]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/page_alloc.c
Merge branches 'acpi-scan' and 'acpi-prm'
[mirror_ubuntu-kernels.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
2c335680
AK
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
c8e251fa
CS
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 124
dbbee9d5
MG
125struct pagesets {
126 local_lock_t lock;
dbbee9d5
MG
127};
128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130};
c8e251fa 131
72812019
LS
132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133DEFINE_PER_CPU(int, numa_node);
134EXPORT_PER_CPU_SYMBOL(numa_node);
135#endif
136
4518085e
KW
137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
7aac7898
LS
139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
140/*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148#endif
149
bd233f53 150/* work_structs for global per-cpu drains */
d9367bd0
WY
151struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154};
8b885f53
JY
155static DEFINE_MUTEX(pcpu_drain_mutex);
156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 157
38addce8 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 159volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
160EXPORT_SYMBOL(latent_entropy);
161#endif
162
1da177e4 163/*
13808910 164 * Array of node states.
1da177e4 165 */
13808910
CL
166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169#ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171#ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 173#endif
20b2f52b 174 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
175 [N_CPU] = { { [0] = 1UL } },
176#endif /* NUMA */
177};
178EXPORT_SYMBOL(node_states);
179
ca79b0c2
AK
180atomic_long_t _totalram_pages __read_mostly;
181EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 182unsigned long totalreserve_pages __read_mostly;
e48322ab 183unsigned long totalcma_pages __read_mostly;
ab8fabd4 184
74f44822 185int percpu_pagelist_high_fraction;
dcce284a 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
188EXPORT_SYMBOL(init_on_alloc);
189
51cba1eb 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
191EXPORT_SYMBOL(init_on_free);
192
04013513
VB
193static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
195static int __init early_init_on_alloc(char *buf)
196{
6471384a 197
04013513 198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
199}
200early_param("init_on_alloc", early_init_on_alloc);
201
04013513
VB
202static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
204static int __init early_init_on_free(char *buf)
205{
04013513 206 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
207}
208early_param("init_on_free", early_init_on_free);
1da177e4 209
bb14c2c7
VB
210/*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218static inline int get_pcppage_migratetype(struct page *page)
219{
220 return page->index;
221}
222
223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224{
225 page->index = migratetype;
226}
227
452aa699
RW
228#ifdef CONFIG_PM_SLEEP
229/*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
452aa699 237 */
c9e664f1
RW
238
239static gfp_t saved_gfp_mask;
240
241void pm_restore_gfp_mask(void)
452aa699 242{
55f2503c 243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
452aa699
RW
248}
249
c9e664f1 250void pm_restrict_gfp_mask(void)
452aa699 251{
55f2503c 252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
d0164adc 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 256}
f90ac398
MG
257
258bool pm_suspended_storage(void)
259{
d0164adc 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
261 return false;
262 return true;
263}
452aa699
RW
264#endif /* CONFIG_PM_SLEEP */
265
d9c23400 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 267unsigned int pageblock_order __read_mostly;
d9c23400
MG
268#endif
269
7fef431b
DH
270static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
a226f6c8 272
1da177e4
LT
273/*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
1da177e4 283 */
d3cda233 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 285#ifdef CONFIG_ZONE_DMA
d3cda233 286 [ZONE_DMA] = 256,
4b51d669 287#endif
fb0e7942 288#ifdef CONFIG_ZONE_DMA32
d3cda233 289 [ZONE_DMA32] = 256,
fb0e7942 290#endif
d3cda233 291 [ZONE_NORMAL] = 32,
e53ef38d 292#ifdef CONFIG_HIGHMEM
d3cda233 293 [ZONE_HIGHMEM] = 0,
e53ef38d 294#endif
d3cda233 295 [ZONE_MOVABLE] = 0,
2f1b6248 296};
1da177e4 297
15ad7cdc 298static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 299#ifdef CONFIG_ZONE_DMA
2f1b6248 300 "DMA",
4b51d669 301#endif
fb0e7942 302#ifdef CONFIG_ZONE_DMA32
2f1b6248 303 "DMA32",
fb0e7942 304#endif
2f1b6248 305 "Normal",
e53ef38d 306#ifdef CONFIG_HIGHMEM
2a1e274a 307 "HighMem",
e53ef38d 308#endif
2a1e274a 309 "Movable",
033fbae9
DW
310#ifdef CONFIG_ZONE_DEVICE
311 "Device",
312#endif
2f1b6248
CL
313};
314
c999fbd3 315const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320#ifdef CONFIG_CMA
321 "CMA",
322#endif
323#ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325#endif
326};
327
ae70eddd
AK
328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 331#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 332 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 333#endif
9a982250 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 336#endif
f1e61557
KS
337};
338
1da177e4 339int min_free_kbytes = 1024;
42aa83cb 340int user_min_free_kbytes = -1;
1c30844d 341int watermark_boost_factor __read_mostly = 15000;
795ae7a0 342int watermark_scale_factor = 10;
1da177e4 343
bbe5d993
OS
344static unsigned long nr_kernel_pages __initdata;
345static unsigned long nr_all_pages __initdata;
346static unsigned long dma_reserve __initdata;
1da177e4 347
bbe5d993
OS
348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 350static unsigned long required_kernelcore __initdata;
a5c6d650 351static unsigned long required_kernelcore_percent __initdata;
7f16f91f 352static unsigned long required_movablecore __initdata;
a5c6d650 353static unsigned long required_movablecore_percent __initdata;
bbe5d993 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 355static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
356
357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358int movable_zone;
359EXPORT_SYMBOL(movable_zone);
c713216d 360
418508c1 361#if MAX_NUMNODES > 1
b9726c26 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 363unsigned int nr_online_nodes __read_mostly = 1;
418508c1 364EXPORT_SYMBOL(nr_node_ids);
62bc62a8 365EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
366#endif
367
9ef9acb0
MG
368int page_group_by_mobility_disabled __read_mostly;
369
3a80a7fa 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
371/*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378/*
7a3b8353 379 * Calling kasan_poison_pages() only after deferred memory initialization
3c0c12cc
WL
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
c275c5c6 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
3c0c12cc 392{
7a3b8353
PC
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
3c0c12cc
WL
397}
398
3a80a7fa 399/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 401{
ef70b6f4
MG
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
405 return true;
406
407 return false;
408}
409
410/*
d3035be4 411 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
412 * later in the boot cycle when it can be parallelised.
413 */
d3035be4
PT
414static bool __meminit
415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 416{
d3035be4
PT
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
3c2c6488 428 /* Always populate low zones for address-constrained allocations */
d3035be4 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 430 return false;
23b68cfa 431
dc2da7b4
BH
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
23b68cfa
WY
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
d3035be4 438 nr_initialised++;
23b68cfa 439 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
3a80a7fa 443 }
d3035be4 444 return false;
3a80a7fa
MG
445}
446#else
c275c5c6 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
2c335680 448{
7a3b8353 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
2c335680 452}
3c0c12cc 453
3a80a7fa
MG
454static inline bool early_page_uninitialised(unsigned long pfn)
455{
456 return false;
457}
458
d3035be4 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 460{
d3035be4 461 return false;
3a80a7fa
MG
462}
463#endif
464
0b423ca2 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
467 unsigned long pfn)
468{
469#ifdef CONFIG_SPARSEMEM
f1eca35a 470 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
471#else
472 return page_zone(page)->pageblock_flags;
473#endif /* CONFIG_SPARSEMEM */
474}
475
ca891f41 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
477{
478#ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
480#else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 482#endif /* CONFIG_SPARSEMEM */
399b795b 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
484}
485
535b81e2 486static __always_inline
ca891f41 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 488 unsigned long pfn,
0b423ca2
MG
489 unsigned long mask)
490{
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
d93d5ab9 501 return (word >> bitidx) & mask;
0b423ca2
MG
502}
503
a00cda3f
MCC
504/**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
ca891f41
MWO
512unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
0b423ca2 514{
535b81e2 515 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
516}
517
ca891f41
MWO
518static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
0b423ca2 520{
535b81e2 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
522}
523
524/**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
0b423ca2
MG
529 * @mask: mask of bits that the caller is interested in
530 */
531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
0b423ca2
MG
533 unsigned long mask)
534{
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
d93d5ab9
WY
549 mask <<= bitidx;
550 flags <<= bitidx;
0b423ca2
MG
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559}
3a80a7fa 560
ee6f509c 561void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 562{
5d0f3f72
KM
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
565 migratetype = MIGRATE_UNMOVABLE;
566
d93d5ab9 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 568 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
569}
570
13e7444b 571#ifdef CONFIG_DEBUG_VM
c6a57e19 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 573{
bdc8cb98
DH
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 577 unsigned long sp, start_pfn;
c6a57e19 578
bdc8cb98
DH
579 do {
580 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
108bcc96 583 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
b5e6a5a2 587 if (ret)
613813e8
DH
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
b5e6a5a2 591
bdc8cb98 592 return ret;
c6a57e19
DH
593}
594
595static int page_is_consistent(struct zone *zone, struct page *page)
596{
1da177e4 597 if (zone != page_zone(page))
c6a57e19
DH
598 return 0;
599
600 return 1;
601}
602/*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
d73d3c9f 605static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
606{
607 if (page_outside_zone_boundaries(zone, page))
1da177e4 608 return 1;
c6a57e19
DH
609 if (!page_is_consistent(zone, page))
610 return 1;
611
1da177e4
LT
612 return 0;
613}
13e7444b 614#else
d73d3c9f 615static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
616{
617 return 0;
618}
619#endif
620
82a3241a 621static void bad_page(struct page *page, const char *reason)
1da177e4 622{
d936cf9b
HD
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
ff8e8116 637 pr_alert(
1e9e6365 638 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
ff8e8116 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 648 current->comm, page_to_pfn(page));
d2f07ec0 649 dump_page(page, reason);
3dc14741 650
4f31888c 651 print_modules();
1da177e4 652 dump_stack();
d936cf9b 653out:
8cc3b392 654 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 655 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
657}
658
44042b44
MG
659static inline unsigned int order_to_pindex(int migratetype, int order)
660{
661 int base = order;
662
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668#else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670#endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673}
674
675static inline int pindex_to_order(unsigned int pindex)
676{
677 int order = pindex / MIGRATE_PCPTYPES;
678
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 order = pageblock_order;
682 VM_BUG_ON(order != pageblock_order);
683 }
684#else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686#endif
687
688 return order;
689}
690
691static inline bool pcp_allowed_order(unsigned int order)
692{
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695#ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == pageblock_order)
697 return true;
698#endif
699 return false;
700}
701
21d02f8f
MG
702static inline void free_the_page(struct page *page, unsigned int order)
703{
44042b44
MG
704 if (pcp_allowed_order(order)) /* Via pcp? */
705 free_unref_page(page, order);
21d02f8f
MG
706 else
707 __free_pages_ok(page, order, FPI_NONE);
708}
709
1da177e4
LT
710/*
711 * Higher-order pages are called "compound pages". They are structured thusly:
712 *
1d798ca3 713 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 714 *
1d798ca3
KS
715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 717 *
1d798ca3
KS
718 * The first tail page's ->compound_dtor holds the offset in array of compound
719 * page destructors. See compound_page_dtors.
1da177e4 720 *
1d798ca3 721 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 722 * This usage means that zero-order pages may not be compound.
1da177e4 723 */
d98c7a09 724
9a982250 725void free_compound_page(struct page *page)
d98c7a09 726{
7ae88534 727 mem_cgroup_uncharge(page);
44042b44 728 free_the_page(page, compound_order(page));
d98c7a09
HD
729}
730
d00181b9 731void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
732{
733 int i;
734 int nr_pages = 1 << order;
735
18229df5
AW
736 __SetPageHead(page);
737 for (i = 1; i < nr_pages; i++) {
738 struct page *p = page + i;
1c290f64 739 p->mapping = TAIL_MAPPING;
1d798ca3 740 set_compound_head(p, page);
18229df5 741 }
1378a5ee
MWO
742
743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 set_compound_order(page, order);
53f9263b 745 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
746 if (hpage_pincount_available(page))
747 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
748}
749
c0a32fc5
SG
750#ifdef CONFIG_DEBUG_PAGEALLOC
751unsigned int _debug_guardpage_minorder;
96a2b03f 752
8e57f8ac
VB
753bool _debug_pagealloc_enabled_early __read_mostly
754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 756DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 757EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
758
759DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 760
031bc574
JK
761static int __init early_debug_pagealloc(char *buf)
762{
8e57f8ac 763 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
764}
765early_param("debug_pagealloc", early_debug_pagealloc);
766
c0a32fc5
SG
767static int __init debug_guardpage_minorder_setup(char *buf)
768{
769 unsigned long res;
770
771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 772 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
773 return 0;
774 }
775 _debug_guardpage_minorder = res;
1170532b 776 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
777 return 0;
778}
f1c1e9f7 779early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 780
acbc15a4 781static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 782 unsigned int order, int migratetype)
c0a32fc5 783{
e30825f1 784 if (!debug_guardpage_enabled())
acbc15a4
JK
785 return false;
786
787 if (order >= debug_guardpage_minorder())
788 return false;
e30825f1 789
3972f6bb 790 __SetPageGuard(page);
2847cf95
JK
791 INIT_LIST_HEAD(&page->lru);
792 set_page_private(page, order);
793 /* Guard pages are not available for any usage */
794 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
795
796 return true;
c0a32fc5
SG
797}
798
2847cf95
JK
799static inline void clear_page_guard(struct zone *zone, struct page *page,
800 unsigned int order, int migratetype)
c0a32fc5 801{
e30825f1
JK
802 if (!debug_guardpage_enabled())
803 return;
804
3972f6bb 805 __ClearPageGuard(page);
e30825f1 806
2847cf95
JK
807 set_page_private(page, 0);
808 if (!is_migrate_isolate(migratetype))
809 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
810}
811#else
acbc15a4
JK
812static inline bool set_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) { return false; }
2847cf95
JK
814static inline void clear_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) {}
c0a32fc5
SG
816#endif
817
04013513
VB
818/*
819 * Enable static keys related to various memory debugging and hardening options.
820 * Some override others, and depend on early params that are evaluated in the
821 * order of appearance. So we need to first gather the full picture of what was
822 * enabled, and then make decisions.
823 */
824void init_mem_debugging_and_hardening(void)
825{
9df65f52
ST
826 bool page_poisoning_requested = false;
827
828#ifdef CONFIG_PAGE_POISONING
829 /*
830 * Page poisoning is debug page alloc for some arches. If
831 * either of those options are enabled, enable poisoning.
832 */
833 if (page_poisoning_enabled() ||
834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 debug_pagealloc_enabled())) {
836 static_branch_enable(&_page_poisoning_enabled);
837 page_poisoning_requested = true;
838 }
839#endif
840
69e5d322
ST
841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 page_poisoning_requested) {
843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 "will take precedence over init_on_alloc and init_on_free\n");
845 _init_on_alloc_enabled_early = false;
846 _init_on_free_enabled_early = false;
04013513
VB
847 }
848
69e5d322
ST
849 if (_init_on_alloc_enabled_early)
850 static_branch_enable(&init_on_alloc);
851 else
852 static_branch_disable(&init_on_alloc);
853
854 if (_init_on_free_enabled_early)
855 static_branch_enable(&init_on_free);
856 else
857 static_branch_disable(&init_on_free);
858
04013513
VB
859#ifdef CONFIG_DEBUG_PAGEALLOC
860 if (!debug_pagealloc_enabled())
861 return;
862
863 static_branch_enable(&_debug_pagealloc_enabled);
864
865 if (!debug_guardpage_minorder())
866 return;
867
868 static_branch_enable(&_debug_guardpage_enabled);
869#endif
870}
871
ab130f91 872static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 873{
4c21e2f2 874 set_page_private(page, order);
676165a8 875 __SetPageBuddy(page);
1da177e4
LT
876}
877
1da177e4
LT
878/*
879 * This function checks whether a page is free && is the buddy
6e292b9b 880 * we can coalesce a page and its buddy if
13ad59df 881 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 882 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
883 * (c) a page and its buddy have the same order &&
884 * (d) a page and its buddy are in the same zone.
676165a8 885 *
6e292b9b
MW
886 * For recording whether a page is in the buddy system, we set PageBuddy.
887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 888 *
676165a8 889 * For recording page's order, we use page_private(page).
1da177e4 890 */
fe925c0c 891static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 892 unsigned int order)
1da177e4 893{
fe925c0c 894 if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 return false;
4c5018ce 896
ab130f91 897 if (buddy_order(buddy) != order)
fe925c0c 898 return false;
c0a32fc5 899
fe925c0c 900 /*
901 * zone check is done late to avoid uselessly calculating
902 * zone/node ids for pages that could never merge.
903 */
904 if (page_zone_id(page) != page_zone_id(buddy))
905 return false;
d34c5fa0 906
fe925c0c 907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 908
fe925c0c 909 return true;
1da177e4
LT
910}
911
5e1f0f09
MG
912#ifdef CONFIG_COMPACTION
913static inline struct capture_control *task_capc(struct zone *zone)
914{
915 struct capture_control *capc = current->capture_control;
916
deba0487 917 return unlikely(capc) &&
5e1f0f09
MG
918 !(current->flags & PF_KTHREAD) &&
919 !capc->page &&
deba0487 920 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
921}
922
923static inline bool
924compaction_capture(struct capture_control *capc, struct page *page,
925 int order, int migratetype)
926{
927 if (!capc || order != capc->cc->order)
928 return false;
929
930 /* Do not accidentally pollute CMA or isolated regions*/
931 if (is_migrate_cma(migratetype) ||
932 is_migrate_isolate(migratetype))
933 return false;
934
935 /*
f0953a1b 936 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
937 * This might let an unmovable request use a reclaimable pageblock
938 * and vice-versa but no more than normal fallback logic which can
939 * have trouble finding a high-order free page.
940 */
941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 return false;
943
944 capc->page = page;
945 return true;
946}
947
948#else
949static inline struct capture_control *task_capc(struct zone *zone)
950{
951 return NULL;
952}
953
954static inline bool
955compaction_capture(struct capture_control *capc, struct page *page,
956 int order, int migratetype)
957{
958 return false;
959}
960#endif /* CONFIG_COMPACTION */
961
6ab01363
AD
962/* Used for pages not on another list */
963static inline void add_to_free_list(struct page *page, struct zone *zone,
964 unsigned int order, int migratetype)
965{
966 struct free_area *area = &zone->free_area[order];
967
968 list_add(&page->lru, &area->free_list[migratetype]);
969 area->nr_free++;
970}
971
972/* Used for pages not on another list */
973static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975{
976 struct free_area *area = &zone->free_area[order];
977
978 list_add_tail(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980}
981
293ffa5e
DH
982/*
983 * Used for pages which are on another list. Move the pages to the tail
984 * of the list - so the moved pages won't immediately be considered for
985 * allocation again (e.g., optimization for memory onlining).
986 */
6ab01363
AD
987static inline void move_to_free_list(struct page *page, struct zone *zone,
988 unsigned int order, int migratetype)
989{
990 struct free_area *area = &zone->free_area[order];
991
293ffa5e 992 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
993}
994
995static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 unsigned int order)
997{
36e66c55
AD
998 /* clear reported state and update reported page count */
999 if (page_reported(page))
1000 __ClearPageReported(page);
1001
6ab01363
AD
1002 list_del(&page->lru);
1003 __ClearPageBuddy(page);
1004 set_page_private(page, 0);
1005 zone->free_area[order].nr_free--;
1006}
1007
a2129f24
AD
1008/*
1009 * If this is not the largest possible page, check if the buddy
1010 * of the next-highest order is free. If it is, it's possible
1011 * that pages are being freed that will coalesce soon. In case,
1012 * that is happening, add the free page to the tail of the list
1013 * so it's less likely to be used soon and more likely to be merged
1014 * as a higher order page
1015 */
1016static inline bool
1017buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 struct page *page, unsigned int order)
1019{
1020 struct page *higher_page, *higher_buddy;
1021 unsigned long combined_pfn;
1022
1023 if (order >= MAX_ORDER - 2)
1024 return false;
1025
a2129f24
AD
1026 combined_pfn = buddy_pfn & pfn;
1027 higher_page = page + (combined_pfn - pfn);
1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030
859a85dd 1031 return page_is_buddy(higher_page, higher_buddy, order + 1);
a2129f24
AD
1032}
1033
1da177e4
LT
1034/*
1035 * Freeing function for a buddy system allocator.
1036 *
1037 * The concept of a buddy system is to maintain direct-mapped table
1038 * (containing bit values) for memory blocks of various "orders".
1039 * The bottom level table contains the map for the smallest allocatable
1040 * units of memory (here, pages), and each level above it describes
1041 * pairs of units from the levels below, hence, "buddies".
1042 * At a high level, all that happens here is marking the table entry
1043 * at the bottom level available, and propagating the changes upward
1044 * as necessary, plus some accounting needed to play nicely with other
1045 * parts of the VM system.
1046 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1047 * free pages of length of (1 << order) and marked with PageBuddy.
1048 * Page's order is recorded in page_private(page) field.
1da177e4 1049 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1050 * other. That is, if we allocate a small block, and both were
1051 * free, the remainder of the region must be split into blocks.
1da177e4 1052 * If a block is freed, and its buddy is also free, then this
5f63b720 1053 * triggers coalescing into a block of larger size.
1da177e4 1054 *
6d49e352 1055 * -- nyc
1da177e4
LT
1056 */
1057
48db57f8 1058static inline void __free_one_page(struct page *page,
dc4b0caf 1059 unsigned long pfn,
ed0ae21d 1060 struct zone *zone, unsigned int order,
f04a5d5d 1061 int migratetype, fpi_t fpi_flags)
1da177e4 1062{
a2129f24 1063 struct capture_control *capc = task_capc(zone);
3f649ab7 1064 unsigned long buddy_pfn;
a2129f24 1065 unsigned long combined_pfn;
d9dddbf5 1066 unsigned int max_order;
a2129f24
AD
1067 struct page *buddy;
1068 bool to_tail;
d9dddbf5 1069
7ad69832 1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1071
d29bb978 1072 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1074
ed0ae21d 1075 VM_BUG_ON(migratetype == -1);
d9dddbf5 1076 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1077 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1078
76741e77 1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1081
d9dddbf5 1082continue_merging:
7ad69832 1083 while (order < max_order) {
5e1f0f09
MG
1084 if (compaction_capture(capc, page, order, migratetype)) {
1085 __mod_zone_freepage_state(zone, -(1 << order),
1086 migratetype);
1087 return;
1088 }
76741e77
VB
1089 buddy_pfn = __find_buddy_pfn(pfn, order);
1090 buddy = page + (buddy_pfn - pfn);
13ad59df 1091
cb2b95e1 1092 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1093 goto done_merging;
c0a32fc5
SG
1094 /*
1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 * merge with it and move up one order.
1097 */
b03641af 1098 if (page_is_guard(buddy))
2847cf95 1099 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1100 else
6ab01363 1101 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1102 combined_pfn = buddy_pfn & pfn;
1103 page = page + (combined_pfn - pfn);
1104 pfn = combined_pfn;
1da177e4
LT
1105 order++;
1106 }
7ad69832 1107 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1108 /* If we are here, it means order is >= pageblock_order.
1109 * We want to prevent merge between freepages on isolate
1110 * pageblock and normal pageblock. Without this, pageblock
1111 * isolation could cause incorrect freepage or CMA accounting.
1112 *
1113 * We don't want to hit this code for the more frequent
1114 * low-order merging.
1115 */
1116 if (unlikely(has_isolate_pageblock(zone))) {
1117 int buddy_mt;
1118
76741e77
VB
1119 buddy_pfn = __find_buddy_pfn(pfn, order);
1120 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1121 buddy_mt = get_pageblock_migratetype(buddy);
1122
1123 if (migratetype != buddy_mt
1124 && (is_migrate_isolate(migratetype) ||
1125 is_migrate_isolate(buddy_mt)))
1126 goto done_merging;
1127 }
7ad69832 1128 max_order = order + 1;
d9dddbf5
VB
1129 goto continue_merging;
1130 }
1131
1132done_merging:
ab130f91 1133 set_buddy_order(page, order);
6dda9d55 1134
47b6a24a
DH
1135 if (fpi_flags & FPI_TO_TAIL)
1136 to_tail = true;
1137 else if (is_shuffle_order(order))
a2129f24 1138 to_tail = shuffle_pick_tail();
97500a4a 1139 else
a2129f24 1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1141
a2129f24 1142 if (to_tail)
6ab01363 1143 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1144 else
6ab01363 1145 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1146
1147 /* Notify page reporting subsystem of freed page */
f04a5d5d 1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1149 page_reporting_notify_free(order);
1da177e4
LT
1150}
1151
7bfec6f4
MG
1152/*
1153 * A bad page could be due to a number of fields. Instead of multiple branches,
1154 * try and check multiple fields with one check. The caller must do a detailed
1155 * check if necessary.
1156 */
1157static inline bool page_expected_state(struct page *page,
1158 unsigned long check_flags)
1159{
1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 return false;
1162
1163 if (unlikely((unsigned long)page->mapping |
1164 page_ref_count(page) |
1165#ifdef CONFIG_MEMCG
48060834 1166 page->memcg_data |
7bfec6f4
MG
1167#endif
1168 (page->flags & check_flags)))
1169 return false;
1170
1171 return true;
1172}
1173
58b7f119 1174static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1175{
82a3241a 1176 const char *bad_reason = NULL;
f0b791a3 1177
53f9263b 1178 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1179 bad_reason = "nonzero mapcount";
1180 if (unlikely(page->mapping != NULL))
1181 bad_reason = "non-NULL mapping";
fe896d18 1182 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1183 bad_reason = "nonzero _refcount";
58b7f119
WY
1184 if (unlikely(page->flags & flags)) {
1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 else
1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1189 }
9edad6ea 1190#ifdef CONFIG_MEMCG
48060834 1191 if (unlikely(page->memcg_data))
9edad6ea
JW
1192 bad_reason = "page still charged to cgroup";
1193#endif
58b7f119
WY
1194 return bad_reason;
1195}
1196
1197static void check_free_page_bad(struct page *page)
1198{
1199 bad_page(page,
1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1201}
1202
534fe5e3 1203static inline int check_free_page(struct page *page)
bb552ac6 1204{
da838d4f 1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1206 return 0;
bb552ac6
MG
1207
1208 /* Something has gone sideways, find it */
0d0c48a2 1209 check_free_page_bad(page);
7bfec6f4 1210 return 1;
1da177e4
LT
1211}
1212
4db7548c
MG
1213static int free_tail_pages_check(struct page *head_page, struct page *page)
1214{
1215 int ret = 1;
1216
1217 /*
1218 * We rely page->lru.next never has bit 0 set, unless the page
1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 */
1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222
1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 ret = 0;
1225 goto out;
1226 }
1227 switch (page - head_page) {
1228 case 1:
4da1984e 1229 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1230 if (unlikely(compound_mapcount(page))) {
82a3241a 1231 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1232 goto out;
1233 }
1234 break;
1235 case 2:
1236 /*
1237 * the second tail page: ->mapping is
fa3015b7 1238 * deferred_list.next -- ignore value.
4db7548c
MG
1239 */
1240 break;
1241 default:
1242 if (page->mapping != TAIL_MAPPING) {
82a3241a 1243 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1244 goto out;
1245 }
1246 break;
1247 }
1248 if (unlikely(!PageTail(page))) {
82a3241a 1249 bad_page(page, "PageTail not set");
4db7548c
MG
1250 goto out;
1251 }
1252 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1253 bad_page(page, "compound_head not consistent");
4db7548c
MG
1254 goto out;
1255 }
1256 ret = 0;
1257out:
1258 page->mapping = NULL;
1259 clear_compound_head(page);
1260 return ret;
1261}
1262
013bb59d 1263static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
6471384a
AP
1264{
1265 int i;
1266
013bb59d
PC
1267 if (zero_tags) {
1268 for (i = 0; i < numpages; i++)
1269 tag_clear_highpage(page + i);
1270 return;
1271 }
1272
9e15afa5
QC
1273 /* s390's use of memset() could override KASAN redzones. */
1274 kasan_disable_current();
aa1ef4d7 1275 for (i = 0; i < numpages; i++) {
acb35b17 1276 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1277 page_kasan_tag_reset(page + i);
6471384a 1278 clear_highpage(page + i);
acb35b17 1279 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1280 }
9e15afa5 1281 kasan_enable_current();
6471384a
AP
1282}
1283
e2769dbd 1284static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1285 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1286{
e2769dbd 1287 int bad = 0;
c275c5c6 1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
4db7548c 1289
4db7548c
MG
1290 VM_BUG_ON_PAGE(PageTail(page), page);
1291
e2769dbd 1292 trace_mm_page_free(page, order);
e2769dbd 1293
79f5f8fa
OS
1294 if (unlikely(PageHWPoison(page)) && !order) {
1295 /*
1296 * Do not let hwpoison pages hit pcplists/buddy
1297 * Untie memcg state and reset page's owner
1298 */
18b2db3b 1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1300 __memcg_kmem_uncharge_page(page, order);
1301 reset_page_owner(page, order);
1302 return false;
1303 }
1304
e2769dbd
MG
1305 /*
1306 * Check tail pages before head page information is cleared to
1307 * avoid checking PageCompound for order-0 pages.
