ignore kernelcore and movablecore
6419 * options.
6420 */
6421 if (movable_node_is_enabled()) {
136199f0
EM
6422 for_each_memblock(memory, r) {
6423 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6424 continue;
6425
136199f0 6426 nid = r->nid;
b2f3eebe 6427
136199f0 6428 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6429 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6430 min(usable_startpfn, zone_movable_pfn[nid]) :
6431 usable_startpfn;
6432 }
6433
6434 goto out2;
6435 }
2a1e274a 6436
342332e6
TI
6437 /*
6438 * If kernelcore=mirror is specified, ignore movablecore option
6439 */
6440 if (mirrored_kernelcore) {
6441 bool mem_below_4gb_not_mirrored = false;
6442
6443 for_each_memblock(memory, r) {
6444 if (memblock_is_mirror(r))
6445 continue;
6446
6447 nid = r->nid;
6448
6449 usable_startpfn = memblock_region_memory_base_pfn(r);
6450
6451 if (usable_startpfn < 0x100000) {
6452 mem_below_4gb_not_mirrored = true;
6453 continue;
6454 }
6455
6456 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6457 min(usable_startpfn, zone_movable_pfn[nid]) :
6458 usable_startpfn;
6459 }
6460
6461 if (mem_below_4gb_not_mirrored)
6462 pr_warn("This configuration results in unmirrored kernel memory.");
6463
6464 goto out2;
6465 }
6466
7e63efef 6467 /*
b2f3eebe 6468 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6469 * kernelcore that corresponds so that memory usable for
6470 * any allocation type is evenly spread. If both kernelcore
6471 * and movablecore are specified, then the value of kernelcore
6472 * will be used for required_kernelcore if it's greater than
6473 * what movablecore would have allowed.
6474 */
6475 if (required_movablecore) {
7e63efef
MG
6476 unsigned long corepages;
6477
6478 /*
6479 * Round-up so that ZONE_MOVABLE is at least as large as what
6480 * was requested by the user
6481 */
6482 required_movablecore =
6483 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6484 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6485 corepages = totalpages - required_movablecore;
6486
6487 required_kernelcore = max(required_kernelcore, corepages);
6488 }
6489
bde304bd
XQ
6490 /*
6491 * If kernelcore was not specified or kernelcore size is larger
6492 * than totalpages, there is no ZONE_MOVABLE.
6493 */
6494 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6495 goto out;
2a1e274a
MG
6496
6497 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6498 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6499
6500restart:
6501 /* Spread kernelcore memory as evenly as possible throughout nodes */
6502 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6503 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6504 unsigned long start_pfn, end_pfn;
6505
2a1e274a
MG
6506 /*
6507 * Recalculate kernelcore_node if the division per node
6508 * now exceeds what is necessary to satisfy the requested
6509 * amount of memory for the kernel
6510 */
6511 if (required_kernelcore < kernelcore_node)
6512 kernelcore_node = required_kernelcore / usable_nodes;
6513
6514 /*
6515 * As the map is walked, we track how much memory is usable
6516 * by the kernel using kernelcore_remaining. When it is
6517 * 0, the rest of the node is usable by ZONE_MOVABLE
6518 */
6519 kernelcore_remaining = kernelcore_node;
6520
6521 /* Go through each range of PFNs within this node */
c13291a5 6522 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6523 unsigned long size_pages;
6524
c13291a5 6525 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6526 if (start_pfn >= end_pfn)
6527 continue;
6528
6529 /* Account for what is only usable for kernelcore */
6530 if (start_pfn < usable_startpfn) {
6531 unsigned long kernel_pages;
6532 kernel_pages = min(end_pfn, usable_startpfn)
6533 - start_pfn;
6534
6535 kernelcore_remaining -= min(kernel_pages,
6536 kernelcore_remaining);
6537 required_kernelcore -= min(kernel_pages,
6538 required_kernelcore);
6539
6540 /* Continue if range is now fully accounted */
6541 if (end_pfn <= usable_startpfn) {
6542
6543 /*
6544 * Push zone_movable_pfn to the end so
6545 * that if we have to rebalance
6546 * kernelcore across nodes, we will
6547 * not double account here
6548 */
6549 zone_movable_pfn[nid] = end_pfn;
6550 continue;
6551 }
6552 start_pfn = usable_startpfn;
6553 }
6554
6555 /*
6556 * The usable PFN range for ZONE_MOVABLE is from
6557 * start_pfn->end_pfn. Calculate size_pages as the
6558 * number of pages used as kernelcore
6559 */
6560 size_pages = end_pfn - start_pfn;
6561 if (size_pages > kernelcore_remaining)
6562 size_pages = kernelcore_remaining;
6563 zone_movable_pfn[nid] = start_pfn + size_pages;
6564
6565 /*
6566 * Some kernelcore has been met, update counts and
6567 * break if the kernelcore for this node has been
b8af2941 6568 * satisfied
2a1e274a
MG
6569 */
6570 required_kernelcore -= min(required_kernelcore,
6571 size_pages);
6572 kernelcore_remaining -= size_pages;
6573 if (!kernelcore_remaining)
6574 break;
6575 }
6576 }
6577
6578 /*
6579 * If there is still required_kernelcore, we do another pass with one
6580 * less node in the count. This will push zone_movable_pfn[nid] further
6581 * along on the nodes that still have memory until kernelcore is
b8af2941 6582 * satisfied
2a1e274a
MG
6583 */
6584 usable_nodes--;
6585 if (usable_nodes && required_kernelcore > usable_nodes)
6586 goto restart;
6587
b2f3eebe 6588out2:
2a1e274a
MG
6589 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6590 for (nid = 0; nid < MAX_NUMNODES; nid++)
6591 zone_movable_pfn[nid] =
6592 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6593
20e6926d 6594out:
66918dcd 6595 /* restore the node_state */
4b0ef1fe 6596 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6597}
6598
4b0ef1fe
LJ
6599/* Any regular or high memory on that node ? */
6600static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6601{
37b07e41
LS
6602 enum zone_type zone_type;
6603
4b0ef1fe
LJ
6604 if (N_MEMORY == N_NORMAL_MEMORY)
6605 return;
6606
6607 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6608 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6609 if (populated_zone(zone)) {
4b0ef1fe
LJ
6610 node_set_state(nid, N_HIGH_MEMORY);
6611 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6612 zone_type <= ZONE_NORMAL)
6613 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6614 break;
6615 }
37b07e41 6616 }
37b07e41
LS
6617}
6618
c713216d
MG
6619/**
6620 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6621 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6622 *
6623 * This will call free_area_init_node() for each active node in the system.
