]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mptcp: fix race in release_cb
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
1da177e4 75
7ee3d4e8 76#include <asm/sections.h>
1da177e4 77#include <asm/tlbflush.h>
ac924c60 78#include <asm/div64.h>
1da177e4 79#include "internal.h"
e900a918 80#include "shuffle.h"
36e66c55 81#include "page_reporting.h"
1da177e4 82
f04a5d5d
DH
83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84typedef int __bitwise fpi_t;
85
86/* No special request */
87#define FPI_NONE ((__force fpi_t)0)
88
89/*
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
96 */
97#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
98
47b6a24a
DH
99/*
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
103 *
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
108 */
109#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
110
c8e251fa
CS
111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 113#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 114
72812019
LS
115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116DEFINE_PER_CPU(int, numa_node);
117EXPORT_PER_CPU_SYMBOL(numa_node);
118#endif
119
4518085e
KW
120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121
7aac7898
LS
122#ifdef CONFIG_HAVE_MEMORYLESS_NODES
123/*
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
128 */
129DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131#endif
132
bd233f53 133/* work_structs for global per-cpu drains */
d9367bd0
WY
134struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
137};
8b885f53
JY
138static DEFINE_MUTEX(pcpu_drain_mutex);
139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 140
38addce8 141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 142volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
143EXPORT_SYMBOL(latent_entropy);
144#endif
145
1da177e4 146/*
13808910 147 * Array of node states.
1da177e4 148 */
13808910
CL
149nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152#ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154#ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 156#endif
20b2f52b 157 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
158 [N_CPU] = { { [0] = 1UL } },
159#endif /* NUMA */
160};
161EXPORT_SYMBOL(node_states);
162
ca79b0c2
AK
163atomic_long_t _totalram_pages __read_mostly;
164EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 165unsigned long totalreserve_pages __read_mostly;
e48322ab 166unsigned long totalcma_pages __read_mostly;
ab8fabd4 167
1b76b02f 168int percpu_pagelist_fraction;
dcce284a 169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 170DEFINE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
171EXPORT_SYMBOL(init_on_alloc);
172
6471384a 173DEFINE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
174EXPORT_SYMBOL(init_on_free);
175
04013513
VB
176static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
178static int __init early_init_on_alloc(char *buf)
179{
6471384a 180
04013513 181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
182}
183early_param("init_on_alloc", early_init_on_alloc);
184
04013513
VB
185static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
187static int __init early_init_on_free(char *buf)
188{
04013513 189 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
190}
191early_param("init_on_free", early_init_on_free);
1da177e4 192
bb14c2c7
VB
193/*
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
200 */
201static inline int get_pcppage_migratetype(struct page *page)
202{
203 return page->index;
204}
205
206static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207{
208 page->index = migratetype;
209}
210
452aa699
RW
211#ifdef CONFIG_PM_SLEEP
212/*
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
452aa699 220 */
c9e664f1
RW
221
222static gfp_t saved_gfp_mask;
223
224void pm_restore_gfp_mask(void)
452aa699 225{
55f2503c 226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
230 }
452aa699
RW
231}
232
c9e664f1 233void pm_restrict_gfp_mask(void)
452aa699 234{
55f2503c 235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
d0164adc 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 239}
f90ac398
MG
240
241bool pm_suspended_storage(void)
242{
d0164adc 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
244 return false;
245 return true;
246}
452aa699
RW
247#endif /* CONFIG_PM_SLEEP */
248
d9c23400 249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 250unsigned int pageblock_order __read_mostly;
d9c23400
MG
251#endif
252
7fef431b
DH
253static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
a226f6c8 255
1da177e4
LT
256/*
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
263 *
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
1da177e4 266 */
d3cda233 267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 268#ifdef CONFIG_ZONE_DMA
d3cda233 269 [ZONE_DMA] = 256,
4b51d669 270#endif
fb0e7942 271#ifdef CONFIG_ZONE_DMA32
d3cda233 272 [ZONE_DMA32] = 256,
fb0e7942 273#endif
d3cda233 274 [ZONE_NORMAL] = 32,
e53ef38d 275#ifdef CONFIG_HIGHMEM
d3cda233 276 [ZONE_HIGHMEM] = 0,
e53ef38d 277#endif
d3cda233 278 [ZONE_MOVABLE] = 0,
2f1b6248 279};
1da177e4 280
15ad7cdc 281static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 282#ifdef CONFIG_ZONE_DMA
2f1b6248 283 "DMA",
4b51d669 284#endif
fb0e7942 285#ifdef CONFIG_ZONE_DMA32
2f1b6248 286 "DMA32",
fb0e7942 287#endif
2f1b6248 288 "Normal",
e53ef38d 289#ifdef CONFIG_HIGHMEM
2a1e274a 290 "HighMem",
e53ef38d 291#endif
2a1e274a 292 "Movable",
033fbae9
DW
293#ifdef CONFIG_ZONE_DEVICE
294 "Device",
295#endif
2f1b6248
CL
296};
297
c999fbd3 298const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303#ifdef CONFIG_CMA
304 "CMA",
305#endif
306#ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308#endif
309};
310
ae70eddd
AK
311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 314#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 315 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 316#endif
9a982250 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 319#endif
f1e61557
KS
320};
321
1da177e4 322int min_free_kbytes = 1024;
42aa83cb 323int user_min_free_kbytes = -1;
24512228 324int watermark_boost_factor __read_mostly;
795ae7a0 325int watermark_scale_factor = 10;
1da177e4 326
bbe5d993
OS
327static unsigned long nr_kernel_pages __initdata;
328static unsigned long nr_all_pages __initdata;
329static unsigned long dma_reserve __initdata;
1da177e4 330
bbe5d993
OS
331static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
332static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 333static unsigned long required_kernelcore __initdata;
a5c6d650 334static unsigned long required_kernelcore_percent __initdata;
7f16f91f 335static unsigned long required_movablecore __initdata;
a5c6d650 336static unsigned long required_movablecore_percent __initdata;
bbe5d993 337static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 338static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
339
340/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
341int movable_zone;
342EXPORT_SYMBOL(movable_zone);
c713216d 343
418508c1 344#if MAX_NUMNODES > 1
b9726c26 345unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 346unsigned int nr_online_nodes __read_mostly = 1;
418508c1 347EXPORT_SYMBOL(nr_node_ids);
62bc62a8 348EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
349#endif
350
9ef9acb0
MG
351int page_group_by_mobility_disabled __read_mostly;
352
3a80a7fa 353#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
354/*
355 * During boot we initialize deferred pages on-demand, as needed, but once
356 * page_alloc_init_late() has finished, the deferred pages are all initialized,
357 * and we can permanently disable that path.
358 */
359static DEFINE_STATIC_KEY_TRUE(deferred_pages);
360
361/*
362 * Calling kasan_free_pages() only after deferred memory initialization
363 * has completed. Poisoning pages during deferred memory init will greatly
364 * lengthen the process and cause problem in large memory systems as the
365 * deferred pages initialization is done with interrupt disabled.
366 *
367 * Assuming that there will be no reference to those newly initialized
368 * pages before they are ever allocated, this should have no effect on
369 * KASAN memory tracking as the poison will be properly inserted at page
370 * allocation time. The only corner case is when pages are allocated by
371 * on-demand allocation and then freed again before the deferred pages
372 * initialization is done, but this is not likely to happen.
373 */
374static inline void kasan_free_nondeferred_pages(struct page *page, int order)
375{
376 if (!static_branch_unlikely(&deferred_pages))
377 kasan_free_pages(page, order);
378}
379
3a80a7fa 380/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 381static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 382{
ef70b6f4
MG
383 int nid = early_pfn_to_nid(pfn);
384
385 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
386 return true;
387
388 return false;
389}
390
391/*
d3035be4 392 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
393 * later in the boot cycle when it can be parallelised.
394 */
d3035be4
PT
395static bool __meminit
396defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 397{
d3035be4
PT
398 static unsigned long prev_end_pfn, nr_initialised;
399
400 /*
401 * prev_end_pfn static that contains the end of previous zone
402 * No need to protect because called very early in boot before smp_init.
403 */
404 if (prev_end_pfn != end_pfn) {
405 prev_end_pfn = end_pfn;
406 nr_initialised = 0;
407 }
408
3c2c6488 409 /* Always populate low zones for address-constrained allocations */
d3035be4 410 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 411 return false;
23b68cfa 412
dc2da7b4
BH
413 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
414 return true;
23b68cfa
WY
415 /*
416 * We start only with one section of pages, more pages are added as
417 * needed until the rest of deferred pages are initialized.
418 */
d3035be4 419 nr_initialised++;
23b68cfa 420 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
421 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
422 NODE_DATA(nid)->first_deferred_pfn = pfn;
423 return true;
3a80a7fa 424 }
d3035be4 425 return false;
3a80a7fa
MG
426}
427#else
3c0c12cc
WL
428#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
429
3a80a7fa
MG
430static inline bool early_page_uninitialised(unsigned long pfn)
431{
432 return false;
433}
434
d3035be4 435static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 436{
d3035be4 437 return false;
3a80a7fa
MG
438}
439#endif
440
0b423ca2
MG
441/* Return a pointer to the bitmap storing bits affecting a block of pages */
442static inline unsigned long *get_pageblock_bitmap(struct page *page,
443 unsigned long pfn)
444{
445#ifdef CONFIG_SPARSEMEM
f1eca35a 446 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
447#else
448 return page_zone(page)->pageblock_flags;
449#endif /* CONFIG_SPARSEMEM */
450}
451
452static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
453{
454#ifdef CONFIG_SPARSEMEM
455 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
456#else
457 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 458#endif /* CONFIG_SPARSEMEM */
399b795b 459 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
460}
461
535b81e2
WY
462static __always_inline
463unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 464 unsigned long pfn,
0b423ca2
MG
465 unsigned long mask)
466{
467 unsigned long *bitmap;
468 unsigned long bitidx, word_bitidx;
469 unsigned long word;
470
471 bitmap = get_pageblock_bitmap(page, pfn);
472 bitidx = pfn_to_bitidx(page, pfn);
473 word_bitidx = bitidx / BITS_PER_LONG;
474 bitidx &= (BITS_PER_LONG-1);
475
476 word = bitmap[word_bitidx];
d93d5ab9 477 return (word >> bitidx) & mask;
0b423ca2
MG
478}
479
a00cda3f
MCC
480/**
481 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
482 * @page: The page within the block of interest
483 * @pfn: The target page frame number
484 * @mask: mask of bits that the caller is interested in
485 *
486 * Return: pageblock_bits flags
487 */
0b423ca2 488unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
489 unsigned long mask)
490{
535b81e2 491 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
492}
493
494static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
495{
535b81e2 496 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
497}
498
499/**
500 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
501 * @page: The page within the block of interest
502 * @flags: The flags to set
503 * @pfn: The target page frame number
0b423ca2
MG
504 * @mask: mask of bits that the caller is interested in
505 */
506void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
507 unsigned long pfn,
0b423ca2
MG
508 unsigned long mask)
509{
510 unsigned long *bitmap;
511 unsigned long bitidx, word_bitidx;
512 unsigned long old_word, word;
513
514 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 515 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
516
517 bitmap = get_pageblock_bitmap(page, pfn);
518 bitidx = pfn_to_bitidx(page, pfn);
519 word_bitidx = bitidx / BITS_PER_LONG;
520 bitidx &= (BITS_PER_LONG-1);
521
522 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
523
d93d5ab9
WY
524 mask <<= bitidx;
525 flags <<= bitidx;
0b423ca2
MG
526
527 word = READ_ONCE(bitmap[word_bitidx]);
528 for (;;) {
529 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
530 if (word == old_word)
531 break;
532 word = old_word;
533 }
534}
3a80a7fa 535
ee6f509c 536void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 537{
5d0f3f72
KM
538 if (unlikely(page_group_by_mobility_disabled &&
539 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
540 migratetype = MIGRATE_UNMOVABLE;
541
d93d5ab9 542 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 543 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
544}
545
13e7444b 546#ifdef CONFIG_DEBUG_VM
c6a57e19 547static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 548{
bdc8cb98
DH
549 int ret = 0;
550 unsigned seq;
551 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 552 unsigned long sp, start_pfn;
c6a57e19 553
bdc8cb98
DH
554 do {
555 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
556 start_pfn = zone->zone_start_pfn;
557 sp = zone->spanned_pages;
108bcc96 558 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
559 ret = 1;
560 } while (zone_span_seqretry(zone, seq));
561
b5e6a5a2 562 if (ret)
613813e8
DH
563 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
564 pfn, zone_to_nid(zone), zone->name,
565 start_pfn, start_pfn + sp);
b5e6a5a2 566
bdc8cb98 567 return ret;
c6a57e19
DH
568}
569
570static int page_is_consistent(struct zone *zone, struct page *page)
571{
14e07298 572 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 573 return 0;
1da177e4 574 if (zone != page_zone(page))
c6a57e19
DH
575 return 0;
576
577 return 1;
578}
579/*
580 * Temporary debugging check for pages not lying within a given zone.
581 */
d73d3c9f 582static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
583{
584 if (page_outside_zone_boundaries(zone, page))
1da177e4 585 return 1;
c6a57e19
DH
586 if (!page_is_consistent(zone, page))
587 return 1;
588
1da177e4
LT
589 return 0;
590}
13e7444b 591#else
d73d3c9f 592static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
593{
594 return 0;
595}
596#endif
597
82a3241a 598static void bad_page(struct page *page, const char *reason)
1da177e4 599{
d936cf9b
HD
600 static unsigned long resume;
601 static unsigned long nr_shown;
602 static unsigned long nr_unshown;
603
604 /*
605 * Allow a burst of 60 reports, then keep quiet for that minute;
606 * or allow a steady drip of one report per second.
607 */
608 if (nr_shown == 60) {
609 if (time_before(jiffies, resume)) {
610 nr_unshown++;
611 goto out;
612 }
613 if (nr_unshown) {
ff8e8116 614 pr_alert(
1e9e6365 615 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
616 nr_unshown);
617 nr_unshown = 0;
618 }
619 nr_shown = 0;
620 }
621 if (nr_shown++ == 0)
622 resume = jiffies + 60 * HZ;
623
ff8e8116 624 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 625 current->comm, page_to_pfn(page));
ff8e8116 626 __dump_page(page, reason);
4e462112 627 dump_page_owner(page);
3dc14741 628
4f31888c 629 print_modules();
1da177e4 630 dump_stack();
d936cf9b 631out:
8cc3b392 632 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 633 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 634 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
635}
636
1da177e4
LT
637/*
638 * Higher-order pages are called "compound pages". They are structured thusly:
639 *
1d798ca3 640 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 641 *
1d798ca3
KS
642 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
643 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 644 *
1d798ca3
KS
645 * The first tail page's ->compound_dtor holds the offset in array of compound
646 * page destructors. See compound_page_dtors.
1da177e4 647 *
1d798ca3 648 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 649 * This usage means that zero-order pages may not be compound.
1da177e4 650 */
d98c7a09 651
9a982250 652void free_compound_page(struct page *page)
d98c7a09 653{
7ae88534 654 mem_cgroup_uncharge(page);
7fef431b 655 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
656}
657
d00181b9 658void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
659{
660 int i;
661 int nr_pages = 1 << order;
662
18229df5
AW
663 __SetPageHead(page);
664 for (i = 1; i < nr_pages; i++) {
665 struct page *p = page + i;
58a84aa9 666 set_page_count(p, 0);
1c290f64 667 p->mapping = TAIL_MAPPING;
1d798ca3 668 set_compound_head(p, page);
18229df5 669 }
1378a5ee
MWO
670
671 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
672 set_compound_order(page, order);
53f9263b 673 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
674 if (hpage_pincount_available(page))
675 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
676}
677
c0a32fc5
SG
678#ifdef CONFIG_DEBUG_PAGEALLOC
679unsigned int _debug_guardpage_minorder;
96a2b03f 680
8e57f8ac
VB
681bool _debug_pagealloc_enabled_early __read_mostly
682 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
683EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 684DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 685EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
686
687DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 688
031bc574
JK
689static int __init early_debug_pagealloc(char *buf)
690{
8e57f8ac 691 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
692}
693early_param("debug_pagealloc", early_debug_pagealloc);
694
c0a32fc5
SG
695static int __init debug_guardpage_minorder_setup(char *buf)
696{
697 unsigned long res;
698
699 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 700 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
701 return 0;
702 }
703 _debug_guardpage_minorder = res;
1170532b 704 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
705 return 0;
706}
f1c1e9f7 707early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 708
acbc15a4 709static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 710 unsigned int order, int migratetype)
c0a32fc5 711{
e30825f1 712 if (!debug_guardpage_enabled())
acbc15a4
JK
713 return false;
714
715 if (order >= debug_guardpage_minorder())
716 return false;
e30825f1 717
3972f6bb 718 __SetPageGuard(page);
2847cf95
JK
719 INIT_LIST_HEAD(&page->lru);
720 set_page_private(page, order);
721 /* Guard pages are not available for any usage */
722 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
723
724 return true;
c0a32fc5
SG
725}
726
2847cf95
JK
727static inline void clear_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype)
c0a32fc5 729{
e30825f1
JK
730 if (!debug_guardpage_enabled())
731 return;
732
3972f6bb 733 __ClearPageGuard(page);
e30825f1 734
2847cf95
JK
735 set_page_private(page, 0);
736 if (!is_migrate_isolate(migratetype))
737 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
738}
739#else
acbc15a4
JK
740static inline bool set_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype) { return false; }
2847cf95
JK
742static inline void clear_page_guard(struct zone *zone, struct page *page,
743 unsigned int order, int migratetype) {}
c0a32fc5
SG
744#endif
745
04013513
VB
746/*
747 * Enable static keys related to various memory debugging and hardening options.
748 * Some override others, and depend on early params that are evaluated in the
749 * order of appearance. So we need to first gather the full picture of what was
750 * enabled, and then make decisions.
751 */
752void init_mem_debugging_and_hardening(void)
753{
754 if (_init_on_alloc_enabled_early) {
755 if (page_poisoning_enabled())
756 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
757 "will take precedence over init_on_alloc\n");
758 else
759 static_branch_enable(&init_on_alloc);
760 }
761 if (_init_on_free_enabled_early) {
762 if (page_poisoning_enabled())
763 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
764 "will take precedence over init_on_free\n");
765 else
766 static_branch_enable(&init_on_free);
767 }
768
8db26a3d
VB
769#ifdef CONFIG_PAGE_POISONING
770 /*
771 * Page poisoning is debug page alloc for some arches. If
772 * either of those options are enabled, enable poisoning.
773 */
774 if (page_poisoning_enabled() ||
775 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
776 debug_pagealloc_enabled()))
777 static_branch_enable(&_page_poisoning_enabled);
778#endif
779
04013513
VB
780#ifdef CONFIG_DEBUG_PAGEALLOC
781 if (!debug_pagealloc_enabled())
782 return;
783
784 static_branch_enable(&_debug_pagealloc_enabled);
785
786 if (!debug_guardpage_minorder())
787 return;
788
789 static_branch_enable(&_debug_guardpage_enabled);
790#endif
791}
792
ab130f91 793static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 794{
4c21e2f2 795 set_page_private(page, order);
676165a8 796 __SetPageBuddy(page);
1da177e4
LT
797}
798
1da177e4
LT
799/*
800 * This function checks whether a page is free && is the buddy
6e292b9b 801 * we can coalesce a page and its buddy if
13ad59df 802 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 803 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
804 * (c) a page and its buddy have the same order &&
805 * (d) a page and its buddy are in the same zone.
676165a8 806 *
6e292b9b
MW
807 * For recording whether a page is in the buddy system, we set PageBuddy.
808 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 809 *
676165a8 810 * For recording page's order, we use page_private(page).
1da177e4 811 */
fe925c0c 812static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 813 unsigned int order)
1da177e4 814{
fe925c0c 815 if (!page_is_guard(buddy) && !PageBuddy(buddy))
816 return false;
4c5018ce 817
ab130f91 818 if (buddy_order(buddy) != order)
fe925c0c 819 return false;
c0a32fc5 820
fe925c0c 821 /*
822 * zone check is done late to avoid uselessly calculating
823 * zone/node ids for pages that could never merge.
824 */
825 if (page_zone_id(page) != page_zone_id(buddy))
826 return false;
d34c5fa0 827
fe925c0c 828 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 829
fe925c0c 830 return true;
1da177e4
LT
831}
832
5e1f0f09
MG
833#ifdef CONFIG_COMPACTION
834static inline struct capture_control *task_capc(struct zone *zone)
835{
836 struct capture_control *capc = current->capture_control;
837
deba0487 838 return unlikely(capc) &&
5e1f0f09
MG
839 !(current->flags & PF_KTHREAD) &&
840 !capc->page &&
deba0487 841 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
842}
843
844static inline bool
845compaction_capture(struct capture_control *capc, struct page *page,
846 int order, int migratetype)
847{
848 if (!capc || order != capc->cc->order)
849 return false;
850
851 /* Do not accidentally pollute CMA or isolated regions*/
852 if (is_migrate_cma(migratetype) ||
853 is_migrate_isolate(migratetype))
854 return false;
855
856 /*
857 * Do not let lower order allocations polluate a movable pageblock.
858 * This might let an unmovable request use a reclaimable pageblock
859 * and vice-versa but no more than normal fallback logic which can
860 * have trouble finding a high-order free page.
861 */
862 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
863 return false;
864
865 capc->page = page;
866 return true;
867}
868
869#else
870static inline struct capture_control *task_capc(struct zone *zone)
871{
872 return NULL;
873}
874
875static inline bool
876compaction_capture(struct capture_control *capc, struct page *page,
877 int order, int migratetype)
878{
879 return false;
880}
881#endif /* CONFIG_COMPACTION */
882
6ab01363
AD
883/* Used for pages not on another list */
884static inline void add_to_free_list(struct page *page, struct zone *zone,
885 unsigned int order, int migratetype)
886{
887 struct free_area *area = &zone->free_area[order];
888
889 list_add(&page->lru, &area->free_list[migratetype]);
890 area->nr_free++;
891}
892
893/* Used for pages not on another list */
894static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
895 unsigned int order, int migratetype)
896{
897 struct free_area *area = &zone->free_area[order];
898
899 list_add_tail(&page->lru, &area->free_list[migratetype]);
900 area->nr_free++;
901}
902
293ffa5e
DH
903/*
904 * Used for pages which are on another list. Move the pages to the tail
905 * of the list - so the moved pages won't immediately be considered for
906 * allocation again (e.g., optimization for memory onlining).
907 */
6ab01363
AD
908static inline void move_to_free_list(struct page *page, struct zone *zone,
909 unsigned int order, int migratetype)
910{
911 struct free_area *area = &zone->free_area[order];
912
293ffa5e 913 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
914}
915
916static inline void del_page_from_free_list(struct page *page, struct zone *zone,
917 unsigned int order)
918{
36e66c55
AD
919 /* clear reported state and update reported page count */
920 if (page_reported(page))
921 __ClearPageReported(page);
922
6ab01363
AD
923 list_del(&page->lru);
924 __ClearPageBuddy(page);
925 set_page_private(page, 0);
926 zone->free_area[order].nr_free--;
927}
928
a2129f24
AD
929/*
930 * If this is not the largest possible page, check if the buddy
931 * of the next-highest order is free. If it is, it's possible
932 * that pages are being freed that will coalesce soon. In case,
933 * that is happening, add the free page to the tail of the list
934 * so it's less likely to be used soon and more likely to be merged
935 * as a higher order page
936 */
937static inline bool
938buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
939 struct page *page, unsigned int order)
940{
941 struct page *higher_page, *higher_buddy;
942 unsigned long combined_pfn;
943
944 if (order >= MAX_ORDER - 2)
945 return false;
946
947 if (!pfn_valid_within(buddy_pfn))
948 return false;
949
950 combined_pfn = buddy_pfn & pfn;
951 higher_page = page + (combined_pfn - pfn);
952 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
953 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
954
955 return pfn_valid_within(buddy_pfn) &&
956 page_is_buddy(higher_page, higher_buddy, order + 1);
957}
958
1da177e4
LT
959/*
960 * Freeing function for a buddy system allocator.
961 *
962 * The concept of a buddy system is to maintain direct-mapped table
963 * (containing bit values) for memory blocks of various "orders".
964 * The bottom level table contains the map for the smallest allocatable
965 * units of memory (here, pages), and each level above it describes
966 * pairs of units from the levels below, hence, "buddies".
967 * At a high level, all that happens here is marking the table entry
968 * at the bottom level available, and propagating the changes upward
969 * as necessary, plus some accounting needed to play nicely with other
970 * parts of the VM system.
971 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
972 * free pages of length of (1 << order) and marked with PageBuddy.
973 * Page's order is recorded in page_private(page) field.
1da177e4 974 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
975 * other. That is, if we allocate a small block, and both were
976 * free, the remainder of the region must be split into blocks.
1da177e4 977 * If a block is freed, and its buddy is also free, then this
5f63b720 978 * triggers coalescing into a block of larger size.
1da177e4 979 *
6d49e352 980 * -- nyc
1da177e4
LT
981 */
982
48db57f8 983static inline void __free_one_page(struct page *page,
dc4b0caf 984 unsigned long pfn,
ed0ae21d 985 struct zone *zone, unsigned int order,
f04a5d5d 986 int migratetype, fpi_t fpi_flags)
1da177e4 987{
a2129f24 988 struct capture_control *capc = task_capc(zone);
3f649ab7 989 unsigned long buddy_pfn;
a2129f24 990 unsigned long combined_pfn;
d9dddbf5 991 unsigned int max_order;
a2129f24
AD
992 struct page *buddy;
993 bool to_tail;
d9dddbf5 994
7ad69832 995 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 996
d29bb978 997 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 998 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 999
ed0ae21d 1000 VM_BUG_ON(migratetype == -1);
d9dddbf5 1001 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1002 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1003
76741e77 1004 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1005 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1006
d9dddbf5 1007continue_merging:
7ad69832 1008 while (order < max_order) {
5e1f0f09
MG
1009 if (compaction_capture(capc, page, order, migratetype)) {
1010 __mod_zone_freepage_state(zone, -(1 << order),
1011 migratetype);
1012 return;
1013 }
76741e77
VB
1014 buddy_pfn = __find_buddy_pfn(pfn, order);
1015 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1016
1017 if (!pfn_valid_within(buddy_pfn))
1018 goto done_merging;
cb2b95e1 1019 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1020 goto done_merging;
c0a32fc5
SG
1021 /*
1022 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1023 * merge with it and move up one order.
1024 */
b03641af 1025 if (page_is_guard(buddy))
2847cf95 1026 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1027 else
6ab01363 1028 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1029 combined_pfn = buddy_pfn & pfn;
1030 page = page + (combined_pfn - pfn);
1031 pfn = combined_pfn;
1da177e4
LT
1032 order++;
1033 }
7ad69832 1034 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1035 /* If we are here, it means order is >= pageblock_order.
1036 * We want to prevent merge between freepages on isolate
1037 * pageblock and normal pageblock. Without this, pageblock
1038 * isolation could cause incorrect freepage or CMA accounting.
1039 *
1040 * We don't want to hit this code for the more frequent
1041 * low-order merging.
1042 */
1043 if (unlikely(has_isolate_pageblock(zone))) {
1044 int buddy_mt;
1045
76741e77
VB
1046 buddy_pfn = __find_buddy_pfn(pfn, order);
1047 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1048 buddy_mt = get_pageblock_migratetype(buddy);
1049
1050 if (migratetype != buddy_mt
1051 && (is_migrate_isolate(migratetype) ||
1052 is_migrate_isolate(buddy_mt)))
1053 goto done_merging;
1054 }
7ad69832 1055 max_order = order + 1;
d9dddbf5
VB
1056 goto continue_merging;
1057 }
1058
1059done_merging:
ab130f91 1060 set_buddy_order(page, order);
6dda9d55 1061
47b6a24a
DH
1062 if (fpi_flags & FPI_TO_TAIL)
1063 to_tail = true;
1064 else if (is_shuffle_order(order))
a2129f24 1065 to_tail = shuffle_pick_tail();
97500a4a 1066 else
a2129f24 1067 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1068
a2129f24 1069 if (to_tail)
6ab01363 1070 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1071 else
6ab01363 1072 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1073
1074 /* Notify page reporting subsystem of freed page */
f04a5d5d 1075 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1076 page_reporting_notify_free(order);
1da177e4
LT
1077}
1078
7bfec6f4
MG
1079/*
1080 * A bad page could be due to a number of fields. Instead of multiple branches,
1081 * try and check multiple fields with one check. The caller must do a detailed
1082 * check if necessary.
1083 */
1084static inline bool page_expected_state(struct page *page,
1085 unsigned long check_flags)
1086{
1087 if (unlikely(atomic_read(&page->_mapcount) != -1))
1088 return false;
1089
1090 if (unlikely((unsigned long)page->mapping |
1091 page_ref_count(page) |
1092#ifdef CONFIG_MEMCG
bcfe06bf 1093 (unsigned long)page_memcg(page) |
7bfec6f4
MG
1094#endif
1095 (page->flags & check_flags)))
1096 return false;
1097
1098 return true;
1099}
1100
58b7f119 1101static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1102{
82a3241a 1103 const char *bad_reason = NULL;
f0b791a3 1104
53f9263b 1105 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1106 bad_reason = "nonzero mapcount";
1107 if (unlikely(page->mapping != NULL))
1108 bad_reason = "non-NULL mapping";
fe896d18 1109 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1110 bad_reason = "nonzero _refcount";
58b7f119
WY
1111 if (unlikely(page->flags & flags)) {
1112 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1113 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1114 else
1115 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1116 }
9edad6ea 1117#ifdef CONFIG_MEMCG
bcfe06bf 1118 if (unlikely(page_memcg(page)))
9edad6ea
JW
1119 bad_reason = "page still charged to cgroup";
1120#endif
58b7f119
WY
1121 return bad_reason;
1122}
1123
1124static void check_free_page_bad(struct page *page)
1125{
1126 bad_page(page,
1127 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1128}
1129
534fe5e3 1130static inline int check_free_page(struct page *page)
bb552ac6 1131{
da838d4f 1132 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1133 return 0;
bb552ac6
MG
1134
1135 /* Something has gone sideways, find it */
0d0c48a2 1136 check_free_page_bad(page);
7bfec6f4 1137 return 1;
1da177e4
LT
1138}
1139
4db7548c
MG
1140static int free_tail_pages_check(struct page *head_page, struct page *page)
1141{
1142 int ret = 1;
1143
1144 /*
1145 * We rely page->lru.next never has bit 0 set, unless the page
1146 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1147 */
1148 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1149
1150 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1151 ret = 0;
1152 goto out;
1153 }
1154 switch (page - head_page) {
1155 case 1:
4da1984e 1156 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1157 if (unlikely(compound_mapcount(page))) {
82a3241a 1158 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1159 goto out;
1160 }
1161 break;
1162 case 2:
1163 /*
1164 * the second tail page: ->mapping is
fa3015b7 1165 * deferred_list.next -- ignore value.
4db7548c
MG
1166 */
1167 break;
1168 default:
1169 if (page->mapping != TAIL_MAPPING) {
82a3241a 1170 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1171 goto out;
1172 }
1173 break;
1174 }
1175 if (unlikely(!PageTail(page))) {
82a3241a 1176 bad_page(page, "PageTail not set");
4db7548c
MG
1177 goto out;
1178 }
1179 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1180 bad_page(page, "compound_head not consistent");
4db7548c
MG
1181 goto out;
1182 }
1183 ret = 0;
1184out:
1185 page->mapping = NULL;
1186 clear_compound_head(page);
1187 return ret;
1188}
1189
6471384a
AP
1190static void kernel_init_free_pages(struct page *page, int numpages)
1191{
1192 int i;
1193
9e15afa5
QC
1194 /* s390's use of memset() could override KASAN redzones. */
1195 kasan_disable_current();
aa1ef4d7 1196 for (i = 0; i < numpages; i++) {
acb35b17 1197 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1198 page_kasan_tag_reset(page + i);
6471384a 1199 clear_highpage(page + i);
acb35b17 1200 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1201 }
9e15afa5 1202 kasan_enable_current();
6471384a
AP
1203}
1204
e2769dbd
MG
1205static __always_inline bool free_pages_prepare(struct page *page,
1206 unsigned int order, bool check_free)
4db7548c 1207{
e2769dbd 1208 int bad = 0;
4db7548c 1209
4db7548c
MG
1210 VM_BUG_ON_PAGE(PageTail(page), page);
1211
e2769dbd 1212 trace_mm_page_free(page, order);
e2769dbd 1213
79f5f8fa
OS
1214 if (unlikely(PageHWPoison(page)) && !order) {
1215 /*
1216 * Do not let hwpoison pages hit pcplists/buddy
1217 * Untie memcg state and reset page's owner
1218 */
18b2db3b 1219 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1220 __memcg_kmem_uncharge_page(page, order);
1221 reset_page_owner(page, order);
1222 return false;
1223 }
1224
e2769dbd
MG
1225 /*
1226 * Check tail pages before head page information is cleared to
1227 * avoid checking PageCompound for order-0 pages.
1228 */
1229 if (unlikely(order)) {
1230 bool compound = PageCompound(page);
1231 int i;
1232
1233 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1234
9a73f61b
KS
1235 if (compound)
1236 ClearPageDoubleMap(page);
e2769dbd
MG
1237 for (i = 1; i < (1 << order); i++) {
1238 if (compound)
1239 bad += free_tail_pages_check(page, page + i);
534fe5e3 1240 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1241 bad++;
1242 continue;
1243 }
1244 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1245 }
1246 }
bda807d4 1247 if (PageMappingFlags(page))
4db7548c 1248 page->mapping = NULL;
18b2db3b 1249 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1250 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1251 if (check_free)
534fe5e3 1252 bad += check_free_page(page);
e2769dbd
MG
1253 if (bad)
1254 return false;
4db7548c 1255
e2769dbd
MG
1256 page_cpupid_reset_last(page);
1257 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 reset_page_owner(page, order);
4db7548c
MG
1259
1260 if (!PageHighMem(page)) {
1261 debug_check_no_locks_freed(page_address(page),
e2769dbd 1262 PAGE_SIZE << order);
4db7548c 1263 debug_check_no_obj_freed(page_address(page),
e2769dbd 1264 PAGE_SIZE << order);
4db7548c 1265 }
6471384a
AP
1266 if (want_init_on_free())
1267 kernel_init_free_pages(page, 1 << order);
1268
8db26a3d
VB
1269 kernel_poison_pages(page, 1 << order);
1270
b7e894c7
AK
1271 /*
1272 * With hardware tag-based KASAN, memory tags must be set before the
1273 * page becomes unavailable via debug_pagealloc or arch_free_page.
1274 */
1275 kasan_free_nondeferred_pages(page, order);
1276
234fdce8
QC
1277 /*
1278 * arch_free_page() can make the page's contents inaccessible. s390
1279 * does this. So nothing which can access the page's contents should
1280 * happen after this.
1281 */
1282 arch_free_page(page, order);
1283
77bc7fd6 1284 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1285
4db7548c
MG
1286 return true;
1287}
1288
e2769dbd 1289#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1290/*
1291 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1292 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1293 * moved from pcp lists to free lists.