1308 */
1309 if (unlikely(order)) {
1310 bool compound = PageCompound(page);
1311 int i;
1312
1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1314
9a73f61b
KS
1315 if (compound)
1316 ClearPageDoubleMap(page);
e2769dbd
MG
1317 for (i = 1; i < (1 << order); i++) {
1318 if (compound)
1319 bad += free_tail_pages_check(page, page + i);
534fe5e3 1320 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1321 bad++;
1322 continue;
1323 }
1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 }
1326 }
bda807d4 1327 if (PageMappingFlags(page))
4db7548c 1328 page->mapping = NULL;
18b2db3b 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1330 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1331 if (check_free)
534fe5e3 1332 bad += check_free_page(page);
e2769dbd
MG
1333 if (bad)
1334 return false;
4db7548c 1335
e2769dbd
MG
1336 page_cpupid_reset_last(page);
1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 reset_page_owner(page, order);
4db7548c
MG
1339
1340 if (!PageHighMem(page)) {
1341 debug_check_no_locks_freed(page_address(page),
e2769dbd 1342 PAGE_SIZE << order);
4db7548c 1343 debug_check_no_obj_freed(page_address(page),
e2769dbd 1344 PAGE_SIZE << order);
4db7548c 1345 }
6471384a 1346
8db26a3d
VB
1347 kernel_poison_pages(page, 1 << order);
1348
f9d79e8d 1349 /*
1bb5eab3
AK
1350 * As memory initialization might be integrated into KASAN,
1351 * kasan_free_pages and kernel_init_free_pages must be
1352 * kept together to avoid discrepancies in behavior.
1353 *
f9d79e8d
AK
1354 * With hardware tag-based KASAN, memory tags must be set before the
1355 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 */
7a3b8353
PC
1357 if (kasan_has_integrated_init()) {
1358 if (!skip_kasan_poison)
1359 kasan_free_pages(page, order);
1360 } else {
1361 bool init = want_init_on_free();
1362
1363 if (init)
013bb59d 1364 kernel_init_free_pages(page, 1 << order, false);
7a3b8353
PC
1365 if (!skip_kasan_poison)
1366 kasan_poison_pages(page, order, init);
1367 }
f9d79e8d 1368
234fdce8
QC
1369 /*
1370 * arch_free_page() can make the page's contents inaccessible. s390
1371 * does this. So nothing which can access the page's contents should
1372 * happen after this.
1373 */
1374 arch_free_page(page, order);
1375
77bc7fd6 1376 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1377
4db7548c
MG
1378 return true;
1379}
1380
e2769dbd 1381#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1382/*
1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385 * moved from pcp lists to free lists.
1386 */
44042b44 1387static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1388{
44042b44 1389 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1390}
1391
4462b32c 1392static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1393{
8e57f8ac 1394 if (debug_pagealloc_enabled_static())
534fe5e3 1395 return check_free_page(page);
4462b32c
VB
1396 else
1397 return false;
e2769dbd
MG
1398}
1399#else
4462b32c
VB
1400/*
1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402 * moving from pcp lists to free list in order to reduce overhead. With
1403 * debug_pagealloc enabled, they are checked also immediately when being freed
1404 * to the pcp lists.
1405 */
44042b44 1406static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1407{
8e57f8ac 1408 if (debug_pagealloc_enabled_static())
44042b44 1409 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1410 else
44042b44 1411 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1412}
1413
4db7548c
MG
1414static bool bulkfree_pcp_prepare(struct page *page)
1415{
534fe5e3 1416 return check_free_page(page);
4db7548c
MG
1417}
1418#endif /* CONFIG_DEBUG_VM */
1419
97334162
AL
1420static inline void prefetch_buddy(struct page *page)
1421{
1422 unsigned long pfn = page_to_pfn(page);
1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 struct page *buddy = page + (buddy_pfn - pfn);
1425
1426 prefetch(buddy);
1427}
1428
1da177e4 1429/*
5f8dcc21 1430 * Frees a number of pages from the PCP lists
1da177e4 1431 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1432 * count is the number of pages to free.
1da177e4
LT
1433 *
1434 * If the zone was previously in an "all pages pinned" state then look to
1435 * see if this freeing clears that state.
1436 *
1437 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1438 * pinned" detection logic.
1439 */
5f8dcc21
MG
1440static void free_pcppages_bulk(struct zone *zone, int count,
1441 struct per_cpu_pages *pcp)
1da177e4 1442{
44042b44 1443 int pindex = 0;
a6f9edd6 1444 int batch_free = 0;
44042b44
MG
1445 int nr_freed = 0;
1446 unsigned int order;
5c3ad2eb 1447 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1448 bool isolated_pageblocks;
0a5f4e5b
AL
1449 struct page *page, *tmp;
1450 LIST_HEAD(head);
f2260e6b 1451
88e8ac11
CTR
1452 /*
1453 * Ensure proper count is passed which otherwise would stuck in the
1454 * below while (list_empty(list)) loop.
1455 */
1456 count = min(pcp->count, count);
44042b44 1457 while (count > 0) {
5f8dcc21
MG
1458 struct list_head *list;
1459
1460 /*
a6f9edd6
MG
1461 * Remove pages from lists in a round-robin fashion. A
1462 * batch_free count is maintained that is incremented when an
1463 * empty list is encountered. This is so more pages are freed
1464 * off fuller lists instead of spinning excessively around empty
1465 * lists
5f8dcc21
MG
1466 */
1467 do {
a6f9edd6 1468 batch_free++;
44042b44
MG
1469 if (++pindex == NR_PCP_LISTS)
1470 pindex = 0;
1471 list = &pcp->lists[pindex];
5f8dcc21 1472 } while (list_empty(list));
48db57f8 1473
1d16871d 1474 /* This is the only non-empty list. Free them all. */
44042b44 1475 if (batch_free == NR_PCP_LISTS)
e5b31ac2 1476 batch_free = count;
1d16871d 1477
44042b44
MG
1478 order = pindex_to_order(pindex);
1479 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1480 do {
a16601c5 1481 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1482 /* must delete to avoid corrupting pcp list */
a6f9edd6 1483 list_del(&page->lru);
44042b44
MG
1484 nr_freed += 1 << order;
1485 count -= 1 << order;
aa016d14 1486
4db7548c
MG
1487 if (bulkfree_pcp_prepare(page))
1488 continue;
1489
44042b44
MG
1490 /* Encode order with the migratetype */
1491 page->index <<= NR_PCP_ORDER_WIDTH;
1492 page->index |= order;
1493
0a5f4e5b 1494 list_add_tail(&page->lru, &head);
97334162
AL
1495
1496 /*
1497 * We are going to put the page back to the global
1498 * pool, prefetch its buddy to speed up later access
1499 * under zone->lock. It is believed the overhead of
1500 * an additional test and calculating buddy_pfn here
1501 * can be offset by reduced memory latency later. To
1502 * avoid excessive prefetching due to large count, only
1503 * prefetch buddy for the first pcp->batch nr of pages.
1504 */
5c3ad2eb 1505 if (prefetch_nr) {
97334162 1506 prefetch_buddy(page);
5c3ad2eb
VB
1507 prefetch_nr--;
1508 }
44042b44 1509 } while (count > 0 && --batch_free && !list_empty(list));
1da177e4 1510 }
44042b44 1511 pcp->count -= nr_freed;
0a5f4e5b 1512
dbbee9d5
MG
1513 /*
1514 * local_lock_irq held so equivalent to spin_lock_irqsave for
1515 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1516 */
0a5f4e5b
AL
1517 spin_lock(&zone->lock);
1518 isolated_pageblocks = has_isolate_pageblock(zone);
1519
1520 /*
1521 * Use safe version since after __free_one_page(),
1522 * page->lru.next will not point to original list.
1523 */
1524 list_for_each_entry_safe(page, tmp, &head, lru) {
1525 int mt = get_pcppage_migratetype(page);
44042b44
MG
1526
1527 /* mt has been encoded with the order (see above) */
1528 order = mt & NR_PCP_ORDER_MASK;
1529 mt >>= NR_PCP_ORDER_WIDTH;
1530
0a5f4e5b
AL
1531 /* MIGRATE_ISOLATE page should not go to pcplists */
1532 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1533 /* Pageblock could have been isolated meanwhile */
1534 if (unlikely(isolated_pageblocks))
1535 mt = get_pageblock_migratetype(page);
1536
44042b44
MG
1537 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1538 trace_mm_page_pcpu_drain(page, order, mt);
0a5f4e5b 1539 }
d34b0733 1540 spin_unlock(&zone->lock);
1da177e4
LT
1541}
1542
dc4b0caf
MG
1543static void free_one_page(struct zone *zone,
1544 struct page *page, unsigned long pfn,
7aeb09f9 1545 unsigned int order,
7fef431b 1546 int migratetype, fpi_t fpi_flags)
1da177e4 1547{
df1acc85
MG
1548 unsigned long flags;
1549
1550 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1551 if (unlikely(has_isolate_pageblock(zone) ||
1552 is_migrate_isolate(migratetype))) {
1553 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1554 }
7fef431b 1555 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1556 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1557}
1558
1e8ce83c 1559static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1560 unsigned long zone, int nid)
1e8ce83c 1561{
d0dc12e8 1562 mm_zero_struct_page(page);
1e8ce83c 1563 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1564 init_page_count(page);
1565 page_mapcount_reset(page);
1566 page_cpupid_reset_last(page);
2813b9c0 1567 page_kasan_tag_reset(page);
1e8ce83c 1568
1e8ce83c
RH
1569 INIT_LIST_HEAD(&page->lru);
1570#ifdef WANT_PAGE_VIRTUAL
1571 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1572 if (!is_highmem_idx(zone))
1573 set_page_address(page, __va(pfn << PAGE_SHIFT));
1574#endif
1575}
1576
7e18adb4 1577#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1578static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1579{
1580 pg_data_t *pgdat;
1581 int nid, zid;
1582
1583 if (!early_page_uninitialised(pfn))
1584 return;
1585
1586 nid = early_pfn_to_nid(pfn);
1587 pgdat = NODE_DATA(nid);
1588
1589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1590 struct zone *zone = &pgdat->node_zones[zid];
1591
1592 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1593 break;
1594 }
d0dc12e8 1595 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1596}
1597#else
1598static inline void init_reserved_page(unsigned long pfn)
1599{
1600}
1601#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1602
92923ca3
NZ
1603/*
1604 * Initialised pages do not have PageReserved set. This function is
1605 * called for each range allocated by the bootmem allocator and
1606 * marks the pages PageReserved. The remaining valid pages are later
1607 * sent to the buddy page allocator.
1608 */
4b50bcc7 1609void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1610{
1611 unsigned long start_pfn = PFN_DOWN(start);
1612 unsigned long end_pfn = PFN_UP(end);
1613
7e18adb4
MG
1614 for (; start_pfn < end_pfn; start_pfn++) {
1615 if (pfn_valid(start_pfn)) {
1616 struct page *page = pfn_to_page(start_pfn);
1617
1618 init_reserved_page(start_pfn);
1d798ca3
KS
1619
1620 /* Avoid false-positive PageTail() */
1621 INIT_LIST_HEAD(&page->lru);
1622
d483da5b
AD
1623 /*
1624 * no need for atomic set_bit because the struct
1625 * page is not visible yet so nobody should
1626 * access it yet.
1627 */
1628 __SetPageReserved(page);
7e18adb4
MG
1629 }
1630 }
92923ca3
NZ
1631}
1632
7fef431b
DH
1633static void __free_pages_ok(struct page *page, unsigned int order,
1634 fpi_t fpi_flags)
ec95f53a 1635{
d34b0733 1636 unsigned long flags;
95e34412 1637 int migratetype;
dc4b0caf 1638 unsigned long pfn = page_to_pfn(page);
56f0e661 1639 struct zone *zone = page_zone(page);
ec95f53a 1640
2c335680 1641 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1642 return;
1643
cfc47a28 1644 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1645
56f0e661 1646 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1647 if (unlikely(has_isolate_pageblock(zone) ||
1648 is_migrate_isolate(migratetype))) {
1649 migratetype = get_pfnblock_migratetype(page, pfn);
1650 }
1651 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1652 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1653
d34b0733 1654 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1655}
1656
a9cd410a 1657void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1658{
c3993076 1659 unsigned int nr_pages = 1 << order;
e2d0bd2b 1660 struct page *p = page;
c3993076 1661 unsigned int loop;
a226f6c8 1662
7fef431b
DH
1663 /*
1664 * When initializing the memmap, __init_single_page() sets the refcount
1665 * of all pages to 1 ("allocated"/"not free"). We have to set the
1666 * refcount of all involved pages to 0.
1667 */
e2d0bd2b
YL
1668 prefetchw(p);
1669 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1670 prefetchw(p + 1);
c3993076
JW
1671 __ClearPageReserved(p);
1672 set_page_count(p, 0);
a226f6c8 1673 }
e2d0bd2b
YL
1674 __ClearPageReserved(p);
1675 set_page_count(p, 0);
c3993076 1676
9705bea5 1677 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1678
1679 /*
1680 * Bypass PCP and place fresh pages right to the tail, primarily
1681 * relevant for memory onlining.
1682 */
2c335680 1683 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1684}
1685
a9ee6cf5 1686#ifdef CONFIG_NUMA
7ace9917 1687
03e92a5e
MR
1688/*
1689 * During memory init memblocks map pfns to nids. The search is expensive and
1690 * this caches recent lookups. The implementation of __early_pfn_to_nid
1691 * treats start/end as pfns.
1692 */
1693struct mminit_pfnnid_cache {
1694 unsigned long last_start;
1695 unsigned long last_end;
1696 int last_nid;
1697};
75a592a4 1698
03e92a5e 1699static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1700
1701/*
1702 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1703 */
03e92a5e 1704static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1705 struct mminit_pfnnid_cache *state)
75a592a4 1706{
6f24fbd3 1707 unsigned long start_pfn, end_pfn;
75a592a4
MG
1708 int nid;
1709
6f24fbd3
MR
1710 if (state->last_start <= pfn && pfn < state->last_end)
1711 return state->last_nid;
1712
1713 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1714 if (nid != NUMA_NO_NODE) {
1715 state->last_start = start_pfn;
1716 state->last_end = end_pfn;
1717 state->last_nid = nid;
1718 }
7ace9917
MG
1719
1720 return nid;
75a592a4 1721}
75a592a4 1722
75a592a4 1723int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1724{
7ace9917 1725 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1726 int nid;
1727
7ace9917 1728 spin_lock(&early_pfn_lock);
56ec43d8 1729 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1730 if (nid < 0)
e4568d38 1731 nid = first_online_node;
7ace9917 1732 spin_unlock(&early_pfn_lock);
75a592a4 1733
7ace9917 1734 return nid;
75a592a4 1735}
a9ee6cf5 1736#endif /* CONFIG_NUMA */
75a592a4 1737
7c2ee349 1738void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1739 unsigned int order)
1740{
1741 if (early_page_uninitialised(pfn))
1742 return;
a9cd410a 1743 __free_pages_core(page, order);
3a80a7fa
MG
1744}
1745
7cf91a98
JK
1746/*
1747 * Check that the whole (or subset of) a pageblock given by the interval of
1748 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1749 * with the migration of free compaction scanner.
7cf91a98
JK
1750 *
1751 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1752 *
1753 * It's possible on some configurations to have a setup like node0 node1 node0
1754 * i.e. it's possible that all pages within a zones range of pages do not
1755 * belong to a single zone. We assume that a border between node0 and node1
1756 * can occur within a single pageblock, but not a node0 node1 node0
1757 * interleaving within a single pageblock. It is therefore sufficient to check
1758 * the first and last page of a pageblock and avoid checking each individual
1759 * page in a pageblock.
1760 */
1761struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1762 unsigned long end_pfn, struct zone *zone)
1763{
1764 struct page *start_page;
1765 struct page *end_page;
1766
1767 /* end_pfn is one past the range we are checking */
1768 end_pfn--;
1769
1770 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1771 return NULL;
1772
2d070eab
MH
1773 start_page = pfn_to_online_page(start_pfn);
1774 if (!start_page)
1775 return NULL;
7cf91a98
JK
1776
1777 if (page_zone(start_page) != zone)
1778 return NULL;
1779
1780 end_page = pfn_to_page(end_pfn);
1781
1782 /* This gives a shorter code than deriving page_zone(end_page) */
1783 if (page_zone_id(start_page) != page_zone_id(end_page))
1784 return NULL;
1785
1786 return start_page;
1787}
1788
1789void set_zone_contiguous(struct zone *zone)
1790{
1791 unsigned long block_start_pfn = zone->zone_start_pfn;
1792 unsigned long block_end_pfn;
1793
1794 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1795 for (; block_start_pfn < zone_end_pfn(zone);
1796 block_start_pfn = block_end_pfn,
1797 block_end_pfn += pageblock_nr_pages) {
1798
1799 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1800
1801 if (!__pageblock_pfn_to_page(block_start_pfn,
1802 block_end_pfn, zone))
1803 return;
e84fe99b 1804 cond_resched();
7cf91a98
JK
1805 }
1806
1807 /* We confirm that there is no hole */
1808 zone->contiguous = true;
1809}
1810
1811void clear_zone_contiguous(struct zone *zone)
1812{
1813 zone->contiguous = false;
1814}
1815
7e18adb4 1816#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1817static void __init deferred_free_range(unsigned long pfn,
1818 unsigned long nr_pages)
a4de83dd 1819{
2f47a91f
PT
1820 struct page *page;
1821 unsigned long i;
a4de83dd 1822
2f47a91f 1823 if (!nr_pages)
a4de83dd
MG
1824 return;
1825
2f47a91f
PT
1826 page = pfn_to_page(pfn);
1827
a4de83dd 1828 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1829 if (nr_pages == pageblock_nr_pages &&
1830 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1831 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1832 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1833 return;
1834 }
1835
e780149b
XQ
1836 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1837 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1839 __free_pages_core(page, 0);
e780149b 1840 }
a4de83dd
MG
1841}
1842
d3cd131d
NS
1843/* Completion tracking for deferred_init_memmap() threads */
1844static atomic_t pgdat_init_n_undone __initdata;
1845static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1846
1847static inline void __init pgdat_init_report_one_done(void)
1848{
1849 if (atomic_dec_and_test(&pgdat_init_n_undone))
1850 complete(&pgdat_init_all_done_comp);
1851}
0e1cc95b 1852
2f47a91f 1853/*
80b1f41c
PT
1854 * Returns true if page needs to be initialized or freed to buddy allocator.
1855 *
1856 * First we check if pfn is valid on architectures where it is possible to have
1857 * holes within pageblock_nr_pages. On systems where it is not possible, this
1858 * function is optimized out.
1859 *
1860 * Then, we check if a current large page is valid by only checking the validity
1861 * of the head pfn.
2f47a91f 1862 */
56ec43d8 1863static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1864{
80b1f41c
PT
1865 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1866 return false;
80b1f41c
PT
1867 return true;
1868}
2f47a91f 1869
80b1f41c
PT
1870/*
1871 * Free pages to buddy allocator. Try to free aligned pages in
1872 * pageblock_nr_pages sizes.
1873 */
56ec43d8 1874static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1875 unsigned long end_pfn)
1876{
80b1f41c
PT
1877 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1878 unsigned long nr_free = 0;
2f47a91f 1879
80b1f41c 1880 for (; pfn < end_pfn; pfn++) {
56ec43d8 1881 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1882 deferred_free_range(pfn - nr_free, nr_free);
1883 nr_free = 0;
1884 } else if (!(pfn & nr_pgmask)) {
1885 deferred_free_range(pfn - nr_free, nr_free);
1886 nr_free = 1;
80b1f41c
PT
1887 } else {
1888 nr_free++;
1889 }
1890 }
1891 /* Free the last block of pages to allocator */
1892 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1893}
1894
80b1f41c
PT
1895/*
1896 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1897 * by performing it only once every pageblock_nr_pages.
1898 * Return number of pages initialized.
1899 */
56ec43d8 1900static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1901 unsigned long pfn,
1902 unsigned long end_pfn)
2f47a91f 1903{
2f47a91f 1904 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1905 int nid = zone_to_nid(zone);
2f47a91f 1906 unsigned long nr_pages = 0;
56ec43d8 1907 int zid = zone_idx(zone);
2f47a91f 1908 struct page *page = NULL;
2f47a91f 1909
80b1f41c 1910 for (; pfn < end_pfn; pfn++) {
56ec43d8 1911 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1912 page = NULL;
2f47a91f 1913 continue;
80b1f41c 1914 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1915 page = pfn_to_page(pfn);
80b1f41c
PT
1916 } else {
1917 page++;
2f47a91f 1918 }
d0dc12e8 1919 __init_single_page(page, pfn, zid, nid);
80b1f41c 1920 nr_pages++;
2f47a91f 1921 }
80b1f41c 1922 return (nr_pages);
2f47a91f
PT
1923}
1924
0e56acae
AD
1925/*
1926 * This function is meant to pre-load the iterator for the zone init.
1927 * Specifically it walks through the ranges until we are caught up to the
1928 * first_init_pfn value and exits there. If we never encounter the value we
1929 * return false indicating there are no valid ranges left.
1930 */
1931static bool __init
1932deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1933 unsigned long *spfn, unsigned long *epfn,
1934 unsigned long first_init_pfn)
1935{
1936 u64 j;
1937
1938 /*
1939 * Start out by walking through the ranges in this zone that have
1940 * already been initialized. We don't need to do anything with them
1941 * so we just need to flush them out of the system.
1942 */
1943 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1944 if (*epfn <= first_init_pfn)
1945 continue;
1946 if (*spfn < first_init_pfn)
1947 *spfn = first_init_pfn;
1948 *i = j;
1949 return true;
1950 }
1951
1952 return false;
1953}
1954
1955/*
1956 * Initialize and free pages. We do it in two loops: first we initialize
1957 * struct page, then free to buddy allocator, because while we are
1958 * freeing pages we can access pages that are ahead (computing buddy
1959 * page in __free_one_page()).
1960 *
1961 * In order to try and keep some memory in the cache we have the loop
1962 * broken along max page order boundaries. This way we will not cause
1963 * any issues with the buddy page computation.
1964 */
1965static unsigned long __init
1966deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1967 unsigned long *end_pfn)
1968{
1969 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1970 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1971 unsigned long nr_pages = 0;
1972 u64 j = *i;
1973
1974 /* First we loop through and initialize the page values */
1975 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1976 unsigned long t;
1977
1978 if (mo_pfn <= *start_pfn)
1979 break;
1980
1981 t = min(mo_pfn, *end_pfn);
1982 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1983
1984 if (mo_pfn < *end_pfn) {
1985 *start_pfn = mo_pfn;
1986 break;
1987 }
1988 }
1989
1990 /* Reset values and now loop through freeing pages as needed */
1991 swap(j, *i);
1992
1993 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1994 unsigned long t;
1995
1996 if (mo_pfn <= spfn)
1997 break;
1998
1999 t = min(mo_pfn, epfn);
2000 deferred_free_pages(spfn, t);
2001
2002 if (mo_pfn <= epfn)
2003 break;
2004 }
2005
2006 return nr_pages;
2007}
2008
e4443149
DJ
2009static void __init
2010deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2011 void *arg)
2012{
2013 unsigned long spfn, epfn;
2014 struct zone *zone = arg;
2015 u64 i;
2016
2017 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2018
2019 /*
2020 * Initialize and free pages in MAX_ORDER sized increments so that we
2021 * can avoid introducing any issues with the buddy allocator.
2022 */
2023 while (spfn < end_pfn) {
2024 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2025 cond_resched();
2026 }
2027}
2028
ecd09650
DJ
2029/* An arch may override for more concurrency. */
2030__weak int __init
2031deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2032{
2033 return 1;
2034}
2035
7e18adb4 2036/* Initialise remaining memory on a node */
0e1cc95b 2037static int __init deferred_init_memmap(void *data)
7e18adb4 2038{
0e1cc95b 2039 pg_data_t *pgdat = data;
0e56acae 2040 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2041 unsigned long spfn = 0, epfn = 0;
0e56acae 2042 unsigned long first_init_pfn, flags;
7e18adb4 2043 unsigned long start = jiffies;
7e18adb4 2044 struct zone *zone;
e4443149 2045 int zid, max_threads;
2f47a91f 2046 u64 i;
7e18adb4 2047
3a2d7fa8
PT
2048 /* Bind memory initialisation thread to a local node if possible */
2049 if (!cpumask_empty(cpumask))
2050 set_cpus_allowed_ptr(current, cpumask);
2051
2052 pgdat_resize_lock(pgdat, &flags);
2053 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2054 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2055 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2056 pgdat_init_report_one_done();
0e1cc95b
MG
2057 return 0;
2058 }
2059
7e18adb4
MG
2060 /* Sanity check boundaries */
2061 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2062 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2063 pgdat->first_deferred_pfn = ULONG_MAX;
2064
3d060856
PT
2065 /*
2066 * Once we unlock here, the zone cannot be grown anymore, thus if an
2067 * interrupt thread must allocate this early in boot, zone must be
2068 * pre-grown prior to start of deferred page initialization.
2069 */
2070 pgdat_resize_unlock(pgdat, &flags);
2071
7e18adb4
MG
2072 /* Only the highest zone is deferred so find it */
2073 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2074 zone = pgdat->node_zones + zid;
2075 if (first_init_pfn < zone_end_pfn(zone))
2076 break;
2077 }
0e56acae
AD
2078
2079 /* If the zone is empty somebody else may have cleared out the zone */
2080 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2081 first_init_pfn))
2082 goto zone_empty;
7e18adb4 2083
ecd09650 2084 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2085
117003c3 2086 while (spfn < epfn) {
e4443149
DJ
2087 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2088 struct padata_mt_job job = {
2089 .thread_fn = deferred_init_memmap_chunk,
2090 .fn_arg = zone,
2091 .start = spfn,
2092 .size = epfn_align - spfn,
2093 .align = PAGES_PER_SECTION,
2094 .min_chunk = PAGES_PER_SECTION,
2095 .max_threads = max_threads,
2096 };
2097
2098 padata_do_multithreaded(&job);
2099 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2100 epfn_align);
117003c3 2101 }
0e56acae 2102zone_empty:
7e18adb4
MG
2103 /* Sanity check that the next zone really is unpopulated */
2104 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2105
89c7c402
DJ
2106 pr_info("node %d deferred pages initialised in %ums\n",
2107 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2108
2109 pgdat_init_report_one_done();
0e1cc95b
MG
2110 return 0;
2111}
c9e97a19 2112
c9e97a19
PT
2113/*
2114 * If this zone has deferred pages, try to grow it by initializing enough
2115 * deferred pages to satisfy the allocation specified by order, rounded up to
2116 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2117 * of SECTION_SIZE bytes by initializing struct pages in increments of
2118 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2119 *
2120 * Return true when zone was grown, otherwise return false. We return true even
2121 * when we grow less than requested, to let the caller decide if there are
2122 * enough pages to satisfy the allocation.
2123 *
2124 * Note: We use noinline because this function is needed only during boot, and
2125 * it is called from a __ref function _deferred_grow_zone. This way we are
2126 * making sure that it is not inlined into permanent text section.
2127 */
2128static noinline bool __init
2129deferred_grow_zone(struct zone *zone, unsigned int order)
2130{
c9e97a19 2131 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2132 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2133 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2134 unsigned long spfn, epfn, flags;
2135 unsigned long nr_pages = 0;
c9e97a19
PT
2136 u64 i;
2137
2138 /* Only the last zone may have deferred pages */
2139 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2140 return false;
2141
2142 pgdat_resize_lock(pgdat, &flags);
2143
c9e97a19
PT
2144 /*
2145 * If someone grew this zone while we were waiting for spinlock, return
2146 * true, as there might be enough pages already.
2147 */
2148 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2149 pgdat_resize_unlock(pgdat, &flags);
2150 return true;
2151 }
2152
0e56acae
AD
2153 /* If the zone is empty somebody else may have cleared out the zone */
2154 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2155 first_deferred_pfn)) {
2156 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2157 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2158 /* Retry only once. */
2159 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2160 }
2161
0e56acae
AD
2162 /*
2163 * Initialize and free pages in MAX_ORDER sized increments so
2164 * that we can avoid introducing any issues with the buddy
2165 * allocator.
2166 */
2167 while (spfn < epfn) {
2168 /* update our first deferred PFN for this section */
2169 first_deferred_pfn = spfn;
2170
2171 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2172 touch_nmi_watchdog();
c9e97a19 2173
0e56acae
AD
2174 /* We should only stop along section boundaries */
2175 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2176 continue;
c9e97a19 2177
0e56acae 2178 /* If our quota has been met we can stop here */
c9e97a19
PT
2179 if (nr_pages >= nr_pages_needed)
2180 break;
2181 }
2182
0e56acae 2183 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2184 pgdat_resize_unlock(pgdat, &flags);
2185
2186 return nr_pages > 0;
2187}
2188
2189/*
2190 * deferred_grow_zone() is __init, but it is called from
2191 * get_page_from_freelist() during early boot until deferred_pages permanently
2192 * disables this call. This is why we have refdata wrapper to avoid warning,
2193 * and to ensure that the function body gets unloaded.
2194 */
2195static bool __ref
2196_deferred_grow_zone(struct zone *zone, unsigned int order)
2197{
2198 return deferred_grow_zone(zone, order);
2199}
2200
7cf91a98 2201#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2202
2203void __init page_alloc_init_late(void)
2204{
7cf91a98 2205 struct zone *zone;
e900a918 2206 int nid;
7cf91a98
JK
2207
2208#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2209
d3cd131d
NS
2210 /* There will be num_node_state(N_MEMORY) threads */
2211 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2212 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2213 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2214 }
2215
2216 /* Block until all are initialised */
d3cd131d 2217 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2218
c9e97a19
PT
2219 /*
2220 * We initialized the rest of the deferred pages. Permanently disable
2221 * on-demand struct page initialization.