7d018176 6624 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6625 * zone in each node and their holes is calculated. If the maximum PFN
6626 * between two adjacent zones match, it is assumed that the zone is empty.
6627 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6628 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6629 * starts where the previous one ended. For example, ZONE_DMA32 starts
6630 * at arch_max_dma_pfn.
6631 */
6632void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6633{
c13291a5
TH
6634 unsigned long start_pfn, end_pfn;
6635 int i, nid;
a6af2bc3 6636
c713216d
MG
6637 /* Record where the zone boundaries are */
6638 memset(arch_zone_lowest_possible_pfn, 0,
6639 sizeof(arch_zone_lowest_possible_pfn));
6640 memset(arch_zone_highest_possible_pfn, 0,
6641 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6642
6643 start_pfn = find_min_pfn_with_active_regions();
6644
6645 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6646 if (i == ZONE_MOVABLE)
6647 continue;
90cae1fe
OH
6648
6649 end_pfn = max(max_zone_pfn[i], start_pfn);
6650 arch_zone_lowest_possible_pfn[i] = start_pfn;
6651 arch_zone_highest_possible_pfn[i] = end_pfn;
6652
6653 start_pfn = end_pfn;
c713216d 6654 }
2a1e274a
MG
6655
6656 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6657 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6658 find_zone_movable_pfns_for_nodes();
c713216d 6659
c713216d 6660 /* Print out the zone ranges */
f88dfff5 6661 pr_info("Zone ranges:\n");
2a1e274a
MG
6662 for (i = 0; i < MAX_NR_ZONES; i++) {
6663 if (i == ZONE_MOVABLE)
6664 continue;
f88dfff5 6665 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6666 if (arch_zone_lowest_possible_pfn[i] ==
6667 arch_zone_highest_possible_pfn[i])
f88dfff5 6668 pr_cont("empty\n");
72f0ba02 6669 else
8d29e18a
JG
6670 pr_cont("[mem %#018Lx-%#018Lx]\n",
6671 (u64)arch_zone_lowest_possible_pfn[i]
6672 << PAGE_SHIFT,
6673 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6674 << PAGE_SHIFT) - 1);
2a1e274a
MG
6675 }
6676
6677 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6678 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6679 for (i = 0; i < MAX_NUMNODES; i++) {
6680 if (zone_movable_pfn[i])
8d29e18a
JG
6681 pr_info(" Node %d: %#018Lx\n", i,
6682 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6683 }
c713216d 6684
f2d52fe5 6685 /* Print out the early node map */
f88dfff5 6686 pr_info("Early memory node ranges\n");
c13291a5 6687 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6688 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6689 (u64)start_pfn << PAGE_SHIFT,
6690 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6691
6692 /* Initialise every node */
708614e6 6693 mminit_verify_pageflags_layout();
8ef82866 6694 setup_nr_node_ids();
c713216d
MG
6695 for_each_online_node(nid) {
6696 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6697 free_area_init_node(nid, NULL,
c713216d 6698 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6699
6700 /* Any memory on that node */
6701 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6702 node_set_state(nid, N_MEMORY);
6703 check_for_memory(pgdat, nid);
c713216d 6704 }
a4a3ede2 6705 zero_resv_unavail();
c713216d 6706}
2a1e274a 6707
7e63efef 6708static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6709{
6710 unsigned long long coremem;
6711 if (!p)
6712 return -EINVAL;
6713
6714 coremem = memparse(p, &p);
7e63efef 6715 *core = coremem >> PAGE_SHIFT;
2a1e274a 6716
7e63efef 6717 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6718 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6719
6720 return 0;
6721}
ed7ed365 6722
7e63efef
MG
6723/*
6724 * kernelcore=size sets the amount of memory for use for allocations that
6725 * cannot be reclaimed or migrated.
6726 */
6727static int __init cmdline_parse_kernelcore(char *p)
6728{
342332e6
TI
6729 /* parse kernelcore=mirror */
6730 if (parse_option_str(p, "mirror")) {
6731 mirrored_kernelcore = true;
6732 return 0;
6733 }
6734
7e63efef
MG
6735 return cmdline_parse_core(p, &required_kernelcore);
6736}
6737
6738/*
6739 * movablecore=size sets the amount of memory for use for allocations that
6740 * can be reclaimed or migrated.