1294 */
1295static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1296{
1297 return free_pages_prepare(page, 0, true);
1298}
1299
4462b32c 1300static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1301{
8e57f8ac 1302 if (debug_pagealloc_enabled_static())
534fe5e3 1303 return check_free_page(page);
4462b32c
VB
1304 else
1305 return false;
e2769dbd
MG
1306}
1307#else
4462b32c
VB
1308/*
1309 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1310 * moving from pcp lists to free list in order to reduce overhead. With
1311 * debug_pagealloc enabled, they are checked also immediately when being freed
1312 * to the pcp lists.
1313 */
e2769dbd
MG
1314static bool free_pcp_prepare(struct page *page)
1315{
8e57f8ac 1316 if (debug_pagealloc_enabled_static())
4462b32c
VB
1317 return free_pages_prepare(page, 0, true);
1318 else
1319 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1320}
1321
4db7548c
MG
1322static bool bulkfree_pcp_prepare(struct page *page)
1323{
534fe5e3 1324 return check_free_page(page);
4db7548c
MG
1325}
1326#endif /* CONFIG_DEBUG_VM */
1327
97334162
AL
1328static inline void prefetch_buddy(struct page *page)
1329{
1330 unsigned long pfn = page_to_pfn(page);
1331 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1332 struct page *buddy = page + (buddy_pfn - pfn);
1333
1334 prefetch(buddy);
1335}
1336
1da177e4 1337/*
5f8dcc21 1338 * Frees a number of pages from the PCP lists
1da177e4 1339 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1340 * count is the number of pages to free.
1da177e4
LT
1341 *
1342 * If the zone was previously in an "all pages pinned" state then look to
1343 * see if this freeing clears that state.
1344 *
1345 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1346 * pinned" detection logic.
1347 */
5f8dcc21
MG
1348static void free_pcppages_bulk(struct zone *zone, int count,
1349 struct per_cpu_pages *pcp)
1da177e4 1350{
5f8dcc21 1351 int migratetype = 0;
a6f9edd6 1352 int batch_free = 0;
5c3ad2eb 1353 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1354 bool isolated_pageblocks;
0a5f4e5b
AL
1355 struct page *page, *tmp;
1356 LIST_HEAD(head);
f2260e6b 1357
88e8ac11
CTR
1358 /*
1359 * Ensure proper count is passed which otherwise would stuck in the
1360 * below while (list_empty(list)) loop.
1361 */
1362 count = min(pcp->count, count);
e5b31ac2 1363 while (count) {
5f8dcc21
MG
1364 struct list_head *list;
1365
1366 /*
a6f9edd6
MG
1367 * Remove pages from lists in a round-robin fashion. A
1368 * batch_free count is maintained that is incremented when an
1369 * empty list is encountered. This is so more pages are freed
1370 * off fuller lists instead of spinning excessively around empty
1371 * lists
5f8dcc21
MG
1372 */
1373 do {
a6f9edd6 1374 batch_free++;
5f8dcc21
MG
1375 if (++migratetype == MIGRATE_PCPTYPES)
1376 migratetype = 0;
1377 list = &pcp->lists[migratetype];
1378 } while (list_empty(list));
48db57f8 1379
1d16871d
NK
1380 /* This is the only non-empty list. Free them all. */
1381 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1382 batch_free = count;
1d16871d 1383
a6f9edd6 1384 do {
a16601c5 1385 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1386 /* must delete to avoid corrupting pcp list */
a6f9edd6 1387 list_del(&page->lru);
77ba9062 1388 pcp->count--;
aa016d14 1389
4db7548c
MG
1390 if (bulkfree_pcp_prepare(page))
1391 continue;
1392
0a5f4e5b 1393 list_add_tail(&page->lru, &head);
97334162
AL
1394
1395 /*
1396 * We are going to put the page back to the global
1397 * pool, prefetch its buddy to speed up later access
1398 * under zone->lock. It is believed the overhead of
1399 * an additional test and calculating buddy_pfn here
1400 * can be offset by reduced memory latency later. To
1401 * avoid excessive prefetching due to large count, only
1402 * prefetch buddy for the first pcp->batch nr of pages.
1403 */
5c3ad2eb 1404 if (prefetch_nr) {
97334162 1405 prefetch_buddy(page);
5c3ad2eb
VB
1406 prefetch_nr--;
1407 }
e5b31ac2 1408 } while (--count && --batch_free && !list_empty(list));
1da177e4 1409 }
0a5f4e5b
AL
1410
1411 spin_lock(&zone->lock);
1412 isolated_pageblocks = has_isolate_pageblock(zone);
1413
1414 /*
1415 * Use safe version since after __free_one_page(),
1416 * page->lru.next will not point to original list.
1417 */
1418 list_for_each_entry_safe(page, tmp, &head, lru) {
1419 int mt = get_pcppage_migratetype(page);
1420 /* MIGRATE_ISOLATE page should not go to pcplists */
1421 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1422 /* Pageblock could have been isolated meanwhile */
1423 if (unlikely(isolated_pageblocks))
1424 mt = get_pageblock_migratetype(page);
1425
f04a5d5d 1426 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1427 trace_mm_page_pcpu_drain(page, 0, mt);
1428 }
d34b0733 1429 spin_unlock(&zone->lock);
1da177e4
LT
1430}
1431
dc4b0caf
MG
1432static void free_one_page(struct zone *zone,
1433 struct page *page, unsigned long pfn,
7aeb09f9 1434 unsigned int order,
7fef431b 1435 int migratetype, fpi_t fpi_flags)
1da177e4 1436{
d34b0733 1437 spin_lock(&zone->lock);
ad53f92e
JK
1438 if (unlikely(has_isolate_pageblock(zone) ||
1439 is_migrate_isolate(migratetype))) {
1440 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1441 }
7fef431b 1442 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1443 spin_unlock(&zone->lock);
48db57f8
NP
1444}
1445
1e8ce83c 1446static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1447 unsigned long zone, int nid)
1e8ce83c 1448{
d0dc12e8 1449 mm_zero_struct_page(page);
1e8ce83c 1450 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1451 init_page_count(page);
1452 page_mapcount_reset(page);
1453 page_cpupid_reset_last(page);
2813b9c0 1454 page_kasan_tag_reset(page);
1e8ce83c 1455
1e8ce83c
RH
1456 INIT_LIST_HEAD(&page->lru);
1457#ifdef WANT_PAGE_VIRTUAL
1458 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1459 if (!is_highmem_idx(zone))
1460 set_page_address(page, __va(pfn << PAGE_SHIFT));
1461#endif
1462}
1463
7e18adb4 1464#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1465static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1466{
1467 pg_data_t *pgdat;
1468 int nid, zid;
1469
1470 if (!early_page_uninitialised(pfn))
1471 return;
1472
1473 nid = early_pfn_to_nid(pfn);
1474 pgdat = NODE_DATA(nid);
1475
1476 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1477 struct zone *zone = &pgdat->node_zones[zid];
1478
1479 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1480 break;
1481 }
d0dc12e8 1482 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1483}
1484#else
1485static inline void init_reserved_page(unsigned long pfn)
1486{
1487}
1488#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1489
92923ca3
NZ
1490/*
1491 * Initialised pages do not have PageReserved set. This function is
1492 * called for each range allocated by the bootmem allocator and
1493 * marks the pages PageReserved. The remaining valid pages are later
1494 * sent to the buddy page allocator.
1495 */
4b50bcc7 1496void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1497{
1498 unsigned long start_pfn = PFN_DOWN(start);
1499 unsigned long end_pfn = PFN_UP(end);
1500
7e18adb4
MG
1501 for (; start_pfn < end_pfn; start_pfn++) {
1502 if (pfn_valid(start_pfn)) {
1503 struct page *page = pfn_to_page(start_pfn);
1504
1505 init_reserved_page(start_pfn);
1d798ca3
KS
1506
1507 /* Avoid false-positive PageTail() */
1508 INIT_LIST_HEAD(&page->lru);
1509
d483da5b
AD
1510 /*
1511 * no need for atomic set_bit because the struct
1512 * page is not visible yet so nobody should
1513 * access it yet.
1514 */
1515 __SetPageReserved(page);
7e18adb4
MG
1516 }
1517 }
92923ca3
NZ
1518}
1519
7fef431b
DH
1520static void __free_pages_ok(struct page *page, unsigned int order,
1521 fpi_t fpi_flags)
ec95f53a 1522{
d34b0733 1523 unsigned long flags;
95e34412 1524 int migratetype;
dc4b0caf 1525 unsigned long pfn = page_to_pfn(page);
ec95f53a 1526
e2769dbd 1527 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1528 return;
1529
cfc47a28 1530 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1531 local_irq_save(flags);
1532 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1533 free_one_page(page_zone(page), page, pfn, order, migratetype,
1534 fpi_flags);
d34b0733 1535 local_irq_restore(flags);
1da177e4
LT
1536}
1537
a9cd410a 1538void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1539{
c3993076 1540 unsigned int nr_pages = 1 << order;
e2d0bd2b 1541 struct page *p = page;
c3993076 1542 unsigned int loop;
a226f6c8 1543
7fef431b
DH
1544 /*
1545 * When initializing the memmap, __init_single_page() sets the refcount
1546 * of all pages to 1 ("allocated"/"not free"). We have to set the
1547 * refcount of all involved pages to 0.
1548 */
e2d0bd2b
YL
1549 prefetchw(p);
1550 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1551 prefetchw(p + 1);
c3993076
JW
1552 __ClearPageReserved(p);
1553 set_page_count(p, 0);
a226f6c8 1554 }
e2d0bd2b
YL
1555 __ClearPageReserved(p);
1556 set_page_count(p, 0);
c3993076 1557
9705bea5 1558 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1559
1560 /*
1561 * Bypass PCP and place fresh pages right to the tail, primarily
1562 * relevant for memory onlining.
1563 */
1564 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1565}
1566
3f08a302 1567#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1568
03e92a5e
MR
1569/*
1570 * During memory init memblocks map pfns to nids. The search is expensive and
1571 * this caches recent lookups. The implementation of __early_pfn_to_nid
1572 * treats start/end as pfns.
1573 */
1574struct mminit_pfnnid_cache {
1575 unsigned long last_start;
1576 unsigned long last_end;
1577 int last_nid;
1578};
75a592a4 1579
03e92a5e 1580static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1581
1582/*
1583 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1584 */
03e92a5e 1585static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1586 struct mminit_pfnnid_cache *state)
75a592a4 1587{
6f24fbd3 1588 unsigned long start_pfn, end_pfn;
75a592a4
MG
1589 int nid;
1590
6f24fbd3
MR
1591 if (state->last_start <= pfn && pfn < state->last_end)
1592 return state->last_nid;
1593
1594 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1595 if (nid != NUMA_NO_NODE) {
1596 state->last_start = start_pfn;
1597 state->last_end = end_pfn;
1598 state->last_nid = nid;
1599 }
7ace9917
MG
1600
1601 return nid;
75a592a4 1602}
75a592a4 1603
75a592a4 1604int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1605{
7ace9917 1606 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1607 int nid;
1608
7ace9917 1609 spin_lock(&early_pfn_lock);
56ec43d8 1610 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1611 if (nid < 0)
e4568d38 1612 nid = first_online_node;
7ace9917 1613 spin_unlock(&early_pfn_lock);
75a592a4 1614
7ace9917 1615 return nid;
75a592a4 1616}
3f08a302 1617#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1618
7c2ee349 1619void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1620 unsigned int order)
1621{
1622 if (early_page_uninitialised(pfn))
1623 return;
a9cd410a 1624 __free_pages_core(page, order);
3a80a7fa
MG
1625}
1626
7cf91a98
JK
1627/*
1628 * Check that the whole (or subset of) a pageblock given by the interval of
1629 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1630 * with the migration of free compaction scanner. The scanners then need to
1631 * use only pfn_valid_within() check for arches that allow holes within
1632 * pageblocks.
1633 *
1634 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1635 *
1636 * It's possible on some configurations to have a setup like node0 node1 node0
1637 * i.e. it's possible that all pages within a zones range of pages do not
1638 * belong to a single zone. We assume that a border between node0 and node1
1639 * can occur within a single pageblock, but not a node0 node1 node0
1640 * interleaving within a single pageblock. It is therefore sufficient to check
1641 * the first and last page of a pageblock and avoid checking each individual
1642 * page in a pageblock.
1643 */
1644struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1645 unsigned long end_pfn, struct zone *zone)
1646{
1647 struct page *start_page;
1648 struct page *end_page;
1649
1650 /* end_pfn is one past the range we are checking */
1651 end_pfn--;
1652
1653 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1654 return NULL;
1655
2d070eab
MH
1656 start_page = pfn_to_online_page(start_pfn);
1657 if (!start_page)
1658 return NULL;
7cf91a98
JK
1659
1660 if (page_zone(start_page) != zone)
1661 return NULL;
1662
1663 end_page = pfn_to_page(end_pfn);
1664
1665 /* This gives a shorter code than deriving page_zone(end_page) */
1666 if (page_zone_id(start_page) != page_zone_id(end_page))
1667 return NULL;
1668
1669 return start_page;
1670}
1671
1672void set_zone_contiguous(struct zone *zone)
1673{
1674 unsigned long block_start_pfn = zone->zone_start_pfn;
1675 unsigned long block_end_pfn;
1676
1677 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1678 for (; block_start_pfn < zone_end_pfn(zone);
1679 block_start_pfn = block_end_pfn,
1680 block_end_pfn += pageblock_nr_pages) {
1681
1682 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1683
1684 if (!__pageblock_pfn_to_page(block_start_pfn,
1685 block_end_pfn, zone))
1686 return;
e84fe99b 1687 cond_resched();
7cf91a98
JK
1688 }
1689
1690 /* We confirm that there is no hole */
1691 zone->contiguous = true;
1692}
1693
1694void clear_zone_contiguous(struct zone *zone)
1695{
1696 zone->contiguous = false;
1697}
1698
7e18adb4 1699#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1700static void __init deferred_free_range(unsigned long pfn,
1701 unsigned long nr_pages)
a4de83dd 1702{
2f47a91f
PT
1703 struct page *page;
1704 unsigned long i;
a4de83dd 1705
2f47a91f 1706 if (!nr_pages)
a4de83dd
MG
1707 return;
1708
2f47a91f
PT
1709 page = pfn_to_page(pfn);
1710
a4de83dd 1711 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1712 if (nr_pages == pageblock_nr_pages &&
1713 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1714 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1715 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1716 return;
1717 }
1718
e780149b
XQ
1719 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1720 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1721 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1722 __free_pages_core(page, 0);
e780149b 1723 }
a4de83dd
MG
1724}
1725
d3cd131d
NS
1726/* Completion tracking for deferred_init_memmap() threads */
1727static atomic_t pgdat_init_n_undone __initdata;
1728static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1729
1730static inline void __init pgdat_init_report_one_done(void)
1731{
1732 if (atomic_dec_and_test(&pgdat_init_n_undone))
1733 complete(&pgdat_init_all_done_comp);
1734}
0e1cc95b 1735
2f47a91f 1736/*
80b1f41c
PT
1737 * Returns true if page needs to be initialized or freed to buddy allocator.
1738 *
1739 * First we check if pfn is valid on architectures where it is possible to have
1740 * holes within pageblock_nr_pages. On systems where it is not possible, this
1741 * function is optimized out.
1742 *
1743 * Then, we check if a current large page is valid by only checking the validity
1744 * of the head pfn.
2f47a91f 1745 */
56ec43d8 1746static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1747{
80b1f41c
PT
1748 if (!pfn_valid_within(pfn))
1749 return false;
1750 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1751 return false;
80b1f41c
PT
1752 return true;
1753}
2f47a91f 1754
80b1f41c
PT
1755/*
1756 * Free pages to buddy allocator. Try to free aligned pages in
1757 * pageblock_nr_pages sizes.
1758 */
56ec43d8 1759static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1760 unsigned long end_pfn)
1761{
80b1f41c
PT
1762 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1763 unsigned long nr_free = 0;
2f47a91f 1764
80b1f41c 1765 for (; pfn < end_pfn; pfn++) {
56ec43d8 1766 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1767 deferred_free_range(pfn - nr_free, nr_free);
1768 nr_free = 0;
1769 } else if (!(pfn & nr_pgmask)) {
1770 deferred_free_range(pfn - nr_free, nr_free);
1771 nr_free = 1;
80b1f41c
PT
1772 } else {
1773 nr_free++;
1774 }
1775 }
1776 /* Free the last block of pages to allocator */
1777 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1778}
1779
80b1f41c
PT
1780/*
1781 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1782 * by performing it only once every pageblock_nr_pages.
1783 * Return number of pages initialized.
1784 */
56ec43d8 1785static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1786 unsigned long pfn,
1787 unsigned long end_pfn)
2f47a91f 1788{
2f47a91f 1789 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1790 int nid = zone_to_nid(zone);
2f47a91f 1791 unsigned long nr_pages = 0;
56ec43d8 1792 int zid = zone_idx(zone);
2f47a91f 1793 struct page *page = NULL;
2f47a91f 1794
80b1f41c 1795 for (; pfn < end_pfn; pfn++) {
56ec43d8 1796 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1797 page = NULL;
2f47a91f 1798 continue;
80b1f41c 1799 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1800 page = pfn_to_page(pfn);
80b1f41c
PT
1801 } else {
1802 page++;
2f47a91f 1803 }
d0dc12e8 1804 __init_single_page(page, pfn, zid, nid);
80b1f41c 1805 nr_pages++;
2f47a91f 1806 }
80b1f41c 1807 return (nr_pages);
2f47a91f
PT
1808}
1809
0e56acae
AD
1810/*
1811 * This function is meant to pre-load the iterator for the zone init.
1812 * Specifically it walks through the ranges until we are caught up to the
1813 * first_init_pfn value and exits there. If we never encounter the value we
1814 * return false indicating there are no valid ranges left.
1815 */
1816static bool __init
1817deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1818 unsigned long *spfn, unsigned long *epfn,
1819 unsigned long first_init_pfn)
1820{
1821 u64 j;
1822
1823 /*
1824 * Start out by walking through the ranges in this zone that have
1825 * already been initialized. We don't need to do anything with them
1826 * so we just need to flush them out of the system.
1827 */
1828 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1829 if (*epfn <= first_init_pfn)
1830 continue;
1831 if (*spfn < first_init_pfn)
1832 *spfn = first_init_pfn;
1833 *i = j;
1834 return true;
1835 }
1836
1837 return false;
1838}
1839
1840/*
1841 * Initialize and free pages. We do it in two loops: first we initialize
1842 * struct page, then free to buddy allocator, because while we are
1843 * freeing pages we can access pages that are ahead (computing buddy
1844 * page in __free_one_page()).
1845 *
1846 * In order to try and keep some memory in the cache we have the loop
1847 * broken along max page order boundaries. This way we will not cause
1848 * any issues with the buddy page computation.
1849 */
1850static unsigned long __init
1851deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1852 unsigned long *end_pfn)
1853{
1854 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1855 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1856 unsigned long nr_pages = 0;
1857 u64 j = *i;
1858
1859 /* First we loop through and initialize the page values */
1860 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1861 unsigned long t;
1862
1863 if (mo_pfn <= *start_pfn)
1864 break;
1865
1866 t = min(mo_pfn, *end_pfn);
1867 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1868
1869 if (mo_pfn < *end_pfn) {
1870 *start_pfn = mo_pfn;
1871 break;
1872 }
1873 }
1874
1875 /* Reset values and now loop through freeing pages as needed */
1876 swap(j, *i);
1877
1878 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1879 unsigned long t;
1880
1881 if (mo_pfn <= spfn)
1882 break;
1883
1884 t = min(mo_pfn, epfn);
1885 deferred_free_pages(spfn, t);
1886
1887 if (mo_pfn <= epfn)
1888 break;
1889 }
1890
1891 return nr_pages;
1892}
1893
e4443149
DJ
1894static void __init
1895deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1896 void *arg)
1897{
1898 unsigned long spfn, epfn;
1899 struct zone *zone = arg;
1900 u64 i;
1901
1902 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1903
1904 /*
1905 * Initialize and free pages in MAX_ORDER sized increments so that we
1906 * can avoid introducing any issues with the buddy allocator.
1907 */
1908 while (spfn < end_pfn) {
1909 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1910 cond_resched();
1911 }
1912}
1913
ecd09650
DJ
1914/* An arch may override for more concurrency. */
1915__weak int __init
1916deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1917{
1918 return 1;
1919}
1920
7e18adb4 1921/* Initialise remaining memory on a node */
0e1cc95b 1922static int __init deferred_init_memmap(void *data)
7e18adb4 1923{
0e1cc95b 1924 pg_data_t *pgdat = data;
0e56acae 1925 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1926 unsigned long spfn = 0, epfn = 0;
0e56acae 1927 unsigned long first_init_pfn, flags;
7e18adb4 1928 unsigned long start = jiffies;
7e18adb4 1929 struct zone *zone;
e4443149 1930 int zid, max_threads;
2f47a91f 1931 u64 i;
7e18adb4 1932
3a2d7fa8
PT
1933 /* Bind memory initialisation thread to a local node if possible */
1934 if (!cpumask_empty(cpumask))
1935 set_cpus_allowed_ptr(current, cpumask);
1936
1937 pgdat_resize_lock(pgdat, &flags);
1938 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1939 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1940 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1941 pgdat_init_report_one_done();
0e1cc95b
MG
1942 return 0;
1943 }
1944
7e18adb4
MG
1945 /* Sanity check boundaries */
1946 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1947 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1948 pgdat->first_deferred_pfn = ULONG_MAX;
1949
3d060856
PT
1950 /*
1951 * Once we unlock here, the zone cannot be grown anymore, thus if an
1952 * interrupt thread must allocate this early in boot, zone must be
1953 * pre-grown prior to start of deferred page initialization.
1954 */
1955 pgdat_resize_unlock(pgdat, &flags);
1956
7e18adb4
MG
1957 /* Only the highest zone is deferred so find it */
1958 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1959 zone = pgdat->node_zones + zid;
1960 if (first_init_pfn < zone_end_pfn(zone))
1961 break;
1962 }
0e56acae
AD
1963
1964 /* If the zone is empty somebody else may have cleared out the zone */
1965 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1966 first_init_pfn))
1967 goto zone_empty;
7e18adb4 1968
ecd09650 1969 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1970
117003c3 1971 while (spfn < epfn) {
e4443149
DJ
1972 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1973 struct padata_mt_job job = {
1974 .thread_fn = deferred_init_memmap_chunk,
1975 .fn_arg = zone,
1976 .start = spfn,
1977 .size = epfn_align - spfn,
1978 .align = PAGES_PER_SECTION,
1979 .min_chunk = PAGES_PER_SECTION,
1980 .max_threads = max_threads,
1981 };
1982
1983 padata_do_multithreaded(&job);
1984 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1985 epfn_align);
117003c3 1986 }
0e56acae 1987zone_empty:
7e18adb4
MG
1988 /* Sanity check that the next zone really is unpopulated */
1989 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1990
89c7c402
DJ
1991 pr_info("node %d deferred pages initialised in %ums\n",
1992 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1993
1994 pgdat_init_report_one_done();
0e1cc95b
MG
1995 return 0;
1996}
c9e97a19 1997
c9e97a19
PT
1998/*
1999 * If this zone has deferred pages, try to grow it by initializing enough
2000 * deferred pages to satisfy the allocation specified by order, rounded up to
2001 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2002 * of SECTION_SIZE bytes by initializing struct pages in increments of
2003 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2004 *
2005 * Return true when zone was grown, otherwise return false. We return true even
2006 * when we grow less than requested, to let the caller decide if there are
2007 * enough pages to satisfy the allocation.
2008 *
2009 * Note: We use noinline because this function is needed only during boot, and
2010 * it is called from a __ref function _deferred_grow_zone. This way we are
2011 * making sure that it is not inlined into permanent text section.
2012 */
2013static noinline bool __init
2014deferred_grow_zone(struct zone *zone, unsigned int order)
2015{
c9e97a19 2016 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2017 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2018 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2019 unsigned long spfn, epfn, flags;
2020 unsigned long nr_pages = 0;
c9e97a19
PT
2021 u64 i;
2022
2023 /* Only the last zone may have deferred pages */
2024 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2025 return false;
2026
2027 pgdat_resize_lock(pgdat, &flags);
2028
c9e97a19
PT
2029 /*
2030 * If someone grew this zone while we were waiting for spinlock, return
2031 * true, as there might be enough pages already.
2032 */
2033 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2034 pgdat_resize_unlock(pgdat, &flags);
2035 return true;
2036 }
2037
0e56acae
AD
2038 /* If the zone is empty somebody else may have cleared out the zone */
2039 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2040 first_deferred_pfn)) {
2041 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2042 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2043 /* Retry only once. */
2044 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2045 }
2046
0e56acae
AD
2047 /*
2048 * Initialize and free pages in MAX_ORDER sized increments so
2049 * that we can avoid introducing any issues with the buddy
2050 * allocator.
2051 */
2052 while (spfn < epfn) {
2053 /* update our first deferred PFN for this section */
2054 first_deferred_pfn = spfn;
2055
2056 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2057 touch_nmi_watchdog();
c9e97a19 2058
0e56acae
AD
2059 /* We should only stop along section boundaries */
2060 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2061 continue;
c9e97a19 2062
0e56acae 2063 /* If our quota has been met we can stop here */
c9e97a19
PT
2064 if (nr_pages >= nr_pages_needed)
2065 break;
2066 }
2067
0e56acae 2068 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2069 pgdat_resize_unlock(pgdat, &flags);
2070
2071 return nr_pages > 0;
2072}
2073
2074/*
2075 * deferred_grow_zone() is __init, but it is called from
2076 * get_page_from_freelist() during early boot until deferred_pages permanently
2077 * disables this call. This is why we have refdata wrapper to avoid warning,
2078 * and to ensure that the function body gets unloaded.
2079 */
2080static bool __ref
2081_deferred_grow_zone(struct zone *zone, unsigned int order)
2082{
2083 return deferred_grow_zone(zone, order);
2084}
2085
7cf91a98 2086#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2087
2088void __init page_alloc_init_late(void)
2089{
7cf91a98 2090 struct zone *zone;
e900a918 2091 int nid;
7cf91a98
JK
2092
2093#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2094
d3cd131d
NS
2095 /* There will be num_node_state(N_MEMORY) threads */
2096 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2097 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2098 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2099 }
2100
2101 /* Block until all are initialised */
d3cd131d 2102 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2103
3e8fc007
MG
2104 /*
2105 * The number of managed pages has changed due to the initialisation
2106 * so the pcpu batch and high limits needs to be updated or the limits
2107 * will be artificially small.
2108 */
2109 for_each_populated_zone(zone)
2110 zone_pcp_update(zone);
2111
c9e97a19
PT
2112 /*
2113 * We initialized the rest of the deferred pages. Permanently disable
2114 * on-demand struct page initialization.
2115 */
2116 static_branch_disable(&deferred_pages);
2117
4248b0da
MG
2118 /* Reinit limits that are based on free pages after the kernel is up */
2119 files_maxfiles_init();
7cf91a98 2120#endif
350e88ba 2121
ba8f3587
LF
2122 buffer_init();
2123
3010f876
PT
2124 /* Discard memblock private memory */
2125 memblock_discard();
7cf91a98 2126
e900a918
DW
2127 for_each_node_state(nid, N_MEMORY)
2128 shuffle_free_memory(NODE_DATA(nid));
2129
7cf91a98
JK
2130 for_each_populated_zone(zone)
2131 set_zone_contiguous(zone);
7e18adb4 2132}
7e18adb4 2133
47118af0 2134#ifdef CONFIG_CMA
9cf510a5 2135/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2136void __init init_cma_reserved_pageblock(struct page *page)
2137{
2138 unsigned i = pageblock_nr_pages;
2139 struct page *p = page;
2140
2141 do {
2142 __ClearPageReserved(p);
2143 set_page_count(p, 0);
d883c6cf 2144 } while (++p, --i);
47118af0 2145
47118af0 2146 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2147
2148 if (pageblock_order >= MAX_ORDER) {
2149 i = pageblock_nr_pages;
2150 p = page;
2151 do {
2152 set_page_refcounted(p);
2153 __free_pages(p, MAX_ORDER - 1);
2154 p += MAX_ORDER_NR_PAGES;
2155 } while (i -= MAX_ORDER_NR_PAGES);
2156 } else {
2157 set_page_refcounted(page);
2158 __free_pages(page, pageblock_order);
2159 }
2160
3dcc0571 2161 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2162}
2163#endif
1da177e4
LT
2164
2165/*
2166 * The order of subdivision here is critical for the IO subsystem.
2167 * Please do not alter this order without good reasons and regression
2168 * testing. Specifically, as large blocks of memory are subdivided,
2169 * the order in which smaller blocks are delivered depends on the order
2170 * they're subdivided in this function. This is the primary factor
2171 * influencing the order in which pages are delivered to the IO
2172 * subsystem according to empirical testing, and this is also justified
2173 * by considering the behavior of a buddy system containing a single
2174 * large block of memory acted on by a series of small allocations.
2175 * This behavior is a critical factor in sglist merging's success.
2176 *
6d49e352 2177 * -- nyc
1da177e4 2178 */
085cc7d5 2179static inline void expand(struct zone *zone, struct page *page,
6ab01363 2180 int low, int high, int migratetype)
1da177e4
LT
2181{
2182 unsigned long size = 1 << high;
2183
2184 while (high > low) {
1da177e4
LT
2185 high--;
2186 size >>= 1;
309381fe 2187 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2188
acbc15a4
JK
2189 /*
2190 * Mark as guard pages (or page), that will allow to
2191 * merge back to allocator when buddy will be freed.
2192 * Corresponding page table entries will not be touched,
2193 * pages will stay not present in virtual address space
2194 */
2195 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2196 continue;
acbc15a4 2197
6ab01363 2198 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2199 set_buddy_order(&page[size], high);
1da177e4 2200 }
1da177e4
LT
2201}
2202
4e611801 2203static void check_new_page_bad(struct page *page)
1da177e4 2204{
f4c18e6f 2205 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2206 /* Don't complain about hwpoisoned pages */
2207 page_mapcount_reset(page); /* remove PageBuddy */
2208 return;
f4c18e6f 2209 }
58b7f119
WY
2210
2211 bad_page(page,
2212 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2213}
2214
2215/*
2216 * This page is about to be returned from the page allocator
2217 */
2218static inline int check_new_page(struct page *page)
2219{
2220 if (likely(page_expected_state(page,
2221 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2222 return 0;
2223
2224 check_new_page_bad(page);
2225 return 1;
2a7684a2
WF
2226}
2227
479f854a 2228#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2229/*
2230 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2231 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2232 * also checked when pcp lists are refilled from the free lists.
2233 */
2234static inline bool check_pcp_refill(struct page *page)
479f854a 2235{
8e57f8ac 2236 if (debug_pagealloc_enabled_static())
4462b32c
VB
2237 return check_new_page(page);
2238 else
2239 return false;
479f854a
MG
2240}
2241
4462b32c 2242static inline bool check_new_pcp(struct page *page)
479f854a
MG
2243{
2244 return check_new_page(page);
2245}
2246#else
4462b32c
VB
2247/*
2248 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2249 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2250 * enabled, they are also checked when being allocated from the pcp lists.
2251 */
2252static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2253{
2254 return check_new_page(page);
2255}
4462b32c 2256static inline bool check_new_pcp(struct page *page)
479f854a 2257{
8e57f8ac 2258 if (debug_pagealloc_enabled_static())
4462b32c
VB
2259 return check_new_page(page);
2260 else
2261 return false;
479f854a
MG
2262}
2263#endif /* CONFIG_DEBUG_VM */
2264
2265static bool check_new_pages(struct page *page, unsigned int order)
2266{
2267 int i;
2268 for (i = 0; i < (1 << order); i++) {
2269 struct page *p = page + i;
2270
2271 if (unlikely(check_new_page(p)))
2272 return true;
2273 }
2274
2275 return false;
2276}
2277
46f24fd8
JK
2278inline void post_alloc_hook(struct page *page, unsigned int order,
2279 gfp_t gfp_flags)
2280{
2281 set_page_private(page, 0);
2282 set_page_refcounted(page);
2283
2284 arch_alloc_page(page, order);
77bc7fd6 2285 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2286 kasan_alloc_pages(page, order);
8db26a3d 2287 kernel_unpoison_pages(page, 1 << order);
46f24fd8 2288 set_page_owner(page, order, gfp_flags);
862b6dee 2289
f289041e 2290 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
862b6dee 2291 kernel_init_free_pages(page, 1 << order);
46f24fd8
JK
2292}
2293
479f854a 2294static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2295 unsigned int alloc_flags)
2a7684a2 2296{
46f24fd8 2297 post_alloc_hook(page, order, gfp_flags);
17cf4406 2298
17cf4406
NP
2299 if (order && (gfp_flags & __GFP_COMP))
2300 prep_compound_page(page, order);
2301
75379191 2302 /*
2f064f34 2303 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2304 * allocate the page. The expectation is that the caller is taking
2305 * steps that will free more memory. The caller should avoid the page
2306 * being used for !PFMEMALLOC purposes.
2307 */
2f064f34
MH
2308 if (alloc_flags & ALLOC_NO_WATERMARKS)
2309 set_page_pfmemalloc(page);
2310 else
2311 clear_page_pfmemalloc(page);
1da177e4
LT
2312}
2313
56fd56b8
MG
2314/*
2315 * Go through the free lists for the given migratetype and remove
2316 * the smallest available page from the freelists
2317 */
85ccc8fa 2318static __always_inline
728ec980 2319struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2320 int migratetype)
2321{
2322 unsigned int current_order;
b8af2941 2323 struct free_area *area;
56fd56b8
MG
2324 struct page *page;
2325
2326 /* Find a page of the appropriate size in the preferred list */
2327 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2328 area = &(zone->free_area[current_order]);
b03641af 2329 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2330 if (!page)
2331 continue;
6ab01363
AD
2332 del_page_from_free_list(page, zone, current_order);
2333 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2334 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2335 return page;
2336 }
2337
2338 return NULL;
2339}
2340
2341
b2a0ac88
MG
2342/*
2343 * This array describes the order lists are fallen back to when
2344 * the free lists for the desirable migrate type are depleted
2345 */
da415663 2346static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2347 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2348 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2349 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2350#ifdef CONFIG_CMA
974a786e 2351 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2352#endif
194159fb 2353#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2354 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2355#endif
b2a0ac88
MG
2356};
2357
dc67647b 2358#ifdef CONFIG_CMA
85ccc8fa 2359static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2360 unsigned int order)
2361{
2362 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2363}
2364#else
2365static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2366 unsigned int order) { return NULL; }
2367#endif
2368
c361be55 2369/*
293ffa5e 2370 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2371 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2372 * boundary. If alignment is required, use move_freepages_block()
2373 */
02aa0cdd 2374static int move_freepages(struct zone *zone,
b69a7288 2375 struct page *start_page, struct page *end_page,
02aa0cdd 2376 int migratetype, int *num_movable)
c361be55
MG
2377{
2378 struct page *page;
d00181b9 2379 unsigned int order;
d100313f 2380 int pages_moved = 0;
c361be55 2381
c361be55
MG
2382 for (page = start_page; page <= end_page;) {
2383 if (!pfn_valid_within(page_to_pfn(page))) {
2384 page++;
2385 continue;
2386 }
2387
2388 if (!PageBuddy(page)) {
02aa0cdd
VB
2389 /*
2390 * We assume that pages that could be isolated for
2391 * migration are movable. But we don't actually try
2392 * isolating, as that would be expensive.