2222 */
2223 static_branch_disable(&deferred_pages);
2224
4248b0da
MG
2225 /* Reinit limits that are based on free pages after the kernel is up */
2226 files_maxfiles_init();
7cf91a98 2227#endif
350e88ba 2228
ba8f3587
LF
2229 buffer_init();
2230
3010f876
PT
2231 /* Discard memblock private memory */
2232 memblock_discard();
7cf91a98 2233
e900a918
DW
2234 for_each_node_state(nid, N_MEMORY)
2235 shuffle_free_memory(NODE_DATA(nid));
2236
7cf91a98
JK
2237 for_each_populated_zone(zone)
2238 set_zone_contiguous(zone);
7e18adb4 2239}
7e18adb4 2240
47118af0 2241#ifdef CONFIG_CMA
9cf510a5 2242/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2243void __init init_cma_reserved_pageblock(struct page *page)
2244{
2245 unsigned i = pageblock_nr_pages;
2246 struct page *p = page;
2247
2248 do {
2249 __ClearPageReserved(p);
2250 set_page_count(p, 0);
d883c6cf 2251 } while (++p, --i);
47118af0 2252
47118af0 2253 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2254
2255 if (pageblock_order >= MAX_ORDER) {
2256 i = pageblock_nr_pages;
2257 p = page;
2258 do {
2259 set_page_refcounted(p);
2260 __free_pages(p, MAX_ORDER - 1);
2261 p += MAX_ORDER_NR_PAGES;
2262 } while (i -= MAX_ORDER_NR_PAGES);
2263 } else {
2264 set_page_refcounted(page);
2265 __free_pages(page, pageblock_order);
2266 }
2267
3dcc0571 2268 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2269 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2270}
2271#endif
1da177e4
LT
2272
2273/*
2274 * The order of subdivision here is critical for the IO subsystem.
2275 * Please do not alter this order without good reasons and regression
2276 * testing. Specifically, as large blocks of memory are subdivided,
2277 * the order in which smaller blocks are delivered depends on the order
2278 * they're subdivided in this function. This is the primary factor
2279 * influencing the order in which pages are delivered to the IO
2280 * subsystem according to empirical testing, and this is also justified
2281 * by considering the behavior of a buddy system containing a single
2282 * large block of memory acted on by a series of small allocations.
2283 * This behavior is a critical factor in sglist merging's success.
2284 *
6d49e352 2285 * -- nyc
1da177e4 2286 */
085cc7d5 2287static inline void expand(struct zone *zone, struct page *page,
6ab01363 2288 int low, int high, int migratetype)
1da177e4
LT
2289{
2290 unsigned long size = 1 << high;
2291
2292 while (high > low) {
1da177e4
LT
2293 high--;
2294 size >>= 1;
309381fe 2295 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2296
acbc15a4
JK
2297 /*
2298 * Mark as guard pages (or page), that will allow to
2299 * merge back to allocator when buddy will be freed.
2300 * Corresponding page table entries will not be touched,
2301 * pages will stay not present in virtual address space
2302 */
2303 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2304 continue;
acbc15a4 2305
6ab01363 2306 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2307 set_buddy_order(&page[size], high);
1da177e4 2308 }
1da177e4
LT
2309}
2310
4e611801 2311static void check_new_page_bad(struct page *page)
1da177e4 2312{
f4c18e6f 2313 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2314 /* Don't complain about hwpoisoned pages */
2315 page_mapcount_reset(page); /* remove PageBuddy */
2316 return;
f4c18e6f 2317 }
58b7f119
WY
2318
2319 bad_page(page,
2320 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2321}
2322
2323/*
2324 * This page is about to be returned from the page allocator
2325 */
2326static inline int check_new_page(struct page *page)
2327{
2328 if (likely(page_expected_state(page,
2329 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2330 return 0;
2331
2332 check_new_page_bad(page);
2333 return 1;
2a7684a2
WF
2334}
2335
479f854a 2336#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2337/*
2338 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2339 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2340 * also checked when pcp lists are refilled from the free lists.
2341 */
2342static inline bool check_pcp_refill(struct page *page)
479f854a 2343{
8e57f8ac 2344 if (debug_pagealloc_enabled_static())
4462b32c
VB
2345 return check_new_page(page);
2346 else
2347 return false;
479f854a
MG
2348}
2349
4462b32c 2350static inline bool check_new_pcp(struct page *page)
479f854a
MG
2351{
2352 return check_new_page(page);
2353}
2354#else
4462b32c
VB
2355/*
2356 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2357 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2358 * enabled, they are also checked when being allocated from the pcp lists.
2359 */
2360static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2361{
2362 return check_new_page(page);
2363}
4462b32c 2364static inline bool check_new_pcp(struct page *page)
479f854a 2365{
8e57f8ac 2366 if (debug_pagealloc_enabled_static())
4462b32c
VB
2367 return check_new_page(page);
2368 else
2369 return false;
479f854a
MG
2370}
2371#endif /* CONFIG_DEBUG_VM */
2372
2373static bool check_new_pages(struct page *page, unsigned int order)
2374{
2375 int i;
2376 for (i = 0; i < (1 << order); i++) {
2377 struct page *p = page + i;
2378
2379 if (unlikely(check_new_page(p)))
2380 return true;
2381 }
2382
2383 return false;
2384}
2385
46f24fd8
JK
2386inline void post_alloc_hook(struct page *page, unsigned int order,
2387 gfp_t gfp_flags)
2388{
2389 set_page_private(page, 0);
2390 set_page_refcounted(page);
2391
2392 arch_alloc_page(page, order);
77bc7fd6 2393 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2394
2395 /*
2396 * Page unpoisoning must happen before memory initialization.
2397 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2398 * allocations and the page unpoisoning code will complain.
2399 */
8db26a3d 2400 kernel_unpoison_pages(page, 1 << order);
862b6dee 2401
1bb5eab3
AK
2402 /*
2403 * As memory initialization might be integrated into KASAN,
2404 * kasan_alloc_pages and kernel_init_free_pages must be
2405 * kept together to avoid discrepancies in behavior.
2406 */
7a3b8353
PC
2407 if (kasan_has_integrated_init()) {
2408 kasan_alloc_pages(page, order, gfp_flags);
2409 } else {
2410 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2411
2412 kasan_unpoison_pages(page, order, init);
2413 if (init)
013bb59d
PC
2414 kernel_init_free_pages(page, 1 << order,
2415 gfp_flags & __GFP_ZEROTAGS);
7a3b8353 2416 }
1bb5eab3
AK
2417
2418 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2419}
2420
479f854a 2421static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2422 unsigned int alloc_flags)
2a7684a2 2423{
46f24fd8 2424 post_alloc_hook(page, order, gfp_flags);
17cf4406 2425
17cf4406
NP
2426 if (order && (gfp_flags & __GFP_COMP))
2427 prep_compound_page(page, order);
2428
75379191 2429 /*
2f064f34 2430 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2431 * allocate the page. The expectation is that the caller is taking
2432 * steps that will free more memory. The caller should avoid the page
2433 * being used for !PFMEMALLOC purposes.
2434 */
2f064f34
MH
2435 if (alloc_flags & ALLOC_NO_WATERMARKS)
2436 set_page_pfmemalloc(page);
2437 else
2438 clear_page_pfmemalloc(page);
1da177e4
LT
2439}
2440
56fd56b8
MG
2441/*
2442 * Go through the free lists for the given migratetype and remove
2443 * the smallest available page from the freelists
2444 */
85ccc8fa 2445static __always_inline
728ec980 2446struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2447 int migratetype)
2448{
2449 unsigned int current_order;
b8af2941 2450 struct free_area *area;
56fd56b8
MG
2451 struct page *page;
2452
2453 /* Find a page of the appropriate size in the preferred list */
2454 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2455 area = &(zone->free_area[current_order]);
b03641af 2456 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2457 if (!page)
2458 continue;
6ab01363
AD
2459 del_page_from_free_list(page, zone, current_order);
2460 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2461 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2462 return page;
2463 }
2464
2465 return NULL;
2466}
2467
2468
b2a0ac88
MG
2469/*
2470 * This array describes the order lists are fallen back to when
2471 * the free lists for the desirable migrate type are depleted
2472 */
da415663 2473static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2474 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2475 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2476 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2477#ifdef CONFIG_CMA
974a786e 2478 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2479#endif
194159fb 2480#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2481 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2482#endif
b2a0ac88
MG
2483};
2484
dc67647b 2485#ifdef CONFIG_CMA
85ccc8fa 2486static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2487 unsigned int order)
2488{
2489 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2490}
2491#else
2492static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2493 unsigned int order) { return NULL; }
2494#endif
2495
c361be55 2496/*
293ffa5e 2497 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2498 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2499 * boundary. If alignment is required, use move_freepages_block()
2500 */
02aa0cdd 2501static int move_freepages(struct zone *zone,
39ddb991 2502 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2503 int migratetype, int *num_movable)
c361be55
MG
2504{
2505 struct page *page;
39ddb991 2506 unsigned long pfn;
d00181b9 2507 unsigned int order;
d100313f 2508 int pages_moved = 0;
c361be55 2509
39ddb991 2510 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2511 page = pfn_to_page(pfn);
c361be55 2512 if (!PageBuddy(page)) {
02aa0cdd
VB
2513 /*
2514 * We assume that pages that could be isolated for
2515 * migration are movable. But we don't actually try
2516 * isolating, as that would be expensive.
2517 */
2518 if (num_movable &&
2519 (PageLRU(page) || __PageMovable(page)))
2520 (*num_movable)++;
39ddb991 2521 pfn++;
c361be55
MG
2522 continue;
2523 }
2524
cd961038
DR
2525 /* Make sure we are not inadvertently changing nodes */
2526 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2527 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2528
ab130f91 2529 order = buddy_order(page);
6ab01363 2530 move_to_free_list(page, zone, order, migratetype);
39ddb991 2531 pfn += 1 << order;
d100313f 2532 pages_moved += 1 << order;
c361be55
MG
2533 }
2534
d100313f 2535 return pages_moved;
c361be55
MG
2536}
2537
ee6f509c 2538int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2539 int migratetype, int *num_movable)
c361be55 2540{
39ddb991 2541 unsigned long start_pfn, end_pfn, pfn;
c361be55 2542
4a222127
DR
2543 if (num_movable)
2544 *num_movable = 0;
2545
39ddb991
KW
2546 pfn = page_to_pfn(page);
2547 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2548 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2549
2550 /* Do not cross zone boundaries */
108bcc96 2551 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2552 start_pfn = pfn;
108bcc96 2553 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2554 return 0;
2555
39ddb991 2556 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2557 num_movable);
c361be55
MG
2558}
2559
2f66a68f
MG
2560static void change_pageblock_range(struct page *pageblock_page,
2561 int start_order, int migratetype)
2562{
2563 int nr_pageblocks = 1 << (start_order - pageblock_order);
2564
2565 while (nr_pageblocks--) {
2566 set_pageblock_migratetype(pageblock_page, migratetype);
2567 pageblock_page += pageblock_nr_pages;
2568 }
2569}
2570
fef903ef 2571/*
9c0415eb
VB
2572 * When we are falling back to another migratetype during allocation, try to
2573 * steal extra free pages from the same pageblocks to satisfy further
2574 * allocations, instead of polluting multiple pageblocks.
2575 *
2576 * If we are stealing a relatively large buddy page, it is likely there will
2577 * be more free pages in the pageblock, so try to steal them all. For
2578 * reclaimable and unmovable allocations, we steal regardless of page size,
2579 * as fragmentation caused by those allocations polluting movable pageblocks
2580 * is worse than movable allocations stealing from unmovable and reclaimable
2581 * pageblocks.
fef903ef 2582 */
4eb7dce6
JK
2583static bool can_steal_fallback(unsigned int order, int start_mt)
2584{
2585 /*
2586 * Leaving this order check is intended, although there is
2587 * relaxed order check in next check. The reason is that
2588 * we can actually steal whole pageblock if this condition met,
2589 * but, below check doesn't guarantee it and that is just heuristic
2590 * so could be changed anytime.
2591 */
2592 if (order >= pageblock_order)
2593 return true;
2594
2595 if (order >= pageblock_order / 2 ||
2596 start_mt == MIGRATE_RECLAIMABLE ||
2597 start_mt == MIGRATE_UNMOVABLE ||
2598 page_group_by_mobility_disabled)
2599 return true;
2600
2601 return false;
2602}
2603
597c8920 2604static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2605{
2606 unsigned long max_boost;
2607
2608 if (!watermark_boost_factor)
597c8920 2609 return false;
14f69140
HW
2610 /*
2611 * Don't bother in zones that are unlikely to produce results.
2612 * On small machines, including kdump capture kernels running
2613 * in a small area, boosting the watermark can cause an out of
2614 * memory situation immediately.
2615 */
2616 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2617 return false;
1c30844d
MG
2618
2619 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2620 watermark_boost_factor, 10000);
94b3334c
MG
2621
2622 /*
2623 * high watermark may be uninitialised if fragmentation occurs
2624 * very early in boot so do not boost. We do not fall
2625 * through and boost by pageblock_nr_pages as failing
2626 * allocations that early means that reclaim is not going
2627 * to help and it may even be impossible to reclaim the
2628 * boosted watermark resulting in a hang.
2629 */
2630 if (!max_boost)
597c8920 2631 return false;
94b3334c 2632
1c30844d
MG
2633 max_boost = max(pageblock_nr_pages, max_boost);
2634
2635 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2636 max_boost);
597c8920
JW
2637
2638 return true;
1c30844d
MG
2639}
2640
4eb7dce6
JK
2641/*
2642 * This function implements actual steal behaviour. If order is large enough,
2643 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2644 * pageblock to our migratetype and determine how many already-allocated pages
2645 * are there in the pageblock with a compatible migratetype. If at least half
2646 * of pages are free or compatible, we can change migratetype of the pageblock
2647 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2648 */
2649static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2650 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2651{
ab130f91 2652 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2653 int free_pages, movable_pages, alike_pages;
2654 int old_block_type;
2655
2656 old_block_type = get_pageblock_migratetype(page);
fef903ef 2657
3bc48f96
VB
2658 /*
2659 * This can happen due to races and we want to prevent broken
2660 * highatomic accounting.
2661 */
02aa0cdd 2662 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2663 goto single_page;
2664
fef903ef
SB
2665 /* Take ownership for orders >= pageblock_order */
2666 if (current_order >= pageblock_order) {
2667 change_pageblock_range(page, current_order, start_type);
3bc48f96 2668 goto single_page;
fef903ef
SB
2669 }
2670
1c30844d
MG
2671 /*
2672 * Boost watermarks to increase reclaim pressure to reduce the
2673 * likelihood of future fallbacks. Wake kswapd now as the node
2674 * may be balanced overall and kswapd will not wake naturally.
2675 */
597c8920 2676 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2677 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2678
3bc48f96
VB
2679 /* We are not allowed to try stealing from the whole block */
2680 if (!whole_block)
2681 goto single_page;
2682
02aa0cdd
VB
2683 free_pages = move_freepages_block(zone, page, start_type,
2684 &movable_pages);
2685 /*
2686 * Determine how many pages are compatible with our allocation.
2687 * For movable allocation, it's the number of movable pages which
2688 * we just obtained. For other types it's a bit more tricky.
2689 */
2690 if (start_type == MIGRATE_MOVABLE) {
2691 alike_pages = movable_pages;
2692 } else {
2693 /*
2694 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2695 * to MOVABLE pageblock, consider all non-movable pages as
2696 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2697 * vice versa, be conservative since we can't distinguish the
2698 * exact migratetype of non-movable pages.
2699 */
2700 if (old_block_type == MIGRATE_MOVABLE)
2701 alike_pages = pageblock_nr_pages
2702 - (free_pages + movable_pages);
2703 else
2704 alike_pages = 0;
2705 }
2706
3bc48f96 2707 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2708 if (!free_pages)
3bc48f96 2709 goto single_page;
fef903ef 2710
02aa0cdd
VB
2711 /*
2712 * If a sufficient number of pages in the block are either free or of
2713 * comparable migratability as our allocation, claim the whole block.
2714 */
2715 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2716 page_group_by_mobility_disabled)
2717 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2718
2719 return;
2720
2721single_page:
6ab01363 2722 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2723}
2724
2149cdae
JK
2725/*
2726 * Check whether there is a suitable fallback freepage with requested order.
2727 * If only_stealable is true, this function returns fallback_mt only if
2728 * we can steal other freepages all together. This would help to reduce
2729 * fragmentation due to mixed migratetype pages in one pageblock.
2730 */
2731int find_suitable_fallback(struct free_area *area, unsigned int order,
2732 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2733{
2734 int i;
2735 int fallback_mt;
2736
2737 if (area->nr_free == 0)
2738 return -1;
2739
2740 *can_steal = false;
2741 for (i = 0;; i++) {
2742 fallback_mt = fallbacks[migratetype][i];
974a786e 2743 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2744 break;
2745
b03641af 2746 if (free_area_empty(area, fallback_mt))
4eb7dce6 2747 continue;
fef903ef 2748
4eb7dce6
JK
2749 if (can_steal_fallback(order, migratetype))
2750 *can_steal = true;
2751
2149cdae
JK
2752 if (!only_stealable)
2753 return fallback_mt;
2754
2755 if (*can_steal)
2756 return fallback_mt;
fef903ef 2757 }
4eb7dce6
JK
2758
2759 return -1;
fef903ef
SB
2760}
2761
0aaa29a5
MG
2762/*
2763 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2764 * there are no empty page blocks that contain a page with a suitable order
2765 */
2766static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2767 unsigned int alloc_order)
2768{
2769 int mt;
2770 unsigned long max_managed, flags;
2771
2772 /*
2773 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2774 * Check is race-prone but harmless.
2775 */
9705bea5 2776 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2777 if (zone->nr_reserved_highatomic >= max_managed)
2778 return;
2779
2780 spin_lock_irqsave(&zone->lock, flags);
2781
2782 /* Recheck the nr_reserved_highatomic limit under the lock */
2783 if (zone->nr_reserved_highatomic >= max_managed)
2784 goto out_unlock;
2785
2786 /* Yoink! */
2787 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2788 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2789 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2790 zone->nr_reserved_highatomic += pageblock_nr_pages;
2791 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2792 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2793 }
2794
2795out_unlock:
2796 spin_unlock_irqrestore(&zone->lock, flags);
2797}
2798
2799/*
2800 * Used when an allocation is about to fail under memory pressure. This
2801 * potentially hurts the reliability of high-order allocations when under
2802 * intense memory pressure but failed atomic allocations should be easier
2803 * to recover from than an OOM.
29fac03b
MK
2804 *
2805 * If @force is true, try to unreserve a pageblock even though highatomic
2806 * pageblock is exhausted.
0aaa29a5 2807 */
29fac03b
MK
2808static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2809 bool force)
0aaa29a5
MG
2810{
2811 struct zonelist *zonelist = ac->zonelist;
2812 unsigned long flags;
2813 struct zoneref *z;
2814 struct zone *zone;
2815 struct page *page;
2816 int order;
04c8716f 2817 bool ret;
0aaa29a5 2818
97a225e6 2819 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2820 ac->nodemask) {
29fac03b
MK
2821 /*
2822 * Preserve at least one pageblock unless memory pressure
2823 * is really high.
2824 */
2825 if (!force && zone->nr_reserved_highatomic <=
2826 pageblock_nr_pages)
0aaa29a5
MG
2827 continue;
2828
2829 spin_lock_irqsave(&zone->lock, flags);
2830 for (order = 0; order < MAX_ORDER; order++) {
2831 struct free_area *area = &(zone->free_area[order]);
2832
b03641af 2833 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2834 if (!page)
0aaa29a5
MG
2835 continue;
2836
0aaa29a5 2837 /*
4855e4a7
MK
2838 * In page freeing path, migratetype change is racy so
2839 * we can counter several free pages in a pageblock
f0953a1b 2840 * in this loop although we changed the pageblock type
4855e4a7
MK
2841 * from highatomic to ac->migratetype. So we should
2842 * adjust the count once.
0aaa29a5 2843 */
a6ffdc07 2844 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2845 /*
2846 * It should never happen but changes to
2847 * locking could inadvertently allow a per-cpu
2848 * drain to add pages to MIGRATE_HIGHATOMIC
2849 * while unreserving so be safe and watch for
2850 * underflows.
2851 */
2852 zone->nr_reserved_highatomic -= min(
2853 pageblock_nr_pages,
2854 zone->nr_reserved_highatomic);
2855 }
0aaa29a5
MG
2856
2857 /*
2858 * Convert to ac->migratetype and avoid the normal
2859 * pageblock stealing heuristics. Minimally, the caller
2860 * is doing the work and needs the pages. More
2861 * importantly, if the block was always converted to
2862 * MIGRATE_UNMOVABLE or another type then the number
2863 * of pageblocks that cannot be completely freed
2864 * may increase.
2865 */
2866 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2867 ret = move_freepages_block(zone, page, ac->migratetype,
2868 NULL);
29fac03b
MK
2869 if (ret) {
2870 spin_unlock_irqrestore(&zone->lock, flags);
2871 return ret;
2872 }
0aaa29a5
MG
2873 }
2874 spin_unlock_irqrestore(&zone->lock, flags);
2875 }
04c8716f
MK
2876
2877 return false;
0aaa29a5
MG
2878}
2879
3bc48f96
VB
2880/*
2881 * Try finding a free buddy page on the fallback list and put it on the free
2882 * list of requested migratetype, possibly along with other pages from the same
2883 * block, depending on fragmentation avoidance heuristics. Returns true if
2884 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2885 *
2886 * The use of signed ints for order and current_order is a deliberate
2887 * deviation from the rest of this file, to make the for loop
2888 * condition simpler.
3bc48f96 2889 */
85ccc8fa 2890static __always_inline bool
6bb15450
MG
2891__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2892 unsigned int alloc_flags)
b2a0ac88 2893{
b8af2941 2894 struct free_area *area;
b002529d 2895 int current_order;
6bb15450 2896 int min_order = order;
b2a0ac88 2897 struct page *page;
4eb7dce6
JK
2898 int fallback_mt;
2899 bool can_steal;
b2a0ac88 2900
6bb15450
MG
2901 /*
2902 * Do not steal pages from freelists belonging to other pageblocks
2903 * i.e. orders < pageblock_order. If there are no local zones free,
2904 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2905 */
2906 if (alloc_flags & ALLOC_NOFRAGMENT)
2907 min_order = pageblock_order;
2908
7a8f58f3
VB
2909 /*
2910 * Find the largest available free page in the other list. This roughly
2911 * approximates finding the pageblock with the most free pages, which
2912 * would be too costly to do exactly.
2913 */
6bb15450 2914 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2915 --current_order) {
4eb7dce6
JK
2916 area = &(zone->free_area[current_order]);
2917 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2918 start_migratetype, false, &can_steal);
4eb7dce6
JK
2919 if (fallback_mt == -1)
2920 continue;
b2a0ac88 2921
7a8f58f3
VB
2922 /*
2923 * We cannot steal all free pages from the pageblock and the
2924 * requested migratetype is movable. In that case it's better to
2925 * steal and split the smallest available page instead of the
2926 * largest available page, because even if the next movable
2927 * allocation falls back into a different pageblock than this
2928 * one, it won't cause permanent fragmentation.
2929 */
2930 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2931 && current_order > order)
2932 goto find_smallest;
b2a0ac88 2933
7a8f58f3
VB
2934 goto do_steal;
2935 }
e0fff1bd 2936
7a8f58f3 2937 return false;
e0fff1bd 2938
7a8f58f3
VB
2939find_smallest:
2940 for (current_order = order; current_order < MAX_ORDER;
2941 current_order++) {
2942 area = &(zone->free_area[current_order]);
2943 fallback_mt = find_suitable_fallback(area, current_order,
2944 start_migratetype, false, &can_steal);
2945 if (fallback_mt != -1)
2946 break;
b2a0ac88
MG
2947 }
2948
7a8f58f3
VB
2949 /*
2950 * This should not happen - we already found a suitable fallback
2951 * when looking for the largest page.
2952 */
2953 VM_BUG_ON(current_order == MAX_ORDER);
2954
2955do_steal:
b03641af 2956 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2957
1c30844d
MG
2958 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2959 can_steal);
7a8f58f3
VB
2960
2961 trace_mm_page_alloc_extfrag(page, order, current_order,
2962 start_migratetype, fallback_mt);
2963
2964 return true;
2965
b2a0ac88
MG
2966}
2967
56fd56b8 2968/*
1da177e4
LT
2969 * Do the hard work of removing an element from the buddy allocator.
2970 * Call me with the zone->lock already held.
2971 */
85ccc8fa 2972static __always_inline struct page *
6bb15450
MG
2973__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2974 unsigned int alloc_flags)
1da177e4 2975{
1da177e4
LT
2976 struct page *page;
2977
ce8f86ee
H
2978 if (IS_ENABLED(CONFIG_CMA)) {
2979 /*
2980 * Balance movable allocations between regular and CMA areas by
2981 * allocating from CMA when over half of the zone's free memory
2982 * is in the CMA area.
2983 */
2984 if (alloc_flags & ALLOC_CMA &&
2985 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2986 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2987 page = __rmqueue_cma_fallback(zone, order);
2988 if (page)
2989 goto out;
2990 }
16867664 2991 }
3bc48f96 2992retry:
56fd56b8 2993 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2994 if (unlikely(!page)) {
8510e69c 2995 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2996 page = __rmqueue_cma_fallback(zone, order);
2997
6bb15450
MG
2998 if (!page && __rmqueue_fallback(zone, order, migratetype,
2999 alloc_flags))
3bc48f96 3000 goto retry;
728ec980 3001 }
ce8f86ee
H
3002out:
3003 if (page)
3004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 3005 return page;
1da177e4
LT
3006}
3007
5f63b720 3008/*
1da177e4
LT
3009 * Obtain a specified number of elements from the buddy allocator, all under
3010 * a single hold of the lock, for efficiency. Add them to the supplied list.
3011 * Returns the number of new pages which were placed at *list.
3012 */
5f63b720 3013static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3014 unsigned long count, struct list_head *list,
6bb15450 3015 int migratetype, unsigned int alloc_flags)
1da177e4 3016{
cb66bede 3017 int i, allocated = 0;
5f63b720 3018
dbbee9d5
MG
3019 /*
3020 * local_lock_irq held so equivalent to spin_lock_irqsave for
3021 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3022 */
d34b0733 3023 spin_lock(&zone->lock);
1da177e4 3024 for (i = 0; i < count; ++i) {
6bb15450
MG
3025 struct page *page = __rmqueue(zone, order, migratetype,
3026 alloc_flags);
085cc7d5 3027 if (unlikely(page == NULL))
1da177e4 3028 break;
81eabcbe 3029
479f854a
MG
3030 if (unlikely(check_pcp_refill(page)))
3031 continue;
3032
81eabcbe 3033 /*
0fac3ba5
VB
3034 * Split buddy pages returned by expand() are received here in
3035 * physical page order. The page is added to the tail of
3036 * caller's list. From the callers perspective, the linked list
3037 * is ordered by page number under some conditions. This is
3038 * useful for IO devices that can forward direction from the
3039 * head, thus also in the physical page order. This is useful
3040 * for IO devices that can merge IO requests if the physical
3041 * pages are ordered properly.
81eabcbe 3042 */
0fac3ba5 3043 list_add_tail(&page->lru, list);
cb66bede 3044 allocated++;
bb14c2c7 3045 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3046 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3047 -(1 << order));
1da177e4 3048 }
a6de734b
MG
3049
3050 /*
3051 * i pages were removed from the buddy list even if some leak due
3052 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3053 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3054 * pages added to the pcp list.
3055 */
f2260e6b 3056 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3057 spin_unlock(&zone->lock);
cb66bede 3058 return allocated;
1da177e4
LT
3059}
3060
4ae7c039 3061#ifdef CONFIG_NUMA
8fce4d8e 3062/*
4037d452
CL
3063 * Called from the vmstat counter updater to drain pagesets of this
3064 * currently executing processor on remote nodes after they have
3065 * expired.
3066 *
879336c3
CL
3067 * Note that this function must be called with the thread pinned to
3068 * a single processor.
8fce4d8e 3069 */
4037d452 3070void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3071{
4ae7c039 3072 unsigned long flags;
7be12fc9 3073 int to_drain, batch;
4ae7c039 3074
dbbee9d5 3075 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3076 batch = READ_ONCE(pcp->batch);
7be12fc9 3077 to_drain = min(pcp->count, batch);
77ba9062 3078 if (to_drain > 0)
2a13515c 3079 free_pcppages_bulk(zone, to_drain, pcp);
dbbee9d5 3080 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3081}
3082#endif
3083
9f8f2172 3084/*
93481ff0 3085 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3086 *
3087 * The processor must either be the current processor and the
3088 * thread pinned to the current processor or a processor that
3089 * is not online.
3090 */
93481ff0 3091static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3092{
c54ad30c 3093 unsigned long flags;
93481ff0 3094 struct per_cpu_pages *pcp;
1da177e4 3095
dbbee9d5 3096 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3097
28f836b6 3098 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3099 if (pcp->count)
93481ff0 3100 free_pcppages_bulk(zone, pcp->count, pcp);
28f836b6 3101
dbbee9d5 3102 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3103}
3dfa5721 3104
93481ff0
VB
3105/*
3106 * Drain pcplists of all zones on the indicated processor.
3107 *
3108 * The processor must either be the current processor and the
3109 * thread pinned to the current processor or a processor that
3110 * is not online.
3111 */
3112static void drain_pages(unsigned int cpu)
3113{
3114 struct zone *zone;
3115
3116 for_each_populated_zone(zone) {
3117 drain_pages_zone(cpu, zone);
1da177e4
LT
3118 }
3119}
1da177e4 3120
9f8f2172
CL
3121/*
3122 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3123 *
3124 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3125 * the single zone's pages.
