]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/page_alloc.c
UBUNTU: Ubuntu-5.15.0-37.39
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
2c335680
AK
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
c8e251fa
CS
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 124
dbbee9d5
MG
125struct pagesets {
126 local_lock_t lock;
dbbee9d5
MG
127};
128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130};
c8e251fa 131
72812019
LS
132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133DEFINE_PER_CPU(int, numa_node);
134EXPORT_PER_CPU_SYMBOL(numa_node);
135#endif
136
4518085e
KW
137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
7aac7898
LS
139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
140/*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148#endif
149
bd233f53 150/* work_structs for global per-cpu drains */
d9367bd0
WY
151struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154};
8b885f53
JY
155static DEFINE_MUTEX(pcpu_drain_mutex);
156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 157
38addce8 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 159volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
160EXPORT_SYMBOL(latent_entropy);
161#endif
162
1da177e4 163/*
13808910 164 * Array of node states.
1da177e4 165 */
13808910
CL
166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169#ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171#ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 173#endif
20b2f52b 174 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
175 [N_CPU] = { { [0] = 1UL } },
176#endif /* NUMA */
177};
178EXPORT_SYMBOL(node_states);
179
ca79b0c2
AK
180atomic_long_t _totalram_pages __read_mostly;
181EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 182unsigned long totalreserve_pages __read_mostly;
e48322ab 183unsigned long totalcma_pages __read_mostly;
ab8fabd4 184
74f44822 185int percpu_pagelist_high_fraction;
dcce284a 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
188EXPORT_SYMBOL(init_on_alloc);
189
51cba1eb 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
191EXPORT_SYMBOL(init_on_free);
192
04013513
VB
193static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
195static int __init early_init_on_alloc(char *buf)
196{
6471384a 197
04013513 198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
199}
200early_param("init_on_alloc", early_init_on_alloc);
201
04013513
VB
202static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
204static int __init early_init_on_free(char *buf)
205{
04013513 206 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
207}
208early_param("init_on_free", early_init_on_free);
1da177e4 209
bb14c2c7
VB
210/*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218static inline int get_pcppage_migratetype(struct page *page)
219{
220 return page->index;
221}
222
223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224{
225 page->index = migratetype;
226}
227
452aa699
RW
228#ifdef CONFIG_PM_SLEEP
229/*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
452aa699 237 */
c9e664f1
RW
238
239static gfp_t saved_gfp_mask;
240
241void pm_restore_gfp_mask(void)
452aa699 242{
55f2503c 243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
452aa699
RW
248}
249
c9e664f1 250void pm_restrict_gfp_mask(void)
452aa699 251{
55f2503c 252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
d0164adc 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 256}
f90ac398
MG
257
258bool pm_suspended_storage(void)
259{
d0164adc 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
261 return false;
262 return true;
263}
452aa699
RW
264#endif /* CONFIG_PM_SLEEP */
265
d9c23400 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 267unsigned int pageblock_order __read_mostly;
d9c23400
MG
268#endif
269
7fef431b
DH
270static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
a226f6c8 272
1da177e4
LT
273/*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
1da177e4 283 */
d3cda233 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 285#ifdef CONFIG_ZONE_DMA
d3cda233 286 [ZONE_DMA] = 256,
4b51d669 287#endif
fb0e7942 288#ifdef CONFIG_ZONE_DMA32
d3cda233 289 [ZONE_DMA32] = 256,
fb0e7942 290#endif
d3cda233 291 [ZONE_NORMAL] = 32,
e53ef38d 292#ifdef CONFIG_HIGHMEM
d3cda233 293 [ZONE_HIGHMEM] = 0,
e53ef38d 294#endif
d3cda233 295 [ZONE_MOVABLE] = 0,
2f1b6248 296};
1da177e4 297
15ad7cdc 298static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 299#ifdef CONFIG_ZONE_DMA
2f1b6248 300 "DMA",
4b51d669 301#endif
fb0e7942 302#ifdef CONFIG_ZONE_DMA32
2f1b6248 303 "DMA32",
fb0e7942 304#endif
2f1b6248 305 "Normal",
e53ef38d 306#ifdef CONFIG_HIGHMEM
2a1e274a 307 "HighMem",
e53ef38d 308#endif
2a1e274a 309 "Movable",
033fbae9
DW
310#ifdef CONFIG_ZONE_DEVICE
311 "Device",
312#endif
2f1b6248
CL
313};
314
c999fbd3 315const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320#ifdef CONFIG_CMA
321 "CMA",
322#endif
323#ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325#endif
326};
327
ae70eddd
AK
328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 331#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 332 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 333#endif
9a982250 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 336#endif
f1e61557
KS
337};
338
1da177e4 339int min_free_kbytes = 1024;
42aa83cb 340int user_min_free_kbytes = -1;
1c30844d 341int watermark_boost_factor __read_mostly = 15000;
795ae7a0 342int watermark_scale_factor = 10;
1da177e4 343
bbe5d993
OS
344static unsigned long nr_kernel_pages __initdata;
345static unsigned long nr_all_pages __initdata;
346static unsigned long dma_reserve __initdata;
1da177e4 347
bbe5d993
OS
348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 350static unsigned long required_kernelcore __initdata;
a5c6d650 351static unsigned long required_kernelcore_percent __initdata;
7f16f91f 352static unsigned long required_movablecore __initdata;
a5c6d650 353static unsigned long required_movablecore_percent __initdata;
bbe5d993 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 355static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
356
357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358int movable_zone;
359EXPORT_SYMBOL(movable_zone);
c713216d 360
418508c1 361#if MAX_NUMNODES > 1
b9726c26 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 363unsigned int nr_online_nodes __read_mostly = 1;
418508c1 364EXPORT_SYMBOL(nr_node_ids);
62bc62a8 365EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
366#endif
367
9ef9acb0
MG
368int page_group_by_mobility_disabled __read_mostly;
369
3a80a7fa 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
371/*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378/*
7a3b8353 379 * Calling kasan_poison_pages() only after deferred memory initialization
3c0c12cc
WL
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
c275c5c6 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
3c0c12cc 392{
7a3b8353
PC
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
3c0c12cc
WL
397}
398
3a80a7fa 399/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 401{
ef70b6f4
MG
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
405 return true;
406
407 return false;
408}
409
410/*
d3035be4 411 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
412 * later in the boot cycle when it can be parallelised.
413 */
d3035be4
PT
414static bool __meminit
415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 416{
d3035be4
PT
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
3c2c6488 428 /* Always populate low zones for address-constrained allocations */
d3035be4 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 430 return false;
23b68cfa 431
dc2da7b4
BH
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
23b68cfa
WY
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
d3035be4 438 nr_initialised++;
23b68cfa 439 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
3a80a7fa 443 }
d3035be4 444 return false;
3a80a7fa
MG
445}
446#else
c275c5c6 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
2c335680 448{
7a3b8353 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
2c335680 452}
3c0c12cc 453
3a80a7fa
MG
454static inline bool early_page_uninitialised(unsigned long pfn)
455{
456 return false;
457}
458
d3035be4 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 460{
d3035be4 461 return false;
3a80a7fa
MG
462}
463#endif
464
0b423ca2 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
467 unsigned long pfn)
468{
469#ifdef CONFIG_SPARSEMEM
f1eca35a 470 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
471#else
472 return page_zone(page)->pageblock_flags;
473#endif /* CONFIG_SPARSEMEM */
474}
475
ca891f41 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
477{
478#ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
480#else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 482#endif /* CONFIG_SPARSEMEM */
399b795b 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
484}
485
535b81e2 486static __always_inline
ca891f41 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 488 unsigned long pfn,
0b423ca2
MG
489 unsigned long mask)
490{
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
d93d5ab9 501 return (word >> bitidx) & mask;
0b423ca2
MG
502}
503
a00cda3f
MCC
504/**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
ca891f41
MWO
512unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
0b423ca2 514{
535b81e2 515 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
516}
517
ca891f41
MWO
518static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
0b423ca2 520{
535b81e2 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
522}
523
524/**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
0b423ca2
MG
529 * @mask: mask of bits that the caller is interested in
530 */
531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
0b423ca2
MG
533 unsigned long mask)
534{
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
d93d5ab9
WY
549 mask <<= bitidx;
550 flags <<= bitidx;
0b423ca2
MG
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559}
3a80a7fa 560
ee6f509c 561void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 562{
5d0f3f72
KM
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
565 migratetype = MIGRATE_UNMOVABLE;
566
d93d5ab9 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 568 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
569}
570
13e7444b 571#ifdef CONFIG_DEBUG_VM
c6a57e19 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 573{
bdc8cb98
DH
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 577 unsigned long sp, start_pfn;
c6a57e19 578
bdc8cb98
DH
579 do {
580 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
108bcc96 583 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
b5e6a5a2 587 if (ret)
613813e8
DH
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
b5e6a5a2 591
bdc8cb98 592 return ret;
c6a57e19
DH
593}
594
595static int page_is_consistent(struct zone *zone, struct page *page)
596{
1da177e4 597 if (zone != page_zone(page))
c6a57e19
DH
598 return 0;
599
600 return 1;
601}
602/*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
d73d3c9f 605static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
606{
607 if (page_outside_zone_boundaries(zone, page))
1da177e4 608 return 1;
c6a57e19
DH
609 if (!page_is_consistent(zone, page))
610 return 1;
611
1da177e4
LT
612 return 0;
613}
13e7444b 614#else
d73d3c9f 615static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
616{
617 return 0;
618}
619#endif
620
82a3241a 621static void bad_page(struct page *page, const char *reason)
1da177e4 622{
d936cf9b
HD
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
ff8e8116 637 pr_alert(
1e9e6365 638 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
ff8e8116 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 648 current->comm, page_to_pfn(page));
d2f07ec0 649 dump_page(page, reason);
3dc14741 650
4f31888c 651 print_modules();
1da177e4 652 dump_stack();
d936cf9b 653out:
8cc3b392 654 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 655 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
657}
658
44042b44
MG
659static inline unsigned int order_to_pindex(int migratetype, int order)
660{
661 int base = order;
662
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668#else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670#endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673}
674
675static inline int pindex_to_order(unsigned int pindex)
676{
677 int order = pindex / MIGRATE_PCPTYPES;
678
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 order = pageblock_order;
682 VM_BUG_ON(order != pageblock_order);
683 }
684#else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686#endif
687
688 return order;
689}
690
691static inline bool pcp_allowed_order(unsigned int order)
692{
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695#ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == pageblock_order)
697 return true;
698#endif
699 return false;
700}
701
21d02f8f
MG
702static inline void free_the_page(struct page *page, unsigned int order)
703{
44042b44
MG
704 if (pcp_allowed_order(order)) /* Via pcp? */
705 free_unref_page(page, order);
21d02f8f
MG
706 else
707 __free_pages_ok(page, order, FPI_NONE);
708}
709
1da177e4
LT
710/*
711 * Higher-order pages are called "compound pages". They are structured thusly:
712 *
1d798ca3 713 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 714 *
1d798ca3
KS
715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 717 *
1d798ca3
KS
718 * The first tail page's ->compound_dtor holds the offset in array of compound
719 * page destructors. See compound_page_dtors.
1da177e4 720 *
1d798ca3 721 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 722 * This usage means that zero-order pages may not be compound.
1da177e4 723 */
d98c7a09 724
9a982250 725void free_compound_page(struct page *page)
d98c7a09 726{
7ae88534 727 mem_cgroup_uncharge(page);
44042b44 728 free_the_page(page, compound_order(page));
d98c7a09
HD
729}
730
d00181b9 731void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
732{
733 int i;
734 int nr_pages = 1 << order;
735
18229df5
AW
736 __SetPageHead(page);
737 for (i = 1; i < nr_pages; i++) {
738 struct page *p = page + i;
1c290f64 739 p->mapping = TAIL_MAPPING;
1d798ca3 740 set_compound_head(p, page);
18229df5 741 }
1378a5ee
MWO
742
743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 set_compound_order(page, order);
53f9263b 745 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
746 if (hpage_pincount_available(page))
747 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
748}
749
c0a32fc5
SG
750#ifdef CONFIG_DEBUG_PAGEALLOC
751unsigned int _debug_guardpage_minorder;
96a2b03f 752
8e57f8ac
VB
753bool _debug_pagealloc_enabled_early __read_mostly
754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 756DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 757EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
758
759DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 760
031bc574
JK
761static int __init early_debug_pagealloc(char *buf)
762{
8e57f8ac 763 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
764}
765early_param("debug_pagealloc", early_debug_pagealloc);
766
c0a32fc5
SG
767static int __init debug_guardpage_minorder_setup(char *buf)
768{
769 unsigned long res;
770
771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 772 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
773 return 0;
774 }
775 _debug_guardpage_minorder = res;
1170532b 776 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
777 return 0;
778}
f1c1e9f7 779early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 780
acbc15a4 781static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 782 unsigned int order, int migratetype)
c0a32fc5 783{
e30825f1 784 if (!debug_guardpage_enabled())
acbc15a4
JK
785 return false;
786
787 if (order >= debug_guardpage_minorder())
788 return false;
e30825f1 789
3972f6bb 790 __SetPageGuard(page);
2847cf95
JK
791 INIT_LIST_HEAD(&page->lru);
792 set_page_private(page, order);
793 /* Guard pages are not available for any usage */
794 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
795
796 return true;
c0a32fc5
SG
797}
798
2847cf95
JK
799static inline void clear_page_guard(struct zone *zone, struct page *page,
800 unsigned int order, int migratetype)
c0a32fc5 801{
e30825f1
JK
802 if (!debug_guardpage_enabled())
803 return;
804
3972f6bb 805 __ClearPageGuard(page);
e30825f1 806
2847cf95
JK
807 set_page_private(page, 0);
808 if (!is_migrate_isolate(migratetype))
809 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
810}
811#else
acbc15a4
JK
812static inline bool set_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) { return false; }
2847cf95
JK
814static inline void clear_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) {}
c0a32fc5
SG
816#endif
817
04013513
VB
818/*
819 * Enable static keys related to various memory debugging and hardening options.
820 * Some override others, and depend on early params that are evaluated in the
821 * order of appearance. So we need to first gather the full picture of what was
822 * enabled, and then make decisions.
823 */
824void init_mem_debugging_and_hardening(void)
825{
9df65f52
ST
826 bool page_poisoning_requested = false;
827
828#ifdef CONFIG_PAGE_POISONING
829 /*
830 * Page poisoning is debug page alloc for some arches. If
831 * either of those options are enabled, enable poisoning.
832 */
833 if (page_poisoning_enabled() ||
834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 debug_pagealloc_enabled())) {
836 static_branch_enable(&_page_poisoning_enabled);
837 page_poisoning_requested = true;
838 }
839#endif
840
69e5d322
ST
841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 page_poisoning_requested) {
843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 "will take precedence over init_on_alloc and init_on_free\n");
845 _init_on_alloc_enabled_early = false;
846 _init_on_free_enabled_early = false;
04013513
VB
847 }
848
69e5d322
ST
849 if (_init_on_alloc_enabled_early)
850 static_branch_enable(&init_on_alloc);
851 else
852 static_branch_disable(&init_on_alloc);
853
854 if (_init_on_free_enabled_early)
855 static_branch_enable(&init_on_free);
856 else
857 static_branch_disable(&init_on_free);
858
04013513
VB
859#ifdef CONFIG_DEBUG_PAGEALLOC
860 if (!debug_pagealloc_enabled())
861 return;
862
863 static_branch_enable(&_debug_pagealloc_enabled);
864
865 if (!debug_guardpage_minorder())
866 return;
867
868 static_branch_enable(&_debug_guardpage_enabled);
869#endif
870}
871
ab130f91 872static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 873{
4c21e2f2 874 set_page_private(page, order);
676165a8 875 __SetPageBuddy(page);
1da177e4
LT
876}
877
1da177e4
LT
878/*
879 * This function checks whether a page is free && is the buddy
6e292b9b 880 * we can coalesce a page and its buddy if
13ad59df 881 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 882 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
883 * (c) a page and its buddy have the same order &&
884 * (d) a page and its buddy are in the same zone.
676165a8 885 *
6e292b9b
MW
886 * For recording whether a page is in the buddy system, we set PageBuddy.
887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 888 *
676165a8 889 * For recording page's order, we use page_private(page).
1da177e4 890 */
fe925c0c 891static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 892 unsigned int order)
1da177e4 893{
fe925c0c 894 if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 return false;
4c5018ce 896
ab130f91 897 if (buddy_order(buddy) != order)
fe925c0c 898 return false;
c0a32fc5 899
fe925c0c 900 /*
901 * zone check is done late to avoid uselessly calculating
902 * zone/node ids for pages that could never merge.
903 */
904 if (page_zone_id(page) != page_zone_id(buddy))
905 return false;
d34c5fa0 906
fe925c0c 907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 908
fe925c0c 909 return true;
1da177e4
LT
910}
911
5e1f0f09
MG
912#ifdef CONFIG_COMPACTION
913static inline struct capture_control *task_capc(struct zone *zone)
914{
915 struct capture_control *capc = current->capture_control;
916
deba0487 917 return unlikely(capc) &&
5e1f0f09
MG
918 !(current->flags & PF_KTHREAD) &&
919 !capc->page &&
deba0487 920 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
921}
922
923static inline bool
924compaction_capture(struct capture_control *capc, struct page *page,
925 int order, int migratetype)
926{
927 if (!capc || order != capc->cc->order)
928 return false;
929
930 /* Do not accidentally pollute CMA or isolated regions*/
931 if (is_migrate_cma(migratetype) ||
932 is_migrate_isolate(migratetype))
933 return false;
934
935 /*
f0953a1b 936 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
937 * This might let an unmovable request use a reclaimable pageblock
938 * and vice-versa but no more than normal fallback logic which can
939 * have trouble finding a high-order free page.
940 */
941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 return false;
943
944 capc->page = page;
945 return true;
946}
947
948#else
949static inline struct capture_control *task_capc(struct zone *zone)
950{
951 return NULL;
952}
953
954static inline bool
955compaction_capture(struct capture_control *capc, struct page *page,
956 int order, int migratetype)
957{
958 return false;
959}
960#endif /* CONFIG_COMPACTION */
961
6ab01363
AD
962/* Used for pages not on another list */
963static inline void add_to_free_list(struct page *page, struct zone *zone,
964 unsigned int order, int migratetype)
965{
966 struct free_area *area = &zone->free_area[order];
967
968 list_add(&page->lru, &area->free_list[migratetype]);
969 area->nr_free++;
970}
971
972/* Used for pages not on another list */
973static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975{
976 struct free_area *area = &zone->free_area[order];
977
978 list_add_tail(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980}
981
293ffa5e
DH
982/*
983 * Used for pages which are on another list. Move the pages to the tail
984 * of the list - so the moved pages won't immediately be considered for
985 * allocation again (e.g., optimization for memory onlining).
986 */
6ab01363
AD
987static inline void move_to_free_list(struct page *page, struct zone *zone,
988 unsigned int order, int migratetype)
989{
990 struct free_area *area = &zone->free_area[order];
991
293ffa5e 992 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
993}
994
995static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 unsigned int order)
997{
36e66c55
AD
998 /* clear reported state and update reported page count */
999 if (page_reported(page))
1000 __ClearPageReported(page);
1001
6ab01363
AD
1002 list_del(&page->lru);
1003 __ClearPageBuddy(page);
1004 set_page_private(page, 0);
1005 zone->free_area[order].nr_free--;
1006}
1007
a2129f24
AD
1008/*
1009 * If this is not the largest possible page, check if the buddy
1010 * of the next-highest order is free. If it is, it's possible
1011 * that pages are being freed that will coalesce soon. In case,
1012 * that is happening, add the free page to the tail of the list
1013 * so it's less likely to be used soon and more likely to be merged
1014 * as a higher order page
1015 */
1016static inline bool
1017buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 struct page *page, unsigned int order)
1019{
1020 struct page *higher_page, *higher_buddy;
1021 unsigned long combined_pfn;
1022
1023 if (order >= MAX_ORDER - 2)
1024 return false;
1025
a2129f24
AD
1026 combined_pfn = buddy_pfn & pfn;
1027 higher_page = page + (combined_pfn - pfn);
1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030
859a85dd 1031 return page_is_buddy(higher_page, higher_buddy, order + 1);
a2129f24
AD
1032}
1033
1da177e4
LT
1034/*
1035 * Freeing function for a buddy system allocator.
1036 *
1037 * The concept of a buddy system is to maintain direct-mapped table
1038 * (containing bit values) for memory blocks of various "orders".
1039 * The bottom level table contains the map for the smallest allocatable
1040 * units of memory (here, pages), and each level above it describes
1041 * pairs of units from the levels below, hence, "buddies".
1042 * At a high level, all that happens here is marking the table entry
1043 * at the bottom level available, and propagating the changes upward
1044 * as necessary, plus some accounting needed to play nicely with other
1045 * parts of the VM system.
1046 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1047 * free pages of length of (1 << order) and marked with PageBuddy.
1048 * Page's order is recorded in page_private(page) field.
1da177e4 1049 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1050 * other. That is, if we allocate a small block, and both were
1051 * free, the remainder of the region must be split into blocks.
1da177e4 1052 * If a block is freed, and its buddy is also free, then this
5f63b720 1053 * triggers coalescing into a block of larger size.
1da177e4 1054 *
6d49e352 1055 * -- nyc
1da177e4
LT
1056 */
1057
48db57f8 1058static inline void __free_one_page(struct page *page,
dc4b0caf 1059 unsigned long pfn,
ed0ae21d 1060 struct zone *zone, unsigned int order,
f04a5d5d 1061 int migratetype, fpi_t fpi_flags)
1da177e4 1062{
a2129f24 1063 struct capture_control *capc = task_capc(zone);
3f649ab7 1064 unsigned long buddy_pfn;
a2129f24 1065 unsigned long combined_pfn;
d9dddbf5 1066 unsigned int max_order;
a2129f24
AD
1067 struct page *buddy;
1068 bool to_tail;
d9dddbf5 1069
7ad69832 1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1071
d29bb978 1072 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1074
ed0ae21d 1075 VM_BUG_ON(migratetype == -1);
d9dddbf5 1076 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1077 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1078
76741e77 1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1081
d9dddbf5 1082continue_merging:
7ad69832 1083 while (order < max_order) {
5e1f0f09
MG
1084 if (compaction_capture(capc, page, order, migratetype)) {
1085 __mod_zone_freepage_state(zone, -(1 << order),
1086 migratetype);
1087 return;
1088 }
76741e77
VB
1089 buddy_pfn = __find_buddy_pfn(pfn, order);
1090 buddy = page + (buddy_pfn - pfn);
13ad59df 1091
cb2b95e1 1092 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1093 goto done_merging;
c0a32fc5
SG
1094 /*
1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 * merge with it and move up one order.
1097 */
b03641af 1098 if (page_is_guard(buddy))
2847cf95 1099 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1100 else
6ab01363 1101 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1102 combined_pfn = buddy_pfn & pfn;
1103 page = page + (combined_pfn - pfn);
1104 pfn = combined_pfn;
1da177e4
LT
1105 order++;
1106 }
7ad69832 1107 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1108 /* If we are here, it means order is >= pageblock_order.
1109 * We want to prevent merge between freepages on isolate
1110 * pageblock and normal pageblock. Without this, pageblock
1111 * isolation could cause incorrect freepage or CMA accounting.
1112 *
1113 * We don't want to hit this code for the more frequent
1114 * low-order merging.
1115 */
1116 if (unlikely(has_isolate_pageblock(zone))) {
1117 int buddy_mt;
1118
76741e77
VB
1119 buddy_pfn = __find_buddy_pfn(pfn, order);
1120 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1121 buddy_mt = get_pageblock_migratetype(buddy);
1122
1123 if (migratetype != buddy_mt
1124 && (is_migrate_isolate(migratetype) ||
1125 is_migrate_isolate(buddy_mt)))
1126 goto done_merging;
1127 }
7ad69832 1128 max_order = order + 1;
d9dddbf5
VB
1129 goto continue_merging;
1130 }
1131
1132done_merging:
ab130f91 1133 set_buddy_order(page, order);
6dda9d55 1134
47b6a24a
DH
1135 if (fpi_flags & FPI_TO_TAIL)
1136 to_tail = true;
1137 else if (is_shuffle_order(order))
a2129f24 1138 to_tail = shuffle_pick_tail();
97500a4a 1139 else
a2129f24 1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1141
a2129f24 1142 if (to_tail)
6ab01363 1143 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1144 else
6ab01363 1145 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1146
1147 /* Notify page reporting subsystem of freed page */
f04a5d5d 1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1149 page_reporting_notify_free(order);
1da177e4
LT
1150}
1151
7bfec6f4
MG
1152/*
1153 * A bad page could be due to a number of fields. Instead of multiple branches,
1154 * try and check multiple fields with one check. The caller must do a detailed
1155 * check if necessary.
1156 */
1157static inline bool page_expected_state(struct page *page,
1158 unsigned long check_flags)
1159{
1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 return false;
1162
1163 if (unlikely((unsigned long)page->mapping |
1164 page_ref_count(page) |
1165#ifdef CONFIG_MEMCG
48060834 1166 page->memcg_data |
7bfec6f4
MG
1167#endif
1168 (page->flags & check_flags)))
1169 return false;
1170
1171 return true;
1172}
1173
58b7f119 1174static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1175{
82a3241a 1176 const char *bad_reason = NULL;
f0b791a3 1177
53f9263b 1178 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1179 bad_reason = "nonzero mapcount";
1180 if (unlikely(page->mapping != NULL))
1181 bad_reason = "non-NULL mapping";
fe896d18 1182 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1183 bad_reason = "nonzero _refcount";
58b7f119
WY
1184 if (unlikely(page->flags & flags)) {
1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 else
1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1189 }
9edad6ea 1190#ifdef CONFIG_MEMCG
48060834 1191 if (unlikely(page->memcg_data))
9edad6ea
JW
1192 bad_reason = "page still charged to cgroup";
1193#endif
58b7f119
WY
1194 return bad_reason;
1195}
1196
1197static void check_free_page_bad(struct page *page)
1198{
1199 bad_page(page,
1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1201}
1202
534fe5e3 1203static inline int check_free_page(struct page *page)
bb552ac6 1204{
da838d4f 1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1206 return 0;
bb552ac6
MG
1207
1208 /* Something has gone sideways, find it */
0d0c48a2 1209 check_free_page_bad(page);
7bfec6f4 1210 return 1;
1da177e4
LT
1211}
1212
4db7548c
MG
1213static int free_tail_pages_check(struct page *head_page, struct page *page)
1214{
1215 int ret = 1;
1216
1217 /*
1218 * We rely page->lru.next never has bit 0 set, unless the page
1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 */
1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222
1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 ret = 0;
1225 goto out;
1226 }
1227 switch (page - head_page) {
1228 case 1:
4da1984e 1229 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1230 if (unlikely(compound_mapcount(page))) {
82a3241a 1231 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1232 goto out;
1233 }
1234 break;
1235 case 2:
1236 /*
1237 * the second tail page: ->mapping is
fa3015b7 1238 * deferred_list.next -- ignore value.
4db7548c
MG
1239 */
1240 break;
1241 default:
1242 if (page->mapping != TAIL_MAPPING) {
82a3241a 1243 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1244 goto out;
1245 }
1246 break;
1247 }
1248 if (unlikely(!PageTail(page))) {
82a3241a 1249 bad_page(page, "PageTail not set");
4db7548c
MG
1250 goto out;
1251 }
1252 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1253 bad_page(page, "compound_head not consistent");
4db7548c
MG
1254 goto out;
1255 }
1256 ret = 0;
1257out:
1258 page->mapping = NULL;
1259 clear_compound_head(page);
1260 return ret;
1261}
1262
013bb59d 1263static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
6471384a
AP
1264{
1265 int i;
1266
013bb59d
PC
1267 if (zero_tags) {
1268 for (i = 0; i < numpages; i++)
1269 tag_clear_highpage(page + i);
1270 return;
1271 }
1272
9e15afa5
QC
1273 /* s390's use of memset() could override KASAN redzones. */
1274 kasan_disable_current();
aa1ef4d7 1275 for (i = 0; i < numpages; i++) {
acb35b17 1276 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1277 page_kasan_tag_reset(page + i);
6471384a 1278 clear_highpage(page + i);
acb35b17 1279 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1280 }
9e15afa5 1281 kasan_enable_current();
6471384a
AP
1282}
1283
e2769dbd 1284static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1285 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1286{
e2769dbd 1287 int bad = 0;
c275c5c6 1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
4db7548c 1289
4db7548c
MG
1290 VM_BUG_ON_PAGE(PageTail(page), page);
1291
e2769dbd 1292 trace_mm_page_free(page, order);
e2769dbd 1293
79f5f8fa
OS
1294 if (unlikely(PageHWPoison(page)) && !order) {
1295 /*
1296 * Do not let hwpoison pages hit pcplists/buddy
1297 * Untie memcg state and reset page's owner
1298 */
18b2db3b 1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1300 __memcg_kmem_uncharge_page(page, order);
1301 reset_page_owner(page, order);
1302 return false;
1303 }
1304
e2769dbd
MG
1305 /*
1306 * Check tail pages before head page information is cleared to
1307 * avoid checking PageCompound for order-0 pages.
1308 */
1309 if (unlikely(order)) {
1310 bool compound = PageCompound(page);
1311 int i;
1312
1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1314
eac96c3e 1315 if (compound) {
9a73f61b 1316 ClearPageDoubleMap(page);
eac96c3e
YS
1317 ClearPageHasHWPoisoned(page);
1318 }
e2769dbd
MG
1319 for (i = 1; i < (1 << order); i++) {
1320 if (compound)
1321 bad += free_tail_pages_check(page, page + i);
534fe5e3 1322 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1323 bad++;
1324 continue;
1325 }
1326 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1327 }
1328 }
bda807d4 1329 if (PageMappingFlags(page))
4db7548c 1330 page->mapping = NULL;
18b2db3b 1331 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1332 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1333 if (check_free)
534fe5e3 1334 bad += check_free_page(page);
e2769dbd
MG
1335 if (bad)
1336 return false;
4db7548c 1337
e2769dbd
MG
1338 page_cpupid_reset_last(page);
1339 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1340 reset_page_owner(page, order);
4db7548c
MG
1341
1342 if (!PageHighMem(page)) {
1343 debug_check_no_locks_freed(page_address(page),
e2769dbd 1344 PAGE_SIZE << order);
4db7548c 1345 debug_check_no_obj_freed(page_address(page),
e2769dbd 1346 PAGE_SIZE << order);
4db7548c 1347 }
6471384a 1348
8db26a3d
VB
1349 kernel_poison_pages(page, 1 << order);
1350
f9d79e8d 1351 /*
1bb5eab3
AK
1352 * As memory initialization might be integrated into KASAN,
1353 * kasan_free_pages and kernel_init_free_pages must be
1354 * kept together to avoid discrepancies in behavior.
1355 *
f9d79e8d
AK
1356 * With hardware tag-based KASAN, memory tags must be set before the
1357 * page becomes unavailable via debug_pagealloc or arch_free_page.
1358 */
7a3b8353
PC
1359 if (kasan_has_integrated_init()) {
1360 if (!skip_kasan_poison)
1361 kasan_free_pages(page, order);
1362 } else {
1363 bool init = want_init_on_free();
1364
1365 if (init)
013bb59d 1366 kernel_init_free_pages(page, 1 << order, false);
7a3b8353
PC
1367 if (!skip_kasan_poison)
1368 kasan_poison_pages(page, order, init);
1369 }
f9d79e8d 1370
234fdce8
QC
1371 /*
1372 * arch_free_page() can make the page's contents inaccessible. s390
1373 * does this. So nothing which can access the page's contents should
1374 * happen after this.
1375 */
1376 arch_free_page(page, order);
1377
77bc7fd6 1378 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1379
4db7548c
MG
1380 return true;
1381}
1382
e2769dbd 1383#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1384/*
1385 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1386 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1387 * moved from pcp lists to free lists.
1388 */
44042b44 1389static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1390{
44042b44 1391 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1392}
1393
4462b32c 1394static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1395{
8e57f8ac 1396 if (debug_pagealloc_enabled_static())
534fe5e3 1397 return check_free_page(page);
4462b32c
VB
1398 else
1399 return false;
e2769dbd
MG
1400}
1401#else
4462b32c
VB
1402/*
1403 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1404 * moving from pcp lists to free list in order to reduce overhead. With
1405 * debug_pagealloc enabled, they are checked also immediately when being freed
1406 * to the pcp lists.
1407 */
44042b44 1408static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1409{
8e57f8ac 1410 if (debug_pagealloc_enabled_static())
44042b44 1411 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1412 else
44042b44 1413 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1414}
1415
4db7548c
MG
1416static bool bulkfree_pcp_prepare(struct page *page)
1417{
534fe5e3 1418 return check_free_page(page);
4db7548c
MG
1419}
1420#endif /* CONFIG_DEBUG_VM */
1421
97334162
AL
1422static inline void prefetch_buddy(struct page *page)
1423{
1424 unsigned long pfn = page_to_pfn(page);
1425 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1426 struct page *buddy = page + (buddy_pfn - pfn);
1427
1428 prefetch(buddy);
1429}
1430
1da177e4 1431/*
5f8dcc21 1432 * Frees a number of pages from the PCP lists
1da177e4 1433 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1434 * count is the number of pages to free.
1da177e4
LT
1435 *
1436 * If the zone was previously in an "all pages pinned" state then look to
1437 * see if this freeing clears that state.
1438 *
1439 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1440 * pinned" detection logic.
1441 */
5f8dcc21
MG
1442static void free_pcppages_bulk(struct zone *zone, int count,
1443 struct per_cpu_pages *pcp)
1da177e4 1444{
44042b44 1445 int pindex = 0;
a6f9edd6 1446 int batch_free = 0;
44042b44
MG
1447 int nr_freed = 0;
1448 unsigned int order;
5c3ad2eb 1449 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1450 bool isolated_pageblocks;
0a5f4e5b
AL
1451 struct page *page, *tmp;
1452 LIST_HEAD(head);
f2260e6b 1453
88e8ac11
CTR
1454 /*
1455 * Ensure proper count is passed which otherwise would stuck in the
1456 * below while (list_empty(list)) loop.
1457 */
1458 count = min(pcp->count, count);
44042b44 1459 while (count > 0) {
5f8dcc21
MG
1460 struct list_head *list;
1461
1462 /*
a6f9edd6
MG
1463 * Remove pages from lists in a round-robin fashion. A
1464 * batch_free count is maintained that is incremented when an
1465 * empty list is encountered. This is so more pages are freed
1466 * off fuller lists instead of spinning excessively around empty
1467 * lists
5f8dcc21
MG
1468 */
1469 do {
a6f9edd6 1470 batch_free++;
44042b44
MG
1471 if (++pindex == NR_PCP_LISTS)
1472 pindex = 0;
1473 list = &pcp->lists[pindex];
5f8dcc21 1474 } while (list_empty(list));
48db57f8 1475
1d16871d 1476 /* This is the only non-empty list. Free them all. */
44042b44 1477 if (batch_free == NR_PCP_LISTS)
e5b31ac2 1478 batch_free = count;
1d16871d 1479
44042b44
MG
1480 order = pindex_to_order(pindex);
1481 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1482 do {
a16601c5 1483 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1484 /* must delete to avoid corrupting pcp list */
a6f9edd6 1485 list_del(&page->lru);
44042b44
MG
1486 nr_freed += 1 << order;
1487 count -= 1 << order;
aa016d14 1488
4db7548c
MG
1489 if (bulkfree_pcp_prepare(page))
1490 continue;
1491
44042b44
MG
1492 /* Encode order with the migratetype */
1493 page->index <<= NR_PCP_ORDER_WIDTH;
1494 page->index |= order;
1495
0a5f4e5b 1496 list_add_tail(&page->lru, &head);
97334162
AL
1497
1498 /*
1499 * We are going to put the page back to the global
1500 * pool, prefetch its buddy to speed up later access
1501 * under zone->lock. It is believed the overhead of
1502 * an additional test and calculating buddy_pfn here
1503 * can be offset by reduced memory latency later. To
1504 * avoid excessive prefetching due to large count, only
1505 * prefetch buddy for the first pcp->batch nr of pages.