2393 */
2394 if (num_movable &&
2395 (PageLRU(page) || __PageMovable(page)))
2396 (*num_movable)++;
2397
c361be55
MG
2398 page++;
2399 continue;
2400 }
2401
cd961038
DR
2402 /* Make sure we are not inadvertently changing nodes */
2403 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2404 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2405
ab130f91 2406 order = buddy_order(page);
6ab01363 2407 move_to_free_list(page, zone, order, migratetype);
c361be55 2408 page += 1 << order;
d100313f 2409 pages_moved += 1 << order;
c361be55
MG
2410 }
2411
d100313f 2412 return pages_moved;
c361be55
MG
2413}
2414
ee6f509c 2415int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2416 int migratetype, int *num_movable)
c361be55
MG
2417{
2418 unsigned long start_pfn, end_pfn;
2419 struct page *start_page, *end_page;
2420
4a222127
DR
2421 if (num_movable)
2422 *num_movable = 0;
2423
c361be55 2424 start_pfn = page_to_pfn(page);
d9c23400 2425 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2426 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2427 end_page = start_page + pageblock_nr_pages - 1;
2428 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2429
2430 /* Do not cross zone boundaries */
108bcc96 2431 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2432 start_page = page;
108bcc96 2433 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2434 return 0;
2435
02aa0cdd
VB
2436 return move_freepages(zone, start_page, end_page, migratetype,
2437 num_movable);
c361be55
MG
2438}
2439
2f66a68f
MG
2440static void change_pageblock_range(struct page *pageblock_page,
2441 int start_order, int migratetype)
2442{
2443 int nr_pageblocks = 1 << (start_order - pageblock_order);
2444
2445 while (nr_pageblocks--) {
2446 set_pageblock_migratetype(pageblock_page, migratetype);
2447 pageblock_page += pageblock_nr_pages;
2448 }
2449}
2450
fef903ef 2451/*
9c0415eb
VB
2452 * When we are falling back to another migratetype during allocation, try to
2453 * steal extra free pages from the same pageblocks to satisfy further
2454 * allocations, instead of polluting multiple pageblocks.
2455 *
2456 * If we are stealing a relatively large buddy page, it is likely there will
2457 * be more free pages in the pageblock, so try to steal them all. For
2458 * reclaimable and unmovable allocations, we steal regardless of page size,
2459 * as fragmentation caused by those allocations polluting movable pageblocks
2460 * is worse than movable allocations stealing from unmovable and reclaimable
2461 * pageblocks.
fef903ef 2462 */
4eb7dce6
JK
2463static bool can_steal_fallback(unsigned int order, int start_mt)
2464{
2465 /*
2466 * Leaving this order check is intended, although there is
2467 * relaxed order check in next check. The reason is that
2468 * we can actually steal whole pageblock if this condition met,
2469 * but, below check doesn't guarantee it and that is just heuristic
2470 * so could be changed anytime.
2471 */
2472 if (order >= pageblock_order)
2473 return true;
2474
2475 if (order >= pageblock_order / 2 ||
2476 start_mt == MIGRATE_RECLAIMABLE ||
2477 start_mt == MIGRATE_UNMOVABLE ||
2478 page_group_by_mobility_disabled)
2479 return true;
2480
2481 return false;
2482}
2483
597c8920 2484static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2485{
2486 unsigned long max_boost;
2487
2488 if (!watermark_boost_factor)
597c8920 2489 return false;
14f69140
HW
2490 /*
2491 * Don't bother in zones that are unlikely to produce results.
2492 * On small machines, including kdump capture kernels running
2493 * in a small area, boosting the watermark can cause an out of
2494 * memory situation immediately.
2495 */
2496 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2497 return false;
1c30844d
MG
2498
2499 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2500 watermark_boost_factor, 10000);
94b3334c
MG
2501
2502 /*
2503 * high watermark may be uninitialised if fragmentation occurs
2504 * very early in boot so do not boost. We do not fall
2505 * through and boost by pageblock_nr_pages as failing
2506 * allocations that early means that reclaim is not going
2507 * to help and it may even be impossible to reclaim the
2508 * boosted watermark resulting in a hang.
2509 */
2510 if (!max_boost)
597c8920 2511 return false;
94b3334c 2512
1c30844d
MG
2513 max_boost = max(pageblock_nr_pages, max_boost);
2514
2515 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2516 max_boost);
597c8920
JW
2517
2518 return true;
1c30844d
MG
2519}
2520
4eb7dce6
JK
2521/*
2522 * This function implements actual steal behaviour. If order is large enough,
2523 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2524 * pageblock to our migratetype and determine how many already-allocated pages
2525 * are there in the pageblock with a compatible migratetype. If at least half
2526 * of pages are free or compatible, we can change migratetype of the pageblock
2527 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2528 */
2529static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2530 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2531{
ab130f91 2532 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2533 int free_pages, movable_pages, alike_pages;
2534 int old_block_type;
2535
2536 old_block_type = get_pageblock_migratetype(page);
fef903ef 2537
3bc48f96
VB
2538 /*
2539 * This can happen due to races and we want to prevent broken
2540 * highatomic accounting.
2541 */
02aa0cdd 2542 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2543 goto single_page;
2544
fef903ef
SB
2545 /* Take ownership for orders >= pageblock_order */
2546 if (current_order >= pageblock_order) {
2547 change_pageblock_range(page, current_order, start_type);
3bc48f96 2548 goto single_page;
fef903ef
SB
2549 }
2550
1c30844d
MG
2551 /*
2552 * Boost watermarks to increase reclaim pressure to reduce the
2553 * likelihood of future fallbacks. Wake kswapd now as the node
2554 * may be balanced overall and kswapd will not wake naturally.
2555 */
597c8920 2556 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2557 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2558
3bc48f96
VB
2559 /* We are not allowed to try stealing from the whole block */
2560 if (!whole_block)
2561 goto single_page;
2562
02aa0cdd
VB
2563 free_pages = move_freepages_block(zone, page, start_type,
2564 &movable_pages);
2565 /*
2566 * Determine how many pages are compatible with our allocation.
2567 * For movable allocation, it's the number of movable pages which
2568 * we just obtained. For other types it's a bit more tricky.
2569 */
2570 if (start_type == MIGRATE_MOVABLE) {
2571 alike_pages = movable_pages;
2572 } else {
2573 /*
2574 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2575 * to MOVABLE pageblock, consider all non-movable pages as
2576 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2577 * vice versa, be conservative since we can't distinguish the
2578 * exact migratetype of non-movable pages.
2579 */
2580 if (old_block_type == MIGRATE_MOVABLE)
2581 alike_pages = pageblock_nr_pages
2582 - (free_pages + movable_pages);
2583 else
2584 alike_pages = 0;
2585 }
2586
3bc48f96 2587 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2588 if (!free_pages)
3bc48f96 2589 goto single_page;
fef903ef 2590
02aa0cdd
VB
2591 /*
2592 * If a sufficient number of pages in the block are either free or of
2593 * comparable migratability as our allocation, claim the whole block.
2594 */
2595 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2596 page_group_by_mobility_disabled)
2597 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2598
2599 return;
2600
2601single_page:
6ab01363 2602 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2603}
2604
2149cdae
JK
2605/*
2606 * Check whether there is a suitable fallback freepage with requested order.
2607 * If only_stealable is true, this function returns fallback_mt only if
2608 * we can steal other freepages all together. This would help to reduce
2609 * fragmentation due to mixed migratetype pages in one pageblock.
2610 */
2611int find_suitable_fallback(struct free_area *area, unsigned int order,
2612 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2613{
2614 int i;
2615 int fallback_mt;
2616
2617 if (area->nr_free == 0)
2618 return -1;
2619
2620 *can_steal = false;
2621 for (i = 0;; i++) {
2622 fallback_mt = fallbacks[migratetype][i];
974a786e 2623 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2624 break;
2625
b03641af 2626 if (free_area_empty(area, fallback_mt))
4eb7dce6 2627 continue;
fef903ef 2628
4eb7dce6
JK
2629 if (can_steal_fallback(order, migratetype))
2630 *can_steal = true;
2631
2149cdae
JK
2632 if (!only_stealable)
2633 return fallback_mt;
2634
2635 if (*can_steal)
2636 return fallback_mt;
fef903ef 2637 }
4eb7dce6
JK
2638
2639 return -1;
fef903ef
SB
2640}
2641
0aaa29a5
MG
2642/*
2643 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2644 * there are no empty page blocks that contain a page with a suitable order
2645 */
2646static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2647 unsigned int alloc_order)
2648{
2649 int mt;
2650 unsigned long max_managed, flags;
2651
2652 /*
2653 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2654 * Check is race-prone but harmless.
2655 */
9705bea5 2656 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2657 if (zone->nr_reserved_highatomic >= max_managed)
2658 return;
2659
2660 spin_lock_irqsave(&zone->lock, flags);
2661
2662 /* Recheck the nr_reserved_highatomic limit under the lock */
2663 if (zone->nr_reserved_highatomic >= max_managed)
2664 goto out_unlock;
2665
2666 /* Yoink! */
2667 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2668 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2669 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2670 zone->nr_reserved_highatomic += pageblock_nr_pages;
2671 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2672 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2673 }
2674
2675out_unlock:
2676 spin_unlock_irqrestore(&zone->lock, flags);
2677}
2678
2679/*
2680 * Used when an allocation is about to fail under memory pressure. This
2681 * potentially hurts the reliability of high-order allocations when under
2682 * intense memory pressure but failed atomic allocations should be easier
2683 * to recover from than an OOM.
29fac03b
MK
2684 *
2685 * If @force is true, try to unreserve a pageblock even though highatomic
2686 * pageblock is exhausted.
0aaa29a5 2687 */
29fac03b
MK
2688static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2689 bool force)
0aaa29a5
MG
2690{
2691 struct zonelist *zonelist = ac->zonelist;
2692 unsigned long flags;
2693 struct zoneref *z;
2694 struct zone *zone;
2695 struct page *page;
2696 int order;
04c8716f 2697 bool ret;
0aaa29a5 2698
97a225e6 2699 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2700 ac->nodemask) {
29fac03b
MK
2701 /*
2702 * Preserve at least one pageblock unless memory pressure
2703 * is really high.
2704 */
2705 if (!force && zone->nr_reserved_highatomic <=
2706 pageblock_nr_pages)
0aaa29a5
MG
2707 continue;
2708
2709 spin_lock_irqsave(&zone->lock, flags);
2710 for (order = 0; order < MAX_ORDER; order++) {
2711 struct free_area *area = &(zone->free_area[order]);
2712
b03641af 2713 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2714 if (!page)
0aaa29a5
MG
2715 continue;
2716
0aaa29a5 2717 /*
4855e4a7
MK
2718 * In page freeing path, migratetype change is racy so
2719 * we can counter several free pages in a pageblock
2720 * in this loop althoug we changed the pageblock type
2721 * from highatomic to ac->migratetype. So we should
2722 * adjust the count once.
0aaa29a5 2723 */
a6ffdc07 2724 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2725 /*
2726 * It should never happen but changes to
2727 * locking could inadvertently allow a per-cpu
2728 * drain to add pages to MIGRATE_HIGHATOMIC
2729 * while unreserving so be safe and watch for
2730 * underflows.
2731 */
2732 zone->nr_reserved_highatomic -= min(
2733 pageblock_nr_pages,
2734 zone->nr_reserved_highatomic);
2735 }
0aaa29a5
MG
2736
2737 /*
2738 * Convert to ac->migratetype and avoid the normal
2739 * pageblock stealing heuristics. Minimally, the caller
2740 * is doing the work and needs the pages. More
2741 * importantly, if the block was always converted to
2742 * MIGRATE_UNMOVABLE or another type then the number
2743 * of pageblocks that cannot be completely freed
2744 * may increase.
2745 */
2746 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2747 ret = move_freepages_block(zone, page, ac->migratetype,
2748 NULL);
29fac03b
MK
2749 if (ret) {
2750 spin_unlock_irqrestore(&zone->lock, flags);
2751 return ret;
2752 }
0aaa29a5
MG
2753 }
2754 spin_unlock_irqrestore(&zone->lock, flags);
2755 }
04c8716f
MK
2756
2757 return false;
0aaa29a5
MG
2758}
2759
3bc48f96
VB
2760/*
2761 * Try finding a free buddy page on the fallback list and put it on the free
2762 * list of requested migratetype, possibly along with other pages from the same
2763 * block, depending on fragmentation avoidance heuristics. Returns true if
2764 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2765 *
2766 * The use of signed ints for order and current_order is a deliberate
2767 * deviation from the rest of this file, to make the for loop
2768 * condition simpler.
3bc48f96 2769 */
85ccc8fa 2770static __always_inline bool
6bb15450
MG
2771__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2772 unsigned int alloc_flags)
b2a0ac88 2773{
b8af2941 2774 struct free_area *area;
b002529d 2775 int current_order;
6bb15450 2776 int min_order = order;
b2a0ac88 2777 struct page *page;
4eb7dce6
JK
2778 int fallback_mt;
2779 bool can_steal;
b2a0ac88 2780
6bb15450
MG
2781 /*
2782 * Do not steal pages from freelists belonging to other pageblocks
2783 * i.e. orders < pageblock_order. If there are no local zones free,
2784 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2785 */
2786 if (alloc_flags & ALLOC_NOFRAGMENT)
2787 min_order = pageblock_order;
2788
7a8f58f3
VB
2789 /*
2790 * Find the largest available free page in the other list. This roughly
2791 * approximates finding the pageblock with the most free pages, which
2792 * would be too costly to do exactly.
2793 */
6bb15450 2794 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2795 --current_order) {
4eb7dce6
JK
2796 area = &(zone->free_area[current_order]);
2797 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2798 start_migratetype, false, &can_steal);
4eb7dce6
JK
2799 if (fallback_mt == -1)
2800 continue;
b2a0ac88 2801
7a8f58f3
VB
2802 /*
2803 * We cannot steal all free pages from the pageblock and the
2804 * requested migratetype is movable. In that case it's better to
2805 * steal and split the smallest available page instead of the
2806 * largest available page, because even if the next movable
2807 * allocation falls back into a different pageblock than this
2808 * one, it won't cause permanent fragmentation.
2809 */
2810 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2811 && current_order > order)
2812 goto find_smallest;
b2a0ac88 2813
7a8f58f3
VB
2814 goto do_steal;
2815 }
e0fff1bd 2816
7a8f58f3 2817 return false;
e0fff1bd 2818
7a8f58f3
VB
2819find_smallest:
2820 for (current_order = order; current_order < MAX_ORDER;
2821 current_order++) {
2822 area = &(zone->free_area[current_order]);
2823 fallback_mt = find_suitable_fallback(area, current_order,
2824 start_migratetype, false, &can_steal);
2825 if (fallback_mt != -1)
2826 break;
b2a0ac88
MG
2827 }
2828
7a8f58f3
VB
2829 /*
2830 * This should not happen - we already found a suitable fallback
2831 * when looking for the largest page.
2832 */
2833 VM_BUG_ON(current_order == MAX_ORDER);
2834
2835do_steal:
b03641af 2836 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2837
1c30844d
MG
2838 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2839 can_steal);
7a8f58f3
VB
2840
2841 trace_mm_page_alloc_extfrag(page, order, current_order,
2842 start_migratetype, fallback_mt);
2843
2844 return true;
2845
b2a0ac88
MG
2846}
2847
56fd56b8 2848/*
1da177e4
LT
2849 * Do the hard work of removing an element from the buddy allocator.
2850 * Call me with the zone->lock already held.
2851 */
85ccc8fa 2852static __always_inline struct page *
6bb15450
MG
2853__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2854 unsigned int alloc_flags)
1da177e4 2855{
1da177e4
LT
2856 struct page *page;
2857
ce8f86ee
H
2858 if (IS_ENABLED(CONFIG_CMA)) {
2859 /*
2860 * Balance movable allocations between regular and CMA areas by
2861 * allocating from CMA when over half of the zone's free memory
2862 * is in the CMA area.
2863 */
2864 if (alloc_flags & ALLOC_CMA &&
2865 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2866 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2867 page = __rmqueue_cma_fallback(zone, order);
2868 if (page)
2869 goto out;
2870 }
16867664 2871 }
3bc48f96 2872retry:
56fd56b8 2873 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2874 if (unlikely(!page)) {
8510e69c 2875 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2876 page = __rmqueue_cma_fallback(zone, order);
2877
6bb15450
MG
2878 if (!page && __rmqueue_fallback(zone, order, migratetype,
2879 alloc_flags))
3bc48f96 2880 goto retry;
728ec980 2881 }
ce8f86ee
H
2882out:
2883 if (page)
2884 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2885 return page;
1da177e4
LT
2886}
2887
5f63b720 2888/*
1da177e4
LT
2889 * Obtain a specified number of elements from the buddy allocator, all under
2890 * a single hold of the lock, for efficiency. Add them to the supplied list.
2891 * Returns the number of new pages which were placed at *list.
2892 */
5f63b720 2893static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2894 unsigned long count, struct list_head *list,
6bb15450 2895 int migratetype, unsigned int alloc_flags)
1da177e4 2896{
a6de734b 2897 int i, alloced = 0;
5f63b720 2898
d34b0733 2899 spin_lock(&zone->lock);
1da177e4 2900 for (i = 0; i < count; ++i) {
6bb15450
MG
2901 struct page *page = __rmqueue(zone, order, migratetype,
2902 alloc_flags);
085cc7d5 2903 if (unlikely(page == NULL))
1da177e4 2904 break;
81eabcbe 2905
479f854a
MG
2906 if (unlikely(check_pcp_refill(page)))
2907 continue;
2908
81eabcbe 2909 /*
0fac3ba5
VB
2910 * Split buddy pages returned by expand() are received here in
2911 * physical page order. The page is added to the tail of
2912 * caller's list. From the callers perspective, the linked list
2913 * is ordered by page number under some conditions. This is
2914 * useful for IO devices that can forward direction from the
2915 * head, thus also in the physical page order. This is useful
2916 * for IO devices that can merge IO requests if the physical
2917 * pages are ordered properly.
81eabcbe 2918 */
0fac3ba5 2919 list_add_tail(&page->lru, list);
a6de734b 2920 alloced++;
bb14c2c7 2921 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2922 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2923 -(1 << order));
1da177e4 2924 }
a6de734b
MG
2925
2926 /*
2927 * i pages were removed from the buddy list even if some leak due
2928 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2929 * on i. Do not confuse with 'alloced' which is the number of
2930 * pages added to the pcp list.
2931 */
f2260e6b 2932 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2933 spin_unlock(&zone->lock);
a6de734b 2934 return alloced;
1da177e4
LT
2935}
2936
4ae7c039 2937#ifdef CONFIG_NUMA
8fce4d8e 2938/*
4037d452
CL
2939 * Called from the vmstat counter updater to drain pagesets of this
2940 * currently executing processor on remote nodes after they have
2941 * expired.
2942 *
879336c3
CL
2943 * Note that this function must be called with the thread pinned to
2944 * a single processor.
8fce4d8e 2945 */
4037d452 2946void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2947{
4ae7c039 2948 unsigned long flags;
7be12fc9 2949 int to_drain, batch;
4ae7c039 2950
4037d452 2951 local_irq_save(flags);
4db0c3c2 2952 batch = READ_ONCE(pcp->batch);
7be12fc9 2953 to_drain = min(pcp->count, batch);
77ba9062 2954 if (to_drain > 0)
2a13515c 2955 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2956 local_irq_restore(flags);
4ae7c039
CL
2957}
2958#endif
2959
9f8f2172 2960/*
93481ff0 2961 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2962 *
2963 * The processor must either be the current processor and the
2964 * thread pinned to the current processor or a processor that
2965 * is not online.
2966 */
93481ff0 2967static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2968{
c54ad30c 2969 unsigned long flags;
93481ff0
VB
2970 struct per_cpu_pageset *pset;
2971 struct per_cpu_pages *pcp;
1da177e4 2972
93481ff0
VB
2973 local_irq_save(flags);
2974 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2975
93481ff0 2976 pcp = &pset->pcp;
77ba9062 2977 if (pcp->count)
93481ff0 2978 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2979 local_irq_restore(flags);
2980}
3dfa5721 2981
93481ff0
VB
2982/*
2983 * Drain pcplists of all zones on the indicated processor.
2984 *
2985 * The processor must either be the current processor and the
2986 * thread pinned to the current processor or a processor that
2987 * is not online.
2988 */
2989static void drain_pages(unsigned int cpu)
2990{
2991 struct zone *zone;
2992
2993 for_each_populated_zone(zone) {
2994 drain_pages_zone(cpu, zone);
1da177e4
LT
2995 }
2996}
1da177e4 2997
9f8f2172
CL
2998/*
2999 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3000 *
3001 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3002 * the single zone's pages.
9f8f2172 3003 */
93481ff0 3004void drain_local_pages(struct zone *zone)
9f8f2172 3005{
93481ff0
VB
3006 int cpu = smp_processor_id();
3007
3008 if (zone)
3009 drain_pages_zone(cpu, zone);
3010 else
3011 drain_pages(cpu);
9f8f2172
CL
3012}
3013
0ccce3b9
MG
3014static void drain_local_pages_wq(struct work_struct *work)
3015{
d9367bd0
WY
3016 struct pcpu_drain *drain;
3017
3018 drain = container_of(work, struct pcpu_drain, work);
3019
a459eeb7
MH
3020 /*
3021 * drain_all_pages doesn't use proper cpu hotplug protection so
3022 * we can race with cpu offline when the WQ can move this from
3023 * a cpu pinned worker to an unbound one. We can operate on a different
3024 * cpu which is allright but we also have to make sure to not move to
3025 * a different one.
3026 */
3027 preempt_disable();
d9367bd0 3028 drain_local_pages(drain->zone);
a459eeb7 3029 preempt_enable();
0ccce3b9
MG
3030}
3031
9f8f2172 3032/*
ec6e8c7e
VB
3033 * The implementation of drain_all_pages(), exposing an extra parameter to
3034 * drain on all cpus.
93481ff0 3035 *
ec6e8c7e
VB
3036 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3037 * not empty. The check for non-emptiness can however race with a free to
3038 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3039 * that need the guarantee that every CPU has drained can disable the
3040 * optimizing racy check.
9f8f2172 3041 */
3b1f3658 3042static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3043{
74046494 3044 int cpu;
74046494
GBY
3045
3046 /*
3047 * Allocate in the BSS so we wont require allocation in
3048 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3049 */
3050 static cpumask_t cpus_with_pcps;
3051
ce612879
MH
3052 /*
3053 * Make sure nobody triggers this path before mm_percpu_wq is fully
3054 * initialized.
3055 */
3056 if (WARN_ON_ONCE(!mm_percpu_wq))
3057 return;
3058
bd233f53
MG
3059 /*
3060 * Do not drain if one is already in progress unless it's specific to
3061 * a zone. Such callers are primarily CMA and memory hotplug and need
3062 * the drain to be complete when the call returns.
3063 */
3064 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3065 if (!zone)
3066 return;
3067 mutex_lock(&pcpu_drain_mutex);
3068 }
0ccce3b9 3069
74046494
GBY
3070 /*
3071 * We don't care about racing with CPU hotplug event
3072 * as offline notification will cause the notified
3073 * cpu to drain that CPU pcps and on_each_cpu_mask
3074 * disables preemption as part of its processing
3075 */
3076 for_each_online_cpu(cpu) {
93481ff0
VB
3077 struct per_cpu_pageset *pcp;
3078 struct zone *z;
74046494 3079 bool has_pcps = false;
93481ff0 3080
ec6e8c7e
VB
3081 if (force_all_cpus) {
3082 /*
3083 * The pcp.count check is racy, some callers need a
3084 * guarantee that no cpu is missed.
3085 */
3086 has_pcps = true;
3087 } else if (zone) {
74046494 3088 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3089 if (pcp->pcp.count)
74046494 3090 has_pcps = true;
93481ff0
VB
3091 } else {
3092 for_each_populated_zone(z) {
3093 pcp = per_cpu_ptr(z->pageset, cpu);
3094 if (pcp->pcp.count) {
3095 has_pcps = true;
3096 break;
3097 }
74046494
GBY
3098 }
3099 }
93481ff0 3100
74046494
GBY
3101 if (has_pcps)
3102 cpumask_set_cpu(cpu, &cpus_with_pcps);
3103 else
3104 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3105 }
0ccce3b9 3106
bd233f53 3107 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3108 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3109
3110 drain->zone = zone;
3111 INIT_WORK(&drain->work, drain_local_pages_wq);
3112 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3113 }
bd233f53 3114 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3115 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3116
3117 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3118}
3119
ec6e8c7e
VB
3120/*
3121 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3122 *
3123 * When zone parameter is non-NULL, spill just the single zone's pages.
3124 *
3125 * Note that this can be extremely slow as the draining happens in a workqueue.
3126 */
3127void drain_all_pages(struct zone *zone)
3128{
3129 __drain_all_pages(zone, false);
3130}
3131
296699de 3132#ifdef CONFIG_HIBERNATION
1da177e4 3133
556b969a
CY
3134/*
3135 * Touch the watchdog for every WD_PAGE_COUNT pages.
3136 */
3137#define WD_PAGE_COUNT (128*1024)
3138
1da177e4
LT
3139void mark_free_pages(struct zone *zone)
3140{
556b969a 3141 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3142 unsigned long flags;
7aeb09f9 3143 unsigned int order, t;
86760a2c 3144 struct page *page;
1da177e4 3145
8080fc03 3146 if (zone_is_empty(zone))
1da177e4
LT
3147 return;
3148
3149 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3150
108bcc96 3151 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3152 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3153 if (pfn_valid(pfn)) {
86760a2c 3154 page = pfn_to_page(pfn);
ba6b0979 3155
556b969a
CY
3156 if (!--page_count) {
3157 touch_nmi_watchdog();
3158 page_count = WD_PAGE_COUNT;
3159 }
3160
ba6b0979
JK
3161 if (page_zone(page) != zone)
3162 continue;
3163
7be98234
RW
3164 if (!swsusp_page_is_forbidden(page))
3165 swsusp_unset_page_free(page);
f623f0db 3166 }
1da177e4 3167
b2a0ac88 3168 for_each_migratetype_order(order, t) {
86760a2c
GT
3169 list_for_each_entry(page,
3170 &zone->free_area[order].free_list[t], lru) {
f623f0db 3171 unsigned long i;
1da177e4 3172
86760a2c 3173 pfn = page_to_pfn(page);
556b969a
CY
3174 for (i = 0; i < (1UL << order); i++) {
3175 if (!--page_count) {
3176 touch_nmi_watchdog();
3177 page_count = WD_PAGE_COUNT;
3178 }
7be98234 3179 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3180 }
f623f0db 3181 }
b2a0ac88 3182 }
1da177e4
LT
3183 spin_unlock_irqrestore(&zone->lock, flags);
3184}
e2c55dc8 3185#endif /* CONFIG_PM */
1da177e4 3186
2d4894b5 3187static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3188{
5f8dcc21 3189 int migratetype;
1da177e4 3190
4db7548c 3191 if (!free_pcp_prepare(page))
9cca35d4 3192 return false;
689bcebf 3193
dc4b0caf 3194 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3195 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3196 return true;
3197}
3198
2d4894b5 3199static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3200{
3201 struct zone *zone = page_zone(page);
3202 struct per_cpu_pages *pcp;
3203 int migratetype;
3204
3205 migratetype = get_pcppage_migratetype(page);
d34b0733 3206 __count_vm_event(PGFREE);
da456f14 3207
5f8dcc21
MG
3208 /*
3209 * We only track unmovable, reclaimable and movable on pcp lists.
3210 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3211 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3212 * areas back if necessary. Otherwise, we may have to free
3213 * excessively into the page allocator
3214 */
3215 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3216 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3217 free_one_page(zone, page, pfn, 0, migratetype,
3218 FPI_NONE);
9cca35d4 3219 return;
5f8dcc21
MG
3220 }
3221 migratetype = MIGRATE_MOVABLE;
3222 }
3223
99dcc3e5 3224 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3225 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3226 pcp->count++;
5c3ad2eb
VB
3227 if (pcp->count >= READ_ONCE(pcp->high))
3228 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3229}
5f8dcc21 3230
9cca35d4
MG
3231/*
3232 * Free a 0-order page
9cca35d4 3233 */
2d4894b5 3234void free_unref_page(struct page *page)
9cca35d4
MG
3235{
3236 unsigned long flags;
3237 unsigned long pfn = page_to_pfn(page);
3238
2d4894b5 3239 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3240 return;
3241
3242 local_irq_save(flags);
2d4894b5 3243 free_unref_page_commit(page, pfn);
d34b0733 3244 local_irq_restore(flags);
1da177e4
LT
3245}
3246
cc59850e
KK
3247/*
3248 * Free a list of 0-order pages
3249 */
2d4894b5 3250void free_unref_page_list(struct list_head *list)
cc59850e
KK
3251{
3252 struct page *page, *next;
9cca35d4 3253 unsigned long flags, pfn;
c24ad77d 3254 int batch_count = 0;
9cca35d4
MG
3255
3256 /* Prepare pages for freeing */
3257 list_for_each_entry_safe(page, next, list, lru) {
3258 pfn = page_to_pfn(page);
2d4894b5 3259 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3260 list_del(&page->lru);
3261 set_page_private(page, pfn);
3262 }
cc59850e 3263
9cca35d4 3264 local_irq_save(flags);
cc59850e 3265 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3266 unsigned long pfn = page_private(page);
3267
3268 set_page_private(page, 0);
2d4894b5
MG
3269 trace_mm_page_free_batched(page);
3270 free_unref_page_commit(page, pfn);
c24ad77d
LS
3271
3272 /*
3273 * Guard against excessive IRQ disabled times when we get
3274 * a large list of pages to free.
3275 */
3276 if (++batch_count == SWAP_CLUSTER_MAX) {
3277 local_irq_restore(flags);
3278 batch_count = 0;
3279 local_irq_save(flags);
3280 }
cc59850e 3281 }
9cca35d4 3282 local_irq_restore(flags);
cc59850e
KK
3283}
3284
8dfcc9ba
NP
3285/*
3286 * split_page takes a non-compound higher-order page, and splits it into
3287 * n (1<<order) sub-pages: page[0..n]
3288 * Each sub-page must be freed individually.
3289 *
3290 * Note: this is probably too low level an operation for use in drivers.
3291 * Please consult with lkml before using this in your driver.
3292 */
3293void split_page(struct page *page, unsigned int order)
3294{
3295 int i;
3296
309381fe
SL
3297 VM_BUG_ON_PAGE(PageCompound(page), page);
3298 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3299
a9627bc5 3300 for (i = 1; i < (1 << order); i++)
7835e98b 3301 set_page_refcounted(page + i);
8fb156c9 3302 split_page_owner(page, 1 << order);
b0ee955e 3303 split_page_memcg(page, 1 << order);
8dfcc9ba 3304}
5853ff23 3305EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3306
3c605096 3307int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3308{
748446bb
MG
3309 unsigned long watermark;
3310 struct zone *zone;
2139cbe6 3311 int mt;
748446bb
MG
3312
3313 BUG_ON(!PageBuddy(page));
3314
3315 zone = page_zone(page);
2e30abd1 3316 mt = get_pageblock_migratetype(page);
748446bb 3317
194159fb 3318 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3319 /*
3320 * Obey watermarks as if the page was being allocated. We can
3321 * emulate a high-order watermark check with a raised order-0
3322 * watermark, because we already know our high-order page
3323 * exists.
3324 */
fd1444b2 3325 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3326 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3327 return 0;
3328
8fb74b9f 3329 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3330 }
748446bb
MG
3331
3332 /* Remove page from free list */
b03641af 3333
6ab01363 3334 del_page_from_free_list(page, zone, order);
2139cbe6 3335
400bc7fd 3336 /*
3337 * Set the pageblock if the isolated page is at least half of a
3338 * pageblock
3339 */
748446bb
MG
3340 if (order >= pageblock_order - 1) {
3341 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3342 for (; page < endpage; page += pageblock_nr_pages) {
3343 int mt = get_pageblock_migratetype(page);
88ed365e 3344 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3345 && !is_migrate_highatomic(mt))
47118af0
MN
3346 set_pageblock_migratetype(page,
3347 MIGRATE_MOVABLE);
3348 }
748446bb
MG
3349 }
3350
f3a14ced 3351
8fb74b9f 3352 return 1UL << order;
1fb3f8ca
MG
3353}
3354
624f58d8
AD
3355/**
3356 * __putback_isolated_page - Return a now-isolated page back where we got it
3357 * @page: Page that was isolated
3358 * @order: Order of the isolated page
e6a0a7ad 3359 * @mt: The page's pageblock's migratetype
624f58d8
AD
3360 *
3361 * This function is meant to return a page pulled from the free lists via
3362 * __isolate_free_page back to the free lists they were pulled from.
3363 */
3364void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3365{
3366 struct zone *zone = page_zone(page);
3367
3368 /* zone lock should be held when this function is called */
3369 lockdep_assert_held(&zone->lock);
3370
3371 /* Return isolated page to tail of freelist. */
f04a5d5d 3372 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3373 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3374}
3375
060e7417
MG
3376/*
3377 * Update NUMA hit/miss statistics
3378 *
3379 * Must be called with interrupts disabled.
060e7417 3380 */
41b6167e 3381static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3382{
3383#ifdef CONFIG_NUMA
3a321d2a 3384 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3385
4518085e
KW
3386 /* skip numa counters update if numa stats is disabled */
3387 if (!static_branch_likely(&vm_numa_stat_key))
3388 return;
3389
c1093b74 3390 if (zone_to_nid(z) != numa_node_id())
060e7417 3391 local_stat = NUMA_OTHER;
060e7417 3392
c1093b74 3393 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3394 __inc_numa_state(z, NUMA_HIT);
2df26639 3395 else {
3a321d2a
KW
3396 __inc_numa_state(z, NUMA_MISS);
3397 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3398 }
3a321d2a 3399 __inc_numa_state(z, local_stat);
060e7417
MG
3400#endif
3401}
3402
066b2393
MG
3403/* Remove page from the per-cpu list, caller must protect the list */
3404static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3405 unsigned int alloc_flags,
453f85d4 3406 struct per_cpu_pages *pcp,
066b2393
MG
3407 struct list_head *list)
3408{
3409 struct page *page;
3410
3411 do {
3412 if (list_empty(list)) {
3413 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3414 READ_ONCE(pcp->batch), list,
6bb15450 3415 migratetype, alloc_flags);
066b2393
MG
3416 if (unlikely(list_empty(list)))
3417 return NULL;
3418 }
3419
453f85d4 3420 page = list_first_entry(list, struct page, lru);
066b2393
MG
3421 list_del(&page->lru);
3422 pcp->count--;
3423 } while (check_new_pcp(page));
3424
3425 return page;
3426}
3427
3428/* Lock and remove page from the per-cpu list */
3429static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3430 struct zone *zone, gfp_t gfp_flags,
3431 int migratetype, unsigned int alloc_flags)
066b2393
MG
3432{
3433 struct per_cpu_pages *pcp;
3434 struct list_head *list;
066b2393 3435 struct page *page;
d34b0733 3436 unsigned long flags;
066b2393 3437
d34b0733 3438 local_irq_save(flags);
066b2393
MG
3439 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3440 list = &pcp->lists[migratetype];
6bb15450 3441 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3442 if (page) {
1c52e6d0 3443 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3444 zone_statistics(preferred_zone, zone);
3445 }
d34b0733 3446 local_irq_restore(flags);
066b2393
MG
3447 return page;
3448}
3449
1da177e4 3450/*
75379191 3451 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3452 */
0a15c3e9 3453static inline
066b2393 3454struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3455 struct zone *zone, unsigned int order,
c603844b
MG
3456 gfp_t gfp_flags, unsigned int alloc_flags,
3457 int migratetype)
1da177e4
LT
3458{
3459 unsigned long flags;
689bcebf 3460 struct page *page;
1da177e4 3461
d34b0733 3462 if (likely(order == 0)) {
1d91df85
JK
3463 /*
3464 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3465 * we need to skip it when CMA area isn't allowed.