9f8f2172 3126 */
93481ff0 3127void drain_local_pages(struct zone *zone)
9f8f2172 3128{
93481ff0
VB
3129 int cpu = smp_processor_id();
3130
3131 if (zone)
3132 drain_pages_zone(cpu, zone);
3133 else
3134 drain_pages(cpu);
9f8f2172
CL
3135}
3136
0ccce3b9
MG
3137static void drain_local_pages_wq(struct work_struct *work)
3138{
d9367bd0
WY
3139 struct pcpu_drain *drain;
3140
3141 drain = container_of(work, struct pcpu_drain, work);
3142
a459eeb7
MH
3143 /*
3144 * drain_all_pages doesn't use proper cpu hotplug protection so
3145 * we can race with cpu offline when the WQ can move this from
3146 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3147 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3148 * a different one.
3149 */
3150 preempt_disable();
d9367bd0 3151 drain_local_pages(drain->zone);
a459eeb7 3152 preempt_enable();
0ccce3b9
MG
3153}
3154
9f8f2172 3155/*
ec6e8c7e
VB
3156 * The implementation of drain_all_pages(), exposing an extra parameter to
3157 * drain on all cpus.
93481ff0 3158 *
ec6e8c7e
VB
3159 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3160 * not empty. The check for non-emptiness can however race with a free to
3161 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3162 * that need the guarantee that every CPU has drained can disable the
3163 * optimizing racy check.
9f8f2172 3164 */
3b1f3658 3165static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3166{
74046494 3167 int cpu;
74046494
GBY
3168
3169 /*
041711ce 3170 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3171 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3172 */
3173 static cpumask_t cpus_with_pcps;
3174
ce612879
MH
3175 /*
3176 * Make sure nobody triggers this path before mm_percpu_wq is fully
3177 * initialized.
3178 */
3179 if (WARN_ON_ONCE(!mm_percpu_wq))
3180 return;
3181
bd233f53
MG
3182 /*
3183 * Do not drain if one is already in progress unless it's specific to
3184 * a zone. Such callers are primarily CMA and memory hotplug and need
3185 * the drain to be complete when the call returns.
3186 */
3187 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3188 if (!zone)
3189 return;
3190 mutex_lock(&pcpu_drain_mutex);
3191 }
0ccce3b9 3192
74046494
GBY
3193 /*
3194 * We don't care about racing with CPU hotplug event
3195 * as offline notification will cause the notified
3196 * cpu to drain that CPU pcps and on_each_cpu_mask
3197 * disables preemption as part of its processing
3198 */
3199 for_each_online_cpu(cpu) {
28f836b6 3200 struct per_cpu_pages *pcp;
93481ff0 3201 struct zone *z;
74046494 3202 bool has_pcps = false;
93481ff0 3203
ec6e8c7e
VB
3204 if (force_all_cpus) {
3205 /*
3206 * The pcp.count check is racy, some callers need a
3207 * guarantee that no cpu is missed.
3208 */
3209 has_pcps = true;
3210 } else if (zone) {
28f836b6
MG
3211 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3212 if (pcp->count)
74046494 3213 has_pcps = true;
93481ff0
VB
3214 } else {
3215 for_each_populated_zone(z) {
28f836b6
MG
3216 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3217 if (pcp->count) {
93481ff0
VB
3218 has_pcps = true;
3219 break;
3220 }
74046494
GBY
3221 }
3222 }
93481ff0 3223
74046494
GBY
3224 if (has_pcps)
3225 cpumask_set_cpu(cpu, &cpus_with_pcps);
3226 else
3227 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3228 }
0ccce3b9 3229
bd233f53 3230 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3231 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3232
3233 drain->zone = zone;
3234 INIT_WORK(&drain->work, drain_local_pages_wq);
3235 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3236 }
bd233f53 3237 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3238 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3239
3240 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3241}
3242
ec6e8c7e
VB
3243/*
3244 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3245 *
3246 * When zone parameter is non-NULL, spill just the single zone's pages.
3247 *
3248 * Note that this can be extremely slow as the draining happens in a workqueue.
3249 */
3250void drain_all_pages(struct zone *zone)
3251{
3252 __drain_all_pages(zone, false);
3253}
3254
296699de 3255#ifdef CONFIG_HIBERNATION
1da177e4 3256
556b969a
CY
3257/*
3258 * Touch the watchdog for every WD_PAGE_COUNT pages.
3259 */
3260#define WD_PAGE_COUNT (128*1024)
3261
1da177e4
LT
3262void mark_free_pages(struct zone *zone)
3263{
556b969a 3264 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3265 unsigned long flags;
7aeb09f9 3266 unsigned int order, t;
86760a2c 3267 struct page *page;
1da177e4 3268
8080fc03 3269 if (zone_is_empty(zone))
1da177e4
LT
3270 return;
3271
3272 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3273
108bcc96 3274 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3275 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3276 if (pfn_valid(pfn)) {
86760a2c 3277 page = pfn_to_page(pfn);
ba6b0979 3278
556b969a
CY
3279 if (!--page_count) {
3280 touch_nmi_watchdog();
3281 page_count = WD_PAGE_COUNT;
3282 }
3283
ba6b0979
JK
3284 if (page_zone(page) != zone)
3285 continue;
3286
7be98234
RW
3287 if (!swsusp_page_is_forbidden(page))
3288 swsusp_unset_page_free(page);
f623f0db 3289 }
1da177e4 3290
b2a0ac88 3291 for_each_migratetype_order(order, t) {
86760a2c
GT
3292 list_for_each_entry(page,
3293 &zone->free_area[order].free_list[t], lru) {
f623f0db 3294 unsigned long i;
1da177e4 3295
86760a2c 3296 pfn = page_to_pfn(page);
556b969a
CY
3297 for (i = 0; i < (1UL << order); i++) {
3298 if (!--page_count) {
3299 touch_nmi_watchdog();
3300 page_count = WD_PAGE_COUNT;
3301 }
7be98234 3302 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3303 }
f623f0db 3304 }
b2a0ac88 3305 }
1da177e4
LT
3306 spin_unlock_irqrestore(&zone->lock, flags);
3307}
e2c55dc8 3308#endif /* CONFIG_PM */
1da177e4 3309
44042b44
MG
3310static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3311 unsigned int order)
1da177e4 3312{
5f8dcc21 3313 int migratetype;
1da177e4 3314
44042b44 3315 if (!free_pcp_prepare(page, order))
9cca35d4 3316 return false;
689bcebf 3317
dc4b0caf 3318 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3319 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3320 return true;
3321}
3322
3b12e7e9
MG
3323static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3324{
3325 int min_nr_free, max_nr_free;
3326
3327 /* Check for PCP disabled or boot pageset */
3328 if (unlikely(high < batch))
3329 return 1;
3330
3331 /* Leave at least pcp->batch pages on the list */
3332 min_nr_free = batch;
3333 max_nr_free = high - batch;
3334
3335 /*
3336 * Double the number of pages freed each time there is subsequent
3337 * freeing of pages without any allocation.
3338 */
3339 batch <<= pcp->free_factor;
3340 if (batch < max_nr_free)
3341 pcp->free_factor++;
3342 batch = clamp(batch, min_nr_free, max_nr_free);
3343
3344 return batch;
3345}
3346
c49c2c47
MG
3347static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3348{
3349 int high = READ_ONCE(pcp->high);
3350
3351 if (unlikely(!high))
3352 return 0;
3353
3354 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3355 return high;
3356
3357 /*
3358 * If reclaim is active, limit the number of pages that can be
3359 * stored on pcp lists
3360 */
3361 return min(READ_ONCE(pcp->batch) << 2, high);
3362}
3363
df1acc85 3364static void free_unref_page_commit(struct page *page, unsigned long pfn,
44042b44 3365 int migratetype, unsigned int order)
9cca35d4
MG
3366{
3367 struct zone *zone = page_zone(page);
3368 struct per_cpu_pages *pcp;
3b12e7e9 3369 int high;
44042b44 3370 int pindex;
9cca35d4 3371
d34b0733 3372 __count_vm_event(PGFREE);
28f836b6 3373 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3374 pindex = order_to_pindex(migratetype, order);
3375 list_add(&page->lru, &pcp->lists[pindex]);
3376 pcp->count += 1 << order;
c49c2c47 3377 high = nr_pcp_high(pcp, zone);
3b12e7e9
MG
3378 if (pcp->count >= high) {
3379 int batch = READ_ONCE(pcp->batch);
3380
3381 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3382 }
9cca35d4 3383}
5f8dcc21 3384
9cca35d4 3385/*
44042b44 3386 * Free a pcp page
9cca35d4 3387 */
44042b44 3388void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3389{
3390 unsigned long flags;
3391 unsigned long pfn = page_to_pfn(page);
df1acc85 3392 int migratetype;
9cca35d4 3393
44042b44 3394 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3395 return;
da456f14 3396
5f8dcc21
MG
3397 /*
3398 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3399 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3400 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3401 * areas back if necessary. Otherwise, we may have to free
3402 * excessively into the page allocator
3403 */
df1acc85
MG
3404 migratetype = get_pcppage_migratetype(page);
3405 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3406 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3407 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3408 return;
5f8dcc21
MG
3409 }
3410 migratetype = MIGRATE_MOVABLE;
3411 }
3412
dbbee9d5 3413 local_lock_irqsave(&pagesets.lock, flags);
44042b44 3414 free_unref_page_commit(page, pfn, migratetype, order);
dbbee9d5 3415 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3416}
3417
cc59850e
KK
3418/*
3419 * Free a list of 0-order pages
3420 */
2d4894b5 3421void free_unref_page_list(struct list_head *list)
cc59850e
KK
3422{
3423 struct page *page, *next;
9cca35d4 3424 unsigned long flags, pfn;
c24ad77d 3425 int batch_count = 0;
df1acc85 3426 int migratetype;
9cca35d4
MG
3427
3428 /* Prepare pages for freeing */
3429 list_for_each_entry_safe(page, next, list, lru) {
3430 pfn = page_to_pfn(page);
44042b44 3431 if (!free_unref_page_prepare(page, pfn, 0))
9cca35d4 3432 list_del(&page->lru);
df1acc85
MG
3433
3434 /*
3435 * Free isolated pages directly to the allocator, see
3436 * comment in free_unref_page.
3437 */
3438 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3439 if (unlikely(is_migrate_isolate(migratetype))) {
3440 list_del(&page->lru);
3441 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3442 continue;
df1acc85
MG
3443 }
3444
9cca35d4
MG
3445 set_page_private(page, pfn);
3446 }
cc59850e 3447
dbbee9d5 3448 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3449 list_for_each_entry_safe(page, next, list, lru) {
df1acc85 3450 pfn = page_private(page);
9cca35d4 3451 set_page_private(page, 0);
47aef601
DB
3452
3453 /*
3454 * Non-isolated types over MIGRATE_PCPTYPES get added
3455 * to the MIGRATE_MOVABLE pcp list.
3456 */
df1acc85 3457 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3458 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3459 migratetype = MIGRATE_MOVABLE;
3460
2d4894b5 3461 trace_mm_page_free_batched(page);
44042b44 3462 free_unref_page_commit(page, pfn, migratetype, 0);
c24ad77d
LS
3463
3464 /*
3465 * Guard against excessive IRQ disabled times when we get
3466 * a large list of pages to free.
3467 */
3468 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3469 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3470 batch_count = 0;
dbbee9d5 3471 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3472 }
cc59850e 3473 }
dbbee9d5 3474 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3475}
3476
8dfcc9ba
NP
3477/*
3478 * split_page takes a non-compound higher-order page, and splits it into
3479 * n (1<<order) sub-pages: page[0..n]
3480 * Each sub-page must be freed individually.
3481 *
3482 * Note: this is probably too low level an operation for use in drivers.
3483 * Please consult with lkml before using this in your driver.
3484 */
3485void split_page(struct page *page, unsigned int order)
3486{
3487 int i;
3488
309381fe
SL
3489 VM_BUG_ON_PAGE(PageCompound(page), page);
3490 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3491
a9627bc5 3492 for (i = 1; i < (1 << order); i++)
7835e98b 3493 set_page_refcounted(page + i);
8fb156c9 3494 split_page_owner(page, 1 << order);
e1baddf8 3495 split_page_memcg(page, 1 << order);
8dfcc9ba 3496}
5853ff23 3497EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3498
3c605096 3499int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3500{
748446bb
MG
3501 unsigned long watermark;
3502 struct zone *zone;
2139cbe6 3503 int mt;
748446bb
MG
3504
3505 BUG_ON(!PageBuddy(page));
3506
3507 zone = page_zone(page);
2e30abd1 3508 mt = get_pageblock_migratetype(page);
748446bb 3509
194159fb 3510 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3511 /*
3512 * Obey watermarks as if the page was being allocated. We can
3513 * emulate a high-order watermark check with a raised order-0
3514 * watermark, because we already know our high-order page
3515 * exists.
3516 */
fd1444b2 3517 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3518 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3519 return 0;
3520
8fb74b9f 3521 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3522 }
748446bb
MG
3523
3524 /* Remove page from free list */
b03641af 3525
6ab01363 3526 del_page_from_free_list(page, zone, order);
2139cbe6 3527
400bc7fd 3528 /*
3529 * Set the pageblock if the isolated page is at least half of a
3530 * pageblock
3531 */
748446bb
MG
3532 if (order >= pageblock_order - 1) {
3533 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3534 for (; page < endpage; page += pageblock_nr_pages) {
3535 int mt = get_pageblock_migratetype(page);
88ed365e 3536 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3537 && !is_migrate_highatomic(mt))
47118af0
MN
3538 set_pageblock_migratetype(page,
3539 MIGRATE_MOVABLE);
3540 }
748446bb
MG
3541 }
3542
f3a14ced 3543
8fb74b9f 3544 return 1UL << order;
1fb3f8ca
MG
3545}
3546
624f58d8
AD
3547/**
3548 * __putback_isolated_page - Return a now-isolated page back where we got it
3549 * @page: Page that was isolated
3550 * @order: Order of the isolated page
e6a0a7ad 3551 * @mt: The page's pageblock's migratetype
624f58d8
AD
3552 *
3553 * This function is meant to return a page pulled from the free lists via
3554 * __isolate_free_page back to the free lists they were pulled from.
3555 */
3556void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3557{
3558 struct zone *zone = page_zone(page);
3559
3560 /* zone lock should be held when this function is called */
3561 lockdep_assert_held(&zone->lock);
3562
3563 /* Return isolated page to tail of freelist. */
f04a5d5d 3564 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3565 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3566}
3567
060e7417
MG
3568/*
3569 * Update NUMA hit/miss statistics
3570 *
3571 * Must be called with interrupts disabled.
060e7417 3572 */
3e23060b
MG
3573static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3574 long nr_account)
060e7417
MG
3575{
3576#ifdef CONFIG_NUMA
3a321d2a 3577 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3578
4518085e
KW
3579 /* skip numa counters update if numa stats is disabled */
3580 if (!static_branch_likely(&vm_numa_stat_key))
3581 return;
3582
c1093b74 3583 if (zone_to_nid(z) != numa_node_id())
060e7417 3584 local_stat = NUMA_OTHER;
060e7417 3585
c1093b74 3586 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3587 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3588 else {
3e23060b
MG
3589 __count_numa_events(z, NUMA_MISS, nr_account);
3590 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3591 }
3e23060b 3592 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3593#endif
3594}
3595
066b2393 3596/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3597static inline
44042b44
MG
3598struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3599 int migratetype,
6bb15450 3600 unsigned int alloc_flags,
453f85d4 3601 struct per_cpu_pages *pcp,
066b2393
MG
3602 struct list_head *list)
3603{
3604 struct page *page;
3605
3606 do {
3607 if (list_empty(list)) {
44042b44
MG
3608 int batch = READ_ONCE(pcp->batch);
3609 int alloced;
3610
3611 /*
3612 * Scale batch relative to order if batch implies
3613 * free pages can be stored on the PCP. Batch can
3614 * be 1 for small zones or for boot pagesets which
3615 * should never store free pages as the pages may
3616 * belong to arbitrary zones.
3617 */
3618 if (batch > 1)
3619 batch = max(batch >> order, 2);
3620 alloced = rmqueue_bulk(zone, order,
3621 batch, list,
6bb15450 3622 migratetype, alloc_flags);
44042b44
MG
3623
3624 pcp->count += alloced << order;
066b2393
MG
3625 if (unlikely(list_empty(list)))
3626 return NULL;
3627 }
3628
453f85d4 3629 page = list_first_entry(list, struct page, lru);
066b2393 3630 list_del(&page->lru);
44042b44 3631 pcp->count -= 1 << order;
066b2393
MG
3632 } while (check_new_pcp(page));
3633
3634 return page;
3635}
3636
3637/* Lock and remove page from the per-cpu list */
3638static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3639 struct zone *zone, unsigned int order,
3640 gfp_t gfp_flags, int migratetype,
3641 unsigned int alloc_flags)
066b2393
MG
3642{
3643 struct per_cpu_pages *pcp;
3644 struct list_head *list;
066b2393 3645 struct page *page;
d34b0733 3646 unsigned long flags;
066b2393 3647
dbbee9d5 3648 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3649
3650 /*
3651 * On allocation, reduce the number of pages that are batch freed.
3652 * See nr_pcp_free() where free_factor is increased for subsequent
3653 * frees.
3654 */
28f836b6 3655 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3656 pcp->free_factor >>= 1;
44042b44
MG
3657 list = &pcp->lists[order_to_pindex(migratetype, order)];
3658 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3659 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3660 if (page) {
1c52e6d0 3661 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3662 zone_statistics(preferred_zone, zone, 1);
066b2393 3663 }
066b2393
MG
3664 return page;
3665}
3666
1da177e4 3667/*
75379191 3668 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3669 */
0a15c3e9 3670static inline
066b2393 3671struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3672 struct zone *zone, unsigned int order,
c603844b
MG
3673 gfp_t gfp_flags, unsigned int alloc_flags,
3674 int migratetype)
1da177e4
LT
3675{
3676 unsigned long flags;
689bcebf 3677 struct page *page;
1da177e4 3678
44042b44 3679 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3680 /*
3681 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3682 * we need to skip it when CMA area isn't allowed.
3683 */
3684 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3685 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3686 page = rmqueue_pcplist(preferred_zone, zone, order,
3687 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3688 goto out;
3689 }
066b2393 3690 }
83b9355b 3691
066b2393
MG
3692 /*
3693 * We most definitely don't want callers attempting to
3694 * allocate greater than order-1 page units with __GFP_NOFAIL.
3695 */
3696 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3697 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3698
066b2393
MG
3699 do {
3700 page = NULL;
1d91df85
JK
3701 /*
3702 * order-0 request can reach here when the pcplist is skipped
3703 * due to non-CMA allocation context. HIGHATOMIC area is
3704 * reserved for high-order atomic allocation, so order-0
3705 * request should skip it.
3706 */
3707 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3708 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3709 if (page)
3710 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3711 }
a74609fa 3712 if (!page)
6bb15450 3713 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393 3714 } while (page && check_new_pages(page, order));
066b2393
MG
3715 if (!page)
3716 goto failed;
43c95bcc 3717
066b2393
MG
3718 __mod_zone_freepage_state(zone, -(1 << order),
3719 get_pcppage_migratetype(page));
43c95bcc 3720 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 3721
16709d1d 3722 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3723 zone_statistics(preferred_zone, zone, 1);
1da177e4 3724
066b2393 3725out:
73444bc4
MG
3726 /* Separate test+clear to avoid unnecessary atomics */
3727 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3728 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3729 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3730 }
3731
066b2393 3732 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3733 return page;
a74609fa
NP
3734
3735failed:
43c95bcc 3736 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3737 return NULL;
1da177e4
LT
3738}
3739
933e312e
AM
3740#ifdef CONFIG_FAIL_PAGE_ALLOC
3741
b2588c4b 3742static struct {
933e312e
AM
3743 struct fault_attr attr;
3744
621a5f7a 3745 bool ignore_gfp_highmem;
71baba4b 3746 bool ignore_gfp_reclaim;
54114994 3747 u32 min_order;
933e312e
AM
3748} fail_page_alloc = {
3749 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3750 .ignore_gfp_reclaim = true,
621a5f7a 3751 .ignore_gfp_highmem = true,
54114994 3752 .min_order = 1,
933e312e
AM
3753};
3754
3755static int __init setup_fail_page_alloc(char *str)
3756{
3757 return setup_fault_attr(&fail_page_alloc.attr, str);
3758}
3759__setup("fail_page_alloc=", setup_fail_page_alloc);
3760
af3b8544 3761static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3762{
54114994 3763 if (order < fail_page_alloc.min_order)
deaf386e 3764 return false;
933e312e 3765 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3766 return false;
933e312e 3767 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3768 return false;
71baba4b
MG
3769 if (fail_page_alloc.ignore_gfp_reclaim &&
3770 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3771 return false;
933e312e
AM
3772
3773 return should_fail(&fail_page_alloc.attr, 1 << order);
3774}
3775
3776#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3777
3778static int __init fail_page_alloc_debugfs(void)
3779{
0825a6f9 3780 umode_t mode = S_IFREG | 0600;
933e312e 3781 struct dentry *dir;
933e312e 3782
dd48c085
AM
3783 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3784 &fail_page_alloc.attr);
b2588c4b 3785
d9f7979c
GKH
3786 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3787 &fail_page_alloc.ignore_gfp_reclaim);
3788 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3789 &fail_page_alloc.ignore_gfp_highmem);
3790 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3791
d9f7979c 3792 return 0;
933e312e
AM
3793}
3794
3795late_initcall(fail_page_alloc_debugfs);
3796
3797#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3798
3799#else /* CONFIG_FAIL_PAGE_ALLOC */
3800
af3b8544 3801static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3802{
deaf386e 3803 return false;
933e312e
AM
3804}
3805
3806#endif /* CONFIG_FAIL_PAGE_ALLOC */
3807
54aa3866 3808noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3809{
3810 return __should_fail_alloc_page(gfp_mask, order);
3811}
3812ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3813
f27ce0e1
JK
3814static inline long __zone_watermark_unusable_free(struct zone *z,
3815 unsigned int order, unsigned int alloc_flags)
3816{
3817 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3818 long unusable_free = (1 << order) - 1;
3819
3820 /*
3821 * If the caller does not have rights to ALLOC_HARDER then subtract
3822 * the high-atomic reserves. This will over-estimate the size of the
3823 * atomic reserve but it avoids a search.
3824 */
3825 if (likely(!alloc_harder))
3826 unusable_free += z->nr_reserved_highatomic;
3827
3828#ifdef CONFIG_CMA
3829 /* If allocation can't use CMA areas don't use free CMA pages */
3830 if (!(alloc_flags & ALLOC_CMA))
3831 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3832#endif
3833
3834 return unusable_free;
3835}
3836
1da177e4 3837/*
97a16fc8
MG
3838 * Return true if free base pages are above 'mark'. For high-order checks it
3839 * will return true of the order-0 watermark is reached and there is at least
3840 * one free page of a suitable size. Checking now avoids taking the zone lock
3841 * to check in the allocation paths if no pages are free.
1da177e4 3842 */
86a294a8 3843bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3844 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3845 long free_pages)
1da177e4 3846{
d23ad423 3847 long min = mark;
1da177e4 3848 int o;
cd04ae1e 3849 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3850
0aaa29a5 3851 /* free_pages may go negative - that's OK */
f27ce0e1 3852 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3853
7fb1d9fc 3854 if (alloc_flags & ALLOC_HIGH)
1da177e4 3855 min -= min / 2;
0aaa29a5 3856
f27ce0e1 3857 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3858 /*
3859 * OOM victims can try even harder than normal ALLOC_HARDER
3860 * users on the grounds that it's definitely going to be in
3861 * the exit path shortly and free memory. Any allocation it
3862 * makes during the free path will be small and short-lived.
3863 */
3864 if (alloc_flags & ALLOC_OOM)
3865 min -= min / 2;
3866 else
3867 min -= min / 4;
3868 }
3869
97a16fc8
MG
3870 /*
3871 * Check watermarks for an order-0 allocation request. If these
3872 * are not met, then a high-order request also cannot go ahead
3873 * even if a suitable page happened to be free.
3874 */
97a225e6 3875 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3876 return false;
1da177e4 3877
97a16fc8
MG
3878 /* If this is an order-0 request then the watermark is fine */
3879 if (!order)
3880 return true;
3881
3882 /* For a high-order request, check at least one suitable page is free */
3883 for (o = order; o < MAX_ORDER; o++) {
3884 struct free_area *area = &z->free_area[o];
3885 int mt;
3886
3887 if (!area->nr_free)
3888 continue;
3889
97a16fc8 3890 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3891 if (!free_area_empty(area, mt))
97a16fc8
MG
3892 return true;
3893 }
3894
3895#ifdef CONFIG_CMA
d883c6cf 3896 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3897 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3898 return true;
d883c6cf 3899 }
97a16fc8 3900#endif
76089d00 3901 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3902 return true;
1da177e4 3903 }
97a16fc8 3904 return false;
88f5acf8
MG
3905}
3906
7aeb09f9 3907bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3908 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3909{
97a225e6 3910 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3911 zone_page_state(z, NR_FREE_PAGES));
3912}
3913
48ee5f36 3914static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3915 unsigned long mark, int highest_zoneidx,
f80b08fc 3916 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3917{
f27ce0e1 3918 long free_pages;
d883c6cf 3919
f27ce0e1 3920 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3921
3922 /*
3923 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3924 * need to be calculated.
48ee5f36 3925 */
f27ce0e1
JK
3926 if (!order) {
3927 long fast_free;
3928
3929 fast_free = free_pages;
3930 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3931 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3932 return true;
3933 }
48ee5f36 3934
f80b08fc
CTR
3935 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3936 free_pages))
3937 return true;
3938 /*
3939 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3940 * when checking the min watermark. The min watermark is the
3941 * point where boosting is ignored so that kswapd is woken up
3942 * when below the low watermark.
3943 */
3944 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3945 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3946 mark = z->_watermark[WMARK_MIN];
3947 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3948 alloc_flags, free_pages);
3949 }
3950
3951 return false;
48ee5f36
MG
3952}
3953
7aeb09f9 3954bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3955 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3956{
3957 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3958
3959 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3960 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3961
97a225e6 3962 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3963 free_pages);
1da177e4
LT
3964}
3965
9276b1bc 3966#ifdef CONFIG_NUMA
957f822a
DR
3967static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3968{
e02dc017 3969 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3970 node_reclaim_distance;
957f822a 3971}
9276b1bc 3972#else /* CONFIG_NUMA */
957f822a
DR
3973static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3974{
3975 return true;
3976}
9276b1bc
PJ
3977#endif /* CONFIG_NUMA */
3978
6bb15450
MG
3979/*
3980 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3981 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3982 * premature use of a lower zone may cause lowmem pressure problems that
3983 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3984 * probably too small. It only makes sense to spread allocations to avoid
3985 * fragmentation between the Normal and DMA32 zones.
3986 */
3987static inline unsigned int
0a79cdad 3988alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3989{
736838e9 3990 unsigned int alloc_flags;
0a79cdad 3991
736838e9
MN
3992 /*
3993 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3994 * to save a branch.
3995 */
3996 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3997
3998#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3999 if (!zone)
4000 return alloc_flags;
4001
6bb15450 4002 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4003 return alloc_flags;
6bb15450
MG
4004
4005 /*
4006 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4007 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4008 * on UMA that if Normal is populated then so is DMA32.
4009 */
4010 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4011 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4012 return alloc_flags;
6bb15450 4013
8118b82e 4014 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4015#endif /* CONFIG_ZONE_DMA32 */
4016 return alloc_flags;
6bb15450 4017}
6bb15450 4018
8e3560d9
PT
4019/* Must be called after current_gfp_context() which can change gfp_mask */
4020static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4021 unsigned int alloc_flags)
8510e69c
JK
4022{
4023#ifdef CONFIG_CMA
8e3560d9 4024 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4025 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4026#endif
4027 return alloc_flags;
4028}
4029
7fb1d9fc 4030/*
0798e519 4031 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4032 * a page.
4033 */
4034static struct page *
a9263751
VB
4035get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4036 const struct alloc_context *ac)
753ee728 4037{
6bb15450 4038 struct zoneref *z;
5117f45d 4039 struct zone *zone;
3b8c0be4 4040 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 4041 bool no_fallback;
3b8c0be4 4042
6bb15450 4043retry:
7fb1d9fc 4044 /*
9276b1bc 4045 * Scan zonelist, looking for a zone with enough free.
344736f2 4046 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4047 */
6bb15450
MG
4048 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4049 z = ac->preferred_zoneref;
30d8ec73
MN
4050 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4051 ac->nodemask) {
be06af00 4052 struct page *page;
e085dbc5
JW
4053 unsigned long mark;
4054
664eedde
MG
4055 if (cpusets_enabled() &&
4056 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4057 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4058 continue;
a756cf59
JW
4059 /*
4060 * When allocating a page cache page for writing, we
281e3726
MG
4061 * want to get it from a node that is within its dirty
4062 * limit, such that no single node holds more than its
a756cf59 4063 * proportional share of globally allowed dirty pages.
281e3726 4064 * The dirty limits take into account the node's
a756cf59
JW
4065 * lowmem reserves and high watermark so that kswapd
4066 * should be able to balance it without having to
4067 * write pages from its LRU list.
4068 *
a756cf59 4069 * XXX: For now, allow allocations to potentially
281e3726 4070 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4071 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4072 * which is important when on a NUMA setup the allowed
281e3726 4073 * nodes are together not big enough to reach the
a756cf59 4074 * global limit. The proper fix for these situations
281e3726 4075 * will require awareness of nodes in the
a756cf59
JW
4076 * dirty-throttling and the flusher threads.