1506 */
5c3ad2eb 1507 if (prefetch_nr) {
97334162 1508 prefetch_buddy(page);
5c3ad2eb
VB
1509 prefetch_nr--;
1510 }
44042b44 1511 } while (count > 0 && --batch_free && !list_empty(list));
1da177e4 1512 }
44042b44 1513 pcp->count -= nr_freed;
0a5f4e5b 1514
dbbee9d5
MG
1515 /*
1516 * local_lock_irq held so equivalent to spin_lock_irqsave for
1517 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1518 */
0a5f4e5b
AL
1519 spin_lock(&zone->lock);
1520 isolated_pageblocks = has_isolate_pageblock(zone);
1521
1522 /*
1523 * Use safe version since after __free_one_page(),
1524 * page->lru.next will not point to original list.
1525 */
1526 list_for_each_entry_safe(page, tmp, &head, lru) {
1527 int mt = get_pcppage_migratetype(page);
44042b44
MG
1528
1529 /* mt has been encoded with the order (see above) */
1530 order = mt & NR_PCP_ORDER_MASK;
1531 mt >>= NR_PCP_ORDER_WIDTH;
1532
0a5f4e5b
AL
1533 /* MIGRATE_ISOLATE page should not go to pcplists */
1534 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1535 /* Pageblock could have been isolated meanwhile */
1536 if (unlikely(isolated_pageblocks))
1537 mt = get_pageblock_migratetype(page);
1538
44042b44
MG
1539 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1540 trace_mm_page_pcpu_drain(page, order, mt);
0a5f4e5b 1541 }
d34b0733 1542 spin_unlock(&zone->lock);
1da177e4
LT
1543}
1544
dc4b0caf
MG
1545static void free_one_page(struct zone *zone,
1546 struct page *page, unsigned long pfn,
7aeb09f9 1547 unsigned int order,
7fef431b 1548 int migratetype, fpi_t fpi_flags)
1da177e4 1549{
df1acc85
MG
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1553 if (unlikely(has_isolate_pageblock(zone) ||
1554 is_migrate_isolate(migratetype))) {
1555 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1556 }
7fef431b 1557 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1558 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1559}
1560
1e8ce83c 1561static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1562 unsigned long zone, int nid)
1e8ce83c 1563{
d0dc12e8 1564 mm_zero_struct_page(page);
1e8ce83c 1565 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1566 init_page_count(page);
1567 page_mapcount_reset(page);
1568 page_cpupid_reset_last(page);
2813b9c0 1569 page_kasan_tag_reset(page);
1e8ce83c 1570
1e8ce83c
RH
1571 INIT_LIST_HEAD(&page->lru);
1572#ifdef WANT_PAGE_VIRTUAL
1573 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1574 if (!is_highmem_idx(zone))
1575 set_page_address(page, __va(pfn << PAGE_SHIFT));
1576#endif
1577}
1578
7e18adb4 1579#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1580static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1581{
1582 pg_data_t *pgdat;
1583 int nid, zid;
1584
1585 if (!early_page_uninitialised(pfn))
1586 return;
1587
1588 nid = early_pfn_to_nid(pfn);
1589 pgdat = NODE_DATA(nid);
1590
1591 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1592 struct zone *zone = &pgdat->node_zones[zid];
1593
1594 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1595 break;
1596 }
d0dc12e8 1597 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1598}
1599#else
1600static inline void init_reserved_page(unsigned long pfn)
1601{
1602}
1603#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1604
92923ca3
NZ
1605/*
1606 * Initialised pages do not have PageReserved set. This function is
1607 * called for each range allocated by the bootmem allocator and
1608 * marks the pages PageReserved. The remaining valid pages are later
1609 * sent to the buddy page allocator.
1610 */
4b50bcc7 1611void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1612{
1613 unsigned long start_pfn = PFN_DOWN(start);
1614 unsigned long end_pfn = PFN_UP(end);
1615
7e18adb4
MG
1616 for (; start_pfn < end_pfn; start_pfn++) {
1617 if (pfn_valid(start_pfn)) {
1618 struct page *page = pfn_to_page(start_pfn);
1619
1620 init_reserved_page(start_pfn);
1d798ca3
KS
1621
1622 /* Avoid false-positive PageTail() */
1623 INIT_LIST_HEAD(&page->lru);
1624
d483da5b
AD
1625 /*
1626 * no need for atomic set_bit because the struct
1627 * page is not visible yet so nobody should
1628 * access it yet.
1629 */
1630 __SetPageReserved(page);
7e18adb4
MG
1631 }
1632 }
92923ca3
NZ
1633}
1634
7fef431b
DH
1635static void __free_pages_ok(struct page *page, unsigned int order,
1636 fpi_t fpi_flags)
ec95f53a 1637{
d34b0733 1638 unsigned long flags;
95e34412 1639 int migratetype;
dc4b0caf 1640 unsigned long pfn = page_to_pfn(page);
56f0e661 1641 struct zone *zone = page_zone(page);
ec95f53a 1642
2c335680 1643 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1644 return;
1645
cfc47a28 1646 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1647
56f0e661 1648 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1649 if (unlikely(has_isolate_pageblock(zone) ||
1650 is_migrate_isolate(migratetype))) {
1651 migratetype = get_pfnblock_migratetype(page, pfn);
1652 }
1653 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1654 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1655
d34b0733 1656 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1657}
1658
a9cd410a 1659void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1660{
c3993076 1661 unsigned int nr_pages = 1 << order;
e2d0bd2b 1662 struct page *p = page;
c3993076 1663 unsigned int loop;
a226f6c8 1664
7fef431b
DH
1665 /*
1666 * When initializing the memmap, __init_single_page() sets the refcount
1667 * of all pages to 1 ("allocated"/"not free"). We have to set the
1668 * refcount of all involved pages to 0.
1669 */
e2d0bd2b
YL
1670 prefetchw(p);
1671 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1672 prefetchw(p + 1);
c3993076
JW
1673 __ClearPageReserved(p);
1674 set_page_count(p, 0);
a226f6c8 1675 }
e2d0bd2b
YL
1676 __ClearPageReserved(p);
1677 set_page_count(p, 0);
c3993076 1678
9705bea5 1679 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1680
1681 /*
1682 * Bypass PCP and place fresh pages right to the tail, primarily
1683 * relevant for memory onlining.
1684 */
2c335680 1685 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1686}
1687
a9ee6cf5 1688#ifdef CONFIG_NUMA
7ace9917 1689
03e92a5e
MR
1690/*
1691 * During memory init memblocks map pfns to nids. The search is expensive and
1692 * this caches recent lookups. The implementation of __early_pfn_to_nid
1693 * treats start/end as pfns.
1694 */
1695struct mminit_pfnnid_cache {
1696 unsigned long last_start;
1697 unsigned long last_end;
1698 int last_nid;
1699};
75a592a4 1700
03e92a5e 1701static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1702
1703/*
1704 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1705 */
03e92a5e 1706static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1707 struct mminit_pfnnid_cache *state)
75a592a4 1708{
6f24fbd3 1709 unsigned long start_pfn, end_pfn;
75a592a4
MG
1710 int nid;
1711
6f24fbd3
MR
1712 if (state->last_start <= pfn && pfn < state->last_end)
1713 return state->last_nid;
1714
1715 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1716 if (nid != NUMA_NO_NODE) {
1717 state->last_start = start_pfn;
1718 state->last_end = end_pfn;
1719 state->last_nid = nid;
1720 }
7ace9917
MG
1721
1722 return nid;
75a592a4 1723}
75a592a4 1724
75a592a4 1725int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1726{
7ace9917 1727 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1728 int nid;
1729
7ace9917 1730 spin_lock(&early_pfn_lock);
56ec43d8 1731 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1732 if (nid < 0)
e4568d38 1733 nid = first_online_node;
7ace9917 1734 spin_unlock(&early_pfn_lock);
75a592a4 1735
7ace9917 1736 return nid;
75a592a4 1737}
a9ee6cf5 1738#endif /* CONFIG_NUMA */
75a592a4 1739
7c2ee349 1740void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1741 unsigned int order)
1742{
1743 if (early_page_uninitialised(pfn))
1744 return;
a9cd410a 1745 __free_pages_core(page, order);
3a80a7fa
MG
1746}
1747
7cf91a98
JK
1748/*
1749 * Check that the whole (or subset of) a pageblock given by the interval of
1750 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1751 * with the migration of free compaction scanner.
7cf91a98
JK
1752 *
1753 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1754 *
1755 * It's possible on some configurations to have a setup like node0 node1 node0
1756 * i.e. it's possible that all pages within a zones range of pages do not
1757 * belong to a single zone. We assume that a border between node0 and node1
1758 * can occur within a single pageblock, but not a node0 node1 node0
1759 * interleaving within a single pageblock. It is therefore sufficient to check
1760 * the first and last page of a pageblock and avoid checking each individual
1761 * page in a pageblock.
1762 */
1763struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1764 unsigned long end_pfn, struct zone *zone)
1765{
1766 struct page *start_page;
1767 struct page *end_page;
1768
1769 /* end_pfn is one past the range we are checking */
1770 end_pfn--;
1771
1772 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1773 return NULL;
1774
2d070eab
MH
1775 start_page = pfn_to_online_page(start_pfn);
1776 if (!start_page)
1777 return NULL;
7cf91a98
JK
1778
1779 if (page_zone(start_page) != zone)
1780 return NULL;
1781
1782 end_page = pfn_to_page(end_pfn);
1783
1784 /* This gives a shorter code than deriving page_zone(end_page) */
1785 if (page_zone_id(start_page) != page_zone_id(end_page))
1786 return NULL;
1787
1788 return start_page;
1789}
1790
1791void set_zone_contiguous(struct zone *zone)
1792{
1793 unsigned long block_start_pfn = zone->zone_start_pfn;
1794 unsigned long block_end_pfn;
1795
1796 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1797 for (; block_start_pfn < zone_end_pfn(zone);
1798 block_start_pfn = block_end_pfn,
1799 block_end_pfn += pageblock_nr_pages) {
1800
1801 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1802
1803 if (!__pageblock_pfn_to_page(block_start_pfn,
1804 block_end_pfn, zone))
1805 return;
e84fe99b 1806 cond_resched();
7cf91a98
JK
1807 }
1808
1809 /* We confirm that there is no hole */
1810 zone->contiguous = true;
1811}
1812
1813void clear_zone_contiguous(struct zone *zone)
1814{
1815 zone->contiguous = false;
1816}
1817
7e18adb4 1818#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1819static void __init deferred_free_range(unsigned long pfn,
1820 unsigned long nr_pages)
a4de83dd 1821{
2f47a91f
PT
1822 struct page *page;
1823 unsigned long i;
a4de83dd 1824
2f47a91f 1825 if (!nr_pages)
a4de83dd
MG
1826 return;
1827
2f47a91f
PT
1828 page = pfn_to_page(pfn);
1829
a4de83dd 1830 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1831 if (nr_pages == pageblock_nr_pages &&
1832 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1833 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1834 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1835 return;
1836 }
1837
e780149b
XQ
1838 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1839 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1840 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1841 __free_pages_core(page, 0);
e780149b 1842 }
a4de83dd
MG
1843}
1844
d3cd131d
NS
1845/* Completion tracking for deferred_init_memmap() threads */
1846static atomic_t pgdat_init_n_undone __initdata;
1847static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1848
1849static inline void __init pgdat_init_report_one_done(void)
1850{
1851 if (atomic_dec_and_test(&pgdat_init_n_undone))
1852 complete(&pgdat_init_all_done_comp);
1853}
0e1cc95b 1854
2f47a91f 1855/*
80b1f41c
PT
1856 * Returns true if page needs to be initialized or freed to buddy allocator.
1857 *
1858 * First we check if pfn is valid on architectures where it is possible to have
1859 * holes within pageblock_nr_pages. On systems where it is not possible, this
1860 * function is optimized out.
1861 *
1862 * Then, we check if a current large page is valid by only checking the validity
1863 * of the head pfn.
2f47a91f 1864 */
56ec43d8 1865static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1866{
80b1f41c
PT
1867 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1868 return false;
80b1f41c
PT
1869 return true;
1870}
2f47a91f 1871
80b1f41c
PT
1872/*
1873 * Free pages to buddy allocator. Try to free aligned pages in
1874 * pageblock_nr_pages sizes.
1875 */
56ec43d8 1876static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1877 unsigned long end_pfn)
1878{
80b1f41c
PT
1879 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1880 unsigned long nr_free = 0;
2f47a91f 1881
80b1f41c 1882 for (; pfn < end_pfn; pfn++) {
56ec43d8 1883 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1884 deferred_free_range(pfn - nr_free, nr_free);
1885 nr_free = 0;
1886 } else if (!(pfn & nr_pgmask)) {
1887 deferred_free_range(pfn - nr_free, nr_free);
1888 nr_free = 1;
80b1f41c
PT
1889 } else {
1890 nr_free++;
1891 }
1892 }
1893 /* Free the last block of pages to allocator */
1894 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1895}
1896
80b1f41c
PT
1897/*
1898 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1899 * by performing it only once every pageblock_nr_pages.
1900 * Return number of pages initialized.
1901 */
56ec43d8 1902static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1903 unsigned long pfn,
1904 unsigned long end_pfn)
2f47a91f 1905{
2f47a91f 1906 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1907 int nid = zone_to_nid(zone);
2f47a91f 1908 unsigned long nr_pages = 0;
56ec43d8 1909 int zid = zone_idx(zone);
2f47a91f 1910 struct page *page = NULL;
2f47a91f 1911
80b1f41c 1912 for (; pfn < end_pfn; pfn++) {
56ec43d8 1913 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1914 page = NULL;
2f47a91f 1915 continue;
80b1f41c 1916 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1917 page = pfn_to_page(pfn);
80b1f41c
PT
1918 } else {
1919 page++;
2f47a91f 1920 }
d0dc12e8 1921 __init_single_page(page, pfn, zid, nid);
80b1f41c 1922 nr_pages++;
2f47a91f 1923 }
80b1f41c 1924 return (nr_pages);
2f47a91f
PT
1925}
1926
0e56acae
AD
1927/*
1928 * This function is meant to pre-load the iterator for the zone init.
1929 * Specifically it walks through the ranges until we are caught up to the
1930 * first_init_pfn value and exits there. If we never encounter the value we
1931 * return false indicating there are no valid ranges left.
1932 */
1933static bool __init
1934deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1935 unsigned long *spfn, unsigned long *epfn,
1936 unsigned long first_init_pfn)
1937{
1938 u64 j;
1939
1940 /*
1941 * Start out by walking through the ranges in this zone that have
1942 * already been initialized. We don't need to do anything with them
1943 * so we just need to flush them out of the system.
1944 */
1945 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1946 if (*epfn <= first_init_pfn)
1947 continue;
1948 if (*spfn < first_init_pfn)
1949 *spfn = first_init_pfn;
1950 *i = j;
1951 return true;
1952 }
1953
1954 return false;
1955}
1956
1957/*
1958 * Initialize and free pages. We do it in two loops: first we initialize
1959 * struct page, then free to buddy allocator, because while we are
1960 * freeing pages we can access pages that are ahead (computing buddy
1961 * page in __free_one_page()).
1962 *
1963 * In order to try and keep some memory in the cache we have the loop
1964 * broken along max page order boundaries. This way we will not cause
1965 * any issues with the buddy page computation.
1966 */
1967static unsigned long __init
1968deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1969 unsigned long *end_pfn)
1970{
1971 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1972 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1973 unsigned long nr_pages = 0;
1974 u64 j = *i;
1975
1976 /* First we loop through and initialize the page values */
1977 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1978 unsigned long t;
1979
1980 if (mo_pfn <= *start_pfn)
1981 break;
1982
1983 t = min(mo_pfn, *end_pfn);
1984 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1985
1986 if (mo_pfn < *end_pfn) {
1987 *start_pfn = mo_pfn;
1988 break;
1989 }
1990 }
1991
1992 /* Reset values and now loop through freeing pages as needed */
1993 swap(j, *i);
1994
1995 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1996 unsigned long t;
1997
1998 if (mo_pfn <= spfn)
1999 break;
2000
2001 t = min(mo_pfn, epfn);
2002 deferred_free_pages(spfn, t);
2003
2004 if (mo_pfn <= epfn)
2005 break;
2006 }
2007
2008 return nr_pages;
2009}
2010
e4443149
DJ
2011static void __init
2012deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2013 void *arg)
2014{
2015 unsigned long spfn, epfn;
2016 struct zone *zone = arg;
2017 u64 i;
2018
2019 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2020
2021 /*
2022 * Initialize and free pages in MAX_ORDER sized increments so that we
2023 * can avoid introducing any issues with the buddy allocator.
2024 */
2025 while (spfn < end_pfn) {
2026 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2027 cond_resched();
2028 }
2029}
2030
ecd09650
DJ
2031/* An arch may override for more concurrency. */
2032__weak int __init
2033deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2034{
2035 return 1;
2036}
2037
7e18adb4 2038/* Initialise remaining memory on a node */
0e1cc95b 2039static int __init deferred_init_memmap(void *data)
7e18adb4 2040{
0e1cc95b 2041 pg_data_t *pgdat = data;
0e56acae 2042 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2043 unsigned long spfn = 0, epfn = 0;
0e56acae 2044 unsigned long first_init_pfn, flags;
7e18adb4 2045 unsigned long start = jiffies;
7e18adb4 2046 struct zone *zone;
e4443149 2047 int zid, max_threads;
2f47a91f 2048 u64 i;
7e18adb4 2049
3a2d7fa8
PT
2050 /* Bind memory initialisation thread to a local node if possible */
2051 if (!cpumask_empty(cpumask))
2052 set_cpus_allowed_ptr(current, cpumask);
2053
2054 pgdat_resize_lock(pgdat, &flags);
2055 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2056 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2057 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2058 pgdat_init_report_one_done();
0e1cc95b
MG
2059 return 0;
2060 }
2061
7e18adb4
MG
2062 /* Sanity check boundaries */
2063 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2064 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2065 pgdat->first_deferred_pfn = ULONG_MAX;
2066
3d060856
PT
2067 /*
2068 * Once we unlock here, the zone cannot be grown anymore, thus if an
2069 * interrupt thread must allocate this early in boot, zone must be
2070 * pre-grown prior to start of deferred page initialization.
2071 */
2072 pgdat_resize_unlock(pgdat, &flags);
2073
7e18adb4
MG
2074 /* Only the highest zone is deferred so find it */
2075 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2076 zone = pgdat->node_zones + zid;
2077 if (first_init_pfn < zone_end_pfn(zone))
2078 break;
2079 }
0e56acae
AD
2080
2081 /* If the zone is empty somebody else may have cleared out the zone */
2082 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2083 first_init_pfn))
2084 goto zone_empty;
7e18adb4 2085
ecd09650 2086 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2087
117003c3 2088 while (spfn < epfn) {
e4443149
DJ
2089 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2090 struct padata_mt_job job = {
2091 .thread_fn = deferred_init_memmap_chunk,
2092 .fn_arg = zone,
2093 .start = spfn,
2094 .size = epfn_align - spfn,
2095 .align = PAGES_PER_SECTION,
2096 .min_chunk = PAGES_PER_SECTION,
2097 .max_threads = max_threads,
2098 };
2099
2100 padata_do_multithreaded(&job);
2101 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2102 epfn_align);
117003c3 2103 }
0e56acae 2104zone_empty:
7e18adb4
MG
2105 /* Sanity check that the next zone really is unpopulated */
2106 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2107
89c7c402
DJ
2108 pr_info("node %d deferred pages initialised in %ums\n",
2109 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2110
2111 pgdat_init_report_one_done();
0e1cc95b
MG
2112 return 0;
2113}
c9e97a19 2114
c9e97a19
PT
2115/*
2116 * If this zone has deferred pages, try to grow it by initializing enough
2117 * deferred pages to satisfy the allocation specified by order, rounded up to
2118 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2119 * of SECTION_SIZE bytes by initializing struct pages in increments of
2120 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2121 *
2122 * Return true when zone was grown, otherwise return false. We return true even
2123 * when we grow less than requested, to let the caller decide if there are
2124 * enough pages to satisfy the allocation.
2125 *
2126 * Note: We use noinline because this function is needed only during boot, and
2127 * it is called from a __ref function _deferred_grow_zone. This way we are
2128 * making sure that it is not inlined into permanent text section.
2129 */
2130static noinline bool __init
2131deferred_grow_zone(struct zone *zone, unsigned int order)
2132{
c9e97a19 2133 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2134 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2135 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2136 unsigned long spfn, epfn, flags;
2137 unsigned long nr_pages = 0;
c9e97a19
PT
2138 u64 i;
2139
2140 /* Only the last zone may have deferred pages */
2141 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2142 return false;
2143
2144 pgdat_resize_lock(pgdat, &flags);
2145
c9e97a19
PT
2146 /*
2147 * If someone grew this zone while we were waiting for spinlock, return
2148 * true, as there might be enough pages already.
2149 */
2150 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2151 pgdat_resize_unlock(pgdat, &flags);
2152 return true;
2153 }
2154
0e56acae
AD
2155 /* If the zone is empty somebody else may have cleared out the zone */
2156 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2157 first_deferred_pfn)) {
2158 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2159 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2160 /* Retry only once. */
2161 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2162 }
2163
0e56acae
AD
2164 /*
2165 * Initialize and free pages in MAX_ORDER sized increments so
2166 * that we can avoid introducing any issues with the buddy
2167 * allocator.
2168 */
2169 while (spfn < epfn) {
2170 /* update our first deferred PFN for this section */
2171 first_deferred_pfn = spfn;
2172
2173 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2174 touch_nmi_watchdog();
c9e97a19 2175
0e56acae
AD
2176 /* We should only stop along section boundaries */
2177 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2178 continue;
c9e97a19 2179
0e56acae 2180 /* If our quota has been met we can stop here */
c9e97a19
PT
2181 if (nr_pages >= nr_pages_needed)
2182 break;
2183 }
2184
0e56acae 2185 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2186 pgdat_resize_unlock(pgdat, &flags);
2187
2188 return nr_pages > 0;
2189}
2190
2191/*
2192 * deferred_grow_zone() is __init, but it is called from
2193 * get_page_from_freelist() during early boot until deferred_pages permanently
2194 * disables this call. This is why we have refdata wrapper to avoid warning,
2195 * and to ensure that the function body gets unloaded.
2196 */
2197static bool __ref
2198_deferred_grow_zone(struct zone *zone, unsigned int order)
2199{
2200 return deferred_grow_zone(zone, order);
2201}
2202
7cf91a98 2203#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2204
2205void __init page_alloc_init_late(void)
2206{
7cf91a98 2207 struct zone *zone;
e900a918 2208 int nid;
7cf91a98
JK
2209
2210#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2211
d3cd131d
NS
2212 /* There will be num_node_state(N_MEMORY) threads */
2213 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2214 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2215 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2216 }
2217
2218 /* Block until all are initialised */
d3cd131d 2219 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2220
c9e97a19
PT
2221 /*
2222 * We initialized the rest of the deferred pages. Permanently disable
2223 * on-demand struct page initialization.
2224 */
2225 static_branch_disable(&deferred_pages);
2226
4248b0da
MG
2227 /* Reinit limits that are based on free pages after the kernel is up */
2228 files_maxfiles_init();
7cf91a98 2229#endif
350e88ba 2230
ba8f3587
LF
2231 buffer_init();
2232
3010f876
PT
2233 /* Discard memblock private memory */
2234 memblock_discard();
7cf91a98 2235
e900a918
DW
2236 for_each_node_state(nid, N_MEMORY)
2237 shuffle_free_memory(NODE_DATA(nid));
2238
7cf91a98
JK
2239 for_each_populated_zone(zone)
2240 set_zone_contiguous(zone);
7e18adb4 2241}
7e18adb4 2242
47118af0 2243#ifdef CONFIG_CMA
9cf510a5 2244/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2245void __init init_cma_reserved_pageblock(struct page *page)
2246{
2247 unsigned i = pageblock_nr_pages;
2248 struct page *p = page;
2249
2250 do {
2251 __ClearPageReserved(p);
2252 set_page_count(p, 0);
d883c6cf 2253 } while (++p, --i);
47118af0 2254
47118af0 2255 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2256
2257 if (pageblock_order >= MAX_ORDER) {
2258 i = pageblock_nr_pages;
2259 p = page;
2260 do {
2261 set_page_refcounted(p);
2262 __free_pages(p, MAX_ORDER - 1);
2263 p += MAX_ORDER_NR_PAGES;
2264 } while (i -= MAX_ORDER_NR_PAGES);
2265 } else {
2266 set_page_refcounted(page);
2267 __free_pages(page, pageblock_order);
2268 }
2269
3dcc0571 2270 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2271 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2272}
2273#endif
1da177e4
LT
2274
2275/*
2276 * The order of subdivision here is critical for the IO subsystem.
2277 * Please do not alter this order without good reasons and regression
2278 * testing. Specifically, as large blocks of memory are subdivided,
2279 * the order in which smaller blocks are delivered depends on the order
2280 * they're subdivided in this function. This is the primary factor
2281 * influencing the order in which pages are delivered to the IO
2282 * subsystem according to empirical testing, and this is also justified
2283 * by considering the behavior of a buddy system containing a single
2284 * large block of memory acted on by a series of small allocations.
2285 * This behavior is a critical factor in sglist merging's success.
2286 *
6d49e352 2287 * -- nyc
1da177e4 2288 */
085cc7d5 2289static inline void expand(struct zone *zone, struct page *page,
6ab01363 2290 int low, int high, int migratetype)
1da177e4
LT
2291{
2292 unsigned long size = 1 << high;
2293
2294 while (high > low) {
1da177e4
LT
2295 high--;
2296 size >>= 1;
309381fe 2297 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2298
acbc15a4
JK
2299 /*
2300 * Mark as guard pages (or page), that will allow to
2301 * merge back to allocator when buddy will be freed.
2302 * Corresponding page table entries will not be touched,
2303 * pages will stay not present in virtual address space
2304 */
2305 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2306 continue;
acbc15a4 2307
6ab01363 2308 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2309 set_buddy_order(&page[size], high);
1da177e4 2310 }
1da177e4
LT
2311}
2312
4e611801 2313static void check_new_page_bad(struct page *page)
1da177e4 2314{
f4c18e6f 2315 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2316 /* Don't complain about hwpoisoned pages */
2317 page_mapcount_reset(page); /* remove PageBuddy */
2318 return;
f4c18e6f 2319 }
58b7f119
WY
2320
2321 bad_page(page,
2322 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2323}
2324
2325/*
2326 * This page is about to be returned from the page allocator
2327 */
2328static inline int check_new_page(struct page *page)
2329{
2330 if (likely(page_expected_state(page,
2331 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2332 return 0;
2333
2334 check_new_page_bad(page);
2335 return 1;
2a7684a2
WF
2336}
2337
479f854a 2338#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2339/*
2340 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2341 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2342 * also checked when pcp lists are refilled from the free lists.
2343 */
2344static inline bool check_pcp_refill(struct page *page)
479f854a 2345{
8e57f8ac 2346 if (debug_pagealloc_enabled_static())
4462b32c
VB
2347 return check_new_page(page);
2348 else
2349 return false;
479f854a
MG
2350}
2351
4462b32c 2352static inline bool check_new_pcp(struct page *page)
479f854a
MG
2353{
2354 return check_new_page(page);
2355}
2356#else
4462b32c
VB
2357/*
2358 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2359 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2360 * enabled, they are also checked when being allocated from the pcp lists.
2361 */
2362static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2363{
2364 return check_new_page(page);
2365}
4462b32c 2366static inline bool check_new_pcp(struct page *page)
479f854a 2367{
8e57f8ac 2368 if (debug_pagealloc_enabled_static())
4462b32c
VB
2369 return check_new_page(page);
2370 else
2371 return false;
479f854a
MG
2372}
2373#endif /* CONFIG_DEBUG_VM */
2374
2375static bool check_new_pages(struct page *page, unsigned int order)
2376{
2377 int i;
2378 for (i = 0; i < (1 << order); i++) {
2379 struct page *p = page + i;
2380
2381 if (unlikely(check_new_page(p)))
2382 return true;
2383 }
2384
2385 return false;
2386}
2387
46f24fd8
JK
2388inline void post_alloc_hook(struct page *page, unsigned int order,
2389 gfp_t gfp_flags)
2390{
2391 set_page_private(page, 0);
2392 set_page_refcounted(page);
2393
2394 arch_alloc_page(page, order);
77bc7fd6 2395 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2396
2397 /*
2398 * Page unpoisoning must happen before memory initialization.
2399 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2400 * allocations and the page unpoisoning code will complain.
2401 */
8db26a3d 2402 kernel_unpoison_pages(page, 1 << order);
862b6dee 2403
1bb5eab3
AK
2404 /*
2405 * As memory initialization might be integrated into KASAN,
2406 * kasan_alloc_pages and kernel_init_free_pages must be
2407 * kept together to avoid discrepancies in behavior.
2408 */
7a3b8353
PC
2409 if (kasan_has_integrated_init()) {
2410 kasan_alloc_pages(page, order, gfp_flags);
2411 } else {
2412 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2413
2414 kasan_unpoison_pages(page, order, init);
2415 if (init)
013bb59d
PC
2416 kernel_init_free_pages(page, 1 << order,
2417 gfp_flags & __GFP_ZEROTAGS);
7a3b8353 2418 }
1bb5eab3
AK
2419
2420 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2421}
2422
479f854a 2423static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2424 unsigned int alloc_flags)
2a7684a2 2425{
46f24fd8 2426 post_alloc_hook(page, order, gfp_flags);
17cf4406 2427
17cf4406
NP
2428 if (order && (gfp_flags & __GFP_COMP))
2429 prep_compound_page(page, order);
2430
75379191 2431 /*
2f064f34 2432 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2433 * allocate the page. The expectation is that the caller is taking
2434 * steps that will free more memory. The caller should avoid the page
2435 * being used for !PFMEMALLOC purposes.
2436 */
2f064f34
MH
2437 if (alloc_flags & ALLOC_NO_WATERMARKS)
2438 set_page_pfmemalloc(page);
2439 else
2440 clear_page_pfmemalloc(page);
1da177e4
LT
2441}
2442
56fd56b8
MG
2443/*
2444 * Go through the free lists for the given migratetype and remove
2445 * the smallest available page from the freelists
2446 */
85ccc8fa 2447static __always_inline
728ec980 2448struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2449 int migratetype)
2450{
2451 unsigned int current_order;
b8af2941 2452 struct free_area *area;
56fd56b8
MG
2453 struct page *page;
2454
2455 /* Find a page of the appropriate size in the preferred list */
2456 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2457 area = &(zone->free_area[current_order]);
b03641af 2458 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2459 if (!page)
2460 continue;
6ab01363
AD
2461 del_page_from_free_list(page, zone, current_order);
2462 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2463 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2464 return page;
2465 }
2466
2467 return NULL;
2468}
2469
2470
b2a0ac88
MG
2471/*
2472 * This array describes the order lists are fallen back to when
2473 * the free lists for the desirable migrate type are depleted
2474 */
da415663 2475static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2476 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2477 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2478 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2479#ifdef CONFIG_CMA
974a786e 2480 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2481#endif
194159fb 2482#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2483 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2484#endif
b2a0ac88
MG
2485};
2486
dc67647b 2487#ifdef CONFIG_CMA
85ccc8fa 2488static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2489 unsigned int order)
2490{
2491 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2492}
2493#else
2494static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2495 unsigned int order) { return NULL; }
2496#endif
2497
c361be55 2498/*
293ffa5e 2499 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2500 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2501 * boundary. If alignment is required, use move_freepages_block()
2502 */
02aa0cdd 2503static int move_freepages(struct zone *zone,
39ddb991 2504 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2505 int migratetype, int *num_movable)
c361be55
MG
2506{
2507 struct page *page;
39ddb991 2508 unsigned long pfn;
d00181b9 2509 unsigned int order;
d100313f 2510 int pages_moved = 0;
c361be55 2511
39ddb991 2512 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2513 page = pfn_to_page(pfn);
c361be55 2514 if (!PageBuddy(page)) {
02aa0cdd
VB
2515 /*
2516 * We assume that pages that could be isolated for
2517 * migration are movable. But we don't actually try
2518 * isolating, as that would be expensive.
2519 */
2520 if (num_movable &&
2521 (PageLRU(page) || __PageMovable(page)))
2522 (*num_movable)++;
39ddb991 2523 pfn++;
c361be55
MG
2524 continue;
2525 }
2526
cd961038
DR
2527 /* Make sure we are not inadvertently changing nodes */
2528 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2529 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2530
ab130f91 2531 order = buddy_order(page);
6ab01363 2532 move_to_free_list(page, zone, order, migratetype);
39ddb991 2533 pfn += 1 << order;
d100313f 2534 pages_moved += 1 << order;
c361be55
MG
2535 }
2536
d100313f 2537 return pages_moved;
c361be55
MG
2538}
2539
ee6f509c 2540int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2541 int migratetype, int *num_movable)
c361be55 2542{
39ddb991 2543 unsigned long start_pfn, end_pfn, pfn;
c361be55 2544
4a222127
DR
2545 if (num_movable)
2546 *num_movable = 0;
2547
39ddb991
KW
2548 pfn = page_to_pfn(page);
2549 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2550 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2551
2552 /* Do not cross zone boundaries */
108bcc96 2553 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2554 start_pfn = pfn;
108bcc96 2555 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2556 return 0;
2557
39ddb991 2558 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2559 num_movable);
c361be55
MG
2560}
2561
2f66a68f
MG
2562static void change_pageblock_range(struct page *pageblock_page,
2563 int start_order, int migratetype)
2564{
2565 int nr_pageblocks = 1 << (start_order - pageblock_order);
2566
2567 while (nr_pageblocks--) {
2568 set_pageblock_migratetype(pageblock_page, migratetype);
2569 pageblock_page += pageblock_nr_pages;
2570 }
2571}
2572
fef903ef 2573/*
9c0415eb
VB
2574 * When we are falling back to another migratetype during allocation, try to
2575 * steal extra free pages from the same pageblocks to satisfy further
2576 * allocations, instead of polluting multiple pageblocks.
2577 *
2578 * If we are stealing a relatively large buddy page, it is likely there will
2579 * be more free pages in the pageblock, so try to steal them all. For
2580 * reclaimable and unmovable allocations, we steal regardless of page size,
2581 * as fragmentation caused by those allocations polluting movable pageblocks
2582 * is worse than movable allocations stealing from unmovable and reclaimable
2583 * pageblocks.
fef903ef 2584 */
4eb7dce6
JK
2585static bool can_steal_fallback(unsigned int order, int start_mt)
2586{
2587 /*
2588 * Leaving this order check is intended, although there is
2589 * relaxed order check in next check. The reason is that
2590 * we can actually steal whole pageblock if this condition met,
2591 * but, below check doesn't guarantee it and that is just heuristic
2592 * so could be changed anytime.
2593 */
2594 if (order >= pageblock_order)
2595 return true;
2596
2597 if (order >= pageblock_order / 2 ||
2598 start_mt == MIGRATE_RECLAIMABLE ||
2599 start_mt == MIGRATE_UNMOVABLE ||
2600 page_group_by_mobility_disabled)
2601 return true;
2602
2603 return false;
2604}
2605
597c8920 2606static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2607{
2608 unsigned long max_boost;
2609
2610 if (!watermark_boost_factor)
597c8920 2611 return false;
14f69140
HW
2612 /*
2613 * Don't bother in zones that are unlikely to produce results.
2614 * On small machines, including kdump capture kernels running
2615 * in a small area, boosting the watermark can cause an out of
2616 * memory situation immediately.
2617 */
2618 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2619 return false;
1c30844d
MG
2620
2621 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2622 watermark_boost_factor, 10000);
94b3334c
MG
2623
2624 /*
2625 * high watermark may be uninitialised if fragmentation occurs
2626 * very early in boot so do not boost. We do not fall
2627 * through and boost by pageblock_nr_pages as failing
2628 * allocations that early means that reclaim is not going
2629 * to help and it may even be impossible to reclaim the
2630 * boosted watermark resulting in a hang.
2631 */
2632 if (!max_boost)
597c8920 2633 return false;
94b3334c 2634
1c30844d
MG
2635 max_boost = max(pageblock_nr_pages, max_boost);
2636
2637 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2638 max_boost);
597c8920
JW
2639
2640 return true;
1c30844d
MG
2641}
2642
4eb7dce6
JK
2643/*
2644 * This function implements actual steal behaviour. If order is large enough,
2645 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2646 * pageblock to our migratetype and determine how many already-allocated pages
2647 * are there in the pageblock with a compatible migratetype. If at least half
2648 * of pages are free or compatible, we can change migratetype of the pageblock
2649 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2650 */
2651static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2652 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2653{
ab130f91 2654 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2655 int free_pages, movable_pages, alike_pages;
2656 int old_block_type;
2657
2658 old_block_type = get_pageblock_migratetype(page);
fef903ef 2659
3bc48f96
VB
2660 /*
2661 * This can happen due to races and we want to prevent broken
2662 * highatomic accounting.