6741 */
6742static int __init cmdline_parse_movablecore(char *p)
6743{
6744 return cmdline_parse_core(p, &required_movablecore);
6745}
6746
ed7ed365 6747early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6748early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6749
0ee332c1 6750#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6751
c3d5f5f0
JL
6752void adjust_managed_page_count(struct page *page, long count)
6753{
6754 spin_lock(&managed_page_count_lock);
6755 page_zone(page)->managed_pages += count;
6756 totalram_pages += count;
3dcc0571
JL
6757#ifdef CONFIG_HIGHMEM
6758 if (PageHighMem(page))
6759 totalhigh_pages += count;
6760#endif
c3d5f5f0
JL
6761 spin_unlock(&managed_page_count_lock);
6762}
3dcc0571 6763EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6764
11199692 6765unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6766{
11199692
JL
6767 void *pos;
6768 unsigned long pages = 0;
69afade7 6769
11199692
JL
6770 start = (void *)PAGE_ALIGN((unsigned long)start);
6771 end = (void *)((unsigned long)end & PAGE_MASK);
6772 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6773 if ((unsigned int)poison <= 0xFF)
11199692
JL
6774 memset(pos, poison, PAGE_SIZE);
6775 free_reserved_page(virt_to_page(pos));
69afade7
JL
6776 }
6777
6778 if (pages && s)
adb1fe9a
JP
6779 pr_info("Freeing %s memory: %ldK\n",
6780 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6781
6782 return pages;
6783}
11199692 6784EXPORT_SYMBOL(free_reserved_area);
69afade7 6785
cfa11e08
JL
6786#ifdef CONFIG_HIGHMEM
6787void free_highmem_page(struct page *page)
6788{
6789 __free_reserved_page(page);
6790 totalram_pages++;
7b4b2a0d 6791 page_zone(page)->managed_pages++;
cfa11e08
JL
6792 totalhigh_pages++;
6793}
6794#endif
6795
7ee3d4e8
JL
6796
6797void __init mem_init_print_info(const char *str)
6798{
6799 unsigned long physpages, codesize, datasize, rosize, bss_size;
6800 unsigned long init_code_size, init_data_size;
6801
6802 physpages = get_num_physpages();
6803 codesize = _etext - _stext;
6804 datasize = _edata - _sdata;
6805 rosize = __end_rodata - __start_rodata;
6806 bss_size = __bss_stop - __bss_start;
6807 init_data_size = __init_end - __init_begin;
6808 init_code_size = _einittext - _sinittext;
6809
6810 /*
6811 * Detect special cases and adjust section sizes accordingly:
6812 * 1) .init.* may be embedded into .data sections
6813 * 2) .init.text.* may be out of [__init_begin, __init_end],
6814 * please refer to arch/tile/kernel/vmlinux.lds.S.
6815 * 3) .rodata.* may be embedded into .text or .data sections.
6816 */
6817#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6818 do { \
6819 if (start <= pos && pos < end && size > adj) \
6820 size -= adj; \
6821 } while (0)
7ee3d4e8
JL
6822
6823 adj_init_size(__init_begin, __init_end, init_data_size,
6824 _sinittext, init_code_size);
6825 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6826 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6827 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6828 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6829
6830#undef adj_init_size
6831
756a025f 6832 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6833#ifdef CONFIG_HIGHMEM
756a025f 6834 ", %luK highmem"
7ee3d4e8 6835#endif
756a025f
JP
6836 "%s%s)\n",
6837 nr_free_pages() << (PAGE_SHIFT - 10),
6838 physpages << (PAGE_SHIFT - 10),
6839 codesize >> 10, datasize >> 10, rosize >> 10,
6840 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6841 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6842 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6843#ifdef CONFIG_HIGHMEM
756a025f 6844 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6845#endif
756a025f 6846 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6847}
6848
0e0b864e 6849/**
88ca3b94
RD
6850 * set_dma_reserve - set the specified number of pages reserved in the first zone
6851 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6852 *
013110a7 6853 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6854 * In the DMA zone, a significant percentage may be consumed by kernel image
6855 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6856 * function may optionally be used to account for unfreeable pages in the
6857 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6858 * smaller per-cpu batchsize.
0e0b864e
MG
6859 */
6860void __init set_dma_reserve(unsigned long new_dma_reserve)
6861{
6862 dma_reserve = new_dma_reserve;
6863}
6864
1da177e4
LT
6865void __init free_area_init(unsigned long *zones_size)
6866{
9109fb7b 6867 free_area_init_node(0, zones_size,
1da177e4 6868 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 6869 zero_resv_unavail();
1da177e4 6870}
1da177e4 6871
005fd4bb 6872static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6873{
1da177e4 6874
005fd4bb
SAS
6875 lru_add_drain_cpu(cpu);
6876 drain_pages(cpu);
9f8f2172 6877
005fd4bb
SAS
6878 /*
6879 * Spill the event counters of the dead processor
6880 * into the current processors event counters.
6881 * This artificially elevates the count of the current
6882 * processor.
6883 */
6884 vm_events_fold_cpu(cpu);
9f8f2172 6885
005fd4bb
SAS
6886 /*
6887 * Zero the differential counters of the dead processor
6888 * so that the vm statistics are consistent.
6889 *
6890 * This is only okay since the processor is dead and cannot
6891 * race with what we are doing.
6892 */
6893 cpu_vm_stats_fold(cpu);
6894 return 0;
1da177e4 6895}
1da177e4
LT
6896
6897void __init page_alloc_init(void)
6898{
005fd4bb
SAS
6899 int ret;
6900
6901 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6902 "mm/page_alloc:dead", NULL,
6903 page_alloc_cpu_dead);
6904 WARN_ON(ret < 0);
1da177e4
LT
6905}
6906
cb45b0e9 6907/*
34b10060 6908 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6909 * or min_free_kbytes changes.
6910 */
6911static void calculate_totalreserve_pages(void)
6912{
6913 struct pglist_data *pgdat;
6914 unsigned long reserve_pages = 0;
2f6726e5 6915 enum zone_type i, j;
cb45b0e9
HA
6916
6917 for_each_online_pgdat(pgdat) {
281e3726
MG
6918
6919 pgdat->totalreserve_pages = 0;
6920
cb45b0e9
HA
6921 for (i = 0; i < MAX_NR_ZONES; i++) {
6922 struct zone *zone = pgdat->node_zones + i;
3484b2de 6923 long max = 0;
cb45b0e9
HA
6924
6925 /* Find valid and maximum lowmem_reserve in the zone */
6926 for (j = i; j < MAX_NR_ZONES; j++) {
6927 if (zone->lowmem_reserve[j] > max)
6928 max = zone->lowmem_reserve[j];
6929 }
6930
41858966
MG
6931 /* we treat the high watermark as reserved pages. */
6932 max += high_wmark_pages(zone);
cb45b0e9 6933
b40da049
JL
6934 if (max > zone->managed_pages)
6935 max = zone->managed_pages;
a8d01437 6936
281e3726 6937 pgdat->totalreserve_pages += max;
a8d01437 6938
cb45b0e9
HA
6939 reserve_pages += max;
6940 }
6941 }
6942 totalreserve_pages = reserve_pages;
6943}
6944
1da177e4
LT
6945/*
6946 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6947 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6948 * has a correct pages reserved value, so an adequate number of
6949 * pages are left in the zone after a successful __alloc_pages().