3466 */
3467 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3468 migratetype != MIGRATE_MOVABLE) {
3469 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3470 migratetype, alloc_flags);
1d91df85
JK
3471 goto out;
3472 }
066b2393 3473 }
83b9355b 3474
066b2393
MG
3475 /*
3476 * We most definitely don't want callers attempting to
3477 * allocate greater than order-1 page units with __GFP_NOFAIL.
3478 */
3479 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3480 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3481
066b2393
MG
3482 do {
3483 page = NULL;
1d91df85
JK
3484 /*
3485 * order-0 request can reach here when the pcplist is skipped
3486 * due to non-CMA allocation context. HIGHATOMIC area is
3487 * reserved for high-order atomic allocation, so order-0
3488 * request should skip it.
3489 */
3490 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3491 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3492 if (page)
3493 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3494 }
a74609fa 3495 if (!page)
6bb15450 3496 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3497 } while (page && check_new_pages(page, order));
3498 spin_unlock(&zone->lock);
3499 if (!page)
3500 goto failed;
3501 __mod_zone_freepage_state(zone, -(1 << order),
3502 get_pcppage_migratetype(page));
1da177e4 3503
16709d1d 3504 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3505 zone_statistics(preferred_zone, zone);
a74609fa 3506 local_irq_restore(flags);
1da177e4 3507
066b2393 3508out:
73444bc4
MG
3509 /* Separate test+clear to avoid unnecessary atomics */
3510 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3511 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3512 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3513 }
3514
066b2393 3515 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3516 return page;
a74609fa
NP
3517
3518failed:
3519 local_irq_restore(flags);
a74609fa 3520 return NULL;
1da177e4
LT
3521}
3522
933e312e
AM
3523#ifdef CONFIG_FAIL_PAGE_ALLOC
3524
b2588c4b 3525static struct {
933e312e
AM
3526 struct fault_attr attr;
3527
621a5f7a 3528 bool ignore_gfp_highmem;
71baba4b 3529 bool ignore_gfp_reclaim;
54114994 3530 u32 min_order;
933e312e
AM
3531} fail_page_alloc = {
3532 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3533 .ignore_gfp_reclaim = true,
621a5f7a 3534 .ignore_gfp_highmem = true,
54114994 3535 .min_order = 1,
933e312e
AM
3536};
3537
3538static int __init setup_fail_page_alloc(char *str)
3539{
3540 return setup_fault_attr(&fail_page_alloc.attr, str);
3541}
3542__setup("fail_page_alloc=", setup_fail_page_alloc);
3543
af3b8544 3544static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3545{
54114994 3546 if (order < fail_page_alloc.min_order)
deaf386e 3547 return false;
933e312e 3548 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3549 return false;
933e312e 3550 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3551 return false;
71baba4b
MG
3552 if (fail_page_alloc.ignore_gfp_reclaim &&
3553 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3554 return false;
933e312e
AM
3555
3556 return should_fail(&fail_page_alloc.attr, 1 << order);
3557}
3558
3559#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3560
3561static int __init fail_page_alloc_debugfs(void)
3562{
0825a6f9 3563 umode_t mode = S_IFREG | 0600;
933e312e 3564 struct dentry *dir;
933e312e 3565
dd48c085
AM
3566 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3567 &fail_page_alloc.attr);
b2588c4b 3568
d9f7979c
GKH
3569 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3570 &fail_page_alloc.ignore_gfp_reclaim);
3571 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3572 &fail_page_alloc.ignore_gfp_highmem);
3573 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3574
d9f7979c 3575 return 0;
933e312e
AM
3576}
3577
3578late_initcall(fail_page_alloc_debugfs);
3579
3580#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3581
3582#else /* CONFIG_FAIL_PAGE_ALLOC */
3583
af3b8544 3584static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3585{
deaf386e 3586 return false;
933e312e
AM
3587}
3588
3589#endif /* CONFIG_FAIL_PAGE_ALLOC */
3590
76cd6173 3591noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3592{
3593 return __should_fail_alloc_page(gfp_mask, order);
3594}
3595ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3596
f27ce0e1
JK
3597static inline long __zone_watermark_unusable_free(struct zone *z,
3598 unsigned int order, unsigned int alloc_flags)
3599{
3600 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3601 long unusable_free = (1 << order) - 1;
3602
3603 /*
3604 * If the caller does not have rights to ALLOC_HARDER then subtract
3605 * the high-atomic reserves. This will over-estimate the size of the
3606 * atomic reserve but it avoids a search.
3607 */
3608 if (likely(!alloc_harder))
3609 unusable_free += z->nr_reserved_highatomic;
3610
3611#ifdef CONFIG_CMA
3612 /* If allocation can't use CMA areas don't use free CMA pages */
3613 if (!(alloc_flags & ALLOC_CMA))
3614 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3615#endif
3616
3617 return unusable_free;
3618}
3619
1da177e4 3620/*
97a16fc8
MG
3621 * Return true if free base pages are above 'mark'. For high-order checks it
3622 * will return true of the order-0 watermark is reached and there is at least
3623 * one free page of a suitable size. Checking now avoids taking the zone lock
3624 * to check in the allocation paths if no pages are free.
1da177e4 3625 */
86a294a8 3626bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3627 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3628 long free_pages)
1da177e4 3629{
d23ad423 3630 long min = mark;
1da177e4 3631 int o;
cd04ae1e 3632 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3633
0aaa29a5 3634 /* free_pages may go negative - that's OK */
f27ce0e1 3635 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3636
7fb1d9fc 3637 if (alloc_flags & ALLOC_HIGH)
1da177e4 3638 min -= min / 2;
0aaa29a5 3639
f27ce0e1 3640 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3641 /*
3642 * OOM victims can try even harder than normal ALLOC_HARDER
3643 * users on the grounds that it's definitely going to be in
3644 * the exit path shortly and free memory. Any allocation it
3645 * makes during the free path will be small and short-lived.
3646 */
3647 if (alloc_flags & ALLOC_OOM)
3648 min -= min / 2;
3649 else
3650 min -= min / 4;
3651 }
3652
97a16fc8
MG
3653 /*
3654 * Check watermarks for an order-0 allocation request. If these
3655 * are not met, then a high-order request also cannot go ahead
3656 * even if a suitable page happened to be free.
3657 */
97a225e6 3658 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3659 return false;
1da177e4 3660
97a16fc8
MG
3661 /* If this is an order-0 request then the watermark is fine */
3662 if (!order)
3663 return true;
3664
3665 /* For a high-order request, check at least one suitable page is free */
3666 for (o = order; o < MAX_ORDER; o++) {
3667 struct free_area *area = &z->free_area[o];
3668 int mt;
3669
3670 if (!area->nr_free)
3671 continue;
3672
97a16fc8 3673 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3674 if (!free_area_empty(area, mt))
97a16fc8
MG
3675 return true;
3676 }
3677
3678#ifdef CONFIG_CMA
d883c6cf 3679 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3680 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3681 return true;
d883c6cf 3682 }
97a16fc8 3683#endif
76089d00 3684 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3685 return true;
1da177e4 3686 }
97a16fc8 3687 return false;
88f5acf8
MG
3688}
3689
7aeb09f9 3690bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3691 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3692{
97a225e6 3693 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3694 zone_page_state(z, NR_FREE_PAGES));
3695}
3696
48ee5f36 3697static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3698 unsigned long mark, int highest_zoneidx,
f80b08fc 3699 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3700{
f27ce0e1 3701 long free_pages;
d883c6cf 3702
f27ce0e1 3703 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3704
3705 /*
3706 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3707 * need to be calculated.
48ee5f36 3708 */
f27ce0e1
JK
3709 if (!order) {
3710 long fast_free;
3711
3712 fast_free = free_pages;
3713 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3714 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3715 return true;
3716 }
48ee5f36 3717
f80b08fc
CTR
3718 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3719 free_pages))
3720 return true;
3721 /*
3722 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3723 * when checking the min watermark. The min watermark is the
3724 * point where boosting is ignored so that kswapd is woken up
3725 * when below the low watermark.
3726 */
3727 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3728 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3729 mark = z->_watermark[WMARK_MIN];
3730 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3731 alloc_flags, free_pages);
3732 }
3733
3734 return false;
48ee5f36
MG
3735}
3736
7aeb09f9 3737bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3738 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3739{
3740 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3741
3742 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3743 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3744
97a225e6 3745 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3746 free_pages);
1da177e4
LT
3747}
3748
9276b1bc 3749#ifdef CONFIG_NUMA
957f822a
DR
3750static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3751{
e02dc017 3752 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3753 node_reclaim_distance;
957f822a 3754}
9276b1bc 3755#else /* CONFIG_NUMA */
957f822a
DR
3756static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3757{
3758 return true;
3759}
9276b1bc
PJ
3760#endif /* CONFIG_NUMA */
3761
6bb15450
MG
3762/*
3763 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3764 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3765 * premature use of a lower zone may cause lowmem pressure problems that
3766 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3767 * probably too small. It only makes sense to spread allocations to avoid
3768 * fragmentation between the Normal and DMA32 zones.
3769 */
3770static inline unsigned int
0a79cdad 3771alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3772{
736838e9 3773 unsigned int alloc_flags;
0a79cdad 3774
736838e9
MN
3775 /*
3776 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3777 * to save a branch.
3778 */
3779 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3780
3781#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3782 if (!zone)
3783 return alloc_flags;
3784
6bb15450 3785 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3786 return alloc_flags;
6bb15450
MG
3787
3788 /*
3789 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3790 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3791 * on UMA that if Normal is populated then so is DMA32.
3792 */
3793 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3794 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3795 return alloc_flags;
6bb15450 3796
8118b82e 3797 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3798#endif /* CONFIG_ZONE_DMA32 */
3799 return alloc_flags;
6bb15450 3800}
6bb15450 3801
8510e69c
JK
3802static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3803 unsigned int alloc_flags)
3804{
3805#ifdef CONFIG_CMA
3806 unsigned int pflags = current->flags;
3807
3808 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3809 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3810 alloc_flags |= ALLOC_CMA;
3811
3812#endif
3813 return alloc_flags;
3814}
3815
7fb1d9fc 3816/*
0798e519 3817 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3818 * a page.
3819 */
3820static struct page *
a9263751
VB
3821get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3822 const struct alloc_context *ac)
753ee728 3823{
6bb15450 3824 struct zoneref *z;
5117f45d 3825 struct zone *zone;
3b8c0be4 3826 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3827 bool no_fallback;
3b8c0be4 3828
6bb15450 3829retry:
7fb1d9fc 3830 /*
9276b1bc 3831 * Scan zonelist, looking for a zone with enough free.
344736f2 3832 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3833 */
6bb15450
MG
3834 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3835 z = ac->preferred_zoneref;
30d8ec73
MN
3836 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3837 ac->nodemask) {
be06af00 3838 struct page *page;
e085dbc5
JW
3839 unsigned long mark;
3840
664eedde
MG
3841 if (cpusets_enabled() &&
3842 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3843 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3844 continue;
a756cf59
JW
3845 /*
3846 * When allocating a page cache page for writing, we
281e3726
MG
3847 * want to get it from a node that is within its dirty
3848 * limit, such that no single node holds more than its
a756cf59 3849 * proportional share of globally allowed dirty pages.
281e3726 3850 * The dirty limits take into account the node's
a756cf59
JW
3851 * lowmem reserves and high watermark so that kswapd
3852 * should be able to balance it without having to
3853 * write pages from its LRU list.
3854 *
a756cf59 3855 * XXX: For now, allow allocations to potentially
281e3726 3856 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3857 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3858 * which is important when on a NUMA setup the allowed
281e3726 3859 * nodes are together not big enough to reach the
a756cf59 3860 * global limit. The proper fix for these situations
281e3726 3861 * will require awareness of nodes in the
a756cf59
JW
3862 * dirty-throttling and the flusher threads.
3863 */
3b8c0be4
MG
3864 if (ac->spread_dirty_pages) {
3865 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3866 continue;
3867
3868 if (!node_dirty_ok(zone->zone_pgdat)) {
3869 last_pgdat_dirty_limit = zone->zone_pgdat;
3870 continue;
3871 }
3872 }
7fb1d9fc 3873
6bb15450
MG
3874 if (no_fallback && nr_online_nodes > 1 &&
3875 zone != ac->preferred_zoneref->zone) {
3876 int local_nid;
3877
3878 /*
3879 * If moving to a remote node, retry but allow
3880 * fragmenting fallbacks. Locality is more important
3881 * than fragmentation avoidance.
3882 */
3883 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3884 if (zone_to_nid(zone) != local_nid) {
3885 alloc_flags &= ~ALLOC_NOFRAGMENT;
3886 goto retry;
3887 }
3888 }
3889
a9214443 3890 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3891 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3892 ac->highest_zoneidx, alloc_flags,
3893 gfp_mask)) {
fa5e084e
MG
3894 int ret;
3895
c9e97a19
PT
3896#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3897 /*
3898 * Watermark failed for this zone, but see if we can
3899 * grow this zone if it contains deferred pages.
3900 */
3901 if (static_branch_unlikely(&deferred_pages)) {
3902 if (_deferred_grow_zone(zone, order))
3903 goto try_this_zone;
3904 }
3905#endif
5dab2911
MG
3906 /* Checked here to keep the fast path fast */
3907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3908 if (alloc_flags & ALLOC_NO_WATERMARKS)
3909 goto try_this_zone;
3910
a5f5f91d 3911 if (node_reclaim_mode == 0 ||
c33d6c06 3912 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3913 continue;
3914
a5f5f91d 3915 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3916 switch (ret) {
a5f5f91d 3917 case NODE_RECLAIM_NOSCAN:
fa5e084e 3918 /* did not scan */
cd38b115 3919 continue;
a5f5f91d 3920 case NODE_RECLAIM_FULL:
fa5e084e 3921 /* scanned but unreclaimable */
cd38b115 3922 continue;
fa5e084e
MG
3923 default:
3924 /* did we reclaim enough */
fed2719e 3925 if (zone_watermark_ok(zone, order, mark,
97a225e6 3926 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3927 goto try_this_zone;
3928
fed2719e 3929 continue;
0798e519 3930 }
7fb1d9fc
RS
3931 }
3932
fa5e084e 3933try_this_zone:
066b2393 3934 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3935 gfp_mask, alloc_flags, ac->migratetype);
75379191 3936 if (page) {
479f854a 3937 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3938
3939 /*
3940 * If this is a high-order atomic allocation then check
3941 * if the pageblock should be reserved for the future
3942 */
3943 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3944 reserve_highatomic_pageblock(page, zone, order);
3945
75379191 3946 return page;
c9e97a19
PT
3947 } else {
3948#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3949 /* Try again if zone has deferred pages */
3950 if (static_branch_unlikely(&deferred_pages)) {
3951 if (_deferred_grow_zone(zone, order))
3952 goto try_this_zone;
3953 }
3954#endif
75379191 3955 }
54a6eb5c 3956 }
9276b1bc 3957
6bb15450
MG
3958 /*
3959 * It's possible on a UMA machine to get through all zones that are
3960 * fragmented. If avoiding fragmentation, reset and try again.
3961 */
3962 if (no_fallback) {
3963 alloc_flags &= ~ALLOC_NOFRAGMENT;
3964 goto retry;
3965 }
3966
4ffeaf35 3967 return NULL;
753ee728
MH
3968}
3969
9af744d7 3970static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3971{
a238ab5b 3972 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3973
3974 /*
3975 * This documents exceptions given to allocations in certain
3976 * contexts that are allowed to allocate outside current's set
3977 * of allowed nodes.
3978 */
3979 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3980 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3981 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3982 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3983 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3984 filter &= ~SHOW_MEM_FILTER_NODES;
3985
9af744d7 3986 show_mem(filter, nodemask);
aa187507
MH
3987}
3988
a8e99259 3989void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3990{
3991 struct va_format vaf;
3992 va_list args;
1be334e5 3993 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3994
0f7896f1 3995 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3996 return;
3997
7877cdcc
MH
3998 va_start(args, fmt);
3999 vaf.fmt = fmt;
4000 vaf.va = &args;
ef8444ea 4001 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4002 current->comm, &vaf, gfp_mask, &gfp_mask,
4003 nodemask_pr_args(nodemask));
7877cdcc 4004 va_end(args);
3ee9a4f0 4005
a8e99259 4006 cpuset_print_current_mems_allowed();
ef8444ea 4007 pr_cont("\n");
a238ab5b 4008 dump_stack();
685dbf6f 4009 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4010}
4011
6c18ba7a
MH
4012static inline struct page *
4013__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4014 unsigned int alloc_flags,
4015 const struct alloc_context *ac)
4016{
4017 struct page *page;
4018
4019 page = get_page_from_freelist(gfp_mask, order,
4020 alloc_flags|ALLOC_CPUSET, ac);
4021 /*
4022 * fallback to ignore cpuset restriction if our nodes
4023 * are depleted
4024 */
4025 if (!page)
4026 page = get_page_from_freelist(gfp_mask, order,
4027 alloc_flags, ac);
4028
4029 return page;
4030}
4031
11e33f6a
MG
4032static inline struct page *
4033__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4034 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4035{
6e0fc46d
DR
4036 struct oom_control oc = {
4037 .zonelist = ac->zonelist,
4038 .nodemask = ac->nodemask,
2a966b77 4039 .memcg = NULL,
6e0fc46d
DR
4040 .gfp_mask = gfp_mask,
4041 .order = order,
6e0fc46d 4042 };
11e33f6a
MG
4043 struct page *page;
4044
9879de73
JW
4045 *did_some_progress = 0;
4046
9879de73 4047 /*
dc56401f
JW
4048 * Acquire the oom lock. If that fails, somebody else is
4049 * making progress for us.
9879de73 4050 */
dc56401f 4051 if (!mutex_trylock(&oom_lock)) {
9879de73 4052 *did_some_progress = 1;
11e33f6a 4053 schedule_timeout_uninterruptible(1);
1da177e4
LT
4054 return NULL;
4055 }
6b1de916 4056
11e33f6a
MG
4057 /*
4058 * Go through the zonelist yet one more time, keep very high watermark
4059 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4060 * we're still under heavy pressure. But make sure that this reclaim
4061 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4062 * allocation which will never fail due to oom_lock already held.
11e33f6a 4063 */
e746bf73
TH
4064 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4065 ~__GFP_DIRECT_RECLAIM, order,
4066 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4067 if (page)
11e33f6a
MG
4068 goto out;
4069
06ad276a
MH
4070 /* Coredumps can quickly deplete all memory reserves */
4071 if (current->flags & PF_DUMPCORE)
4072 goto out;
4073 /* The OOM killer will not help higher order allocs */
4074 if (order > PAGE_ALLOC_COSTLY_ORDER)
4075 goto out;
dcda9b04
MH
4076 /*
4077 * We have already exhausted all our reclaim opportunities without any
4078 * success so it is time to admit defeat. We will skip the OOM killer
4079 * because it is very likely that the caller has a more reasonable
4080 * fallback than shooting a random task.
cfb4a541
MN
4081 *
4082 * The OOM killer may not free memory on a specific node.
dcda9b04 4083 */
cfb4a541 4084 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4085 goto out;
06ad276a 4086 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4087 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4088 goto out;
4089 if (pm_suspended_storage())
4090 goto out;
4091 /*
4092 * XXX: GFP_NOFS allocations should rather fail than rely on
4093 * other request to make a forward progress.
4094 * We are in an unfortunate situation where out_of_memory cannot
4095 * do much for this context but let's try it to at least get
4096 * access to memory reserved if the current task is killed (see
4097 * out_of_memory). Once filesystems are ready to handle allocation
4098 * failures more gracefully we should just bail out here.
4099 */
4100
3c2c6488 4101 /* Exhausted what can be done so it's blame time */
5020e285 4102 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4103 *did_some_progress = 1;
5020e285 4104
6c18ba7a
MH
4105 /*
4106 * Help non-failing allocations by giving them access to memory
4107 * reserves
4108 */
4109 if (gfp_mask & __GFP_NOFAIL)
4110 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4111 ALLOC_NO_WATERMARKS, ac);
5020e285 4112 }
11e33f6a 4113out:
dc56401f 4114 mutex_unlock(&oom_lock);
11e33f6a
MG
4115 return page;
4116}
4117
33c2d214
MH
4118/*
4119 * Maximum number of compaction retries wit a progress before OOM
4120 * killer is consider as the only way to move forward.
4121 */
4122#define MAX_COMPACT_RETRIES 16
4123
56de7263
MG
4124#ifdef CONFIG_COMPACTION
4125/* Try memory compaction for high-order allocations before reclaim */
4126static struct page *
4127__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4128 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4129 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4130{
5e1f0f09 4131 struct page *page = NULL;
eb414681 4132 unsigned long pflags;
499118e9 4133 unsigned int noreclaim_flag;
53853e2d
VB
4134
4135 if (!order)
66199712 4136 return NULL;
66199712 4137
eb414681 4138 psi_memstall_enter(&pflags);
499118e9 4139 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4140
c5d01d0d 4141 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4142 prio, &page);
eb414681 4143
499118e9 4144 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4145 psi_memstall_leave(&pflags);
56de7263 4146
98dd3b48
VB
4147 /*
4148 * At least in one zone compaction wasn't deferred or skipped, so let's
4149 * count a compaction stall
4150 */
4151 count_vm_event(COMPACTSTALL);
8fb74b9f 4152
5e1f0f09
MG
4153 /* Prep a captured page if available */
4154 if (page)
4155 prep_new_page(page, order, gfp_mask, alloc_flags);
4156
4157 /* Try get a page from the freelist if available */
4158 if (!page)
4159 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4160
98dd3b48
VB
4161 if (page) {
4162 struct zone *zone = page_zone(page);
53853e2d 4163
98dd3b48
VB
4164 zone->compact_blockskip_flush = false;
4165 compaction_defer_reset(zone, order, true);
4166 count_vm_event(COMPACTSUCCESS);
4167 return page;
4168 }
56de7263 4169
98dd3b48
VB
4170 /*
4171 * It's bad if compaction run occurs and fails. The most likely reason
4172 * is that pages exist, but not enough to satisfy watermarks.
4173 */
4174 count_vm_event(COMPACTFAIL);
66199712 4175
98dd3b48 4176 cond_resched();
56de7263
MG
4177
4178 return NULL;
4179}
33c2d214 4180
3250845d
VB
4181static inline bool
4182should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4183 enum compact_result compact_result,
4184 enum compact_priority *compact_priority,
d9436498 4185 int *compaction_retries)
3250845d
VB
4186{
4187 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4188 int min_priority;
65190cff
MH
4189 bool ret = false;
4190 int retries = *compaction_retries;
4191 enum compact_priority priority = *compact_priority;
3250845d
VB
4192
4193 if (!order)
4194 return false;
4195
d9436498
VB
4196 if (compaction_made_progress(compact_result))
4197 (*compaction_retries)++;
4198
3250845d
VB
4199 /*
4200 * compaction considers all the zone as desperately out of memory
4201 * so it doesn't really make much sense to retry except when the
4202 * failure could be caused by insufficient priority
4203 */
d9436498
VB
4204 if (compaction_failed(compact_result))
4205 goto check_priority;
3250845d 4206
49433085
VB
4207 /*
4208 * compaction was skipped because there are not enough order-0 pages
4209 * to work with, so we retry only if it looks like reclaim can help.
4210 */
4211 if (compaction_needs_reclaim(compact_result)) {
4212 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4213 goto out;
4214 }
4215
3250845d
VB
4216 /*
4217 * make sure the compaction wasn't deferred or didn't bail out early
4218 * due to locks contention before we declare that we should give up.
49433085
VB
4219 * But the next retry should use a higher priority if allowed, so
4220 * we don't just keep bailing out endlessly.
3250845d 4221 */
65190cff 4222 if (compaction_withdrawn(compact_result)) {
49433085 4223 goto check_priority;
65190cff 4224 }
3250845d
VB
4225
4226 /*
dcda9b04 4227 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4228 * costly ones because they are de facto nofail and invoke OOM
4229 * killer to move on while costly can fail and users are ready
4230 * to cope with that. 1/4 retries is rather arbitrary but we
4231 * would need much more detailed feedback from compaction to
4232 * make a better decision.
4233 */
4234 if (order > PAGE_ALLOC_COSTLY_ORDER)
4235 max_retries /= 4;
65190cff
MH
4236 if (*compaction_retries <= max_retries) {
4237 ret = true;
4238 goto out;
4239 }
3250845d 4240
d9436498
VB
4241 /*
4242 * Make sure there are attempts at the highest priority if we exhausted
4243 * all retries or failed at the lower priorities.
4244 */
4245check_priority:
c2033b00
VB
4246 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4247 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4248
c2033b00 4249 if (*compact_priority > min_priority) {
d9436498
VB
4250 (*compact_priority)--;
4251 *compaction_retries = 0;
65190cff 4252 ret = true;
d9436498 4253 }
65190cff
MH
4254out:
4255 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4256 return ret;
3250845d 4257}
56de7263
MG
4258#else
4259static inline struct page *
4260__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4261 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4262 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4263{
33c2d214 4264 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4265 return NULL;
4266}
33c2d214
MH
4267
4268static inline bool
86a294a8
MH
4269should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4270 enum compact_result compact_result,
a5508cd8 4271 enum compact_priority *compact_priority,
d9436498 4272 int *compaction_retries)
33c2d214 4273{
31e49bfd
MH
4274 struct zone *zone;
4275 struct zoneref *z;
4276
4277 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4278 return false;
4279
4280 /*
4281 * There are setups with compaction disabled which would prefer to loop
4282 * inside the allocator rather than hit the oom killer prematurely.
4283 * Let's give them a good hope and keep retrying while the order-0
4284 * watermarks are OK.
4285 */
97a225e6
JK
4286 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4287 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4288 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4289 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4290 return true;
4291 }
33c2d214
MH
4292 return false;
4293}
3250845d 4294#endif /* CONFIG_COMPACTION */
56de7263 4295
d92a8cfc 4296#ifdef CONFIG_LOCKDEP
93781325 4297static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4298 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4299
f920e413 4300static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4301{
d92a8cfc
PZ
4302 /* no reclaim without waiting on it */
4303 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4304 return false;
4305
4306 /* this guy won't enter reclaim */
2e517d68 4307 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4308 return false;
4309
d92a8cfc
PZ
4310 if (gfp_mask & __GFP_NOLOCKDEP)
4311 return false;
4312
4313 return true;
4314}
4315
93781325
OS
4316void __fs_reclaim_acquire(void)
4317{
4318 lock_map_acquire(&__fs_reclaim_map);
4319}
4320
4321void __fs_reclaim_release(void)
4322{
4323 lock_map_release(&__fs_reclaim_map);
4324}
4325
d92a8cfc
PZ
4326void fs_reclaim_acquire(gfp_t gfp_mask)
4327{
f920e413
DV
4328 gfp_mask = current_gfp_context(gfp_mask);
4329
4330 if (__need_reclaim(gfp_mask)) {
4331 if (gfp_mask & __GFP_FS)
4332 __fs_reclaim_acquire();
4333
4334#ifdef CONFIG_MMU_NOTIFIER
4335 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4336 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4337#endif
4338
4339 }
d92a8cfc
PZ
4340}
4341EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4342
4343void fs_reclaim_release(gfp_t gfp_mask)
4344{
f920e413
DV
4345 gfp_mask = current_gfp_context(gfp_mask);
4346
4347 if (__need_reclaim(gfp_mask)) {
4348 if (gfp_mask & __GFP_FS)
4349 __fs_reclaim_release();
4350 }
d92a8cfc
PZ
4351}
4352EXPORT_SYMBOL_GPL(fs_reclaim_release);
4353#endif
4354
bba90710 4355/* Perform direct synchronous page reclaim */
2187e17b 4356static unsigned long
a9263751
VB
4357__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4358 const struct alloc_context *ac)
11e33f6a 4359{
499118e9 4360 unsigned int noreclaim_flag;
2187e17b 4361 unsigned long pflags, progress;
11e33f6a
MG
4362
4363 cond_resched();
4364
4365 /* We now go into synchronous reclaim */
4366 cpuset_memory_pressure_bump();
eb414681 4367 psi_memstall_enter(&pflags);
d92a8cfc 4368 fs_reclaim_acquire(gfp_mask);
93781325 4369 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4370
a9263751
VB
4371 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4372 ac->nodemask);
11e33f6a 4373
499118e9 4374 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4375 fs_reclaim_release(gfp_mask);
eb414681 4376 psi_memstall_leave(&pflags);
11e33f6a
MG
4377
4378 cond_resched();
4379
bba90710
MS
4380 return progress;
4381}
4382
4383/* The really slow allocator path where we enter direct reclaim */
4384static inline struct page *
4385__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4386 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4387 unsigned long *did_some_progress)
bba90710
MS
4388{
4389 struct page *page = NULL;
4390 bool drained = false;
4391
a9263751 4392 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4393 if (unlikely(!(*did_some_progress)))
4394 return NULL;
11e33f6a 4395
9ee493ce 4396retry:
31a6c190 4397 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4398
4399 /*
4400 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4401 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4402 * Shrink them and try again
9ee493ce
MG
4403 */
4404 if (!page && !drained) {
29fac03b 4405 unreserve_highatomic_pageblock(ac, false);
93481ff0 4406 drain_all_pages(NULL);
9ee493ce
MG
4407 drained = true;
4408 goto retry;
4409 }
4410
11e33f6a
MG
4411 return page;
4412}
4413
5ecd9d40
DR
4414static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4415 const struct alloc_context *ac)
3a025760
JW
4416{
4417 struct zoneref *z;
4418 struct zone *zone;
e1a55637 4419 pg_data_t *last_pgdat = NULL;
97a225e6 4420 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4421
97a225e6 4422 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4423 ac->nodemask) {
e1a55637 4424 if (last_pgdat != zone->zone_pgdat)
97a225e6 4425 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4426 last_pgdat = zone->zone_pgdat;
4427 }
3a025760
JW
4428}
4429
c603844b 4430static inline unsigned int
341ce06f
PZ
4431gfp_to_alloc_flags(gfp_t gfp_mask)
4432{
c603844b 4433 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4434
736838e9
MN
4435 /*
4436 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4437 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4438 * to save two branches.
4439 */
e6223a3b 4440 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4441 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4442
341ce06f
PZ
4443 /*
4444 * The caller may dip into page reserves a bit more if the caller
4445 * cannot run direct reclaim, or if the caller has realtime scheduling
4446 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4447 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4448 */
736838e9
MN
4449 alloc_flags |= (__force int)
4450 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4451
d0164adc 4452 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4453 /*
b104a35d
DR
4454 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4455 * if it can't schedule.
5c3240d9 4456 */
b104a35d 4457 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4458 alloc_flags |= ALLOC_HARDER;
523b9458 4459 /*
b104a35d 4460 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4461 * comment for __cpuset_node_allowed().
523b9458 4462 */
341ce06f 4463 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4464 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4465 alloc_flags |= ALLOC_HARDER;
4466
8510e69c
JK
4467 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4468
341ce06f
PZ
4469 return alloc_flags;
4470}
4471
cd04ae1e 4472static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4473{
cd04ae1e
MH
4474 if (!tsk_is_oom_victim(tsk))
4475 return false;
4476
4477 /*
4478 * !MMU doesn't have oom reaper so give access to memory reserves
4479 * only to the thread with TIF_MEMDIE set
4480 */
4481 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4482 return false;
4483
cd04ae1e
MH
4484 return true;
4485}
4486
4487/*
4488 * Distinguish requests which really need access to full memory
4489 * reserves from oom victims which can live with a portion of it
4490 */
4491static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4492{
4493 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4494 return 0;
31a6c190 4495 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4496 return ALLOC_NO_WATERMARKS;
31a6c190 4497 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4498 return ALLOC_NO_WATERMARKS;
4499 if (!in_interrupt()) {
4500 if (current->flags & PF_MEMALLOC)
4501 return ALLOC_NO_WATERMARKS;
4502 else if (oom_reserves_allowed(current))
4503 return ALLOC_OOM;
4504 }
31a6c190 4505
cd04ae1e
MH
4506 return 0;
4507}
4508
4509bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4510{
4511 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4512}
4513
0a0337e0
MH
4514/*
4515 * Checks whether it makes sense to retry the reclaim to make a forward progress
4516 * for the given allocation request.
491d79ae
JW
4517 *
4518 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4519 * without success, or when we couldn't even meet the watermark if we
4520 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4521 *
4522 * Returns true if a retry is viable or false to enter the oom path.
4523 */
4524static inline bool
4525should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4526 struct alloc_context *ac, int alloc_flags,
423b452e 4527 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4528{
4529 struct zone *zone;
4530 struct zoneref *z;
15f570bf 4531 bool ret = false;
0a0337e0 4532
423b452e
VB
4533 /*
4534 * Costly allocations might have made a progress but this doesn't mean
4535 * their order will become available due to high fragmentation so
4536 * always increment the no progress counter for them
4537 */
4538 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4539 *no_progress_loops = 0;
4540 else
4541 (*no_progress_loops)++;
4542
0a0337e0
MH
4543 /*
4544 * Make sure we converge to OOM if we cannot make any progress
4545 * several times in the row.
4546 */
04c8716f
MK
4547 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4548 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4549 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4550 }
0a0337e0 4551
bca67592
MG
4552 /*
4553 * Keep reclaiming pages while there is a chance this will lead
4554 * somewhere. If none of the target zones can satisfy our allocation
4555 * request even if all reclaimable pages are considered then we are
4556 * screwed and have to go OOM.
0a0337e0 4557 */
97a225e6
JK
4558 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4559 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4560 unsigned long available;
ede37713 4561 unsigned long reclaimable;
d379f01d
MH
4562 unsigned long min_wmark = min_wmark_pages(zone);
4563 bool wmark;
0a0337e0 4564
5a1c84b4 4565 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4566 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4567
4568 /*
491d79ae
JW
4569 * Would the allocation succeed if we reclaimed all
4570 * reclaimable pages?