2663 */
02aa0cdd 2664 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2665 goto single_page;
2666
fef903ef
SB
2667 /* Take ownership for orders >= pageblock_order */
2668 if (current_order >= pageblock_order) {
2669 change_pageblock_range(page, current_order, start_type);
3bc48f96 2670 goto single_page;
fef903ef
SB
2671 }
2672
1c30844d
MG
2673 /*
2674 * Boost watermarks to increase reclaim pressure to reduce the
2675 * likelihood of future fallbacks. Wake kswapd now as the node
2676 * may be balanced overall and kswapd will not wake naturally.
2677 */
597c8920 2678 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2679 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2680
3bc48f96
VB
2681 /* We are not allowed to try stealing from the whole block */
2682 if (!whole_block)
2683 goto single_page;
2684
02aa0cdd
VB
2685 free_pages = move_freepages_block(zone, page, start_type,
2686 &movable_pages);
2687 /*
2688 * Determine how many pages are compatible with our allocation.
2689 * For movable allocation, it's the number of movable pages which
2690 * we just obtained. For other types it's a bit more tricky.
2691 */
2692 if (start_type == MIGRATE_MOVABLE) {
2693 alike_pages = movable_pages;
2694 } else {
2695 /*
2696 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2697 * to MOVABLE pageblock, consider all non-movable pages as
2698 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2699 * vice versa, be conservative since we can't distinguish the
2700 * exact migratetype of non-movable pages.
2701 */
2702 if (old_block_type == MIGRATE_MOVABLE)
2703 alike_pages = pageblock_nr_pages
2704 - (free_pages + movable_pages);
2705 else
2706 alike_pages = 0;
2707 }
2708
3bc48f96 2709 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2710 if (!free_pages)
3bc48f96 2711 goto single_page;
fef903ef 2712
02aa0cdd
VB
2713 /*
2714 * If a sufficient number of pages in the block are either free or of
2715 * comparable migratability as our allocation, claim the whole block.
2716 */
2717 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2718 page_group_by_mobility_disabled)
2719 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2720
2721 return;
2722
2723single_page:
6ab01363 2724 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2725}
2726
2149cdae
JK
2727/*
2728 * Check whether there is a suitable fallback freepage with requested order.
2729 * If only_stealable is true, this function returns fallback_mt only if
2730 * we can steal other freepages all together. This would help to reduce
2731 * fragmentation due to mixed migratetype pages in one pageblock.
2732 */
2733int find_suitable_fallback(struct free_area *area, unsigned int order,
2734 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2735{
2736 int i;
2737 int fallback_mt;
2738
2739 if (area->nr_free == 0)
2740 return -1;
2741
2742 *can_steal = false;
2743 for (i = 0;; i++) {
2744 fallback_mt = fallbacks[migratetype][i];
974a786e 2745 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2746 break;
2747
b03641af 2748 if (free_area_empty(area, fallback_mt))
4eb7dce6 2749 continue;
fef903ef 2750
4eb7dce6
JK
2751 if (can_steal_fallback(order, migratetype))
2752 *can_steal = true;
2753
2149cdae
JK
2754 if (!only_stealable)
2755 return fallback_mt;
2756
2757 if (*can_steal)
2758 return fallback_mt;
fef903ef 2759 }
4eb7dce6
JK
2760
2761 return -1;
fef903ef
SB
2762}
2763
0aaa29a5
MG
2764/*
2765 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2766 * there are no empty page blocks that contain a page with a suitable order
2767 */
2768static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2769 unsigned int alloc_order)
2770{
2771 int mt;
2772 unsigned long max_managed, flags;
2773
2774 /*
2775 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2776 * Check is race-prone but harmless.
2777 */
9705bea5 2778 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2779 if (zone->nr_reserved_highatomic >= max_managed)
2780 return;
2781
2782 spin_lock_irqsave(&zone->lock, flags);
2783
2784 /* Recheck the nr_reserved_highatomic limit under the lock */
2785 if (zone->nr_reserved_highatomic >= max_managed)
2786 goto out_unlock;
2787
2788 /* Yoink! */
2789 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2790 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2791 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2792 zone->nr_reserved_highatomic += pageblock_nr_pages;
2793 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2794 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2795 }
2796
2797out_unlock:
2798 spin_unlock_irqrestore(&zone->lock, flags);
2799}
2800
2801/*
2802 * Used when an allocation is about to fail under memory pressure. This
2803 * potentially hurts the reliability of high-order allocations when under
2804 * intense memory pressure but failed atomic allocations should be easier
2805 * to recover from than an OOM.
29fac03b
MK
2806 *
2807 * If @force is true, try to unreserve a pageblock even though highatomic
2808 * pageblock is exhausted.
0aaa29a5 2809 */
29fac03b
MK
2810static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2811 bool force)
0aaa29a5
MG
2812{
2813 struct zonelist *zonelist = ac->zonelist;
2814 unsigned long flags;
2815 struct zoneref *z;
2816 struct zone *zone;
2817 struct page *page;
2818 int order;
04c8716f 2819 bool ret;
0aaa29a5 2820
97a225e6 2821 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2822 ac->nodemask) {
29fac03b
MK
2823 /*
2824 * Preserve at least one pageblock unless memory pressure
2825 * is really high.
2826 */
2827 if (!force && zone->nr_reserved_highatomic <=
2828 pageblock_nr_pages)
0aaa29a5
MG
2829 continue;
2830
2831 spin_lock_irqsave(&zone->lock, flags);
2832 for (order = 0; order < MAX_ORDER; order++) {
2833 struct free_area *area = &(zone->free_area[order]);
2834
b03641af 2835 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2836 if (!page)
0aaa29a5
MG
2837 continue;
2838
0aaa29a5 2839 /*
4855e4a7
MK
2840 * In page freeing path, migratetype change is racy so
2841 * we can counter several free pages in a pageblock
f0953a1b 2842 * in this loop although we changed the pageblock type
4855e4a7
MK
2843 * from highatomic to ac->migratetype. So we should
2844 * adjust the count once.
0aaa29a5 2845 */
a6ffdc07 2846 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2847 /*
2848 * It should never happen but changes to
2849 * locking could inadvertently allow a per-cpu
2850 * drain to add pages to MIGRATE_HIGHATOMIC
2851 * while unreserving so be safe and watch for
2852 * underflows.
2853 */
2854 zone->nr_reserved_highatomic -= min(
2855 pageblock_nr_pages,
2856 zone->nr_reserved_highatomic);
2857 }
0aaa29a5
MG
2858
2859 /*
2860 * Convert to ac->migratetype and avoid the normal
2861 * pageblock stealing heuristics. Minimally, the caller
2862 * is doing the work and needs the pages. More
2863 * importantly, if the block was always converted to
2864 * MIGRATE_UNMOVABLE or another type then the number
2865 * of pageblocks that cannot be completely freed
2866 * may increase.
2867 */
2868 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2869 ret = move_freepages_block(zone, page, ac->migratetype,
2870 NULL);
29fac03b
MK
2871 if (ret) {
2872 spin_unlock_irqrestore(&zone->lock, flags);
2873 return ret;
2874 }
0aaa29a5
MG
2875 }
2876 spin_unlock_irqrestore(&zone->lock, flags);
2877 }
04c8716f
MK
2878
2879 return false;
0aaa29a5
MG
2880}
2881
3bc48f96
VB
2882/*
2883 * Try finding a free buddy page on the fallback list and put it on the free
2884 * list of requested migratetype, possibly along with other pages from the same
2885 * block, depending on fragmentation avoidance heuristics. Returns true if
2886 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2887 *
2888 * The use of signed ints for order and current_order is a deliberate
2889 * deviation from the rest of this file, to make the for loop
2890 * condition simpler.
3bc48f96 2891 */
85ccc8fa 2892static __always_inline bool
6bb15450
MG
2893__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2894 unsigned int alloc_flags)
b2a0ac88 2895{
b8af2941 2896 struct free_area *area;
b002529d 2897 int current_order;
6bb15450 2898 int min_order = order;
b2a0ac88 2899 struct page *page;
4eb7dce6
JK
2900 int fallback_mt;
2901 bool can_steal;
b2a0ac88 2902
6bb15450
MG
2903 /*
2904 * Do not steal pages from freelists belonging to other pageblocks
2905 * i.e. orders < pageblock_order. If there are no local zones free,
2906 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2907 */
2908 if (alloc_flags & ALLOC_NOFRAGMENT)
2909 min_order = pageblock_order;
2910
7a8f58f3
VB
2911 /*
2912 * Find the largest available free page in the other list. This roughly
2913 * approximates finding the pageblock with the most free pages, which
2914 * would be too costly to do exactly.
2915 */
6bb15450 2916 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2917 --current_order) {
4eb7dce6
JK
2918 area = &(zone->free_area[current_order]);
2919 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2920 start_migratetype, false, &can_steal);
4eb7dce6
JK
2921 if (fallback_mt == -1)
2922 continue;
b2a0ac88 2923
7a8f58f3
VB
2924 /*
2925 * We cannot steal all free pages from the pageblock and the
2926 * requested migratetype is movable. In that case it's better to
2927 * steal and split the smallest available page instead of the
2928 * largest available page, because even if the next movable
2929 * allocation falls back into a different pageblock than this
2930 * one, it won't cause permanent fragmentation.
2931 */
2932 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2933 && current_order > order)
2934 goto find_smallest;
b2a0ac88 2935
7a8f58f3
VB
2936 goto do_steal;
2937 }
e0fff1bd 2938
7a8f58f3 2939 return false;
e0fff1bd 2940
7a8f58f3
VB
2941find_smallest:
2942 for (current_order = order; current_order < MAX_ORDER;
2943 current_order++) {
2944 area = &(zone->free_area[current_order]);
2945 fallback_mt = find_suitable_fallback(area, current_order,
2946 start_migratetype, false, &can_steal);
2947 if (fallback_mt != -1)
2948 break;
b2a0ac88
MG
2949 }
2950
7a8f58f3
VB
2951 /*
2952 * This should not happen - we already found a suitable fallback
2953 * when looking for the largest page.
2954 */
2955 VM_BUG_ON(current_order == MAX_ORDER);
2956
2957do_steal:
b03641af 2958 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2959
1c30844d
MG
2960 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2961 can_steal);
7a8f58f3
VB
2962
2963 trace_mm_page_alloc_extfrag(page, order, current_order,
2964 start_migratetype, fallback_mt);
2965
2966 return true;
2967
b2a0ac88
MG
2968}
2969
56fd56b8 2970/*
1da177e4
LT
2971 * Do the hard work of removing an element from the buddy allocator.
2972 * Call me with the zone->lock already held.
2973 */
85ccc8fa 2974static __always_inline struct page *
6bb15450
MG
2975__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2976 unsigned int alloc_flags)
1da177e4 2977{
1da177e4
LT
2978 struct page *page;
2979
ce8f86ee
H
2980 if (IS_ENABLED(CONFIG_CMA)) {
2981 /*
2982 * Balance movable allocations between regular and CMA areas by
2983 * allocating from CMA when over half of the zone's free memory
2984 * is in the CMA area.
2985 */
2986 if (alloc_flags & ALLOC_CMA &&
2987 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2988 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2989 page = __rmqueue_cma_fallback(zone, order);
2990 if (page)
2991 goto out;
2992 }
16867664 2993 }
3bc48f96 2994retry:
56fd56b8 2995 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2996 if (unlikely(!page)) {
8510e69c 2997 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2998 page = __rmqueue_cma_fallback(zone, order);
2999
6bb15450
MG
3000 if (!page && __rmqueue_fallback(zone, order, migratetype,
3001 alloc_flags))
3bc48f96 3002 goto retry;
728ec980 3003 }
ce8f86ee
H
3004out:
3005 if (page)
3006 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 3007 return page;
1da177e4
LT
3008}
3009
5f63b720 3010/*
1da177e4
LT
3011 * Obtain a specified number of elements from the buddy allocator, all under
3012 * a single hold of the lock, for efficiency. Add them to the supplied list.
3013 * Returns the number of new pages which were placed at *list.
3014 */
5f63b720 3015static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3016 unsigned long count, struct list_head *list,
6bb15450 3017 int migratetype, unsigned int alloc_flags)
1da177e4 3018{
cb66bede 3019 int i, allocated = 0;
5f63b720 3020
dbbee9d5
MG
3021 /*
3022 * local_lock_irq held so equivalent to spin_lock_irqsave for
3023 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3024 */
d34b0733 3025 spin_lock(&zone->lock);
1da177e4 3026 for (i = 0; i < count; ++i) {
6bb15450
MG
3027 struct page *page = __rmqueue(zone, order, migratetype,
3028 alloc_flags);
085cc7d5 3029 if (unlikely(page == NULL))
1da177e4 3030 break;
81eabcbe 3031
479f854a
MG
3032 if (unlikely(check_pcp_refill(page)))
3033 continue;
3034
81eabcbe 3035 /*
0fac3ba5
VB
3036 * Split buddy pages returned by expand() are received here in
3037 * physical page order. The page is added to the tail of
3038 * caller's list. From the callers perspective, the linked list
3039 * is ordered by page number under some conditions. This is
3040 * useful for IO devices that can forward direction from the
3041 * head, thus also in the physical page order. This is useful
3042 * for IO devices that can merge IO requests if the physical
3043 * pages are ordered properly.
81eabcbe 3044 */
0fac3ba5 3045 list_add_tail(&page->lru, list);
cb66bede 3046 allocated++;
bb14c2c7 3047 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3048 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3049 -(1 << order));
1da177e4 3050 }
a6de734b
MG
3051
3052 /*
3053 * i pages were removed from the buddy list even if some leak due
3054 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3055 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3056 * pages added to the pcp list.
3057 */
f2260e6b 3058 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3059 spin_unlock(&zone->lock);
cb66bede 3060 return allocated;
1da177e4
LT
3061}
3062
4ae7c039 3063#ifdef CONFIG_NUMA
8fce4d8e 3064/*
4037d452
CL
3065 * Called from the vmstat counter updater to drain pagesets of this
3066 * currently executing processor on remote nodes after they have
3067 * expired.
3068 *
879336c3
CL
3069 * Note that this function must be called with the thread pinned to
3070 * a single processor.
8fce4d8e 3071 */
4037d452 3072void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3073{
4ae7c039 3074 unsigned long flags;
7be12fc9 3075 int to_drain, batch;
4ae7c039 3076
dbbee9d5 3077 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3078 batch = READ_ONCE(pcp->batch);
7be12fc9 3079 to_drain = min(pcp->count, batch);
77ba9062 3080 if (to_drain > 0)
2a13515c 3081 free_pcppages_bulk(zone, to_drain, pcp);
dbbee9d5 3082 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3083}
3084#endif
3085
9f8f2172 3086/*
93481ff0 3087 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3088 *
3089 * The processor must either be the current processor and the
3090 * thread pinned to the current processor or a processor that
3091 * is not online.
3092 */
93481ff0 3093static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3094{
c54ad30c 3095 unsigned long flags;
93481ff0 3096 struct per_cpu_pages *pcp;
1da177e4 3097
dbbee9d5 3098 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3099
28f836b6 3100 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3101 if (pcp->count)
93481ff0 3102 free_pcppages_bulk(zone, pcp->count, pcp);
28f836b6 3103
dbbee9d5 3104 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3105}
3dfa5721 3106
93481ff0
VB
3107/*
3108 * Drain pcplists of all zones on the indicated processor.
3109 *
3110 * The processor must either be the current processor and the
3111 * thread pinned to the current processor or a processor that
3112 * is not online.
3113 */
3114static void drain_pages(unsigned int cpu)
3115{
3116 struct zone *zone;
3117
3118 for_each_populated_zone(zone) {
3119 drain_pages_zone(cpu, zone);
1da177e4
LT
3120 }
3121}
1da177e4 3122
9f8f2172
CL
3123/*
3124 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3125 *
3126 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3127 * the single zone's pages.
9f8f2172 3128 */
93481ff0 3129void drain_local_pages(struct zone *zone)
9f8f2172 3130{
93481ff0
VB
3131 int cpu = smp_processor_id();
3132
3133 if (zone)
3134 drain_pages_zone(cpu, zone);
3135 else
3136 drain_pages(cpu);
9f8f2172
CL
3137}
3138
0ccce3b9
MG
3139static void drain_local_pages_wq(struct work_struct *work)
3140{
d9367bd0
WY
3141 struct pcpu_drain *drain;
3142
3143 drain = container_of(work, struct pcpu_drain, work);
3144
a459eeb7
MH
3145 /*
3146 * drain_all_pages doesn't use proper cpu hotplug protection so
3147 * we can race with cpu offline when the WQ can move this from
3148 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3149 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3150 * a different one.
3151 */
3152 preempt_disable();
d9367bd0 3153 drain_local_pages(drain->zone);
a459eeb7 3154 preempt_enable();
0ccce3b9
MG
3155}
3156
9f8f2172 3157/*
ec6e8c7e
VB
3158 * The implementation of drain_all_pages(), exposing an extra parameter to
3159 * drain on all cpus.
93481ff0 3160 *
ec6e8c7e
VB
3161 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3162 * not empty. The check for non-emptiness can however race with a free to
3163 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3164 * that need the guarantee that every CPU has drained can disable the
3165 * optimizing racy check.
9f8f2172 3166 */
3b1f3658 3167static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3168{
74046494 3169 int cpu;
74046494
GBY
3170
3171 /*
041711ce 3172 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3173 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3174 */
3175 static cpumask_t cpus_with_pcps;
3176
ce612879
MH
3177 /*
3178 * Make sure nobody triggers this path before mm_percpu_wq is fully
3179 * initialized.
3180 */
3181 if (WARN_ON_ONCE(!mm_percpu_wq))
3182 return;
3183
bd233f53
MG
3184 /*
3185 * Do not drain if one is already in progress unless it's specific to
3186 * a zone. Such callers are primarily CMA and memory hotplug and need
3187 * the drain to be complete when the call returns.
3188 */
3189 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3190 if (!zone)
3191 return;
3192 mutex_lock(&pcpu_drain_mutex);
3193 }
0ccce3b9 3194
74046494
GBY
3195 /*
3196 * We don't care about racing with CPU hotplug event
3197 * as offline notification will cause the notified
3198 * cpu to drain that CPU pcps and on_each_cpu_mask
3199 * disables preemption as part of its processing
3200 */
3201 for_each_online_cpu(cpu) {
28f836b6 3202 struct per_cpu_pages *pcp;
93481ff0 3203 struct zone *z;
74046494 3204 bool has_pcps = false;
93481ff0 3205
ec6e8c7e
VB
3206 if (force_all_cpus) {
3207 /*
3208 * The pcp.count check is racy, some callers need a
3209 * guarantee that no cpu is missed.
3210 */
3211 has_pcps = true;
3212 } else if (zone) {
28f836b6
MG
3213 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3214 if (pcp->count)
74046494 3215 has_pcps = true;
93481ff0
VB
3216 } else {
3217 for_each_populated_zone(z) {
28f836b6
MG
3218 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3219 if (pcp->count) {
93481ff0
VB
3220 has_pcps = true;
3221 break;
3222 }
74046494
GBY
3223 }
3224 }
93481ff0 3225
74046494
GBY
3226 if (has_pcps)
3227 cpumask_set_cpu(cpu, &cpus_with_pcps);
3228 else
3229 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3230 }
0ccce3b9 3231
bd233f53 3232 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3233 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3234
3235 drain->zone = zone;
3236 INIT_WORK(&drain->work, drain_local_pages_wq);
3237 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3238 }
bd233f53 3239 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3240 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3241
3242 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3243}
3244
ec6e8c7e
VB
3245/*
3246 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3247 *
3248 * When zone parameter is non-NULL, spill just the single zone's pages.
3249 *
3250 * Note that this can be extremely slow as the draining happens in a workqueue.
3251 */
3252void drain_all_pages(struct zone *zone)
3253{
3254 __drain_all_pages(zone, false);
3255}
3256
296699de 3257#ifdef CONFIG_HIBERNATION
1da177e4 3258
556b969a
CY
3259/*
3260 * Touch the watchdog for every WD_PAGE_COUNT pages.
3261 */
3262#define WD_PAGE_COUNT (128*1024)
3263
1da177e4
LT
3264void mark_free_pages(struct zone *zone)
3265{
556b969a 3266 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3267 unsigned long flags;
7aeb09f9 3268 unsigned int order, t;
86760a2c 3269 struct page *page;
1da177e4 3270
8080fc03 3271 if (zone_is_empty(zone))
1da177e4
LT
3272 return;
3273
3274 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3275
108bcc96 3276 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3277 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3278 if (pfn_valid(pfn)) {
86760a2c 3279 page = pfn_to_page(pfn);
ba6b0979 3280
556b969a
CY
3281 if (!--page_count) {
3282 touch_nmi_watchdog();
3283 page_count = WD_PAGE_COUNT;
3284 }
3285
ba6b0979
JK
3286 if (page_zone(page) != zone)
3287 continue;
3288
7be98234
RW
3289 if (!swsusp_page_is_forbidden(page))
3290 swsusp_unset_page_free(page);
f623f0db 3291 }
1da177e4 3292
b2a0ac88 3293 for_each_migratetype_order(order, t) {
86760a2c
GT
3294 list_for_each_entry(page,
3295 &zone->free_area[order].free_list[t], lru) {
f623f0db 3296 unsigned long i;
1da177e4 3297
86760a2c 3298 pfn = page_to_pfn(page);
556b969a
CY
3299 for (i = 0; i < (1UL << order); i++) {
3300 if (!--page_count) {
3301 touch_nmi_watchdog();
3302 page_count = WD_PAGE_COUNT;
3303 }
7be98234 3304 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3305 }
f623f0db 3306 }
b2a0ac88 3307 }
1da177e4
LT
3308 spin_unlock_irqrestore(&zone->lock, flags);
3309}
e2c55dc8 3310#endif /* CONFIG_PM */
1da177e4 3311
44042b44
MG
3312static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3313 unsigned int order)
1da177e4 3314{
5f8dcc21 3315 int migratetype;
1da177e4 3316
44042b44 3317 if (!free_pcp_prepare(page, order))
9cca35d4 3318 return false;
689bcebf 3319
dc4b0caf 3320 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3321 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3322 return true;
3323}
3324
3b12e7e9
MG
3325static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3326{
3327 int min_nr_free, max_nr_free;
3328
3329 /* Check for PCP disabled or boot pageset */
3330 if (unlikely(high < batch))
3331 return 1;
3332
3333 /* Leave at least pcp->batch pages on the list */
3334 min_nr_free = batch;
3335 max_nr_free = high - batch;
3336
3337 /*
3338 * Double the number of pages freed each time there is subsequent
3339 * freeing of pages without any allocation.
3340 */
3341 batch <<= pcp->free_factor;
3342 if (batch < max_nr_free)
3343 pcp->free_factor++;
3344 batch = clamp(batch, min_nr_free, max_nr_free);
3345
3346 return batch;
3347}
3348
c49c2c47
MG
3349static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3350{
3351 int high = READ_ONCE(pcp->high);
3352
3353 if (unlikely(!high))
3354 return 0;
3355
3356 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3357 return high;
3358
3359 /*
3360 * If reclaim is active, limit the number of pages that can be
3361 * stored on pcp lists
3362 */
3363 return min(READ_ONCE(pcp->batch) << 2, high);
3364}
3365
df1acc85 3366static void free_unref_page_commit(struct page *page, unsigned long pfn,
44042b44 3367 int migratetype, unsigned int order)
9cca35d4
MG
3368{
3369 struct zone *zone = page_zone(page);
3370 struct per_cpu_pages *pcp;
3b12e7e9 3371 int high;
44042b44 3372 int pindex;
9cca35d4 3373
d34b0733 3374 __count_vm_event(PGFREE);
28f836b6 3375 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3376 pindex = order_to_pindex(migratetype, order);
3377 list_add(&page->lru, &pcp->lists[pindex]);
3378 pcp->count += 1 << order;
c49c2c47 3379 high = nr_pcp_high(pcp, zone);
3b12e7e9
MG
3380 if (pcp->count >= high) {
3381 int batch = READ_ONCE(pcp->batch);
3382
3383 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3384 }
9cca35d4 3385}
5f8dcc21 3386
9cca35d4 3387/*
44042b44 3388 * Free a pcp page
9cca35d4 3389 */
44042b44 3390void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3391{
3392 unsigned long flags;
3393 unsigned long pfn = page_to_pfn(page);
df1acc85 3394 int migratetype;
9cca35d4 3395
44042b44 3396 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3397 return;
da456f14 3398
5f8dcc21
MG
3399 /*
3400 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3401 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3402 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3403 * areas back if necessary. Otherwise, we may have to free
3404 * excessively into the page allocator
3405 */
df1acc85
MG
3406 migratetype = get_pcppage_migratetype(page);
3407 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3408 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3409 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3410 return;
5f8dcc21
MG
3411 }
3412 migratetype = MIGRATE_MOVABLE;
3413 }
3414
dbbee9d5 3415 local_lock_irqsave(&pagesets.lock, flags);
44042b44 3416 free_unref_page_commit(page, pfn, migratetype, order);
dbbee9d5 3417 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3418}
3419
cc59850e
KK
3420/*
3421 * Free a list of 0-order pages
3422 */
2d4894b5 3423void free_unref_page_list(struct list_head *list)
cc59850e
KK
3424{
3425 struct page *page, *next;
9cca35d4 3426 unsigned long flags, pfn;
c24ad77d 3427 int batch_count = 0;
df1acc85 3428 int migratetype;
9cca35d4
MG
3429
3430 /* Prepare pages for freeing */
3431 list_for_each_entry_safe(page, next, list, lru) {
3432 pfn = page_to_pfn(page);
053cfda1 3433 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3434 list_del(&page->lru);
053cfda1
ML
3435 continue;
3436 }
df1acc85
MG
3437
3438 /*
3439 * Free isolated pages directly to the allocator, see
3440 * comment in free_unref_page.
3441 */
3442 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3443 if (unlikely(is_migrate_isolate(migratetype))) {
3444 list_del(&page->lru);
3445 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3446 continue;
df1acc85
MG
3447 }
3448
9cca35d4
MG
3449 set_page_private(page, pfn);
3450 }
cc59850e 3451
dbbee9d5 3452 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3453 list_for_each_entry_safe(page, next, list, lru) {
df1acc85 3454 pfn = page_private(page);
9cca35d4 3455 set_page_private(page, 0);
47aef601
DB
3456
3457 /*
3458 * Non-isolated types over MIGRATE_PCPTYPES get added
3459 * to the MIGRATE_MOVABLE pcp list.
3460 */
df1acc85 3461 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3462 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3463 migratetype = MIGRATE_MOVABLE;
3464
2d4894b5 3465 trace_mm_page_free_batched(page);
44042b44 3466 free_unref_page_commit(page, pfn, migratetype, 0);
c24ad77d
LS
3467
3468 /*
3469 * Guard against excessive IRQ disabled times when we get
3470 * a large list of pages to free.
3471 */
3472 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3473 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3474 batch_count = 0;
dbbee9d5 3475 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3476 }
cc59850e 3477 }
dbbee9d5 3478 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3479}
3480
8dfcc9ba
NP
3481/*
3482 * split_page takes a non-compound higher-order page, and splits it into
3483 * n (1<<order) sub-pages: page[0..n]
3484 * Each sub-page must be freed individually.
3485 *
3486 * Note: this is probably too low level an operation for use in drivers.
3487 * Please consult with lkml before using this in your driver.
3488 */
3489void split_page(struct page *page, unsigned int order)
3490{
3491 int i;
3492
309381fe
SL
3493 VM_BUG_ON_PAGE(PageCompound(page), page);
3494 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3495
a9627bc5 3496 for (i = 1; i < (1 << order); i++)
7835e98b 3497 set_page_refcounted(page + i);
8fb156c9 3498 split_page_owner(page, 1 << order);
e1baddf8 3499 split_page_memcg(page, 1 << order);
8dfcc9ba 3500}
5853ff23 3501EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3502
3c605096 3503int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3504{
748446bb
MG
3505 unsigned long watermark;
3506 struct zone *zone;
2139cbe6 3507 int mt;
748446bb
MG
3508
3509 BUG_ON(!PageBuddy(page));
3510
3511 zone = page_zone(page);
2e30abd1 3512 mt = get_pageblock_migratetype(page);
748446bb 3513
194159fb 3514 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3515 /*
3516 * Obey watermarks as if the page was being allocated. We can
3517 * emulate a high-order watermark check with a raised order-0
3518 * watermark, because we already know our high-order page
3519 * exists.
3520 */
fd1444b2 3521 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3522 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3523 return 0;
3524
8fb74b9f 3525 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3526 }
748446bb
MG
3527
3528 /* Remove page from free list */
b03641af 3529
6ab01363 3530 del_page_from_free_list(page, zone, order);
2139cbe6 3531
400bc7fd 3532 /*
3533 * Set the pageblock if the isolated page is at least half of a
3534 * pageblock
3535 */
748446bb
MG
3536 if (order >= pageblock_order - 1) {
3537 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3538 for (; page < endpage; page += pageblock_nr_pages) {
3539 int mt = get_pageblock_migratetype(page);
88ed365e 3540 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3541 && !is_migrate_highatomic(mt))
47118af0
MN
3542 set_pageblock_migratetype(page,
3543 MIGRATE_MOVABLE);
3544 }
748446bb
MG
3545 }
3546
f3a14ced 3547
8fb74b9f 3548 return 1UL << order;
1fb3f8ca
MG
3549}
3550
624f58d8
AD
3551/**
3552 * __putback_isolated_page - Return a now-isolated page back where we got it
3553 * @page: Page that was isolated
3554 * @order: Order of the isolated page
e6a0a7ad 3555 * @mt: The page's pageblock's migratetype
624f58d8
AD
3556 *
3557 * This function is meant to return a page pulled from the free lists via
3558 * __isolate_free_page back to the free lists they were pulled from.
3559 */
3560void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3561{
3562 struct zone *zone = page_zone(page);
3563
3564 /* zone lock should be held when this function is called */
3565 lockdep_assert_held(&zone->lock);
3566
3567 /* Return isolated page to tail of freelist. */
f04a5d5d 3568 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3569 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3570}
3571
060e7417
MG
3572/*
3573 * Update NUMA hit/miss statistics
3574 *
3575 * Must be called with interrupts disabled.
060e7417 3576 */
3e23060b
MG
3577static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3578 long nr_account)
060e7417
MG
3579{
3580#ifdef CONFIG_NUMA
3a321d2a 3581 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3582
4518085e
KW
3583 /* skip numa counters update if numa stats is disabled */
3584 if (!static_branch_likely(&vm_numa_stat_key))
3585 return;
3586
c1093b74 3587 if (zone_to_nid(z) != numa_node_id())
060e7417 3588 local_stat = NUMA_OTHER;
060e7417 3589
c1093b74 3590 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3591 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3592 else {
3e23060b
MG
3593 __count_numa_events(z, NUMA_MISS, nr_account);
3594 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3595 }
3e23060b 3596 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3597#endif
3598}
3599
066b2393 3600/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3601static inline
44042b44
MG
3602struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3603 int migratetype,
6bb15450 3604 unsigned int alloc_flags,
453f85d4 3605 struct per_cpu_pages *pcp,
066b2393
MG
3606 struct list_head *list)
3607{
3608 struct page *page;
3609
3610 do {
3611 if (list_empty(list)) {
44042b44
MG
3612 int batch = READ_ONCE(pcp->batch);
3613 int alloced;
3614
3615 /*
3616 * Scale batch relative to order if batch implies
3617 * free pages can be stored on the PCP. Batch can
3618 * be 1 for small zones or for boot pagesets which
3619 * should never store free pages as the pages may
3620 * belong to arbitrary zones.
3621 */
3622 if (batch > 1)
3623 batch = max(batch >> order, 2);
3624 alloced = rmqueue_bulk(zone, order,
3625 batch, list,
6bb15450 3626 migratetype, alloc_flags);
44042b44
MG
3627
3628 pcp->count += alloced << order;
066b2393
MG
3629 if (unlikely(list_empty(list)))
3630 return NULL;
3631 }
3632
453f85d4 3633 page = list_first_entry(list, struct page, lru);
066b2393 3634 list_del(&page->lru);
44042b44 3635 pcp->count -= 1 << order;
066b2393
MG
3636 } while (check_new_pcp(page));
3637
3638 return page;
3639}
3640
3641/* Lock and remove page from the per-cpu list */
3642static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3643 struct zone *zone, unsigned int order,
3644 gfp_t gfp_flags, int migratetype,
3645 unsigned int alloc_flags)
066b2393
MG
3646{
3647 struct per_cpu_pages *pcp;
3648 struct list_head *list;
066b2393 3649 struct page *page;
d34b0733 3650 unsigned long flags;
066b2393 3651
dbbee9d5 3652 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3653
3654 /*
3655 * On allocation, reduce the number of pages that are batch freed.
3656 * See nr_pcp_free() where free_factor is increased for subsequent
3657 * frees.
3658 */
28f836b6 3659 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3660 pcp->free_factor >>= 1;
44042b44
MG
3661 list = &pcp->lists[order_to_pindex(migratetype, order)];
3662 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3663 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3664 if (page) {
1c52e6d0 3665 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3666 zone_statistics(preferred_zone, zone, 1);
066b2393 3667 }
066b2393
MG
3668 return page;
3669}
3670
1da177e4 3671/*
75379191 3672 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3673 */
0a15c3e9 3674static inline
066b2393 3675struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3676 struct zone *zone, unsigned int order,
c603844b
MG
3677 gfp_t gfp_flags, unsigned int alloc_flags,
3678 int migratetype)
1da177e4
LT
3679{
3680 unsigned long flags;
689bcebf 3681 struct page *page;
1da177e4 3682
44042b44 3683 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3684 /*
3685 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3686 * we need to skip it when CMA area isn't allowed.
3687 */
3688 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3689 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3690 page = rmqueue_pcplist(preferred_zone, zone, order,
3691 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3692 goto out;
3693 }
066b2393 3694 }
83b9355b 3695
066b2393
MG
3696 /*
3697 * We most definitely don't want callers attempting to
3698 * allocate greater than order-1 page units with __GFP_NOFAIL.
3699 */
3700 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3701 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3702
066b2393
MG
3703 do {
3704 page = NULL;
1d91df85
JK
3705 /*
3706 * order-0 request can reach here when the pcplist is skipped
3707 * due to non-CMA allocation context. HIGHATOMIC area is
3708 * reserved for high-order atomic allocation, so order-0
3709 * request should skip it.
3710 */
3711 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3712 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3713 if (page)
3714 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3715 }
a74609fa 3716 if (!page)
6bb15450 3717 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393 3718 } while (page && check_new_pages(page, order));
066b2393
MG
3719 if (!page)
3720 goto failed;
43c95bcc 3721
066b2393
MG
3722 __mod_zone_freepage_state(zone, -(1 << order),
3723 get_pcppage_migratetype(page));
43c95bcc 3724 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 3725
16709d1d 3726 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3727 zone_statistics(preferred_zone, zone, 1);
1da177e4 3728
066b2393 3729out:
73444bc4
MG
3730 /* Separate test+clear to avoid unnecessary atomics */
3731 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3732 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3733 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3734 }
3735
066b2393 3736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3737 return page;
a74609fa
NP
3738
3739failed:
43c95bcc 3740 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3741 return NULL;
1da177e4
LT
3742}
3743
933e312e
AM
3744#ifdef CONFIG_FAIL_PAGE_ALLOC
3745
b2588c4b 3746static struct {
933e312e
AM
3747 struct fault_attr attr;
3748
621a5f7a 3749 bool ignore_gfp_highmem;
71baba4b 3750 bool ignore_gfp_reclaim;
54114994 3751 u32 min_order;
933e312e
AM
3752} fail_page_alloc = {
3753 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3754 .ignore_gfp_reclaim = true,
621a5f7a 3755 .ignore_gfp_highmem = true,
54114994 3756 .min_order = 1,
933e312e
AM
3757};
3758
3759static int __init setup_fail_page_alloc(char *str)
3760{
3761 return setup_fault_attr(&fail_page_alloc.attr, str);
3762}
3763__setup("fail_page_alloc=", setup_fail_page_alloc);
3764
af3b8544 3765static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3766{
54114994 3767 if (order < fail_page_alloc.min_order)
deaf386e 3768 return false;
933e312e 3769 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3770 return false;
933e312e 3771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3772 return false;
71baba4b
MG
3773 if (fail_page_alloc.ignore_gfp_reclaim &&
3774 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3775 return false;
933e312e
AM
3776
3777 return should_fail(&fail_page_alloc.attr, 1 << order);
3778}
3779
3780#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3781
3782static int __init fail_page_alloc_debugfs(void)
3783{
0825a6f9 3784 umode_t mode = S_IFREG | 0600;
933e312e 3785 struct dentry *dir;
933e312e 3786
dd48c085
AM
3787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3788 &fail_page_alloc.attr);
b2588c4b 3789
d9f7979c
GKH
3790 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3791 &fail_page_alloc.ignore_gfp_reclaim);
3792 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3793 &fail_page_alloc.ignore_gfp_highmem);
3794 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3795
d9f7979c 3796 return 0;
933e312e
AM
3797}
3798
3799late_initcall(fail_page_alloc_debugfs);
3800
3801#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3802
3803#else /* CONFIG_FAIL_PAGE_ALLOC */
3804
af3b8544 3805static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3806{
deaf386e 3807 return false;
933e312e
AM
3808}
3809
3810#endif /* CONFIG_FAIL_PAGE_ALLOC */
3811
54aa3866 3812noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3813{
3814 return __should_fail_alloc_page(gfp_mask, order);
3815}
3816ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3817
f27ce0e1
JK
3818static inline long __zone_watermark_unusable_free(struct zone *z,
3819 unsigned int order, unsigned int alloc_flags)
3820{
3821 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3822 long unusable_free = (1 << order) - 1;
3823
3824 /*
3825 * If the caller does not have rights to ALLOC_HARDER then subtract
3826 * the high-atomic reserves. This will over-estimate the size of the
3827 * atomic reserve but it avoids a search.