6950 */
6951static void setup_per_zone_lowmem_reserve(void)
6952{
6953 struct pglist_data *pgdat;
2f6726e5 6954 enum zone_type j, idx;
1da177e4 6955
ec936fc5 6956 for_each_online_pgdat(pgdat) {
1da177e4
LT
6957 for (j = 0; j < MAX_NR_ZONES; j++) {
6958 struct zone *zone = pgdat->node_zones + j;
b40da049 6959 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6960
6961 zone->lowmem_reserve[j] = 0;
6962
2f6726e5
CL
6963 idx = j;
6964 while (idx) {
1da177e4
LT
6965 struct zone *lower_zone;
6966
2f6726e5
CL
6967 idx--;
6968
1da177e4
LT
6969 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6970 sysctl_lowmem_reserve_ratio[idx] = 1;
6971
6972 lower_zone = pgdat->node_zones + idx;
b40da049 6973 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6974 sysctl_lowmem_reserve_ratio[idx];
b40da049 6975 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6976 }
6977 }
6978 }
cb45b0e9
HA
6979
6980 /* update totalreserve_pages */
6981 calculate_totalreserve_pages();
1da177e4
LT
6982}
6983
cfd3da1e 6984static void __setup_per_zone_wmarks(void)
1da177e4
LT
6985{
6986 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6987 unsigned long lowmem_pages = 0;
6988 struct zone *zone;
6989 unsigned long flags;
6990
6991 /* Calculate total number of !ZONE_HIGHMEM pages */
6992 for_each_zone(zone) {
6993 if (!is_highmem(zone))
b40da049 6994 lowmem_pages += zone->managed_pages;
1da177e4
LT
6995 }
6996
6997 for_each_zone(zone) {
ac924c60
AM
6998 u64 tmp;
6999
1125b4e3 7000 spin_lock_irqsave(&zone->lock, flags);
b40da049 7001 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7002 do_div(tmp, lowmem_pages);
1da177e4
LT
7003 if (is_highmem(zone)) {
7004 /*
669ed175
NP
7005 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7006 * need highmem pages, so cap pages_min to a small
7007 * value here.
7008 *
41858966 7009 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7010 * deltas control asynch page reclaim, and so should
669ed175 7011 * not be capped for highmem.
1da177e4 7012 */
90ae8d67 7013 unsigned long min_pages;
1da177e4 7014
b40da049 7015 min_pages = zone->managed_pages / 1024;
90ae8d67 7016 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7017 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7018 } else {
669ed175
NP
7019 /*
7020 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7021 * proportionate to the zone's size.
7022 */
41858966 7023 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7024 }
7025
795ae7a0
JW
7026 /*
7027 * Set the kswapd watermarks distance according to the
7028 * scale factor in proportion to available memory, but
7029 * ensure a minimum size on small systems.
7030 */
7031 tmp = max_t(u64, tmp >> 2,
7032 mult_frac(zone->managed_pages,
7033 watermark_scale_factor, 10000));
7034
7035 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7036 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7037
1125b4e3 7038 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7039 }
cb45b0e9
HA
7040
7041 /* update totalreserve_pages */
7042 calculate_totalreserve_pages();
1da177e4
LT
7043}
7044
cfd3da1e
MG
7045/**
7046 * setup_per_zone_wmarks - called when min_free_kbytes changes
7047 * or when memory is hot-{added|removed}
7048 *
7049 * Ensures that the watermark[min,low,high] values for each zone are set
7050 * correctly with respect to min_free_kbytes.
7051 */
7052void setup_per_zone_wmarks(void)
7053{
b93e0f32
MH
7054 static DEFINE_SPINLOCK(lock);
7055
7056 spin_lock(&lock);
cfd3da1e 7057 __setup_per_zone_wmarks();
b93e0f32 7058 spin_unlock(&lock);
cfd3da1e
MG
7059}
7060
1da177e4
LT
7061/*
7062 * Initialise min_free_kbytes.
7063 *
7064 * For small machines we want it small (128k min). For large machines
7065 * we want it large (64MB max). But it is not linear, because network
7066 * bandwidth does not increase linearly with machine size. We use
7067 *
b8af2941 7068 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7069 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7070 *
7071 * which yields
7072 *
7073 * 16MB: 512k
7074 * 32MB: 724k
7075 * 64MB: 1024k
7076 * 128MB: 1448k
7077 * 256MB: 2048k
7078 * 512MB: 2896k
7079 * 1024MB: 4096k
7080 * 2048MB: 5792k
7081 * 4096MB: 8192k
7082 * 8192MB: 11584k
7083 * 16384MB: 16384k
7084 */
1b79acc9 7085int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7086{
7087 unsigned long lowmem_kbytes;
5f12733e 7088 int new_min_free_kbytes;
1da177e4
LT
7089
7090 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7091 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7092
7093 if (new_min_free_kbytes > user_min_free_kbytes) {
7094 min_free_kbytes = new_min_free_kbytes;
7095 if (min_free_kbytes < 128)
7096 min_free_kbytes = 128;
7097 if (min_free_kbytes > 65536)
7098 min_free_kbytes = 65536;
7099 } else {
7100 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7101 new_min_free_kbytes, user_min_free_kbytes);
7102 }
bc75d33f 7103 setup_per_zone_wmarks();
a6cccdc3 7104 refresh_zone_stat_thresholds();
1da177e4 7105 setup_per_zone_lowmem_reserve();
6423aa81
JK
7106
7107#ifdef CONFIG_NUMA
7108 setup_min_unmapped_ratio();
7109 setup_min_slab_ratio();
7110#endif
7111
1da177e4
LT
7112 return 0;
7113}
bc22af74 7114core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7115
7116/*
b8af2941 7117 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7118 * that we can call two helper functions whenever min_free_kbytes
7119 * changes.