4077 */
3b8c0be4
MG
4078 if (ac->spread_dirty_pages) {
4079 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4080 continue;
4081
4082 if (!node_dirty_ok(zone->zone_pgdat)) {
4083 last_pgdat_dirty_limit = zone->zone_pgdat;
4084 continue;
4085 }
4086 }
7fb1d9fc 4087
6bb15450
MG
4088 if (no_fallback && nr_online_nodes > 1 &&
4089 zone != ac->preferred_zoneref->zone) {
4090 int local_nid;
4091
4092 /*
4093 * If moving to a remote node, retry but allow
4094 * fragmenting fallbacks. Locality is more important
4095 * than fragmentation avoidance.
4096 */
4097 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4098 if (zone_to_nid(zone) != local_nid) {
4099 alloc_flags &= ~ALLOC_NOFRAGMENT;
4100 goto retry;
4101 }
4102 }
4103
a9214443 4104 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4105 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4106 ac->highest_zoneidx, alloc_flags,
4107 gfp_mask)) {
fa5e084e
MG
4108 int ret;
4109
c9e97a19
PT
4110#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4111 /*
4112 * Watermark failed for this zone, but see if we can
4113 * grow this zone if it contains deferred pages.
4114 */
4115 if (static_branch_unlikely(&deferred_pages)) {
4116 if (_deferred_grow_zone(zone, order))
4117 goto try_this_zone;
4118 }
4119#endif
5dab2911
MG
4120 /* Checked here to keep the fast path fast */
4121 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4122 if (alloc_flags & ALLOC_NO_WATERMARKS)
4123 goto try_this_zone;
4124
202e35db 4125 if (!node_reclaim_enabled() ||
c33d6c06 4126 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4127 continue;
4128
a5f5f91d 4129 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4130 switch (ret) {
a5f5f91d 4131 case NODE_RECLAIM_NOSCAN:
fa5e084e 4132 /* did not scan */
cd38b115 4133 continue;
a5f5f91d 4134 case NODE_RECLAIM_FULL:
fa5e084e 4135 /* scanned but unreclaimable */
cd38b115 4136 continue;
fa5e084e
MG
4137 default:
4138 /* did we reclaim enough */
fed2719e 4139 if (zone_watermark_ok(zone, order, mark,
97a225e6 4140 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4141 goto try_this_zone;
4142
fed2719e 4143 continue;
0798e519 4144 }
7fb1d9fc
RS
4145 }
4146
fa5e084e 4147try_this_zone:
066b2393 4148 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4149 gfp_mask, alloc_flags, ac->migratetype);
75379191 4150 if (page) {
479f854a 4151 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4152
4153 /*
4154 * If this is a high-order atomic allocation then check
4155 * if the pageblock should be reserved for the future
4156 */
4157 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4158 reserve_highatomic_pageblock(page, zone, order);
4159
75379191 4160 return page;
c9e97a19
PT
4161 } else {
4162#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4163 /* Try again if zone has deferred pages */
4164 if (static_branch_unlikely(&deferred_pages)) {
4165 if (_deferred_grow_zone(zone, order))
4166 goto try_this_zone;
4167 }
4168#endif
75379191 4169 }
54a6eb5c 4170 }
9276b1bc 4171
6bb15450
MG
4172 /*
4173 * It's possible on a UMA machine to get through all zones that are
4174 * fragmented. If avoiding fragmentation, reset and try again.
4175 */
4176 if (no_fallback) {
4177 alloc_flags &= ~ALLOC_NOFRAGMENT;
4178 goto retry;
4179 }
4180
4ffeaf35 4181 return NULL;
753ee728
MH
4182}
4183
9af744d7 4184static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4185{
a238ab5b 4186 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4187
4188 /*
4189 * This documents exceptions given to allocations in certain
4190 * contexts that are allowed to allocate outside current's set
4191 * of allowed nodes.
4192 */
4193 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4194 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4195 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4196 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4197 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4198 filter &= ~SHOW_MEM_FILTER_NODES;
4199
9af744d7 4200 show_mem(filter, nodemask);
aa187507
MH
4201}
4202
a8e99259 4203void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4204{
4205 struct va_format vaf;
4206 va_list args;
1be334e5 4207 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4208
0f7896f1 4209 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4210 return;
4211
7877cdcc
MH
4212 va_start(args, fmt);
4213 vaf.fmt = fmt;
4214 vaf.va = &args;
ef8444ea 4215 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4216 current->comm, &vaf, gfp_mask, &gfp_mask,
4217 nodemask_pr_args(nodemask));
7877cdcc 4218 va_end(args);
3ee9a4f0 4219
a8e99259 4220 cpuset_print_current_mems_allowed();
ef8444ea 4221 pr_cont("\n");
a238ab5b 4222 dump_stack();
685dbf6f 4223 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4224}
4225
6c18ba7a
MH
4226static inline struct page *
4227__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4228 unsigned int alloc_flags,
4229 const struct alloc_context *ac)
4230{
4231 struct page *page;
4232
4233 page = get_page_from_freelist(gfp_mask, order,
4234 alloc_flags|ALLOC_CPUSET, ac);
4235 /*
4236 * fallback to ignore cpuset restriction if our nodes
4237 * are depleted
4238 */
4239 if (!page)
4240 page = get_page_from_freelist(gfp_mask, order,
4241 alloc_flags, ac);
4242
4243 return page;
4244}
4245
11e33f6a
MG
4246static inline struct page *
4247__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4248 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4249{
6e0fc46d
DR
4250 struct oom_control oc = {
4251 .zonelist = ac->zonelist,
4252 .nodemask = ac->nodemask,
2a966b77 4253 .memcg = NULL,
6e0fc46d
DR
4254 .gfp_mask = gfp_mask,
4255 .order = order,
6e0fc46d 4256 };
11e33f6a
MG
4257 struct page *page;
4258
9879de73
JW
4259 *did_some_progress = 0;
4260
9879de73 4261 /*
dc56401f
JW
4262 * Acquire the oom lock. If that fails, somebody else is
4263 * making progress for us.
9879de73 4264 */
dc56401f 4265 if (!mutex_trylock(&oom_lock)) {
9879de73 4266 *did_some_progress = 1;
11e33f6a 4267 schedule_timeout_uninterruptible(1);
1da177e4
LT
4268 return NULL;
4269 }
6b1de916 4270
11e33f6a
MG
4271 /*
4272 * Go through the zonelist yet one more time, keep very high watermark
4273 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4274 * we're still under heavy pressure. But make sure that this reclaim
4275 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4276 * allocation which will never fail due to oom_lock already held.
11e33f6a 4277 */
e746bf73
TH
4278 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4279 ~__GFP_DIRECT_RECLAIM, order,
4280 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4281 if (page)
11e33f6a
MG
4282 goto out;
4283
06ad276a
MH
4284 /* Coredumps can quickly deplete all memory reserves */
4285 if (current->flags & PF_DUMPCORE)
4286 goto out;
4287 /* The OOM killer will not help higher order allocs */
4288 if (order > PAGE_ALLOC_COSTLY_ORDER)
4289 goto out;
dcda9b04
MH
4290 /*
4291 * We have already exhausted all our reclaim opportunities without any
4292 * success so it is time to admit defeat. We will skip the OOM killer
4293 * because it is very likely that the caller has a more reasonable
4294 * fallback than shooting a random task.
cfb4a541
MN
4295 *
4296 * The OOM killer may not free memory on a specific node.
dcda9b04 4297 */
cfb4a541 4298 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4299 goto out;
06ad276a 4300 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4301 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4302 goto out;
4303 if (pm_suspended_storage())
4304 goto out;
4305 /*
4306 * XXX: GFP_NOFS allocations should rather fail than rely on
4307 * other request to make a forward progress.
4308 * We are in an unfortunate situation where out_of_memory cannot
4309 * do much for this context but let's try it to at least get
4310 * access to memory reserved if the current task is killed (see
4311 * out_of_memory). Once filesystems are ready to handle allocation
4312 * failures more gracefully we should just bail out here.
4313 */
4314
3c2c6488 4315 /* Exhausted what can be done so it's blame time */
5020e285 4316 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4317 *did_some_progress = 1;
5020e285 4318
6c18ba7a
MH
4319 /*
4320 * Help non-failing allocations by giving them access to memory
4321 * reserves
4322 */
4323 if (gfp_mask & __GFP_NOFAIL)
4324 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4325 ALLOC_NO_WATERMARKS, ac);
5020e285 4326 }
11e33f6a 4327out:
dc56401f 4328 mutex_unlock(&oom_lock);
11e33f6a
MG
4329 return page;
4330}
4331
33c2d214 4332/*
baf2f90b 4333 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4334 * killer is consider as the only way to move forward.
4335 */
4336#define MAX_COMPACT_RETRIES 16
4337
56de7263
MG
4338#ifdef CONFIG_COMPACTION
4339/* Try memory compaction for high-order allocations before reclaim */
4340static struct page *
4341__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4342 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4343 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4344{
5e1f0f09 4345 struct page *page = NULL;
eb414681 4346 unsigned long pflags;
499118e9 4347 unsigned int noreclaim_flag;
53853e2d
VB
4348
4349 if (!order)
66199712 4350 return NULL;
66199712 4351
eb414681 4352 psi_memstall_enter(&pflags);
499118e9 4353 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4354
c5d01d0d 4355 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4356 prio, &page);
eb414681 4357
499118e9 4358 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4359 psi_memstall_leave(&pflags);
56de7263 4360
06dac2f4
CTR
4361 if (*compact_result == COMPACT_SKIPPED)
4362 return NULL;
98dd3b48
VB
4363 /*
4364 * At least in one zone compaction wasn't deferred or skipped, so let's
4365 * count a compaction stall
4366 */
4367 count_vm_event(COMPACTSTALL);
8fb74b9f 4368
5e1f0f09
MG
4369 /* Prep a captured page if available */
4370 if (page)
4371 prep_new_page(page, order, gfp_mask, alloc_flags);
4372
4373 /* Try get a page from the freelist if available */
4374 if (!page)
4375 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4376
98dd3b48
VB
4377 if (page) {
4378 struct zone *zone = page_zone(page);
53853e2d 4379
98dd3b48
VB
4380 zone->compact_blockskip_flush = false;
4381 compaction_defer_reset(zone, order, true);
4382 count_vm_event(COMPACTSUCCESS);
4383 return page;
4384 }
56de7263 4385
98dd3b48
VB
4386 /*
4387 * It's bad if compaction run occurs and fails. The most likely reason
4388 * is that pages exist, but not enough to satisfy watermarks.
4389 */
4390 count_vm_event(COMPACTFAIL);
66199712 4391
98dd3b48 4392 cond_resched();
56de7263
MG
4393
4394 return NULL;
4395}
33c2d214 4396
3250845d
VB
4397static inline bool
4398should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4399 enum compact_result compact_result,
4400 enum compact_priority *compact_priority,
d9436498 4401 int *compaction_retries)
3250845d
VB
4402{
4403 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4404 int min_priority;
65190cff
MH
4405 bool ret = false;
4406 int retries = *compaction_retries;
4407 enum compact_priority priority = *compact_priority;
3250845d
VB
4408
4409 if (!order)
4410 return false;
4411
691d9497
AT
4412 if (fatal_signal_pending(current))
4413 return false;
4414
d9436498
VB
4415 if (compaction_made_progress(compact_result))
4416 (*compaction_retries)++;
4417
3250845d
VB
4418 /*
4419 * compaction considers all the zone as desperately out of memory
4420 * so it doesn't really make much sense to retry except when the
4421 * failure could be caused by insufficient priority
4422 */
d9436498
VB
4423 if (compaction_failed(compact_result))
4424 goto check_priority;
3250845d 4425
49433085
VB
4426 /*
4427 * compaction was skipped because there are not enough order-0 pages
4428 * to work with, so we retry only if it looks like reclaim can help.
4429 */
4430 if (compaction_needs_reclaim(compact_result)) {
4431 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4432 goto out;
4433 }
4434
3250845d
VB
4435 /*
4436 * make sure the compaction wasn't deferred or didn't bail out early
4437 * due to locks contention before we declare that we should give up.
49433085
VB
4438 * But the next retry should use a higher priority if allowed, so
4439 * we don't just keep bailing out endlessly.
3250845d 4440 */
65190cff 4441 if (compaction_withdrawn(compact_result)) {
49433085 4442 goto check_priority;
65190cff 4443 }
3250845d
VB
4444
4445 /*
dcda9b04 4446 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4447 * costly ones because they are de facto nofail and invoke OOM
4448 * killer to move on while costly can fail and users are ready
4449 * to cope with that. 1/4 retries is rather arbitrary but we
4450 * would need much more detailed feedback from compaction to
4451 * make a better decision.
4452 */
4453 if (order > PAGE_ALLOC_COSTLY_ORDER)
4454 max_retries /= 4;
65190cff
MH
4455 if (*compaction_retries <= max_retries) {
4456 ret = true;
4457 goto out;
4458 }
3250845d 4459
d9436498
VB
4460 /*
4461 * Make sure there are attempts at the highest priority if we exhausted
4462 * all retries or failed at the lower priorities.
4463 */
4464check_priority:
c2033b00
VB
4465 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4466 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4467
c2033b00 4468 if (*compact_priority > min_priority) {
d9436498
VB
4469 (*compact_priority)--;
4470 *compaction_retries = 0;
65190cff 4471 ret = true;
d9436498 4472 }
65190cff
MH
4473out:
4474 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4475 return ret;
3250845d 4476}
56de7263
MG
4477#else
4478static inline struct page *
4479__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4480 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4481 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4482{
33c2d214 4483 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4484 return NULL;
4485}
33c2d214
MH
4486
4487static inline bool
86a294a8
MH
4488should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4489 enum compact_result compact_result,
a5508cd8 4490 enum compact_priority *compact_priority,
d9436498 4491 int *compaction_retries)
33c2d214 4492{
31e49bfd
MH
4493 struct zone *zone;
4494 struct zoneref *z;
4495
4496 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4497 return false;
4498
4499 /*
4500 * There are setups with compaction disabled which would prefer to loop
4501 * inside the allocator rather than hit the oom killer prematurely.
4502 * Let's give them a good hope and keep retrying while the order-0
4503 * watermarks are OK.
4504 */
97a225e6
JK
4505 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4506 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4507 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4508 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4509 return true;
4510 }
33c2d214
MH
4511 return false;
4512}
3250845d 4513#endif /* CONFIG_COMPACTION */
56de7263 4514
d92a8cfc 4515#ifdef CONFIG_LOCKDEP
93781325 4516static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4517 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4518
f920e413 4519static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4520{
d92a8cfc
PZ
4521 /* no reclaim without waiting on it */
4522 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4523 return false;
4524
4525 /* this guy won't enter reclaim */
2e517d68 4526 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4527 return false;
4528
d92a8cfc
PZ
4529 if (gfp_mask & __GFP_NOLOCKDEP)
4530 return false;
4531
4532 return true;
4533}
4534
4f3eaf45 4535void __fs_reclaim_acquire(unsigned long ip)
93781325 4536{
4f3eaf45 4537 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4538}
4539
4f3eaf45 4540void __fs_reclaim_release(unsigned long ip)
93781325 4541{
4f3eaf45 4542 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4543}
4544
d92a8cfc
PZ
4545void fs_reclaim_acquire(gfp_t gfp_mask)
4546{
f920e413
DV
4547 gfp_mask = current_gfp_context(gfp_mask);
4548
4549 if (__need_reclaim(gfp_mask)) {
4550 if (gfp_mask & __GFP_FS)
4f3eaf45 4551 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4552
4553#ifdef CONFIG_MMU_NOTIFIER
4554 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4555 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4556#endif
4557
4558 }
d92a8cfc
PZ
4559}
4560EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4561
4562void fs_reclaim_release(gfp_t gfp_mask)
4563{
f920e413
DV
4564 gfp_mask = current_gfp_context(gfp_mask);
4565
4566 if (__need_reclaim(gfp_mask)) {
4567 if (gfp_mask & __GFP_FS)
4f3eaf45 4568 __fs_reclaim_release(_RET_IP_);
f920e413 4569 }
d92a8cfc
PZ
4570}
4571EXPORT_SYMBOL_GPL(fs_reclaim_release);
4572#endif
4573
bba90710 4574/* Perform direct synchronous page reclaim */
2187e17b 4575static unsigned long
a9263751
VB
4576__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4577 const struct alloc_context *ac)
11e33f6a 4578{
499118e9 4579 unsigned int noreclaim_flag;
2187e17b 4580 unsigned long pflags, progress;
11e33f6a
MG
4581
4582 cond_resched();
4583
4584 /* We now go into synchronous reclaim */
4585 cpuset_memory_pressure_bump();
eb414681 4586 psi_memstall_enter(&pflags);
d92a8cfc 4587 fs_reclaim_acquire(gfp_mask);
93781325 4588 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4589
a9263751
VB
4590 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4591 ac->nodemask);
11e33f6a 4592
499118e9 4593 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4594 fs_reclaim_release(gfp_mask);
eb414681 4595 psi_memstall_leave(&pflags);
11e33f6a
MG
4596
4597 cond_resched();
4598
bba90710
MS
4599 return progress;
4600}
4601
4602/* The really slow allocator path where we enter direct reclaim */
4603static inline struct page *
4604__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4605 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4606 unsigned long *did_some_progress)
bba90710
MS
4607{
4608 struct page *page = NULL;
4609 bool drained = false;
4610
a9263751 4611 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4612 if (unlikely(!(*did_some_progress)))
4613 return NULL;
11e33f6a 4614
9ee493ce 4615retry:
31a6c190 4616 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4617
4618 /*
4619 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4620 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4621 * Shrink them and try again
9ee493ce
MG
4622 */
4623 if (!page && !drained) {
29fac03b 4624 unreserve_highatomic_pageblock(ac, false);
93481ff0 4625 drain_all_pages(NULL);
9ee493ce
MG
4626 drained = true;
4627 goto retry;
4628 }
4629
11e33f6a
MG
4630 return page;
4631}
4632
5ecd9d40
DR
4633static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4634 const struct alloc_context *ac)
3a025760
JW
4635{
4636 struct zoneref *z;
4637 struct zone *zone;
e1a55637 4638 pg_data_t *last_pgdat = NULL;
97a225e6 4639 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4640
97a225e6 4641 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4642 ac->nodemask) {
e1a55637 4643 if (last_pgdat != zone->zone_pgdat)
97a225e6 4644 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4645 last_pgdat = zone->zone_pgdat;
4646 }
3a025760
JW
4647}
4648
c603844b 4649static inline unsigned int
341ce06f
PZ
4650gfp_to_alloc_flags(gfp_t gfp_mask)
4651{
c603844b 4652 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4653
736838e9
MN
4654 /*
4655 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4656 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4657 * to save two branches.
4658 */
e6223a3b 4659 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4660 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4661
341ce06f
PZ
4662 /*
4663 * The caller may dip into page reserves a bit more if the caller
4664 * cannot run direct reclaim, or if the caller has realtime scheduling
4665 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4666 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4667 */
736838e9
MN
4668 alloc_flags |= (__force int)
4669 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4670
d0164adc 4671 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4672 /*
b104a35d
DR
4673 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4674 * if it can't schedule.
5c3240d9 4675 */
b104a35d 4676 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4677 alloc_flags |= ALLOC_HARDER;
523b9458 4678 /*
b104a35d 4679 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4680 * comment for __cpuset_node_allowed().
523b9458 4681 */
341ce06f 4682 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4683 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4684 alloc_flags |= ALLOC_HARDER;
4685
8e3560d9 4686 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4687
341ce06f
PZ
4688 return alloc_flags;
4689}
4690
cd04ae1e 4691static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4692{
cd04ae1e
MH
4693 if (!tsk_is_oom_victim(tsk))
4694 return false;
4695
4696 /*
4697 * !MMU doesn't have oom reaper so give access to memory reserves
4698 * only to the thread with TIF_MEMDIE set
4699 */
4700 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4701 return false;
4702
cd04ae1e
MH
4703 return true;
4704}
4705
4706/*
4707 * Distinguish requests which really need access to full memory
4708 * reserves from oom victims which can live with a portion of it
4709 */
4710static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4711{
4712 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4713 return 0;
31a6c190 4714 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4715 return ALLOC_NO_WATERMARKS;
31a6c190 4716 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4717 return ALLOC_NO_WATERMARKS;
4718 if (!in_interrupt()) {
4719 if (current->flags & PF_MEMALLOC)
4720 return ALLOC_NO_WATERMARKS;
4721 else if (oom_reserves_allowed(current))
4722 return ALLOC_OOM;
4723 }
31a6c190 4724
cd04ae1e
MH
4725 return 0;
4726}
4727
4728bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4729{
4730 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4731}
4732
0a0337e0
MH
4733/*
4734 * Checks whether it makes sense to retry the reclaim to make a forward progress
4735 * for the given allocation request.
491d79ae
JW
4736 *
4737 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4738 * without success, or when we couldn't even meet the watermark if we
4739 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4740 *
4741 * Returns true if a retry is viable or false to enter the oom path.
4742 */
4743static inline bool
4744should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4745 struct alloc_context *ac, int alloc_flags,
423b452e 4746 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4747{
4748 struct zone *zone;
4749 struct zoneref *z;
15f570bf 4750 bool ret = false;
0a0337e0 4751
423b452e
VB
4752 /*
4753 * Costly allocations might have made a progress but this doesn't mean
4754 * their order will become available due to high fragmentation so
4755 * always increment the no progress counter for them
4756 */
4757 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4758 *no_progress_loops = 0;
4759 else
4760 (*no_progress_loops)++;
4761
0a0337e0
MH
4762 /*
4763 * Make sure we converge to OOM if we cannot make any progress
4764 * several times in the row.
4765 */
04c8716f
MK
4766 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4767 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4768 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4769 }
0a0337e0 4770
bca67592
MG
4771 /*
4772 * Keep reclaiming pages while there is a chance this will lead
4773 * somewhere. If none of the target zones can satisfy our allocation
4774 * request even if all reclaimable pages are considered then we are
4775 * screwed and have to go OOM.
0a0337e0 4776 */
97a225e6
JK
4777 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4778 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4779 unsigned long available;
ede37713 4780 unsigned long reclaimable;
d379f01d
MH
4781 unsigned long min_wmark = min_wmark_pages(zone);
4782 bool wmark;
0a0337e0 4783
5a1c84b4 4784 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4785 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4786
4787 /*
491d79ae
JW
4788 * Would the allocation succeed if we reclaimed all
4789 * reclaimable pages?
0a0337e0 4790 */
d379f01d 4791 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4792 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4793 trace_reclaim_retry_zone(z, order, reclaimable,
4794 available, min_wmark, *no_progress_loops, wmark);
4795 if (wmark) {
ede37713
MH
4796 /*
4797 * If we didn't make any progress and have a lot of
4798 * dirty + writeback pages then we should wait for
4799 * an IO to complete to slow down the reclaim and
4800 * prevent from pre mature OOM
4801 */
4802 if (!did_some_progress) {
11fb9989 4803 unsigned long write_pending;
ede37713 4804
5a1c84b4
MG
4805 write_pending = zone_page_state_snapshot(zone,
4806 NR_ZONE_WRITE_PENDING);
ede37713 4807
11fb9989 4808 if (2 * write_pending > reclaimable) {
ede37713
MH
4809 congestion_wait(BLK_RW_ASYNC, HZ/10);
4810 return true;
4811 }
4812 }
5a1c84b4 4813
15f570bf
MH
4814 ret = true;
4815 goto out;
0a0337e0
MH
4816 }
4817 }
4818
15f570bf
MH
4819out:
4820 /*
4821 * Memory allocation/reclaim might be called from a WQ context and the
4822 * current implementation of the WQ concurrency control doesn't
4823 * recognize that a particular WQ is congested if the worker thread is
4824 * looping without ever sleeping. Therefore we have to do a short sleep
4825 * here rather than calling cond_resched().
4826 */
4827 if (current->flags & PF_WQ_WORKER)
4828 schedule_timeout_uninterruptible(1);
4829 else
4830 cond_resched();
4831 return ret;
0a0337e0
MH
4832}
4833
902b6281
VB
4834static inline bool
4835check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4836{
4837 /*
4838 * It's possible that cpuset's mems_allowed and the nodemask from
4839 * mempolicy don't intersect. This should be normally dealt with by
4840 * policy_nodemask(), but it's possible to race with cpuset update in
4841 * such a way the check therein was true, and then it became false
4842 * before we got our cpuset_mems_cookie here.
4843 * This assumes that for all allocations, ac->nodemask can come only
4844 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4845 * when it does not intersect with the cpuset restrictions) or the
4846 * caller can deal with a violated nodemask.
4847 */
4848 if (cpusets_enabled() && ac->nodemask &&
4849 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4850 ac->nodemask = NULL;
4851 return true;
4852 }
4853
4854 /*
4855 * When updating a task's mems_allowed or mempolicy nodemask, it is
4856 * possible to race with parallel threads in such a way that our
4857 * allocation can fail while the mask is being updated. If we are about
4858 * to fail, check if the cpuset changed during allocation and if so,
4859 * retry.
4860 */
4861 if (read_mems_allowed_retry(cpuset_mems_cookie))
4862 return true;
4863
4864 return false;
4865}
4866
11e33f6a
MG
4867static inline struct page *
4868__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4869 struct alloc_context *ac)
11e33f6a 4870{
d0164adc 4871 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4872 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4873 struct page *page = NULL;
c603844b 4874 unsigned int alloc_flags;
11e33f6a 4875 unsigned long did_some_progress;
5ce9bfef 4876 enum compact_priority compact_priority;
c5d01d0d 4877 enum compact_result compact_result;
5ce9bfef
VB
4878 int compaction_retries;
4879 int no_progress_loops;
5ce9bfef 4880 unsigned int cpuset_mems_cookie;
cd04ae1e 4881 int reserve_flags;
1da177e4 4882
d0164adc
MG
4883 /*
4884 * We also sanity check to catch abuse of atomic reserves being used by
4885 * callers that are not in atomic context.
4886 */
4887 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4888 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4889 gfp_mask &= ~__GFP_ATOMIC;
4890
5ce9bfef
VB
4891retry_cpuset:
4892 compaction_retries = 0;
4893 no_progress_loops = 0;
4894 compact_priority = DEF_COMPACT_PRIORITY;
4895 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4896
4897 /*
4898 * The fast path uses conservative alloc_flags to succeed only until
4899 * kswapd needs to be woken up, and to avoid the cost of setting up
4900 * alloc_flags precisely. So we do that now.
4901 */
4902 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4903
e47483bc
VB
4904 /*
4905 * We need to recalculate the starting point for the zonelist iterator
4906 * because we might have used different nodemask in the fast path, or
4907 * there was a cpuset modification and we are retrying - otherwise we
4908 * could end up iterating over non-eligible zones endlessly.
4909 */
4910 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4911 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4912 if (!ac->preferred_zoneref->zone)
4913 goto nopage;
4914
0a79cdad 4915 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4916 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4917
4918 /*
4919 * The adjusted alloc_flags might result in immediate success, so try
4920 * that first
4921 */
4922 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4923 if (page)
4924 goto got_pg;
4925
a8161d1e
VB
4926 /*
4927 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4928 * that we have enough base pages and don't need to reclaim. For non-
4929 * movable high-order allocations, do that as well, as compaction will
4930 * try prevent permanent fragmentation by migrating from blocks of the
4931 * same migratetype.
4932 * Don't try this for allocations that are allowed to ignore
4933 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4934 */
282722b0
VB
4935 if (can_direct_reclaim &&
4936 (costly_order ||
4937 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4938 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4939 page = __alloc_pages_direct_compact(gfp_mask, order,
4940 alloc_flags, ac,
a5508cd8 4941 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4942 &compact_result);
4943 if (page)
4944 goto got_pg;
4945
cc638f32
VB
4946 /*
4947 * Checks for costly allocations with __GFP_NORETRY, which
4948 * includes some THP page fault allocations
4949 */
4950 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4951 /*
4952 * If allocating entire pageblock(s) and compaction
4953 * failed because all zones are below low watermarks
4954 * or is prohibited because it recently failed at this
3f36d866
DR
4955 * order, fail immediately unless the allocator has
4956 * requested compaction and reclaim retry.
b39d0ee2
DR
4957 *
4958 * Reclaim is
4959 * - potentially very expensive because zones are far
4960 * below their low watermarks or this is part of very
4961 * bursty high order allocations,
4962 * - not guaranteed to help because isolate_freepages()
4963 * may not iterate over freed pages as part of its
4964 * linear scan, and
4965 * - unlikely to make entire pageblocks free on its
4966 * own.