3828 */
3829 if (likely(!alloc_harder))
3830 unusable_free += z->nr_reserved_highatomic;
3831
3832#ifdef CONFIG_CMA
3833 /* If allocation can't use CMA areas don't use free CMA pages */
3834 if (!(alloc_flags & ALLOC_CMA))
3835 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3836#endif
3837
3838 return unusable_free;
3839}
3840
1da177e4 3841/*
97a16fc8
MG
3842 * Return true if free base pages are above 'mark'. For high-order checks it
3843 * will return true of the order-0 watermark is reached and there is at least
3844 * one free page of a suitable size. Checking now avoids taking the zone lock
3845 * to check in the allocation paths if no pages are free.
1da177e4 3846 */
86a294a8 3847bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3848 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3849 long free_pages)
1da177e4 3850{
d23ad423 3851 long min = mark;
1da177e4 3852 int o;
cd04ae1e 3853 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3854
0aaa29a5 3855 /* free_pages may go negative - that's OK */
f27ce0e1 3856 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3857
7fb1d9fc 3858 if (alloc_flags & ALLOC_HIGH)
1da177e4 3859 min -= min / 2;
0aaa29a5 3860
f27ce0e1 3861 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3862 /*
3863 * OOM victims can try even harder than normal ALLOC_HARDER
3864 * users on the grounds that it's definitely going to be in
3865 * the exit path shortly and free memory. Any allocation it
3866 * makes during the free path will be small and short-lived.
3867 */
3868 if (alloc_flags & ALLOC_OOM)
3869 min -= min / 2;
3870 else
3871 min -= min / 4;
3872 }
3873
97a16fc8
MG
3874 /*
3875 * Check watermarks for an order-0 allocation request. If these
3876 * are not met, then a high-order request also cannot go ahead
3877 * even if a suitable page happened to be free.
3878 */
97a225e6 3879 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3880 return false;
1da177e4 3881
97a16fc8
MG
3882 /* If this is an order-0 request then the watermark is fine */
3883 if (!order)
3884 return true;
3885
3886 /* For a high-order request, check at least one suitable page is free */
3887 for (o = order; o < MAX_ORDER; o++) {
3888 struct free_area *area = &z->free_area[o];
3889 int mt;
3890
3891 if (!area->nr_free)
3892 continue;
3893
97a16fc8 3894 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3895 if (!free_area_empty(area, mt))
97a16fc8
MG
3896 return true;
3897 }
3898
3899#ifdef CONFIG_CMA
d883c6cf 3900 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3901 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3902 return true;
d883c6cf 3903 }
97a16fc8 3904#endif
76089d00 3905 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3906 return true;
1da177e4 3907 }
97a16fc8 3908 return false;
88f5acf8
MG
3909}
3910
7aeb09f9 3911bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3912 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3913{
97a225e6 3914 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3915 zone_page_state(z, NR_FREE_PAGES));
3916}
3917
48ee5f36 3918static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3919 unsigned long mark, int highest_zoneidx,
f80b08fc 3920 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3921{
f27ce0e1 3922 long free_pages;
d883c6cf 3923
f27ce0e1 3924 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3925
3926 /*
3927 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3928 * need to be calculated.
48ee5f36 3929 */
f27ce0e1
JK
3930 if (!order) {
3931 long fast_free;
3932
3933 fast_free = free_pages;
3934 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3935 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3936 return true;
3937 }
48ee5f36 3938
f80b08fc
CTR
3939 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3940 free_pages))
3941 return true;
3942 /*
3943 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3944 * when checking the min watermark. The min watermark is the
3945 * point where boosting is ignored so that kswapd is woken up
3946 * when below the low watermark.
3947 */
3948 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3949 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3950 mark = z->_watermark[WMARK_MIN];
3951 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3952 alloc_flags, free_pages);
3953 }
3954
3955 return false;
48ee5f36
MG
3956}
3957
7aeb09f9 3958bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3959 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3960{
3961 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3962
3963 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3964 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3965
97a225e6 3966 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3967 free_pages);
1da177e4
LT
3968}
3969
9276b1bc 3970#ifdef CONFIG_NUMA
957f822a
DR
3971static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3972{
e02dc017 3973 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3974 node_reclaim_distance;
957f822a 3975}
9276b1bc 3976#else /* CONFIG_NUMA */
957f822a
DR
3977static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3978{
3979 return true;
3980}
9276b1bc
PJ
3981#endif /* CONFIG_NUMA */
3982
6bb15450
MG
3983/*
3984 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3985 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3986 * premature use of a lower zone may cause lowmem pressure problems that
3987 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3988 * probably too small. It only makes sense to spread allocations to avoid
3989 * fragmentation between the Normal and DMA32 zones.
3990 */
3991static inline unsigned int
0a79cdad 3992alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3993{
736838e9 3994 unsigned int alloc_flags;
0a79cdad 3995
736838e9
MN
3996 /*
3997 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3998 * to save a branch.
3999 */
4000 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4001
4002#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4003 if (!zone)
4004 return alloc_flags;
4005
6bb15450 4006 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4007 return alloc_flags;
6bb15450
MG
4008
4009 /*
4010 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4011 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4012 * on UMA that if Normal is populated then so is DMA32.
4013 */
4014 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4015 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4016 return alloc_flags;
6bb15450 4017
8118b82e 4018 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4019#endif /* CONFIG_ZONE_DMA32 */
4020 return alloc_flags;
6bb15450 4021}
6bb15450 4022
8e3560d9
PT
4023/* Must be called after current_gfp_context() which can change gfp_mask */
4024static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4025 unsigned int alloc_flags)
8510e69c
JK
4026{
4027#ifdef CONFIG_CMA
8e3560d9 4028 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4029 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4030#endif
4031 return alloc_flags;
4032}
4033
7fb1d9fc 4034/*
0798e519 4035 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4036 * a page.
4037 */
4038static struct page *
a9263751
VB
4039get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4040 const struct alloc_context *ac)
753ee728 4041{
6bb15450 4042 struct zoneref *z;
5117f45d 4043 struct zone *zone;
3b8c0be4 4044 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 4045 bool no_fallback;
3b8c0be4 4046
6bb15450 4047retry:
7fb1d9fc 4048 /*
9276b1bc 4049 * Scan zonelist, looking for a zone with enough free.
344736f2 4050 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4051 */
6bb15450
MG
4052 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4053 z = ac->preferred_zoneref;
30d8ec73
MN
4054 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4055 ac->nodemask) {
be06af00 4056 struct page *page;
e085dbc5
JW
4057 unsigned long mark;
4058
664eedde
MG
4059 if (cpusets_enabled() &&
4060 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4061 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4062 continue;
a756cf59
JW
4063 /*
4064 * When allocating a page cache page for writing, we
281e3726
MG
4065 * want to get it from a node that is within its dirty
4066 * limit, such that no single node holds more than its
a756cf59 4067 * proportional share of globally allowed dirty pages.
281e3726 4068 * The dirty limits take into account the node's
a756cf59
JW
4069 * lowmem reserves and high watermark so that kswapd
4070 * should be able to balance it without having to
4071 * write pages from its LRU list.
4072 *
a756cf59 4073 * XXX: For now, allow allocations to potentially
281e3726 4074 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4075 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4076 * which is important when on a NUMA setup the allowed
281e3726 4077 * nodes are together not big enough to reach the
a756cf59 4078 * global limit. The proper fix for these situations
281e3726 4079 * will require awareness of nodes in the
a756cf59
JW
4080 * dirty-throttling and the flusher threads.
4081 */
3b8c0be4
MG
4082 if (ac->spread_dirty_pages) {
4083 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4084 continue;
4085
4086 if (!node_dirty_ok(zone->zone_pgdat)) {
4087 last_pgdat_dirty_limit = zone->zone_pgdat;
4088 continue;
4089 }
4090 }
7fb1d9fc 4091
6bb15450
MG
4092 if (no_fallback && nr_online_nodes > 1 &&
4093 zone != ac->preferred_zoneref->zone) {
4094 int local_nid;
4095
4096 /*
4097 * If moving to a remote node, retry but allow
4098 * fragmenting fallbacks. Locality is more important
4099 * than fragmentation avoidance.
4100 */
4101 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4102 if (zone_to_nid(zone) != local_nid) {
4103 alloc_flags &= ~ALLOC_NOFRAGMENT;
4104 goto retry;
4105 }
4106 }
4107
a9214443 4108 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4109 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4110 ac->highest_zoneidx, alloc_flags,
4111 gfp_mask)) {
fa5e084e
MG
4112 int ret;
4113
c9e97a19
PT
4114#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4115 /*
4116 * Watermark failed for this zone, but see if we can
4117 * grow this zone if it contains deferred pages.
4118 */
4119 if (static_branch_unlikely(&deferred_pages)) {
4120 if (_deferred_grow_zone(zone, order))
4121 goto try_this_zone;
4122 }
4123#endif
5dab2911
MG
4124 /* Checked here to keep the fast path fast */
4125 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4126 if (alloc_flags & ALLOC_NO_WATERMARKS)
4127 goto try_this_zone;
4128
202e35db 4129 if (!node_reclaim_enabled() ||
c33d6c06 4130 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4131 continue;
4132
a5f5f91d 4133 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4134 switch (ret) {
a5f5f91d 4135 case NODE_RECLAIM_NOSCAN:
fa5e084e 4136 /* did not scan */
cd38b115 4137 continue;
a5f5f91d 4138 case NODE_RECLAIM_FULL:
fa5e084e 4139 /* scanned but unreclaimable */
cd38b115 4140 continue;
fa5e084e
MG
4141 default:
4142 /* did we reclaim enough */
fed2719e 4143 if (zone_watermark_ok(zone, order, mark,
97a225e6 4144 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4145 goto try_this_zone;
4146
fed2719e 4147 continue;
0798e519 4148 }
7fb1d9fc
RS
4149 }
4150
fa5e084e 4151try_this_zone:
066b2393 4152 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4153 gfp_mask, alloc_flags, ac->migratetype);
75379191 4154 if (page) {
479f854a 4155 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4156
4157 /*
4158 * If this is a high-order atomic allocation then check
4159 * if the pageblock should be reserved for the future
4160 */
4161 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4162 reserve_highatomic_pageblock(page, zone, order);
4163
75379191 4164 return page;
c9e97a19
PT
4165 } else {
4166#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4167 /* Try again if zone has deferred pages */
4168 if (static_branch_unlikely(&deferred_pages)) {
4169 if (_deferred_grow_zone(zone, order))
4170 goto try_this_zone;
4171 }
4172#endif
75379191 4173 }
54a6eb5c 4174 }
9276b1bc 4175
6bb15450
MG
4176 /*
4177 * It's possible on a UMA machine to get through all zones that are
4178 * fragmented. If avoiding fragmentation, reset and try again.
4179 */
4180 if (no_fallback) {
4181 alloc_flags &= ~ALLOC_NOFRAGMENT;
4182 goto retry;
4183 }
4184
4ffeaf35 4185 return NULL;
753ee728
MH
4186}
4187
9af744d7 4188static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4189{
a238ab5b 4190 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4191
4192 /*
4193 * This documents exceptions given to allocations in certain
4194 * contexts that are allowed to allocate outside current's set
4195 * of allowed nodes.
4196 */
4197 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4198 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4199 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4200 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4201 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4202 filter &= ~SHOW_MEM_FILTER_NODES;
4203
9af744d7 4204 show_mem(filter, nodemask);
aa187507
MH
4205}
4206
a8e99259 4207void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4208{
4209 struct va_format vaf;
4210 va_list args;
1be334e5 4211 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4212
e5ee416c
BH
4213 if ((gfp_mask & __GFP_NOWARN) ||
4214 !__ratelimit(&nopage_rs) ||
4215 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4216 return;
4217
7877cdcc
MH
4218 va_start(args, fmt);
4219 vaf.fmt = fmt;
4220 vaf.va = &args;
ef8444ea 4221 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4222 current->comm, &vaf, gfp_mask, &gfp_mask,
4223 nodemask_pr_args(nodemask));
7877cdcc 4224 va_end(args);
3ee9a4f0 4225
a8e99259 4226 cpuset_print_current_mems_allowed();
ef8444ea 4227 pr_cont("\n");
a238ab5b 4228 dump_stack();
685dbf6f 4229 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4230}
4231
6c18ba7a
MH
4232static inline struct page *
4233__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4234 unsigned int alloc_flags,
4235 const struct alloc_context *ac)
4236{
4237 struct page *page;
4238
4239 page = get_page_from_freelist(gfp_mask, order,
4240 alloc_flags|ALLOC_CPUSET, ac);
4241 /*
4242 * fallback to ignore cpuset restriction if our nodes
4243 * are depleted
4244 */
4245 if (!page)
4246 page = get_page_from_freelist(gfp_mask, order,
4247 alloc_flags, ac);
4248
4249 return page;
4250}
4251
11e33f6a
MG
4252static inline struct page *
4253__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4254 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4255{
6e0fc46d
DR
4256 struct oom_control oc = {
4257 .zonelist = ac->zonelist,
4258 .nodemask = ac->nodemask,
2a966b77 4259 .memcg = NULL,
6e0fc46d
DR
4260 .gfp_mask = gfp_mask,
4261 .order = order,
6e0fc46d 4262 };
11e33f6a
MG
4263 struct page *page;
4264
9879de73
JW
4265 *did_some_progress = 0;
4266
9879de73 4267 /*
dc56401f
JW
4268 * Acquire the oom lock. If that fails, somebody else is
4269 * making progress for us.
9879de73 4270 */
dc56401f 4271 if (!mutex_trylock(&oom_lock)) {
9879de73 4272 *did_some_progress = 1;
11e33f6a 4273 schedule_timeout_uninterruptible(1);
1da177e4
LT
4274 return NULL;
4275 }
6b1de916 4276
11e33f6a
MG
4277 /*
4278 * Go through the zonelist yet one more time, keep very high watermark
4279 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4280 * we're still under heavy pressure. But make sure that this reclaim
4281 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4282 * allocation which will never fail due to oom_lock already held.
11e33f6a 4283 */
e746bf73
TH
4284 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4285 ~__GFP_DIRECT_RECLAIM, order,
4286 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4287 if (page)
11e33f6a
MG
4288 goto out;
4289
06ad276a
MH
4290 /* Coredumps can quickly deplete all memory reserves */
4291 if (current->flags & PF_DUMPCORE)
4292 goto out;
4293 /* The OOM killer will not help higher order allocs */
4294 if (order > PAGE_ALLOC_COSTLY_ORDER)
4295 goto out;
dcda9b04
MH
4296 /*
4297 * We have already exhausted all our reclaim opportunities without any
4298 * success so it is time to admit defeat. We will skip the OOM killer
4299 * because it is very likely that the caller has a more reasonable
4300 * fallback than shooting a random task.
cfb4a541
MN
4301 *
4302 * The OOM killer may not free memory on a specific node.
dcda9b04 4303 */
cfb4a541 4304 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4305 goto out;
06ad276a 4306 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4307 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4308 goto out;
4309 if (pm_suspended_storage())
4310 goto out;
4311 /*
4312 * XXX: GFP_NOFS allocations should rather fail than rely on
4313 * other request to make a forward progress.
4314 * We are in an unfortunate situation where out_of_memory cannot
4315 * do much for this context but let's try it to at least get
4316 * access to memory reserved if the current task is killed (see
4317 * out_of_memory). Once filesystems are ready to handle allocation
4318 * failures more gracefully we should just bail out here.
4319 */
4320
3c2c6488 4321 /* Exhausted what can be done so it's blame time */
5020e285 4322 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4323 *did_some_progress = 1;
5020e285 4324
6c18ba7a
MH
4325 /*
4326 * Help non-failing allocations by giving them access to memory
4327 * reserves
4328 */
4329 if (gfp_mask & __GFP_NOFAIL)
4330 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4331 ALLOC_NO_WATERMARKS, ac);
5020e285 4332 }
11e33f6a 4333out:
dc56401f 4334 mutex_unlock(&oom_lock);
11e33f6a
MG
4335 return page;
4336}
4337
33c2d214 4338/*
baf2f90b 4339 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4340 * killer is consider as the only way to move forward.
4341 */
4342#define MAX_COMPACT_RETRIES 16
4343
56de7263
MG
4344#ifdef CONFIG_COMPACTION
4345/* Try memory compaction for high-order allocations before reclaim */
4346static struct page *
4347__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4348 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4349 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4350{
5e1f0f09 4351 struct page *page = NULL;
eb414681 4352 unsigned long pflags;
499118e9 4353 unsigned int noreclaim_flag;
53853e2d
VB
4354
4355 if (!order)
66199712 4356 return NULL;
66199712 4357
eb414681 4358 psi_memstall_enter(&pflags);
499118e9 4359 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4360
c5d01d0d 4361 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4362 prio, &page);
eb414681 4363
499118e9 4364 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4365 psi_memstall_leave(&pflags);
56de7263 4366
06dac2f4
CTR
4367 if (*compact_result == COMPACT_SKIPPED)
4368 return NULL;
98dd3b48
VB
4369 /*
4370 * At least in one zone compaction wasn't deferred or skipped, so let's
4371 * count a compaction stall
4372 */
4373 count_vm_event(COMPACTSTALL);
8fb74b9f 4374
5e1f0f09
MG
4375 /* Prep a captured page if available */
4376 if (page)
4377 prep_new_page(page, order, gfp_mask, alloc_flags);
4378
4379 /* Try get a page from the freelist if available */
4380 if (!page)
4381 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4382
98dd3b48
VB
4383 if (page) {
4384 struct zone *zone = page_zone(page);
53853e2d 4385
98dd3b48
VB
4386 zone->compact_blockskip_flush = false;
4387 compaction_defer_reset(zone, order, true);
4388 count_vm_event(COMPACTSUCCESS);
4389 return page;
4390 }
56de7263 4391
98dd3b48
VB
4392 /*
4393 * It's bad if compaction run occurs and fails. The most likely reason
4394 * is that pages exist, but not enough to satisfy watermarks.
4395 */
4396 count_vm_event(COMPACTFAIL);
66199712 4397
98dd3b48 4398 cond_resched();
56de7263
MG
4399
4400 return NULL;
4401}
33c2d214 4402
3250845d
VB
4403static inline bool
4404should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4405 enum compact_result compact_result,
4406 enum compact_priority *compact_priority,
d9436498 4407 int *compaction_retries)
3250845d
VB
4408{
4409 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4410 int min_priority;
65190cff
MH
4411 bool ret = false;
4412 int retries = *compaction_retries;
4413 enum compact_priority priority = *compact_priority;
3250845d
VB
4414
4415 if (!order)
4416 return false;
4417
691d9497
AT
4418 if (fatal_signal_pending(current))
4419 return false;
4420
d9436498
VB
4421 if (compaction_made_progress(compact_result))
4422 (*compaction_retries)++;
4423
3250845d
VB
4424 /*
4425 * compaction considers all the zone as desperately out of memory
4426 * so it doesn't really make much sense to retry except when the
4427 * failure could be caused by insufficient priority
4428 */
d9436498
VB
4429 if (compaction_failed(compact_result))
4430 goto check_priority;
3250845d 4431
49433085
VB
4432 /*
4433 * compaction was skipped because there are not enough order-0 pages
4434 * to work with, so we retry only if it looks like reclaim can help.
4435 */
4436 if (compaction_needs_reclaim(compact_result)) {
4437 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4438 goto out;
4439 }
4440
3250845d
VB
4441 /*
4442 * make sure the compaction wasn't deferred or didn't bail out early
4443 * due to locks contention before we declare that we should give up.
49433085
VB
4444 * But the next retry should use a higher priority if allowed, so
4445 * we don't just keep bailing out endlessly.
3250845d 4446 */
65190cff 4447 if (compaction_withdrawn(compact_result)) {
49433085 4448 goto check_priority;
65190cff 4449 }
3250845d
VB
4450
4451 /*
dcda9b04 4452 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4453 * costly ones because they are de facto nofail and invoke OOM
4454 * killer to move on while costly can fail and users are ready
4455 * to cope with that. 1/4 retries is rather arbitrary but we
4456 * would need much more detailed feedback from compaction to
4457 * make a better decision.
4458 */
4459 if (order > PAGE_ALLOC_COSTLY_ORDER)
4460 max_retries /= 4;
65190cff
MH
4461 if (*compaction_retries <= max_retries) {
4462 ret = true;
4463 goto out;
4464 }
3250845d 4465
d9436498
VB
4466 /*
4467 * Make sure there are attempts at the highest priority if we exhausted
4468 * all retries or failed at the lower priorities.
4469 */
4470check_priority:
c2033b00
VB
4471 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4472 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4473
c2033b00 4474 if (*compact_priority > min_priority) {
d9436498
VB
4475 (*compact_priority)--;
4476 *compaction_retries = 0;
65190cff 4477 ret = true;
d9436498 4478 }
65190cff
MH
4479out:
4480 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4481 return ret;
3250845d 4482}
56de7263
MG
4483#else
4484static inline struct page *
4485__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4486 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4487 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4488{
33c2d214 4489 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4490 return NULL;
4491}
33c2d214
MH
4492
4493static inline bool
86a294a8
MH
4494should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4495 enum compact_result compact_result,
a5508cd8 4496 enum compact_priority *compact_priority,
d9436498 4497 int *compaction_retries)
33c2d214 4498{
31e49bfd
MH
4499 struct zone *zone;
4500 struct zoneref *z;
4501
4502 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4503 return false;
4504
4505 /*
4506 * There are setups with compaction disabled which would prefer to loop
4507 * inside the allocator rather than hit the oom killer prematurely.
4508 * Let's give them a good hope and keep retrying while the order-0
4509 * watermarks are OK.
4510 */
97a225e6
JK
4511 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4512 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4513 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4514 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4515 return true;
4516 }
33c2d214
MH
4517 return false;
4518}
3250845d 4519#endif /* CONFIG_COMPACTION */
56de7263 4520
d92a8cfc 4521#ifdef CONFIG_LOCKDEP
93781325 4522static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4523 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4524
f920e413 4525static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4526{
d92a8cfc
PZ
4527 /* no reclaim without waiting on it */
4528 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4529 return false;
4530
4531 /* this guy won't enter reclaim */
2e517d68 4532 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4533 return false;
4534
d92a8cfc
PZ
4535 if (gfp_mask & __GFP_NOLOCKDEP)
4536 return false;
4537
4538 return true;
4539}
4540
4f3eaf45 4541void __fs_reclaim_acquire(unsigned long ip)
93781325 4542{
4f3eaf45 4543 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4544}
4545
4f3eaf45 4546void __fs_reclaim_release(unsigned long ip)
93781325 4547{
4f3eaf45 4548 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4549}
4550
d92a8cfc
PZ
4551void fs_reclaim_acquire(gfp_t gfp_mask)
4552{
f920e413
DV
4553 gfp_mask = current_gfp_context(gfp_mask);
4554
4555 if (__need_reclaim(gfp_mask)) {
4556 if (gfp_mask & __GFP_FS)
4f3eaf45 4557 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4558
4559#ifdef CONFIG_MMU_NOTIFIER
4560 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4561 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4562#endif
4563
4564 }
d92a8cfc
PZ
4565}
4566EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4567
4568void fs_reclaim_release(gfp_t gfp_mask)
4569{
f920e413
DV
4570 gfp_mask = current_gfp_context(gfp_mask);
4571
4572 if (__need_reclaim(gfp_mask)) {
4573 if (gfp_mask & __GFP_FS)
4f3eaf45 4574 __fs_reclaim_release(_RET_IP_);
f920e413 4575 }
d92a8cfc
PZ
4576}
4577EXPORT_SYMBOL_GPL(fs_reclaim_release);
4578#endif
4579
bba90710 4580/* Perform direct synchronous page reclaim */
2187e17b 4581static unsigned long
a9263751
VB
4582__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4583 const struct alloc_context *ac)
11e33f6a 4584{
499118e9 4585 unsigned int noreclaim_flag;
2187e17b 4586 unsigned long pflags, progress;
11e33f6a
MG
4587
4588 cond_resched();
4589
4590 /* We now go into synchronous reclaim */
4591 cpuset_memory_pressure_bump();
eb414681 4592 psi_memstall_enter(&pflags);
d92a8cfc 4593 fs_reclaim_acquire(gfp_mask);
93781325 4594 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4595
a9263751
VB
4596 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4597 ac->nodemask);
11e33f6a 4598
499118e9 4599 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4600 fs_reclaim_release(gfp_mask);
eb414681 4601 psi_memstall_leave(&pflags);
11e33f6a
MG
4602
4603 cond_resched();
4604
bba90710
MS
4605 return progress;
4606}
4607
4608/* The really slow allocator path where we enter direct reclaim */
4609static inline struct page *
4610__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4611 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4612 unsigned long *did_some_progress)
bba90710
MS
4613{
4614 struct page *page = NULL;
4615 bool drained = false;
4616
a9263751 4617 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4618 if (unlikely(!(*did_some_progress)))
4619 return NULL;
11e33f6a 4620
9ee493ce 4621retry:
31a6c190 4622 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4623
4624 /*
4625 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4626 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4627 * Shrink them and try again
9ee493ce
MG
4628 */
4629 if (!page && !drained) {
29fac03b 4630 unreserve_highatomic_pageblock(ac, false);
93481ff0 4631 drain_all_pages(NULL);
9ee493ce
MG
4632 drained = true;
4633 goto retry;
4634 }
4635
11e33f6a
MG
4636 return page;
4637}
4638
5ecd9d40
DR
4639static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4640 const struct alloc_context *ac)
3a025760
JW
4641{
4642 struct zoneref *z;
4643 struct zone *zone;
e1a55637 4644 pg_data_t *last_pgdat = NULL;
97a225e6 4645 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4646
97a225e6 4647 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4648 ac->nodemask) {
e1a55637 4649 if (last_pgdat != zone->zone_pgdat)
97a225e6 4650 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4651 last_pgdat = zone->zone_pgdat;
4652 }
3a025760
JW
4653}
4654
c603844b 4655static inline unsigned int
341ce06f
PZ
4656gfp_to_alloc_flags(gfp_t gfp_mask)
4657{
c603844b 4658 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4659
736838e9
MN
4660 /*
4661 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4662 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4663 * to save two branches.
4664 */
e6223a3b 4665 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4666 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4667
341ce06f
PZ
4668 /*
4669 * The caller may dip into page reserves a bit more if the caller
4670 * cannot run direct reclaim, or if the caller has realtime scheduling
4671 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4672 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4673 */
736838e9
MN
4674 alloc_flags |= (__force int)
4675 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4676
d0164adc 4677 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4678 /*
b104a35d
DR
4679 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4680 * if it can't schedule.
5c3240d9 4681 */
b104a35d 4682 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4683 alloc_flags |= ALLOC_HARDER;
523b9458 4684 /*
b104a35d 4685 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4686 * comment for __cpuset_node_allowed().
523b9458 4687 */
341ce06f 4688 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4689 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4690 alloc_flags |= ALLOC_HARDER;
4691
8e3560d9 4692 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4693
341ce06f
PZ
4694 return alloc_flags;
4695}
4696
cd04ae1e 4697static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4698{
cd04ae1e
MH
4699 if (!tsk_is_oom_victim(tsk))
4700 return false;
4701
4702 /*
4703 * !MMU doesn't have oom reaper so give access to memory reserves
4704 * only to the thread with TIF_MEMDIE set
4705 */
4706 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4707 return false;
4708
cd04ae1e
MH
4709 return true;
4710}
4711
4712/*
4713 * Distinguish requests which really need access to full memory
4714 * reserves from oom victims which can live with a portion of it
4715 */
4716static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4717{
4718 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4719 return 0;
31a6c190 4720 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4721 return ALLOC_NO_WATERMARKS;
31a6c190 4722 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4723 return ALLOC_NO_WATERMARKS;
4724 if (!in_interrupt()) {
4725 if (current->flags & PF_MEMALLOC)
4726 return ALLOC_NO_WATERMARKS;
4727 else if (oom_reserves_allowed(current))
4728 return ALLOC_OOM;
4729 }
31a6c190 4730
cd04ae1e
MH
4731 return 0;
4732}
4733
4734bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4735{
4736 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4737}
4738
0a0337e0
MH
4739/*
4740 * Checks whether it makes sense to retry the reclaim to make a forward progress
4741 * for the given allocation request.
491d79ae
JW
4742 *
4743 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4744 * without success, or when we couldn't even meet the watermark if we
4745 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4746 *
4747 * Returns true if a retry is viable or false to enter the oom path.
4748 */
4749static inline bool
4750should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4751 struct alloc_context *ac, int alloc_flags,
423b452e 4752 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4753{
4754 struct zone *zone;
4755 struct zoneref *z;
15f570bf 4756 bool ret = false;
0a0337e0 4757
423b452e
VB
4758 /*
4759 * Costly allocations might have made a progress but this doesn't mean
4760 * their order will become available due to high fragmentation so
4761 * always increment the no progress counter for them
4762 */
4763 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4764 *no_progress_loops = 0;
4765 else
4766 (*no_progress_loops)++;
4767
0a0337e0
MH
4768 /*
4769 * Make sure we converge to OOM if we cannot make any progress
4770 * several times in the row.
4771 */
04c8716f
MK
4772 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4773 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4774 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4775 }
0a0337e0 4776
bca67592
MG
4777 /*
4778 * Keep reclaiming pages while there is a chance this will lead
4779 * somewhere. If none of the target zones can satisfy our allocation
4780 * request even if all reclaimable pages are considered then we are
4781 * screwed and have to go OOM.
0a0337e0 4782 */
97a225e6
JK
4783 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4784 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4785 unsigned long available;
ede37713 4786 unsigned long reclaimable;
d379f01d
MH
4787 unsigned long min_wmark = min_wmark_pages(zone);
4788 bool wmark;
0a0337e0 4789
5a1c84b4 4790 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4791 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4792
4793 /*
491d79ae
JW
4794 * Would the allocation succeed if we reclaimed all
4795 * reclaimable pages?
0a0337e0 4796 */
d379f01d 4797 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4798 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4799 trace_reclaim_retry_zone(z, order, reclaimable,
4800 available, min_wmark, *no_progress_loops, wmark);
4801 if (wmark) {
ede37713
MH
4802 /*
4803 * If we didn't make any progress and have a lot of
4804 * dirty + writeback pages then we should wait for
4805 * an IO to complete to slow down the reclaim and
4806 * prevent from pre mature OOM
4807 */
4808 if (!did_some_progress) {
11fb9989 4809 unsigned long write_pending;
ede37713 4810
5a1c84b4
MG
4811 write_pending = zone_page_state_snapshot(zone,
4812 NR_ZONE_WRITE_PENDING);
ede37713 4813
11fb9989 4814 if (2 * write_pending > reclaimable) {
ede37713
MH
4815 congestion_wait(BLK_RW_ASYNC, HZ/10);
4816 return true;
4817 }
4818 }
5a1c84b4 4819
15f570bf
MH
4820 ret = true;
4821 goto out;
0a0337e0
MH
4822 }
4823 }
4824
15f570bf
MH
4825out:
4826 /*
4827 * Memory allocation/reclaim might be called from a WQ context and the
4828 * current implementation of the WQ concurrency control doesn't
4829 * recognize that a particular WQ is congested if the worker thread is
4830 * looping without ever sleeping. Therefore we have to do a short sleep
4831 * here rather than calling cond_resched().
4832 */
4833 if (current->flags & PF_WQ_WORKER)
4834 schedule_timeout_uninterruptible(1);
4835 else
4836 cond_resched();
4837 return ret;
0a0337e0
MH
4838}
4839
902b6281
VB
4840static inline bool
4841check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4842{
4843 /*
4844 * It's possible that cpuset's mems_allowed and the nodemask from
4845 * mempolicy don't intersect. This should be normally dealt with by
4846 * policy_nodemask(), but it's possible to race with cpuset update in
4847 * such a way the check therein was true, and then it became false
4848 * before we got our cpuset_mems_cookie here.
4849 * This assumes that for all allocations, ac->nodemask can come only
4850 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4851 * when it does not intersect with the cpuset restrictions) or the
4852 * caller can deal with a violated nodemask.
4853 */
4854 if (cpusets_enabled() && ac->nodemask &&
4855 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4856 ac->nodemask = NULL;
4857 return true;
4858 }
4859
4860 /*
4861 * When updating a task's mems_allowed or mempolicy nodemask, it is
4862 * possible to race with parallel threads in such a way that our
4863 * allocation can fail while the mask is being updated. If we are about
4864 * to fail, check if the cpuset changed during allocation and if so,
4865 * retry.
4866 */
4867 if (read_mems_allowed_retry(cpuset_mems_cookie))
4868 return true;
4869
4870 return false;
4871}
4872
11e33f6a
MG
4873static inline struct page *
4874__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4875 struct alloc_context *ac)
11e33f6a 4876{
d0164adc 4877 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4878 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4879 struct page *page = NULL;
c603844b 4880 unsigned int alloc_flags;
11e33f6a 4881 unsigned long did_some_progress;
5ce9bfef 4882 enum compact_priority compact_priority;
c5d01d0d 4883 enum compact_result compact_result;
5ce9bfef
VB
4884 int compaction_retries;
4885 int no_progress_loops;
5ce9bfef 4886 unsigned int cpuset_mems_cookie;
cd04ae1e 4887 int reserve_flags;
1da177e4 4888
d0164adc
MG
4889 /*
4890 * We also sanity check to catch abuse of atomic reserves being used by
4891 * callers that are not in atomic context.
4892 */
4893 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4894 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4895 gfp_mask &= ~__GFP_ATOMIC;
4896
5ce9bfef
VB
4897retry_cpuset:
4898 compaction_retries = 0;
4899 no_progress_loops = 0;
4900 compact_priority = DEF_COMPACT_PRIORITY;
4901 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4902
4903 /*
4904 * The fast path uses conservative alloc_flags to succeed only until
4905 * kswapd needs to be woken up, and to avoid the cost of setting up
4906 * alloc_flags precisely. So we do that now.
4907 */
4908 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4909
e47483bc
VB
4910 /*
4911 * We need to recalculate the starting point for the zonelist iterator
4912 * because we might have used different nodemask in the fast path, or
4913 * there was a cpuset modification and we are retrying - otherwise we
4914 * could end up iterating over non-eligible zones endlessly.
4915 */
4916 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4917 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4918 if (!ac->preferred_zoneref->zone)
4919 goto nopage;
4920
0a79cdad 4921 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4922 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4923
4924 /*
4925 * The adjusted alloc_flags might result in immediate success, so try
4926 * that first
4927 */
4928 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4929 if (page)
4930 goto got_pg;
4931
a8161d1e
VB
4932 /*
4933 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4934 * that we have enough base pages and don't need to reclaim. For non-
4935 * movable high-order allocations, do that as well, as compaction will
4936 * try prevent permanent fragmentation by migrating from blocks of the
4937 * same migratetype.