7120 */
cccad5b9 7121int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7122 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7123{
da8c757b
HP
7124 int rc;
7125
7126 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7127 if (rc)
7128 return rc;
7129
5f12733e
MH
7130 if (write) {
7131 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7132 setup_per_zone_wmarks();
5f12733e 7133 }
1da177e4
LT
7134 return 0;
7135}
7136
795ae7a0
JW
7137int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7138 void __user *buffer, size_t *length, loff_t *ppos)
7139{
7140 int rc;
7141
7142 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7143 if (rc)
7144 return rc;
7145
7146 if (write)
7147 setup_per_zone_wmarks();
7148
7149 return 0;
7150}
7151
9614634f 7152#ifdef CONFIG_NUMA
6423aa81 7153static void setup_min_unmapped_ratio(void)
9614634f 7154{
6423aa81 7155 pg_data_t *pgdat;
9614634f 7156 struct zone *zone;
9614634f 7157
a5f5f91d 7158 for_each_online_pgdat(pgdat)
81cbcbc2 7159 pgdat->min_unmapped_pages = 0;
a5f5f91d 7160
9614634f 7161 for_each_zone(zone)
a5f5f91d 7162 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7163 sysctl_min_unmapped_ratio) / 100;
9614634f 7164}
0ff38490 7165
6423aa81
JK
7166
7167int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7168 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7169{
0ff38490
CL
7170 int rc;
7171
8d65af78 7172 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7173 if (rc)
7174 return rc;
7175
6423aa81
JK
7176 setup_min_unmapped_ratio();
7177
7178 return 0;
7179}
7180
7181static void setup_min_slab_ratio(void)
7182{
7183 pg_data_t *pgdat;
7184 struct zone *zone;
7185
a5f5f91d
MG
7186 for_each_online_pgdat(pgdat)
7187 pgdat->min_slab_pages = 0;
7188
0ff38490 7189 for_each_zone(zone)
a5f5f91d 7190 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7191 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7192}
7193
7194int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7195 void __user *buffer, size_t *length, loff_t *ppos)
7196{
7197 int rc;
7198
7199 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7200 if (rc)
7201 return rc;
7202
7203 setup_min_slab_ratio();
7204
0ff38490
CL
7205 return 0;
7206}
9614634f
CL
7207#endif
7208
1da177e4
LT
7209/*
7210 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7211 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7212 * whenever sysctl_lowmem_reserve_ratio changes.
7213 *
7214 * The reserve ratio obviously has absolutely no relation with the
41858966 7215 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7216 * if in function of the boot time zone sizes.
7217 */
cccad5b9 7218int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7219 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7220{
8d65af78 7221 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7222 setup_per_zone_lowmem_reserve();
7223 return 0;
7224}
7225
8ad4b1fb
RS
7226/*
7227 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7228 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7229 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7230 */
cccad5b9 7231int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7232 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7233{
7234 struct zone *zone;
7cd2b0a3 7235 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7236 int ret;
7237
7cd2b0a3
DR
7238 mutex_lock(&pcp_batch_high_lock);
7239 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7240
8d65af78 7241 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7242 if (!write || ret < 0)
7243 goto out;
7244
7245 /* Sanity checking to avoid pcp imbalance */
7246 if (percpu_pagelist_fraction &&
7247 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7248 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7249 ret = -EINVAL;
7250 goto out;
7251 }
7252
7253 /* No change? */
7254 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7255 goto out;
c8e251fa 7256
364df0eb 7257 for_each_populated_zone(zone) {
7cd2b0a3
DR
7258 unsigned int cpu;
7259
22a7f12b 7260 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7261 pageset_set_high_and_batch(zone,
7262 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7263 }
7cd2b0a3 7264out:
c8e251fa 7265 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7266 return ret;
8ad4b1fb
RS
7267}
7268
a9919c79 7269#ifdef CONFIG_NUMA
f034b5d4 7270int hashdist = HASHDIST_DEFAULT;
1da177e4 7271
1da177e4
LT
7272static int __init set_hashdist(char *str)
7273{
7274 if (!str)
7275 return 0;
7276 hashdist = simple_strtoul(str, &str, 0);
7277 return 1;
7278}
7279__setup("hashdist=", set_hashdist);
7280#endif
7281
f6f34b43
SD
7282#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7283/*
7284 * Returns the number of pages that arch has reserved but
7285 * is not known to alloc_large_system_hash().
7286 */
7287static unsigned long __init arch_reserved_kernel_pages(void)
7288{
7289 return 0;
7290}
7291#endif
7292
9017217b
PT
7293/*
7294 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7295 * machines. As memory size is increased the scale is also increased but at
7296 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7297 * quadruples the scale is increased by one, which means the size of hash table
7298 * only doubles, instead of quadrupling as well.
7299 * Because 32-bit systems cannot have large physical memory, where this scaling
7300 * makes sense, it is disabled on such platforms.