4967 */
4968 if (compact_result == COMPACT_SKIPPED ||
4969 compact_result == COMPACT_DEFERRED)
4970 goto nopage;
a8161d1e 4971
a8161d1e 4972 /*
3eb2771b
VB
4973 * Looks like reclaim/compaction is worth trying, but
4974 * sync compaction could be very expensive, so keep
25160354 4975 * using async compaction.
a8161d1e 4976 */
a5508cd8 4977 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4978 }
4979 }
23771235 4980
31a6c190 4981retry:
23771235 4982 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4983 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4984 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4985
cd04ae1e
MH
4986 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4987 if (reserve_flags)
8e3560d9 4988 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 4989
e46e7b77 4990 /*
d6a24df0
VB
4991 * Reset the nodemask and zonelist iterators if memory policies can be
4992 * ignored. These allocations are high priority and system rather than
4993 * user oriented.
e46e7b77 4994 */
cd04ae1e 4995 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4996 ac->nodemask = NULL;
e46e7b77 4997 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4998 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4999 }
5000
23771235 5001 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5002 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5003 if (page)
5004 goto got_pg;
1da177e4 5005
d0164adc 5006 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5007 if (!can_direct_reclaim)
1da177e4
LT
5008 goto nopage;
5009
9a67f648
MH
5010 /* Avoid recursion of direct reclaim */
5011 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5012 goto nopage;
5013
a8161d1e
VB
5014 /* Try direct reclaim and then allocating */
5015 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5016 &did_some_progress);
5017 if (page)
5018 goto got_pg;
5019
5020 /* Try direct compaction and then allocating */
a9263751 5021 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5022 compact_priority, &compact_result);
56de7263
MG
5023 if (page)
5024 goto got_pg;
75f30861 5025
9083905a
JW
5026 /* Do not loop if specifically requested */
5027 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5028 goto nopage;
9083905a 5029
0a0337e0
MH
5030 /*
5031 * Do not retry costly high order allocations unless they are
dcda9b04 5032 * __GFP_RETRY_MAYFAIL
0a0337e0 5033 */
dcda9b04 5034 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5035 goto nopage;
0a0337e0 5036
0a0337e0 5037 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5038 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5039 goto retry;
5040
33c2d214
MH
5041 /*
5042 * It doesn't make any sense to retry for the compaction if the order-0
5043 * reclaim is not able to make any progress because the current
5044 * implementation of the compaction depends on the sufficient amount
5045 * of free memory (see __compaction_suitable)
5046 */
5047 if (did_some_progress > 0 &&
86a294a8 5048 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5049 compact_result, &compact_priority,
d9436498 5050 &compaction_retries))
33c2d214
MH
5051 goto retry;
5052
902b6281
VB
5053
5054 /* Deal with possible cpuset update races before we start OOM killing */
5055 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5056 goto retry_cpuset;
5057
9083905a
JW
5058 /* Reclaim has failed us, start killing things */
5059 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5060 if (page)
5061 goto got_pg;
5062
9a67f648 5063 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5064 if (tsk_is_oom_victim(current) &&
8510e69c 5065 (alloc_flags & ALLOC_OOM ||
c288983d 5066 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5067 goto nopage;
5068
9083905a 5069 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5070 if (did_some_progress) {
5071 no_progress_loops = 0;
9083905a 5072 goto retry;
0a0337e0 5073 }
9083905a 5074
1da177e4 5075nopage:
902b6281
VB
5076 /* Deal with possible cpuset update races before we fail */
5077 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5078 goto retry_cpuset;
5079
9a67f648
MH
5080 /*
5081 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5082 * we always retry
5083 */
5084 if (gfp_mask & __GFP_NOFAIL) {
5085 /*
5086 * All existing users of the __GFP_NOFAIL are blockable, so warn
5087 * of any new users that actually require GFP_NOWAIT
5088 */
5089 if (WARN_ON_ONCE(!can_direct_reclaim))
5090 goto fail;
5091
5092 /*
5093 * PF_MEMALLOC request from this context is rather bizarre
5094 * because we cannot reclaim anything and only can loop waiting
5095 * for somebody to do a work for us
5096 */
5097 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5098
5099 /*
5100 * non failing costly orders are a hard requirement which we
5101 * are not prepared for much so let's warn about these users
5102 * so that we can identify them and convert them to something
5103 * else.
5104 */
5105 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5106
6c18ba7a
MH
5107 /*
5108 * Help non-failing allocations by giving them access to memory
5109 * reserves but do not use ALLOC_NO_WATERMARKS because this
5110 * could deplete whole memory reserves which would just make
5111 * the situation worse
5112 */
5113 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5114 if (page)
5115 goto got_pg;
5116
9a67f648
MH
5117 cond_resched();
5118 goto retry;
5119 }
5120fail:
a8e99259 5121 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5122 "page allocation failure: order:%u", order);
1da177e4 5123got_pg:
072bb0aa 5124 return page;
1da177e4 5125}
11e33f6a 5126
9cd75558 5127static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5128 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5129 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5130 unsigned int *alloc_flags)
11e33f6a 5131{
97a225e6 5132 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5133 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5134 ac->nodemask = nodemask;
01c0bfe0 5135 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5136
682a3385 5137 if (cpusets_enabled()) {
8e6a930b 5138 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5139 /*
5140 * When we are in the interrupt context, it is irrelevant
5141 * to the current task context. It means that any node ok.
5142 */
88dc6f20 5143 if (in_task() && !ac->nodemask)
9cd75558 5144 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5145 else
5146 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5147 }
5148
d92a8cfc
PZ
5149 fs_reclaim_acquire(gfp_mask);
5150 fs_reclaim_release(gfp_mask);
11e33f6a 5151
d0164adc 5152 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5153
5154 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5155 return false;
11e33f6a 5156
8e3560d9 5157 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5158
c9ab0c4f 5159 /* Dirty zone balancing only done in the fast path */
9cd75558 5160 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5161
e46e7b77
MG
5162 /*
5163 * The preferred zone is used for statistics but crucially it is
5164 * also used as the starting point for the zonelist iterator. It
5165 * may get reset for allocations that ignore memory policies.
5166 */
9cd75558 5167 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5168 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5169
5170 return true;
9cd75558
MG
5171}
5172
387ba26f 5173/*
0f87d9d3 5174 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5175 * @gfp: GFP flags for the allocation
5176 * @preferred_nid: The preferred NUMA node ID to allocate from
5177 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5178 * @nr_pages: The number of pages desired on the list or array
5179 * @page_list: Optional list to store the allocated pages
5180 * @page_array: Optional array to store the pages
387ba26f
MG
5181 *
5182 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5183 * allocate nr_pages quickly. Pages are added to page_list if page_list
5184 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5185 *
0f87d9d3
MG
5186 * For lists, nr_pages is the number of pages that should be allocated.
5187 *
5188 * For arrays, only NULL elements are populated with pages and nr_pages
5189 * is the maximum number of pages that will be stored in the array.
5190 *
5191 * Returns the number of pages on the list or array.
387ba26f
MG
5192 */
5193unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5194 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5195 struct list_head *page_list,
5196 struct page **page_array)
387ba26f
MG
5197{
5198 struct page *page;
5199 unsigned long flags;
5200 struct zone *zone;
5201 struct zoneref *z;
5202 struct per_cpu_pages *pcp;
5203 struct list_head *pcp_list;
5204 struct alloc_context ac;
5205 gfp_t alloc_gfp;
5206 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5207 int nr_populated = 0, nr_account = 0;
387ba26f 5208
0f87d9d3
MG
5209 /*
5210 * Skip populated array elements to determine if any pages need
5211 * to be allocated before disabling IRQs.
5212 */
b08e50dd 5213 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5214 nr_populated++;
5215
06147843
CL
5216 /* No pages requested? */
5217 if (unlikely(nr_pages <= 0))
5218 goto out;
5219
b3b64ebd
MG
5220 /* Already populated array? */
5221 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5222 goto out;
b3b64ebd 5223
387ba26f 5224 /* Use the single page allocator for one page. */
0f87d9d3 5225 if (nr_pages - nr_populated == 1)
387ba26f
MG
5226 goto failed;
5227
187ad460
MG
5228#ifdef CONFIG_PAGE_OWNER
5229 /*
5230 * PAGE_OWNER may recurse into the allocator to allocate space to
5231 * save the stack with pagesets.lock held. Releasing/reacquiring
5232 * removes much of the performance benefit of bulk allocation so
5233 * force the caller to allocate one page at a time as it'll have
5234 * similar performance to added complexity to the bulk allocator.
5235 */
5236 if (static_branch_unlikely(&page_owner_inited))
5237 goto failed;
5238#endif
5239
387ba26f
MG
5240 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5241 gfp &= gfp_allowed_mask;
5242 alloc_gfp = gfp;
5243 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5244 goto out;
387ba26f
MG
5245 gfp = alloc_gfp;
5246
5247 /* Find an allowed local zone that meets the low watermark. */
5248 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5249 unsigned long mark;
5250
5251 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5252 !__cpuset_zone_allowed(zone, gfp)) {
5253 continue;
5254 }
5255
5256 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5257 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5258 goto failed;
5259 }
5260
5261 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5262 if (zone_watermark_fast(zone, 0, mark,
5263 zonelist_zone_idx(ac.preferred_zoneref),
5264 alloc_flags, gfp)) {
5265 break;
5266 }
5267 }
5268
5269 /*
5270 * If there are no allowed local zones that meets the watermarks then
5271 * try to allocate a single page and reclaim if necessary.
5272 */
ce76f9a1 5273 if (unlikely(!zone))
387ba26f
MG
5274 goto failed;
5275
5276 /* Attempt the batch allocation */
dbbee9d5 5277 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5278 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5279 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5280
0f87d9d3
MG
5281 while (nr_populated < nr_pages) {
5282
5283 /* Skip existing pages */
5284 if (page_array && page_array[nr_populated]) {
5285 nr_populated++;
5286 continue;
5287 }
5288
44042b44 5289 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5290 pcp, pcp_list);
ce76f9a1 5291 if (unlikely(!page)) {
387ba26f 5292 /* Try and get at least one page */
0f87d9d3 5293 if (!nr_populated)
387ba26f
MG
5294 goto failed_irq;
5295 break;
5296 }
3e23060b 5297 nr_account++;
387ba26f
MG
5298
5299 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5300 if (page_list)
5301 list_add(&page->lru, page_list);
5302 else
5303 page_array[nr_populated] = page;
5304 nr_populated++;
387ba26f
MG
5305 }
5306
43c95bcc
MG
5307 local_unlock_irqrestore(&pagesets.lock, flags);
5308
3e23060b
MG
5309 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5310 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5311
06147843 5312out:
0f87d9d3 5313 return nr_populated;
387ba26f
MG
5314
5315failed_irq:
dbbee9d5 5316 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5317
5318failed:
5319 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5320 if (page) {
0f87d9d3
MG
5321 if (page_list)
5322 list_add(&page->lru, page_list);
5323 else
5324 page_array[nr_populated] = page;
5325 nr_populated++;
387ba26f
MG
5326 }
5327
06147843 5328 goto out;
387ba26f
MG
5329}
5330EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5331
9cd75558
MG
5332/*
5333 * This is the 'heart' of the zoned buddy allocator.
5334 */
84172f4b 5335struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5336 nodemask_t *nodemask)
9cd75558
MG
5337{
5338 struct page *page;
5339 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5340 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5341 struct alloc_context ac = { };
5342
c63ae43b
MH
5343 /*
5344 * There are several places where we assume that the order value is sane
5345 * so bail out early if the request is out of bound.
5346 */
5347 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5348 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5349 return NULL;
5350 }
5351
6e5e0f28 5352 gfp &= gfp_allowed_mask;
da6df1b0
PT
5353 /*
5354 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5355 * resp. GFP_NOIO which has to be inherited for all allocation requests
5356 * from a particular context which has been marked by
8e3560d9
PT
5357 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5358 * movable zones are not used during allocation.
da6df1b0
PT
5359 */
5360 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5361 alloc_gfp = gfp;
5362 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5363 &alloc_gfp, &alloc_flags))
9cd75558
MG
5364 return NULL;
5365
6bb15450
MG
5366 /*
5367 * Forbid the first pass from falling back to types that fragment
5368 * memory until all local zones are considered.
5369 */
6e5e0f28 5370 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5371
5117f45d 5372 /* First allocation attempt */
8e6a930b 5373 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5374 if (likely(page))
5375 goto out;
11e33f6a 5376
da6df1b0 5377 alloc_gfp = gfp;
4fcb0971 5378 ac.spread_dirty_pages = false;
23f086f9 5379
4741526b
MG
5380 /*
5381 * Restore the original nodemask if it was potentially replaced with
5382 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5383 */
97ce86f9 5384 ac.nodemask = nodemask;
16096c25 5385
8e6a930b 5386 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5387
4fcb0971 5388out:
6e5e0f28
MWO
5389 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5390 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5391 __free_pages(page, order);
5392 page = NULL;
4949148a
VD
5393 }
5394
8e6a930b 5395 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5396
11e33f6a 5397 return page;
1da177e4 5398}
84172f4b 5399EXPORT_SYMBOL(__alloc_pages);
1da177e4
LT
5400
5401/*
9ea9a680
MH
5402 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5403 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5404 * you need to access high mem.
1da177e4 5405 */
920c7a5d 5406unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5407{
945a1113
AM
5408 struct page *page;
5409
9ea9a680 5410 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5411 if (!page)
5412 return 0;
5413 return (unsigned long) page_address(page);
5414}
1da177e4
LT
5415EXPORT_SYMBOL(__get_free_pages);
5416
920c7a5d 5417unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5418{
945a1113 5419 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5420}
1da177e4
LT
5421EXPORT_SYMBOL(get_zeroed_page);
5422
7f194fbb
MWO
5423/**
5424 * __free_pages - Free pages allocated with alloc_pages().
5425 * @page: The page pointer returned from alloc_pages().
5426 * @order: The order of the allocation.
5427 *
5428 * This function can free multi-page allocations that are not compound
5429 * pages. It does not check that the @order passed in matches that of
5430 * the allocation, so it is easy to leak memory. Freeing more memory
5431 * than was allocated will probably emit a warning.
5432 *
5433 * If the last reference to this page is speculative, it will be released
5434 * by put_page() which only frees the first page of a non-compound
5435 * allocation. To prevent the remaining pages from being leaked, we free
5436 * the subsequent pages here. If you want to use the page's reference
5437 * count to decide when to free the allocation, you should allocate a
5438 * compound page, and use put_page() instead of __free_pages().
5439 *
5440 * Context: May be called in interrupt context or while holding a normal
5441 * spinlock, but not in NMI context or while holding a raw spinlock.
5442 */
742aa7fb
AL
5443void __free_pages(struct page *page, unsigned int order)
5444{
5445 if (put_page_testzero(page))
5446 free_the_page(page, order);
e320d301
MWO
5447 else if (!PageHead(page))
5448 while (order-- > 0)
5449 free_the_page(page + (1 << order), order);
742aa7fb 5450}
1da177e4
LT
5451EXPORT_SYMBOL(__free_pages);
5452
920c7a5d 5453void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5454{
5455 if (addr != 0) {
725d704e 5456 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5457 __free_pages(virt_to_page((void *)addr), order);
5458 }
5459}
5460
5461EXPORT_SYMBOL(free_pages);
5462
b63ae8ca
AD
5463/*
5464 * Page Fragment:
5465 * An arbitrary-length arbitrary-offset area of memory which resides
5466 * within a 0 or higher order page. Multiple fragments within that page
5467 * are individually refcounted, in the page's reference counter.
5468 *
5469 * The page_frag functions below provide a simple allocation framework for
5470 * page fragments. This is used by the network stack and network device
5471 * drivers to provide a backing region of memory for use as either an
5472 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5473 */
2976db80
AD
5474static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5475 gfp_t gfp_mask)
b63ae8ca
AD
5476{
5477 struct page *page = NULL;
5478 gfp_t gfp = gfp_mask;
5479
5480#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5481 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5482 __GFP_NOMEMALLOC;
5483 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5484 PAGE_FRAG_CACHE_MAX_ORDER);
5485 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5486#endif
5487 if (unlikely(!page))
5488 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5489
5490 nc->va = page ? page_address(page) : NULL;
5491
5492 return page;
5493}
5494
2976db80 5495void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5496{
5497 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5498
742aa7fb
AL
5499 if (page_ref_sub_and_test(page, count))
5500 free_the_page(page, compound_order(page));
44fdffd7 5501}
2976db80 5502EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5503
b358e212
KH
5504void *page_frag_alloc_align(struct page_frag_cache *nc,
5505 unsigned int fragsz, gfp_t gfp_mask,
5506 unsigned int align_mask)
b63ae8ca
AD
5507{
5508 unsigned int size = PAGE_SIZE;
5509 struct page *page;
5510 int offset;
5511
5512 if (unlikely(!nc->va)) {
5513refill:
2976db80 5514 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5515 if (!page)
5516 return NULL;
5517
5518#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5519 /* if size can vary use size else just use PAGE_SIZE */
5520 size = nc->size;
5521#endif
5522 /* Even if we own the page, we do not use atomic_set().
5523 * This would break get_page_unless_zero() users.
5524 */
86447726 5525 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5526
5527 /* reset page count bias and offset to start of new frag */
2f064f34 5528 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5529 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5530 nc->offset = size;
5531 }
5532
5533 offset = nc->offset - fragsz;
5534 if (unlikely(offset < 0)) {
5535 page = virt_to_page(nc->va);
5536
fe896d18 5537 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5538 goto refill;
5539
d8c19014
DZ
5540 if (unlikely(nc->pfmemalloc)) {
5541 free_the_page(page, compound_order(page));
5542 goto refill;
5543 }
5544
b63ae8ca
AD
5545#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5546 /* if size can vary use size else just use PAGE_SIZE */
5547 size = nc->size;
5548#endif
5549 /* OK, page count is 0, we can safely set it */
86447726 5550 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5551
5552 /* reset page count bias and offset to start of new frag */
86447726 5553 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5554 offset = size - fragsz;
5555 }
5556
5557 nc->pagecnt_bias--;
b358e212 5558 offset &= align_mask;
b63ae8ca
AD
5559 nc->offset = offset;
5560
5561 return nc->va + offset;
5562}
b358e212 5563EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5564
5565/*
5566 * Frees a page fragment allocated out of either a compound or order 0 page.
5567 */
8c2dd3e4 5568void page_frag_free(void *addr)
b63ae8ca
AD
5569{
5570 struct page *page = virt_to_head_page(addr);
5571
742aa7fb
AL
5572 if (unlikely(put_page_testzero(page)))
5573 free_the_page(page, compound_order(page));
b63ae8ca 5574}
8c2dd3e4 5575EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5576
d00181b9
KS
5577static void *make_alloc_exact(unsigned long addr, unsigned int order,
5578 size_t size)
ee85c2e1
AK
5579{
5580 if (addr) {
5581 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5582 unsigned long used = addr + PAGE_ALIGN(size);
5583
5584 split_page(virt_to_page((void *)addr), order);
5585 while (used < alloc_end) {
5586 free_page(used);
5587 used += PAGE_SIZE;
5588 }
5589 }
5590 return (void *)addr;
5591}
5592
2be0ffe2
TT
5593/**
5594 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5595 * @size: the number of bytes to allocate
63931eb9 5596 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5597 *
5598 * This function is similar to alloc_pages(), except that it allocates the
5599 * minimum number of pages to satisfy the request. alloc_pages() can only
5600 * allocate memory in power-of-two pages.
5601 *
5602 * This function is also limited by MAX_ORDER.
5603 *
5604 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5605 *
5606 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5607 */
5608void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5609{
5610 unsigned int order = get_order(size);
5611 unsigned long addr;
5612
63931eb9
VB
5613 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5614 gfp_mask &= ~__GFP_COMP;
5615
2be0ffe2 5616 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5617 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5618}
5619EXPORT_SYMBOL(alloc_pages_exact);
5620
ee85c2e1
AK
5621/**
5622 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5623 * pages on a node.
b5e6ab58 5624 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5625 * @size: the number of bytes to allocate
63931eb9 5626 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5627 *
5628 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5629 * back.
a862f68a
MR
5630 *
5631 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5632 */
e1931811 5633void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5634{
d00181b9 5635 unsigned int order = get_order(size);
63931eb9
VB
5636 struct page *p;
5637
5638 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5639 gfp_mask &= ~__GFP_COMP;
5640
5641 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5642 if (!p)
5643 return NULL;
5644 return make_alloc_exact((unsigned long)page_address(p), order, size);
5645}
ee85c2e1 5646
2be0ffe2
TT
5647/**
5648 * free_pages_exact - release memory allocated via alloc_pages_exact()
5649 * @virt: the value returned by alloc_pages_exact.
5650 * @size: size of allocation, same value as passed to alloc_pages_exact().
5651 *
5652 * Release the memory allocated by a previous call to alloc_pages_exact.
5653 */
5654void free_pages_exact(void *virt, size_t size)
5655{
5656 unsigned long addr = (unsigned long)virt;
5657 unsigned long end = addr + PAGE_ALIGN(size);
5658
5659 while (addr < end) {
5660 free_page(addr);
5661 addr += PAGE_SIZE;
5662 }
5663}
5664EXPORT_SYMBOL(free_pages_exact);
5665
e0fb5815
ZY
5666/**
5667 * nr_free_zone_pages - count number of pages beyond high watermark
5668 * @offset: The zone index of the highest zone
5669 *
a862f68a 5670 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5671 * high watermark within all zones at or below a given zone index. For each
5672 * zone, the number of pages is calculated as:
0e056eb5 5673 *
5674 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5675 *
5676 * Return: number of pages beyond high watermark.
e0fb5815 5677 */
ebec3862 5678static unsigned long nr_free_zone_pages(int offset)
1da177e4 5679{
dd1a239f 5680 struct zoneref *z;
54a6eb5c
MG
5681 struct zone *zone;
5682
e310fd43 5683 /* Just pick one node, since fallback list is circular */
ebec3862 5684 unsigned long sum = 0;
1da177e4 5685
0e88460d 5686 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5687
54a6eb5c 5688 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5689 unsigned long size = zone_managed_pages(zone);
41858966 5690 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5691 if (size > high)
5692 sum += size - high;
1da177e4
LT
5693 }
5694
5695 return sum;
5696}
5697
e0fb5815
ZY
5698/**
5699 * nr_free_buffer_pages - count number of pages beyond high watermark
5700 *
5701 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5702 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5703 *
5704 * Return: number of pages beyond high watermark within ZONE_DMA and
5705 * ZONE_NORMAL.
1da177e4 5706 */
ebec3862 5707unsigned long nr_free_buffer_pages(void)
1da177e4 5708{
af4ca457 5709 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5710}
c2f1a551 5711EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5712
08e0f6a9 5713static inline void show_node(struct zone *zone)
1da177e4 5714{
e5adfffc 5715 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5716 printk("Node %d ", zone_to_nid(zone));
1da177e4 5717}
1da177e4 5718
d02bd27b
IR
5719long si_mem_available(void)
5720{
5721 long available;
5722 unsigned long pagecache;
5723 unsigned long wmark_low = 0;
5724 unsigned long pages[NR_LRU_LISTS];
b29940c1 5725 unsigned long reclaimable;
d02bd27b
IR
5726 struct zone *zone;
5727 int lru;
5728
5729 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5730 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5731
5732 for_each_zone(zone)
a9214443 5733 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5734
5735 /*
5736 * Estimate the amount of memory available for userspace allocations,
5737 * without causing swapping.
5738 */
c41f012a 5739 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5740
5741 /*
5742 * Not all the page cache can be freed, otherwise the system will
5743 * start swapping. Assume at least half of the page cache, or the
5744 * low watermark worth of cache, needs to stay.
5745 */
5746 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5747 pagecache -= min(pagecache / 2, wmark_low);
5748 available += pagecache;
5749
5750 /*
b29940c1
VB
5751 * Part of the reclaimable slab and other kernel memory consists of
5752 * items that are in use, and cannot be freed. Cap this estimate at the
5753 * low watermark.
d02bd27b 5754 */
d42f3245
RG
5755 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5756 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5757 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5758
d02bd27b
IR
5759 if (available < 0)
5760 available = 0;
5761 return available;
5762}
5763EXPORT_SYMBOL_GPL(si_mem_available);
5764
1da177e4
LT
5765void si_meminfo(struct sysinfo *val)
5766{
ca79b0c2 5767 val->totalram = totalram_pages();
11fb9989 5768 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5769 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5770 val->bufferram = nr_blockdev_pages();
ca79b0c2 5771 val->totalhigh = totalhigh_pages();
1da177e4 5772 val->freehigh = nr_free_highpages();
1da177e4
LT
5773 val->mem_unit = PAGE_SIZE;
5774}
5775
5776EXPORT_SYMBOL(si_meminfo);
5777
5778#ifdef CONFIG_NUMA
5779void si_meminfo_node(struct sysinfo *val, int nid)
5780{
cdd91a77
JL
5781 int zone_type; /* needs to be signed */
5782 unsigned long managed_pages = 0;
fc2bd799
JK
5783 unsigned long managed_highpages = 0;
5784 unsigned long free_highpages = 0;
1da177e4
LT
5785 pg_data_t *pgdat = NODE_DATA(nid);
5786
cdd91a77 5787 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5788 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5789 val->totalram = managed_pages;
11fb9989 5790 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5791 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5792#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5793 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5794 struct zone *zone = &pgdat->node_zones[zone_type];
5795
5796 if (is_highmem(zone)) {
9705bea5 5797 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5798 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5799 }
5800 }
5801 val->totalhigh = managed_highpages;
5802 val->freehigh = free_highpages;
98d2b0eb 5803#else
fc2bd799
JK
5804 val->totalhigh = managed_highpages;
5805 val->freehigh = free_highpages;
98d2b0eb 5806#endif
1da177e4
LT
5807 val->mem_unit = PAGE_SIZE;
5808}
5809#endif
5810
ddd588b5 5811/*
7bf02ea2
DR
5812 * Determine whether the node should be displayed or not, depending on whether
5813 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5814 */
9af744d7 5815static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5816{
ddd588b5 5817 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5818 return false;
ddd588b5 5819
9af744d7
MH
5820 /*
5821 * no node mask - aka implicit memory numa policy. Do not bother with
5822 * the synchronization - read_mems_allowed_begin - because we do not
5823 * have to be precise here.
5824 */
5825 if (!nodemask)
5826 nodemask = &cpuset_current_mems_allowed;
5827
5828 return !node_isset(nid, *nodemask);
ddd588b5
DR
5829}
5830
1da177e4
LT
5831#define K(x) ((x) << (PAGE_SHIFT-10))
5832
377e4f16
RV
5833static void show_migration_types(unsigned char type)
5834{
5835 static const char types[MIGRATE_TYPES] = {
5836 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5837 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5838 [MIGRATE_RECLAIMABLE] = 'E',
5839 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5840#ifdef CONFIG_CMA
5841 [MIGRATE_CMA] = 'C',
5842#endif
194159fb 5843#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5844 [MIGRATE_ISOLATE] = 'I',
194159fb 5845#endif
377e4f16
RV
5846 };
5847 char tmp[MIGRATE_TYPES + 1];
5848 char *p = tmp;
5849 int i;
5850
5851 for (i = 0; i < MIGRATE_TYPES; i++) {
5852 if (type & (1 << i))
5853 *p++ = types[i];
5854 }
5855
5856 *p = '\0';
1f84a18f 5857 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5858}
5859
1da177e4
LT
5860/*
5861 * Show free area list (used inside shift_scroll-lock stuff)
5862 * We also calculate the percentage fragmentation. We do this by counting the
5863 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5864 *
5865 * Bits in @filter:
5866 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5867 * cpuset.
1da177e4 5868 */
9af744d7 5869void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5870{
d1bfcdb8 5871 unsigned long free_pcp = 0;
c7241913 5872 int cpu;
1da177e4 5873 struct zone *zone;
599d0c95 5874 pg_data_t *pgdat;
1da177e4 5875
ee99c71c 5876 for_each_populated_zone(zone) {
9af744d7 5877 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5878 continue;
d1bfcdb8 5879
761b0677 5880 for_each_online_cpu(cpu)
28f836b6 5881 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5882 }
5883
a731286d
KM
5884 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5885 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5886 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5887 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5888 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5889 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5890 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5891 global_node_page_state(NR_ACTIVE_ANON),
5892 global_node_page_state(NR_INACTIVE_ANON),
5893 global_node_page_state(NR_ISOLATED_ANON),
5894 global_node_page_state(NR_ACTIVE_FILE),
5895 global_node_page_state(NR_INACTIVE_FILE),
5896 global_node_page_state(NR_ISOLATED_FILE),
5897 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5898 global_node_page_state(NR_FILE_DIRTY),
5899 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5900 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5901 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5902 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5903 global_node_page_state(NR_SHMEM),
f0c0c115 5904 global_node_page_state(NR_PAGETABLE),
c41f012a 5905 global_zone_page_state(NR_BOUNCE),
eb2169ce 5906 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5907 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5908 free_pcp,
c41f012a 5909 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5910
599d0c95 5911 for_each_online_pgdat(pgdat) {
9af744d7 5912 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5913 continue;
5914
599d0c95
MG
5915 printk("Node %d"
5916 " active_anon:%lukB"
5917 " inactive_anon:%lukB"
5918 " active_file:%lukB"
5919 " inactive_file:%lukB"
5920 " unevictable:%lukB"
5921 " isolated(anon):%lukB"
5922 " isolated(file):%lukB"
50658e2e 5923 " mapped:%lukB"
11fb9989
MG
5924 " dirty:%lukB"
5925 " writeback:%lukB"
5926 " shmem:%lukB"
5927#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5928 " shmem_thp: %lukB"
5929 " shmem_pmdmapped: %lukB"
5930 " anon_thp: %lukB"
5931#endif
5932 " writeback_tmp:%lukB"
991e7673
SB
5933 " kernel_stack:%lukB"
5934#ifdef CONFIG_SHADOW_CALL_STACK
5935 " shadow_call_stack:%lukB"
5936#endif
f0c0c115 5937 " pagetables:%lukB"
599d0c95
MG
5938 " all_unreclaimable? %s"
5939 "\n",
5940 pgdat->node_id,
5941 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5942 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5943 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5944 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5945 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5946 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5947 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5948 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5949 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5950 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5951 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5952#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5953 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5954 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5955 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5956#endif
11fb9989 5957 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5958 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5959#ifdef CONFIG_SHADOW_CALL_STACK
5960 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5961#endif
f0c0c115 5962 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5963 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5964 "yes" : "no");
599d0c95
MG
5965 }
5966
ee99c71c 5967 for_each_populated_zone(zone) {
1da177e4
LT
5968 int i;
5969
9af744d7 5970 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5971 continue;
d1bfcdb8
KK
5972
5973 free_pcp = 0;
5974 for_each_online_cpu(cpu)
28f836b6 5975 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 5976
1da177e4 5977 show_node(zone);
1f84a18f
JP
5978 printk(KERN_CONT
5979 "%s"
1da177e4
LT
5980 " free:%lukB"
5981 " min:%lukB"
5982 " low:%lukB"
5983 " high:%lukB"
e47b346a 5984 " reserved_highatomic:%luKB"
71c799f4
MK
5985 " active_anon:%lukB"
5986 " inactive_anon:%lukB"
5987 " active_file:%lukB"
5988 " inactive_file:%lukB"
5989 " unevictable:%lukB"
5a1c84b4 5990 " writepending:%lukB"
1da177e4 5991 " present:%lukB"
9feedc9d 5992 " managed:%lukB"
4a0aa73f 5993 " mlocked:%lukB"
4a0aa73f 5994 " bounce:%lukB"
d1bfcdb8
KK
5995 " free_pcp:%lukB"
5996 " local_pcp:%ukB"
d1ce749a 5997 " free_cma:%lukB"
1da177e4
LT
5998 "\n",
5999 zone->name,
88f5acf8 6000 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
6001 K(min_wmark_pages(zone)),
6002 K(low_wmark_pages(zone)),
6003 K(high_wmark_pages(zone)),
e47b346a 6004 K(zone->nr_reserved_highatomic),
71c799f4
MK
6005 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6006 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6007 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6008 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6009 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6010 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6011 K(zone->present_pages),
9705bea5 6012 K(zone_managed_pages(zone)),
4a0aa73f 6013 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6014 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6015 K(free_pcp),
28f836b6 6016 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6017 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6018 printk("lowmem_reserve[]:");
6019 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6020 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6021 printk(KERN_CONT "\n");
1da177e4
LT
6022 }
6023
ee99c71c 6024 for_each_populated_zone(zone) {
d00181b9
KS
6025 unsigned int order;
6026 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6027 unsigned char types[MAX_ORDER];
1da177e4 6028
9af744d7 6029 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6030 continue;
1da177e4 6031 show_node(zone);
1f84a18f 6032 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6033
6034 spin_lock_irqsave(&zone->lock, flags);
6035 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6036 struct free_area *area = &zone->free_area[order];
6037 int type;
6038
6039 nr[order] = area->nr_free;
8f9de51a 6040 total += nr[order] << order;
377e4f16
RV
6041
6042 types[order] = 0;
6043 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6044 if (!free_area_empty(area, type))
377e4f16
RV
6045 types[order] |= 1 << type;
6046 }
1da177e4
LT
6047 }
6048 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6049 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6050 printk(KERN_CONT "%lu*%lukB ",
6051 nr[order], K(1UL) << order);
377e4f16
RV
6052 if (nr[order])
6053 show_migration_types(types[order]);
6054 }
1f84a18f 6055 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6056 }
6057
949f7ec5
DR
6058 hugetlb_show_meminfo();
6059
11fb9989 6060 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6061
1da177e4
LT
6062 show_swap_cache_info();
6063}
6064
19770b32
MG
6065static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6066{
6067 zoneref->zone = zone;
6068 zoneref->zone_idx = zone_idx(zone);
6069}
6070
1da177e4
LT
6071/*
6072 * Builds allocation fallback zone lists.