4938 * Don't try this for allocations that are allowed to ignore
4939 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4940 */
282722b0
VB
4941 if (can_direct_reclaim &&
4942 (costly_order ||
4943 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4944 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4945 page = __alloc_pages_direct_compact(gfp_mask, order,
4946 alloc_flags, ac,
a5508cd8 4947 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4948 &compact_result);
4949 if (page)
4950 goto got_pg;
4951
cc638f32
VB
4952 /*
4953 * Checks for costly allocations with __GFP_NORETRY, which
4954 * includes some THP page fault allocations
4955 */
4956 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4957 /*
4958 * If allocating entire pageblock(s) and compaction
4959 * failed because all zones are below low watermarks
4960 * or is prohibited because it recently failed at this
3f36d866
DR
4961 * order, fail immediately unless the allocator has
4962 * requested compaction and reclaim retry.
b39d0ee2
DR
4963 *
4964 * Reclaim is
4965 * - potentially very expensive because zones are far
4966 * below their low watermarks or this is part of very
4967 * bursty high order allocations,
4968 * - not guaranteed to help because isolate_freepages()
4969 * may not iterate over freed pages as part of its
4970 * linear scan, and
4971 * - unlikely to make entire pageblocks free on its
4972 * own.
4973 */
4974 if (compact_result == COMPACT_SKIPPED ||
4975 compact_result == COMPACT_DEFERRED)
4976 goto nopage;
a8161d1e 4977
a8161d1e 4978 /*
3eb2771b
VB
4979 * Looks like reclaim/compaction is worth trying, but
4980 * sync compaction could be very expensive, so keep
25160354 4981 * using async compaction.
a8161d1e 4982 */
a5508cd8 4983 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4984 }
4985 }
23771235 4986
31a6c190 4987retry:
23771235 4988 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4989 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4990 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4991
cd04ae1e
MH
4992 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4993 if (reserve_flags)
8e3560d9 4994 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 4995
e46e7b77 4996 /*
d6a24df0
VB
4997 * Reset the nodemask and zonelist iterators if memory policies can be
4998 * ignored. These allocations are high priority and system rather than
4999 * user oriented.
e46e7b77 5000 */
cd04ae1e 5001 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5002 ac->nodemask = NULL;
e46e7b77 5003 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5004 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5005 }
5006
23771235 5007 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5008 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5009 if (page)
5010 goto got_pg;
1da177e4 5011
d0164adc 5012 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5013 if (!can_direct_reclaim)
1da177e4
LT
5014 goto nopage;
5015
9a67f648
MH
5016 /* Avoid recursion of direct reclaim */
5017 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5018 goto nopage;
5019
a8161d1e
VB
5020 /* Try direct reclaim and then allocating */
5021 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5022 &did_some_progress);
5023 if (page)
5024 goto got_pg;
5025
5026 /* Try direct compaction and then allocating */
a9263751 5027 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5028 compact_priority, &compact_result);
56de7263
MG
5029 if (page)
5030 goto got_pg;
75f30861 5031
9083905a
JW
5032 /* Do not loop if specifically requested */
5033 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5034 goto nopage;
9083905a 5035
0a0337e0
MH
5036 /*
5037 * Do not retry costly high order allocations unless they are
dcda9b04 5038 * __GFP_RETRY_MAYFAIL
0a0337e0 5039 */
dcda9b04 5040 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5041 goto nopage;
0a0337e0 5042
0a0337e0 5043 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5044 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5045 goto retry;
5046
33c2d214
MH
5047 /*
5048 * It doesn't make any sense to retry for the compaction if the order-0
5049 * reclaim is not able to make any progress because the current
5050 * implementation of the compaction depends on the sufficient amount
5051 * of free memory (see __compaction_suitable)
5052 */
5053 if (did_some_progress > 0 &&
86a294a8 5054 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5055 compact_result, &compact_priority,
d9436498 5056 &compaction_retries))
33c2d214
MH
5057 goto retry;
5058
902b6281
VB
5059
5060 /* Deal with possible cpuset update races before we start OOM killing */
5061 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5062 goto retry_cpuset;
5063
9083905a
JW
5064 /* Reclaim has failed us, start killing things */
5065 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5066 if (page)
5067 goto got_pg;
5068
9a67f648 5069 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5070 if (tsk_is_oom_victim(current) &&
8510e69c 5071 (alloc_flags & ALLOC_OOM ||
c288983d 5072 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5073 goto nopage;
5074
9083905a 5075 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5076 if (did_some_progress) {
5077 no_progress_loops = 0;
9083905a 5078 goto retry;
0a0337e0 5079 }
9083905a 5080
1da177e4 5081nopage:
902b6281
VB
5082 /* Deal with possible cpuset update races before we fail */
5083 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5084 goto retry_cpuset;
5085
9a67f648
MH
5086 /*
5087 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5088 * we always retry
5089 */
5090 if (gfp_mask & __GFP_NOFAIL) {
5091 /*
5092 * All existing users of the __GFP_NOFAIL are blockable, so warn
5093 * of any new users that actually require GFP_NOWAIT
5094 */
5095 if (WARN_ON_ONCE(!can_direct_reclaim))
5096 goto fail;
5097
5098 /*
5099 * PF_MEMALLOC request from this context is rather bizarre
5100 * because we cannot reclaim anything and only can loop waiting
5101 * for somebody to do a work for us
5102 */
5103 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5104
5105 /*
5106 * non failing costly orders are a hard requirement which we
5107 * are not prepared for much so let's warn about these users
5108 * so that we can identify them and convert them to something
5109 * else.
5110 */
5111 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5112
6c18ba7a
MH
5113 /*
5114 * Help non-failing allocations by giving them access to memory
5115 * reserves but do not use ALLOC_NO_WATERMARKS because this
5116 * could deplete whole memory reserves which would just make
5117 * the situation worse
5118 */
5119 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5120 if (page)
5121 goto got_pg;
5122
9a67f648
MH
5123 cond_resched();
5124 goto retry;
5125 }
5126fail:
a8e99259 5127 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5128 "page allocation failure: order:%u", order);
1da177e4 5129got_pg:
072bb0aa 5130 return page;
1da177e4 5131}
11e33f6a 5132
9cd75558 5133static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5134 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5135 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5136 unsigned int *alloc_flags)
11e33f6a 5137{
97a225e6 5138 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5139 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5140 ac->nodemask = nodemask;
01c0bfe0 5141 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5142
682a3385 5143 if (cpusets_enabled()) {
8e6a930b 5144 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5145 /*
5146 * When we are in the interrupt context, it is irrelevant
5147 * to the current task context. It means that any node ok.
5148 */
88dc6f20 5149 if (in_task() && !ac->nodemask)
9cd75558 5150 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5151 else
5152 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5153 }
5154
d92a8cfc
PZ
5155 fs_reclaim_acquire(gfp_mask);
5156 fs_reclaim_release(gfp_mask);
11e33f6a 5157
d0164adc 5158 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5159
5160 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5161 return false;
11e33f6a 5162
8e3560d9 5163 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5164
c9ab0c4f 5165 /* Dirty zone balancing only done in the fast path */
9cd75558 5166 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5167
e46e7b77
MG
5168 /*
5169 * The preferred zone is used for statistics but crucially it is
5170 * also used as the starting point for the zonelist iterator. It
5171 * may get reset for allocations that ignore memory policies.
5172 */
9cd75558 5173 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5174 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5175
5176 return true;
9cd75558
MG
5177}
5178
387ba26f 5179/*
0f87d9d3 5180 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5181 * @gfp: GFP flags for the allocation
5182 * @preferred_nid: The preferred NUMA node ID to allocate from
5183 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5184 * @nr_pages: The number of pages desired on the list or array
5185 * @page_list: Optional list to store the allocated pages
5186 * @page_array: Optional array to store the pages
387ba26f
MG
5187 *
5188 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5189 * allocate nr_pages quickly. Pages are added to page_list if page_list
5190 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5191 *
0f87d9d3
MG
5192 * For lists, nr_pages is the number of pages that should be allocated.
5193 *
5194 * For arrays, only NULL elements are populated with pages and nr_pages
5195 * is the maximum number of pages that will be stored in the array.
5196 *
5197 * Returns the number of pages on the list or array.
387ba26f
MG
5198 */
5199unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5200 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5201 struct list_head *page_list,
5202 struct page **page_array)
387ba26f
MG
5203{
5204 struct page *page;
5205 unsigned long flags;
5206 struct zone *zone;
5207 struct zoneref *z;
5208 struct per_cpu_pages *pcp;
5209 struct list_head *pcp_list;
5210 struct alloc_context ac;
5211 gfp_t alloc_gfp;
5212 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5213 int nr_populated = 0, nr_account = 0;
387ba26f 5214
0f87d9d3
MG
5215 /*
5216 * Skip populated array elements to determine if any pages need
5217 * to be allocated before disabling IRQs.
5218 */
b08e50dd 5219 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5220 nr_populated++;
5221
06147843
CL
5222 /* No pages requested? */
5223 if (unlikely(nr_pages <= 0))
5224 goto out;
5225
b3b64ebd
MG
5226 /* Already populated array? */
5227 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5228 goto out;
b3b64ebd 5229
8dcb3060
SB
5230 /* Bulk allocator does not support memcg accounting. */
5231 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5232 goto failed;
5233
387ba26f 5234 /* Use the single page allocator for one page. */
0f87d9d3 5235 if (nr_pages - nr_populated == 1)
387ba26f
MG
5236 goto failed;
5237
187ad460
MG
5238#ifdef CONFIG_PAGE_OWNER
5239 /*
5240 * PAGE_OWNER may recurse into the allocator to allocate space to
5241 * save the stack with pagesets.lock held. Releasing/reacquiring
5242 * removes much of the performance benefit of bulk allocation so
5243 * force the caller to allocate one page at a time as it'll have
5244 * similar performance to added complexity to the bulk allocator.
5245 */
5246 if (static_branch_unlikely(&page_owner_inited))
5247 goto failed;
5248#endif
5249
387ba26f
MG
5250 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5251 gfp &= gfp_allowed_mask;
5252 alloc_gfp = gfp;
5253 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5254 goto out;
387ba26f
MG
5255 gfp = alloc_gfp;
5256
5257 /* Find an allowed local zone that meets the low watermark. */
5258 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5259 unsigned long mark;
5260
5261 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5262 !__cpuset_zone_allowed(zone, gfp)) {
5263 continue;
5264 }
5265
5266 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5267 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5268 goto failed;
5269 }
5270
5271 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5272 if (zone_watermark_fast(zone, 0, mark,
5273 zonelist_zone_idx(ac.preferred_zoneref),
5274 alloc_flags, gfp)) {
5275 break;
5276 }
5277 }
5278
5279 /*
5280 * If there are no allowed local zones that meets the watermarks then
5281 * try to allocate a single page and reclaim if necessary.
5282 */
ce76f9a1 5283 if (unlikely(!zone))
387ba26f
MG
5284 goto failed;
5285
5286 /* Attempt the batch allocation */
dbbee9d5 5287 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5288 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5289 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5290
0f87d9d3
MG
5291 while (nr_populated < nr_pages) {
5292
5293 /* Skip existing pages */
5294 if (page_array && page_array[nr_populated]) {
5295 nr_populated++;
5296 continue;
5297 }
5298
44042b44 5299 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5300 pcp, pcp_list);
ce76f9a1 5301 if (unlikely(!page)) {
387ba26f 5302 /* Try and get at least one page */
0f87d9d3 5303 if (!nr_populated)
387ba26f
MG
5304 goto failed_irq;
5305 break;
5306 }
3e23060b 5307 nr_account++;
387ba26f
MG
5308
5309 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5310 if (page_list)
5311 list_add(&page->lru, page_list);
5312 else
5313 page_array[nr_populated] = page;
5314 nr_populated++;
387ba26f
MG
5315 }
5316
43c95bcc
MG
5317 local_unlock_irqrestore(&pagesets.lock, flags);
5318
3e23060b
MG
5319 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5320 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5321
06147843 5322out:
0f87d9d3 5323 return nr_populated;
387ba26f
MG
5324
5325failed_irq:
dbbee9d5 5326 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5327
5328failed:
5329 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5330 if (page) {
0f87d9d3
MG
5331 if (page_list)
5332 list_add(&page->lru, page_list);
5333 else
5334 page_array[nr_populated] = page;
5335 nr_populated++;
387ba26f
MG
5336 }
5337
06147843 5338 goto out;
387ba26f
MG
5339}
5340EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5341
9cd75558
MG
5342/*
5343 * This is the 'heart' of the zoned buddy allocator.
5344 */
84172f4b 5345struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5346 nodemask_t *nodemask)
9cd75558
MG
5347{
5348 struct page *page;
5349 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5350 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5351 struct alloc_context ac = { };
5352
c63ae43b
MH
5353 /*
5354 * There are several places where we assume that the order value is sane
5355 * so bail out early if the request is out of bound.
5356 */
5357 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5358 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5359 return NULL;
5360 }
5361
6e5e0f28 5362 gfp &= gfp_allowed_mask;
da6df1b0
PT
5363 /*
5364 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5365 * resp. GFP_NOIO which has to be inherited for all allocation requests
5366 * from a particular context which has been marked by
8e3560d9
PT
5367 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5368 * movable zones are not used during allocation.
da6df1b0
PT
5369 */
5370 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5371 alloc_gfp = gfp;
5372 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5373 &alloc_gfp, &alloc_flags))
9cd75558
MG
5374 return NULL;
5375
6bb15450
MG
5376 /*
5377 * Forbid the first pass from falling back to types that fragment
5378 * memory until all local zones are considered.
5379 */
6e5e0f28 5380 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5381
5117f45d 5382 /* First allocation attempt */
8e6a930b 5383 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5384 if (likely(page))
5385 goto out;
11e33f6a 5386
da6df1b0 5387 alloc_gfp = gfp;
4fcb0971 5388 ac.spread_dirty_pages = false;
23f086f9 5389
4741526b
MG
5390 /*
5391 * Restore the original nodemask if it was potentially replaced with
5392 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5393 */
97ce86f9 5394 ac.nodemask = nodemask;
16096c25 5395
8e6a930b 5396 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5397
4fcb0971 5398out:
6e5e0f28
MWO
5399 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5400 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5401 __free_pages(page, order);
5402 page = NULL;
4949148a
VD
5403 }
5404
8e6a930b 5405 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5406
11e33f6a 5407 return page;
1da177e4 5408}
84172f4b 5409EXPORT_SYMBOL(__alloc_pages);
1da177e4
LT
5410
5411/*
9ea9a680
MH
5412 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5413 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5414 * you need to access high mem.
1da177e4 5415 */
920c7a5d 5416unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5417{
945a1113
AM
5418 struct page *page;
5419
9ea9a680 5420 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5421 if (!page)
5422 return 0;
5423 return (unsigned long) page_address(page);
5424}
1da177e4
LT
5425EXPORT_SYMBOL(__get_free_pages);
5426
920c7a5d 5427unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5428{
945a1113 5429 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5430}
1da177e4
LT
5431EXPORT_SYMBOL(get_zeroed_page);
5432
7f194fbb
MWO
5433/**
5434 * __free_pages - Free pages allocated with alloc_pages().
5435 * @page: The page pointer returned from alloc_pages().
5436 * @order: The order of the allocation.
5437 *
5438 * This function can free multi-page allocations that are not compound
5439 * pages. It does not check that the @order passed in matches that of
5440 * the allocation, so it is easy to leak memory. Freeing more memory
5441 * than was allocated will probably emit a warning.
5442 *
5443 * If the last reference to this page is speculative, it will be released
5444 * by put_page() which only frees the first page of a non-compound
5445 * allocation. To prevent the remaining pages from being leaked, we free
5446 * the subsequent pages here. If you want to use the page's reference
5447 * count to decide when to free the allocation, you should allocate a
5448 * compound page, and use put_page() instead of __free_pages().
5449 *
5450 * Context: May be called in interrupt context or while holding a normal
5451 * spinlock, but not in NMI context or while holding a raw spinlock.
5452 */
742aa7fb
AL
5453void __free_pages(struct page *page, unsigned int order)
5454{
5455 if (put_page_testzero(page))
5456 free_the_page(page, order);
e320d301
MWO
5457 else if (!PageHead(page))
5458 while (order-- > 0)
5459 free_the_page(page + (1 << order), order);
742aa7fb 5460}
1da177e4
LT
5461EXPORT_SYMBOL(__free_pages);
5462
920c7a5d 5463void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5464{
5465 if (addr != 0) {
725d704e 5466 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5467 __free_pages(virt_to_page((void *)addr), order);
5468 }
5469}
5470
5471EXPORT_SYMBOL(free_pages);
5472
b63ae8ca
AD
5473/*
5474 * Page Fragment:
5475 * An arbitrary-length arbitrary-offset area of memory which resides
5476 * within a 0 or higher order page. Multiple fragments within that page
5477 * are individually refcounted, in the page's reference counter.
5478 *
5479 * The page_frag functions below provide a simple allocation framework for
5480 * page fragments. This is used by the network stack and network device
5481 * drivers to provide a backing region of memory for use as either an
5482 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5483 */
2976db80
AD
5484static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5485 gfp_t gfp_mask)
b63ae8ca
AD
5486{
5487 struct page *page = NULL;
5488 gfp_t gfp = gfp_mask;
5489
5490#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5491 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5492 __GFP_NOMEMALLOC;
5493 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5494 PAGE_FRAG_CACHE_MAX_ORDER);
5495 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5496#endif
5497 if (unlikely(!page))
5498 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5499
5500 nc->va = page ? page_address(page) : NULL;
5501
5502 return page;
5503}
5504
2976db80 5505void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5506{
5507 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5508
742aa7fb
AL
5509 if (page_ref_sub_and_test(page, count))
5510 free_the_page(page, compound_order(page));
44fdffd7 5511}
2976db80 5512EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5513
b358e212
KH
5514void *page_frag_alloc_align(struct page_frag_cache *nc,
5515 unsigned int fragsz, gfp_t gfp_mask,
5516 unsigned int align_mask)
b63ae8ca
AD
5517{
5518 unsigned int size = PAGE_SIZE;
5519 struct page *page;
5520 int offset;
5521
5522 if (unlikely(!nc->va)) {
5523refill:
2976db80 5524 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5525 if (!page)
5526 return NULL;
5527
5528#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5529 /* if size can vary use size else just use PAGE_SIZE */
5530 size = nc->size;
5531#endif
5532 /* Even if we own the page, we do not use atomic_set().
5533 * This would break get_page_unless_zero() users.
5534 */
86447726 5535 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5536
5537 /* reset page count bias and offset to start of new frag */
2f064f34 5538 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5539 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5540 nc->offset = size;
5541 }
5542
5543 offset = nc->offset - fragsz;
5544 if (unlikely(offset < 0)) {
5545 page = virt_to_page(nc->va);
5546
fe896d18 5547 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5548 goto refill;
5549
d8c19014
DZ
5550 if (unlikely(nc->pfmemalloc)) {
5551 free_the_page(page, compound_order(page));
5552 goto refill;
5553 }
5554
b63ae8ca
AD
5555#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5556 /* if size can vary use size else just use PAGE_SIZE */
5557 size = nc->size;
5558#endif
5559 /* OK, page count is 0, we can safely set it */
86447726 5560 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5561
5562 /* reset page count bias and offset to start of new frag */
86447726 5563 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5564 offset = size - fragsz;
5565 }
5566
5567 nc->pagecnt_bias--;
b358e212 5568 offset &= align_mask;
b63ae8ca
AD
5569 nc->offset = offset;
5570
5571 return nc->va + offset;
5572}
b358e212 5573EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5574
5575/*
5576 * Frees a page fragment allocated out of either a compound or order 0 page.
5577 */
8c2dd3e4 5578void page_frag_free(void *addr)
b63ae8ca
AD
5579{
5580 struct page *page = virt_to_head_page(addr);
5581
742aa7fb
AL
5582 if (unlikely(put_page_testzero(page)))
5583 free_the_page(page, compound_order(page));
b63ae8ca 5584}
8c2dd3e4 5585EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5586
d00181b9
KS
5587static void *make_alloc_exact(unsigned long addr, unsigned int order,
5588 size_t size)
ee85c2e1
AK
5589{
5590 if (addr) {
5591 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5592 unsigned long used = addr + PAGE_ALIGN(size);
5593
5594 split_page(virt_to_page((void *)addr), order);
5595 while (used < alloc_end) {
5596 free_page(used);
5597 used += PAGE_SIZE;
5598 }
5599 }
5600 return (void *)addr;
5601}
5602
2be0ffe2
TT
5603/**
5604 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5605 * @size: the number of bytes to allocate
63931eb9 5606 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5607 *
5608 * This function is similar to alloc_pages(), except that it allocates the
5609 * minimum number of pages to satisfy the request. alloc_pages() can only
5610 * allocate memory in power-of-two pages.
5611 *
5612 * This function is also limited by MAX_ORDER.
5613 *
5614 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5615 *
5616 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5617 */
5618void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5619{
5620 unsigned int order = get_order(size);
5621 unsigned long addr;
5622
63931eb9
VB
5623 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5624 gfp_mask &= ~__GFP_COMP;
5625
2be0ffe2 5626 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5627 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5628}
5629EXPORT_SYMBOL(alloc_pages_exact);
5630
ee85c2e1
AK
5631/**
5632 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5633 * pages on a node.
b5e6ab58 5634 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5635 * @size: the number of bytes to allocate
63931eb9 5636 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5637 *
5638 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5639 * back.
a862f68a
MR
5640 *
5641 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5642 */
e1931811 5643void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5644{
d00181b9 5645 unsigned int order = get_order(size);
63931eb9
VB
5646 struct page *p;
5647
5648 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5649 gfp_mask &= ~__GFP_COMP;
5650
5651 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5652 if (!p)
5653 return NULL;
5654 return make_alloc_exact((unsigned long)page_address(p), order, size);
5655}
ee85c2e1 5656
2be0ffe2
TT
5657/**
5658 * free_pages_exact - release memory allocated via alloc_pages_exact()
5659 * @virt: the value returned by alloc_pages_exact.
5660 * @size: size of allocation, same value as passed to alloc_pages_exact().
5661 *
5662 * Release the memory allocated by a previous call to alloc_pages_exact.
5663 */
5664void free_pages_exact(void *virt, size_t size)
5665{
5666 unsigned long addr = (unsigned long)virt;
5667 unsigned long end = addr + PAGE_ALIGN(size);
5668
5669 while (addr < end) {
5670 free_page(addr);
5671 addr += PAGE_SIZE;
5672 }
5673}
5674EXPORT_SYMBOL(free_pages_exact);
5675
e0fb5815
ZY
5676/**
5677 * nr_free_zone_pages - count number of pages beyond high watermark
5678 * @offset: The zone index of the highest zone
5679 *
a862f68a 5680 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5681 * high watermark within all zones at or below a given zone index. For each
5682 * zone, the number of pages is calculated as:
0e056eb5
MCC
5683 *
5684 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5685 *
5686 * Return: number of pages beyond high watermark.
e0fb5815 5687 */
ebec3862 5688static unsigned long nr_free_zone_pages(int offset)
1da177e4 5689{
dd1a239f 5690 struct zoneref *z;
54a6eb5c
MG
5691 struct zone *zone;
5692
e310fd43 5693 /* Just pick one node, since fallback list is circular */
ebec3862 5694 unsigned long sum = 0;
1da177e4 5695
0e88460d 5696 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5697
54a6eb5c 5698 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5699 unsigned long size = zone_managed_pages(zone);
41858966 5700 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5701 if (size > high)
5702 sum += size - high;
1da177e4
LT
5703 }
5704
5705 return sum;
5706}
5707
e0fb5815
ZY
5708/**
5709 * nr_free_buffer_pages - count number of pages beyond high watermark
5710 *
5711 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5712 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5713 *
5714 * Return: number of pages beyond high watermark within ZONE_DMA and
5715 * ZONE_NORMAL.
1da177e4 5716 */
ebec3862 5717unsigned long nr_free_buffer_pages(void)
1da177e4 5718{
af4ca457 5719 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5720}
c2f1a551 5721EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5722
08e0f6a9 5723static inline void show_node(struct zone *zone)
1da177e4 5724{
e5adfffc 5725 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5726 printk("Node %d ", zone_to_nid(zone));
1da177e4 5727}
1da177e4 5728
d02bd27b
IR
5729long si_mem_available(void)
5730{
5731 long available;
5732 unsigned long pagecache;
5733 unsigned long wmark_low = 0;
5734 unsigned long pages[NR_LRU_LISTS];
b29940c1 5735 unsigned long reclaimable;
d02bd27b
IR
5736 struct zone *zone;
5737 int lru;
5738
5739 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5740 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5741
5742 for_each_zone(zone)
a9214443 5743 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5744
5745 /*
5746 * Estimate the amount of memory available for userspace allocations,
5747 * without causing swapping.
5748 */
c41f012a 5749 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5750
5751 /*
5752 * Not all the page cache can be freed, otherwise the system will
5753 * start swapping. Assume at least half of the page cache, or the
5754 * low watermark worth of cache, needs to stay.
5755 */
5756 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5757 pagecache -= min(pagecache / 2, wmark_low);
5758 available += pagecache;
5759
5760 /*
b29940c1
VB
5761 * Part of the reclaimable slab and other kernel memory consists of
5762 * items that are in use, and cannot be freed. Cap this estimate at the
5763 * low watermark.
d02bd27b 5764 */
d42f3245
RG
5765 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5766 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5767 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5768
d02bd27b
IR
5769 if (available < 0)
5770 available = 0;
5771 return available;
5772}
5773EXPORT_SYMBOL_GPL(si_mem_available);
5774
1da177e4
LT
5775void si_meminfo(struct sysinfo *val)
5776{
ca79b0c2 5777 val->totalram = totalram_pages();
11fb9989 5778 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5779 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5780 val->bufferram = nr_blockdev_pages();
ca79b0c2 5781 val->totalhigh = totalhigh_pages();
1da177e4 5782 val->freehigh = nr_free_highpages();
1da177e4
LT
5783 val->mem_unit = PAGE_SIZE;
5784}
5785
5786EXPORT_SYMBOL(si_meminfo);
5787
5788#ifdef CONFIG_NUMA
5789void si_meminfo_node(struct sysinfo *val, int nid)
5790{
cdd91a77
JL
5791 int zone_type; /* needs to be signed */
5792 unsigned long managed_pages = 0;
fc2bd799
JK
5793 unsigned long managed_highpages = 0;
5794 unsigned long free_highpages = 0;
1da177e4
LT
5795 pg_data_t *pgdat = NODE_DATA(nid);
5796
cdd91a77 5797 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5798 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5799 val->totalram = managed_pages;
11fb9989 5800 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5801 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5802#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5803 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5804 struct zone *zone = &pgdat->node_zones[zone_type];
5805
5806 if (is_highmem(zone)) {
9705bea5 5807 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5808 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5809 }
5810 }
5811 val->totalhigh = managed_highpages;
5812 val->freehigh = free_highpages;
98d2b0eb 5813#else
fc2bd799
JK
5814 val->totalhigh = managed_highpages;
5815 val->freehigh = free_highpages;
98d2b0eb 5816#endif
1da177e4
LT
5817 val->mem_unit = PAGE_SIZE;
5818}
5819#endif
5820
ddd588b5 5821/*
7bf02ea2
DR
5822 * Determine whether the node should be displayed or not, depending on whether
5823 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5824 */
9af744d7 5825static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5826{
ddd588b5 5827 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5828 return false;
ddd588b5 5829
9af744d7
MH
5830 /*
5831 * no node mask - aka implicit memory numa policy. Do not bother with
5832 * the synchronization - read_mems_allowed_begin - because we do not
5833 * have to be precise here.
5834 */
5835 if (!nodemask)
5836 nodemask = &cpuset_current_mems_allowed;
5837
5838 return !node_isset(nid, *nodemask);
ddd588b5
DR
5839}
5840
1da177e4
LT
5841#define K(x) ((x) << (PAGE_SHIFT-10))
5842
377e4f16
RV
5843static void show_migration_types(unsigned char type)
5844{
5845 static const char types[MIGRATE_TYPES] = {
5846 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5847 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5848 [MIGRATE_RECLAIMABLE] = 'E',
5849 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5850#ifdef CONFIG_CMA
5851 [MIGRATE_CMA] = 'C',
5852#endif
194159fb 5853#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5854 [MIGRATE_ISOLATE] = 'I',
194159fb 5855#endif
377e4f16
RV
5856 };
5857 char tmp[MIGRATE_TYPES + 1];
5858 char *p = tmp;
5859 int i;
5860
5861 for (i = 0; i < MIGRATE_TYPES; i++) {
5862 if (type & (1 << i))
5863 *p++ = types[i];
5864 }
5865
5866 *p = '\0';
1f84a18f 5867 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5868}
5869
1da177e4
LT
5870/*
5871 * Show free area list (used inside shift_scroll-lock stuff)
5872 * We also calculate the percentage fragmentation. We do this by counting the
5873 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5874 *
5875 * Bits in @filter:
5876 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5877 * cpuset.
1da177e4 5878 */
9af744d7 5879void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5880{
d1bfcdb8 5881 unsigned long free_pcp = 0;
c7241913 5882 int cpu;
1da177e4 5883 struct zone *zone;
599d0c95 5884 pg_data_t *pgdat;
1da177e4 5885
ee99c71c 5886 for_each_populated_zone(zone) {
9af744d7 5887 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5888 continue;
d1bfcdb8 5889
761b0677 5890 for_each_online_cpu(cpu)
28f836b6 5891 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5892 }
5893
a731286d
KM
5894 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5895 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5896 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5897 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5898 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5899 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5900 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5901 global_node_page_state(NR_ACTIVE_ANON),
5902 global_node_page_state(NR_INACTIVE_ANON),
5903 global_node_page_state(NR_ISOLATED_ANON),
5904 global_node_page_state(NR_ACTIVE_FILE),
5905 global_node_page_state(NR_INACTIVE_FILE),
5906 global_node_page_state(NR_ISOLATED_FILE),
5907 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5908 global_node_page_state(NR_FILE_DIRTY),
5909 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5910 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5911 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5912 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5913 global_node_page_state(NR_SHMEM),
f0c0c115 5914 global_node_page_state(NR_PAGETABLE),
c41f012a 5915 global_zone_page_state(NR_BOUNCE),
eb2169ce 5916 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5917 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5918 free_pcp,
c41f012a 5919 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5920
599d0c95 5921 for_each_online_pgdat(pgdat) {
9af744d7 5922 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5923 continue;
5924
599d0c95
MG
5925 printk("Node %d"
5926 " active_anon:%lukB"
5927 " inactive_anon:%lukB"
5928 " active_file:%lukB"
5929 " inactive_file:%lukB"
5930 " unevictable:%lukB"
5931 " isolated(anon):%lukB"
5932 " isolated(file):%lukB"
50658e2e 5933 " mapped:%lukB"
11fb9989
MG
5934 " dirty:%lukB"
5935 " writeback:%lukB"
5936 " shmem:%lukB"
5937#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5938 " shmem_thp: %lukB"
5939 " shmem_pmdmapped: %lukB"
5940 " anon_thp: %lukB"
5941#endif
5942 " writeback_tmp:%lukB"
991e7673
SB
5943 " kernel_stack:%lukB"
5944#ifdef CONFIG_SHADOW_CALL_STACK
5945 " shadow_call_stack:%lukB"
5946#endif
f0c0c115 5947 " pagetables:%lukB"
599d0c95
MG
5948 " all_unreclaimable? %s"
5949 "\n",
5950 pgdat->node_id,
5951 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5952 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5953 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5954 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5955 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5956 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5957 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5958 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5959 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5960 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5961 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5962#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5963 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5964 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5965 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5966#endif
11fb9989 5967 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5968 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5969#ifdef CONFIG_SHADOW_CALL_STACK
5970 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5971#endif
f0c0c115 5972 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5973 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5974 "yes" : "no");
599d0c95
MG
5975 }
5976
ee99c71c 5977 for_each_populated_zone(zone) {
1da177e4
LT
5978 int i;
5979
9af744d7 5980 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5981 continue;
d1bfcdb8
KK
5982
5983 free_pcp = 0;
5984 for_each_online_cpu(cpu)
28f836b6 5985 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 5986
1da177e4 5987 show_node(zone);
1f84a18f
JP
5988 printk(KERN_CONT
5989 "%s"
1da177e4
LT
5990 " free:%lukB"
5991 " min:%lukB"
5992 " low:%lukB"
5993 " high:%lukB"
e47b346a 5994 " reserved_highatomic:%luKB"
71c799f4
MK
5995 " active_anon:%lukB"
5996 " inactive_anon:%lukB"
5997 " active_file:%lukB"
5998 " inactive_file:%lukB"
5999 " unevictable:%lukB"
5a1c84b4 6000 " writepending:%lukB"
1da177e4 6001 " present:%lukB"
9feedc9d 6002 " managed:%lukB"
4a0aa73f 6003 " mlocked:%lukB"
4a0aa73f 6004 " bounce:%lukB"
d1bfcdb8
KK
6005 " free_pcp:%lukB"
6006 " local_pcp:%ukB"
d1ce749a 6007 " free_cma:%lukB"
1da177e4
LT
6008 "\n",
6009 zone->name,
88f5acf8 6010 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
6011 K(min_wmark_pages(zone)),
6012 K(low_wmark_pages(zone)),
6013 K(high_wmark_pages(zone)),
e47b346a 6014 K(zone->nr_reserved_highatomic),
71c799f4
MK
6015 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6016 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6017 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6018 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6019 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6020 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6021 K(zone->present_pages),
9705bea5 6022 K(zone_managed_pages(zone)),
4a0aa73f 6023 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6024 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6025 K(free_pcp),
28f836b6 6026 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6028 printk("lowmem_reserve[]:");
6029 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6030 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6031 printk(KERN_CONT "\n");
1da177e4
LT
6032 }
6033
ee99c71c 6034 for_each_populated_zone(zone) {
d00181b9
KS
6035 unsigned int order;
6036 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6037 unsigned char types[MAX_ORDER];
1da177e4 6038
9af744d7 6039 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6040 continue;
1da177e4 6041 show_node(zone);
1f84a18f 6042 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6043
6044 spin_lock_irqsave(&zone->lock, flags);
6045 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6046 struct free_area *area = &zone->free_area[order];
6047 int type;
6048
6049 nr[order] = area->nr_free;
8f9de51a 6050 total += nr[order] << order;
377e4f16
RV
6051
6052 types[order] = 0;
6053 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6054 if (!free_area_empty(area, type))
377e4f16
RV
6055 types[order] |= 1 << type;
6056 }
1da177e4
LT
6057 }
6058 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6059 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6060 printk(KERN_CONT "%lu*%lukB ",
6061 nr[order], K(1UL) << order);
377e4f16
RV
6062 if (nr[order])
6063 show_migration_types(types[order]);
6064 }
1f84a18f 6065 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6066 }
6067
949f7ec5
DR
6068 hugetlb_show_meminfo();
6069
11fb9989 6070 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6071
1da177e4
LT
6072 show_swap_cache_info();
6073}
6074
19770b32
MG
6075static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6076{
6077 zoneref->zone = zone;
6078 zoneref->zone_idx = zone_idx(zone);
6079}
6080
1da177e4
LT
6081/*
6082 * Builds allocation fallback zone lists.
1a93205b
CL
6083 *
6084 * Add all populated zones of a node to the zonelist.