0a0337e0 4571 */
d379f01d 4572 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4573 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4574 trace_reclaim_retry_zone(z, order, reclaimable,
4575 available, min_wmark, *no_progress_loops, wmark);
4576 if (wmark) {
ede37713
MH
4577 /*
4578 * If we didn't make any progress and have a lot of
4579 * dirty + writeback pages then we should wait for
4580 * an IO to complete to slow down the reclaim and
4581 * prevent from pre mature OOM
4582 */
4583 if (!did_some_progress) {
11fb9989 4584 unsigned long write_pending;
ede37713 4585
5a1c84b4
MG
4586 write_pending = zone_page_state_snapshot(zone,
4587 NR_ZONE_WRITE_PENDING);
ede37713 4588
11fb9989 4589 if (2 * write_pending > reclaimable) {
ede37713
MH
4590 congestion_wait(BLK_RW_ASYNC, HZ/10);
4591 return true;
4592 }
4593 }
5a1c84b4 4594
15f570bf
MH
4595 ret = true;
4596 goto out;
0a0337e0
MH
4597 }
4598 }
4599
15f570bf
MH
4600out:
4601 /*
4602 * Memory allocation/reclaim might be called from a WQ context and the
4603 * current implementation of the WQ concurrency control doesn't
4604 * recognize that a particular WQ is congested if the worker thread is
4605 * looping without ever sleeping. Therefore we have to do a short sleep
4606 * here rather than calling cond_resched().
4607 */
4608 if (current->flags & PF_WQ_WORKER)
4609 schedule_timeout_uninterruptible(1);
4610 else
4611 cond_resched();
4612 return ret;
0a0337e0
MH
4613}
4614
902b6281
VB
4615static inline bool
4616check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4617{
4618 /*
4619 * It's possible that cpuset's mems_allowed and the nodemask from
4620 * mempolicy don't intersect. This should be normally dealt with by
4621 * policy_nodemask(), but it's possible to race with cpuset update in
4622 * such a way the check therein was true, and then it became false
4623 * before we got our cpuset_mems_cookie here.
4624 * This assumes that for all allocations, ac->nodemask can come only
4625 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4626 * when it does not intersect with the cpuset restrictions) or the
4627 * caller can deal with a violated nodemask.
4628 */
4629 if (cpusets_enabled() && ac->nodemask &&
4630 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4631 ac->nodemask = NULL;
4632 return true;
4633 }
4634
4635 /*
4636 * When updating a task's mems_allowed or mempolicy nodemask, it is
4637 * possible to race with parallel threads in such a way that our
4638 * allocation can fail while the mask is being updated. If we are about
4639 * to fail, check if the cpuset changed during allocation and if so,
4640 * retry.
4641 */
4642 if (read_mems_allowed_retry(cpuset_mems_cookie))
4643 return true;
4644
4645 return false;
4646}
4647
11e33f6a
MG
4648static inline struct page *
4649__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4650 struct alloc_context *ac)
11e33f6a 4651{
d0164adc 4652 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4653 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4654 struct page *page = NULL;
c603844b 4655 unsigned int alloc_flags;
11e33f6a 4656 unsigned long did_some_progress;
5ce9bfef 4657 enum compact_priority compact_priority;
c5d01d0d 4658 enum compact_result compact_result;
5ce9bfef
VB
4659 int compaction_retries;
4660 int no_progress_loops;
5ce9bfef 4661 unsigned int cpuset_mems_cookie;
cd04ae1e 4662 int reserve_flags;
1da177e4 4663
d0164adc
MG
4664 /*
4665 * We also sanity check to catch abuse of atomic reserves being used by
4666 * callers that are not in atomic context.
4667 */
4668 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4669 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4670 gfp_mask &= ~__GFP_ATOMIC;
4671
5ce9bfef
VB
4672retry_cpuset:
4673 compaction_retries = 0;
4674 no_progress_loops = 0;
4675 compact_priority = DEF_COMPACT_PRIORITY;
4676 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4677
4678 /*
4679 * The fast path uses conservative alloc_flags to succeed only until
4680 * kswapd needs to be woken up, and to avoid the cost of setting up
4681 * alloc_flags precisely. So we do that now.
4682 */
4683 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4684
e47483bc
VB
4685 /*
4686 * We need to recalculate the starting point for the zonelist iterator
4687 * because we might have used different nodemask in the fast path, or
4688 * there was a cpuset modification and we are retrying - otherwise we
4689 * could end up iterating over non-eligible zones endlessly.
4690 */
4691 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4692 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4693 if (!ac->preferred_zoneref->zone)
4694 goto nopage;
4695
0a79cdad 4696 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4697 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4698
4699 /*
4700 * The adjusted alloc_flags might result in immediate success, so try
4701 * that first
4702 */
4703 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4704 if (page)
4705 goto got_pg;
4706
a8161d1e
VB
4707 /*
4708 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4709 * that we have enough base pages and don't need to reclaim. For non-
4710 * movable high-order allocations, do that as well, as compaction will
4711 * try prevent permanent fragmentation by migrating from blocks of the
4712 * same migratetype.
4713 * Don't try this for allocations that are allowed to ignore
4714 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4715 */
282722b0
VB
4716 if (can_direct_reclaim &&
4717 (costly_order ||
4718 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4719 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4720 page = __alloc_pages_direct_compact(gfp_mask, order,
4721 alloc_flags, ac,
a5508cd8 4722 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4723 &compact_result);
4724 if (page)
4725 goto got_pg;
4726
cc638f32
VB
4727 /*
4728 * Checks for costly allocations with __GFP_NORETRY, which
4729 * includes some THP page fault allocations
4730 */
4731 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4732 /*
4733 * If allocating entire pageblock(s) and compaction
4734 * failed because all zones are below low watermarks
4735 * or is prohibited because it recently failed at this
3f36d866
DR
4736 * order, fail immediately unless the allocator has
4737 * requested compaction and reclaim retry.
b39d0ee2
DR
4738 *
4739 * Reclaim is
4740 * - potentially very expensive because zones are far
4741 * below their low watermarks or this is part of very
4742 * bursty high order allocations,
4743 * - not guaranteed to help because isolate_freepages()
4744 * may not iterate over freed pages as part of its
4745 * linear scan, and
4746 * - unlikely to make entire pageblocks free on its
4747 * own.
4748 */
4749 if (compact_result == COMPACT_SKIPPED ||
4750 compact_result == COMPACT_DEFERRED)
4751 goto nopage;
a8161d1e 4752
a8161d1e 4753 /*
3eb2771b
VB
4754 * Looks like reclaim/compaction is worth trying, but
4755 * sync compaction could be very expensive, so keep
25160354 4756 * using async compaction.
a8161d1e 4757 */
a5508cd8 4758 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4759 }
4760 }
23771235 4761
31a6c190 4762retry:
23771235 4763 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4764 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4765 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4766
cd04ae1e
MH
4767 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4768 if (reserve_flags)
8510e69c 4769 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4770
e46e7b77 4771 /*
d6a24df0
VB
4772 * Reset the nodemask and zonelist iterators if memory policies can be
4773 * ignored. These allocations are high priority and system rather than
4774 * user oriented.
e46e7b77 4775 */
cd04ae1e 4776 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4777 ac->nodemask = NULL;
e46e7b77 4778 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4779 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4780 }
4781
23771235 4782 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4783 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4784 if (page)
4785 goto got_pg;
1da177e4 4786
d0164adc 4787 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4788 if (!can_direct_reclaim)
1da177e4
LT
4789 goto nopage;
4790
9a67f648
MH
4791 /* Avoid recursion of direct reclaim */
4792 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4793 goto nopage;
4794
a8161d1e
VB
4795 /* Try direct reclaim and then allocating */
4796 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4797 &did_some_progress);
4798 if (page)
4799 goto got_pg;
4800
4801 /* Try direct compaction and then allocating */
a9263751 4802 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4803 compact_priority, &compact_result);
56de7263
MG
4804 if (page)
4805 goto got_pg;
75f30861 4806
9083905a
JW
4807 /* Do not loop if specifically requested */
4808 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4809 goto nopage;
9083905a 4810
0a0337e0
MH
4811 /*
4812 * Do not retry costly high order allocations unless they are
dcda9b04 4813 * __GFP_RETRY_MAYFAIL
0a0337e0 4814 */
dcda9b04 4815 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4816 goto nopage;
0a0337e0 4817
0a0337e0 4818 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4819 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4820 goto retry;
4821
33c2d214
MH
4822 /*
4823 * It doesn't make any sense to retry for the compaction if the order-0
4824 * reclaim is not able to make any progress because the current
4825 * implementation of the compaction depends on the sufficient amount
4826 * of free memory (see __compaction_suitable)
4827 */
4828 if (did_some_progress > 0 &&
86a294a8 4829 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4830 compact_result, &compact_priority,
d9436498 4831 &compaction_retries))
33c2d214
MH
4832 goto retry;
4833
902b6281
VB
4834
4835 /* Deal with possible cpuset update races before we start OOM killing */
4836 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4837 goto retry_cpuset;
4838
9083905a
JW
4839 /* Reclaim has failed us, start killing things */
4840 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4841 if (page)
4842 goto got_pg;
4843
9a67f648 4844 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4845 if (tsk_is_oom_victim(current) &&
8510e69c 4846 (alloc_flags & ALLOC_OOM ||
c288983d 4847 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4848 goto nopage;
4849
9083905a 4850 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4851 if (did_some_progress) {
4852 no_progress_loops = 0;
9083905a 4853 goto retry;
0a0337e0 4854 }
9083905a 4855
1da177e4 4856nopage:
902b6281
VB
4857 /* Deal with possible cpuset update races before we fail */
4858 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4859 goto retry_cpuset;
4860
9a67f648
MH
4861 /*
4862 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4863 * we always retry
4864 */
4865 if (gfp_mask & __GFP_NOFAIL) {
4866 /*
4867 * All existing users of the __GFP_NOFAIL are blockable, so warn
4868 * of any new users that actually require GFP_NOWAIT
4869 */
4870 if (WARN_ON_ONCE(!can_direct_reclaim))
4871 goto fail;
4872
4873 /*
4874 * PF_MEMALLOC request from this context is rather bizarre
4875 * because we cannot reclaim anything and only can loop waiting
4876 * for somebody to do a work for us
4877 */
4878 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4879
4880 /*
4881 * non failing costly orders are a hard requirement which we
4882 * are not prepared for much so let's warn about these users
4883 * so that we can identify them and convert them to something
4884 * else.
4885 */
4886 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4887
6c18ba7a
MH
4888 /*
4889 * Help non-failing allocations by giving them access to memory
4890 * reserves but do not use ALLOC_NO_WATERMARKS because this
4891 * could deplete whole memory reserves which would just make
4892 * the situation worse
4893 */
4894 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4895 if (page)
4896 goto got_pg;
4897
9a67f648
MH
4898 cond_resched();
4899 goto retry;
4900 }
4901fail:
a8e99259 4902 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4903 "page allocation failure: order:%u", order);
1da177e4 4904got_pg:
072bb0aa 4905 return page;
1da177e4 4906}
11e33f6a 4907
9cd75558 4908static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4909 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4910 struct alloc_context *ac, gfp_t *alloc_mask,
4911 unsigned int *alloc_flags)
11e33f6a 4912{
97a225e6 4913 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4914 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4915 ac->nodemask = nodemask;
01c0bfe0 4916 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4917
682a3385 4918 if (cpusets_enabled()) {
9cd75558 4919 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4920 /*
4921 * When we are in the interrupt context, it is irrelevant
4922 * to the current task context. It means that any node ok.
4923 */
4924 if (!in_interrupt() && !ac->nodemask)
9cd75558 4925 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4926 else
4927 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4928 }
4929
d92a8cfc
PZ
4930 fs_reclaim_acquire(gfp_mask);
4931 fs_reclaim_release(gfp_mask);
11e33f6a 4932
d0164adc 4933 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4934
4935 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4936 return false;
11e33f6a 4937
8510e69c 4938 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4939
c9ab0c4f 4940 /* Dirty zone balancing only done in the fast path */
9cd75558 4941 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4942
e46e7b77
MG
4943 /*
4944 * The preferred zone is used for statistics but crucially it is
4945 * also used as the starting point for the zonelist iterator. It
4946 * may get reset for allocations that ignore memory policies.
4947 */
9cd75558 4948 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4949 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4950
4951 return true;
9cd75558
MG
4952}
4953
4954/*
4955 * This is the 'heart' of the zoned buddy allocator.
4956 */
4957struct page *
04ec6264
VB
4958__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4959 nodemask_t *nodemask)
9cd75558
MG
4960{
4961 struct page *page;
4962 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4963 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4964 struct alloc_context ac = { };
4965
c63ae43b
MH
4966 /*
4967 * There are several places where we assume that the order value is sane
4968 * so bail out early if the request is out of bound.
4969 */
4970 if (unlikely(order >= MAX_ORDER)) {
4971 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4972 return NULL;
4973 }
4974
9cd75558 4975 gfp_mask &= gfp_allowed_mask;
f19360f0 4976 alloc_mask = gfp_mask;
04ec6264 4977 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4978 return NULL;
4979
6bb15450
MG
4980 /*
4981 * Forbid the first pass from falling back to types that fragment
4982 * memory until all local zones are considered.
4983 */
0a79cdad 4984 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4985
5117f45d 4986 /* First allocation attempt */
a9263751 4987 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4988 if (likely(page))
4989 goto out;
11e33f6a 4990
4fcb0971 4991 /*
7dea19f9
MH
4992 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4993 * resp. GFP_NOIO which has to be inherited for all allocation requests
4994 * from a particular context which has been marked by
4995 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4996 */
7dea19f9 4997 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4998 ac.spread_dirty_pages = false;
23f086f9 4999
4741526b
MG
5000 /*
5001 * Restore the original nodemask if it was potentially replaced with
5002 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5003 */
97ce86f9 5004 ac.nodemask = nodemask;
16096c25 5005
4fcb0971 5006 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 5007
4fcb0971 5008out:
c4159a75 5009 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 5010 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
5011 __free_pages(page, order);
5012 page = NULL;
4949148a
VD
5013 }
5014
4fcb0971
MG
5015 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5016
11e33f6a 5017 return page;
1da177e4 5018}
d239171e 5019EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
5020
5021/*
9ea9a680
MH
5022 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5023 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5024 * you need to access high mem.
1da177e4 5025 */
920c7a5d 5026unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5027{
945a1113
AM
5028 struct page *page;
5029
9ea9a680 5030 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5031 if (!page)
5032 return 0;
5033 return (unsigned long) page_address(page);
5034}
1da177e4
LT
5035EXPORT_SYMBOL(__get_free_pages);
5036
920c7a5d 5037unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5038{
945a1113 5039 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5040}
1da177e4
LT
5041EXPORT_SYMBOL(get_zeroed_page);
5042
742aa7fb 5043static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5044{
742aa7fb
AL
5045 if (order == 0) /* Via pcp? */
5046 free_unref_page(page);
5047 else
7fef431b 5048 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5049}
5050
7f194fbb
MWO
5051/**
5052 * __free_pages - Free pages allocated with alloc_pages().
5053 * @page: The page pointer returned from alloc_pages().
5054 * @order: The order of the allocation.
5055 *
5056 * This function can free multi-page allocations that are not compound
5057 * pages. It does not check that the @order passed in matches that of
5058 * the allocation, so it is easy to leak memory. Freeing more memory
5059 * than was allocated will probably emit a warning.
5060 *
5061 * If the last reference to this page is speculative, it will be released
5062 * by put_page() which only frees the first page of a non-compound
5063 * allocation. To prevent the remaining pages from being leaked, we free
5064 * the subsequent pages here. If you want to use the page's reference
5065 * count to decide when to free the allocation, you should allocate a
5066 * compound page, and use put_page() instead of __free_pages().
5067 *
5068 * Context: May be called in interrupt context or while holding a normal
5069 * spinlock, but not in NMI context or while holding a raw spinlock.
5070 */
742aa7fb
AL
5071void __free_pages(struct page *page, unsigned int order)
5072{
5073 if (put_page_testzero(page))
5074 free_the_page(page, order);
e320d301
MWO
5075 else if (!PageHead(page))
5076 while (order-- > 0)
5077 free_the_page(page + (1 << order), order);
742aa7fb 5078}
1da177e4
LT
5079EXPORT_SYMBOL(__free_pages);
5080
920c7a5d 5081void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5082{
5083 if (addr != 0) {
725d704e 5084 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5085 __free_pages(virt_to_page((void *)addr), order);
5086 }
5087}
5088
5089EXPORT_SYMBOL(free_pages);
5090
b63ae8ca
AD
5091/*
5092 * Page Fragment:
5093 * An arbitrary-length arbitrary-offset area of memory which resides
5094 * within a 0 or higher order page. Multiple fragments within that page
5095 * are individually refcounted, in the page's reference counter.
5096 *
5097 * The page_frag functions below provide a simple allocation framework for
5098 * page fragments. This is used by the network stack and network device
5099 * drivers to provide a backing region of memory for use as either an
5100 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5101 */
2976db80
AD
5102static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5103 gfp_t gfp_mask)
b63ae8ca
AD
5104{
5105 struct page *page = NULL;
5106 gfp_t gfp = gfp_mask;
5107
5108#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5109 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5110 __GFP_NOMEMALLOC;
5111 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5112 PAGE_FRAG_CACHE_MAX_ORDER);
5113 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5114#endif
5115 if (unlikely(!page))
5116 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5117
5118 nc->va = page ? page_address(page) : NULL;
5119
5120 return page;
5121}
5122
2976db80 5123void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5124{
5125 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5126
742aa7fb
AL
5127 if (page_ref_sub_and_test(page, count))
5128 free_the_page(page, compound_order(page));
44fdffd7 5129}
2976db80 5130EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5131
8c2dd3e4
AD
5132void *page_frag_alloc(struct page_frag_cache *nc,
5133 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5134{
5135 unsigned int size = PAGE_SIZE;
5136 struct page *page;
5137 int offset;
5138
5139 if (unlikely(!nc->va)) {
5140refill:
2976db80 5141 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5142 if (!page)
5143 return NULL;
5144
5145#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5146 /* if size can vary use size else just use PAGE_SIZE */
5147 size = nc->size;
5148#endif
5149 /* Even if we own the page, we do not use atomic_set().
5150 * This would break get_page_unless_zero() users.
5151 */
86447726 5152 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5153
5154 /* reset page count bias and offset to start of new frag */
2f064f34 5155 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5156 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5157 nc->offset = size;
5158 }
5159
5160 offset = nc->offset - fragsz;
5161 if (unlikely(offset < 0)) {
5162 page = virt_to_page(nc->va);
5163
fe896d18 5164 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5165 goto refill;
5166
d8c19014
DZ
5167 if (unlikely(nc->pfmemalloc)) {
5168 free_the_page(page, compound_order(page));
5169 goto refill;
5170 }
5171
b63ae8ca
AD
5172#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5173 /* if size can vary use size else just use PAGE_SIZE */
5174 size = nc->size;
5175#endif
5176 /* OK, page count is 0, we can safely set it */
86447726 5177 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5178
5179 /* reset page count bias and offset to start of new frag */
86447726 5180 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5181 offset = size - fragsz;
5182 }
5183
5184 nc->pagecnt_bias--;
5185 nc->offset = offset;
5186
5187 return nc->va + offset;
5188}
8c2dd3e4 5189EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5190
5191/*
5192 * Frees a page fragment allocated out of either a compound or order 0 page.
5193 */
8c2dd3e4 5194void page_frag_free(void *addr)
b63ae8ca
AD
5195{
5196 struct page *page = virt_to_head_page(addr);
5197
742aa7fb
AL
5198 if (unlikely(put_page_testzero(page)))
5199 free_the_page(page, compound_order(page));
b63ae8ca 5200}
8c2dd3e4 5201EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5202
d00181b9
KS
5203static void *make_alloc_exact(unsigned long addr, unsigned int order,
5204 size_t size)
ee85c2e1
AK
5205{
5206 if (addr) {
5207 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5208 unsigned long used = addr + PAGE_ALIGN(size);
5209
5210 split_page(virt_to_page((void *)addr), order);
5211 while (used < alloc_end) {
5212 free_page(used);
5213 used += PAGE_SIZE;
5214 }
5215 }
5216 return (void *)addr;
5217}
5218
2be0ffe2
TT
5219/**
5220 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5221 * @size: the number of bytes to allocate
63931eb9 5222 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5223 *
5224 * This function is similar to alloc_pages(), except that it allocates the
5225 * minimum number of pages to satisfy the request. alloc_pages() can only
5226 * allocate memory in power-of-two pages.
5227 *
5228 * This function is also limited by MAX_ORDER.
5229 *
5230 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5231 *
5232 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5233 */
5234void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5235{
5236 unsigned int order = get_order(size);
5237 unsigned long addr;
5238
63931eb9
VB
5239 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5240 gfp_mask &= ~__GFP_COMP;
5241
2be0ffe2 5242 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5243 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5244}
5245EXPORT_SYMBOL(alloc_pages_exact);
5246
ee85c2e1
AK
5247/**
5248 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5249 * pages on a node.
b5e6ab58 5250 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5251 * @size: the number of bytes to allocate
63931eb9 5252 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5253 *
5254 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5255 * back.
a862f68a
MR
5256 *
5257 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5258 */
e1931811 5259void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5260{
d00181b9 5261 unsigned int order = get_order(size);
63931eb9
VB
5262 struct page *p;
5263
5264 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5265 gfp_mask &= ~__GFP_COMP;
5266
5267 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5268 if (!p)
5269 return NULL;
5270 return make_alloc_exact((unsigned long)page_address(p), order, size);
5271}
ee85c2e1 5272
2be0ffe2
TT
5273/**
5274 * free_pages_exact - release memory allocated via alloc_pages_exact()
5275 * @virt: the value returned by alloc_pages_exact.
5276 * @size: size of allocation, same value as passed to alloc_pages_exact().
5277 *
5278 * Release the memory allocated by a previous call to alloc_pages_exact.
5279 */
5280void free_pages_exact(void *virt, size_t size)
5281{
5282 unsigned long addr = (unsigned long)virt;
5283 unsigned long end = addr + PAGE_ALIGN(size);
5284
5285 while (addr < end) {
5286 free_page(addr);
5287 addr += PAGE_SIZE;
5288 }
5289}
5290EXPORT_SYMBOL(free_pages_exact);
5291
e0fb5815
ZY
5292/**
5293 * nr_free_zone_pages - count number of pages beyond high watermark
5294 * @offset: The zone index of the highest zone
5295 *
a862f68a 5296 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5297 * high watermark within all zones at or below a given zone index. For each
5298 * zone, the number of pages is calculated as:
0e056eb5
MCC
5299 *
5300 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5301 *
5302 * Return: number of pages beyond high watermark.
e0fb5815 5303 */
ebec3862 5304static unsigned long nr_free_zone_pages(int offset)
1da177e4 5305{
dd1a239f 5306 struct zoneref *z;
54a6eb5c
MG
5307 struct zone *zone;
5308
e310fd43 5309 /* Just pick one node, since fallback list is circular */
ebec3862 5310 unsigned long sum = 0;
1da177e4 5311
0e88460d 5312 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5313
54a6eb5c 5314 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5315 unsigned long size = zone_managed_pages(zone);
41858966 5316 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5317 if (size > high)
5318 sum += size - high;
1da177e4
LT
5319 }
5320
5321 return sum;
5322}
5323
e0fb5815
ZY
5324/**
5325 * nr_free_buffer_pages - count number of pages beyond high watermark
5326 *
5327 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5328 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5329 *
5330 * Return: number of pages beyond high watermark within ZONE_DMA and
5331 * ZONE_NORMAL.
1da177e4 5332 */
ebec3862 5333unsigned long nr_free_buffer_pages(void)
1da177e4 5334{
af4ca457 5335 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5336}
c2f1a551 5337EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5338
08e0f6a9 5339static inline void show_node(struct zone *zone)
1da177e4 5340{
e5adfffc 5341 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5342 printk("Node %d ", zone_to_nid(zone));
1da177e4 5343}
1da177e4 5344
d02bd27b
IR
5345long si_mem_available(void)
5346{
5347 long available;
5348 unsigned long pagecache;
5349 unsigned long wmark_low = 0;
5350 unsigned long pages[NR_LRU_LISTS];
b29940c1 5351 unsigned long reclaimable;
d02bd27b
IR
5352 struct zone *zone;
5353 int lru;
5354
5355 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5356 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5357
5358 for_each_zone(zone)
a9214443 5359 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5360
5361 /*
5362 * Estimate the amount of memory available for userspace allocations,
5363 * without causing swapping.
5364 */
c41f012a 5365 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5366
5367 /*
5368 * Not all the page cache can be freed, otherwise the system will
5369 * start swapping. Assume at least half of the page cache, or the
5370 * low watermark worth of cache, needs to stay.
5371 */
5372 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5373 pagecache -= min(pagecache / 2, wmark_low);
5374 available += pagecache;
5375
5376 /*
b29940c1
VB
5377 * Part of the reclaimable slab and other kernel memory consists of
5378 * items that are in use, and cannot be freed. Cap this estimate at the
5379 * low watermark.
d02bd27b 5380 */
d42f3245
RG
5381 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5382 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5383 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5384
d02bd27b
IR
5385 if (available < 0)
5386 available = 0;
5387 return available;
5388}
5389EXPORT_SYMBOL_GPL(si_mem_available);
5390
1da177e4
LT
5391void si_meminfo(struct sysinfo *val)
5392{
ca79b0c2 5393 val->totalram = totalram_pages();
11fb9989 5394 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5395 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5396 val->bufferram = nr_blockdev_pages();
ca79b0c2 5397 val->totalhigh = totalhigh_pages();
1da177e4 5398 val->freehigh = nr_free_highpages();
1da177e4
LT
5399 val->mem_unit = PAGE_SIZE;
5400}
5401
5402EXPORT_SYMBOL(si_meminfo);
5403
5404#ifdef CONFIG_NUMA
5405void si_meminfo_node(struct sysinfo *val, int nid)
5406{
cdd91a77
JL
5407 int zone_type; /* needs to be signed */
5408 unsigned long managed_pages = 0;
fc2bd799
JK
5409 unsigned long managed_highpages = 0;
5410 unsigned long free_highpages = 0;
1da177e4
LT
5411 pg_data_t *pgdat = NODE_DATA(nid);
5412
cdd91a77 5413 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5414 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5415 val->totalram = managed_pages;
11fb9989 5416 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5417 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5418#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5419 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5420 struct zone *zone = &pgdat->node_zones[zone_type];
5421
5422 if (is_highmem(zone)) {
9705bea5 5423 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5424 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5425 }
5426 }
5427 val->totalhigh = managed_highpages;
5428 val->freehigh = free_highpages;
98d2b0eb 5429#else
fc2bd799
JK
5430 val->totalhigh = managed_highpages;
5431 val->freehigh = free_highpages;
98d2b0eb 5432#endif
1da177e4
LT
5433 val->mem_unit = PAGE_SIZE;
5434}
5435#endif
5436
ddd588b5 5437/*
7bf02ea2
DR
5438 * Determine whether the node should be displayed or not, depending on whether
5439 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5440 */
9af744d7 5441static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5442{
ddd588b5 5443 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5444 return false;
ddd588b5 5445
9af744d7
MH
5446 /*
5447 * no node mask - aka implicit memory numa policy. Do not bother with
5448 * the synchronization - read_mems_allowed_begin - because we do not
5449 * have to be precise here.
5450 */
5451 if (!nodemask)
5452 nodemask = &cpuset_current_mems_allowed;
5453
5454 return !node_isset(nid, *nodemask);
ddd588b5
DR
5455}
5456
1da177e4
LT
5457#define K(x) ((x) << (PAGE_SHIFT-10))
5458
377e4f16
RV
5459static void show_migration_types(unsigned char type)
5460{
5461 static const char types[MIGRATE_TYPES] = {
5462 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5463 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5464 [MIGRATE_RECLAIMABLE] = 'E',
5465 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5466#ifdef CONFIG_CMA
5467 [MIGRATE_CMA] = 'C',
5468#endif
194159fb 5469#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5470 [MIGRATE_ISOLATE] = 'I',
194159fb 5471#endif
377e4f16
RV
5472 };
5473 char tmp[MIGRATE_TYPES + 1];
5474 char *p = tmp;
5475 int i;
5476
5477 for (i = 0; i < MIGRATE_TYPES; i++) {
5478 if (type & (1 << i))
5479 *p++ = types[i];
5480 }
5481
5482 *p = '\0';
1f84a18f 5483 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5484}
5485
1da177e4
LT
5486/*
5487 * Show free area list (used inside shift_scroll-lock stuff)
5488 * We also calculate the percentage fragmentation. We do this by counting the
5489 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5490 *
5491 * Bits in @filter:
5492 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5493 * cpuset.
1da177e4 5494 */
9af744d7 5495void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5496{
d1bfcdb8 5497 unsigned long free_pcp = 0;
c7241913 5498 int cpu;
1da177e4 5499 struct zone *zone;
599d0c95 5500 pg_data_t *pgdat;
1da177e4 5501
ee99c71c 5502 for_each_populated_zone(zone) {
9af744d7 5503 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5504 continue;
d1bfcdb8 5505
761b0677
KK
5506 for_each_online_cpu(cpu)
5507 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5508 }
5509
a731286d
KM
5510 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5511 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5512 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5513 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5514 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5515 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5516 global_node_page_state(NR_ACTIVE_ANON),
5517 global_node_page_state(NR_INACTIVE_ANON),
5518 global_node_page_state(NR_ISOLATED_ANON),
5519 global_node_page_state(NR_ACTIVE_FILE),
5520 global_node_page_state(NR_INACTIVE_FILE),
5521 global_node_page_state(NR_ISOLATED_FILE),
5522 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5523 global_node_page_state(NR_FILE_DIRTY),
5524 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5525 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5526 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5527 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5528 global_node_page_state(NR_SHMEM),
f0c0c115 5529 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5530 global_zone_page_state(NR_BOUNCE),
5531 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5532 free_pcp,
c41f012a 5533 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5534
599d0c95 5535 for_each_online_pgdat(pgdat) {
9af744d7 5536 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5537 continue;
5538
599d0c95
MG
5539 printk("Node %d"
5540 " active_anon:%lukB"
5541 " inactive_anon:%lukB"
5542 " active_file:%lukB"
5543 " inactive_file:%lukB"
5544 " unevictable:%lukB"
5545 " isolated(anon):%lukB"
5546 " isolated(file):%lukB"
50658e2e 5547 " mapped:%lukB"
11fb9989
MG
5548 " dirty:%lukB"
5549 " writeback:%lukB"
5550 " shmem:%lukB"
5551#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5552 " shmem_thp: %lukB"
5553 " shmem_pmdmapped: %lukB"
5554 " anon_thp: %lukB"
5555#endif
5556 " writeback_tmp:%lukB"
991e7673
SB
5557 " kernel_stack:%lukB"
5558#ifdef CONFIG_SHADOW_CALL_STACK
5559 " shadow_call_stack:%lukB"
5560#endif
f0c0c115 5561 " pagetables:%lukB"
599d0c95
MG
5562 " all_unreclaimable? %s"
5563 "\n",
5564 pgdat->node_id,
5565 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5566 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5567 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5568 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5569 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5570 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5571 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5572 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5573 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5574 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5575 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5576#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5577 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5578 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5579 * HPAGE_PMD_NR),
5580 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5581#endif
11fb9989 5582 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5583 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5584#ifdef CONFIG_SHADOW_CALL_STACK
5585 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5586#endif
f0c0c115 5587 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5588 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5589 "yes" : "no");
599d0c95
MG
5590 }
5591
ee99c71c 5592 for_each_populated_zone(zone) {
1da177e4
LT
5593 int i;
5594
9af744d7 5595 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5596 continue;
d1bfcdb8
KK
5597
5598 free_pcp = 0;
5599 for_each_online_cpu(cpu)
5600 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5601
1da177e4 5602 show_node(zone);
1f84a18f
JP
5603 printk(KERN_CONT
5604 "%s"
1da177e4
LT
5605 " free:%lukB"
5606 " min:%lukB"
5607 " low:%lukB"
5608 " high:%lukB"
e47b346a 5609 " reserved_highatomic:%luKB"
71c799f4
MK
5610 " active_anon:%lukB"
5611 " inactive_anon:%lukB"
5612 " active_file:%lukB"
5613 " inactive_file:%lukB"
5614 " unevictable:%lukB"
5a1c84b4 5615 " writepending:%lukB"
1da177e4 5616 " present:%lukB"
9feedc9d 5617 " managed:%lukB"
4a0aa73f 5618 " mlocked:%lukB"
4a0aa73f 5619 " bounce:%lukB"
d1bfcdb8
KK
5620 " free_pcp:%lukB"
5621 " local_pcp:%ukB"
d1ce749a 5622 " free_cma:%lukB"
1da177e4
LT
5623 "\n",
5624 zone->name,
88f5acf8 5625 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5626 K(min_wmark_pages(zone)),
5627 K(low_wmark_pages(zone)),
5628 K(high_wmark_pages(zone)),
e47b346a 5629 K(zone->nr_reserved_highatomic),
71c799f4
MK
5630 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5631 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5632 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5633 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5634 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5635 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5636 K(zone->present_pages),
9705bea5 5637 K(zone_managed_pages(zone)),
4a0aa73f 5638 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5639 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5640 K(free_pcp),
5641 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5642 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5643 printk("lowmem_reserve[]:");
5644 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5645 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5646 printk(KERN_CONT "\n");
1da177e4
LT
5647 }
5648
ee99c71c 5649 for_each_populated_zone(zone) {
d00181b9
KS
5650 unsigned int order;
5651 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5652 unsigned char types[MAX_ORDER];
1da177e4 5653
9af744d7 5654 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5655 continue;
1da177e4 5656 show_node(zone);
1f84a18f 5657 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5658
5659 spin_lock_irqsave(&zone->lock, flags);
5660 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5661 struct free_area *area = &zone->free_area[order];
5662 int type;
5663
5664 nr[order] = area->nr_free;
8f9de51a 5665 total += nr[order] << order;
377e4f16
RV
5666
5667 types[order] = 0;
5668 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5669 if (!free_area_empty(area, type))
377e4f16
RV
5670 types[order] |= 1 << type;
5671 }
1da177e4
LT
5672 }
5673 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5674 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5675 printk(KERN_CONT "%lu*%lukB ",
5676 nr[order], K(1UL) << order);
377e4f16
RV
5677 if (nr[order])
5678 show_migration_types(types[order]);
5679 }
1f84a18f 5680 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5681 }
5682
949f7ec5
DR
5683 hugetlb_show_meminfo();
5684
11fb9989 5685 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5686
1da177e4
LT
5687 show_swap_cache_info();
5688}
5689
19770b32
MG
5690static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5691{
5692 zoneref->zone = zone;
5693 zoneref->zone_idx = zone_idx(zone);
5694}
5695
1da177e4
LT
5696/*
5697 * Builds allocation fallback zone lists.
1a93205b
CL
5698 *
5699 * Add all populated zones of a node to the zonelist.