1a93205b
CL
6073 *
6074 * Add all populated zones of a node to the zonelist.
1da177e4 6075 */
9d3be21b 6076static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6077{
1a93205b 6078 struct zone *zone;
bc732f1d 6079 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6080 int nr_zones = 0;
02a68a5e
CL
6081
6082 do {
2f6726e5 6083 zone_type--;
070f8032 6084 zone = pgdat->node_zones + zone_type;
6aa303de 6085 if (managed_zone(zone)) {
9d3be21b 6086 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6087 check_highest_zone(zone_type);
1da177e4 6088 }
2f6726e5 6089 } while (zone_type);
bc732f1d 6090
070f8032 6091 return nr_zones;
1da177e4
LT
6092}
6093
6094#ifdef CONFIG_NUMA
f0c0b2b8
KH
6095
6096static int __parse_numa_zonelist_order(char *s)
6097{
c9bff3ee 6098 /*
f0953a1b 6099 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6100 * out to be just not useful. Let's keep the warning in place
6101 * if somebody still use the cmd line parameter so that we do
6102 * not fail it silently
6103 */
6104 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6105 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6106 return -EINVAL;
6107 }
6108 return 0;
6109}
6110
c9bff3ee
MH
6111char numa_zonelist_order[] = "Node";
6112
f0c0b2b8
KH
6113/*
6114 * sysctl handler for numa_zonelist_order
6115 */
cccad5b9 6116int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6117 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6118{
32927393
CH
6119 if (write)
6120 return __parse_numa_zonelist_order(buffer);
6121 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6122}
6123
6124
62bc62a8 6125#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
6126static int node_load[MAX_NUMNODES];
6127
1da177e4 6128/**
4dc3b16b 6129 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6130 * @node: node whose fallback list we're appending
6131 * @used_node_mask: nodemask_t of already used nodes
6132 *
6133 * We use a number of factors to determine which is the next node that should
6134 * appear on a given node's fallback list. The node should not have appeared
6135 * already in @node's fallback list, and it should be the next closest node
6136 * according to the distance array (which contains arbitrary distance values
6137 * from each node to each node in the system), and should also prefer nodes
6138 * with no CPUs, since presumably they'll have very little allocation pressure
6139 * on them otherwise.
a862f68a
MR
6140 *
6141 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6142 */
79c28a41 6143int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6144{
4cf808eb 6145 int n, val;
1da177e4 6146 int min_val = INT_MAX;
00ef2d2f 6147 int best_node = NUMA_NO_NODE;
1da177e4 6148
4cf808eb
LT
6149 /* Use the local node if we haven't already */
6150 if (!node_isset(node, *used_node_mask)) {
6151 node_set(node, *used_node_mask);
6152 return node;
6153 }
1da177e4 6154
4b0ef1fe 6155 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6156
6157 /* Don't want a node to appear more than once */
6158 if (node_isset(n, *used_node_mask))
6159 continue;
6160
1da177e4
LT
6161 /* Use the distance array to find the distance */
6162 val = node_distance(node, n);
6163
4cf808eb
LT
6164 /* Penalize nodes under us ("prefer the next node") */
6165 val += (n < node);
6166
1da177e4 6167 /* Give preference to headless and unused nodes */
b630749f 6168 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6169 val += PENALTY_FOR_NODE_WITH_CPUS;
6170
6171 /* Slight preference for less loaded node */
6172 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6173 val += node_load[n];
6174
6175 if (val < min_val) {
6176 min_val = val;
6177 best_node = n;
6178 }
6179 }
6180
6181 if (best_node >= 0)
6182 node_set(best_node, *used_node_mask);
6183
6184 return best_node;
6185}
6186
f0c0b2b8
KH
6187
6188/*
6189 * Build zonelists ordered by node and zones within node.
6190 * This results in maximum locality--normal zone overflows into local
6191 * DMA zone, if any--but risks exhausting DMA zone.
6192 */
9d3be21b
MH
6193static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6194 unsigned nr_nodes)
1da177e4 6195{
9d3be21b
MH
6196 struct zoneref *zonerefs;
6197 int i;
6198
6199 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6200
6201 for (i = 0; i < nr_nodes; i++) {
6202 int nr_zones;
6203
6204 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6205
9d3be21b
MH
6206 nr_zones = build_zonerefs_node(node, zonerefs);
6207 zonerefs += nr_zones;
6208 }
6209 zonerefs->zone = NULL;
6210 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6211}
6212
523b9458
CL
6213/*
6214 * Build gfp_thisnode zonelists
6215 */
6216static void build_thisnode_zonelists(pg_data_t *pgdat)
6217{
9d3be21b
MH
6218 struct zoneref *zonerefs;
6219 int nr_zones;
523b9458 6220
9d3be21b
MH
6221 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6222 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6223 zonerefs += nr_zones;
6224 zonerefs->zone = NULL;
6225 zonerefs->zone_idx = 0;
523b9458
CL
6226}
6227
f0c0b2b8
KH
6228/*
6229 * Build zonelists ordered by zone and nodes within zones.
6230 * This results in conserving DMA zone[s] until all Normal memory is
6231 * exhausted, but results in overflowing to remote node while memory
6232 * may still exist in local DMA zone.
6233 */
f0c0b2b8 6234
f0c0b2b8
KH
6235static void build_zonelists(pg_data_t *pgdat)
6236{
9d3be21b
MH
6237 static int node_order[MAX_NUMNODES];
6238 int node, load, nr_nodes = 0;
d0ddf49b 6239 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6240 int local_node, prev_node;
1da177e4
LT
6241
6242 /* NUMA-aware ordering of nodes */
6243 local_node = pgdat->node_id;
62bc62a8 6244 load = nr_online_nodes;
1da177e4 6245 prev_node = local_node;
f0c0b2b8 6246
f0c0b2b8 6247 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6248 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6249 /*
6250 * We don't want to pressure a particular node.
6251 * So adding penalty to the first node in same
6252 * distance group to make it round-robin.
6253 */
957f822a
DR
6254 if (node_distance(local_node, node) !=
6255 node_distance(local_node, prev_node))
f0c0b2b8
KH
6256 node_load[node] = load;
6257
9d3be21b 6258 node_order[nr_nodes++] = node;
1da177e4
LT
6259 prev_node = node;
6260 load--;
1da177e4 6261 }
523b9458 6262
9d3be21b 6263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6264 build_thisnode_zonelists(pgdat);
1da177e4
LT
6265}
6266
7aac7898
LS
6267#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6268/*
6269 * Return node id of node used for "local" allocations.
6270 * I.e., first node id of first zone in arg node's generic zonelist.
6271 * Used for initializing percpu 'numa_mem', which is used primarily
6272 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6273 */
6274int local_memory_node(int node)
6275{
c33d6c06 6276 struct zoneref *z;
7aac7898 6277
c33d6c06 6278 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6279 gfp_zone(GFP_KERNEL),
c33d6c06 6280 NULL);
c1093b74 6281 return zone_to_nid(z->zone);
7aac7898
LS
6282}
6283#endif
f0c0b2b8 6284
6423aa81
JK
6285static void setup_min_unmapped_ratio(void);
6286static void setup_min_slab_ratio(void);
1da177e4
LT
6287#else /* CONFIG_NUMA */
6288
f0c0b2b8 6289static void build_zonelists(pg_data_t *pgdat)
1da177e4 6290{
19655d34 6291 int node, local_node;
9d3be21b
MH
6292 struct zoneref *zonerefs;
6293 int nr_zones;
1da177e4
LT
6294
6295 local_node = pgdat->node_id;
1da177e4 6296
9d3be21b
MH
6297 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6298 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6299 zonerefs += nr_zones;
1da177e4 6300
54a6eb5c
MG
6301 /*
6302 * Now we build the zonelist so that it contains the zones
6303 * of all the other nodes.
6304 * We don't want to pressure a particular node, so when
6305 * building the zones for node N, we make sure that the
6306 * zones coming right after the local ones are those from
6307 * node N+1 (modulo N)
6308 */
6309 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6310 if (!node_online(node))
6311 continue;
9d3be21b
MH
6312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6313 zonerefs += nr_zones;
1da177e4 6314 }
54a6eb5c
MG
6315 for (node = 0; node < local_node; node++) {
6316 if (!node_online(node))
6317 continue;
9d3be21b
MH
6318 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6319 zonerefs += nr_zones;
54a6eb5c
MG
6320 }
6321
9d3be21b
MH
6322 zonerefs->zone = NULL;
6323 zonerefs->zone_idx = 0;
1da177e4
LT
6324}
6325
6326#endif /* CONFIG_NUMA */
6327
99dcc3e5
CL
6328/*
6329 * Boot pageset table. One per cpu which is going to be used for all
6330 * zones and all nodes. The parameters will be set in such a way
6331 * that an item put on a list will immediately be handed over to
6332 * the buddy list. This is safe since pageset manipulation is done
6333 * with interrupts disabled.
6334 *
6335 * The boot_pagesets must be kept even after bootup is complete for
6336 * unused processors and/or zones. They do play a role for bootstrapping
6337 * hotplugged processors.
6338 *
6339 * zoneinfo_show() and maybe other functions do
6340 * not check if the processor is online before following the pageset pointer.
6341 * Other parts of the kernel may not check if the zone is available.
6342 */
28f836b6 6343static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6344/* These effectively disable the pcplists in the boot pageset completely */
6345#define BOOT_PAGESET_HIGH 0
6346#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6347static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6348static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
385386cf 6349static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6350
11cd8638 6351static void __build_all_zonelists(void *data)
1da177e4 6352{
6811378e 6353 int nid;
afb6ebb3 6354 int __maybe_unused cpu;
9adb62a5 6355 pg_data_t *self = data;
b93e0f32
MH
6356 static DEFINE_SPINLOCK(lock);
6357
6358 spin_lock(&lock);
9276b1bc 6359
7f9cfb31
BL
6360#ifdef CONFIG_NUMA
6361 memset(node_load, 0, sizeof(node_load));
6362#endif
9adb62a5 6363
c1152583
WY
6364 /*
6365 * This node is hotadded and no memory is yet present. So just
6366 * building zonelists is fine - no need to touch other nodes.
6367 */
9adb62a5
JL
6368 if (self && !node_online(self->node_id)) {
6369 build_zonelists(self);
c1152583
WY
6370 } else {
6371 for_each_online_node(nid) {
6372 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6373
c1152583
WY
6374 build_zonelists(pgdat);
6375 }
99dcc3e5 6376
7aac7898
LS
6377#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6378 /*
6379 * We now know the "local memory node" for each node--
6380 * i.e., the node of the first zone in the generic zonelist.
6381 * Set up numa_mem percpu variable for on-line cpus. During
6382 * boot, only the boot cpu should be on-line; we'll init the
6383 * secondary cpus' numa_mem as they come on-line. During
6384 * node/memory hotplug, we'll fixup all on-line cpus.
6385 */
d9c9a0b9 6386 for_each_online_cpu(cpu)
7aac7898 6387 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6388#endif
d9c9a0b9 6389 }
b93e0f32
MH
6390
6391 spin_unlock(&lock);
6811378e
YG
6392}
6393
061f67bc
RV
6394static noinline void __init
6395build_all_zonelists_init(void)
6396{
afb6ebb3
MH
6397 int cpu;
6398
061f67bc 6399 __build_all_zonelists(NULL);
afb6ebb3
MH
6400
6401 /*
6402 * Initialize the boot_pagesets that are going to be used
6403 * for bootstrapping processors. The real pagesets for
6404 * each zone will be allocated later when the per cpu
6405 * allocator is available.
6406 *
6407 * boot_pagesets are used also for bootstrapping offline
6408 * cpus if the system is already booted because the pagesets
6409 * are needed to initialize allocators on a specific cpu too.
6410 * F.e. the percpu allocator needs the page allocator which
6411 * needs the percpu allocator in order to allocate its pagesets
6412 * (a chicken-egg dilemma).
6413 */
6414 for_each_possible_cpu(cpu)
28f836b6 6415 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6416
061f67bc
RV
6417 mminit_verify_zonelist();
6418 cpuset_init_current_mems_allowed();
6419}
6420
4eaf3f64 6421/*
4eaf3f64 6422 * unless system_state == SYSTEM_BOOTING.
061f67bc 6423 *
72675e13 6424 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6425 * [protected by SYSTEM_BOOTING].
4eaf3f64 6426 */
72675e13 6427void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6428{
0a18e607
DH
6429 unsigned long vm_total_pages;
6430
6811378e 6431 if (system_state == SYSTEM_BOOTING) {
061f67bc 6432 build_all_zonelists_init();
6811378e 6433 } else {
11cd8638 6434 __build_all_zonelists(pgdat);
6811378e
YG
6435 /* cpuset refresh routine should be here */
6436 }
56b9413b
DH
6437 /* Get the number of free pages beyond high watermark in all zones. */
6438 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6439 /*
6440 * Disable grouping by mobility if the number of pages in the
6441 * system is too low to allow the mechanism to work. It would be
6442 * more accurate, but expensive to check per-zone. This check is
6443 * made on memory-hotadd so a system can start with mobility
6444 * disabled and enable it later
6445 */
d9c23400 6446 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6447 page_group_by_mobility_disabled = 1;
6448 else
6449 page_group_by_mobility_disabled = 0;
6450
ce0725f7 6451 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6452 nr_online_nodes,
756a025f
JP
6453 page_group_by_mobility_disabled ? "off" : "on",
6454 vm_total_pages);
f0c0b2b8 6455#ifdef CONFIG_NUMA
f88dfff5 6456 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6457#endif
1da177e4
LT
6458}
6459
a9a9e77f
PT
6460/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6461static bool __meminit
6462overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6463{
a9a9e77f
PT
6464 static struct memblock_region *r;
6465
6466 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6467 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6468 for_each_mem_region(r) {
a9a9e77f
PT
6469 if (*pfn < memblock_region_memory_end_pfn(r))
6470 break;
6471 }
6472 }
6473 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6474 memblock_is_mirror(r)) {
6475 *pfn = memblock_region_memory_end_pfn(r);
6476 return true;
6477 }
6478 }
a9a9e77f
PT
6479 return false;
6480}
6481
1da177e4
LT
6482/*
6483 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6484 * up by memblock_free_all() once the early boot process is
1da177e4 6485 * done. Non-atomic initialization, single-pass.
d882c006
DH
6486 *
6487 * All aligned pageblocks are initialized to the specified migratetype
6488 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6489 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6490 */
ab28cb6e 6491void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6492 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6493 enum meminit_context context,
6494 struct vmem_altmap *altmap, int migratetype)
1da177e4 6495{
a9a9e77f 6496 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6497 struct page *page;
1da177e4 6498
22b31eec
HD
6499 if (highest_memmap_pfn < end_pfn - 1)
6500 highest_memmap_pfn = end_pfn - 1;
6501
966cf44f 6502#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6503 /*
6504 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6505 * memory. We limit the total number of pages to initialize to just
6506 * those that might contain the memory mapping. We will defer the
6507 * ZONE_DEVICE page initialization until after we have released
6508 * the hotplug lock.
4b94ffdc 6509 */
966cf44f
AD
6510 if (zone == ZONE_DEVICE) {
6511 if (!altmap)
6512 return;
6513
6514 if (start_pfn == altmap->base_pfn)
6515 start_pfn += altmap->reserve;
6516 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6517 }
6518#endif
4b94ffdc 6519
948c436e 6520 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6521 /*
b72d0ffb
AM
6522 * There can be holes in boot-time mem_map[]s handed to this
6523 * function. They do not exist on hotplugged memory.
a2f3aa02 6524 */
c1d0da83 6525 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6526 if (overlap_memmap_init(zone, &pfn))
6527 continue;
dc2da7b4 6528 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6529 break;
a2f3aa02 6530 }
ac5d2539 6531
d0dc12e8
PT
6532 page = pfn_to_page(pfn);
6533 __init_single_page(page, pfn, zone, nid);
c1d0da83 6534 if (context == MEMINIT_HOTPLUG)
d483da5b 6535 __SetPageReserved(page);
d0dc12e8 6536
ac5d2539 6537 /*
d882c006
DH
6538 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6539 * such that unmovable allocations won't be scattered all
6540 * over the place during system boot.
ac5d2539 6541 */
4eb29bd9 6542 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6543 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6544 cond_resched();
ac5d2539 6545 }
948c436e 6546 pfn++;
1da177e4
LT
6547 }
6548}
6549
966cf44f
AD
6550#ifdef CONFIG_ZONE_DEVICE
6551void __ref memmap_init_zone_device(struct zone *zone,
6552 unsigned long start_pfn,
1f8d75c1 6553 unsigned long nr_pages,
966cf44f
AD
6554 struct dev_pagemap *pgmap)
6555{
1f8d75c1 6556 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6557 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6558 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6559 unsigned long zone_idx = zone_idx(zone);
6560 unsigned long start = jiffies;
6561 int nid = pgdat->node_id;
6562
46d945ae 6563 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6564 return;
6565
6566 /*
122e093c 6567 * The call to memmap_init should have already taken care
966cf44f
AD
6568 * of the pages reserved for the memmap, so we can just jump to
6569 * the end of that region and start processing the device pages.
6570 */
514caf23 6571 if (altmap) {
966cf44f 6572 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6573 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6574 }
6575
6576 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6577 struct page *page = pfn_to_page(pfn);
6578
6579 __init_single_page(page, pfn, zone_idx, nid);
6580
6581 /*
6582 * Mark page reserved as it will need to wait for onlining
6583 * phase for it to be fully associated with a zone.
6584 *
6585 * We can use the non-atomic __set_bit operation for setting
6586 * the flag as we are still initializing the pages.
6587 */
6588 __SetPageReserved(page);
6589
6590 /*
8a164fef
CH
6591 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6592 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6593 * ever freed or placed on a driver-private list.
966cf44f
AD
6594 */
6595 page->pgmap = pgmap;
8a164fef 6596 page->zone_device_data = NULL;
966cf44f
AD
6597
6598 /*
6599 * Mark the block movable so that blocks are reserved for
6600 * movable at startup. This will force kernel allocations
6601 * to reserve their blocks rather than leaking throughout
6602 * the address space during boot when many long-lived
6603 * kernel allocations are made.
6604 *
c1d0da83 6605 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6606 * because this is done early in section_activate()
966cf44f 6607 */
4eb29bd9 6608 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6609 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6610 cond_resched();
6611 }
6612 }
6613
fdc029b1 6614 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6615 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6616}
6617
6618#endif
1e548deb 6619static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6620{
7aeb09f9 6621 unsigned int order, t;
b2a0ac88
MG
6622 for_each_migratetype_order(order, t) {
6623 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6624 zone->free_area[order].nr_free = 0;
6625 }
6626}
6627
0740a50b
MR
6628/*
6629 * Only struct pages that correspond to ranges defined by memblock.memory
6630 * are zeroed and initialized by going through __init_single_page() during
122e093c 6631 * memmap_init_zone_range().
0740a50b
MR
6632 *
6633 * But, there could be struct pages that correspond to holes in
6634 * memblock.memory. This can happen because of the following reasons:
6635 * - physical memory bank size is not necessarily the exact multiple of the
6636 * arbitrary section size
6637 * - early reserved memory may not be listed in memblock.memory
6638 * - memory layouts defined with memmap= kernel parameter may not align
6639 * nicely with memmap sections
6640 *
6641 * Explicitly initialize those struct pages so that:
6642 * - PG_Reserved is set
6643 * - zone and node links point to zone and node that span the page if the
6644 * hole is in the middle of a zone
6645 * - zone and node links point to adjacent zone/node if the hole falls on
6646 * the zone boundary; the pages in such holes will be prepended to the
6647 * zone/node above the hole except for the trailing pages in the last
6648 * section that will be appended to the zone/node below.
6649 */
122e093c
MR
6650static void __init init_unavailable_range(unsigned long spfn,
6651 unsigned long epfn,
6652 int zone, int node)
0740a50b
MR
6653{
6654 unsigned long pfn;
6655 u64 pgcnt = 0;
6656
6657 for (pfn = spfn; pfn < epfn; pfn++) {
6658 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6659 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6660 + pageblock_nr_pages - 1;
6661 continue;
6662 }
6663 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6664 __SetPageReserved(pfn_to_page(pfn));
6665 pgcnt++;
6666 }
6667
122e093c
MR
6668 if (pgcnt)
6669 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6670 node, zone_names[zone], pgcnt);
0740a50b 6671}
0740a50b 6672
122e093c
MR
6673static void __init memmap_init_zone_range(struct zone *zone,
6674 unsigned long start_pfn,
6675 unsigned long end_pfn,
6676 unsigned long *hole_pfn)
dfb3ccd0 6677{
3256ff83
BH
6678 unsigned long zone_start_pfn = zone->zone_start_pfn;
6679 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6680 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6681
6682 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6683 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6684
6685 if (start_pfn >= end_pfn)
6686 return;
6687
6688 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6689 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6690
6691 if (*hole_pfn < start_pfn)
6692 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6693
6694 *hole_pfn = end_pfn;
6695}
6696
6697static void __init memmap_init(void)
6698{
73a6e474 6699 unsigned long start_pfn, end_pfn;
122e093c 6700 unsigned long hole_pfn = 0;
b346075f 6701 int i, j, zone_id = 0, nid;
73a6e474 6702
122e093c
MR
6703 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6704 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6705
122e093c
MR
6706 for (j = 0; j < MAX_NR_ZONES; j++) {
6707 struct zone *zone = node->node_zones + j;
0740a50b 6708
122e093c
MR
6709 if (!populated_zone(zone))
6710 continue;
0740a50b 6711
122e093c
MR
6712 memmap_init_zone_range(zone, start_pfn, end_pfn,
6713 &hole_pfn);
6714 zone_id = j;
6715 }
73a6e474 6716 }
0740a50b
MR
6717
6718#ifdef CONFIG_SPARSEMEM
6719 /*
122e093c
MR
6720 * Initialize the memory map for hole in the range [memory_end,
6721 * section_end].
6722 * Append the pages in this hole to the highest zone in the last
6723 * node.
6724 * The call to init_unavailable_range() is outside the ifdef to
6725 * silence the compiler warining about zone_id set but not used;
6726 * for FLATMEM it is a nop anyway
0740a50b 6727 */
122e093c 6728 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6729 if (hole_pfn < end_pfn)
0740a50b 6730#endif
122e093c 6731 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6732}
1da177e4 6733
c803b3c8
MR
6734void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6735 phys_addr_t min_addr, int nid, bool exact_nid)
6736{
6737 void *ptr;
6738
6739 if (exact_nid)
6740 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6741 MEMBLOCK_ALLOC_ACCESSIBLE,
6742 nid);
6743 else
6744 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6745 MEMBLOCK_ALLOC_ACCESSIBLE,
6746 nid);
6747
6748 if (ptr && size > 0)
6749 page_init_poison(ptr, size);
6750
6751 return ptr;
6752}
6753
7cd2b0a3 6754static int zone_batchsize(struct zone *zone)
e7c8d5c9 6755{
3a6be87f 6756#ifdef CONFIG_MMU
e7c8d5c9
CL
6757 int batch;
6758
6759 /*
b92ca18e
MG
6760 * The number of pages to batch allocate is either ~0.1%
6761 * of the zone or 1MB, whichever is smaller. The batch
6762 * size is striking a balance between allocation latency
6763 * and zone lock contention.
e7c8d5c9 6764 */
b92ca18e 6765 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6766 batch /= 4; /* We effectively *= 4 below */
6767 if (batch < 1)
6768 batch = 1;
6769
6770 /*
0ceaacc9
NP
6771 * Clamp the batch to a 2^n - 1 value. Having a power
6772 * of 2 value was found to be more likely to have
6773 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6774 *
0ceaacc9
NP
6775 * For example if 2 tasks are alternately allocating
6776 * batches of pages, one task can end up with a lot
6777 * of pages of one half of the possible page colors
6778 * and the other with pages of the other colors.
e7c8d5c9 6779 */
9155203a 6780 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6781
e7c8d5c9 6782 return batch;
3a6be87f
DH
6783
6784#else
6785 /* The deferral and batching of frees should be suppressed under NOMMU
6786 * conditions.
6787 *
6788 * The problem is that NOMMU needs to be able to allocate large chunks
6789 * of contiguous memory as there's no hardware page translation to
6790 * assemble apparent contiguous memory from discontiguous pages.
6791 *
6792 * Queueing large contiguous runs of pages for batching, however,
6793 * causes the pages to actually be freed in smaller chunks. As there
6794 * can be a significant delay between the individual batches being
6795 * recycled, this leads to the once large chunks of space being
6796 * fragmented and becoming unavailable for high-order allocations.
6797 */
6798 return 0;
6799#endif
e7c8d5c9
CL
6800}
6801
04f8cfea 6802static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6803{
6804#ifdef CONFIG_MMU
6805 int high;
203c06ee 6806 int nr_split_cpus;
74f44822
MG
6807 unsigned long total_pages;
6808
6809 if (!percpu_pagelist_high_fraction) {
6810 /*
6811 * By default, the high value of the pcp is based on the zone
6812 * low watermark so that if they are full then background
6813 * reclaim will not be started prematurely.
6814 */
6815 total_pages = low_wmark_pages(zone);
6816 } else {
6817 /*
6818 * If percpu_pagelist_high_fraction is configured, the high
6819 * value is based on a fraction of the managed pages in the
6820 * zone.
6821 */
6822 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6823 }
b92ca18e
MG
6824
6825 /*
74f44822
MG
6826 * Split the high value across all online CPUs local to the zone. Note
6827 * that early in boot that CPUs may not be online yet and that during
6828 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6829 * onlined. For memory nodes that have no CPUs, split pcp->high across
6830 * all online CPUs to mitigate the risk that reclaim is triggered
6831 * prematurely due to pages stored on pcp lists.
b92ca18e 6832 */
203c06ee
MG
6833 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6834 if (!nr_split_cpus)
6835 nr_split_cpus = num_online_cpus();
6836 high = total_pages / nr_split_cpus;
b92ca18e
MG
6837
6838 /*
6839 * Ensure high is at least batch*4. The multiple is based on the
6840 * historical relationship between high and batch.
6841 */
6842 high = max(high, batch << 2);
6843
6844 return high;
6845#else
6846 return 0;
6847#endif
6848}
6849
8d7a8fa9 6850/*
5c3ad2eb
VB
6851 * pcp->high and pcp->batch values are related and generally batch is lower
6852 * than high. They are also related to pcp->count such that count is lower
6853 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6854 *
5c3ad2eb
VB
6855 * However, guaranteeing these relations at all times would require e.g. write
6856 * barriers here but also careful usage of read barriers at the read side, and
6857 * thus be prone to error and bad for performance. Thus the update only prevents
6858 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6859 * can cope with those fields changing asynchronously, and fully trust only the
6860 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6861 *
6862 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6863 * outside of boot time (or some other assurance that no concurrent updaters
6864 * exist).