7301 */
7302#if __BITS_PER_LONG > 32
7303#define ADAPT_SCALE_BASE (64ul << 30)
7304#define ADAPT_SCALE_SHIFT 2
7305#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7306#endif
7307
1da177e4
LT
7308/*
7309 * allocate a large system hash table from bootmem
7310 * - it is assumed that the hash table must contain an exact power-of-2
7311 * quantity of entries
7312 * - limit is the number of hash buckets, not the total allocation size
7313 */
7314void *__init alloc_large_system_hash(const char *tablename,
7315 unsigned long bucketsize,
7316 unsigned long numentries,
7317 int scale,
7318 int flags,
7319 unsigned int *_hash_shift,
7320 unsigned int *_hash_mask,
31fe62b9
TB
7321 unsigned long low_limit,
7322 unsigned long high_limit)
1da177e4 7323{
31fe62b9 7324 unsigned long long max = high_limit;
1da177e4
LT
7325 unsigned long log2qty, size;
7326 void *table = NULL;
3749a8f0 7327 gfp_t gfp_flags;
1da177e4
LT
7328
7329 /* allow the kernel cmdline to have a say */
7330 if (!numentries) {
7331 /* round applicable memory size up to nearest megabyte */
04903664 7332 numentries = nr_kernel_pages;
f6f34b43 7333 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7334
7335 /* It isn't necessary when PAGE_SIZE >= 1MB */
7336 if (PAGE_SHIFT < 20)
7337 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7338
9017217b
PT
7339#if __BITS_PER_LONG > 32
7340 if (!high_limit) {
7341 unsigned long adapt;
7342
7343 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7344 adapt <<= ADAPT_SCALE_SHIFT)
7345 scale++;
7346 }
7347#endif
7348
1da177e4
LT
7349 /* limit to 1 bucket per 2^scale bytes of low memory */
7350 if (scale > PAGE_SHIFT)
7351 numentries >>= (scale - PAGE_SHIFT);
7352 else
7353 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7354
7355 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7356 if (unlikely(flags & HASH_SMALL)) {
7357 /* Makes no sense without HASH_EARLY */
7358 WARN_ON(!(flags & HASH_EARLY));
7359 if (!(numentries >> *_hash_shift)) {
7360 numentries = 1UL << *_hash_shift;
7361 BUG_ON(!numentries);
7362 }
7363 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7364 numentries = PAGE_SIZE / bucketsize;
1da177e4 7365 }
6e692ed3 7366 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7367
7368 /* limit allocation size to 1/16 total memory by default */
7369 if (max == 0) {
7370 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7371 do_div(max, bucketsize);
7372 }
074b8517 7373 max = min(max, 0x80000000ULL);
1da177e4 7374
31fe62b9
TB
7375 if (numentries < low_limit)
7376 numentries = low_limit;
1da177e4
LT
7377 if (numentries > max)
7378 numentries = max;
7379
f0d1b0b3 7380 log2qty = ilog2(numentries);
1da177e4 7381
3749a8f0 7382 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7383 do {
7384 size = bucketsize << log2qty;
ea1f5f37
PT
7385 if (flags & HASH_EARLY) {
7386 if (flags & HASH_ZERO)
7387 table = memblock_virt_alloc_nopanic(size, 0);
7388 else
7389 table = memblock_virt_alloc_raw(size, 0);
7390 } else if (hashdist) {
3749a8f0 7391 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7392 } else {
1037b83b
ED
7393 /*
7394 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7395 * some pages at the end of hash table which
7396 * alloc_pages_exact() automatically does
1037b83b 7397 */
264ef8a9 7398 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7399 table = alloc_pages_exact(size, gfp_flags);
7400 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7401 }
1da177e4
LT
7402 }
7403 } while (!table && size > PAGE_SIZE && --log2qty);
7404
7405 if (!table)
7406 panic("Failed to allocate %s hash table\n", tablename);
7407
1170532b
JP
7408 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7409 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7410
7411 if (_hash_shift)
7412 *_hash_shift = log2qty;
7413 if (_hash_mask)
7414 *_hash_mask = (1 << log2qty) - 1;
7415
7416 return table;
7417}
a117e66e 7418
a5d76b54 7419/*
80934513
MK
7420 * This function checks whether pageblock includes unmovable pages or not.
7421 * If @count is not zero, it is okay to include less @count unmovable pages
7422 *
b8af2941 7423 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7424 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7425 * check without lock_page also may miss some movable non-lru pages at
7426 * race condition. So you can't expect this function should be exact.
a5d76b54 7427 */
b023f468 7428bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7429 int migratetype,
b023f468 7430 bool skip_hwpoisoned_pages)
49ac8255
KH
7431{
7432 unsigned long pfn, iter, found;
47118af0 7433
49ac8255
KH
7434 /*
7435 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7436 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7437 */
7438 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7439 return false;
49ac8255 7440
4da2ce25
MH
7441 /*
7442 * CMA allocations (alloc_contig_range) really need to mark isolate
7443 * CMA pageblocks even when they are not movable in fact so consider
7444 * them movable here.
7445 */
7446 if (is_migrate_cma(migratetype) &&
7447 is_migrate_cma(get_pageblock_migratetype(page)))
7448 return false;
7449
49ac8255
KH
7450 pfn = page_to_pfn(page);
7451 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7452 unsigned long check = pfn + iter;
7453
29723fcc 7454 if (!pfn_valid_within(check))
49ac8255 7455 continue;
29723fcc 7456
49ac8255 7457 page = pfn_to_page(check);
c8721bbb 7458
d7ab3672
MH
7459 if (PageReserved(page))
7460 return true;
7461
c8721bbb
NH
7462 /*
7463 * Hugepages are not in LRU lists, but they're movable.
7464 * We need not scan over tail pages bacause we don't
7465 * handle each tail page individually in migration.
7466 */
7467 if (PageHuge(page)) {
7468 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7469 continue;
7470 }
7471
97d255c8
MK
7472 /*
7473 * We can't use page_count without pin a page
7474 * because another CPU can free compound page.
7475 * This check already skips compound tails of THP
0139aa7b 7476 * because their page->_refcount is zero at all time.
97d255c8 7477 */
fe896d18 7478 if (!page_ref_count(page)) {
49ac8255
KH
7479 if (PageBuddy(page))
7480 iter += (1 << page_order(page)) - 1;
7481 continue;
7482 }
97d255c8 7483
b023f468
WC
7484 /*
7485 * The HWPoisoned page may be not in buddy system, and
7486 * page_count() is not 0.
7487 */
7488 if (skip_hwpoisoned_pages && PageHWPoison(page))
7489 continue;
7490
0efadf48
YX
7491 if (__PageMovable(page))
7492 continue;
7493
49ac8255
KH
7494 if (!PageLRU(page))
7495 found++;
7496 /*
6b4f7799
JW
7497 * If there are RECLAIMABLE pages, we need to check
7498 * it. But now, memory offline itself doesn't call
7499 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7500 */
7501 /*
7502 * If the page is not RAM, page_count()should be 0.
7503 * we don't need more check. This is an _used_ not-movable page.
7504 *
7505 * The problematic thing here is PG_reserved pages. PG_reserved
7506 * is set to both of a memory hole page and a _used_ kernel
7507 * page at boot.