1da177e4 5700 */
9d3be21b 5701static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5702{
1a93205b 5703 struct zone *zone;
bc732f1d 5704 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5705 int nr_zones = 0;
02a68a5e
CL
5706
5707 do {
2f6726e5 5708 zone_type--;
070f8032 5709 zone = pgdat->node_zones + zone_type;
6aa303de 5710 if (managed_zone(zone)) {
9d3be21b 5711 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5712 check_highest_zone(zone_type);
1da177e4 5713 }
2f6726e5 5714 } while (zone_type);
bc732f1d 5715
070f8032 5716 return nr_zones;
1da177e4
LT
5717}
5718
5719#ifdef CONFIG_NUMA
f0c0b2b8
KH
5720
5721static int __parse_numa_zonelist_order(char *s)
5722{
c9bff3ee
MH
5723 /*
5724 * We used to support different zonlists modes but they turned
5725 * out to be just not useful. Let's keep the warning in place
5726 * if somebody still use the cmd line parameter so that we do
5727 * not fail it silently
5728 */
5729 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5730 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5731 return -EINVAL;
5732 }
5733 return 0;
5734}
5735
c9bff3ee
MH
5736char numa_zonelist_order[] = "Node";
5737
f0c0b2b8
KH
5738/*
5739 * sysctl handler for numa_zonelist_order
5740 */
cccad5b9 5741int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5742 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5743{
32927393
CH
5744 if (write)
5745 return __parse_numa_zonelist_order(buffer);
5746 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5747}
5748
5749
62bc62a8 5750#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5751static int node_load[MAX_NUMNODES];
5752
1da177e4 5753/**
4dc3b16b 5754 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5755 * @node: node whose fallback list we're appending
5756 * @used_node_mask: nodemask_t of already used nodes
5757 *
5758 * We use a number of factors to determine which is the next node that should
5759 * appear on a given node's fallback list. The node should not have appeared
5760 * already in @node's fallback list, and it should be the next closest node
5761 * according to the distance array (which contains arbitrary distance values
5762 * from each node to each node in the system), and should also prefer nodes
5763 * with no CPUs, since presumably they'll have very little allocation pressure
5764 * on them otherwise.
a862f68a
MR
5765 *
5766 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5767 */
f0c0b2b8 5768static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5769{
4cf808eb 5770 int n, val;
1da177e4 5771 int min_val = INT_MAX;
00ef2d2f 5772 int best_node = NUMA_NO_NODE;
1da177e4 5773
4cf808eb
LT
5774 /* Use the local node if we haven't already */
5775 if (!node_isset(node, *used_node_mask)) {
5776 node_set(node, *used_node_mask);
5777 return node;
5778 }
1da177e4 5779
4b0ef1fe 5780 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5781
5782 /* Don't want a node to appear more than once */
5783 if (node_isset(n, *used_node_mask))
5784 continue;
5785
1da177e4
LT
5786 /* Use the distance array to find the distance */
5787 val = node_distance(node, n);
5788
4cf808eb
LT
5789 /* Penalize nodes under us ("prefer the next node") */
5790 val += (n < node);
5791
1da177e4 5792 /* Give preference to headless and unused nodes */
b630749f 5793 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5794 val += PENALTY_FOR_NODE_WITH_CPUS;
5795
5796 /* Slight preference for less loaded node */
5797 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5798 val += node_load[n];
5799
5800 if (val < min_val) {
5801 min_val = val;
5802 best_node = n;
5803 }
5804 }
5805
5806 if (best_node >= 0)
5807 node_set(best_node, *used_node_mask);
5808
5809 return best_node;
5810}
5811
f0c0b2b8
KH
5812
5813/*
5814 * Build zonelists ordered by node and zones within node.
5815 * This results in maximum locality--normal zone overflows into local
5816 * DMA zone, if any--but risks exhausting DMA zone.
5817 */
9d3be21b
MH
5818static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5819 unsigned nr_nodes)
1da177e4 5820{
9d3be21b
MH
5821 struct zoneref *zonerefs;
5822 int i;
5823
5824 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5825
5826 for (i = 0; i < nr_nodes; i++) {
5827 int nr_zones;
5828
5829 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5830
9d3be21b
MH
5831 nr_zones = build_zonerefs_node(node, zonerefs);
5832 zonerefs += nr_zones;
5833 }
5834 zonerefs->zone = NULL;
5835 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5836}
5837
523b9458
CL
5838/*
5839 * Build gfp_thisnode zonelists
5840 */
5841static void build_thisnode_zonelists(pg_data_t *pgdat)
5842{
9d3be21b
MH
5843 struct zoneref *zonerefs;
5844 int nr_zones;
523b9458 5845
9d3be21b
MH
5846 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5847 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5848 zonerefs += nr_zones;
5849 zonerefs->zone = NULL;
5850 zonerefs->zone_idx = 0;
523b9458
CL
5851}
5852
f0c0b2b8
KH
5853/*
5854 * Build zonelists ordered by zone and nodes within zones.
5855 * This results in conserving DMA zone[s] until all Normal memory is
5856 * exhausted, but results in overflowing to remote node while memory
5857 * may still exist in local DMA zone.
5858 */
f0c0b2b8 5859
f0c0b2b8
KH
5860static void build_zonelists(pg_data_t *pgdat)
5861{
9d3be21b
MH
5862 static int node_order[MAX_NUMNODES];
5863 int node, load, nr_nodes = 0;
d0ddf49b 5864 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5865 int local_node, prev_node;
1da177e4
LT
5866
5867 /* NUMA-aware ordering of nodes */
5868 local_node = pgdat->node_id;
62bc62a8 5869 load = nr_online_nodes;
1da177e4 5870 prev_node = local_node;
f0c0b2b8 5871
f0c0b2b8 5872 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5873 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5874 /*
5875 * We don't want to pressure a particular node.
5876 * So adding penalty to the first node in same
5877 * distance group to make it round-robin.
5878 */
957f822a
DR
5879 if (node_distance(local_node, node) !=
5880 node_distance(local_node, prev_node))
f0c0b2b8
KH
5881 node_load[node] = load;
5882
9d3be21b 5883 node_order[nr_nodes++] = node;
1da177e4
LT
5884 prev_node = node;
5885 load--;
1da177e4 5886 }
523b9458 5887
9d3be21b 5888 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5889 build_thisnode_zonelists(pgdat);
1da177e4
LT
5890}
5891
7aac7898
LS
5892#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5893/*
5894 * Return node id of node used for "local" allocations.
5895 * I.e., first node id of first zone in arg node's generic zonelist.
5896 * Used for initializing percpu 'numa_mem', which is used primarily
5897 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5898 */
5899int local_memory_node(int node)
5900{
c33d6c06 5901 struct zoneref *z;
7aac7898 5902
c33d6c06 5903 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5904 gfp_zone(GFP_KERNEL),
c33d6c06 5905 NULL);
c1093b74 5906 return zone_to_nid(z->zone);
7aac7898
LS
5907}
5908#endif
f0c0b2b8 5909
6423aa81
JK
5910static void setup_min_unmapped_ratio(void);
5911static void setup_min_slab_ratio(void);
1da177e4
LT
5912#else /* CONFIG_NUMA */
5913
f0c0b2b8 5914static void build_zonelists(pg_data_t *pgdat)
1da177e4 5915{
19655d34 5916 int node, local_node;
9d3be21b
MH
5917 struct zoneref *zonerefs;
5918 int nr_zones;
1da177e4
LT
5919
5920 local_node = pgdat->node_id;
1da177e4 5921
9d3be21b
MH
5922 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5923 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5924 zonerefs += nr_zones;
1da177e4 5925
54a6eb5c
MG
5926 /*
5927 * Now we build the zonelist so that it contains the zones
5928 * of all the other nodes.
5929 * We don't want to pressure a particular node, so when
5930 * building the zones for node N, we make sure that the
5931 * zones coming right after the local ones are those from
5932 * node N+1 (modulo N)
5933 */
5934 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5935 if (!node_online(node))
5936 continue;
9d3be21b
MH
5937 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5938 zonerefs += nr_zones;
1da177e4 5939 }
54a6eb5c
MG
5940 for (node = 0; node < local_node; node++) {
5941 if (!node_online(node))
5942 continue;
9d3be21b
MH
5943 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5944 zonerefs += nr_zones;
54a6eb5c
MG
5945 }
5946
9d3be21b
MH
5947 zonerefs->zone = NULL;
5948 zonerefs->zone_idx = 0;
1da177e4
LT
5949}
5950
5951#endif /* CONFIG_NUMA */
5952
99dcc3e5
CL
5953/*
5954 * Boot pageset table. One per cpu which is going to be used for all
5955 * zones and all nodes. The parameters will be set in such a way
5956 * that an item put on a list will immediately be handed over to
5957 * the buddy list. This is safe since pageset manipulation is done
5958 * with interrupts disabled.
5959 *
5960 * The boot_pagesets must be kept even after bootup is complete for
5961 * unused processors and/or zones. They do play a role for bootstrapping
5962 * hotplugged processors.
5963 *
5964 * zoneinfo_show() and maybe other functions do
5965 * not check if the processor is online before following the pageset pointer.
5966 * Other parts of the kernel may not check if the zone is available.
5967 */
69a8396a 5968static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
5969/* These effectively disable the pcplists in the boot pageset completely */
5970#define BOOT_PAGESET_HIGH 0
5971#define BOOT_PAGESET_BATCH 1
99dcc3e5 5972static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5973static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5974
11cd8638 5975static void __build_all_zonelists(void *data)
1da177e4 5976{
6811378e 5977 int nid;
afb6ebb3 5978 int __maybe_unused cpu;
9adb62a5 5979 pg_data_t *self = data;
b93e0f32
MH
5980 static DEFINE_SPINLOCK(lock);
5981
5982 spin_lock(&lock);
9276b1bc 5983
7f9cfb31
BL
5984#ifdef CONFIG_NUMA
5985 memset(node_load, 0, sizeof(node_load));
5986#endif
9adb62a5 5987
c1152583
WY
5988 /*
5989 * This node is hotadded and no memory is yet present. So just
5990 * building zonelists is fine - no need to touch other nodes.
5991 */
9adb62a5
JL
5992 if (self && !node_online(self->node_id)) {
5993 build_zonelists(self);
c1152583
WY
5994 } else {
5995 for_each_online_node(nid) {
5996 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5997
c1152583
WY
5998 build_zonelists(pgdat);
5999 }
99dcc3e5 6000
7aac7898
LS
6001#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6002 /*
6003 * We now know the "local memory node" for each node--
6004 * i.e., the node of the first zone in the generic zonelist.
6005 * Set up numa_mem percpu variable for on-line cpus. During
6006 * boot, only the boot cpu should be on-line; we'll init the
6007 * secondary cpus' numa_mem as they come on-line. During
6008 * node/memory hotplug, we'll fixup all on-line cpus.
6009 */
d9c9a0b9 6010 for_each_online_cpu(cpu)
7aac7898 6011 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6012#endif
d9c9a0b9 6013 }
b93e0f32
MH
6014
6015 spin_unlock(&lock);
6811378e
YG
6016}
6017
061f67bc
RV
6018static noinline void __init
6019build_all_zonelists_init(void)
6020{
afb6ebb3
MH
6021 int cpu;
6022
061f67bc 6023 __build_all_zonelists(NULL);
afb6ebb3
MH
6024
6025 /*
6026 * Initialize the boot_pagesets that are going to be used
6027 * for bootstrapping processors. The real pagesets for
6028 * each zone will be allocated later when the per cpu
6029 * allocator is available.
6030 *
6031 * boot_pagesets are used also for bootstrapping offline
6032 * cpus if the system is already booted because the pagesets
6033 * are needed to initialize allocators on a specific cpu too.
6034 * F.e. the percpu allocator needs the page allocator which
6035 * needs the percpu allocator in order to allocate its pagesets
6036 * (a chicken-egg dilemma).
6037 */
6038 for_each_possible_cpu(cpu)
69a8396a 6039 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6040
061f67bc
RV
6041 mminit_verify_zonelist();
6042 cpuset_init_current_mems_allowed();
6043}
6044
4eaf3f64 6045/*
4eaf3f64 6046 * unless system_state == SYSTEM_BOOTING.
061f67bc 6047 *
72675e13 6048 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6049 * [protected by SYSTEM_BOOTING].
4eaf3f64 6050 */
72675e13 6051void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6052{
0a18e607
DH
6053 unsigned long vm_total_pages;
6054
6811378e 6055 if (system_state == SYSTEM_BOOTING) {
061f67bc 6056 build_all_zonelists_init();
6811378e 6057 } else {
11cd8638 6058 __build_all_zonelists(pgdat);
6811378e
YG
6059 /* cpuset refresh routine should be here */
6060 }
56b9413b
DH
6061 /* Get the number of free pages beyond high watermark in all zones. */
6062 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6063 /*
6064 * Disable grouping by mobility if the number of pages in the
6065 * system is too low to allow the mechanism to work. It would be
6066 * more accurate, but expensive to check per-zone. This check is
6067 * made on memory-hotadd so a system can start with mobility
6068 * disabled and enable it later
6069 */
d9c23400 6070 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6071 page_group_by_mobility_disabled = 1;
6072 else
6073 page_group_by_mobility_disabled = 0;
6074
ce0725f7 6075 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6076 nr_online_nodes,
756a025f
JP
6077 page_group_by_mobility_disabled ? "off" : "on",
6078 vm_total_pages);
f0c0b2b8 6079#ifdef CONFIG_NUMA
f88dfff5 6080 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6081#endif
1da177e4
LT
6082}
6083
a9a9e77f
PT
6084/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6085static bool __meminit
6086overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6087{
a9a9e77f
PT
6088 static struct memblock_region *r;
6089
6090 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6091 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6092 for_each_mem_region(r) {
a9a9e77f
PT
6093 if (*pfn < memblock_region_memory_end_pfn(r))
6094 break;
6095 }
6096 }
6097 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6098 memblock_is_mirror(r)) {
6099 *pfn = memblock_region_memory_end_pfn(r);
6100 return true;
6101 }
6102 }
a9a9e77f
PT
6103 return false;
6104}
6105
1da177e4
LT
6106/*
6107 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6108 * up by memblock_free_all() once the early boot process is
1da177e4 6109 * done. Non-atomic initialization, single-pass.
d882c006
DH
6110 *
6111 * All aligned pageblocks are initialized to the specified migratetype
6112 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6113 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6114 */
c09b4240 6115void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6116 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6117 enum meminit_context context,
6118 struct vmem_altmap *altmap, int migratetype)
1da177e4 6119{
a9a9e77f 6120 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6121 struct page *page;
1da177e4 6122
22b31eec
HD
6123 if (highest_memmap_pfn < end_pfn - 1)
6124 highest_memmap_pfn = end_pfn - 1;
6125
966cf44f 6126#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6127 /*
6128 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6129 * memory. We limit the total number of pages to initialize to just
6130 * those that might contain the memory mapping. We will defer the
6131 * ZONE_DEVICE page initialization until after we have released
6132 * the hotplug lock.
4b94ffdc 6133 */
966cf44f
AD
6134 if (zone == ZONE_DEVICE) {
6135 if (!altmap)
6136 return;
6137
6138 if (start_pfn == altmap->base_pfn)
6139 start_pfn += altmap->reserve;
6140 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6141 }
6142#endif
4b94ffdc 6143
948c436e 6144 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6145 /*
b72d0ffb
AM
6146 * There can be holes in boot-time mem_map[]s handed to this
6147 * function. They do not exist on hotplugged memory.
a2f3aa02 6148 */
c1d0da83 6149 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6150 if (overlap_memmap_init(zone, &pfn))
6151 continue;
dc2da7b4 6152 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6153 break;
a2f3aa02 6154 }
ac5d2539 6155
d0dc12e8
PT
6156 page = pfn_to_page(pfn);
6157 __init_single_page(page, pfn, zone, nid);
c1d0da83 6158 if (context == MEMINIT_HOTPLUG)
d483da5b 6159 __SetPageReserved(page);
d0dc12e8 6160
ac5d2539 6161 /*
d882c006
DH
6162 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6163 * such that unmovable allocations won't be scattered all
6164 * over the place during system boot.
ac5d2539 6165 */
4eb29bd9 6166 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6167 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6168 cond_resched();
ac5d2539 6169 }
948c436e 6170 pfn++;
1da177e4
LT
6171 }
6172}
6173
966cf44f
AD
6174#ifdef CONFIG_ZONE_DEVICE
6175void __ref memmap_init_zone_device(struct zone *zone,
6176 unsigned long start_pfn,
1f8d75c1 6177 unsigned long nr_pages,
966cf44f
AD
6178 struct dev_pagemap *pgmap)
6179{
1f8d75c1 6180 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6181 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6182 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6183 unsigned long zone_idx = zone_idx(zone);
6184 unsigned long start = jiffies;
6185 int nid = pgdat->node_id;
6186
46d945ae 6187 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6188 return;
6189
6190 /*
6191 * The call to memmap_init_zone should have already taken care
6192 * of the pages reserved for the memmap, so we can just jump to
6193 * the end of that region and start processing the device pages.
6194 */
514caf23 6195 if (altmap) {
966cf44f 6196 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6197 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6198 }
6199
6200 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6201 struct page *page = pfn_to_page(pfn);
6202
6203 __init_single_page(page, pfn, zone_idx, nid);
6204
6205 /*
6206 * Mark page reserved as it will need to wait for onlining
6207 * phase for it to be fully associated with a zone.
6208 *
6209 * We can use the non-atomic __set_bit operation for setting
6210 * the flag as we are still initializing the pages.
6211 */
6212 __SetPageReserved(page);
6213
6214 /*
8a164fef
CH
6215 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6216 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6217 * ever freed or placed on a driver-private list.
966cf44f
AD
6218 */
6219 page->pgmap = pgmap;
8a164fef 6220 page->zone_device_data = NULL;
966cf44f
AD
6221
6222 /*
6223 * Mark the block movable so that blocks are reserved for
6224 * movable at startup. This will force kernel allocations
6225 * to reserve their blocks rather than leaking throughout
6226 * the address space during boot when many long-lived
6227 * kernel allocations are made.
6228 *
c1d0da83 6229 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6230 * because this is done early in section_activate()
966cf44f 6231 */
4eb29bd9 6232 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6233 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6234 cond_resched();
6235 }
6236 }
6237
fdc029b1 6238 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6239 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6240}
6241
6242#endif
1e548deb 6243static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6244{
7aeb09f9 6245 unsigned int order, t;
b2a0ac88
MG
6246 for_each_migratetype_order(order, t) {
6247 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6248 zone->free_area[order].nr_free = 0;
6249 }
6250}
6251
2f2818d2
MR
6252#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6253/*
6254 * Only struct pages that correspond to ranges defined by memblock.memory
6255 * are zeroed and initialized by going through __init_single_page() during
6256 * memmap_init_zone().
6257 *
6258 * But, there could be struct pages that correspond to holes in
6259 * memblock.memory. This can happen because of the following reasons:
6260 * - physical memory bank size is not necessarily the exact multiple of the
6261 * arbitrary section size
6262 * - early reserved memory may not be listed in memblock.memory
6263 * - memory layouts defined with memmap= kernel parameter may not align
6264 * nicely with memmap sections
6265 *
6266 * Explicitly initialize those struct pages so that:
6267 * - PG_Reserved is set
6268 * - zone and node links point to zone and node that span the page if the
6269 * hole is in the middle of a zone
6270 * - zone and node links point to adjacent zone/node if the hole falls on
6271 * the zone boundary; the pages in such holes will be prepended to the
6272 * zone/node above the hole except for the trailing pages in the last
6273 * section that will be appended to the zone/node below.
6274 */
6275static u64 __meminit init_unavailable_range(unsigned long spfn,
6276 unsigned long epfn,
6277 int zone, int node)
6278{
6279 unsigned long pfn;
6280 u64 pgcnt = 0;
6281
6282 for (pfn = spfn; pfn < epfn; pfn++) {
6283 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6284 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6285 + pageblock_nr_pages - 1;
6286 continue;
6287 }
6288 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6289 __SetPageReserved(pfn_to_page(pfn));
6290 pgcnt++;
6291 }
6292
6293 return pgcnt;
6294}
6295#else
6296static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6297 int zone, int node)
6298{
6299 return 0;
6300}
6301#endif
6302
dfb3ccd0 6303void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6304 unsigned long zone,
6305 unsigned long range_start_pfn)
dfb3ccd0 6306{
2f2818d2 6307 static unsigned long hole_pfn;
73a6e474
BH
6308 unsigned long start_pfn, end_pfn;
6309 unsigned long range_end_pfn = range_start_pfn + size;
6310 int i;
2f2818d2 6311 u64 pgcnt = 0;
73a6e474
BH
6312
6313 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6314 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6315 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6316
6317 if (end_pfn > start_pfn) {
6318 size = end_pfn - start_pfn;
dc2da7b4 6319 memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn,
d882c006 6320 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474 6321 }
2f2818d2
MR
6322
6323 if (hole_pfn < start_pfn)
6324 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6325 zone, nid);
6326 hole_pfn = end_pfn;
73a6e474 6327 }
2f2818d2
MR
6328
6329#ifdef CONFIG_SPARSEMEM
6330 /*
6331 * Initialize the hole in the range [zone_end_pfn, section_end].
6332 * If zone boundary falls in the middle of a section, this hole
6333 * will be re-initialized during the call to this function for the
6334 * higher zone.
6335 */
6336 end_pfn = round_up(range_end_pfn, PAGES_PER_SECTION);
6337 if (hole_pfn < end_pfn)
6338 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6339 zone, nid);
6340#endif
6341
6342 if (pgcnt)
6343 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6344 zone_names[zone], pgcnt);
dfb3ccd0 6345}
1da177e4 6346
7cd2b0a3 6347static int zone_batchsize(struct zone *zone)
e7c8d5c9 6348{
3a6be87f 6349#ifdef CONFIG_MMU
e7c8d5c9
CL
6350 int batch;
6351
6352 /*
6353 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6354 * size of the zone.
e7c8d5c9 6355 */
9705bea5 6356 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6357 /* But no more than a meg. */
6358 if (batch * PAGE_SIZE > 1024 * 1024)
6359 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6360 batch /= 4; /* We effectively *= 4 below */
6361 if (batch < 1)
6362 batch = 1;
6363
6364 /*
0ceaacc9
NP
6365 * Clamp the batch to a 2^n - 1 value. Having a power
6366 * of 2 value was found to be more likely to have
6367 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6368 *
0ceaacc9
NP
6369 * For example if 2 tasks are alternately allocating
6370 * batches of pages, one task can end up with a lot
6371 * of pages of one half of the possible page colors
6372 * and the other with pages of the other colors.
e7c8d5c9 6373 */
9155203a 6374 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6375
e7c8d5c9 6376 return batch;
3a6be87f
DH
6377
6378#else
6379 /* The deferral and batching of frees should be suppressed under NOMMU
6380 * conditions.
6381 *
6382 * The problem is that NOMMU needs to be able to allocate large chunks
6383 * of contiguous memory as there's no hardware page translation to
6384 * assemble apparent contiguous memory from discontiguous pages.
6385 *
6386 * Queueing large contiguous runs of pages for batching, however,
6387 * causes the pages to actually be freed in smaller chunks. As there
6388 * can be a significant delay between the individual batches being
6389 * recycled, this leads to the once large chunks of space being
6390 * fragmented and becoming unavailable for high-order allocations.
6391 */
6392 return 0;
6393#endif
e7c8d5c9
CL
6394}
6395
8d7a8fa9 6396/*
5c3ad2eb
VB
6397 * pcp->high and pcp->batch values are related and generally batch is lower
6398 * than high. They are also related to pcp->count such that count is lower
6399 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6400 *
5c3ad2eb
VB
6401 * However, guaranteeing these relations at all times would require e.g. write
6402 * barriers here but also careful usage of read barriers at the read side, and
6403 * thus be prone to error and bad for performance. Thus the update only prevents
6404 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6405 * can cope with those fields changing asynchronously, and fully trust only the
6406 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6407 *
6408 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6409 * outside of boot time (or some other assurance that no concurrent updaters
6410 * exist).
6411 */
6412static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6413 unsigned long batch)
6414{
5c3ad2eb
VB
6415 WRITE_ONCE(pcp->batch, batch);
6416 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6417}
6418
88c90dbc 6419static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6420{
6421 struct per_cpu_pages *pcp;
5f8dcc21 6422 int migratetype;
2caaad41 6423
1c6fe946
MD
6424 memset(p, 0, sizeof(*p));
6425
3dfa5721 6426 pcp = &p->pcp;
5f8dcc21
MG
6427 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6428 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6429
69a8396a
VB
6430 /*
6431 * Set batch and high values safe for a boot pageset. A true percpu
6432 * pageset's initialization will update them subsequently. Here we don't
6433 * need to be as careful as pageset_update() as nobody can access the
6434 * pageset yet.
6435 */
952eaf81
VB
6436 pcp->high = BOOT_PAGESET_HIGH;
6437 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6438}
6439
3b1f3658 6440static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6441 unsigned long batch)
6442{
6443 struct per_cpu_pageset *p;
6444 int cpu;
6445
6446 for_each_possible_cpu(cpu) {
6447 p = per_cpu_ptr(zone->pageset, cpu);
6448 pageset_update(&p->pcp, high, batch);
6449 }
6450}
6451
8ad4b1fb 6452/*
0a8b4f1d 6453 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6454 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6455 */
0a8b4f1d 6456static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6457{
7115ac6e
VB
6458 unsigned long new_high, new_batch;
6459
6460 if (percpu_pagelist_fraction) {
6461 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6462 new_batch = max(1UL, new_high / 4);
6463 if ((new_high / 4) > (PAGE_SHIFT * 8))
6464 new_batch = PAGE_SHIFT * 8;
6465 } else {
6466 new_batch = zone_batchsize(zone);
6467 new_high = 6 * new_batch;
6468 new_batch = max(1UL, 1 * new_batch);
6469 }
169f6c19 6470
952eaf81
VB
6471 if (zone->pageset_high == new_high &&
6472 zone->pageset_batch == new_batch)
6473 return;
6474
6475 zone->pageset_high = new_high;
6476 zone->pageset_batch = new_batch;
6477
ec6e8c7e 6478 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6479}
6480
72675e13 6481void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6482{
0a8b4f1d 6483 struct per_cpu_pageset *p;
319774e2 6484 int cpu;
0a8b4f1d 6485
319774e2 6486 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6487 for_each_possible_cpu(cpu) {
6488 p = per_cpu_ptr(zone->pageset, cpu);
6489 pageset_init(p);
6490 }
6491
6492 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6493}
6494
2caaad41 6495/*
99dcc3e5
CL
6496 * Allocate per cpu pagesets and initialize them.
6497 * Before this call only boot pagesets were available.
e7c8d5c9 6498 */
99dcc3e5 6499void __init setup_per_cpu_pageset(void)
e7c8d5c9 6500{
b4911ea2 6501 struct pglist_data *pgdat;
99dcc3e5 6502 struct zone *zone;
b418a0f9 6503 int __maybe_unused cpu;
e7c8d5c9 6504
319774e2
WF
6505 for_each_populated_zone(zone)
6506 setup_zone_pageset(zone);
b4911ea2 6507
b418a0f9
SD
6508#ifdef CONFIG_NUMA
6509 /*
6510 * Unpopulated zones continue using the boot pagesets.
6511 * The numa stats for these pagesets need to be reset.
6512 * Otherwise, they will end up skewing the stats of
6513 * the nodes these zones are associated with.
6514 */
6515 for_each_possible_cpu(cpu) {
6516 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6517 memset(pcp->vm_numa_stat_diff, 0,
6518 sizeof(pcp->vm_numa_stat_diff));
6519 }
6520#endif
6521
b4911ea2
MG
6522 for_each_online_pgdat(pgdat)
6523 pgdat->per_cpu_nodestats =
6524 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6525}
6526
c09b4240 6527static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6528{
99dcc3e5
CL
6529 /*
6530 * per cpu subsystem is not up at this point. The following code
6531 * relies on the ability of the linker to provide the
6532 * offset of a (static) per cpu variable into the per cpu area.
6533 */
6534 zone->pageset = &boot_pageset;
952eaf81
VB
6535 zone->pageset_high = BOOT_PAGESET_HIGH;
6536 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6537
b38a8725 6538 if (populated_zone(zone))
99dcc3e5
CL
6539 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6540 zone->name, zone->present_pages,
6541 zone_batchsize(zone));
ed8ece2e
DH
6542}
6543
dc0bbf3b 6544void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6545 unsigned long zone_start_pfn,
b171e409 6546 unsigned long size)
ed8ece2e
DH
6547{
6548 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6549 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6550
8f416836
WY
6551 if (zone_idx > pgdat->nr_zones)
6552 pgdat->nr_zones = zone_idx;
ed8ece2e 6553
ed8ece2e
DH
6554 zone->zone_start_pfn = zone_start_pfn;
6555
708614e6
MG
6556 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6557 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6558 pgdat->node_id,
6559 (unsigned long)zone_idx(zone),
6560 zone_start_pfn, (zone_start_pfn + size));
6561
1e548deb 6562 zone_init_free_lists(zone);
9dcb8b68 6563 zone->initialized = 1;
ed8ece2e
DH
6564}
6565
c713216d
MG
6566/**
6567 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6568 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6569 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6570 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6571 *
6572 * It returns the start and end page frame of a node based on information
7d018176 6573 * provided by memblock_set_node(). If called for a node
c713216d 6574 * with no available memory, a warning is printed and the start and end
88ca3b94 6575 * PFNs will be 0.
c713216d 6576 */
bbe5d993 6577void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6578 unsigned long *start_pfn, unsigned long *end_pfn)
6579{
c13291a5 6580 unsigned long this_start_pfn, this_end_pfn;
c713216d 6581 int i;
c13291a5 6582
c713216d
MG
6583 *start_pfn = -1UL;
6584 *end_pfn = 0;
6585
c13291a5
TH
6586 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6587 *start_pfn = min(*start_pfn, this_start_pfn);
6588 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6589 }
6590
633c0666 6591 if (*start_pfn == -1UL)
c713216d 6592 *start_pfn = 0;
c713216d
MG
6593}
6594
2a1e274a
MG
6595/*
6596 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6597 * assumption is made that zones within a node are ordered in monotonic
6598 * increasing memory addresses so that the "highest" populated zone is used
6599 */
b69a7288 6600static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6601{
6602 int zone_index;
6603 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6604 if (zone_index == ZONE_MOVABLE)
6605 continue;
6606
6607 if (arch_zone_highest_possible_pfn[zone_index] >
6608 arch_zone_lowest_possible_pfn[zone_index])
6609 break;
6610 }
6611
6612 VM_BUG_ON(zone_index == -1);
6613 movable_zone = zone_index;
6614}
6615
6616/*
6617 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6618 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6619 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6620 * in each node depending on the size of each node and how evenly kernelcore
6621 * is distributed. This helper function adjusts the zone ranges
6622 * provided by the architecture for a given node by using the end of the
6623 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6624 * zones within a node are in order of monotonic increases memory addresses
6625 */
bbe5d993 6626static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6627 unsigned long zone_type,
6628 unsigned long node_start_pfn,
6629 unsigned long node_end_pfn,
6630 unsigned long *zone_start_pfn,
6631 unsigned long *zone_end_pfn)
6632{
6633 /* Only adjust if ZONE_MOVABLE is on this node */
6634 if (zone_movable_pfn[nid]) {
6635 /* Size ZONE_MOVABLE */
6636 if (zone_type == ZONE_MOVABLE) {
6637 *zone_start_pfn = zone_movable_pfn[nid];
6638 *zone_end_pfn = min(node_end_pfn,
6639 arch_zone_highest_possible_pfn[movable_zone]);
6640
e506b996
XQ
6641 /* Adjust for ZONE_MOVABLE starting within this range */
6642 } else if (!mirrored_kernelcore &&
6643 *zone_start_pfn < zone_movable_pfn[nid] &&
6644 *zone_end_pfn > zone_movable_pfn[nid]) {
6645 *zone_end_pfn = zone_movable_pfn[nid];
6646
2a1e274a
MG
6647 /* Check if this whole range is within ZONE_MOVABLE */
6648 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6649 *zone_start_pfn = *zone_end_pfn;
6650 }
6651}
6652
c713216d
MG
6653/*
6654 * Return the number of pages a zone spans in a node, including holes
6655 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6656 */
bbe5d993 6657static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6658 unsigned long zone_type,
7960aedd
ZY
6659 unsigned long node_start_pfn,
6660 unsigned long node_end_pfn,
d91749c1 6661 unsigned long *zone_start_pfn,
854e8848 6662 unsigned long *zone_end_pfn)
c713216d 6663{
299c83dc
LF
6664 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6665 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6666 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6667 if (!node_start_pfn && !node_end_pfn)
6668 return 0;
6669
7960aedd 6670 /* Get the start and end of the zone */
299c83dc
LF
6671 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6672 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6673 adjust_zone_range_for_zone_movable(nid, zone_type,
6674 node_start_pfn, node_end_pfn,
d91749c1 6675 zone_start_pfn, zone_end_pfn);
c713216d
MG
6676
6677 /* Check that this node has pages within the zone's required range */
d91749c1 6678 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6679 return 0;
6680
6681 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6682 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6683 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6684
6685 /* Return the spanned pages */
d91749c1 6686 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6687}
6688
6689/*
6690 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6691 * then all holes in the requested range will be accounted for.
c713216d 6692 */
bbe5d993 6693unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6694 unsigned long range_start_pfn,
6695 unsigned long range_end_pfn)
6696{
96e907d1
TH
6697 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6698 unsigned long start_pfn, end_pfn;
6699 int i;
c713216d 6700
96e907d1
TH
6701 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6702 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6703 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6704 nr_absent -= end_pfn - start_pfn;
c713216d 6705 }
96e907d1 6706 return nr_absent;
c713216d
MG
6707}
6708
6709/**
6710 * absent_pages_in_range - Return number of page frames in holes within a range
6711 * @start_pfn: The start PFN to start searching for holes
6712 * @end_pfn: The end PFN to stop searching for holes
6713 *
a862f68a 6714 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6715 */
6716unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6717 unsigned long end_pfn)
6718{
6719 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6720}
6721
6722/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6723static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6724 unsigned long zone_type,
7960aedd 6725 unsigned long node_start_pfn,
854e8848 6726 unsigned long node_end_pfn)
c713216d 6727{
96e907d1
TH
6728 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6729 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6730 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6731 unsigned long nr_absent;
9c7cd687 6732
b5685e92 6733 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6734 if (!node_start_pfn && !node_end_pfn)
6735 return 0;
6736
96e907d1
TH
6737 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6738 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6739
2a1e274a
MG
6740 adjust_zone_range_for_zone_movable(nid, zone_type,
6741 node_start_pfn, node_end_pfn,
6742 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6743 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6744
6745 /*
6746 * ZONE_MOVABLE handling.
6747 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6748 * and vice versa.