1da177e4 6085 */
9d3be21b 6086static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6087{
1a93205b 6088 struct zone *zone;
bc732f1d 6089 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6090 int nr_zones = 0;
02a68a5e
CL
6091
6092 do {
2f6726e5 6093 zone_type--;
070f8032 6094 zone = pgdat->node_zones + zone_type;
264c7367 6095 if (populated_zone(zone)) {
9d3be21b 6096 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6097 check_highest_zone(zone_type);
1da177e4 6098 }
2f6726e5 6099 } while (zone_type);
bc732f1d 6100
070f8032 6101 return nr_zones;
1da177e4
LT
6102}
6103
6104#ifdef CONFIG_NUMA
f0c0b2b8
KH
6105
6106static int __parse_numa_zonelist_order(char *s)
6107{
c9bff3ee 6108 /*
f0953a1b 6109 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6110 * out to be just not useful. Let's keep the warning in place
6111 * if somebody still use the cmd line parameter so that we do
6112 * not fail it silently
6113 */
6114 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6115 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6116 return -EINVAL;
6117 }
6118 return 0;
6119}
6120
c9bff3ee
MH
6121char numa_zonelist_order[] = "Node";
6122
f0c0b2b8
KH
6123/*
6124 * sysctl handler for numa_zonelist_order
6125 */
cccad5b9 6126int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6127 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6128{
32927393
CH
6129 if (write)
6130 return __parse_numa_zonelist_order(buffer);
6131 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6132}
6133
6134
62bc62a8 6135#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
6136static int node_load[MAX_NUMNODES];
6137
1da177e4 6138/**
4dc3b16b 6139 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6140 * @node: node whose fallback list we're appending
6141 * @used_node_mask: nodemask_t of already used nodes
6142 *
6143 * We use a number of factors to determine which is the next node that should
6144 * appear on a given node's fallback list. The node should not have appeared
6145 * already in @node's fallback list, and it should be the next closest node
6146 * according to the distance array (which contains arbitrary distance values
6147 * from each node to each node in the system), and should also prefer nodes
6148 * with no CPUs, since presumably they'll have very little allocation pressure
6149 * on them otherwise.
a862f68a
MR
6150 *
6151 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6152 */
79c28a41 6153int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6154{
4cf808eb 6155 int n, val;
1da177e4 6156 int min_val = INT_MAX;
00ef2d2f 6157 int best_node = NUMA_NO_NODE;
1da177e4 6158
4cf808eb
LT
6159 /* Use the local node if we haven't already */
6160 if (!node_isset(node, *used_node_mask)) {
6161 node_set(node, *used_node_mask);
6162 return node;
6163 }
1da177e4 6164
4b0ef1fe 6165 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6166
6167 /* Don't want a node to appear more than once */
6168 if (node_isset(n, *used_node_mask))
6169 continue;
6170
1da177e4
LT
6171 /* Use the distance array to find the distance */
6172 val = node_distance(node, n);
6173
4cf808eb
LT
6174 /* Penalize nodes under us ("prefer the next node") */
6175 val += (n < node);
6176
1da177e4 6177 /* Give preference to headless and unused nodes */
b630749f 6178 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6179 val += PENALTY_FOR_NODE_WITH_CPUS;
6180
6181 /* Slight preference for less loaded node */
6182 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6183 val += node_load[n];
6184
6185 if (val < min_val) {
6186 min_val = val;
6187 best_node = n;
6188 }
6189 }
6190
6191 if (best_node >= 0)
6192 node_set(best_node, *used_node_mask);
6193
6194 return best_node;
6195}
6196
f0c0b2b8
KH
6197
6198/*
6199 * Build zonelists ordered by node and zones within node.
6200 * This results in maximum locality--normal zone overflows into local
6201 * DMA zone, if any--but risks exhausting DMA zone.
6202 */
9d3be21b
MH
6203static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6204 unsigned nr_nodes)
1da177e4 6205{
9d3be21b
MH
6206 struct zoneref *zonerefs;
6207 int i;
6208
6209 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6210
6211 for (i = 0; i < nr_nodes; i++) {
6212 int nr_zones;
6213
6214 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6215
9d3be21b
MH
6216 nr_zones = build_zonerefs_node(node, zonerefs);
6217 zonerefs += nr_zones;
6218 }
6219 zonerefs->zone = NULL;
6220 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6221}
6222
523b9458
CL
6223/*
6224 * Build gfp_thisnode zonelists
6225 */
6226static void build_thisnode_zonelists(pg_data_t *pgdat)
6227{
9d3be21b
MH
6228 struct zoneref *zonerefs;
6229 int nr_zones;
523b9458 6230
9d3be21b
MH
6231 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6232 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6233 zonerefs += nr_zones;
6234 zonerefs->zone = NULL;
6235 zonerefs->zone_idx = 0;
523b9458
CL
6236}
6237
f0c0b2b8
KH
6238/*
6239 * Build zonelists ordered by zone and nodes within zones.
6240 * This results in conserving DMA zone[s] until all Normal memory is
6241 * exhausted, but results in overflowing to remote node while memory
6242 * may still exist in local DMA zone.
6243 */
f0c0b2b8 6244
f0c0b2b8
KH
6245static void build_zonelists(pg_data_t *pgdat)
6246{
9d3be21b
MH
6247 static int node_order[MAX_NUMNODES];
6248 int node, load, nr_nodes = 0;
d0ddf49b 6249 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6250 int local_node, prev_node;
1da177e4
LT
6251
6252 /* NUMA-aware ordering of nodes */
6253 local_node = pgdat->node_id;
62bc62a8 6254 load = nr_online_nodes;
1da177e4 6255 prev_node = local_node;
f0c0b2b8 6256
f0c0b2b8 6257 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6258 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6259 /*
6260 * We don't want to pressure a particular node.
6261 * So adding penalty to the first node in same
6262 * distance group to make it round-robin.
6263 */
957f822a
DR
6264 if (node_distance(local_node, node) !=
6265 node_distance(local_node, prev_node))
f0c0b2b8
KH
6266 node_load[node] = load;
6267
9d3be21b 6268 node_order[nr_nodes++] = node;
1da177e4
LT
6269 prev_node = node;
6270 load--;
1da177e4 6271 }
523b9458 6272
9d3be21b 6273 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6274 build_thisnode_zonelists(pgdat);
1da177e4
LT
6275}
6276
7aac7898
LS
6277#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6278/*
6279 * Return node id of node used for "local" allocations.
6280 * I.e., first node id of first zone in arg node's generic zonelist.
6281 * Used for initializing percpu 'numa_mem', which is used primarily
6282 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6283 */
6284int local_memory_node(int node)
6285{
c33d6c06 6286 struct zoneref *z;
7aac7898 6287
c33d6c06 6288 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6289 gfp_zone(GFP_KERNEL),
c33d6c06 6290 NULL);
c1093b74 6291 return zone_to_nid(z->zone);
7aac7898
LS
6292}
6293#endif
f0c0b2b8 6294
6423aa81
JK
6295static void setup_min_unmapped_ratio(void);
6296static void setup_min_slab_ratio(void);
1da177e4
LT
6297#else /* CONFIG_NUMA */
6298
f0c0b2b8 6299static void build_zonelists(pg_data_t *pgdat)
1da177e4 6300{
19655d34 6301 int node, local_node;
9d3be21b
MH
6302 struct zoneref *zonerefs;
6303 int nr_zones;
1da177e4
LT
6304
6305 local_node = pgdat->node_id;
1da177e4 6306
9d3be21b
MH
6307 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6308 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6309 zonerefs += nr_zones;
1da177e4 6310
54a6eb5c
MG
6311 /*
6312 * Now we build the zonelist so that it contains the zones
6313 * of all the other nodes.
6314 * We don't want to pressure a particular node, so when
6315 * building the zones for node N, we make sure that the
6316 * zones coming right after the local ones are those from
6317 * node N+1 (modulo N)
6318 */
6319 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6320 if (!node_online(node))
6321 continue;
9d3be21b
MH
6322 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6323 zonerefs += nr_zones;
1da177e4 6324 }
54a6eb5c
MG
6325 for (node = 0; node < local_node; node++) {
6326 if (!node_online(node))
6327 continue;
9d3be21b
MH
6328 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6329 zonerefs += nr_zones;
54a6eb5c
MG
6330 }
6331
9d3be21b
MH
6332 zonerefs->zone = NULL;
6333 zonerefs->zone_idx = 0;
1da177e4
LT
6334}
6335
6336#endif /* CONFIG_NUMA */
6337
99dcc3e5
CL
6338/*
6339 * Boot pageset table. One per cpu which is going to be used for all
6340 * zones and all nodes. The parameters will be set in such a way
6341 * that an item put on a list will immediately be handed over to
6342 * the buddy list. This is safe since pageset manipulation is done
6343 * with interrupts disabled.
6344 *
6345 * The boot_pagesets must be kept even after bootup is complete for
6346 * unused processors and/or zones. They do play a role for bootstrapping
6347 * hotplugged processors.
6348 *
6349 * zoneinfo_show() and maybe other functions do
6350 * not check if the processor is online before following the pageset pointer.
6351 * Other parts of the kernel may not check if the zone is available.
6352 */
28f836b6 6353static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6354/* These effectively disable the pcplists in the boot pageset completely */
6355#define BOOT_PAGESET_HIGH 0
6356#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6357static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6358static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
385386cf 6359static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6360
11cd8638 6361static void __build_all_zonelists(void *data)
1da177e4 6362{
6811378e 6363 int nid;
afb6ebb3 6364 int __maybe_unused cpu;
9adb62a5 6365 pg_data_t *self = data;
b93e0f32
MH
6366 static DEFINE_SPINLOCK(lock);
6367
6368 spin_lock(&lock);
9276b1bc 6369
7f9cfb31
BL
6370#ifdef CONFIG_NUMA
6371 memset(node_load, 0, sizeof(node_load));
6372#endif
9adb62a5 6373
c1152583
WY
6374 /*
6375 * This node is hotadded and no memory is yet present. So just
6376 * building zonelists is fine - no need to touch other nodes.
6377 */
9adb62a5
JL
6378 if (self && !node_online(self->node_id)) {
6379 build_zonelists(self);
c1152583
WY
6380 } else {
6381 for_each_online_node(nid) {
6382 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6383
c1152583
WY
6384 build_zonelists(pgdat);
6385 }
99dcc3e5 6386
7aac7898
LS
6387#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6388 /*
6389 * We now know the "local memory node" for each node--
6390 * i.e., the node of the first zone in the generic zonelist.
6391 * Set up numa_mem percpu variable for on-line cpus. During
6392 * boot, only the boot cpu should be on-line; we'll init the
6393 * secondary cpus' numa_mem as they come on-line. During
6394 * node/memory hotplug, we'll fixup all on-line cpus.
6395 */
d9c9a0b9 6396 for_each_online_cpu(cpu)
7aac7898 6397 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6398#endif
d9c9a0b9 6399 }
b93e0f32
MH
6400
6401 spin_unlock(&lock);
6811378e
YG
6402}
6403
061f67bc
RV
6404static noinline void __init
6405build_all_zonelists_init(void)
6406{
afb6ebb3
MH
6407 int cpu;
6408
061f67bc 6409 __build_all_zonelists(NULL);
afb6ebb3
MH
6410
6411 /*
6412 * Initialize the boot_pagesets that are going to be used
6413 * for bootstrapping processors. The real pagesets for
6414 * each zone will be allocated later when the per cpu
6415 * allocator is available.
6416 *
6417 * boot_pagesets are used also for bootstrapping offline
6418 * cpus if the system is already booted because the pagesets
6419 * are needed to initialize allocators on a specific cpu too.
6420 * F.e. the percpu allocator needs the page allocator which
6421 * needs the percpu allocator in order to allocate its pagesets
6422 * (a chicken-egg dilemma).
6423 */
6424 for_each_possible_cpu(cpu)
28f836b6 6425 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6426
061f67bc
RV
6427 mminit_verify_zonelist();
6428 cpuset_init_current_mems_allowed();
6429}
6430
4eaf3f64 6431/*
4eaf3f64 6432 * unless system_state == SYSTEM_BOOTING.
061f67bc 6433 *
72675e13 6434 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6435 * [protected by SYSTEM_BOOTING].
4eaf3f64 6436 */
72675e13 6437void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6438{
0a18e607
DH
6439 unsigned long vm_total_pages;
6440
6811378e 6441 if (system_state == SYSTEM_BOOTING) {
061f67bc 6442 build_all_zonelists_init();
6811378e 6443 } else {
11cd8638 6444 __build_all_zonelists(pgdat);
6811378e
YG
6445 /* cpuset refresh routine should be here */
6446 }
56b9413b
DH
6447 /* Get the number of free pages beyond high watermark in all zones. */
6448 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6449 /*
6450 * Disable grouping by mobility if the number of pages in the
6451 * system is too low to allow the mechanism to work. It would be
6452 * more accurate, but expensive to check per-zone. This check is
6453 * made on memory-hotadd so a system can start with mobility
6454 * disabled and enable it later
6455 */
d9c23400 6456 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6457 page_group_by_mobility_disabled = 1;
6458 else
6459 page_group_by_mobility_disabled = 0;
6460
ce0725f7 6461 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6462 nr_online_nodes,
756a025f
JP
6463 page_group_by_mobility_disabled ? "off" : "on",
6464 vm_total_pages);
f0c0b2b8 6465#ifdef CONFIG_NUMA
f88dfff5 6466 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6467#endif
1da177e4
LT
6468}
6469
a9a9e77f
PT
6470/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6471static bool __meminit
6472overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6473{
a9a9e77f
PT
6474 static struct memblock_region *r;
6475
6476 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6477 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6478 for_each_mem_region(r) {
a9a9e77f
PT
6479 if (*pfn < memblock_region_memory_end_pfn(r))
6480 break;
6481 }
6482 }
6483 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6484 memblock_is_mirror(r)) {
6485 *pfn = memblock_region_memory_end_pfn(r);
6486 return true;
6487 }
6488 }
a9a9e77f
PT
6489 return false;
6490}
6491
1da177e4
LT
6492/*
6493 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6494 * up by memblock_free_all() once the early boot process is
1da177e4 6495 * done. Non-atomic initialization, single-pass.
d882c006
DH
6496 *
6497 * All aligned pageblocks are initialized to the specified migratetype
6498 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6499 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6500 */
ab28cb6e 6501void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6502 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6503 enum meminit_context context,
6504 struct vmem_altmap *altmap, int migratetype)
1da177e4 6505{
a9a9e77f 6506 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6507 struct page *page;
1da177e4 6508
22b31eec
HD
6509 if (highest_memmap_pfn < end_pfn - 1)
6510 highest_memmap_pfn = end_pfn - 1;
6511
966cf44f 6512#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6513 /*
6514 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6515 * memory. We limit the total number of pages to initialize to just
6516 * those that might contain the memory mapping. We will defer the
6517 * ZONE_DEVICE page initialization until after we have released
6518 * the hotplug lock.
4b94ffdc 6519 */
966cf44f
AD
6520 if (zone == ZONE_DEVICE) {
6521 if (!altmap)
6522 return;
6523
6524 if (start_pfn == altmap->base_pfn)
6525 start_pfn += altmap->reserve;
6526 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6527 }
6528#endif
4b94ffdc 6529
948c436e 6530 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6531 /*
b72d0ffb
AM
6532 * There can be holes in boot-time mem_map[]s handed to this
6533 * function. They do not exist on hotplugged memory.
a2f3aa02 6534 */
c1d0da83 6535 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6536 if (overlap_memmap_init(zone, &pfn))
6537 continue;
dc2da7b4 6538 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6539 break;
a2f3aa02 6540 }
ac5d2539 6541
d0dc12e8
PT
6542 page = pfn_to_page(pfn);
6543 __init_single_page(page, pfn, zone, nid);
c1d0da83 6544 if (context == MEMINIT_HOTPLUG)
d483da5b 6545 __SetPageReserved(page);
d0dc12e8 6546
ac5d2539 6547 /*
d882c006
DH
6548 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6549 * such that unmovable allocations won't be scattered all
6550 * over the place during system boot.
ac5d2539 6551 */
4eb29bd9 6552 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6553 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6554 cond_resched();
ac5d2539 6555 }
948c436e 6556 pfn++;
1da177e4
LT
6557 }
6558}
6559
966cf44f
AD
6560#ifdef CONFIG_ZONE_DEVICE
6561void __ref memmap_init_zone_device(struct zone *zone,
6562 unsigned long start_pfn,
1f8d75c1 6563 unsigned long nr_pages,
966cf44f
AD
6564 struct dev_pagemap *pgmap)
6565{
1f8d75c1 6566 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6567 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6568 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6569 unsigned long zone_idx = zone_idx(zone);
6570 unsigned long start = jiffies;
6571 int nid = pgdat->node_id;
6572
46d945ae 6573 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6574 return;
6575
6576 /*
122e093c 6577 * The call to memmap_init should have already taken care
966cf44f
AD
6578 * of the pages reserved for the memmap, so we can just jump to
6579 * the end of that region and start processing the device pages.
6580 */
514caf23 6581 if (altmap) {
966cf44f 6582 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6583 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6584 }
6585
6586 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6587 struct page *page = pfn_to_page(pfn);
6588
6589 __init_single_page(page, pfn, zone_idx, nid);
6590
6591 /*
6592 * Mark page reserved as it will need to wait for onlining
6593 * phase for it to be fully associated with a zone.
6594 *
6595 * We can use the non-atomic __set_bit operation for setting
6596 * the flag as we are still initializing the pages.
6597 */
6598 __SetPageReserved(page);
6599
6600 /*
8a164fef
CH
6601 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6602 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6603 * ever freed or placed on a driver-private list.
966cf44f
AD
6604 */
6605 page->pgmap = pgmap;
8a164fef 6606 page->zone_device_data = NULL;
966cf44f
AD
6607
6608 /*
6609 * Mark the block movable so that blocks are reserved for
6610 * movable at startup. This will force kernel allocations
6611 * to reserve their blocks rather than leaking throughout
6612 * the address space during boot when many long-lived
6613 * kernel allocations are made.
6614 *
c1d0da83 6615 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6616 * because this is done early in section_activate()
966cf44f 6617 */
4eb29bd9 6618 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6619 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6620 cond_resched();
6621 }
6622 }
6623
fdc029b1 6624 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6625 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6626}
6627
6628#endif
1e548deb 6629static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6630{
7aeb09f9 6631 unsigned int order, t;
b2a0ac88
MG
6632 for_each_migratetype_order(order, t) {
6633 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6634 zone->free_area[order].nr_free = 0;
6635 }
6636}
6637
0740a50b
MR
6638/*
6639 * Only struct pages that correspond to ranges defined by memblock.memory
6640 * are zeroed and initialized by going through __init_single_page() during
122e093c 6641 * memmap_init_zone_range().
0740a50b
MR
6642 *
6643 * But, there could be struct pages that correspond to holes in
6644 * memblock.memory. This can happen because of the following reasons:
6645 * - physical memory bank size is not necessarily the exact multiple of the
6646 * arbitrary section size
6647 * - early reserved memory may not be listed in memblock.memory
6648 * - memory layouts defined with memmap= kernel parameter may not align
6649 * nicely with memmap sections
6650 *
6651 * Explicitly initialize those struct pages so that:
6652 * - PG_Reserved is set
6653 * - zone and node links point to zone and node that span the page if the
6654 * hole is in the middle of a zone
6655 * - zone and node links point to adjacent zone/node if the hole falls on
6656 * the zone boundary; the pages in such holes will be prepended to the
6657 * zone/node above the hole except for the trailing pages in the last
6658 * section that will be appended to the zone/node below.
6659 */
122e093c
MR
6660static void __init init_unavailable_range(unsigned long spfn,
6661 unsigned long epfn,
6662 int zone, int node)
0740a50b
MR
6663{
6664 unsigned long pfn;
6665 u64 pgcnt = 0;
6666
6667 for (pfn = spfn; pfn < epfn; pfn++) {
6668 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6669 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6670 + pageblock_nr_pages - 1;
6671 continue;
6672 }
6673 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6674 __SetPageReserved(pfn_to_page(pfn));
6675 pgcnt++;
6676 }
6677
122e093c
MR
6678 if (pgcnt)
6679 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6680 node, zone_names[zone], pgcnt);
0740a50b 6681}
0740a50b 6682
122e093c
MR
6683static void __init memmap_init_zone_range(struct zone *zone,
6684 unsigned long start_pfn,
6685 unsigned long end_pfn,
6686 unsigned long *hole_pfn)
dfb3ccd0 6687{
3256ff83
BH
6688 unsigned long zone_start_pfn = zone->zone_start_pfn;
6689 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6690 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6691
6692 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6693 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6694
6695 if (start_pfn >= end_pfn)
6696 return;
6697
6698 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6699 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6700
6701 if (*hole_pfn < start_pfn)
6702 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6703
6704 *hole_pfn = end_pfn;
6705}
6706
6707static void __init memmap_init(void)
6708{
73a6e474 6709 unsigned long start_pfn, end_pfn;
122e093c 6710 unsigned long hole_pfn = 0;
b346075f 6711 int i, j, zone_id = 0, nid;
73a6e474 6712
122e093c
MR
6713 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6714 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6715
122e093c
MR
6716 for (j = 0; j < MAX_NR_ZONES; j++) {
6717 struct zone *zone = node->node_zones + j;
0740a50b 6718
122e093c
MR
6719 if (!populated_zone(zone))
6720 continue;
0740a50b 6721
122e093c
MR
6722 memmap_init_zone_range(zone, start_pfn, end_pfn,
6723 &hole_pfn);
6724 zone_id = j;
6725 }
73a6e474 6726 }
0740a50b
MR
6727
6728#ifdef CONFIG_SPARSEMEM
6729 /*
122e093c
MR
6730 * Initialize the memory map for hole in the range [memory_end,
6731 * section_end].
6732 * Append the pages in this hole to the highest zone in the last
6733 * node.
6734 * The call to init_unavailable_range() is outside the ifdef to
6735 * silence the compiler warining about zone_id set but not used;
6736 * for FLATMEM it is a nop anyway
0740a50b 6737 */
122e093c 6738 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6739 if (hole_pfn < end_pfn)
0740a50b 6740#endif
122e093c 6741 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6742}
1da177e4 6743
c803b3c8
MR
6744void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6745 phys_addr_t min_addr, int nid, bool exact_nid)
6746{
6747 void *ptr;
6748
6749 if (exact_nid)
6750 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6751 MEMBLOCK_ALLOC_ACCESSIBLE,
6752 nid);
6753 else
6754 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6755 MEMBLOCK_ALLOC_ACCESSIBLE,
6756 nid);
6757
6758 if (ptr && size > 0)
6759 page_init_poison(ptr, size);
6760
6761 return ptr;
6762}
6763
7cd2b0a3 6764static int zone_batchsize(struct zone *zone)
e7c8d5c9 6765{
3a6be87f 6766#ifdef CONFIG_MMU
e7c8d5c9
CL
6767 int batch;
6768
6769 /*
b92ca18e
MG
6770 * The number of pages to batch allocate is either ~0.1%
6771 * of the zone or 1MB, whichever is smaller. The batch
6772 * size is striking a balance between allocation latency
6773 * and zone lock contention.
e7c8d5c9 6774 */
b92ca18e 6775 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6776 batch /= 4; /* We effectively *= 4 below */
6777 if (batch < 1)
6778 batch = 1;
6779
6780 /*
0ceaacc9
NP
6781 * Clamp the batch to a 2^n - 1 value. Having a power
6782 * of 2 value was found to be more likely to have
6783 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6784 *
0ceaacc9
NP
6785 * For example if 2 tasks are alternately allocating
6786 * batches of pages, one task can end up with a lot
6787 * of pages of one half of the possible page colors
6788 * and the other with pages of the other colors.
e7c8d5c9 6789 */
9155203a 6790 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6791
e7c8d5c9 6792 return batch;
3a6be87f
DH
6793
6794#else
6795 /* The deferral and batching of frees should be suppressed under NOMMU
6796 * conditions.
6797 *
6798 * The problem is that NOMMU needs to be able to allocate large chunks
6799 * of contiguous memory as there's no hardware page translation to
6800 * assemble apparent contiguous memory from discontiguous pages.
6801 *
6802 * Queueing large contiguous runs of pages for batching, however,
6803 * causes the pages to actually be freed in smaller chunks. As there
6804 * can be a significant delay between the individual batches being
6805 * recycled, this leads to the once large chunks of space being
6806 * fragmented and becoming unavailable for high-order allocations.
6807 */
6808 return 0;
6809#endif
e7c8d5c9
CL
6810}
6811
04f8cfea 6812static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6813{
6814#ifdef CONFIG_MMU
6815 int high;
203c06ee 6816 int nr_split_cpus;
74f44822
MG
6817 unsigned long total_pages;
6818
6819 if (!percpu_pagelist_high_fraction) {
6820 /*
6821 * By default, the high value of the pcp is based on the zone
6822 * low watermark so that if they are full then background
6823 * reclaim will not be started prematurely.
6824 */
6825 total_pages = low_wmark_pages(zone);
6826 } else {
6827 /*
6828 * If percpu_pagelist_high_fraction is configured, the high
6829 * value is based on a fraction of the managed pages in the
6830 * zone.
6831 */
6832 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6833 }
b92ca18e
MG
6834
6835 /*
74f44822
MG
6836 * Split the high value across all online CPUs local to the zone. Note
6837 * that early in boot that CPUs may not be online yet and that during
6838 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6839 * onlined. For memory nodes that have no CPUs, split pcp->high across
6840 * all online CPUs to mitigate the risk that reclaim is triggered
6841 * prematurely due to pages stored on pcp lists.
b92ca18e 6842 */
203c06ee
MG
6843 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6844 if (!nr_split_cpus)
6845 nr_split_cpus = num_online_cpus();
6846 high = total_pages / nr_split_cpus;
b92ca18e
MG
6847
6848 /*
6849 * Ensure high is at least batch*4. The multiple is based on the
6850 * historical relationship between high and batch.
6851 */
6852 high = max(high, batch << 2);
6853
6854 return high;
6855#else
6856 return 0;
6857#endif
6858}
6859
8d7a8fa9 6860/*
5c3ad2eb
VB
6861 * pcp->high and pcp->batch values are related and generally batch is lower
6862 * than high. They are also related to pcp->count such that count is lower
6863 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6864 *
5c3ad2eb
VB
6865 * However, guaranteeing these relations at all times would require e.g. write
6866 * barriers here but also careful usage of read barriers at the read side, and
6867 * thus be prone to error and bad for performance. Thus the update only prevents
6868 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6869 * can cope with those fields changing asynchronously, and fully trust only the
6870 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6871 *
6872 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6873 * outside of boot time (or some other assurance that no concurrent updaters
6874 * exist).
6875 */
6876static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6877 unsigned long batch)
6878{
5c3ad2eb
VB
6879 WRITE_ONCE(pcp->batch, batch);
6880 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6881}
6882
28f836b6 6883static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6884{
44042b44 6885 int pindex;
2caaad41 6886
28f836b6
MG
6887 memset(pcp, 0, sizeof(*pcp));
6888 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6889
44042b44
MG
6890 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6891 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6892
69a8396a
VB
6893 /*
6894 * Set batch and high values safe for a boot pageset. A true percpu
6895 * pageset's initialization will update them subsequently. Here we don't
6896 * need to be as careful as pageset_update() as nobody can access the
6897 * pageset yet.
6898 */
952eaf81
VB
6899 pcp->high = BOOT_PAGESET_HIGH;
6900 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6901 pcp->free_factor = 0;
88c90dbc
CS
6902}
6903
3b1f3658 6904static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6905 unsigned long batch)
6906{
28f836b6 6907 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6908 int cpu;
6909
6910 for_each_possible_cpu(cpu) {
28f836b6
MG
6911 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6912 pageset_update(pcp, high, batch);
ec6e8c7e
VB
6913 }
6914}
6915
8ad4b1fb 6916/*
0a8b4f1d 6917 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 6918 * zone based on the zone's size.
8ad4b1fb 6919 */
04f8cfea 6920static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 6921{
b92ca18e 6922 int new_high, new_batch;
7115ac6e 6923
b92ca18e 6924 new_batch = max(1, zone_batchsize(zone));
04f8cfea 6925 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 6926
952eaf81
VB
6927 if (zone->pageset_high == new_high &&
6928 zone->pageset_batch == new_batch)
6929 return;
6930
6931 zone->pageset_high = new_high;
6932 zone->pageset_batch = new_batch;
6933
ec6e8c7e 6934 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6935}
6936
72675e13 6937void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6938{
6939 int cpu;
0a8b4f1d 6940
28f836b6
MG
6941 /* Size may be 0 on !SMP && !NUMA */
6942 if (sizeof(struct per_cpu_zonestat) > 0)
6943 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6944
6945 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 6946 for_each_possible_cpu(cpu) {
28f836b6
MG
6947 struct per_cpu_pages *pcp;
6948 struct per_cpu_zonestat *pzstats;
6949
6950 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6951 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6952 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
6953 }
6954
04f8cfea 6955 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
6956}
6957
2caaad41 6958/*
99dcc3e5
CL
6959 * Allocate per cpu pagesets and initialize them.
6960 * Before this call only boot pagesets were available.
e7c8d5c9 6961 */
99dcc3e5 6962void __init setup_per_cpu_pageset(void)
e7c8d5c9 6963{
b4911ea2 6964 struct pglist_data *pgdat;
99dcc3e5 6965 struct zone *zone;
b418a0f9 6966 int __maybe_unused cpu;
e7c8d5c9 6967
319774e2
WF
6968 for_each_populated_zone(zone)
6969 setup_zone_pageset(zone);
b4911ea2 6970
b418a0f9
SD
6971#ifdef CONFIG_NUMA
6972 /*
6973 * Unpopulated zones continue using the boot pagesets.
6974 * The numa stats for these pagesets need to be reset.
6975 * Otherwise, they will end up skewing the stats of
6976 * the nodes these zones are associated with.
6977 */
6978 for_each_possible_cpu(cpu) {
28f836b6 6979 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
6980 memset(pzstats->vm_numa_event, 0,
6981 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
6982 }
6983#endif
6984
b4911ea2
MG
6985 for_each_online_pgdat(pgdat)
6986 pgdat->per_cpu_nodestats =
6987 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6988}
6989
c09b4240 6990static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6991{
99dcc3e5
CL
6992 /*
6993 * per cpu subsystem is not up at this point. The following code
6994 * relies on the ability of the linker to provide the
6995 * offset of a (static) per cpu variable into the per cpu area.
6996 */
28f836b6
MG
6997 zone->per_cpu_pageset = &boot_pageset;
6998 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
6999 zone->pageset_high = BOOT_PAGESET_HIGH;
7000 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7001
b38a8725 7002 if (populated_zone(zone))
9660ecaa
HK
7003 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7004 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7005}
7006
dc0bbf3b 7007void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7008 unsigned long zone_start_pfn,
b171e409 7009 unsigned long size)
ed8ece2e
DH
7010{
7011 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7012 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7013
8f416836
WY
7014 if (zone_idx > pgdat->nr_zones)
7015 pgdat->nr_zones = zone_idx;
ed8ece2e 7016
ed8ece2e
DH
7017 zone->zone_start_pfn = zone_start_pfn;
7018
708614e6
MG
7019 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7020 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7021 pgdat->node_id,
7022 (unsigned long)zone_idx(zone),
7023 zone_start_pfn, (zone_start_pfn + size));
7024
1e548deb 7025 zone_init_free_lists(zone);
9dcb8b68 7026 zone->initialized = 1;
ed8ece2e
DH
7027}
7028
c713216d
MG
7029/**
7030 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7031 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7032 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7033 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7034 *
7035 * It returns the start and end page frame of a node based on information
7d018176 7036 * provided by memblock_set_node(). If called for a node
c713216d 7037 * with no available memory, a warning is printed and the start and end
88ca3b94 7038 * PFNs will be 0.
c713216d 7039 */
bbe5d993 7040void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7041 unsigned long *start_pfn, unsigned long *end_pfn)
7042{
c13291a5 7043 unsigned long this_start_pfn, this_end_pfn;
c713216d 7044 int i;
c13291a5 7045
c713216d
MG
7046 *start_pfn = -1UL;
7047 *end_pfn = 0;
7048
c13291a5
TH
7049 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7050 *start_pfn = min(*start_pfn, this_start_pfn);
7051 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7052 }
7053
633c0666 7054 if (*start_pfn == -1UL)
c713216d 7055 *start_pfn = 0;
c713216d
MG
7056}
7057
2a1e274a
MG
7058/*
7059 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7060 * assumption is made that zones within a node are ordered in monotonic
7061 * increasing memory addresses so that the "highest" populated zone is used
7062 */
b69a7288 7063static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7064{
7065 int zone_index;
7066 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7067 if (zone_index == ZONE_MOVABLE)
7068 continue;
7069
7070 if (arch_zone_highest_possible_pfn[zone_index] >
7071 arch_zone_lowest_possible_pfn[zone_index])
7072 break;
7073 }
7074
7075 VM_BUG_ON(zone_index == -1);
7076 movable_zone = zone_index;
7077}
7078
7079/*
7080 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7081 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7082 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7083 * in each node depending on the size of each node and how evenly kernelcore
7084 * is distributed. This helper function adjusts the zone ranges
7085 * provided by the architecture for a given node by using the end of the
7086 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7087 * zones within a node are in order of monotonic increases memory addresses
7088 */
bbe5d993 7089static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7090 unsigned long zone_type,
7091 unsigned long node_start_pfn,
7092 unsigned long node_end_pfn,
7093 unsigned long *zone_start_pfn,
7094 unsigned long *zone_end_pfn)
7095{
7096 /* Only adjust if ZONE_MOVABLE is on this node */
7097 if (zone_movable_pfn[nid]) {
7098 /* Size ZONE_MOVABLE */
7099 if (zone_type == ZONE_MOVABLE) {
7100 *zone_start_pfn = zone_movable_pfn[nid];
7101 *zone_end_pfn = min(node_end_pfn,
7102 arch_zone_highest_possible_pfn[movable_zone]);
7103
e506b996
XQ
7104 /* Adjust for ZONE_MOVABLE starting within this range */
7105 } else if (!mirrored_kernelcore &&
7106 *zone_start_pfn < zone_movable_pfn[nid] &&
7107 *zone_end_pfn > zone_movable_pfn[nid]) {
7108 *zone_end_pfn = zone_movable_pfn[nid];
7109
2a1e274a
MG
7110 /* Check if this whole range is within ZONE_MOVABLE */
7111 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7112 *zone_start_pfn = *zone_end_pfn;
7113 }
7114}
7115
c713216d
MG
7116/*
7117 * Return the number of pages a zone spans in a node, including holes
7118 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7119 */
bbe5d993 7120static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7121 unsigned long zone_type,
7960aedd
ZY
7122 unsigned long node_start_pfn,
7123 unsigned long node_end_pfn,
d91749c1 7124 unsigned long *zone_start_pfn,
854e8848 7125 unsigned long *zone_end_pfn)
c713216d 7126{
299c83dc
LF
7127 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7128 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7129 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7130 if (!node_start_pfn && !node_end_pfn)
7131 return 0;
7132
7960aedd 7133 /* Get the start and end of the zone */
299c83dc
LF
7134 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7135 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7136 adjust_zone_range_for_zone_movable(nid, zone_type,
7137 node_start_pfn, node_end_pfn,
d91749c1 7138 zone_start_pfn, zone_end_pfn);
c713216d
MG
7139
7140 /* Check that this node has pages within the zone's required range */
d91749c1 7141 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7142 return 0;
7143
7144 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7145 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7146 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7147
7148 /* Return the spanned pages */
d91749c1 7149 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7150}
7151
7152/*
7153 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7154 * then all holes in the requested range will be accounted for.
c713216d 7155 */
bbe5d993 7156unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7157 unsigned long range_start_pfn,
7158 unsigned long range_end_pfn)
7159{
96e907d1
TH
7160 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7161 unsigned long start_pfn, end_pfn;
7162 int i;
c713216d 7163
96e907d1
TH
7164 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7165 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7166 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7167 nr_absent -= end_pfn - start_pfn;
c713216d 7168 }
96e907d1 7169 return nr_absent;
c713216d
MG
7170}
7171
7172/**
7173 * absent_pages_in_range - Return number of page frames in holes within a range
7174 * @start_pfn: The start PFN to start searching for holes
7175 * @end_pfn: The end PFN to stop searching for holes
7176 *
a862f68a 7177 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7178 */
7179unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7180 unsigned long end_pfn)
7181{
7182 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7183}
7184
7185/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7186static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7187 unsigned long zone_type,
7960aedd 7188 unsigned long node_start_pfn,
854e8848 7189 unsigned long node_end_pfn)
c713216d 7190{
96e907d1
TH
7191 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7192 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7193 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7194 unsigned long nr_absent;
9c7cd687 7195
b5685e92 7196 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7197 if (!node_start_pfn && !node_end_pfn)
7198 return 0;
7199
96e907d1
TH
7200 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7201 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7202
2a1e274a
MG
7203 adjust_zone_range_for_zone_movable(nid, zone_type,
7204 node_start_pfn, node_end_pfn,
7205 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7206 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7207
7208 /*
7209 * ZONE_MOVABLE handling.
7210 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7211 * and vice versa.