7508 */
7509 if (found > count)
80934513 7510 return true;
49ac8255 7511 }
80934513 7512 return false;
49ac8255
KH
7513}
7514
7515bool is_pageblock_removable_nolock(struct page *page)
7516{
656a0706
MH
7517 struct zone *zone;
7518 unsigned long pfn;
687875fb
MH
7519
7520 /*
7521 * We have to be careful here because we are iterating over memory
7522 * sections which are not zone aware so we might end up outside of
7523 * the zone but still within the section.
656a0706
MH
7524 * We have to take care about the node as well. If the node is offline
7525 * its NODE_DATA will be NULL - see page_zone.
687875fb 7526 */
656a0706
MH
7527 if (!node_online(page_to_nid(page)))
7528 return false;
7529
7530 zone = page_zone(page);
7531 pfn = page_to_pfn(page);
108bcc96 7532 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7533 return false;
7534
4da2ce25 7535 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7536}
0c0e6195 7537
080fe206 7538#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7539
7540static unsigned long pfn_max_align_down(unsigned long pfn)
7541{
7542 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7543 pageblock_nr_pages) - 1);
7544}
7545
7546static unsigned long pfn_max_align_up(unsigned long pfn)
7547{
7548 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7549 pageblock_nr_pages));
7550}
7551
041d3a8c 7552/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7553static int __alloc_contig_migrate_range(struct compact_control *cc,
7554 unsigned long start, unsigned long end)
041d3a8c
MN
7555{
7556 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7557 unsigned long nr_reclaimed;
041d3a8c
MN
7558 unsigned long pfn = start;
7559 unsigned int tries = 0;
7560 int ret = 0;
7561
be49a6e1 7562 migrate_prep();
041d3a8c 7563
bb13ffeb 7564 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7565 if (fatal_signal_pending(current)) {
7566 ret = -EINTR;
7567 break;
7568 }
7569
bb13ffeb
MG
7570 if (list_empty(&cc->migratepages)) {
7571 cc->nr_migratepages = 0;
edc2ca61 7572 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7573 if (!pfn) {
7574 ret = -EINTR;
7575 break;
7576 }
7577 tries = 0;
7578 } else if (++tries == 5) {
7579 ret = ret < 0 ? ret : -EBUSY;
7580 break;
7581 }
7582
beb51eaa
MK
7583 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7584 &cc->migratepages);
7585 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7586
9c620e2b 7587 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7588 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7589 }
2a6f5124
SP
7590 if (ret < 0) {
7591 putback_movable_pages(&cc->migratepages);
7592 return ret;
7593 }
7594 return 0;
041d3a8c
MN
7595}
7596
7597/**
7598 * alloc_contig_range() -- tries to allocate given range of pages
7599 * @start: start PFN to allocate
7600 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7601 * @migratetype: migratetype of the underlaying pageblocks (either
7602 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7603 * in range must have the same migratetype and it must
7604 * be either of the two.
ca96b625 7605 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7606 *
7607 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7608 * aligned, however it's the caller's responsibility to guarantee that
7609 * we are the only thread that changes migrate type of pageblocks the
7610 * pages fall in.
7611 *
7612 * The PFN range must belong to a single zone.
7613 *
7614 * Returns zero on success or negative error code. On success all
7615 * pages which PFN is in [start, end) are allocated for the caller and
7616 * need to be freed with free_contig_range().
7617 */
0815f3d8 7618int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7619 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7620{
041d3a8c 7621 unsigned long outer_start, outer_end;
d00181b9
KS
7622 unsigned int order;
7623 int ret = 0;
041d3a8c 7624
bb13ffeb
MG
7625 struct compact_control cc = {
7626 .nr_migratepages = 0,
7627 .order = -1,
7628 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7629 .mode = MIGRATE_SYNC,
bb13ffeb 7630 .ignore_skip_hint = true,
2583d671 7631 .no_set_skip_hint = true,
7dea19f9 7632 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7633 };
7634 INIT_LIST_HEAD(&cc.migratepages);
7635
041d3a8c
MN
7636 /*
7637 * What we do here is we mark all pageblocks in range as
7638 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7639 * have different sizes, and due to the way page allocator
7640 * work, we align the range to biggest of the two pages so
7641 * that page allocator won't try to merge buddies from
7642 * different pageblocks and change MIGRATE_ISOLATE to some
7643 * other migration type.
7644 *
7645 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7646 * migrate the pages from an unaligned range (ie. pages that
7647 * we are interested in). This will put all the pages in
7648 * range back to page allocator as MIGRATE_ISOLATE.
7649 *
7650 * When this is done, we take the pages in range from page
7651 * allocator removing them from the buddy system. This way
7652 * page allocator will never consider using them.
7653 *
7654 * This lets us mark the pageblocks back as
7655 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7656 * aligned range but not in the unaligned, original range are
7657 * put back to page allocator so that buddy can use them.
7658 */
7659
7660 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7661 pfn_max_align_up(end), migratetype,
7662 false);
041d3a8c 7663 if (ret)
86a595f9 7664 return ret;
041d3a8c 7665
8ef5849f
JK
7666 /*
7667 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7668 * So, just fall through. test_pages_isolated() has a tracepoint
7669 * which will report the busy page.
7670 *
7671 * It is possible that busy pages could become available before
7672 * the call to test_pages_isolated, and the range will actually be
7673 * allocated. So, if we fall through be sure to clear ret so that
7674 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7675 */
bb13ffeb 7676 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7677 if (ret && ret != -EBUSY)
041d3a8c 7678 goto done;
63cd4489 7679 ret =0;
041d3a8c
MN
7680
7681 /*
7682 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7683 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7684 * more, all pages in [start, end) are free in page allocator.
7685 * What we are going to do is to allocate all pages from
7686 * [start, end) (that is remove them from page allocator).
7687 *
7688 * The only problem is that pages at the beginning and at the
7689 * end of interesting range may be not aligned with pages that
7690 * page allocator holds, ie. they can be part of higher order
7691 * pages. Because of this, we reserve the bigger range and
7692 * once this is done free the pages we are not interested in.
7693 *
7694 * We don't have to hold zone->lock here because the pages are
7695 * isolated thus they won't get removed from buddy.