6749 */
e506b996
XQ
6750 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6751 unsigned long start_pfn, end_pfn;
6752 struct memblock_region *r;
6753
cc6de168 6754 for_each_mem_region(r) {
e506b996
XQ
6755 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6756 zone_start_pfn, zone_end_pfn);
6757 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6758 zone_start_pfn, zone_end_pfn);
6759
6760 if (zone_type == ZONE_MOVABLE &&
6761 memblock_is_mirror(r))
6762 nr_absent += end_pfn - start_pfn;
6763
6764 if (zone_type == ZONE_NORMAL &&
6765 !memblock_is_mirror(r))
6766 nr_absent += end_pfn - start_pfn;
342332e6
TI
6767 }
6768 }
6769
6770 return nr_absent;
c713216d 6771}
0e0b864e 6772
bbe5d993 6773static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6774 unsigned long node_start_pfn,
854e8848 6775 unsigned long node_end_pfn)
c713216d 6776{
febd5949 6777 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6778 enum zone_type i;
6779
febd5949
GZ
6780 for (i = 0; i < MAX_NR_ZONES; i++) {
6781 struct zone *zone = pgdat->node_zones + i;
d91749c1 6782 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6783 unsigned long spanned, absent;
febd5949 6784 unsigned long size, real_size;
c713216d 6785
854e8848
MR
6786 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6787 node_start_pfn,
6788 node_end_pfn,
6789 &zone_start_pfn,
6790 &zone_end_pfn);
6791 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6792 node_start_pfn,
6793 node_end_pfn);
3f08a302
MR
6794
6795 size = spanned;
6796 real_size = size - absent;
6797
d91749c1
TI
6798 if (size)
6799 zone->zone_start_pfn = zone_start_pfn;
6800 else
6801 zone->zone_start_pfn = 0;
febd5949
GZ
6802 zone->spanned_pages = size;
6803 zone->present_pages = real_size;
6804
6805 totalpages += size;
6806 realtotalpages += real_size;
6807 }
6808
6809 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6810 pgdat->node_present_pages = realtotalpages;
6811 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6812 realtotalpages);
6813}
6814
835c134e
MG
6815#ifndef CONFIG_SPARSEMEM
6816/*
6817 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6818 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6819 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6820 * round what is now in bits to nearest long in bits, then return it in
6821 * bytes.
6822 */
7c45512d 6823static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6824{
6825 unsigned long usemapsize;
6826
7c45512d 6827 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6828 usemapsize = roundup(zonesize, pageblock_nr_pages);
6829 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6830 usemapsize *= NR_PAGEBLOCK_BITS;
6831 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6832
6833 return usemapsize / 8;
6834}
6835
7cc2a959 6836static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6837 struct zone *zone,
6838 unsigned long zone_start_pfn,
6839 unsigned long zonesize)
835c134e 6840{
7c45512d 6841 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6842 zone->pageblock_flags = NULL;
23a7052a 6843 if (usemapsize) {
6782832e 6844 zone->pageblock_flags =
26fb3dae
MR
6845 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6846 pgdat->node_id);
23a7052a
MR
6847 if (!zone->pageblock_flags)
6848 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6849 usemapsize, zone->name, pgdat->node_id);
6850 }
835c134e
MG
6851}
6852#else
7c45512d
LT
6853static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6854 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6855#endif /* CONFIG_SPARSEMEM */
6856
d9c23400 6857#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6858
d9c23400 6859/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6860void __init set_pageblock_order(void)
d9c23400 6861{
955c1cd7
AM
6862 unsigned int order;
6863
d9c23400
MG
6864 /* Check that pageblock_nr_pages has not already been setup */
6865 if (pageblock_order)
6866 return;
6867
955c1cd7
AM
6868 if (HPAGE_SHIFT > PAGE_SHIFT)
6869 order = HUGETLB_PAGE_ORDER;
6870 else
6871 order = MAX_ORDER - 1;
6872
d9c23400
MG
6873 /*
6874 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6875 * This value may be variable depending on boot parameters on IA64 and
6876 * powerpc.
d9c23400
MG
6877 */
6878 pageblock_order = order;
6879}
6880#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6881
ba72cb8c
MG
6882/*
6883 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6884 * is unused as pageblock_order is set at compile-time. See
6885 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6886 * the kernel config
ba72cb8c 6887 */
03e85f9d 6888void __init set_pageblock_order(void)
ba72cb8c 6889{
ba72cb8c 6890}
d9c23400
MG
6891
6892#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6893
03e85f9d 6894static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6895 unsigned long present_pages)
01cefaef
JL
6896{
6897 unsigned long pages = spanned_pages;
6898
6899 /*
6900 * Provide a more accurate estimation if there are holes within
6901 * the zone and SPARSEMEM is in use. If there are holes within the
6902 * zone, each populated memory region may cost us one or two extra
6903 * memmap pages due to alignment because memmap pages for each
89d790ab 6904 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6905 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6906 */
6907 if (spanned_pages > present_pages + (present_pages >> 4) &&
6908 IS_ENABLED(CONFIG_SPARSEMEM))
6909 pages = present_pages;
6910
6911 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6912}
6913
ace1db39
OS
6914#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6915static void pgdat_init_split_queue(struct pglist_data *pgdat)
6916{
364c1eeb
YS
6917 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6918
6919 spin_lock_init(&ds_queue->split_queue_lock);
6920 INIT_LIST_HEAD(&ds_queue->split_queue);
6921 ds_queue->split_queue_len = 0;
ace1db39
OS
6922}
6923#else
6924static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6925#endif
6926
6927#ifdef CONFIG_COMPACTION
6928static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6929{
6930 init_waitqueue_head(&pgdat->kcompactd_wait);
6931}
6932#else
6933static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6934#endif
6935
03e85f9d 6936static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6937{
208d54e5 6938 pgdat_resize_init(pgdat);
ace1db39 6939
ace1db39
OS
6940 pgdat_init_split_queue(pgdat);
6941 pgdat_init_kcompactd(pgdat);
6942
1da177e4 6943 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6944 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6945
eefa864b 6946 pgdat_page_ext_init(pgdat);
867e5e1d 6947 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6948}
6949
6950static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6951 unsigned long remaining_pages)
6952{
9705bea5 6953 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6954 zone_set_nid(zone, nid);
6955 zone->name = zone_names[idx];
6956 zone->zone_pgdat = NODE_DATA(nid);
6957 spin_lock_init(&zone->lock);
6958 zone_seqlock_init(zone);
6959 zone_pcp_init(zone);
6960}
6961
6962/*
6963 * Set up the zone data structures
6964 * - init pgdat internals
6965 * - init all zones belonging to this node
6966 *
6967 * NOTE: this function is only called during memory hotplug
6968 */
6969#ifdef CONFIG_MEMORY_HOTPLUG
6970void __ref free_area_init_core_hotplug(int nid)
6971{
6972 enum zone_type z;
6973 pg_data_t *pgdat = NODE_DATA(nid);
6974
6975 pgdat_init_internals(pgdat);
6976 for (z = 0; z < MAX_NR_ZONES; z++)
6977 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6978}
6979#endif
6980
6981/*
6982 * Set up the zone data structures:
6983 * - mark all pages reserved
6984 * - mark all memory queues empty
6985 * - clear the memory bitmaps
6986 *
6987 * NOTE: pgdat should get zeroed by caller.
6988 * NOTE: this function is only called during early init.
6989 */
6990static void __init free_area_init_core(struct pglist_data *pgdat)
6991{
6992 enum zone_type j;
6993 int nid = pgdat->node_id;
5f63b720 6994
03e85f9d 6995 pgdat_init_internals(pgdat);
385386cf
JW
6996 pgdat->per_cpu_nodestats = &boot_nodestats;
6997
1da177e4
LT
6998 for (j = 0; j < MAX_NR_ZONES; j++) {
6999 struct zone *zone = pgdat->node_zones + j;
e6943859 7000 unsigned long size, freesize, memmap_pages;
d91749c1 7001 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 7002
febd5949 7003 size = zone->spanned_pages;
e6943859 7004 freesize = zone->present_pages;
1da177e4 7005
0e0b864e 7006 /*
9feedc9d 7007 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7008 * is used by this zone for memmap. This affects the watermark
7009 * and per-cpu initialisations
7010 */
e6943859 7011 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7012 if (!is_highmem_idx(j)) {
7013 if (freesize >= memmap_pages) {
7014 freesize -= memmap_pages;
7015 if (memmap_pages)
7016 printk(KERN_DEBUG
7017 " %s zone: %lu pages used for memmap\n",
7018 zone_names[j], memmap_pages);
7019 } else
1170532b 7020 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
7021 zone_names[j], memmap_pages, freesize);
7022 }
0e0b864e 7023
6267276f 7024 /* Account for reserved pages */
9feedc9d
JL
7025 if (j == 0 && freesize > dma_reserve) {
7026 freesize -= dma_reserve;
d903ef9f 7027 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 7028 zone_names[0], dma_reserve);
0e0b864e
MG
7029 }
7030
98d2b0eb 7031 if (!is_highmem_idx(j))
9feedc9d 7032 nr_kernel_pages += freesize;
01cefaef
JL
7033 /* Charge for highmem memmap if there are enough kernel pages */
7034 else if (nr_kernel_pages > memmap_pages * 2)
7035 nr_kernel_pages -= memmap_pages;
9feedc9d 7036 nr_all_pages += freesize;
1da177e4 7037
9feedc9d
JL
7038 /*
7039 * Set an approximate value for lowmem here, it will be adjusted
7040 * when the bootmem allocator frees pages into the buddy system.
7041 * And all highmem pages will be managed by the buddy system.
7042 */
03e85f9d 7043 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7044
d883c6cf 7045 if (!size)
1da177e4
LT
7046 continue;
7047
955c1cd7 7048 set_pageblock_order();
d883c6cf
JK
7049 setup_usemap(pgdat, zone, zone_start_pfn, size);
7050 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 7051 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
7052 }
7053}
7054
0cd842f9 7055#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 7056static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7057{
b0aeba74 7058 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7059 unsigned long __maybe_unused offset = 0;
7060
1da177e4
LT
7061 /* Skip empty nodes */
7062 if (!pgdat->node_spanned_pages)
7063 return;
7064
b0aeba74
TL
7065 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7066 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7067 /* ia64 gets its own node_mem_map, before this, without bootmem */
7068 if (!pgdat->node_mem_map) {
b0aeba74 7069 unsigned long size, end;
d41dee36
AW
7070 struct page *map;
7071
e984bb43
BP
7072 /*
7073 * The zone's endpoints aren't required to be MAX_ORDER
7074 * aligned but the node_mem_map endpoints must be in order
7075 * for the buddy allocator to function correctly.
7076 */
108bcc96 7077 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7078 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7079 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7080 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7081 pgdat->node_id);
23a7052a
MR
7082 if (!map)
7083 panic("Failed to allocate %ld bytes for node %d memory map\n",
7084 size, pgdat->node_id);
a1c34a3b 7085 pgdat->node_mem_map = map + offset;
1da177e4 7086 }
0cd842f9
OS
7087 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7088 __func__, pgdat->node_id, (unsigned long)pgdat,
7089 (unsigned long)pgdat->node_mem_map);
12d810c1 7090#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7091 /*
7092 * With no DISCONTIG, the global mem_map is just set as node 0's
7093 */
c713216d 7094 if (pgdat == NODE_DATA(0)) {
1da177e4 7095 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7096 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7097 mem_map -= offset;
c713216d 7098 }
1da177e4
LT
7099#endif
7100}
0cd842f9
OS
7101#else
7102static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7103#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7104
0188dc98
OS
7105#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7106static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7107{
0188dc98
OS
7108 pgdat->first_deferred_pfn = ULONG_MAX;
7109}
7110#else
7111static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7112#endif
7113
854e8848 7114static void __init free_area_init_node(int nid)
1da177e4 7115{
9109fb7b 7116 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7117 unsigned long start_pfn = 0;
7118 unsigned long end_pfn = 0;
9109fb7b 7119
88fdf75d 7120 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7121 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7122
854e8848 7123 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7124
1da177e4 7125 pgdat->node_id = nid;
854e8848 7126 pgdat->node_start_pfn = start_pfn;
75ef7184 7127 pgdat->per_cpu_nodestats = NULL;
854e8848 7128
8d29e18a 7129 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7130 (u64)start_pfn << PAGE_SHIFT,
7131 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7132 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7133
7134 alloc_node_mem_map(pgdat);
0188dc98 7135 pgdat_set_deferred_range(pgdat);
1da177e4 7136
7f3eb55b 7137 free_area_init_core(pgdat);
1da177e4
LT
7138}
7139
bc9331a1 7140void __init free_area_init_memoryless_node(int nid)
3f08a302 7141{
854e8848 7142 free_area_init_node(nid);
3f08a302
MR
7143}
7144
418508c1
MS
7145#if MAX_NUMNODES > 1
7146/*
7147 * Figure out the number of possible node ids.
7148 */
f9872caf 7149void __init setup_nr_node_ids(void)
418508c1 7150{
904a9553 7151 unsigned int highest;
418508c1 7152
904a9553 7153 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7154 nr_node_ids = highest + 1;
7155}
418508c1
MS
7156#endif
7157
1e01979c
TH
7158/**
7159 * node_map_pfn_alignment - determine the maximum internode alignment
7160 *
7161 * This function should be called after node map is populated and sorted.
7162 * It calculates the maximum power of two alignment which can distinguish
7163 * all the nodes.
7164 *
7165 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7166 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7167 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7168 * shifted, 1GiB is enough and this function will indicate so.
7169 *
7170 * This is used to test whether pfn -> nid mapping of the chosen memory
7171 * model has fine enough granularity to avoid incorrect mapping for the
7172 * populated node map.
7173 *
a862f68a 7174 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7175 * requirement (single node).
7176 */
7177unsigned long __init node_map_pfn_alignment(void)
7178{
7179 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7180 unsigned long start, end, mask;
98fa15f3 7181 int last_nid = NUMA_NO_NODE;
c13291a5 7182 int i, nid;
1e01979c 7183
c13291a5 7184 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7185 if (!start || last_nid < 0 || last_nid == nid) {
7186 last_nid = nid;
7187 last_end = end;
7188 continue;
7189 }
7190
7191 /*
7192 * Start with a mask granular enough to pin-point to the
7193 * start pfn and tick off bits one-by-one until it becomes
7194 * too coarse to separate the current node from the last.
7195 */
7196 mask = ~((1 << __ffs(start)) - 1);
7197 while (mask && last_end <= (start & (mask << 1)))
7198 mask <<= 1;
7199
7200 /* accumulate all internode masks */
7201 accl_mask |= mask;
7202 }
7203
7204 /* convert mask to number of pages */
7205 return ~accl_mask + 1;
7206}
7207
c713216d
MG
7208/**
7209 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7210 *
a862f68a 7211 * Return: the minimum PFN based on information provided via
7d018176 7212 * memblock_set_node().
c713216d
MG
7213 */
7214unsigned long __init find_min_pfn_with_active_regions(void)
7215{
8a1b25fe 7216 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7217}
7218
37b07e41
LS
7219/*
7220 * early_calculate_totalpages()
7221 * Sum pages in active regions for movable zone.
4b0ef1fe 7222 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7223 */
484f51f8 7224static unsigned long __init early_calculate_totalpages(void)
7e63efef 7225{
7e63efef 7226 unsigned long totalpages = 0;
c13291a5
TH
7227 unsigned long start_pfn, end_pfn;
7228 int i, nid;
7229
7230 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7231 unsigned long pages = end_pfn - start_pfn;
7e63efef 7232
37b07e41
LS
7233 totalpages += pages;
7234 if (pages)
4b0ef1fe 7235 node_set_state(nid, N_MEMORY);
37b07e41 7236 }
b8af2941 7237 return totalpages;
7e63efef
MG
7238}
7239
2a1e274a
MG
7240/*
7241 * Find the PFN the Movable zone begins in each node. Kernel memory
7242 * is spread evenly between nodes as long as the nodes have enough
7243 * memory. When they don't, some nodes will have more kernelcore than
7244 * others
7245 */
b224ef85 7246static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7247{
7248 int i, nid;
7249 unsigned long usable_startpfn;
7250 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7251 /* save the state before borrow the nodemask */
4b0ef1fe 7252 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7253 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7254 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7255 struct memblock_region *r;
b2f3eebe
TC
7256
7257 /* Need to find movable_zone earlier when movable_node is specified. */
7258 find_usable_zone_for_movable();
7259
7260 /*
7261 * If movable_node is specified, ignore kernelcore and movablecore
7262 * options.
7263 */
7264 if (movable_node_is_enabled()) {
cc6de168 7265 for_each_mem_region(r) {
136199f0 7266 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7267 continue;
7268
d622abf7 7269 nid = memblock_get_region_node(r);
b2f3eebe 7270
136199f0 7271 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7272 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7273 min(usable_startpfn, zone_movable_pfn[nid]) :
7274 usable_startpfn;
7275 }
7276
7277 goto out2;
7278 }
2a1e274a 7279
342332e6
TI
7280 /*
7281 * If kernelcore=mirror is specified, ignore movablecore option
7282 */
7283 if (mirrored_kernelcore) {
7284 bool mem_below_4gb_not_mirrored = false;
7285
cc6de168 7286 for_each_mem_region(r) {
342332e6
TI
7287 if (memblock_is_mirror(r))
7288 continue;
7289
d622abf7 7290 nid = memblock_get_region_node(r);
342332e6
TI
7291
7292 usable_startpfn = memblock_region_memory_base_pfn(r);
7293
7294 if (usable_startpfn < 0x100000) {
7295 mem_below_4gb_not_mirrored = true;
7296 continue;
7297 }
7298
7299 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7300 min(usable_startpfn, zone_movable_pfn[nid]) :
7301 usable_startpfn;
7302 }
7303
7304 if (mem_below_4gb_not_mirrored)
633bf2fe 7305 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7306
7307 goto out2;
7308 }
7309
7e63efef 7310 /*
a5c6d650
DR
7311 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7312 * amount of necessary memory.
7313 */
7314 if (required_kernelcore_percent)
7315 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7316 10000UL;
7317 if (required_movablecore_percent)
7318 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7319 10000UL;
7320
7321 /*
7322 * If movablecore= was specified, calculate what size of
7e63efef
MG
7323 * kernelcore that corresponds so that memory usable for
7324 * any allocation type is evenly spread. If both kernelcore
7325 * and movablecore are specified, then the value of kernelcore
7326 * will be used for required_kernelcore if it's greater than
7327 * what movablecore would have allowed.
7328 */
7329 if (required_movablecore) {
7e63efef
MG
7330 unsigned long corepages;
7331
7332 /*
7333 * Round-up so that ZONE_MOVABLE is at least as large as what
7334 * was requested by the user
7335 */
7336 required_movablecore =
7337 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7338 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7339 corepages = totalpages - required_movablecore;
7340
7341 required_kernelcore = max(required_kernelcore, corepages);
7342 }
7343
bde304bd
XQ
7344 /*
7345 * If kernelcore was not specified or kernelcore size is larger
7346 * than totalpages, there is no ZONE_MOVABLE.
7347 */
7348 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7349 goto out;
2a1e274a
MG
7350
7351 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7352 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7353
7354restart:
7355 /* Spread kernelcore memory as evenly as possible throughout nodes */
7356 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7357 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7358 unsigned long start_pfn, end_pfn;
7359
2a1e274a
MG
7360 /*
7361 * Recalculate kernelcore_node if the division per node
7362 * now exceeds what is necessary to satisfy the requested
7363 * amount of memory for the kernel
7364 */
7365 if (required_kernelcore < kernelcore_node)
7366 kernelcore_node = required_kernelcore / usable_nodes;
7367
7368 /*
7369 * As the map is walked, we track how much memory is usable
7370 * by the kernel using kernelcore_remaining. When it is
7371 * 0, the rest of the node is usable by ZONE_MOVABLE
7372 */
7373 kernelcore_remaining = kernelcore_node;
7374
7375 /* Go through each range of PFNs within this node */
c13291a5 7376 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7377 unsigned long size_pages;
7378
c13291a5 7379 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7380 if (start_pfn >= end_pfn)
7381 continue;
7382
7383 /* Account for what is only usable for kernelcore */
7384 if (start_pfn < usable_startpfn) {
7385 unsigned long kernel_pages;
7386 kernel_pages = min(end_pfn, usable_startpfn)
7387 - start_pfn;
7388
7389 kernelcore_remaining -= min(kernel_pages,
7390 kernelcore_remaining);
7391 required_kernelcore -= min(kernel_pages,
7392 required_kernelcore);
7393
7394 /* Continue if range is now fully accounted */
7395 if (end_pfn <= usable_startpfn) {
7396
7397 /*
7398 * Push zone_movable_pfn to the end so
7399 * that if we have to rebalance
7400 * kernelcore across nodes, we will
7401 * not double account here
7402 */
7403 zone_movable_pfn[nid] = end_pfn;
7404 continue;
7405 }
7406 start_pfn = usable_startpfn;
7407 }
7408
7409 /*
7410 * The usable PFN range for ZONE_MOVABLE is from
7411 * start_pfn->end_pfn. Calculate size_pages as the
7412 * number of pages used as kernelcore
7413 */
7414 size_pages = end_pfn - start_pfn;
7415 if (size_pages > kernelcore_remaining)
7416 size_pages = kernelcore_remaining;
7417 zone_movable_pfn[nid] = start_pfn + size_pages;
7418
7419 /*
7420 * Some kernelcore has been met, update counts and
7421 * break if the kernelcore for this node has been
b8af2941 7422 * satisfied
2a1e274a
MG
7423 */
7424 required_kernelcore -= min(required_kernelcore,
7425 size_pages);
7426 kernelcore_remaining -= size_pages;
7427 if (!kernelcore_remaining)
7428 break;
7429 }
7430 }
7431
7432 /*
7433 * If there is still required_kernelcore, we do another pass with one
7434 * less node in the count. This will push zone_movable_pfn[nid] further
7435 * along on the nodes that still have memory until kernelcore is
b8af2941 7436 * satisfied
2a1e274a
MG
7437 */
7438 usable_nodes--;
7439 if (usable_nodes && required_kernelcore > usable_nodes)
7440 goto restart;
7441
b2f3eebe 7442out2:
2a1e274a
MG
7443 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7444 for (nid = 0; nid < MAX_NUMNODES; nid++)
7445 zone_movable_pfn[nid] =
7446 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7447
20e6926d 7448out:
66918dcd 7449 /* restore the node_state */
4b0ef1fe 7450 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7451}
7452
4b0ef1fe
LJ
7453/* Any regular or high memory on that node ? */
7454static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7455{
37b07e41
LS
7456 enum zone_type zone_type;
7457
4b0ef1fe 7458 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7459 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7460 if (populated_zone(zone)) {
7b0e0c0e
OS
7461 if (IS_ENABLED(CONFIG_HIGHMEM))
7462 node_set_state(nid, N_HIGH_MEMORY);
7463 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7464 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7465 break;
7466 }
37b07e41 7467 }
37b07e41
LS
7468}
7469
51930df5
MR
7470/*
7471 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7472 * such cases we allow max_zone_pfn sorted in the descending order
7473 */
7474bool __weak arch_has_descending_max_zone_pfns(void)
7475{
7476 return false;
7477}
7478
c713216d 7479/**
9691a071 7480 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7481 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7482 *
7483 * This will call free_area_init_node() for each active node in the system.
7d018176 7484 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7485 * zone in each node and their holes is calculated. If the maximum PFN
7486 * between two adjacent zones match, it is assumed that the zone is empty.
7487 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7488 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7489 * starts where the previous one ended. For example, ZONE_DMA32 starts
7490 * at arch_max_dma_pfn.
7491 */
9691a071 7492void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7493{
c13291a5 7494 unsigned long start_pfn, end_pfn;
51930df5
MR
7495 int i, nid, zone;
7496 bool descending;
a6af2bc3 7497
c713216d
MG
7498 /* Record where the zone boundaries are */
7499 memset(arch_zone_lowest_possible_pfn, 0,
7500 sizeof(arch_zone_lowest_possible_pfn));
7501 memset(arch_zone_highest_possible_pfn, 0,
7502 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7503
7504 start_pfn = find_min_pfn_with_active_regions();
51930df5 7505 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7506
7507 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7508 if (descending)
7509 zone = MAX_NR_ZONES - i - 1;
7510 else
7511 zone = i;
7512
7513 if (zone == ZONE_MOVABLE)
2a1e274a 7514 continue;
90cae1fe 7515
51930df5
MR
7516 end_pfn = max(max_zone_pfn[zone], start_pfn);
7517 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7518 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7519
7520 start_pfn = end_pfn;
c713216d 7521 }
2a1e274a
MG
7522
7523 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7524 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7525 find_zone_movable_pfns_for_nodes();
c713216d 7526
c713216d 7527 /* Print out the zone ranges */
f88dfff5 7528 pr_info("Zone ranges:\n");
2a1e274a
MG
7529 for (i = 0; i < MAX_NR_ZONES; i++) {
7530 if (i == ZONE_MOVABLE)
7531 continue;
f88dfff5 7532 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7533 if (arch_zone_lowest_possible_pfn[i] ==
7534 arch_zone_highest_possible_pfn[i])
f88dfff5 7535 pr_cont("empty\n");
72f0ba02 7536 else
8d29e18a
JG
7537 pr_cont("[mem %#018Lx-%#018Lx]\n",
7538 (u64)arch_zone_lowest_possible_pfn[i]
7539 << PAGE_SHIFT,
7540 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7541 << PAGE_SHIFT) - 1);
2a1e274a
MG
7542 }
7543
7544 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7545 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7546 for (i = 0; i < MAX_NUMNODES; i++) {
7547 if (zone_movable_pfn[i])
8d29e18a
JG
7548 pr_info(" Node %d: %#018Lx\n", i,
7549 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7550 }
c713216d 7551
f46edbd1
DW
7552 /*
7553 * Print out the early node map, and initialize the
7554 * subsection-map relative to active online memory ranges to
7555 * enable future "sub-section" extensions of the memory map.
7556 */
f88dfff5 7557 pr_info("Early memory node ranges\n");
f46edbd1 7558 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7559 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7560 (u64)start_pfn << PAGE_SHIFT,
7561 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7562 subsection_map_init(start_pfn, end_pfn - start_pfn);
7563 }
c713216d
MG
7564
7565 /* Initialise every node */
708614e6 7566 mminit_verify_pageflags_layout();
8ef82866 7567 setup_nr_node_ids();
c713216d
MG
7568 for_each_online_node(nid) {
7569 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7570 free_area_init_node(nid);
37b07e41
LS
7571
7572 /* Any memory on that node */
7573 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7574 node_set_state(nid, N_MEMORY);
7575 check_for_memory(pgdat, nid);
c713216d
MG
7576 }
7577}
2a1e274a 7578
a5c6d650
DR
7579static int __init cmdline_parse_core(char *p, unsigned long *core,
7580 unsigned long *percent)
2a1e274a
MG
7581{
7582 unsigned long long coremem;
a5c6d650
DR
7583 char *endptr;
7584
2a1e274a
MG
7585 if (!p)
7586 return -EINVAL;
7587
a5c6d650
DR
7588 /* Value may be a percentage of total memory, otherwise bytes */
7589 coremem = simple_strtoull(p, &endptr, 0);
7590 if (*endptr == '%') {
7591 /* Paranoid check for percent values greater than 100 */
7592 WARN_ON(coremem > 100);
2a1e274a 7593
a5c6d650
DR
7594 *percent = coremem;
7595 } else {
7596 coremem = memparse(p, &p);
7597 /* Paranoid check that UL is enough for the coremem value */
7598 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7599
a5c6d650
DR
7600 *core = coremem >> PAGE_SHIFT;
7601 *percent = 0UL;
7602 }
2a1e274a
MG
7603 return 0;
7604}
ed7ed365 7605
7e63efef
MG
7606/*
7607 * kernelcore=size sets the amount of memory for use for allocations that
7608 * cannot be reclaimed or migrated.
7609 */
7610static int __init cmdline_parse_kernelcore(char *p)
7611{
342332e6
TI
7612 /* parse kernelcore=mirror */
7613 if (parse_option_str(p, "mirror")) {
7614 mirrored_kernelcore = true;
7615 return 0;
7616 }
7617
a5c6d650
DR
7618 return cmdline_parse_core(p, &required_kernelcore,
7619 &required_kernelcore_percent);
7e63efef
MG
7620}
7621
7622/*
7623 * movablecore=size sets the amount of memory for use for allocations that
7624 * can be reclaimed or migrated.
7625 */
7626static int __init cmdline_parse_movablecore(char *p)
7627{
a5c6d650
DR
7628 return cmdline_parse_core(p, &required_movablecore,
7629 &required_movablecore_percent);
7e63efef
MG
7630}
7631
ed7ed365 7632early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7633early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7634
c3d5f5f0
JL
7635void adjust_managed_page_count(struct page *page, long count)
7636{
9705bea5 7637 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7638 totalram_pages_add(count);
3dcc0571
JL
7639#ifdef CONFIG_HIGHMEM
7640 if (PageHighMem(page))
ca79b0c2 7641 totalhigh_pages_add(count);
3dcc0571 7642#endif
c3d5f5f0 7643}
3dcc0571 7644EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7645
e5cb113f 7646unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7647{
11199692
JL
7648 void *pos;
7649 unsigned long pages = 0;
69afade7 7650
11199692
JL
7651 start = (void *)PAGE_ALIGN((unsigned long)start);
7652 end = (void *)((unsigned long)end & PAGE_MASK);
7653 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7654 struct page *page = virt_to_page(pos);
7655 void *direct_map_addr;
7656
7657 /*
7658 * 'direct_map_addr' might be different from 'pos'
7659 * because some architectures' virt_to_page()
7660 * work with aliases. Getting the direct map
7661 * address ensures that we get a _writeable_
7662 * alias for the memset().
7663 */
7664 direct_map_addr = page_address(page);
c746170d
VF
7665 /*
7666 * Perform a kasan-unchecked memset() since this memory
7667 * has not been initialized.
7668 */
7669 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7670 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7671 memset(direct_map_addr, poison, PAGE_SIZE);
7672
7673 free_reserved_page(page);
69afade7
JL
7674 }
7675
7676 if (pages && s)
adb1fe9a
JP
7677 pr_info("Freeing %s memory: %ldK\n",
7678 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7679
7680 return pages;
7681}
7682
cfa11e08
JL
7683#ifdef CONFIG_HIGHMEM
7684void free_highmem_page(struct page *page)
7685{
7686 __free_reserved_page(page);
ca79b0c2 7687 totalram_pages_inc();
9705bea5 7688 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7689 totalhigh_pages_inc();
cfa11e08
JL
7690}
7691#endif
7692
7ee3d4e8
JL
7693
7694void __init mem_init_print_info(const char *str)
7695{
7696 unsigned long physpages, codesize, datasize, rosize, bss_size;
7697 unsigned long init_code_size, init_data_size;
7698
7699 physpages = get_num_physpages();
7700 codesize = _etext - _stext;
7701 datasize = _edata - _sdata;
7702 rosize = __end_rodata - __start_rodata;
7703 bss_size = __bss_stop - __bss_start;
7704 init_data_size = __init_end - __init_begin;
7705 init_code_size = _einittext - _sinittext;
7706
7707 /*
7708 * Detect special cases and adjust section sizes accordingly:
7709 * 1) .init.* may be embedded into .data sections
7710 * 2) .init.text.* may be out of [__init_begin, __init_end],
7711 * please refer to arch/tile/kernel/vmlinux.lds.S.
7712 * 3) .rodata.* may be embedded into .text or .data sections.
7713 */
7714#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7715 do { \
7716 if (start <= pos && pos < end && size > adj) \
7717 size -= adj; \
7718 } while (0)
7ee3d4e8
JL
7719
7720 adj_init_size(__init_begin, __init_end, init_data_size,
7721 _sinittext, init_code_size);
7722 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7723 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7724 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7725 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7726
7727#undef adj_init_size
7728
756a025f 7729 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7730#ifdef CONFIG_HIGHMEM
756a025f 7731 ", %luK highmem"
7ee3d4e8 7732#endif
756a025f
JP
7733 "%s%s)\n",
7734 nr_free_pages() << (PAGE_SHIFT - 10),
7735 physpages << (PAGE_SHIFT - 10),
7736 codesize >> 10, datasize >> 10, rosize >> 10,
7737 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7738 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7739 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7740#ifdef CONFIG_HIGHMEM
ca79b0c2 7741 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7742#endif
756a025f 7743 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7744}
7745
0e0b864e 7746/**
88ca3b94
RD
7747 * set_dma_reserve - set the specified number of pages reserved in the first zone
7748 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7749 *
013110a7 7750 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7751 * In the DMA zone, a significant percentage may be consumed by kernel image
7752 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7753 * function may optionally be used to account for unfreeable pages in the
7754 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7755 * smaller per-cpu batchsize.
0e0b864e
MG
7756 */
7757void __init set_dma_reserve(unsigned long new_dma_reserve)
7758{
7759 dma_reserve = new_dma_reserve;
7760}
7761
005fd4bb 7762static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7763{
1da177e4 7764
005fd4bb
SAS
7765 lru_add_drain_cpu(cpu);
7766 drain_pages(cpu);
9f8f2172 7767
005fd4bb
SAS
7768 /*
7769 * Spill the event counters of the dead processor
7770 * into the current processors event counters.
7771 * This artificially elevates the count of the current
7772 * processor.
7773 */
7774 vm_events_fold_cpu(cpu);
9f8f2172 7775
005fd4bb
SAS
7776 /*
7777 * Zero the differential counters of the dead processor
7778 * so that the vm statistics are consistent.
7779 *
7780 * This is only okay since the processor is dead and cannot
7781 * race with what we are doing.
7782 */
7783 cpu_vm_stats_fold(cpu);
7784 return 0;
1da177e4 7785}
1da177e4 7786
e03a5125
NP
7787#ifdef CONFIG_NUMA
7788int hashdist = HASHDIST_DEFAULT;
7789
7790static int __init set_hashdist(char *str)
7791{
7792 if (!str)
7793 return 0;
7794 hashdist = simple_strtoul(str, &str, 0);
7795 return 1;
7796}
7797__setup("hashdist=", set_hashdist);
7798#endif
7799
1da177e4
LT
7800void __init page_alloc_init(void)
7801{
005fd4bb
SAS
7802 int ret;
7803
e03a5125
NP
7804#ifdef CONFIG_NUMA
7805 if (num_node_state(N_MEMORY) == 1)
7806 hashdist = 0;
7807#endif
7808
005fd4bb
SAS
7809 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7810 "mm/page_alloc:dead", NULL,
7811 page_alloc_cpu_dead);
7812 WARN_ON(ret < 0);
1da177e4
LT
7813}
7814
cb45b0e9 7815/*
34b10060 7816 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7817 * or min_free_kbytes changes.
7818 */
7819static void calculate_totalreserve_pages(void)
7820{
7821 struct pglist_data *pgdat;
7822 unsigned long reserve_pages = 0;
2f6726e5 7823 enum zone_type i, j;
cb45b0e9
HA
7824
7825 for_each_online_pgdat(pgdat) {
281e3726
MG
7826
7827 pgdat->totalreserve_pages = 0;
7828
cb45b0e9
HA
7829 for (i = 0; i < MAX_NR_ZONES; i++) {
7830 struct zone *zone = pgdat->node_zones + i;
3484b2de 7831 long max = 0;
9705bea5 7832 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7833
7834 /* Find valid and maximum lowmem_reserve in the zone */
7835 for (j = i; j < MAX_NR_ZONES; j++) {
7836 if (zone->lowmem_reserve[j] > max)
7837 max = zone->lowmem_reserve[j];
7838 }
7839
41858966
MG
7840 /* we treat the high watermark as reserved pages. */
7841 max += high_wmark_pages(zone);
cb45b0e9 7842
3d6357de
AK
7843 if (max > managed_pages)
7844 max = managed_pages;
a8d01437 7845
281e3726 7846 pgdat->totalreserve_pages += max;
a8d01437 7847
cb45b0e9
HA
7848 reserve_pages += max;
7849 }
7850 }
7851 totalreserve_pages = reserve_pages;
7852}
7853
1da177e4
LT
7854/*
7855 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7856 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7857 * has a correct pages reserved value, so an adequate number of
7858 * pages are left in the zone after a successful __alloc_pages().