7212 */
e506b996
XQ
7213 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7214 unsigned long start_pfn, end_pfn;
7215 struct memblock_region *r;
7216
cc6de168 7217 for_each_mem_region(r) {
e506b996
XQ
7218 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7219 zone_start_pfn, zone_end_pfn);
7220 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7221 zone_start_pfn, zone_end_pfn);
7222
7223 if (zone_type == ZONE_MOVABLE &&
7224 memblock_is_mirror(r))
7225 nr_absent += end_pfn - start_pfn;
7226
7227 if (zone_type == ZONE_NORMAL &&
7228 !memblock_is_mirror(r))
7229 nr_absent += end_pfn - start_pfn;
342332e6
TI
7230 }
7231 }
7232
7233 return nr_absent;
c713216d 7234}
0e0b864e 7235
bbe5d993 7236static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7237 unsigned long node_start_pfn,
854e8848 7238 unsigned long node_end_pfn)
c713216d 7239{
febd5949 7240 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7241 enum zone_type i;
7242
febd5949
GZ
7243 for (i = 0; i < MAX_NR_ZONES; i++) {
7244 struct zone *zone = pgdat->node_zones + i;
d91749c1 7245 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7246 unsigned long spanned, absent;
febd5949 7247 unsigned long size, real_size;
c713216d 7248
854e8848
MR
7249 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7250 node_start_pfn,
7251 node_end_pfn,
7252 &zone_start_pfn,
7253 &zone_end_pfn);
7254 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7255 node_start_pfn,
7256 node_end_pfn);
3f08a302
MR
7257
7258 size = spanned;
7259 real_size = size - absent;
7260
d91749c1
TI
7261 if (size)
7262 zone->zone_start_pfn = zone_start_pfn;
7263 else
7264 zone->zone_start_pfn = 0;
febd5949
GZ
7265 zone->spanned_pages = size;
7266 zone->present_pages = real_size;
4b097002
DH
7267#if defined(CONFIG_MEMORY_HOTPLUG)
7268 zone->present_early_pages = real_size;
7269#endif
febd5949
GZ
7270
7271 totalpages += size;
7272 realtotalpages += real_size;
7273 }
7274
7275 pgdat->node_spanned_pages = totalpages;
c713216d 7276 pgdat->node_present_pages = realtotalpages;
9660ecaa 7277 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7278}
7279
835c134e
MG
7280#ifndef CONFIG_SPARSEMEM
7281/*
7282 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7283 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7284 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7285 * round what is now in bits to nearest long in bits, then return it in
7286 * bytes.
7287 */
7c45512d 7288static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7289{
7290 unsigned long usemapsize;
7291
7c45512d 7292 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7293 usemapsize = roundup(zonesize, pageblock_nr_pages);
7294 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7295 usemapsize *= NR_PAGEBLOCK_BITS;
7296 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7297
7298 return usemapsize / 8;
7299}
7300
7010a6ec 7301static void __ref setup_usemap(struct zone *zone)
835c134e 7302{
7010a6ec
BH
7303 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7304 zone->spanned_pages);
835c134e 7305 zone->pageblock_flags = NULL;
23a7052a 7306 if (usemapsize) {
6782832e 7307 zone->pageblock_flags =
26fb3dae 7308 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7309 zone_to_nid(zone));
23a7052a
MR
7310 if (!zone->pageblock_flags)
7311 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7312 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7313 }
835c134e
MG
7314}
7315#else
7010a6ec 7316static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7317#endif /* CONFIG_SPARSEMEM */
7318
d9c23400 7319#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7320
d9c23400 7321/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7322void __init set_pageblock_order(void)
d9c23400 7323{
955c1cd7
AM
7324 unsigned int order;
7325
d9c23400
MG
7326 /* Check that pageblock_nr_pages has not already been setup */
7327 if (pageblock_order)
7328 return;
7329
955c1cd7
AM
7330 if (HPAGE_SHIFT > PAGE_SHIFT)
7331 order = HUGETLB_PAGE_ORDER;
7332 else
7333 order = MAX_ORDER - 1;
7334
d9c23400
MG
7335 /*
7336 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7337 * This value may be variable depending on boot parameters on IA64 and
7338 * powerpc.
d9c23400
MG
7339 */
7340 pageblock_order = order;
7341}
7342#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7343
ba72cb8c
MG
7344/*
7345 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7346 * is unused as pageblock_order is set at compile-time. See
7347 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7348 * the kernel config
ba72cb8c 7349 */
03e85f9d 7350void __init set_pageblock_order(void)
ba72cb8c 7351{
ba72cb8c 7352}
d9c23400
MG
7353
7354#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7355
03e85f9d 7356static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7357 unsigned long present_pages)
01cefaef
JL
7358{
7359 unsigned long pages = spanned_pages;
7360
7361 /*
7362 * Provide a more accurate estimation if there are holes within
7363 * the zone and SPARSEMEM is in use. If there are holes within the
7364 * zone, each populated memory region may cost us one or two extra
7365 * memmap pages due to alignment because memmap pages for each
89d790ab 7366 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7367 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7368 */
7369 if (spanned_pages > present_pages + (present_pages >> 4) &&
7370 IS_ENABLED(CONFIG_SPARSEMEM))
7371 pages = present_pages;
7372
7373 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7374}
7375
ace1db39
OS
7376#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7377static void pgdat_init_split_queue(struct pglist_data *pgdat)
7378{
364c1eeb
YS
7379 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7380
7381 spin_lock_init(&ds_queue->split_queue_lock);
7382 INIT_LIST_HEAD(&ds_queue->split_queue);
7383 ds_queue->split_queue_len = 0;
ace1db39
OS
7384}
7385#else
7386static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7387#endif
7388
7389#ifdef CONFIG_COMPACTION
7390static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7391{
7392 init_waitqueue_head(&pgdat->kcompactd_wait);
7393}
7394#else
7395static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7396#endif
7397
03e85f9d 7398static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7399{
208d54e5 7400 pgdat_resize_init(pgdat);
ace1db39 7401
ace1db39
OS
7402 pgdat_init_split_queue(pgdat);
7403 pgdat_init_kcompactd(pgdat);
7404
1da177e4 7405 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7406 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7407
eefa864b 7408 pgdat_page_ext_init(pgdat);
867e5e1d 7409 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7410}
7411
7412static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7413 unsigned long remaining_pages)
7414{
9705bea5 7415 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7416 zone_set_nid(zone, nid);
7417 zone->name = zone_names[idx];
7418 zone->zone_pgdat = NODE_DATA(nid);
7419 spin_lock_init(&zone->lock);
7420 zone_seqlock_init(zone);
7421 zone_pcp_init(zone);
7422}
7423
7424/*
7425 * Set up the zone data structures
7426 * - init pgdat internals
7427 * - init all zones belonging to this node
7428 *
7429 * NOTE: this function is only called during memory hotplug
7430 */
7431#ifdef CONFIG_MEMORY_HOTPLUG
7432void __ref free_area_init_core_hotplug(int nid)
7433{
7434 enum zone_type z;
7435 pg_data_t *pgdat = NODE_DATA(nid);
7436
7437 pgdat_init_internals(pgdat);
7438 for (z = 0; z < MAX_NR_ZONES; z++)
7439 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7440}
7441#endif
7442
7443/*
7444 * Set up the zone data structures:
7445 * - mark all pages reserved
7446 * - mark all memory queues empty
7447 * - clear the memory bitmaps
7448 *
7449 * NOTE: pgdat should get zeroed by caller.
7450 * NOTE: this function is only called during early init.
7451 */
7452static void __init free_area_init_core(struct pglist_data *pgdat)
7453{
7454 enum zone_type j;
7455 int nid = pgdat->node_id;
5f63b720 7456
03e85f9d 7457 pgdat_init_internals(pgdat);
385386cf
JW
7458 pgdat->per_cpu_nodestats = &boot_nodestats;
7459
1da177e4
LT
7460 for (j = 0; j < MAX_NR_ZONES; j++) {
7461 struct zone *zone = pgdat->node_zones + j;
e6943859 7462 unsigned long size, freesize, memmap_pages;
1da177e4 7463
febd5949 7464 size = zone->spanned_pages;
e6943859 7465 freesize = zone->present_pages;
1da177e4 7466
0e0b864e 7467 /*
9feedc9d 7468 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7469 * is used by this zone for memmap. This affects the watermark
7470 * and per-cpu initialisations
7471 */
e6943859 7472 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7473 if (!is_highmem_idx(j)) {
7474 if (freesize >= memmap_pages) {
7475 freesize -= memmap_pages;
7476 if (memmap_pages)
9660ecaa
HK
7477 pr_debug(" %s zone: %lu pages used for memmap\n",
7478 zone_names[j], memmap_pages);
ba914f48 7479 } else
e47aa905 7480 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7481 zone_names[j], memmap_pages, freesize);
7482 }
0e0b864e 7483
6267276f 7484 /* Account for reserved pages */
9feedc9d
JL
7485 if (j == 0 && freesize > dma_reserve) {
7486 freesize -= dma_reserve;
9660ecaa 7487 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7488 }
7489
98d2b0eb 7490 if (!is_highmem_idx(j))
9feedc9d 7491 nr_kernel_pages += freesize;
01cefaef
JL
7492 /* Charge for highmem memmap if there are enough kernel pages */
7493 else if (nr_kernel_pages > memmap_pages * 2)
7494 nr_kernel_pages -= memmap_pages;
9feedc9d 7495 nr_all_pages += freesize;
1da177e4 7496
9feedc9d
JL
7497 /*
7498 * Set an approximate value for lowmem here, it will be adjusted
7499 * when the bootmem allocator frees pages into the buddy system.
7500 * And all highmem pages will be managed by the buddy system.
7501 */
03e85f9d 7502 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7503
d883c6cf 7504 if (!size)
1da177e4
LT
7505 continue;
7506
955c1cd7 7507 set_pageblock_order();
7010a6ec 7508 setup_usemap(zone);
9699ee7b 7509 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7510 }
7511}
7512
43b02ba9 7513#ifdef CONFIG_FLATMEM
3b446da6 7514static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7515{
b0aeba74 7516 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7517 unsigned long __maybe_unused offset = 0;
7518
1da177e4
LT
7519 /* Skip empty nodes */
7520 if (!pgdat->node_spanned_pages)
7521 return;
7522
b0aeba74
TL
7523 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7524 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7525 /* ia64 gets its own node_mem_map, before this, without bootmem */
7526 if (!pgdat->node_mem_map) {
b0aeba74 7527 unsigned long size, end;
d41dee36
AW
7528 struct page *map;
7529
e984bb43
BP
7530 /*
7531 * The zone's endpoints aren't required to be MAX_ORDER
7532 * aligned but the node_mem_map endpoints must be in order
7533 * for the buddy allocator to function correctly.
7534 */
108bcc96 7535 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7536 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7537 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7538 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7539 pgdat->node_id, false);
23a7052a
MR
7540 if (!map)
7541 panic("Failed to allocate %ld bytes for node %d memory map\n",
7542 size, pgdat->node_id);
a1c34a3b 7543 pgdat->node_mem_map = map + offset;
1da177e4 7544 }
0cd842f9
OS
7545 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7546 __func__, pgdat->node_id, (unsigned long)pgdat,
7547 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7548#ifndef CONFIG_NUMA
1da177e4
LT
7549 /*
7550 * With no DISCONTIG, the global mem_map is just set as node 0's
7551 */
c713216d 7552 if (pgdat == NODE_DATA(0)) {
1da177e4 7553 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7554 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7555 mem_map -= offset;
c713216d 7556 }
1da177e4
LT
7557#endif
7558}
0cd842f9 7559#else
3b446da6 7560static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7561#endif /* CONFIG_FLATMEM */
1da177e4 7562
0188dc98
OS
7563#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7564static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7565{
0188dc98
OS
7566 pgdat->first_deferred_pfn = ULONG_MAX;
7567}
7568#else
7569static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7570#endif
7571
854e8848 7572static void __init free_area_init_node(int nid)
1da177e4 7573{
9109fb7b 7574 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7575 unsigned long start_pfn = 0;
7576 unsigned long end_pfn = 0;
9109fb7b 7577
88fdf75d 7578 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7579 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7580
854e8848 7581 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7582
1da177e4 7583 pgdat->node_id = nid;
854e8848 7584 pgdat->node_start_pfn = start_pfn;
75ef7184 7585 pgdat->per_cpu_nodestats = NULL;
854e8848 7586
8d29e18a 7587 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7588 (u64)start_pfn << PAGE_SHIFT,
7589 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7590 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7591
7592 alloc_node_mem_map(pgdat);
0188dc98 7593 pgdat_set_deferred_range(pgdat);
1da177e4 7594
7f3eb55b 7595 free_area_init_core(pgdat);
1da177e4
LT
7596}
7597
bc9331a1 7598void __init free_area_init_memoryless_node(int nid)
3f08a302 7599{
854e8848 7600 free_area_init_node(nid);
3f08a302
MR
7601}
7602
418508c1
MS
7603#if MAX_NUMNODES > 1
7604/*
7605 * Figure out the number of possible node ids.
7606 */
f9872caf 7607void __init setup_nr_node_ids(void)
418508c1 7608{
904a9553 7609 unsigned int highest;
418508c1 7610
904a9553 7611 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7612 nr_node_ids = highest + 1;
7613}
418508c1
MS
7614#endif
7615
1e01979c
TH
7616/**
7617 * node_map_pfn_alignment - determine the maximum internode alignment
7618 *
7619 * This function should be called after node map is populated and sorted.
7620 * It calculates the maximum power of two alignment which can distinguish
7621 * all the nodes.
7622 *
7623 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7624 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7625 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7626 * shifted, 1GiB is enough and this function will indicate so.
7627 *
7628 * This is used to test whether pfn -> nid mapping of the chosen memory
7629 * model has fine enough granularity to avoid incorrect mapping for the
7630 * populated node map.
7631 *
a862f68a 7632 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7633 * requirement (single node).
7634 */
7635unsigned long __init node_map_pfn_alignment(void)
7636{
7637 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7638 unsigned long start, end, mask;
98fa15f3 7639 int last_nid = NUMA_NO_NODE;
c13291a5 7640 int i, nid;
1e01979c 7641
c13291a5 7642 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7643 if (!start || last_nid < 0 || last_nid == nid) {
7644 last_nid = nid;
7645 last_end = end;
7646 continue;
7647 }
7648
7649 /*
7650 * Start with a mask granular enough to pin-point to the
7651 * start pfn and tick off bits one-by-one until it becomes
7652 * too coarse to separate the current node from the last.
7653 */
7654 mask = ~((1 << __ffs(start)) - 1);
7655 while (mask && last_end <= (start & (mask << 1)))
7656 mask <<= 1;
7657
7658 /* accumulate all internode masks */
7659 accl_mask |= mask;
7660 }
7661
7662 /* convert mask to number of pages */
7663 return ~accl_mask + 1;
7664}
7665
c713216d
MG
7666/**
7667 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7668 *
a862f68a 7669 * Return: the minimum PFN based on information provided via
7d018176 7670 * memblock_set_node().
c713216d
MG
7671 */
7672unsigned long __init find_min_pfn_with_active_regions(void)
7673{
8a1b25fe 7674 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7675}
7676
37b07e41
LS
7677/*
7678 * early_calculate_totalpages()
7679 * Sum pages in active regions for movable zone.
4b0ef1fe 7680 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7681 */
484f51f8 7682static unsigned long __init early_calculate_totalpages(void)
7e63efef 7683{
7e63efef 7684 unsigned long totalpages = 0;
c13291a5
TH
7685 unsigned long start_pfn, end_pfn;
7686 int i, nid;
7687
7688 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7689 unsigned long pages = end_pfn - start_pfn;
7e63efef 7690
37b07e41
LS
7691 totalpages += pages;
7692 if (pages)
4b0ef1fe 7693 node_set_state(nid, N_MEMORY);
37b07e41 7694 }
b8af2941 7695 return totalpages;
7e63efef
MG
7696}
7697
2a1e274a
MG
7698/*
7699 * Find the PFN the Movable zone begins in each node. Kernel memory
7700 * is spread evenly between nodes as long as the nodes have enough
7701 * memory. When they don't, some nodes will have more kernelcore than
7702 * others
7703 */
b224ef85 7704static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7705{
7706 int i, nid;
7707 unsigned long usable_startpfn;
7708 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7709 /* save the state before borrow the nodemask */
4b0ef1fe 7710 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7711 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7712 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7713 struct memblock_region *r;
b2f3eebe
TC
7714
7715 /* Need to find movable_zone earlier when movable_node is specified. */
7716 find_usable_zone_for_movable();
7717
7718 /*
7719 * If movable_node is specified, ignore kernelcore and movablecore
7720 * options.
7721 */
7722 if (movable_node_is_enabled()) {
cc6de168 7723 for_each_mem_region(r) {
136199f0 7724 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7725 continue;
7726
d622abf7 7727 nid = memblock_get_region_node(r);
b2f3eebe 7728
136199f0 7729 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7730 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7731 min(usable_startpfn, zone_movable_pfn[nid]) :
7732 usable_startpfn;
7733 }
7734
7735 goto out2;
7736 }
2a1e274a 7737
342332e6
TI
7738 /*
7739 * If kernelcore=mirror is specified, ignore movablecore option
7740 */
7741 if (mirrored_kernelcore) {
7742 bool mem_below_4gb_not_mirrored = false;
7743
cc6de168 7744 for_each_mem_region(r) {
342332e6
TI
7745 if (memblock_is_mirror(r))
7746 continue;
7747
d622abf7 7748 nid = memblock_get_region_node(r);
342332e6
TI
7749
7750 usable_startpfn = memblock_region_memory_base_pfn(r);
7751
7752 if (usable_startpfn < 0x100000) {
7753 mem_below_4gb_not_mirrored = true;
7754 continue;
7755 }
7756
7757 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7758 min(usable_startpfn, zone_movable_pfn[nid]) :
7759 usable_startpfn;
7760 }
7761
7762 if (mem_below_4gb_not_mirrored)
633bf2fe 7763 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7764
7765 goto out2;
7766 }
7767
7e63efef 7768 /*
a5c6d650
DR
7769 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7770 * amount of necessary memory.
7771 */
7772 if (required_kernelcore_percent)
7773 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7774 10000UL;
7775 if (required_movablecore_percent)
7776 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7777 10000UL;
7778
7779 /*
7780 * If movablecore= was specified, calculate what size of
7e63efef
MG
7781 * kernelcore that corresponds so that memory usable for
7782 * any allocation type is evenly spread. If both kernelcore
7783 * and movablecore are specified, then the value of kernelcore
7784 * will be used for required_kernelcore if it's greater than
7785 * what movablecore would have allowed.
7786 */
7787 if (required_movablecore) {
7e63efef
MG
7788 unsigned long corepages;
7789
7790 /*
7791 * Round-up so that ZONE_MOVABLE is at least as large as what
7792 * was requested by the user
7793 */
7794 required_movablecore =
7795 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7796 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7797 corepages = totalpages - required_movablecore;
7798
7799 required_kernelcore = max(required_kernelcore, corepages);
7800 }
7801
bde304bd
XQ
7802 /*
7803 * If kernelcore was not specified or kernelcore size is larger
7804 * than totalpages, there is no ZONE_MOVABLE.
7805 */
7806 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7807 goto out;
2a1e274a
MG
7808
7809 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7810 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7811
7812restart:
7813 /* Spread kernelcore memory as evenly as possible throughout nodes */
7814 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7815 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7816 unsigned long start_pfn, end_pfn;
7817
2a1e274a
MG
7818 /*
7819 * Recalculate kernelcore_node if the division per node
7820 * now exceeds what is necessary to satisfy the requested
7821 * amount of memory for the kernel
7822 */
7823 if (required_kernelcore < kernelcore_node)
7824 kernelcore_node = required_kernelcore / usable_nodes;
7825
7826 /*
7827 * As the map is walked, we track how much memory is usable
7828 * by the kernel using kernelcore_remaining. When it is
7829 * 0, the rest of the node is usable by ZONE_MOVABLE
7830 */
7831 kernelcore_remaining = kernelcore_node;
7832
7833 /* Go through each range of PFNs within this node */
c13291a5 7834 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7835 unsigned long size_pages;
7836
c13291a5 7837 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7838 if (start_pfn >= end_pfn)
7839 continue;
7840
7841 /* Account for what is only usable for kernelcore */
7842 if (start_pfn < usable_startpfn) {
7843 unsigned long kernel_pages;
7844 kernel_pages = min(end_pfn, usable_startpfn)
7845 - start_pfn;
7846
7847 kernelcore_remaining -= min(kernel_pages,
7848 kernelcore_remaining);
7849 required_kernelcore -= min(kernel_pages,
7850 required_kernelcore);
7851
7852 /* Continue if range is now fully accounted */
7853 if (end_pfn <= usable_startpfn) {
7854
7855 /*
7856 * Push zone_movable_pfn to the end so
7857 * that if we have to rebalance
7858 * kernelcore across nodes, we will
7859 * not double account here
7860 */
7861 zone_movable_pfn[nid] = end_pfn;
7862 continue;
7863 }
7864 start_pfn = usable_startpfn;
7865 }
7866
7867 /*
7868 * The usable PFN range for ZONE_MOVABLE is from
7869 * start_pfn->end_pfn. Calculate size_pages as the
7870 * number of pages used as kernelcore
7871 */
7872 size_pages = end_pfn - start_pfn;
7873 if (size_pages > kernelcore_remaining)
7874 size_pages = kernelcore_remaining;
7875 zone_movable_pfn[nid] = start_pfn + size_pages;
7876
7877 /*
7878 * Some kernelcore has been met, update counts and
7879 * break if the kernelcore for this node has been
b8af2941 7880 * satisfied
2a1e274a
MG
7881 */
7882 required_kernelcore -= min(required_kernelcore,
7883 size_pages);
7884 kernelcore_remaining -= size_pages;
7885 if (!kernelcore_remaining)
7886 break;
7887 }
7888 }
7889
7890 /*
7891 * If there is still required_kernelcore, we do another pass with one
7892 * less node in the count. This will push zone_movable_pfn[nid] further
7893 * along on the nodes that still have memory until kernelcore is
b8af2941 7894 * satisfied
2a1e274a
MG
7895 */
7896 usable_nodes--;
7897 if (usable_nodes && required_kernelcore > usable_nodes)
7898 goto restart;
7899
b2f3eebe 7900out2:
2a1e274a 7901 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
aa65151a
AP
7902 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7903 unsigned long start_pfn, end_pfn;
7904
2a1e274a
MG
7905 zone_movable_pfn[nid] =
7906 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7907
aa65151a
AP
7908 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7909 if (zone_movable_pfn[nid] >= end_pfn)
7910 zone_movable_pfn[nid] = 0;
7911 }
7912
20e6926d 7913out:
66918dcd 7914 /* restore the node_state */
4b0ef1fe 7915 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7916}
7917
4b0ef1fe
LJ
7918/* Any regular or high memory on that node ? */
7919static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7920{
37b07e41
LS
7921 enum zone_type zone_type;
7922
4b0ef1fe 7923 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7924 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7925 if (populated_zone(zone)) {
7b0e0c0e
OS
7926 if (IS_ENABLED(CONFIG_HIGHMEM))
7927 node_set_state(nid, N_HIGH_MEMORY);
7928 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7929 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7930 break;
7931 }
37b07e41 7932 }
37b07e41
LS
7933}
7934
51930df5 7935/*
f0953a1b 7936 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
7937 * such cases we allow max_zone_pfn sorted in the descending order
7938 */
7939bool __weak arch_has_descending_max_zone_pfns(void)
7940{
7941 return false;
7942}
7943
c713216d 7944/**
9691a071 7945 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7946 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7947 *
7948 * This will call free_area_init_node() for each active node in the system.
7d018176 7949 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7950 * zone in each node and their holes is calculated. If the maximum PFN
7951 * between two adjacent zones match, it is assumed that the zone is empty.
7952 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7953 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7954 * starts where the previous one ended. For example, ZONE_DMA32 starts
7955 * at arch_max_dma_pfn.
7956 */
9691a071 7957void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7958{
c13291a5 7959 unsigned long start_pfn, end_pfn;
51930df5
MR
7960 int i, nid, zone;
7961 bool descending;
a6af2bc3 7962
c713216d
MG
7963 /* Record where the zone boundaries are */
7964 memset(arch_zone_lowest_possible_pfn, 0,
7965 sizeof(arch_zone_lowest_possible_pfn));
7966 memset(arch_zone_highest_possible_pfn, 0,
7967 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7968
7969 start_pfn = find_min_pfn_with_active_regions();
51930df5 7970 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7971
7972 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7973 if (descending)
7974 zone = MAX_NR_ZONES - i - 1;
7975 else
7976 zone = i;
7977
7978 if (zone == ZONE_MOVABLE)
2a1e274a 7979 continue;
90cae1fe 7980
51930df5
MR
7981 end_pfn = max(max_zone_pfn[zone], start_pfn);
7982 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7983 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7984
7985 start_pfn = end_pfn;
c713216d 7986 }
2a1e274a
MG
7987
7988 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7989 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7990 find_zone_movable_pfns_for_nodes();
c713216d 7991
c713216d 7992 /* Print out the zone ranges */
f88dfff5 7993 pr_info("Zone ranges:\n");
2a1e274a
MG
7994 for (i = 0; i < MAX_NR_ZONES; i++) {
7995 if (i == ZONE_MOVABLE)
7996 continue;
f88dfff5 7997 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7998 if (arch_zone_lowest_possible_pfn[i] ==
7999 arch_zone_highest_possible_pfn[i])
f88dfff5 8000 pr_cont("empty\n");
72f0ba02 8001 else
8d29e18a
JG
8002 pr_cont("[mem %#018Lx-%#018Lx]\n",
8003 (u64)arch_zone_lowest_possible_pfn[i]
8004 << PAGE_SHIFT,
8005 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8006 << PAGE_SHIFT) - 1);
2a1e274a
MG
8007 }
8008
8009 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8010 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8011 for (i = 0; i < MAX_NUMNODES; i++) {
8012 if (zone_movable_pfn[i])
8d29e18a
JG
8013 pr_info(" Node %d: %#018Lx\n", i,
8014 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8015 }
c713216d 8016
f46edbd1
DW
8017 /*
8018 * Print out the early node map, and initialize the
8019 * subsection-map relative to active online memory ranges to
8020 * enable future "sub-section" extensions of the memory map.
8021 */
f88dfff5 8022 pr_info("Early memory node ranges\n");
f46edbd1 8023 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8024 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8025 (u64)start_pfn << PAGE_SHIFT,
8026 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8027 subsection_map_init(start_pfn, end_pfn - start_pfn);
8028 }
c713216d
MG
8029
8030 /* Initialise every node */
708614e6 8031 mminit_verify_pageflags_layout();
8ef82866 8032 setup_nr_node_ids();
c713216d
MG
8033 for_each_online_node(nid) {
8034 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 8035 free_area_init_node(nid);
37b07e41
LS
8036
8037 /* Any memory on that node */
8038 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8039 node_set_state(nid, N_MEMORY);
8040 check_for_memory(pgdat, nid);
c713216d 8041 }
122e093c
MR
8042
8043 memmap_init();
c713216d 8044}
2a1e274a 8045
a5c6d650
DR
8046static int __init cmdline_parse_core(char *p, unsigned long *core,
8047 unsigned long *percent)
2a1e274a
MG
8048{
8049 unsigned long long coremem;
a5c6d650
DR
8050 char *endptr;
8051
2a1e274a
MG
8052 if (!p)
8053 return -EINVAL;
8054
a5c6d650
DR
8055 /* Value may be a percentage of total memory, otherwise bytes */
8056 coremem = simple_strtoull(p, &endptr, 0);
8057 if (*endptr == '%') {
8058 /* Paranoid check for percent values greater than 100 */
8059 WARN_ON(coremem > 100);
2a1e274a 8060
a5c6d650
DR
8061 *percent = coremem;
8062 } else {
8063 coremem = memparse(p, &p);
8064 /* Paranoid check that UL is enough for the coremem value */
8065 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8066
a5c6d650
DR
8067 *core = coremem >> PAGE_SHIFT;
8068 *percent = 0UL;
8069 }
2a1e274a
MG
8070 return 0;
8071}
ed7ed365 8072
7e63efef
MG
8073/*
8074 * kernelcore=size sets the amount of memory for use for allocations that
8075 * cannot be reclaimed or migrated.
8076 */
8077static int __init cmdline_parse_kernelcore(char *p)
8078{
342332e6
TI
8079 /* parse kernelcore=mirror */
8080 if (parse_option_str(p, "mirror")) {
8081 mirrored_kernelcore = true;
8082 return 0;
8083 }
8084
a5c6d650
DR
8085 return cmdline_parse_core(p, &required_kernelcore,
8086 &required_kernelcore_percent);
7e63efef
MG
8087}
8088
8089/*
8090 * movablecore=size sets the amount of memory for use for allocations that
8091 * can be reclaimed or migrated.
8092 */
8093static int __init cmdline_parse_movablecore(char *p)
8094{
a5c6d650
DR
8095 return cmdline_parse_core(p, &required_movablecore,
8096 &required_movablecore_percent);
7e63efef
MG
8097}
8098
ed7ed365 8099early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8100early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8101
c3d5f5f0
JL
8102void adjust_managed_page_count(struct page *page, long count)
8103{
9705bea5 8104 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8105 totalram_pages_add(count);
3dcc0571
JL
8106#ifdef CONFIG_HIGHMEM
8107 if (PageHighMem(page))
ca79b0c2 8108 totalhigh_pages_add(count);
3dcc0571 8109#endif
c3d5f5f0 8110}
3dcc0571 8111EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8112
e5cb113f 8113unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8114{
11199692
JL
8115 void *pos;
8116 unsigned long pages = 0;
69afade7 8117
11199692
JL
8118 start = (void *)PAGE_ALIGN((unsigned long)start);
8119 end = (void *)((unsigned long)end & PAGE_MASK);
8120 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8121 struct page *page = virt_to_page(pos);
8122 void *direct_map_addr;
8123
8124 /*
8125 * 'direct_map_addr' might be different from 'pos'
8126 * because some architectures' virt_to_page()
8127 * work with aliases. Getting the direct map
8128 * address ensures that we get a _writeable_
8129 * alias for the memset().
8130 */
8131 direct_map_addr = page_address(page);
c746170d
VF
8132 /*
8133 * Perform a kasan-unchecked memset() since this memory
8134 * has not been initialized.
8135 */
8136 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8137 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8138 memset(direct_map_addr, poison, PAGE_SIZE);
8139
8140 free_reserved_page(page);
69afade7
JL
8141 }
8142
8143 if (pages && s)
adb1fe9a
JP
8144 pr_info("Freeing %s memory: %ldK\n",
8145 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
8146
8147 return pages;
8148}
8149
1f9d03c5 8150void __init mem_init_print_info(void)
7ee3d4e8
JL
8151{
8152 unsigned long physpages, codesize, datasize, rosize, bss_size;
8153 unsigned long init_code_size, init_data_size;
8154
8155 physpages = get_num_physpages();
8156 codesize = _etext - _stext;
8157 datasize = _edata - _sdata;
8158 rosize = __end_rodata - __start_rodata;
8159 bss_size = __bss_stop - __bss_start;
8160 init_data_size = __init_end - __init_begin;
8161 init_code_size = _einittext - _sinittext;
8162
8163 /*
8164 * Detect special cases and adjust section sizes accordingly:
8165 * 1) .init.* may be embedded into .data sections
8166 * 2) .init.text.* may be out of [__init_begin, __init_end],
8167 * please refer to arch/tile/kernel/vmlinux.lds.S.
8168 * 3) .rodata.* may be embedded into .text or .data sections.
8169 */
8170#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
8171 do { \
8172 if (start <= pos && pos < end && size > adj) \
8173 size -= adj; \
8174 } while (0)
7ee3d4e8
JL
8175
8176 adj_init_size(__init_begin, __init_end, init_data_size,
8177 _sinittext, init_code_size);
8178 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8179 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8180 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8181 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8182
8183#undef adj_init_size
8184
756a025f 8185 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8186#ifdef CONFIG_HIGHMEM
756a025f 8187 ", %luK highmem"
7ee3d4e8 8188#endif
1f9d03c5 8189 ")\n",
756a025f
JP
8190 nr_free_pages() << (PAGE_SHIFT - 10),
8191 physpages << (PAGE_SHIFT - 10),
8192 codesize >> 10, datasize >> 10, rosize >> 10,
8193 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 8194 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
1f9d03c5 8195 totalcma_pages << (PAGE_SHIFT - 10)
7ee3d4e8 8196#ifdef CONFIG_HIGHMEM
1f9d03c5 8197 , totalhigh_pages() << (PAGE_SHIFT - 10)
7ee3d4e8 8198#endif
1f9d03c5 8199 );
7ee3d4e8
JL
8200}
8201
0e0b864e 8202/**
88ca3b94
RD
8203 * set_dma_reserve - set the specified number of pages reserved in the first zone
8204 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8205 *
013110a7 8206 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8207 * In the DMA zone, a significant percentage may be consumed by kernel image
8208 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8209 * function may optionally be used to account for unfreeable pages in the
8210 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8211 * smaller per-cpu batchsize.
0e0b864e
MG
8212 */
8213void __init set_dma_reserve(unsigned long new_dma_reserve)
8214{
8215 dma_reserve = new_dma_reserve;
8216}
8217
005fd4bb 8218static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8219{
04f8cfea 8220 struct zone *zone;
1da177e4 8221
005fd4bb
SAS
8222 lru_add_drain_cpu(cpu);
8223 drain_pages(cpu);
9f8f2172 8224
005fd4bb
SAS
8225 /*
8226 * Spill the event counters of the dead processor
8227 * into the current processors event counters.
8228 * This artificially elevates the count of the current
8229 * processor.
8230 */
8231 vm_events_fold_cpu(cpu);
9f8f2172 8232
005fd4bb
SAS
8233 /*
8234 * Zero the differential counters of the dead processor
8235 * so that the vm statistics are consistent.
8236 *
8237 * This is only okay since the processor is dead and cannot
8238 * race with what we are doing.
8239 */
8240 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8241
8242 for_each_populated_zone(zone)
8243 zone_pcp_update(zone, 0);
8244
8245 return 0;
8246}
8247
8248static int page_alloc_cpu_online(unsigned int cpu)
8249{
8250 struct zone *zone;
8251
8252 for_each_populated_zone(zone)
8253 zone_pcp_update(zone, 1);
005fd4bb 8254 return 0;
1da177e4 8255}
1da177e4 8256
e03a5125
NP
8257#ifdef CONFIG_NUMA
8258int hashdist = HASHDIST_DEFAULT;
8259
8260static int __init set_hashdist(char *str)
8261{
8262 if (!str)
8263 return 0;
8264 hashdist = simple_strtoul(str, &str, 0);
8265 return 1;
8266}
8267__setup("hashdist=", set_hashdist);
8268#endif
8269
1da177e4
LT
8270void __init page_alloc_init(void)
8271{
005fd4bb
SAS
8272 int ret;
8273
e03a5125
NP
8274#ifdef CONFIG_NUMA
8275 if (num_node_state(N_MEMORY) == 1)
8276 hashdist = 0;
8277#endif
8278
04f8cfea
MG
8279 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8280 "mm/page_alloc:pcp",
8281 page_alloc_cpu_online,
005fd4bb
SAS
8282 page_alloc_cpu_dead);
8283 WARN_ON(ret < 0);
1da177e4
LT
8284}
8285
cb45b0e9 8286/*
34b10060 8287 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8288 * or min_free_kbytes changes.
8289 */
8290static void calculate_totalreserve_pages(void)
8291{
8292 struct pglist_data *pgdat;
8293 unsigned long reserve_pages = 0;
2f6726e5 8294 enum zone_type i, j;
cb45b0e9
HA
8295
8296 for_each_online_pgdat(pgdat) {
281e3726
MG
8297
8298 pgdat->totalreserve_pages = 0;
8299
cb45b0e9
HA
8300 for (i = 0; i < MAX_NR_ZONES; i++) {
8301 struct zone *zone = pgdat->node_zones + i;
3484b2de 8302 long max = 0;
9705bea5 8303 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8304
8305 /* Find valid and maximum lowmem_reserve in the zone */
8306 for (j = i; j < MAX_NR_ZONES; j++) {
8307 if (zone->lowmem_reserve[j] > max)
8308 max = zone->lowmem_reserve[j];
8309 }
8310
41858966
MG
8311 /* we treat the high watermark as reserved pages. */
8312 max += high_wmark_pages(zone);
cb45b0e9 8313
3d6357de
AK
8314 if (max > managed_pages)
8315 max = managed_pages;
a8d01437 8316
281e3726 8317 pgdat->totalreserve_pages += max;
a8d01437 8318
cb45b0e9
HA
8319 reserve_pages += max;
8320 }
8321 }
8322 totalreserve_pages = reserve_pages;
8323}
8324
1da177e4
LT
8325/*
8326 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8327 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8328 * has a correct pages reserved value, so an adequate number of
8329 * pages are left in the zone after a successful __alloc_pages().