7696 */
7697
7698 lru_add_drain_all();
510f5507 7699 drain_all_pages(cc.zone);
041d3a8c
MN
7700
7701 order = 0;
7702 outer_start = start;
7703 while (!PageBuddy(pfn_to_page(outer_start))) {
7704 if (++order >= MAX_ORDER) {
8ef5849f
JK
7705 outer_start = start;
7706 break;
041d3a8c
MN
7707 }
7708 outer_start &= ~0UL << order;
7709 }
7710
8ef5849f
JK
7711 if (outer_start != start) {
7712 order = page_order(pfn_to_page(outer_start));
7713
7714 /*
7715 * outer_start page could be small order buddy page and
7716 * it doesn't include start page. Adjust outer_start
7717 * in this case to report failed page properly
7718 * on tracepoint in test_pages_isolated()
7719 */
7720 if (outer_start + (1UL << order) <= start)
7721 outer_start = start;
7722 }
7723
041d3a8c 7724 /* Make sure the range is really isolated. */
b023f468 7725 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7726 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7727 __func__, outer_start, end);
041d3a8c
MN
7728 ret = -EBUSY;
7729 goto done;
7730 }
7731
49f223a9 7732 /* Grab isolated pages from freelists. */
bb13ffeb 7733 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7734 if (!outer_end) {
7735 ret = -EBUSY;
7736 goto done;
7737 }
7738
7739 /* Free head and tail (if any) */
7740 if (start != outer_start)
7741 free_contig_range(outer_start, start - outer_start);
7742 if (end != outer_end)
7743 free_contig_range(end, outer_end - end);
7744
7745done:
7746 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7747 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7748 return ret;
7749}
7750
7751void free_contig_range(unsigned long pfn, unsigned nr_pages)
7752{
bcc2b02f
MS
7753 unsigned int count = 0;
7754
7755 for (; nr_pages--; pfn++) {
7756 struct page *page = pfn_to_page(pfn);
7757
7758 count += page_count(page) != 1;
7759 __free_page(page);
7760 }
7761 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7762}
7763#endif
7764
4ed7e022 7765#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7766/*
7767 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7768 * page high values need to be recalulated.
7769 */
4ed7e022
JL
7770void __meminit zone_pcp_update(struct zone *zone)
7771{
0a647f38 7772 unsigned cpu;
c8e251fa 7773 mutex_lock(&pcp_batch_high_lock);
0a647f38 7774 for_each_possible_cpu(cpu)
169f6c19
CS
7775 pageset_set_high_and_batch(zone,
7776 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7777 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7778}
7779#endif
7780
340175b7
JL
7781void zone_pcp_reset(struct zone *zone)
7782{
7783 unsigned long flags;
5a883813
MK
7784 int cpu;
7785 struct per_cpu_pageset *pset;
340175b7
JL
7786
7787 /* avoid races with drain_pages() */
7788 local_irq_save(flags);
7789 if (zone->pageset != &boot_pageset) {
5a883813
MK
7790 for_each_online_cpu(cpu) {
7791 pset = per_cpu_ptr(zone->pageset, cpu);
7792 drain_zonestat(zone, pset);
7793 }
340175b7
JL
7794 free_percpu(zone->pageset);
7795 zone->pageset = &boot_pageset;
7796 }
7797 local_irq_restore(flags);
7798}
7799
6dcd73d7 7800#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7801/*
b9eb6319
JK
7802 * All pages in the range must be in a single zone and isolated
7803 * before calling this.
0c0e6195
KH
7804 */
7805void
7806__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7807{
7808 struct page *page;
7809 struct zone *zone;
7aeb09f9 7810 unsigned int order, i;
0c0e6195
KH
7811 unsigned long pfn;
7812 unsigned long flags;
7813 /* find the first valid pfn */
7814 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7815 if (pfn_valid(pfn))
7816 break;
7817 if (pfn == end_pfn)
7818 return;
2d070eab 7819 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7820 zone = page_zone(pfn_to_page(pfn));
7821 spin_lock_irqsave(&zone->lock, flags);
7822 pfn = start_pfn;
7823 while (pfn < end_pfn) {
7824 if (!pfn_valid(pfn)) {
7825 pfn++;
7826 continue;
7827 }
7828 page = pfn_to_page(pfn);
b023f468
WC
7829 /*
7830 * The HWPoisoned page may be not in buddy system, and
7831 * page_count() is not 0.
7832 */
7833 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7834 pfn++;
7835 SetPageReserved(page);
7836 continue;
7837 }
7838
0c0e6195
KH
7839 BUG_ON(page_count(page));
7840 BUG_ON(!PageBuddy(page));
7841 order = page_order(page);
7842#ifdef CONFIG_DEBUG_VM
1170532b
JP
7843 pr_info("remove from free list %lx %d %lx\n",
7844 pfn, 1 << order, end_pfn);
0c0e6195
KH
7845#endif
7846 list_del(&page->lru);
7847 rmv_page_order(page);
7848 zone->free_area[order].nr_free--;
0c0e6195
KH
7849 for (i = 0; i < (1 << order); i++)
7850 SetPageReserved((page+i));
7851 pfn += (1 << order);
7852 }
7853 spin_unlock_irqrestore(&zone->lock, flags);
7854}
7855#endif
8d22ba1b 7856
8d22ba1b
WF
7857bool is_free_buddy_page(struct page *page)
7858{
7859 struct zone *zone = page_zone(page);
7860 unsigned long pfn = page_to_pfn(page);
7861 unsigned long flags;
7aeb09f9 7862 unsigned int order;
8d22ba1b
WF
7863
7864 spin_lock_irqsave(&zone->lock, flags);
7865 for (order = 0; order < MAX_ORDER; order++) {
7866 struct page *page_head = page - (pfn & ((1 << order) - 1));
7867
7868 if (PageBuddy(page_head) && page_order(page_head) >= order)
7869 break;
7870 }
7871 spin_unlock_irqrestore(&zone->lock, flags);
7872
7873 return order < MAX_ORDER;
7874}