7859 */
7860static void setup_per_zone_lowmem_reserve(void)
7861{
7862 struct pglist_data *pgdat;
470c61d7 7863 enum zone_type i, j;
1da177e4 7864
ec936fc5 7865 for_each_online_pgdat(pgdat) {
470c61d7
LS
7866 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7867 struct zone *zone = &pgdat->node_zones[i];
7868 int ratio = sysctl_lowmem_reserve_ratio[i];
7869 bool clear = !ratio || !zone_managed_pages(zone);
7870 unsigned long managed_pages = 0;
7871
7872 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7873 if (clear) {
7874 zone->lowmem_reserve[j] = 0;
d3cda233 7875 } else {
470c61d7
LS
7876 struct zone *upper_zone = &pgdat->node_zones[j];
7877
7878 managed_pages += zone_managed_pages(upper_zone);
7879 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 7880 }
1da177e4
LT
7881 }
7882 }
7883 }
cb45b0e9
HA
7884
7885 /* update totalreserve_pages */
7886 calculate_totalreserve_pages();
1da177e4
LT
7887}
7888
cfd3da1e 7889static void __setup_per_zone_wmarks(void)
1da177e4
LT
7890{
7891 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7892 unsigned long lowmem_pages = 0;
7893 struct zone *zone;
7894 unsigned long flags;
7895
7896 /* Calculate total number of !ZONE_HIGHMEM pages */
7897 for_each_zone(zone) {
7898 if (!is_highmem(zone))
9705bea5 7899 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7900 }
7901
7902 for_each_zone(zone) {
ac924c60
AM
7903 u64 tmp;
7904
1125b4e3 7905 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7906 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7907 do_div(tmp, lowmem_pages);
1da177e4
LT
7908 if (is_highmem(zone)) {
7909 /*
669ed175
NP
7910 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7911 * need highmem pages, so cap pages_min to a small
7912 * value here.
7913 *
41858966 7914 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7915 * deltas control async page reclaim, and so should
669ed175 7916 * not be capped for highmem.
1da177e4 7917 */
90ae8d67 7918 unsigned long min_pages;
1da177e4 7919
9705bea5 7920 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7921 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7922 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7923 } else {
669ed175
NP
7924 /*
7925 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7926 * proportionate to the zone's size.
7927 */
a9214443 7928 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7929 }
7930
795ae7a0
JW
7931 /*
7932 * Set the kswapd watermarks distance according to the
7933 * scale factor in proportion to available memory, but
7934 * ensure a minimum size on small systems.
7935 */
7936 tmp = max_t(u64, tmp >> 2,
9705bea5 7937 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7938 watermark_scale_factor, 10000));
7939
aa092591 7940 zone->watermark_boost = 0;
a9214443
MG
7941 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7942 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7943
1125b4e3 7944 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7945 }
cb45b0e9
HA
7946
7947 /* update totalreserve_pages */
7948 calculate_totalreserve_pages();
1da177e4
LT
7949}
7950
cfd3da1e
MG
7951/**
7952 * setup_per_zone_wmarks - called when min_free_kbytes changes
7953 * or when memory is hot-{added|removed}
7954 *
7955 * Ensures that the watermark[min,low,high] values for each zone are set
7956 * correctly with respect to min_free_kbytes.
7957 */
7958void setup_per_zone_wmarks(void)
7959{
b93e0f32
MH
7960 static DEFINE_SPINLOCK(lock);
7961
7962 spin_lock(&lock);
cfd3da1e 7963 __setup_per_zone_wmarks();
b93e0f32 7964 spin_unlock(&lock);
cfd3da1e
MG
7965}
7966
1da177e4
LT
7967/*
7968 * Initialise min_free_kbytes.
7969 *
7970 * For small machines we want it small (128k min). For large machines
8beeae86 7971 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7972 * bandwidth does not increase linearly with machine size. We use
7973 *
b8af2941 7974 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7975 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7976 *
7977 * which yields
7978 *
7979 * 16MB: 512k
7980 * 32MB: 724k
7981 * 64MB: 1024k
7982 * 128MB: 1448k
7983 * 256MB: 2048k
7984 * 512MB: 2896k
7985 * 1024MB: 4096k
7986 * 2048MB: 5792k
7987 * 4096MB: 8192k
7988 * 8192MB: 11584k
7989 * 16384MB: 16384k
7990 */
1b79acc9 7991int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7992{
7993 unsigned long lowmem_kbytes;
5f12733e 7994 int new_min_free_kbytes;
1da177e4
LT
7995
7996 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7997 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7998
7999 if (new_min_free_kbytes > user_min_free_kbytes) {
8000 min_free_kbytes = new_min_free_kbytes;
8001 if (min_free_kbytes < 128)
8002 min_free_kbytes = 128;
ee8eb9a5
JS
8003 if (min_free_kbytes > 262144)
8004 min_free_kbytes = 262144;
5f12733e
MH
8005 } else {
8006 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8007 new_min_free_kbytes, user_min_free_kbytes);
8008 }
bc75d33f 8009 setup_per_zone_wmarks();
a6cccdc3 8010 refresh_zone_stat_thresholds();
1da177e4 8011 setup_per_zone_lowmem_reserve();
6423aa81
JK
8012
8013#ifdef CONFIG_NUMA
8014 setup_min_unmapped_ratio();
8015 setup_min_slab_ratio();
8016#endif
8017
4aab2be0
VB
8018 khugepaged_min_free_kbytes_update();
8019
1da177e4
LT
8020 return 0;
8021}
e08d3fdf 8022postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8023
8024/*
b8af2941 8025 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8026 * that we can call two helper functions whenever min_free_kbytes
8027 * changes.
8028 */
cccad5b9 8029int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8030 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8031{
da8c757b
HP
8032 int rc;
8033
8034 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8035 if (rc)
8036 return rc;
8037
5f12733e
MH
8038 if (write) {
8039 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8040 setup_per_zone_wmarks();
5f12733e 8041 }
1da177e4
LT
8042 return 0;
8043}
8044
795ae7a0 8045int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8046 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8047{
8048 int rc;
8049
8050 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8051 if (rc)
8052 return rc;
8053
8054 if (write)
8055 setup_per_zone_wmarks();
8056
8057 return 0;
8058}
8059
9614634f 8060#ifdef CONFIG_NUMA
6423aa81 8061static void setup_min_unmapped_ratio(void)
9614634f 8062{
6423aa81 8063 pg_data_t *pgdat;
9614634f 8064 struct zone *zone;
9614634f 8065
a5f5f91d 8066 for_each_online_pgdat(pgdat)
81cbcbc2 8067 pgdat->min_unmapped_pages = 0;
a5f5f91d 8068
9614634f 8069 for_each_zone(zone)
9705bea5
AK
8070 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8071 sysctl_min_unmapped_ratio) / 100;
9614634f 8072}
0ff38490 8073
6423aa81
JK
8074
8075int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8076 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8077{
0ff38490
CL
8078 int rc;
8079
8d65af78 8080 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8081 if (rc)
8082 return rc;
8083
6423aa81
JK
8084 setup_min_unmapped_ratio();
8085
8086 return 0;
8087}
8088
8089static void setup_min_slab_ratio(void)
8090{
8091 pg_data_t *pgdat;
8092 struct zone *zone;
8093
a5f5f91d
MG
8094 for_each_online_pgdat(pgdat)
8095 pgdat->min_slab_pages = 0;
8096
0ff38490 8097 for_each_zone(zone)
9705bea5
AK
8098 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8099 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8100}
8101
8102int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8103 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8104{
8105 int rc;
8106
8107 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8108 if (rc)
8109 return rc;
8110
8111 setup_min_slab_ratio();
8112
0ff38490
CL
8113 return 0;
8114}
9614634f
CL
8115#endif
8116
1da177e4
LT
8117/*
8118 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8119 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8120 * whenever sysctl_lowmem_reserve_ratio changes.
8121 *
8122 * The reserve ratio obviously has absolutely no relation with the
41858966 8123 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8124 * if in function of the boot time zone sizes.
8125 */
cccad5b9 8126int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8127 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8128{
86aaf255
BH
8129 int i;
8130
8d65af78 8131 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8132
8133 for (i = 0; i < MAX_NR_ZONES; i++) {
8134 if (sysctl_lowmem_reserve_ratio[i] < 1)
8135 sysctl_lowmem_reserve_ratio[i] = 0;
8136 }
8137
1da177e4
LT
8138 setup_per_zone_lowmem_reserve();
8139 return 0;
8140}
8141
8ad4b1fb
RS
8142/*
8143 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8144 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8145 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8146 */
cccad5b9 8147int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8148 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8149{
8150 struct zone *zone;
7cd2b0a3 8151 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8152 int ret;
8153
7cd2b0a3
DR
8154 mutex_lock(&pcp_batch_high_lock);
8155 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8156
8d65af78 8157 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8158 if (!write || ret < 0)
8159 goto out;
8160
8161 /* Sanity checking to avoid pcp imbalance */
8162 if (percpu_pagelist_fraction &&
8163 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8164 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8165 ret = -EINVAL;
8166 goto out;
8167 }
8168
8169 /* No change? */
8170 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8171 goto out;
c8e251fa 8172
cb1ef534 8173 for_each_populated_zone(zone)
0a8b4f1d 8174 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8175out:
c8e251fa 8176 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8177 return ret;
8ad4b1fb
RS
8178}
8179
f6f34b43
SD
8180#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8181/*
8182 * Returns the number of pages that arch has reserved but
8183 * is not known to alloc_large_system_hash().
8184 */
8185static unsigned long __init arch_reserved_kernel_pages(void)
8186{
8187 return 0;
8188}
8189#endif
8190
9017217b
PT
8191/*
8192 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8193 * machines. As memory size is increased the scale is also increased but at
8194 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8195 * quadruples the scale is increased by one, which means the size of hash table
8196 * only doubles, instead of quadrupling as well.
8197 * Because 32-bit systems cannot have large physical memory, where this scaling
8198 * makes sense, it is disabled on such platforms.
8199 */
8200#if __BITS_PER_LONG > 32
8201#define ADAPT_SCALE_BASE (64ul << 30)
8202#define ADAPT_SCALE_SHIFT 2
8203#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8204#endif
8205
1da177e4
LT
8206/*
8207 * allocate a large system hash table from bootmem
8208 * - it is assumed that the hash table must contain an exact power-of-2
8209 * quantity of entries
8210 * - limit is the number of hash buckets, not the total allocation size
8211 */
8212void *__init alloc_large_system_hash(const char *tablename,
8213 unsigned long bucketsize,
8214 unsigned long numentries,
8215 int scale,
8216 int flags,
8217 unsigned int *_hash_shift,
8218 unsigned int *_hash_mask,
31fe62b9
TB
8219 unsigned long low_limit,
8220 unsigned long high_limit)
1da177e4 8221{
31fe62b9 8222 unsigned long long max = high_limit;
1da177e4
LT
8223 unsigned long log2qty, size;
8224 void *table = NULL;
3749a8f0 8225 gfp_t gfp_flags;
ec11408a 8226 bool virt;
1da177e4
LT
8227
8228 /* allow the kernel cmdline to have a say */
8229 if (!numentries) {
8230 /* round applicable memory size up to nearest megabyte */
04903664 8231 numentries = nr_kernel_pages;
f6f34b43 8232 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8233
8234 /* It isn't necessary when PAGE_SIZE >= 1MB */
8235 if (PAGE_SHIFT < 20)
8236 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8237
9017217b
PT
8238#if __BITS_PER_LONG > 32
8239 if (!high_limit) {
8240 unsigned long adapt;
8241
8242 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8243 adapt <<= ADAPT_SCALE_SHIFT)
8244 scale++;
8245 }
8246#endif
8247
1da177e4
LT
8248 /* limit to 1 bucket per 2^scale bytes of low memory */
8249 if (scale > PAGE_SHIFT)
8250 numentries >>= (scale - PAGE_SHIFT);
8251 else
8252 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8253
8254 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8255 if (unlikely(flags & HASH_SMALL)) {
8256 /* Makes no sense without HASH_EARLY */
8257 WARN_ON(!(flags & HASH_EARLY));
8258 if (!(numentries >> *_hash_shift)) {
8259 numentries = 1UL << *_hash_shift;
8260 BUG_ON(!numentries);
8261 }
8262 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8263 numentries = PAGE_SIZE / bucketsize;
1da177e4 8264 }
6e692ed3 8265 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8266
8267 /* limit allocation size to 1/16 total memory by default */
8268 if (max == 0) {
8269 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8270 do_div(max, bucketsize);
8271 }
074b8517 8272 max = min(max, 0x80000000ULL);
1da177e4 8273
31fe62b9
TB
8274 if (numentries < low_limit)
8275 numentries = low_limit;
1da177e4
LT
8276 if (numentries > max)
8277 numentries = max;
8278
f0d1b0b3 8279 log2qty = ilog2(numentries);
1da177e4 8280
3749a8f0 8281 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8282 do {
ec11408a 8283 virt = false;
1da177e4 8284 size = bucketsize << log2qty;
ea1f5f37
PT
8285 if (flags & HASH_EARLY) {
8286 if (flags & HASH_ZERO)
26fb3dae 8287 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8288 else
7e1c4e27
MR
8289 table = memblock_alloc_raw(size,
8290 SMP_CACHE_BYTES);
ec11408a 8291 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8292 table = __vmalloc(size, gfp_flags);
ec11408a 8293 virt = true;
ea1f5f37 8294 } else {
1037b83b
ED
8295 /*
8296 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8297 * some pages at the end of hash table which
8298 * alloc_pages_exact() automatically does
1037b83b 8299 */
ec11408a
NP
8300 table = alloc_pages_exact(size, gfp_flags);
8301 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8302 }
8303 } while (!table && size > PAGE_SIZE && --log2qty);
8304
8305 if (!table)
8306 panic("Failed to allocate %s hash table\n", tablename);
8307
ec11408a
NP
8308 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8309 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8310 virt ? "vmalloc" : "linear");
1da177e4
LT
8311
8312 if (_hash_shift)
8313 *_hash_shift = log2qty;
8314 if (_hash_mask)
8315 *_hash_mask = (1 << log2qty) - 1;
8316
8317 return table;
8318}
a117e66e 8319
a5d76b54 8320/*
80934513 8321 * This function checks whether pageblock includes unmovable pages or not.
80934513 8322 *
b8af2941 8323 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8324 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8325 * check without lock_page also may miss some movable non-lru pages at
8326 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8327 *
8328 * Returns a page without holding a reference. If the caller wants to
047b9967 8329 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8330 * cannot get removed (e.g., via memory unplug) concurrently.
8331 *
a5d76b54 8332 */
4a55c047
QC
8333struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8334 int migratetype, int flags)
49ac8255 8335{
1a9f2191
QC
8336 unsigned long iter = 0;
8337 unsigned long pfn = page_to_pfn(page);
6a654e36 8338 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8339
1a9f2191
QC
8340 if (is_migrate_cma_page(page)) {
8341 /*
8342 * CMA allocations (alloc_contig_range) really need to mark
8343 * isolate CMA pageblocks even when they are not movable in fact
8344 * so consider them movable here.
8345 */
8346 if (is_migrate_cma(migratetype))
4a55c047 8347 return NULL;
1a9f2191 8348
3d680bdf 8349 return page;
1a9f2191 8350 }
4da2ce25 8351
6a654e36 8352 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8353 if (!pfn_valid_within(pfn + iter))
49ac8255 8354 continue;
29723fcc 8355
fe4c86c9 8356 page = pfn_to_page(pfn + iter);
c8721bbb 8357
c9c510dc
DH
8358 /*
8359 * Both, bootmem allocations and memory holes are marked
8360 * PG_reserved and are unmovable. We can even have unmovable
8361 * allocations inside ZONE_MOVABLE, for example when
8362 * specifying "movablecore".
8363 */
d7ab3672 8364 if (PageReserved(page))
3d680bdf 8365 return page;
d7ab3672 8366
9d789999
MH
8367 /*
8368 * If the zone is movable and we have ruled out all reserved
8369 * pages then it should be reasonably safe to assume the rest
8370 * is movable.
8371 */
8372 if (zone_idx(zone) == ZONE_MOVABLE)
8373 continue;
8374
c8721bbb
NH
8375 /*
8376 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8377 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8378 * We need not scan over tail pages because we don't
c8721bbb
NH
8379 * handle each tail page individually in migration.
8380 */
1da2f328 8381 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8382 struct page *head = compound_head(page);
8383 unsigned int skip_pages;
464c7ffb 8384
1da2f328
RR
8385 if (PageHuge(page)) {
8386 if (!hugepage_migration_supported(page_hstate(head)))
8387 return page;
8388 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8389 return page;
1da2f328 8390 }
464c7ffb 8391
d8c6546b 8392 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8393 iter += skip_pages - 1;
c8721bbb
NH
8394 continue;
8395 }
8396
97d255c8
MK
8397 /*
8398 * We can't use page_count without pin a page
8399 * because another CPU can free compound page.
8400 * This check already skips compound tails of THP
0139aa7b 8401 * because their page->_refcount is zero at all time.
97d255c8 8402 */
fe896d18 8403 if (!page_ref_count(page)) {
49ac8255 8404 if (PageBuddy(page))
ab130f91 8405 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8406 continue;
8407 }
97d255c8 8408
b023f468
WC
8409 /*
8410 * The HWPoisoned page may be not in buddy system, and
8411 * page_count() is not 0.
8412 */
756d25be 8413 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8414 continue;
8415
aa218795
DH
8416 /*
8417 * We treat all PageOffline() pages as movable when offlining
8418 * to give drivers a chance to decrement their reference count
8419 * in MEM_GOING_OFFLINE in order to indicate that these pages
8420 * can be offlined as there are no direct references anymore.
8421 * For actually unmovable PageOffline() where the driver does
8422 * not support this, we will fail later when trying to actually
8423 * move these pages that still have a reference count > 0.
8424 * (false negatives in this function only)
8425 */
8426 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8427 continue;
8428
fe4c86c9 8429 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8430 continue;
8431
49ac8255 8432 /*
6b4f7799
JW
8433 * If there are RECLAIMABLE pages, we need to check
8434 * it. But now, memory offline itself doesn't call
8435 * shrink_node_slabs() and it still to be fixed.
49ac8255 8436 */
3d680bdf 8437 return page;
49ac8255 8438 }
4a55c047 8439 return NULL;
49ac8255
KH
8440}
8441
8df995f6 8442#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8443static unsigned long pfn_max_align_down(unsigned long pfn)
8444{
8445 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8446 pageblock_nr_pages) - 1);
8447}
8448
8449static unsigned long pfn_max_align_up(unsigned long pfn)
8450{
8451 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8452 pageblock_nr_pages));
8453}
8454
041d3a8c 8455/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8456static int __alloc_contig_migrate_range(struct compact_control *cc,
8457 unsigned long start, unsigned long end)
041d3a8c
MN
8458{
8459 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8460 unsigned int nr_reclaimed;
041d3a8c
MN
8461 unsigned long pfn = start;
8462 unsigned int tries = 0;
8463 int ret = 0;
8b94e0b8
JK
8464 struct migration_target_control mtc = {
8465 .nid = zone_to_nid(cc->zone),
8466 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8467 };
041d3a8c 8468
be49a6e1 8469 migrate_prep();
041d3a8c 8470
bb13ffeb 8471 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8472 if (fatal_signal_pending(current)) {
8473 ret = -EINTR;
8474 break;
8475 }
8476
bb13ffeb
MG
8477 if (list_empty(&cc->migratepages)) {
8478 cc->nr_migratepages = 0;
edc2ca61 8479 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8480 if (!pfn) {
8481 ret = -EINTR;
8482 break;
8483 }
8484 tries = 0;
8485 } else if (++tries == 5) {
8486 ret = ret < 0 ? ret : -EBUSY;
8487 break;
8488 }
8489
beb51eaa
MK
8490 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8491 &cc->migratepages);
8492 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8493
8b94e0b8
JK
8494 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8495 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8496 }
2a6f5124
SP
8497 if (ret < 0) {
8498 putback_movable_pages(&cc->migratepages);
8499 return ret;
8500 }
8501 return 0;
041d3a8c
MN
8502}
8503
8504/**
8505 * alloc_contig_range() -- tries to allocate given range of pages
8506 * @start: start PFN to allocate
8507 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8508 * @migratetype: migratetype of the underlaying pageblocks (either
8509 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8510 * in range must have the same migratetype and it must
8511 * be either of the two.
ca96b625 8512 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8513 *
8514 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8515 * aligned. The PFN range must belong to a single zone.
041d3a8c 8516 *
2c7452a0
MK
8517 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8518 * pageblocks in the range. Once isolated, the pageblocks should not
8519 * be modified by others.
041d3a8c 8520 *
a862f68a 8521 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8522 * pages which PFN is in [start, end) are allocated for the caller and
8523 * need to be freed with free_contig_range().
8524 */
0815f3d8 8525int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8526 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8527{
041d3a8c 8528 unsigned long outer_start, outer_end;
d00181b9
KS
8529 unsigned int order;
8530 int ret = 0;
041d3a8c 8531
bb13ffeb
MG
8532 struct compact_control cc = {
8533 .nr_migratepages = 0,
8534 .order = -1,
8535 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8536 .mode = MIGRATE_SYNC,
bb13ffeb 8537 .ignore_skip_hint = true,
2583d671 8538 .no_set_skip_hint = true,
7dea19f9 8539 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8540 .alloc_contig = true,
bb13ffeb
MG
8541 };
8542 INIT_LIST_HEAD(&cc.migratepages);
8543
041d3a8c
MN
8544 /*
8545 * What we do here is we mark all pageblocks in range as
8546 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8547 * have different sizes, and due to the way page allocator
8548 * work, we align the range to biggest of the two pages so
8549 * that page allocator won't try to merge buddies from
8550 * different pageblocks and change MIGRATE_ISOLATE to some
8551 * other migration type.
8552 *
8553 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8554 * migrate the pages from an unaligned range (ie. pages that
8555 * we are interested in). This will put all the pages in
8556 * range back to page allocator as MIGRATE_ISOLATE.
8557 *
8558 * When this is done, we take the pages in range from page
8559 * allocator removing them from the buddy system. This way
8560 * page allocator will never consider using them.
8561 *
8562 * This lets us mark the pageblocks back as
8563 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8564 * aligned range but not in the unaligned, original range are
8565 * put back to page allocator so that buddy can use them.
8566 */
8567
8568 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8569 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8570 if (ret)
86a595f9 8571 return ret;
041d3a8c 8572
7612921f
VB
8573 drain_all_pages(cc.zone);
8574
8ef5849f
JK
8575 /*
8576 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8577 * So, just fall through. test_pages_isolated() has a tracepoint
8578 * which will report the busy page.
8579 *
8580 * It is possible that busy pages could become available before
8581 * the call to test_pages_isolated, and the range will actually be
8582 * allocated. So, if we fall through be sure to clear ret so that
8583 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8584 */
bb13ffeb 8585 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8586 if (ret && ret != -EBUSY)
041d3a8c 8587 goto done;
63cd4489 8588 ret =0;
041d3a8c
MN
8589
8590 /*
8591 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8592 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8593 * more, all pages in [start, end) are free in page allocator.
8594 * What we are going to do is to allocate all pages from
8595 * [start, end) (that is remove them from page allocator).
8596 *
8597 * The only problem is that pages at the beginning and at the
8598 * end of interesting range may be not aligned with pages that
8599 * page allocator holds, ie. they can be part of higher order
8600 * pages. Because of this, we reserve the bigger range and
8601 * once this is done free the pages we are not interested in.
8602 *
8603 * We don't have to hold zone->lock here because the pages are
8604 * isolated thus they won't get removed from buddy.
8605 */
8606
8607 lru_add_drain_all();
041d3a8c
MN
8608
8609 order = 0;
8610 outer_start = start;
8611 while (!PageBuddy(pfn_to_page(outer_start))) {
8612 if (++order >= MAX_ORDER) {
8ef5849f
JK
8613 outer_start = start;
8614 break;
041d3a8c
MN
8615 }
8616 outer_start &= ~0UL << order;
8617 }
8618
8ef5849f 8619 if (outer_start != start) {
ab130f91 8620 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8621
8622 /*
8623 * outer_start page could be small order buddy page and
8624 * it doesn't include start page. Adjust outer_start
8625 * in this case to report failed page properly
8626 * on tracepoint in test_pages_isolated()
8627 */
8628 if (outer_start + (1UL << order) <= start)
8629 outer_start = start;
8630 }
8631
041d3a8c 8632 /* Make sure the range is really isolated. */
756d25be 8633 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8634 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8635 __func__, outer_start, end);
041d3a8c
MN
8636 ret = -EBUSY;
8637 goto done;
8638 }
8639
49f223a9 8640 /* Grab isolated pages from freelists. */
bb13ffeb 8641 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8642 if (!outer_end) {
8643 ret = -EBUSY;
8644 goto done;
8645 }
8646
8647 /* Free head and tail (if any) */
8648 if (start != outer_start)
8649 free_contig_range(outer_start, start - outer_start);
8650 if (end != outer_end)
8651 free_contig_range(end, outer_end - end);
8652
8653done:
8654 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8655 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8656 return ret;
8657}
255f5985 8658EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8659
8660static int __alloc_contig_pages(unsigned long start_pfn,
8661 unsigned long nr_pages, gfp_t gfp_mask)
8662{
8663 unsigned long end_pfn = start_pfn + nr_pages;
8664
8665 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8666 gfp_mask);
8667}
8668
8669static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8670 unsigned long nr_pages)
8671{
8672 unsigned long i, end_pfn = start_pfn + nr_pages;
8673 struct page *page;
8674
8675 for (i = start_pfn; i < end_pfn; i++) {
8676 page = pfn_to_online_page(i);
8677 if (!page)
8678 return false;
8679
8680 if (page_zone(page) != z)
8681 return false;
8682
8683 if (PageReserved(page))
8684 return false;
8685
8686 if (page_count(page) > 0)
8687 return false;
8688
8689 if (PageHuge(page))
8690 return false;
8691 }
8692 return true;
8693}
8694
8695static bool zone_spans_last_pfn(const struct zone *zone,
8696 unsigned long start_pfn, unsigned long nr_pages)
8697{
8698 unsigned long last_pfn = start_pfn + nr_pages - 1;
8699
8700 return zone_spans_pfn(zone, last_pfn);
8701}
8702
8703/**
8704 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8705 * @nr_pages: Number of contiguous pages to allocate
8706 * @gfp_mask: GFP mask to limit search and used during compaction
8707 * @nid: Target node
8708 * @nodemask: Mask for other possible nodes
8709 *
8710 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8711 * on an applicable zonelist to find a contiguous pfn range which can then be
8712 * tried for allocation with alloc_contig_range(). This routine is intended
8713 * for allocation requests which can not be fulfilled with the buddy allocator.
8714 *
8715 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8716 * power of two then the alignment is guaranteed to be to the given nr_pages
8717 * (e.g. 1GB request would be aligned to 1GB).
8718 *
8719 * Allocated pages can be freed with free_contig_range() or by manually calling
8720 * __free_page() on each allocated page.
8721 *
8722 * Return: pointer to contiguous pages on success, or NULL if not successful.
8723 */
8724struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8725 int nid, nodemask_t *nodemask)
8726{
8727 unsigned long ret, pfn, flags;
8728 struct zonelist *zonelist;
8729 struct zone *zone;
8730 struct zoneref *z;
8731
8732 zonelist = node_zonelist(nid, gfp_mask);
8733 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8734 gfp_zone(gfp_mask), nodemask) {
8735 spin_lock_irqsave(&zone->lock, flags);
8736
8737 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8738 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8739 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8740 /*
8741 * We release the zone lock here because
8742 * alloc_contig_range() will also lock the zone
8743 * at some point. If there's an allocation
8744 * spinning on this lock, it may win the race
8745 * and cause alloc_contig_range() to fail...
8746 */
8747 spin_unlock_irqrestore(&zone->lock, flags);
8748 ret = __alloc_contig_pages(pfn, nr_pages,
8749 gfp_mask);
8750 if (!ret)
8751 return pfn_to_page(pfn);
8752 spin_lock_irqsave(&zone->lock, flags);
8753 }
8754 pfn += nr_pages;
8755 }
8756 spin_unlock_irqrestore(&zone->lock, flags);
8757 }
8758 return NULL;
8759}
4eb0716e 8760#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8761
4eb0716e 8762void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8763{
bcc2b02f
MS
8764 unsigned int count = 0;
8765
8766 for (; nr_pages--; pfn++) {
8767 struct page *page = pfn_to_page(pfn);
8768
8769 count += page_count(page) != 1;
8770 __free_page(page);
8771 }
8772 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8773}
255f5985 8774EXPORT_SYMBOL(free_contig_range);
041d3a8c 8775
0a647f38
CS
8776/*
8777 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8778 * page high values need to be recalulated.
8779 */
4ed7e022
JL
8780void __meminit zone_pcp_update(struct zone *zone)
8781{
c8e251fa 8782 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8783 zone_set_pageset_high_and_batch(zone);
c8e251fa 8784 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8785}
4ed7e022 8786
ec6e8c7e
VB
8787/*
8788 * Effectively disable pcplists for the zone by setting the high limit to 0
8789 * and draining all cpus. A concurrent page freeing on another CPU that's about
8790 * to put the page on pcplist will either finish before the drain and the page
8791 * will be drained, or observe the new high limit and skip the pcplist.
8792 *
8793 * Must be paired with a call to zone_pcp_enable().
8794 */
8795void zone_pcp_disable(struct zone *zone)
8796{
8797 mutex_lock(&pcp_batch_high_lock);
8798 __zone_set_pageset_high_and_batch(zone, 0, 1);
8799 __drain_all_pages(zone, true);
8800}
8801
8802void zone_pcp_enable(struct zone *zone)
8803{
8804 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8805 mutex_unlock(&pcp_batch_high_lock);
8806}
8807
340175b7
JL
8808void zone_pcp_reset(struct zone *zone)
8809{
8810 unsigned long flags;
5a883813
MK
8811 int cpu;
8812 struct per_cpu_pageset *pset;
340175b7
JL
8813
8814 /* avoid races with drain_pages() */
8815 local_irq_save(flags);
8816 if (zone->pageset != &boot_pageset) {
5a883813
MK
8817 for_each_online_cpu(cpu) {
8818 pset = per_cpu_ptr(zone->pageset, cpu);
8819 drain_zonestat(zone, pset);
8820 }
340175b7
JL
8821 free_percpu(zone->pageset);
8822 zone->pageset = &boot_pageset;
8823 }
8824 local_irq_restore(flags);
8825}
8826
6dcd73d7 8827#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8828/*
257bea71
DH
8829 * All pages in the range must be in a single zone, must not contain holes,
8830 * must span full sections, and must be isolated before calling this function.
0c0e6195 8831 */
257bea71 8832void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8833{
257bea71 8834 unsigned long pfn = start_pfn;
0c0e6195
KH
8835 struct page *page;
8836 struct zone *zone;
0ee5f4f3 8837 unsigned int order;
0c0e6195 8838 unsigned long flags;
5557c766 8839
2d070eab 8840 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8841 zone = page_zone(pfn_to_page(pfn));
8842 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8843 while (pfn < end_pfn) {
0c0e6195 8844 page = pfn_to_page(pfn);
b023f468
WC
8845 /*
8846 * The HWPoisoned page may be not in buddy system, and
8847 * page_count() is not 0.
8848 */
8849 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8850 pfn++;
b023f468
WC
8851 continue;
8852 }
aa218795
DH
8853 /*
8854 * At this point all remaining PageOffline() pages have a
8855 * reference count of 0 and can simply be skipped.
8856 */
8857 if (PageOffline(page)) {
8858 BUG_ON(page_count(page));
8859 BUG_ON(PageBuddy(page));
8860 pfn++;
aa218795
DH
8861 continue;
8862 }
b023f468 8863
0c0e6195
KH
8864 BUG_ON(page_count(page));
8865 BUG_ON(!PageBuddy(page));
ab130f91 8866 order = buddy_order(page);
6ab01363 8867 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8868 pfn += (1 << order);
8869 }
8870 spin_unlock_irqrestore(&zone->lock, flags);
8871}
8872#endif
8d22ba1b 8873
8d22ba1b
WF
8874bool is_free_buddy_page(struct page *page)
8875{
8876 struct zone *zone = page_zone(page);
8877 unsigned long pfn = page_to_pfn(page);
8878 unsigned long flags;
7aeb09f9 8879 unsigned int order;
8d22ba1b
WF
8880
8881 spin_lock_irqsave(&zone->lock, flags);
8882 for (order = 0; order < MAX_ORDER; order++) {
8883 struct page *page_head = page - (pfn & ((1 << order) - 1));
8884
ab130f91 8885 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8886 break;
8887 }
8888 spin_unlock_irqrestore(&zone->lock, flags);
8889
8890 return order < MAX_ORDER;
8891}
d4ae9916
NH
8892
8893#ifdef CONFIG_MEMORY_FAILURE
8894/*
06be6ff3
OS
8895 * Break down a higher-order page in sub-pages, and keep our target out of
8896 * buddy allocator.
d4ae9916 8897 */
06be6ff3
OS
8898static void break_down_buddy_pages(struct zone *zone, struct page *page,
8899 struct page *target, int low, int high,
8900 int migratetype)
8901{
8902 unsigned long size = 1 << high;
8903 struct page *current_buddy, *next_page;
8904
8905 while (high > low) {
8906 high--;
8907 size >>= 1;
8908
8909 if (target >= &page[size]) {
8910 next_page = page + size;
8911 current_buddy = page;
8912 } else {
8913 next_page = page;
8914 current_buddy = page + size;
8915 }
8916
8917 if (set_page_guard(zone, current_buddy, high, migratetype))
8918 continue;
8919
8920 if (current_buddy != target) {
8921 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8922 set_buddy_order(current_buddy, high);
06be6ff3
OS
8923 page = next_page;
8924 }
8925 }
8926}
8927
8928/*
8929 * Take a page that will be marked as poisoned off the buddy allocator.
8930 */
8931bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8932{
8933 struct zone *zone = page_zone(page);
8934 unsigned long pfn = page_to_pfn(page);
8935 unsigned long flags;
8936 unsigned int order;
06be6ff3 8937 bool ret = false;
d4ae9916
NH
8938
8939 spin_lock_irqsave(&zone->lock, flags);
8940 for (order = 0; order < MAX_ORDER; order++) {
8941 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8942 int page_order = buddy_order(page_head);
d4ae9916 8943
ab130f91 8944 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8945 unsigned long pfn_head = page_to_pfn(page_head);
8946 int migratetype = get_pfnblock_migratetype(page_head,
8947 pfn_head);
8948
ab130f91 8949 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8950 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8951 page_order, migratetype);
06be6ff3 8952 ret = true;
d4ae9916
NH
8953 break;
8954 }
06be6ff3
OS
8955 if (page_count(page_head) > 0)
8956 break;
d4ae9916
NH
8957 }
8958 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8959 return ret;
d4ae9916
NH
8960}
8961#endif