8330 */
8331static void setup_per_zone_lowmem_reserve(void)
8332{
8333 struct pglist_data *pgdat;
470c61d7 8334 enum zone_type i, j;
1da177e4 8335
ec936fc5 8336 for_each_online_pgdat(pgdat) {
470c61d7
LS
8337 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8338 struct zone *zone = &pgdat->node_zones[i];
8339 int ratio = sysctl_lowmem_reserve_ratio[i];
8340 bool clear = !ratio || !zone_managed_pages(zone);
8341 unsigned long managed_pages = 0;
8342
8343 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8344 struct zone *upper_zone = &pgdat->node_zones[j];
8345
8346 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8347
f7ec1044
LS
8348 if (clear)
8349 zone->lowmem_reserve[j] = 0;
8350 else
470c61d7 8351 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8352 }
8353 }
8354 }
cb45b0e9
HA
8355
8356 /* update totalreserve_pages */
8357 calculate_totalreserve_pages();
1da177e4
LT
8358}
8359
cfd3da1e 8360static void __setup_per_zone_wmarks(void)
1da177e4
LT
8361{
8362 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8363 unsigned long lowmem_pages = 0;
8364 struct zone *zone;
8365 unsigned long flags;
8366
8367 /* Calculate total number of !ZONE_HIGHMEM pages */
8368 for_each_zone(zone) {
8369 if (!is_highmem(zone))
9705bea5 8370 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8371 }
8372
8373 for_each_zone(zone) {
ac924c60
AM
8374 u64 tmp;
8375
1125b4e3 8376 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8377 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8378 do_div(tmp, lowmem_pages);
1da177e4
LT
8379 if (is_highmem(zone)) {
8380 /*
669ed175
NP
8381 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8382 * need highmem pages, so cap pages_min to a small
8383 * value here.
8384 *
41858966 8385 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8386 * deltas control async page reclaim, and so should
669ed175 8387 * not be capped for highmem.
1da177e4 8388 */
90ae8d67 8389 unsigned long min_pages;
1da177e4 8390
9705bea5 8391 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8392 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8393 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8394 } else {
669ed175
NP
8395 /*
8396 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8397 * proportionate to the zone's size.
8398 */
a9214443 8399 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8400 }
8401
795ae7a0
JW
8402 /*
8403 * Set the kswapd watermarks distance according to the
8404 * scale factor in proportion to available memory, but
8405 * ensure a minimum size on small systems.
8406 */
8407 tmp = max_t(u64, tmp >> 2,
9705bea5 8408 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8409 watermark_scale_factor, 10000));
8410
aa092591 8411 zone->watermark_boost = 0;
a9214443
MG
8412 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8413 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8414
1125b4e3 8415 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8416 }
cb45b0e9
HA
8417
8418 /* update totalreserve_pages */
8419 calculate_totalreserve_pages();
1da177e4
LT
8420}
8421
cfd3da1e
MG
8422/**
8423 * setup_per_zone_wmarks - called when min_free_kbytes changes
8424 * or when memory is hot-{added|removed}
8425 *
8426 * Ensures that the watermark[min,low,high] values for each zone are set
8427 * correctly with respect to min_free_kbytes.
8428 */
8429void setup_per_zone_wmarks(void)
8430{
b92ca18e 8431 struct zone *zone;
b93e0f32
MH
8432 static DEFINE_SPINLOCK(lock);
8433
8434 spin_lock(&lock);
cfd3da1e 8435 __setup_per_zone_wmarks();
b93e0f32 8436 spin_unlock(&lock);
b92ca18e
MG
8437
8438 /*
8439 * The watermark size have changed so update the pcpu batch
8440 * and high limits or the limits may be inappropriate.
8441 */
8442 for_each_zone(zone)
04f8cfea 8443 zone_pcp_update(zone, 0);
cfd3da1e
MG
8444}
8445
1da177e4
LT
8446/*
8447 * Initialise min_free_kbytes.
8448 *
8449 * For small machines we want it small (128k min). For large machines
8beeae86 8450 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8451 * bandwidth does not increase linearly with machine size. We use
8452 *
b8af2941 8453 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8454 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8455 *
8456 * which yields
8457 *
8458 * 16MB: 512k
8459 * 32MB: 724k
8460 * 64MB: 1024k
8461 * 128MB: 1448k
8462 * 256MB: 2048k
8463 * 512MB: 2896k
8464 * 1024MB: 4096k
8465 * 2048MB: 5792k
8466 * 4096MB: 8192k
8467 * 8192MB: 11584k
8468 * 16384MB: 16384k
8469 */
1b79acc9 8470int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8471{
8472 unsigned long lowmem_kbytes;
5f12733e 8473 int new_min_free_kbytes;
1da177e4
LT
8474
8475 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8476 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8477
8478 if (new_min_free_kbytes > user_min_free_kbytes) {
8479 min_free_kbytes = new_min_free_kbytes;
8480 if (min_free_kbytes < 128)
8481 min_free_kbytes = 128;
ee8eb9a5
JS
8482 if (min_free_kbytes > 262144)
8483 min_free_kbytes = 262144;
5f12733e
MH
8484 } else {
8485 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8486 new_min_free_kbytes, user_min_free_kbytes);
8487 }
bc75d33f 8488 setup_per_zone_wmarks();
a6cccdc3 8489 refresh_zone_stat_thresholds();
1da177e4 8490 setup_per_zone_lowmem_reserve();
6423aa81
JK
8491
8492#ifdef CONFIG_NUMA
8493 setup_min_unmapped_ratio();
8494 setup_min_slab_ratio();
8495#endif
8496
4aab2be0
VB
8497 khugepaged_min_free_kbytes_update();
8498
1da177e4
LT
8499 return 0;
8500}
e08d3fdf 8501postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8502
8503/*
b8af2941 8504 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8505 * that we can call two helper functions whenever min_free_kbytes
8506 * changes.
8507 */
cccad5b9 8508int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8509 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8510{
da8c757b
HP
8511 int rc;
8512
8513 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8514 if (rc)
8515 return rc;
8516
5f12733e
MH
8517 if (write) {
8518 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8519 setup_per_zone_wmarks();
5f12733e 8520 }
1da177e4
LT
8521 return 0;
8522}
8523
795ae7a0 8524int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8525 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8526{
8527 int rc;
8528
8529 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8530 if (rc)
8531 return rc;
8532
8533 if (write)
8534 setup_per_zone_wmarks();
8535
8536 return 0;
8537}
8538
9614634f 8539#ifdef CONFIG_NUMA
6423aa81 8540static void setup_min_unmapped_ratio(void)
9614634f 8541{
6423aa81 8542 pg_data_t *pgdat;
9614634f 8543 struct zone *zone;
9614634f 8544
a5f5f91d 8545 for_each_online_pgdat(pgdat)
81cbcbc2 8546 pgdat->min_unmapped_pages = 0;
a5f5f91d 8547
9614634f 8548 for_each_zone(zone)
9705bea5
AK
8549 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8550 sysctl_min_unmapped_ratio) / 100;
9614634f 8551}
0ff38490 8552
6423aa81
JK
8553
8554int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8555 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8556{
0ff38490
CL
8557 int rc;
8558
8d65af78 8559 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8560 if (rc)
8561 return rc;
8562
6423aa81
JK
8563 setup_min_unmapped_ratio();
8564
8565 return 0;
8566}
8567
8568static void setup_min_slab_ratio(void)
8569{
8570 pg_data_t *pgdat;
8571 struct zone *zone;
8572
a5f5f91d
MG
8573 for_each_online_pgdat(pgdat)
8574 pgdat->min_slab_pages = 0;
8575
0ff38490 8576 for_each_zone(zone)
9705bea5
AK
8577 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8578 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8579}
8580
8581int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8582 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8583{
8584 int rc;
8585
8586 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8587 if (rc)
8588 return rc;
8589
8590 setup_min_slab_ratio();
8591
0ff38490
CL
8592 return 0;
8593}
9614634f
CL
8594#endif
8595
1da177e4
LT
8596/*
8597 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8598 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8599 * whenever sysctl_lowmem_reserve_ratio changes.
8600 *
8601 * The reserve ratio obviously has absolutely no relation with the
41858966 8602 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8603 * if in function of the boot time zone sizes.
8604 */
cccad5b9 8605int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8606 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8607{
86aaf255
BH
8608 int i;
8609
8d65af78 8610 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8611
8612 for (i = 0; i < MAX_NR_ZONES; i++) {
8613 if (sysctl_lowmem_reserve_ratio[i] < 1)
8614 sysctl_lowmem_reserve_ratio[i] = 0;
8615 }
8616
1da177e4
LT
8617 setup_per_zone_lowmem_reserve();
8618 return 0;
8619}
8620
8ad4b1fb 8621/*
74f44822
MG
8622 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8623 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8624 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8625 */
74f44822
MG
8626int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8627 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8628{
8629 struct zone *zone;
74f44822 8630 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8631 int ret;
8632
7cd2b0a3 8633 mutex_lock(&pcp_batch_high_lock);
74f44822 8634 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8635
8d65af78 8636 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8637 if (!write || ret < 0)
8638 goto out;
8639
8640 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8641 if (percpu_pagelist_high_fraction &&
8642 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8643 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8644 ret = -EINVAL;
8645 goto out;
8646 }
8647
8648 /* No change? */
74f44822 8649 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8650 goto out;
c8e251fa 8651
cb1ef534 8652 for_each_populated_zone(zone)
74f44822 8653 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8654out:
c8e251fa 8655 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8656 return ret;
8ad4b1fb
RS
8657}
8658
f6f34b43
SD
8659#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8660/*
8661 * Returns the number of pages that arch has reserved but
8662 * is not known to alloc_large_system_hash().
8663 */
8664static unsigned long __init arch_reserved_kernel_pages(void)
8665{
8666 return 0;
8667}
8668#endif
8669
9017217b
PT
8670/*
8671 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8672 * machines. As memory size is increased the scale is also increased but at
8673 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8674 * quadruples the scale is increased by one, which means the size of hash table
8675 * only doubles, instead of quadrupling as well.
8676 * Because 32-bit systems cannot have large physical memory, where this scaling
8677 * makes sense, it is disabled on such platforms.
8678 */
8679#if __BITS_PER_LONG > 32
8680#define ADAPT_SCALE_BASE (64ul << 30)
8681#define ADAPT_SCALE_SHIFT 2
8682#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8683#endif
8684
1da177e4
LT
8685/*
8686 * allocate a large system hash table from bootmem
8687 * - it is assumed that the hash table must contain an exact power-of-2
8688 * quantity of entries
8689 * - limit is the number of hash buckets, not the total allocation size
8690 */
8691void *__init alloc_large_system_hash(const char *tablename,
8692 unsigned long bucketsize,
8693 unsigned long numentries,
8694 int scale,
8695 int flags,
8696 unsigned int *_hash_shift,
8697 unsigned int *_hash_mask,
31fe62b9
TB
8698 unsigned long low_limit,
8699 unsigned long high_limit)
1da177e4 8700{
31fe62b9 8701 unsigned long long max = high_limit;
1da177e4
LT
8702 unsigned long log2qty, size;
8703 void *table = NULL;
3749a8f0 8704 gfp_t gfp_flags;
ec11408a 8705 bool virt;
121e6f32 8706 bool huge;
1da177e4
LT
8707
8708 /* allow the kernel cmdline to have a say */
8709 if (!numentries) {
8710 /* round applicable memory size up to nearest megabyte */
04903664 8711 numentries = nr_kernel_pages;
f6f34b43 8712 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8713
8714 /* It isn't necessary when PAGE_SIZE >= 1MB */
8715 if (PAGE_SHIFT < 20)
8716 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8717
9017217b
PT
8718#if __BITS_PER_LONG > 32
8719 if (!high_limit) {
8720 unsigned long adapt;
8721
8722 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8723 adapt <<= ADAPT_SCALE_SHIFT)
8724 scale++;
8725 }
8726#endif
8727
1da177e4
LT
8728 /* limit to 1 bucket per 2^scale bytes of low memory */
8729 if (scale > PAGE_SHIFT)
8730 numentries >>= (scale - PAGE_SHIFT);
8731 else
8732 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8733
8734 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8735 if (unlikely(flags & HASH_SMALL)) {
8736 /* Makes no sense without HASH_EARLY */
8737 WARN_ON(!(flags & HASH_EARLY));
8738 if (!(numentries >> *_hash_shift)) {
8739 numentries = 1UL << *_hash_shift;
8740 BUG_ON(!numentries);
8741 }
8742 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8743 numentries = PAGE_SIZE / bucketsize;
1da177e4 8744 }
6e692ed3 8745 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8746
8747 /* limit allocation size to 1/16 total memory by default */
8748 if (max == 0) {
8749 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8750 do_div(max, bucketsize);
8751 }
074b8517 8752 max = min(max, 0x80000000ULL);
1da177e4 8753
31fe62b9
TB
8754 if (numentries < low_limit)
8755 numentries = low_limit;
1da177e4
LT
8756 if (numentries > max)
8757 numentries = max;
8758
f0d1b0b3 8759 log2qty = ilog2(numentries);
1da177e4 8760
3749a8f0 8761 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8762 do {
ec11408a 8763 virt = false;
1da177e4 8764 size = bucketsize << log2qty;
ea1f5f37
PT
8765 if (flags & HASH_EARLY) {
8766 if (flags & HASH_ZERO)
26fb3dae 8767 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8768 else
7e1c4e27
MR
8769 table = memblock_alloc_raw(size,
8770 SMP_CACHE_BYTES);
ec11408a 8771 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8772 table = __vmalloc(size, gfp_flags);
ec11408a 8773 virt = true;
121e6f32 8774 huge = is_vm_area_hugepages(table);
ea1f5f37 8775 } else {
1037b83b
ED
8776 /*
8777 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8778 * some pages at the end of hash table which
8779 * alloc_pages_exact() automatically does
1037b83b 8780 */
ec11408a
NP
8781 table = alloc_pages_exact(size, gfp_flags);
8782 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8783 }
8784 } while (!table && size > PAGE_SIZE && --log2qty);
8785
8786 if (!table)
8787 panic("Failed to allocate %s hash table\n", tablename);
8788
ec11408a
NP
8789 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8790 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8791 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8792
8793 if (_hash_shift)
8794 *_hash_shift = log2qty;
8795 if (_hash_mask)
8796 *_hash_mask = (1 << log2qty) - 1;
8797
8798 return table;
8799}
a117e66e 8800
a5d76b54 8801/*
80934513 8802 * This function checks whether pageblock includes unmovable pages or not.
80934513 8803 *
b8af2941 8804 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8805 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8806 * check without lock_page also may miss some movable non-lru pages at
8807 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8808 *
8809 * Returns a page without holding a reference. If the caller wants to
047b9967 8810 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8811 * cannot get removed (e.g., via memory unplug) concurrently.
8812 *
a5d76b54 8813 */
4a55c047
QC
8814struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8815 int migratetype, int flags)
49ac8255 8816{
1a9f2191
QC
8817 unsigned long iter = 0;
8818 unsigned long pfn = page_to_pfn(page);
6a654e36 8819 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8820
1a9f2191
QC
8821 if (is_migrate_cma_page(page)) {
8822 /*
8823 * CMA allocations (alloc_contig_range) really need to mark
8824 * isolate CMA pageblocks even when they are not movable in fact
8825 * so consider them movable here.
8826 */
8827 if (is_migrate_cma(migratetype))
4a55c047 8828 return NULL;
1a9f2191 8829
3d680bdf 8830 return page;
1a9f2191 8831 }
4da2ce25 8832
6a654e36 8833 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8834 page = pfn_to_page(pfn + iter);
c8721bbb 8835
c9c510dc
DH
8836 /*
8837 * Both, bootmem allocations and memory holes are marked
8838 * PG_reserved and are unmovable. We can even have unmovable
8839 * allocations inside ZONE_MOVABLE, for example when
8840 * specifying "movablecore".
8841 */
d7ab3672 8842 if (PageReserved(page))
3d680bdf 8843 return page;
d7ab3672 8844
9d789999
MH
8845 /*
8846 * If the zone is movable and we have ruled out all reserved
8847 * pages then it should be reasonably safe to assume the rest
8848 * is movable.
8849 */
8850 if (zone_idx(zone) == ZONE_MOVABLE)
8851 continue;
8852
c8721bbb
NH
8853 /*
8854 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8855 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8856 * We need not scan over tail pages because we don't
c8721bbb
NH
8857 * handle each tail page individually in migration.
8858 */
1da2f328 8859 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8860 struct page *head = compound_head(page);
8861 unsigned int skip_pages;
464c7ffb 8862
1da2f328
RR
8863 if (PageHuge(page)) {
8864 if (!hugepage_migration_supported(page_hstate(head)))
8865 return page;
8866 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8867 return page;
1da2f328 8868 }
464c7ffb 8869
d8c6546b 8870 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8871 iter += skip_pages - 1;
c8721bbb
NH
8872 continue;
8873 }
8874
97d255c8
MK
8875 /*
8876 * We can't use page_count without pin a page
8877 * because another CPU can free compound page.
8878 * This check already skips compound tails of THP
0139aa7b 8879 * because their page->_refcount is zero at all time.
97d255c8 8880 */
fe896d18 8881 if (!page_ref_count(page)) {
49ac8255 8882 if (PageBuddy(page))
ab130f91 8883 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8884 continue;
8885 }
97d255c8 8886
b023f468
WC
8887 /*
8888 * The HWPoisoned page may be not in buddy system, and
8889 * page_count() is not 0.
8890 */
756d25be 8891 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8892 continue;
8893
aa218795
DH
8894 /*
8895 * We treat all PageOffline() pages as movable when offlining
8896 * to give drivers a chance to decrement their reference count
8897 * in MEM_GOING_OFFLINE in order to indicate that these pages
8898 * can be offlined as there are no direct references anymore.
8899 * For actually unmovable PageOffline() where the driver does
8900 * not support this, we will fail later when trying to actually
8901 * move these pages that still have a reference count > 0.
8902 * (false negatives in this function only)
8903 */
8904 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8905 continue;
8906
fe4c86c9 8907 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8908 continue;
8909
49ac8255 8910 /*
6b4f7799
JW
8911 * If there are RECLAIMABLE pages, we need to check
8912 * it. But now, memory offline itself doesn't call
8913 * shrink_node_slabs() and it still to be fixed.
49ac8255 8914 */
3d680bdf 8915 return page;
49ac8255 8916 }
4a55c047 8917 return NULL;
49ac8255
KH
8918}
8919
8df995f6 8920#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8921static unsigned long pfn_max_align_down(unsigned long pfn)
8922{
8923 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8924 pageblock_nr_pages) - 1);
8925}
8926
8927static unsigned long pfn_max_align_up(unsigned long pfn)
8928{
8929 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8930 pageblock_nr_pages));
8931}
8932
a1394bdd
MK
8933#if defined(CONFIG_DYNAMIC_DEBUG) || \
8934 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8935/* Usage: See admin-guide/dynamic-debug-howto.rst */
8936static void alloc_contig_dump_pages(struct list_head *page_list)
8937{
8938 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8939
8940 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8941 struct page *page;
8942
8943 dump_stack();
8944 list_for_each_entry(page, page_list, lru)
8945 dump_page(page, "migration failure");
8946 }
8947}
8948#else
8949static inline void alloc_contig_dump_pages(struct list_head *page_list)
8950{
8951}
8952#endif
8953
041d3a8c 8954/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8955static int __alloc_contig_migrate_range(struct compact_control *cc,
8956 unsigned long start, unsigned long end)
041d3a8c
MN
8957{
8958 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8959 unsigned int nr_reclaimed;
041d3a8c
MN
8960 unsigned long pfn = start;
8961 unsigned int tries = 0;
8962 int ret = 0;
8b94e0b8
JK
8963 struct migration_target_control mtc = {
8964 .nid = zone_to_nid(cc->zone),
8965 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8966 };
041d3a8c 8967
361a2a22 8968 lru_cache_disable();
041d3a8c 8969
bb13ffeb 8970 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8971 if (fatal_signal_pending(current)) {
8972 ret = -EINTR;
8973 break;
8974 }
8975
bb13ffeb
MG
8976 if (list_empty(&cc->migratepages)) {
8977 cc->nr_migratepages = 0;
c2ad7a1f
OS
8978 ret = isolate_migratepages_range(cc, pfn, end);
8979 if (ret && ret != -EAGAIN)
041d3a8c 8980 break;
c2ad7a1f 8981 pfn = cc->migrate_pfn;
041d3a8c
MN
8982 tries = 0;
8983 } else if (++tries == 5) {
c8e28b47 8984 ret = -EBUSY;
041d3a8c
MN
8985 break;
8986 }
8987
beb51eaa
MK
8988 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8989 &cc->migratepages);
8990 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8991
8b94e0b8 8992 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 8993 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
8994
8995 /*
8996 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8997 * to retry again over this error, so do the same here.
8998 */
8999 if (ret == -ENOMEM)
9000 break;
041d3a8c 9001 }
d479960e 9002
361a2a22 9003 lru_cache_enable();
2a6f5124 9004 if (ret < 0) {
151e084a
MK
9005 if (ret == -EBUSY)
9006 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9007 putback_movable_pages(&cc->migratepages);
9008 return ret;
9009 }
9010 return 0;
041d3a8c
MN
9011}
9012
9013/**
9014 * alloc_contig_range() -- tries to allocate given range of pages
9015 * @start: start PFN to allocate
9016 * @end: one-past-the-last PFN to allocate
f0953a1b 9017 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9018 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9019 * in range must have the same migratetype and it must
9020 * be either of the two.
ca96b625 9021 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
9022 *
9023 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 9024 * aligned. The PFN range must belong to a single zone.
041d3a8c 9025 *
2c7452a0
MK
9026 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9027 * pageblocks in the range. Once isolated, the pageblocks should not
9028 * be modified by others.
041d3a8c 9029 *
a862f68a 9030 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9031 * pages which PFN is in [start, end) are allocated for the caller and
9032 * need to be freed with free_contig_range().
9033 */
0815f3d8 9034int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9035 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9036{
041d3a8c 9037 unsigned long outer_start, outer_end;
d00181b9
KS
9038 unsigned int order;
9039 int ret = 0;
041d3a8c 9040
bb13ffeb
MG
9041 struct compact_control cc = {
9042 .nr_migratepages = 0,
9043 .order = -1,
9044 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9045 .mode = MIGRATE_SYNC,
bb13ffeb 9046 .ignore_skip_hint = true,
2583d671 9047 .no_set_skip_hint = true,
7dea19f9 9048 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9049 .alloc_contig = true,
bb13ffeb
MG
9050 };
9051 INIT_LIST_HEAD(&cc.migratepages);
9052
041d3a8c
MN
9053 /*
9054 * What we do here is we mark all pageblocks in range as
9055 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9056 * have different sizes, and due to the way page allocator
9057 * work, we align the range to biggest of the two pages so
9058 * that page allocator won't try to merge buddies from
9059 * different pageblocks and change MIGRATE_ISOLATE to some
9060 * other migration type.
9061 *
9062 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9063 * migrate the pages from an unaligned range (ie. pages that
9064 * we are interested in). This will put all the pages in
9065 * range back to page allocator as MIGRATE_ISOLATE.
9066 *
9067 * When this is done, we take the pages in range from page
9068 * allocator removing them from the buddy system. This way
9069 * page allocator will never consider using them.
9070 *
9071 * This lets us mark the pageblocks back as
9072 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9073 * aligned range but not in the unaligned, original range are
9074 * put back to page allocator so that buddy can use them.
9075 */
9076
9077 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 9078 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 9079 if (ret)
86a595f9 9080 return ret;
041d3a8c 9081
7612921f
VB
9082 drain_all_pages(cc.zone);
9083
8ef5849f
JK
9084 /*
9085 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9086 * So, just fall through. test_pages_isolated() has a tracepoint
9087 * which will report the busy page.
9088 *
9089 * It is possible that busy pages could become available before
9090 * the call to test_pages_isolated, and the range will actually be
9091 * allocated. So, if we fall through be sure to clear ret so that
9092 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9093 */
bb13ffeb 9094 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9095 if (ret && ret != -EBUSY)
041d3a8c 9096 goto done;
68d68ff6 9097 ret = 0;
041d3a8c
MN
9098
9099 /*
9100 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9101 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9102 * more, all pages in [start, end) are free in page allocator.
9103 * What we are going to do is to allocate all pages from
9104 * [start, end) (that is remove them from page allocator).
9105 *
9106 * The only problem is that pages at the beginning and at the
9107 * end of interesting range may be not aligned with pages that
9108 * page allocator holds, ie. they can be part of higher order
9109 * pages. Because of this, we reserve the bigger range and
9110 * once this is done free the pages we are not interested in.
9111 *
9112 * We don't have to hold zone->lock here because the pages are
9113 * isolated thus they won't get removed from buddy.
9114 */
9115
041d3a8c
MN
9116 order = 0;
9117 outer_start = start;
9118 while (!PageBuddy(pfn_to_page(outer_start))) {
9119 if (++order >= MAX_ORDER) {
8ef5849f
JK
9120 outer_start = start;
9121 break;
041d3a8c
MN
9122 }
9123 outer_start &= ~0UL << order;
9124 }
9125
8ef5849f 9126 if (outer_start != start) {
ab130f91 9127 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9128
9129 /*
9130 * outer_start page could be small order buddy page and
9131 * it doesn't include start page. Adjust outer_start
9132 * in this case to report failed page properly
9133 * on tracepoint in test_pages_isolated()
9134 */
9135 if (outer_start + (1UL << order) <= start)
9136 outer_start = start;
9137 }
9138
041d3a8c 9139 /* Make sure the range is really isolated. */
756d25be 9140 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9141 ret = -EBUSY;
9142 goto done;
9143 }
9144
49f223a9 9145 /* Grab isolated pages from freelists. */
bb13ffeb 9146 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9147 if (!outer_end) {
9148 ret = -EBUSY;
9149 goto done;
9150 }
9151
9152 /* Free head and tail (if any) */
9153 if (start != outer_start)
9154 free_contig_range(outer_start, start - outer_start);
9155 if (end != outer_end)
9156 free_contig_range(end, outer_end - end);
9157
9158done:
9159 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9160 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9161 return ret;
9162}
255f5985 9163EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9164
9165static int __alloc_contig_pages(unsigned long start_pfn,
9166 unsigned long nr_pages, gfp_t gfp_mask)
9167{
9168 unsigned long end_pfn = start_pfn + nr_pages;
9169
9170 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9171 gfp_mask);
9172}
9173
9174static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9175 unsigned long nr_pages)
9176{
9177 unsigned long i, end_pfn = start_pfn + nr_pages;
9178 struct page *page;
9179
9180 for (i = start_pfn; i < end_pfn; i++) {
9181 page = pfn_to_online_page(i);
9182 if (!page)
9183 return false;
9184
9185 if (page_zone(page) != z)
9186 return false;
9187
9188 if (PageReserved(page))
9189 return false;
5e27a2df
AK
9190 }
9191 return true;
9192}
9193
9194static bool zone_spans_last_pfn(const struct zone *zone,
9195 unsigned long start_pfn, unsigned long nr_pages)
9196{
9197 unsigned long last_pfn = start_pfn + nr_pages - 1;
9198
9199 return zone_spans_pfn(zone, last_pfn);
9200}
9201
9202/**
9203 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9204 * @nr_pages: Number of contiguous pages to allocate
9205 * @gfp_mask: GFP mask to limit search and used during compaction
9206 * @nid: Target node
9207 * @nodemask: Mask for other possible nodes
9208 *
9209 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9210 * on an applicable zonelist to find a contiguous pfn range which can then be
9211 * tried for allocation with alloc_contig_range(). This routine is intended
9212 * for allocation requests which can not be fulfilled with the buddy allocator.
9213 *
9214 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9215 * power of two then the alignment is guaranteed to be to the given nr_pages
9216 * (e.g. 1GB request would be aligned to 1GB).
9217 *
9218 * Allocated pages can be freed with free_contig_range() or by manually calling
9219 * __free_page() on each allocated page.
9220 *
9221 * Return: pointer to contiguous pages on success, or NULL if not successful.
9222 */
9223struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9224 int nid, nodemask_t *nodemask)
9225{
9226 unsigned long ret, pfn, flags;
9227 struct zonelist *zonelist;
9228 struct zone *zone;
9229 struct zoneref *z;
9230
9231 zonelist = node_zonelist(nid, gfp_mask);
9232 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9233 gfp_zone(gfp_mask), nodemask) {
9234 spin_lock_irqsave(&zone->lock, flags);
9235
9236 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9237 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9238 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9239 /*
9240 * We release the zone lock here because
9241 * alloc_contig_range() will also lock the zone
9242 * at some point. If there's an allocation
9243 * spinning on this lock, it may win the race
9244 * and cause alloc_contig_range() to fail...
9245 */
9246 spin_unlock_irqrestore(&zone->lock, flags);
9247 ret = __alloc_contig_pages(pfn, nr_pages,
9248 gfp_mask);
9249 if (!ret)
9250 return pfn_to_page(pfn);
9251 spin_lock_irqsave(&zone->lock, flags);
9252 }
9253 pfn += nr_pages;
9254 }
9255 spin_unlock_irqrestore(&zone->lock, flags);
9256 }
9257 return NULL;
9258}
4eb0716e 9259#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9260
78fa5150 9261void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9262{
78fa5150 9263 unsigned long count = 0;
bcc2b02f
MS
9264
9265 for (; nr_pages--; pfn++) {
9266 struct page *page = pfn_to_page(pfn);
9267
9268 count += page_count(page) != 1;
9269 __free_page(page);
9270 }
78fa5150 9271 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9272}
255f5985 9273EXPORT_SYMBOL(free_contig_range);
041d3a8c 9274
0a647f38
CS
9275/*
9276 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9277 * page high values need to be recalculated.
0a647f38 9278 */
04f8cfea 9279void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9280{
c8e251fa 9281 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9282 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9283 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9284}
4ed7e022 9285
ec6e8c7e
VB
9286/*
9287 * Effectively disable pcplists for the zone by setting the high limit to 0
9288 * and draining all cpus. A concurrent page freeing on another CPU that's about
9289 * to put the page on pcplist will either finish before the drain and the page
9290 * will be drained, or observe the new high limit and skip the pcplist.
9291 *
9292 * Must be paired with a call to zone_pcp_enable().
9293 */
9294void zone_pcp_disable(struct zone *zone)
9295{
9296 mutex_lock(&pcp_batch_high_lock);
9297 __zone_set_pageset_high_and_batch(zone, 0, 1);
9298 __drain_all_pages(zone, true);
9299}
9300
9301void zone_pcp_enable(struct zone *zone)
9302{
9303 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9304 mutex_unlock(&pcp_batch_high_lock);
9305}
9306
340175b7
JL
9307void zone_pcp_reset(struct zone *zone)
9308{
5a883813 9309 int cpu;
28f836b6 9310 struct per_cpu_zonestat *pzstats;
340175b7 9311
28f836b6 9312 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9313 for_each_online_cpu(cpu) {
28f836b6
MG
9314 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9315 drain_zonestat(zone, pzstats);
5a883813 9316 }
28f836b6
MG
9317 free_percpu(zone->per_cpu_pageset);
9318 free_percpu(zone->per_cpu_zonestats);
9319 zone->per_cpu_pageset = &boot_pageset;
9320 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9321 }
340175b7
JL
9322}
9323
6dcd73d7 9324#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9325/*
257bea71
DH
9326 * All pages in the range must be in a single zone, must not contain holes,
9327 * must span full sections, and must be isolated before calling this function.
0c0e6195 9328 */
257bea71 9329void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9330{
257bea71 9331 unsigned long pfn = start_pfn;
0c0e6195
KH
9332 struct page *page;
9333 struct zone *zone;
0ee5f4f3 9334 unsigned int order;
0c0e6195 9335 unsigned long flags;
5557c766 9336
2d070eab 9337 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9338 zone = page_zone(pfn_to_page(pfn));
9339 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9340 while (pfn < end_pfn) {
0c0e6195 9341 page = pfn_to_page(pfn);
b023f468
WC
9342 /*
9343 * The HWPoisoned page may be not in buddy system, and
9344 * page_count() is not 0.
9345 */
9346 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9347 pfn++;
b023f468
WC
9348 continue;
9349 }
aa218795
DH
9350 /*
9351 * At this point all remaining PageOffline() pages have a
9352 * reference count of 0 and can simply be skipped.
9353 */
9354 if (PageOffline(page)) {
9355 BUG_ON(page_count(page));
9356 BUG_ON(PageBuddy(page));
9357 pfn++;
aa218795
DH
9358 continue;
9359 }
b023f468 9360
0c0e6195
KH
9361 BUG_ON(page_count(page));
9362 BUG_ON(!PageBuddy(page));
ab130f91 9363 order = buddy_order(page);
6ab01363 9364 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9365 pfn += (1 << order);
9366 }
9367 spin_unlock_irqrestore(&zone->lock, flags);
9368}
9369#endif
8d22ba1b 9370
8d22ba1b
WF
9371bool is_free_buddy_page(struct page *page)
9372{
9373 struct zone *zone = page_zone(page);
9374 unsigned long pfn = page_to_pfn(page);
9375 unsigned long flags;
7aeb09f9 9376 unsigned int order;
8d22ba1b
WF
9377
9378 spin_lock_irqsave(&zone->lock, flags);
9379 for (order = 0; order < MAX_ORDER; order++) {
9380 struct page *page_head = page - (pfn & ((1 << order) - 1));
9381
ab130f91 9382 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
9383 break;
9384 }
9385 spin_unlock_irqrestore(&zone->lock, flags);
9386
9387 return order < MAX_ORDER;
9388}
d4ae9916
NH
9389
9390#ifdef CONFIG_MEMORY_FAILURE
9391/*
06be6ff3
OS
9392 * Break down a higher-order page in sub-pages, and keep our target out of
9393 * buddy allocator.
d4ae9916 9394 */
06be6ff3
OS
9395static void break_down_buddy_pages(struct zone *zone, struct page *page,
9396 struct page *target, int low, int high,
9397 int migratetype)
9398{
9399 unsigned long size = 1 << high;
9400 struct page *current_buddy, *next_page;
9401
9402 while (high > low) {
9403 high--;
9404 size >>= 1;
9405
9406 if (target >= &page[size]) {
9407 next_page = page + size;
9408 current_buddy = page;
9409 } else {
9410 next_page = page;
9411 current_buddy = page + size;
9412 }
9413
9414 if (set_page_guard(zone, current_buddy, high, migratetype))
9415 continue;
9416
9417 if (current_buddy != target) {
9418 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9419 set_buddy_order(current_buddy, high);
06be6ff3
OS
9420 page = next_page;
9421 }
9422 }
9423}
9424
9425/*
9426 * Take a page that will be marked as poisoned off the buddy allocator.
9427 */
9428bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9429{
9430 struct zone *zone = page_zone(page);
9431 unsigned long pfn = page_to_pfn(page);
9432 unsigned long flags;
9433 unsigned int order;
06be6ff3 9434 bool ret = false;
d4ae9916
NH
9435
9436 spin_lock_irqsave(&zone->lock, flags);
9437 for (order = 0; order < MAX_ORDER; order++) {
9438 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9439 int page_order = buddy_order(page_head);
d4ae9916 9440
ab130f91 9441 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9442 unsigned long pfn_head = page_to_pfn(page_head);
9443 int migratetype = get_pfnblock_migratetype(page_head,
9444 pfn_head);
9445
ab130f91 9446 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9447 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9448 page_order, migratetype);
bac9c6fa
DH
9449 if (!is_migrate_isolate(migratetype))
9450 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9451 ret = true;
d4ae9916
NH
9452 break;
9453 }
06be6ff3
OS
9454 if (page_count(page_head) > 0)
9455 break;
d4ae9916
NH
9456 }
9457 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9458 return ret;
d4ae9916
NH
9459}
9460#endif
31f6d229
BH
9461
9462#ifdef CONFIG_ZONE_DMA
9463bool has_managed_dma(void)
9464{
9465 struct pglist_data *pgdat;
9466
9467 for_each_online_pgdat(pgdat) {
9468 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9469
9470 if (managed_zone(zone))
9471 return true;
9472 }
9473 return false;
9474}
9475#endif /* CONFIG_ZONE_DMA */