6865 */
6866static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6867 unsigned long batch)
6868{
5c3ad2eb
VB
6869 WRITE_ONCE(pcp->batch, batch);
6870 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6871}
6872
28f836b6 6873static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6874{
44042b44 6875 int pindex;
2caaad41 6876
28f836b6
MG
6877 memset(pcp, 0, sizeof(*pcp));
6878 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6879
44042b44
MG
6880 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6881 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6882
69a8396a
VB
6883 /*
6884 * Set batch and high values safe for a boot pageset. A true percpu
6885 * pageset's initialization will update them subsequently. Here we don't
6886 * need to be as careful as pageset_update() as nobody can access the
6887 * pageset yet.
6888 */
952eaf81
VB
6889 pcp->high = BOOT_PAGESET_HIGH;
6890 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6891 pcp->free_factor = 0;
88c90dbc
CS
6892}
6893
3b1f3658 6894static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6895 unsigned long batch)
6896{
28f836b6 6897 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6898 int cpu;
6899
6900 for_each_possible_cpu(cpu) {
28f836b6
MG
6901 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6902 pageset_update(pcp, high, batch);
ec6e8c7e
VB
6903 }
6904}
6905
8ad4b1fb 6906/*
0a8b4f1d 6907 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 6908 * zone based on the zone's size.
8ad4b1fb 6909 */
04f8cfea 6910static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 6911{
b92ca18e 6912 int new_high, new_batch;
7115ac6e 6913
b92ca18e 6914 new_batch = max(1, zone_batchsize(zone));
04f8cfea 6915 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 6916
952eaf81
VB
6917 if (zone->pageset_high == new_high &&
6918 zone->pageset_batch == new_batch)
6919 return;
6920
6921 zone->pageset_high = new_high;
6922 zone->pageset_batch = new_batch;
6923
ec6e8c7e 6924 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6925}
6926
72675e13 6927void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6928{
6929 int cpu;
0a8b4f1d 6930
28f836b6
MG
6931 /* Size may be 0 on !SMP && !NUMA */
6932 if (sizeof(struct per_cpu_zonestat) > 0)
6933 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6934
6935 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 6936 for_each_possible_cpu(cpu) {
28f836b6
MG
6937 struct per_cpu_pages *pcp;
6938 struct per_cpu_zonestat *pzstats;
6939
6940 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6941 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6942 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
6943 }
6944
04f8cfea 6945 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
6946}
6947
2caaad41 6948/*
99dcc3e5
CL
6949 * Allocate per cpu pagesets and initialize them.
6950 * Before this call only boot pagesets were available.
e7c8d5c9 6951 */
99dcc3e5 6952void __init setup_per_cpu_pageset(void)
e7c8d5c9 6953{
b4911ea2 6954 struct pglist_data *pgdat;
99dcc3e5 6955 struct zone *zone;
b418a0f9 6956 int __maybe_unused cpu;
e7c8d5c9 6957
319774e2
WF
6958 for_each_populated_zone(zone)
6959 setup_zone_pageset(zone);
b4911ea2 6960
b418a0f9
SD
6961#ifdef CONFIG_NUMA
6962 /*
6963 * Unpopulated zones continue using the boot pagesets.
6964 * The numa stats for these pagesets need to be reset.
6965 * Otherwise, they will end up skewing the stats of
6966 * the nodes these zones are associated with.
6967 */
6968 for_each_possible_cpu(cpu) {
28f836b6 6969 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
6970 memset(pzstats->vm_numa_event, 0,
6971 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
6972 }
6973#endif
6974
b4911ea2
MG
6975 for_each_online_pgdat(pgdat)
6976 pgdat->per_cpu_nodestats =
6977 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6978}
6979
c09b4240 6980static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6981{
99dcc3e5
CL
6982 /*
6983 * per cpu subsystem is not up at this point. The following code
6984 * relies on the ability of the linker to provide the
6985 * offset of a (static) per cpu variable into the per cpu area.
6986 */
28f836b6
MG
6987 zone->per_cpu_pageset = &boot_pageset;
6988 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
6989 zone->pageset_high = BOOT_PAGESET_HIGH;
6990 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6991
b38a8725 6992 if (populated_zone(zone))
9660ecaa
HK
6993 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6994 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
6995}
6996
dc0bbf3b 6997void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6998 unsigned long zone_start_pfn,
b171e409 6999 unsigned long size)
ed8ece2e
DH
7000{
7001 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7002 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7003
8f416836
WY
7004 if (zone_idx > pgdat->nr_zones)
7005 pgdat->nr_zones = zone_idx;
ed8ece2e 7006
ed8ece2e
DH
7007 zone->zone_start_pfn = zone_start_pfn;
7008
708614e6
MG
7009 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7010 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7011 pgdat->node_id,
7012 (unsigned long)zone_idx(zone),
7013 zone_start_pfn, (zone_start_pfn + size));
7014
1e548deb 7015 zone_init_free_lists(zone);
9dcb8b68 7016 zone->initialized = 1;
ed8ece2e
DH
7017}
7018
c713216d
MG
7019/**
7020 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7021 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7022 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7023 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7024 *
7025 * It returns the start and end page frame of a node based on information
7d018176 7026 * provided by memblock_set_node(). If called for a node
c713216d 7027 * with no available memory, a warning is printed and the start and end
88ca3b94 7028 * PFNs will be 0.
c713216d 7029 */
bbe5d993 7030void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7031 unsigned long *start_pfn, unsigned long *end_pfn)
7032{
c13291a5 7033 unsigned long this_start_pfn, this_end_pfn;
c713216d 7034 int i;
c13291a5 7035
c713216d
MG
7036 *start_pfn = -1UL;
7037 *end_pfn = 0;
7038
c13291a5
TH
7039 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7040 *start_pfn = min(*start_pfn, this_start_pfn);
7041 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7042 }
7043
633c0666 7044 if (*start_pfn == -1UL)
c713216d 7045 *start_pfn = 0;
c713216d
MG
7046}
7047
2a1e274a
MG
7048/*
7049 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7050 * assumption is made that zones within a node are ordered in monotonic
7051 * increasing memory addresses so that the "highest" populated zone is used
7052 */
b69a7288 7053static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7054{
7055 int zone_index;
7056 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7057 if (zone_index == ZONE_MOVABLE)
7058 continue;
7059
7060 if (arch_zone_highest_possible_pfn[zone_index] >
7061 arch_zone_lowest_possible_pfn[zone_index])
7062 break;
7063 }
7064
7065 VM_BUG_ON(zone_index == -1);
7066 movable_zone = zone_index;
7067}
7068
7069/*
7070 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7071 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7072 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7073 * in each node depending on the size of each node and how evenly kernelcore
7074 * is distributed. This helper function adjusts the zone ranges
7075 * provided by the architecture for a given node by using the end of the
7076 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7077 * zones within a node are in order of monotonic increases memory addresses
7078 */
bbe5d993 7079static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7080 unsigned long zone_type,
7081 unsigned long node_start_pfn,
7082 unsigned long node_end_pfn,
7083 unsigned long *zone_start_pfn,
7084 unsigned long *zone_end_pfn)
7085{
7086 /* Only adjust if ZONE_MOVABLE is on this node */
7087 if (zone_movable_pfn[nid]) {
7088 /* Size ZONE_MOVABLE */
7089 if (zone_type == ZONE_MOVABLE) {
7090 *zone_start_pfn = zone_movable_pfn[nid];
7091 *zone_end_pfn = min(node_end_pfn,
7092 arch_zone_highest_possible_pfn[movable_zone]);
7093
e506b996
XQ
7094 /* Adjust for ZONE_MOVABLE starting within this range */
7095 } else if (!mirrored_kernelcore &&
7096 *zone_start_pfn < zone_movable_pfn[nid] &&
7097 *zone_end_pfn > zone_movable_pfn[nid]) {
7098 *zone_end_pfn = zone_movable_pfn[nid];
7099
2a1e274a
MG
7100 /* Check if this whole range is within ZONE_MOVABLE */
7101 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7102 *zone_start_pfn = *zone_end_pfn;
7103 }
7104}
7105
c713216d
MG
7106/*
7107 * Return the number of pages a zone spans in a node, including holes
7108 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7109 */
bbe5d993 7110static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7111 unsigned long zone_type,
7960aedd
ZY
7112 unsigned long node_start_pfn,
7113 unsigned long node_end_pfn,
d91749c1 7114 unsigned long *zone_start_pfn,
854e8848 7115 unsigned long *zone_end_pfn)
c713216d 7116{
299c83dc
LF
7117 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7118 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7119 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7120 if (!node_start_pfn && !node_end_pfn)
7121 return 0;
7122
7960aedd 7123 /* Get the start and end of the zone */
299c83dc
LF
7124 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7125 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7126 adjust_zone_range_for_zone_movable(nid, zone_type,
7127 node_start_pfn, node_end_pfn,
d91749c1 7128 zone_start_pfn, zone_end_pfn);
c713216d
MG
7129
7130 /* Check that this node has pages within the zone's required range */
d91749c1 7131 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7132 return 0;
7133
7134 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7135 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7136 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7137
7138 /* Return the spanned pages */
d91749c1 7139 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7140}
7141
7142/*
7143 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7144 * then all holes in the requested range will be accounted for.
c713216d 7145 */
bbe5d993 7146unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7147 unsigned long range_start_pfn,
7148 unsigned long range_end_pfn)
7149{
96e907d1
TH
7150 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7151 unsigned long start_pfn, end_pfn;
7152 int i;
c713216d 7153
96e907d1
TH
7154 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7155 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7156 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7157 nr_absent -= end_pfn - start_pfn;
c713216d 7158 }
96e907d1 7159 return nr_absent;
c713216d
MG
7160}
7161
7162/**
7163 * absent_pages_in_range - Return number of page frames in holes within a range
7164 * @start_pfn: The start PFN to start searching for holes
7165 * @end_pfn: The end PFN to stop searching for holes
7166 *
a862f68a 7167 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7168 */
7169unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7170 unsigned long end_pfn)
7171{
7172 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7173}
7174
7175/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7176static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7177 unsigned long zone_type,
7960aedd 7178 unsigned long node_start_pfn,
854e8848 7179 unsigned long node_end_pfn)
c713216d 7180{
96e907d1
TH
7181 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7182 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7183 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7184 unsigned long nr_absent;
9c7cd687 7185
b5685e92 7186 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7187 if (!node_start_pfn && !node_end_pfn)
7188 return 0;
7189
96e907d1
TH
7190 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7191 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7192
2a1e274a
MG
7193 adjust_zone_range_for_zone_movable(nid, zone_type,
7194 node_start_pfn, node_end_pfn,
7195 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7196 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7197
7198 /*
7199 * ZONE_MOVABLE handling.
7200 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7201 * and vice versa.
7202 */
e506b996
XQ
7203 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7204 unsigned long start_pfn, end_pfn;
7205 struct memblock_region *r;
7206
cc6de168 7207 for_each_mem_region(r) {
e506b996
XQ
7208 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7209 zone_start_pfn, zone_end_pfn);
7210 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7211 zone_start_pfn, zone_end_pfn);
7212
7213 if (zone_type == ZONE_MOVABLE &&
7214 memblock_is_mirror(r))
7215 nr_absent += end_pfn - start_pfn;
7216
7217 if (zone_type == ZONE_NORMAL &&
7218 !memblock_is_mirror(r))
7219 nr_absent += end_pfn - start_pfn;
342332e6
TI
7220 }
7221 }
7222
7223 return nr_absent;
c713216d 7224}
0e0b864e 7225
bbe5d993 7226static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7227 unsigned long node_start_pfn,
854e8848 7228 unsigned long node_end_pfn)
c713216d 7229{
febd5949 7230 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7231 enum zone_type i;
7232
febd5949
GZ
7233 for (i = 0; i < MAX_NR_ZONES; i++) {
7234 struct zone *zone = pgdat->node_zones + i;
d91749c1 7235 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7236 unsigned long spanned, absent;
febd5949 7237 unsigned long size, real_size;
c713216d 7238
854e8848
MR
7239 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7240 node_start_pfn,
7241 node_end_pfn,
7242 &zone_start_pfn,
7243 &zone_end_pfn);
7244 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7245 node_start_pfn,
7246 node_end_pfn);
3f08a302
MR
7247
7248 size = spanned;
7249 real_size = size - absent;
7250
d91749c1
TI
7251 if (size)
7252 zone->zone_start_pfn = zone_start_pfn;
7253 else
7254 zone->zone_start_pfn = 0;
febd5949
GZ
7255 zone->spanned_pages = size;
7256 zone->present_pages = real_size;
4b097002
DH
7257#if defined(CONFIG_MEMORY_HOTPLUG)
7258 zone->present_early_pages = real_size;
7259#endif
febd5949
GZ
7260
7261 totalpages += size;
7262 realtotalpages += real_size;
7263 }
7264
7265 pgdat->node_spanned_pages = totalpages;
c713216d 7266 pgdat->node_present_pages = realtotalpages;
9660ecaa 7267 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7268}
7269
835c134e
MG
7270#ifndef CONFIG_SPARSEMEM
7271/*
7272 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7273 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7274 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7275 * round what is now in bits to nearest long in bits, then return it in
7276 * bytes.
7277 */
7c45512d 7278static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7279{
7280 unsigned long usemapsize;
7281
7c45512d 7282 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7283 usemapsize = roundup(zonesize, pageblock_nr_pages);
7284 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7285 usemapsize *= NR_PAGEBLOCK_BITS;
7286 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7287
7288 return usemapsize / 8;
7289}
7290
7010a6ec 7291static void __ref setup_usemap(struct zone *zone)
835c134e 7292{
7010a6ec
BH
7293 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7294 zone->spanned_pages);
835c134e 7295 zone->pageblock_flags = NULL;
23a7052a 7296 if (usemapsize) {
6782832e 7297 zone->pageblock_flags =
26fb3dae 7298 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7299 zone_to_nid(zone));
23a7052a
MR
7300 if (!zone->pageblock_flags)
7301 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7302 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7303 }
835c134e
MG
7304}
7305#else
7010a6ec 7306static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7307#endif /* CONFIG_SPARSEMEM */
7308
d9c23400 7309#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7310
d9c23400 7311/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7312void __init set_pageblock_order(void)
d9c23400 7313{
955c1cd7
AM
7314 unsigned int order;
7315
d9c23400
MG
7316 /* Check that pageblock_nr_pages has not already been setup */
7317 if (pageblock_order)
7318 return;
7319
955c1cd7
AM
7320 if (HPAGE_SHIFT > PAGE_SHIFT)
7321 order = HUGETLB_PAGE_ORDER;
7322 else
7323 order = MAX_ORDER - 1;
7324
d9c23400
MG
7325 /*
7326 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7327 * This value may be variable depending on boot parameters on IA64 and
7328 * powerpc.
d9c23400
MG
7329 */
7330 pageblock_order = order;
7331}
7332#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7333
ba72cb8c
MG
7334/*
7335 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7336 * is unused as pageblock_order is set at compile-time. See
7337 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7338 * the kernel config
ba72cb8c 7339 */
03e85f9d 7340void __init set_pageblock_order(void)
ba72cb8c 7341{
ba72cb8c 7342}
d9c23400
MG
7343
7344#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7345
03e85f9d 7346static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7347 unsigned long present_pages)
01cefaef
JL
7348{
7349 unsigned long pages = spanned_pages;
7350
7351 /*
7352 * Provide a more accurate estimation if there are holes within
7353 * the zone and SPARSEMEM is in use. If there are holes within the
7354 * zone, each populated memory region may cost us one or two extra
7355 * memmap pages due to alignment because memmap pages for each
89d790ab 7356 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7357 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7358 */
7359 if (spanned_pages > present_pages + (present_pages >> 4) &&
7360 IS_ENABLED(CONFIG_SPARSEMEM))
7361 pages = present_pages;
7362
7363 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7364}
7365
ace1db39
OS
7366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7367static void pgdat_init_split_queue(struct pglist_data *pgdat)
7368{
364c1eeb
YS
7369 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7370
7371 spin_lock_init(&ds_queue->split_queue_lock);
7372 INIT_LIST_HEAD(&ds_queue->split_queue);
7373 ds_queue->split_queue_len = 0;
ace1db39
OS
7374}
7375#else
7376static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7377#endif
7378
7379#ifdef CONFIG_COMPACTION
7380static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7381{
7382 init_waitqueue_head(&pgdat->kcompactd_wait);
7383}
7384#else
7385static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7386#endif
7387
03e85f9d 7388static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7389{
208d54e5 7390 pgdat_resize_init(pgdat);
ace1db39 7391
ace1db39
OS
7392 pgdat_init_split_queue(pgdat);
7393 pgdat_init_kcompactd(pgdat);
7394
1da177e4 7395 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7396 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7397
eefa864b 7398 pgdat_page_ext_init(pgdat);
867e5e1d 7399 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7400}
7401
7402static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7403 unsigned long remaining_pages)
7404{
9705bea5 7405 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7406 zone_set_nid(zone, nid);
7407 zone->name = zone_names[idx];
7408 zone->zone_pgdat = NODE_DATA(nid);
7409 spin_lock_init(&zone->lock);
7410 zone_seqlock_init(zone);
7411 zone_pcp_init(zone);
7412}
7413
7414/*
7415 * Set up the zone data structures
7416 * - init pgdat internals
7417 * - init all zones belonging to this node
7418 *
7419 * NOTE: this function is only called during memory hotplug
7420 */
7421#ifdef CONFIG_MEMORY_HOTPLUG
7422void __ref free_area_init_core_hotplug(int nid)
7423{
7424 enum zone_type z;
7425 pg_data_t *pgdat = NODE_DATA(nid);
7426
7427 pgdat_init_internals(pgdat);
7428 for (z = 0; z < MAX_NR_ZONES; z++)
7429 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7430}
7431#endif
7432
7433/*
7434 * Set up the zone data structures:
7435 * - mark all pages reserved
7436 * - mark all memory queues empty
7437 * - clear the memory bitmaps
7438 *
7439 * NOTE: pgdat should get zeroed by caller.
7440 * NOTE: this function is only called during early init.
7441 */
7442static void __init free_area_init_core(struct pglist_data *pgdat)
7443{
7444 enum zone_type j;
7445 int nid = pgdat->node_id;
5f63b720 7446
03e85f9d 7447 pgdat_init_internals(pgdat);
385386cf
JW
7448 pgdat->per_cpu_nodestats = &boot_nodestats;
7449
1da177e4
LT
7450 for (j = 0; j < MAX_NR_ZONES; j++) {
7451 struct zone *zone = pgdat->node_zones + j;
e6943859 7452 unsigned long size, freesize, memmap_pages;
1da177e4 7453
febd5949 7454 size = zone->spanned_pages;
e6943859 7455 freesize = zone->present_pages;
1da177e4 7456
0e0b864e 7457 /*
9feedc9d 7458 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7459 * is used by this zone for memmap. This affects the watermark
7460 * and per-cpu initialisations
7461 */
e6943859 7462 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7463 if (!is_highmem_idx(j)) {
7464 if (freesize >= memmap_pages) {
7465 freesize -= memmap_pages;
7466 if (memmap_pages)
9660ecaa
HK
7467 pr_debug(" %s zone: %lu pages used for memmap\n",
7468 zone_names[j], memmap_pages);
ba914f48 7469 } else
e47aa905 7470 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7471 zone_names[j], memmap_pages, freesize);
7472 }
0e0b864e 7473
6267276f 7474 /* Account for reserved pages */
9feedc9d
JL
7475 if (j == 0 && freesize > dma_reserve) {
7476 freesize -= dma_reserve;
9660ecaa 7477 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7478 }
7479
98d2b0eb 7480 if (!is_highmem_idx(j))
9feedc9d 7481 nr_kernel_pages += freesize;
01cefaef
JL
7482 /* Charge for highmem memmap if there are enough kernel pages */
7483 else if (nr_kernel_pages > memmap_pages * 2)
7484 nr_kernel_pages -= memmap_pages;
9feedc9d 7485 nr_all_pages += freesize;
1da177e4 7486
9feedc9d
JL
7487 /*
7488 * Set an approximate value for lowmem here, it will be adjusted
7489 * when the bootmem allocator frees pages into the buddy system.
7490 * And all highmem pages will be managed by the buddy system.
7491 */
03e85f9d 7492 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7493
d883c6cf 7494 if (!size)
1da177e4
LT
7495 continue;
7496
955c1cd7 7497 set_pageblock_order();
7010a6ec 7498 setup_usemap(zone);
9699ee7b 7499 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7500 }
7501}
7502
43b02ba9 7503#ifdef CONFIG_FLATMEM
3b446da6 7504static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7505{
b0aeba74 7506 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7507 unsigned long __maybe_unused offset = 0;
7508
1da177e4
LT
7509 /* Skip empty nodes */
7510 if (!pgdat->node_spanned_pages)
7511 return;
7512
b0aeba74
TL
7513 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7514 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7515 /* ia64 gets its own node_mem_map, before this, without bootmem */
7516 if (!pgdat->node_mem_map) {
b0aeba74 7517 unsigned long size, end;
d41dee36
AW
7518 struct page *map;
7519
e984bb43
BP
7520 /*
7521 * The zone's endpoints aren't required to be MAX_ORDER
7522 * aligned but the node_mem_map endpoints must be in order
7523 * for the buddy allocator to function correctly.
7524 */
108bcc96 7525 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7526 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7527 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7528 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7529 pgdat->node_id, false);
23a7052a
MR
7530 if (!map)
7531 panic("Failed to allocate %ld bytes for node %d memory map\n",
7532 size, pgdat->node_id);
a1c34a3b 7533 pgdat->node_mem_map = map + offset;
1da177e4 7534 }
0cd842f9
OS
7535 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7536 __func__, pgdat->node_id, (unsigned long)pgdat,
7537 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7538#ifndef CONFIG_NUMA
1da177e4
LT
7539 /*
7540 * With no DISCONTIG, the global mem_map is just set as node 0's
7541 */
c713216d 7542 if (pgdat == NODE_DATA(0)) {
1da177e4 7543 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7544 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7545 mem_map -= offset;
c713216d 7546 }
1da177e4
LT
7547#endif
7548}
0cd842f9 7549#else
3b446da6 7550static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7551#endif /* CONFIG_FLATMEM */
1da177e4 7552
0188dc98
OS
7553#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7554static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7555{
0188dc98
OS
7556 pgdat->first_deferred_pfn = ULONG_MAX;
7557}
7558#else
7559static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7560#endif
7561
854e8848 7562static void __init free_area_init_node(int nid)
1da177e4 7563{
9109fb7b 7564 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7565 unsigned long start_pfn = 0;
7566 unsigned long end_pfn = 0;
9109fb7b 7567
88fdf75d 7568 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7569 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7570
854e8848 7571 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7572
1da177e4 7573 pgdat->node_id = nid;
854e8848 7574 pgdat->node_start_pfn = start_pfn;
75ef7184 7575 pgdat->per_cpu_nodestats = NULL;
854e8848 7576
8d29e18a 7577 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7578 (u64)start_pfn << PAGE_SHIFT,
7579 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7580 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7581
7582 alloc_node_mem_map(pgdat);
0188dc98 7583 pgdat_set_deferred_range(pgdat);
1da177e4 7584
7f3eb55b 7585 free_area_init_core(pgdat);
1da177e4
LT
7586}
7587
bc9331a1 7588void __init free_area_init_memoryless_node(int nid)
3f08a302 7589{
854e8848 7590 free_area_init_node(nid);
3f08a302
MR
7591}
7592
418508c1
MS
7593#if MAX_NUMNODES > 1
7594/*
7595 * Figure out the number of possible node ids.
7596 */
f9872caf 7597void __init setup_nr_node_ids(void)
418508c1 7598{
904a9553 7599 unsigned int highest;
418508c1 7600
904a9553 7601 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7602 nr_node_ids = highest + 1;
7603}
418508c1
MS
7604#endif
7605
1e01979c
TH
7606/**
7607 * node_map_pfn_alignment - determine the maximum internode alignment
7608 *
7609 * This function should be called after node map is populated and sorted.
7610 * It calculates the maximum power of two alignment which can distinguish
7611 * all the nodes.
7612 *
7613 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7614 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7615 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7616 * shifted, 1GiB is enough and this function will indicate so.
7617 *
7618 * This is used to test whether pfn -> nid mapping of the chosen memory
7619 * model has fine enough granularity to avoid incorrect mapping for the
7620 * populated node map.
7621 *
a862f68a 7622 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7623 * requirement (single node).
7624 */
7625unsigned long __init node_map_pfn_alignment(void)
7626{
7627 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7628 unsigned long start, end, mask;
98fa15f3 7629 int last_nid = NUMA_NO_NODE;
c13291a5 7630 int i, nid;
1e01979c 7631
c13291a5 7632 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7633 if (!start || last_nid < 0 || last_nid == nid) {
7634 last_nid = nid;
7635 last_end = end;
7636 continue;
7637 }
7638
7639 /*
7640 * Start with a mask granular enough to pin-point to the
7641 * start pfn and tick off bits one-by-one until it becomes
7642 * too coarse to separate the current node from the last.
7643 */
7644 mask = ~((1 << __ffs(start)) - 1);
7645 while (mask && last_end <= (start & (mask << 1)))
7646 mask <<= 1;
7647
7648 /* accumulate all internode masks */
7649 accl_mask |= mask;
7650 }
7651
7652 /* convert mask to number of pages */
7653 return ~accl_mask + 1;
7654}
7655
c713216d
MG
7656/**
7657 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7658 *
a862f68a 7659 * Return: the minimum PFN based on information provided via
7d018176 7660 * memblock_set_node().
c713216d
MG
7661 */
7662unsigned long __init find_min_pfn_with_active_regions(void)
7663{
8a1b25fe 7664 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7665}
7666
37b07e41
LS
7667/*
7668 * early_calculate_totalpages()
7669 * Sum pages in active regions for movable zone.
4b0ef1fe 7670 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7671 */
484f51f8 7672static unsigned long __init early_calculate_totalpages(void)
7e63efef 7673{
7e63efef 7674 unsigned long totalpages = 0;
c13291a5
TH
7675 unsigned long start_pfn, end_pfn;
7676 int i, nid;
7677
7678 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7679 unsigned long pages = end_pfn - start_pfn;
7e63efef 7680
37b07e41
LS
7681 totalpages += pages;
7682 if (pages)
4b0ef1fe 7683 node_set_state(nid, N_MEMORY);
37b07e41 7684 }
b8af2941 7685 return totalpages;
7e63efef
MG
7686}
7687
2a1e274a
MG
7688/*
7689 * Find the PFN the Movable zone begins in each node. Kernel memory
7690 * is spread evenly between nodes as long as the nodes have enough
7691 * memory. When they don't, some nodes will have more kernelcore than
7692 * others
7693 */
b224ef85 7694static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7695{
7696 int i, nid;
7697 unsigned long usable_startpfn;
7698 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7699 /* save the state before borrow the nodemask */
4b0ef1fe 7700 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7701 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7702 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7703 struct memblock_region *r;
b2f3eebe
TC
7704
7705 /* Need to find movable_zone earlier when movable_node is specified. */
7706 find_usable_zone_for_movable();
7707
7708 /*
7709 * If movable_node is specified, ignore kernelcore and movablecore
7710 * options.
7711 */
7712 if (movable_node_is_enabled()) {
cc6de168 7713 for_each_mem_region(r) {
136199f0 7714 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7715 continue;
7716
d622abf7 7717 nid = memblock_get_region_node(r);
b2f3eebe 7718
136199f0 7719 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7720 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7721 min(usable_startpfn, zone_movable_pfn[nid]) :
7722 usable_startpfn;
7723 }
7724
7725 goto out2;
7726 }
2a1e274a 7727
342332e6
TI
7728 /*
7729 * If kernelcore=mirror is specified, ignore movablecore option
7730 */
7731 if (mirrored_kernelcore) {
7732 bool mem_below_4gb_not_mirrored = false;
7733
cc6de168 7734 for_each_mem_region(r) {
342332e6
TI
7735 if (memblock_is_mirror(r))
7736 continue;
7737
d622abf7 7738 nid = memblock_get_region_node(r);
342332e6
TI
7739
7740 usable_startpfn = memblock_region_memory_base_pfn(r);
7741
7742 if (usable_startpfn < 0x100000) {
7743 mem_below_4gb_not_mirrored = true;
7744 continue;
7745 }
7746
7747 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7748 min(usable_startpfn, zone_movable_pfn[nid]) :
7749 usable_startpfn;
7750 }
7751
7752 if (mem_below_4gb_not_mirrored)
633bf2fe 7753 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7754
7755 goto out2;
7756 }
7757
7e63efef 7758 /*
a5c6d650
DR
7759 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7760 * amount of necessary memory.
7761 */
7762 if (required_kernelcore_percent)
7763 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7764 10000UL;
7765 if (required_movablecore_percent)
7766 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7767 10000UL;
7768
7769 /*
7770 * If movablecore= was specified, calculate what size of
7e63efef
MG
7771 * kernelcore that corresponds so that memory usable for
7772 * any allocation type is evenly spread. If both kernelcore
7773 * and movablecore are specified, then the value of kernelcore
7774 * will be used for required_kernelcore if it's greater than
7775 * what movablecore would have allowed.
7776 */
7777 if (required_movablecore) {
7e63efef
MG
7778 unsigned long corepages;
7779
7780 /*
7781 * Round-up so that ZONE_MOVABLE is at least as large as what
7782 * was requested by the user
7783 */
7784 required_movablecore =
7785 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7786 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7787 corepages = totalpages - required_movablecore;
7788
7789 required_kernelcore = max(required_kernelcore, corepages);
7790 }
7791
bde304bd
XQ
7792 /*
7793 * If kernelcore was not specified or kernelcore size is larger
7794 * than totalpages, there is no ZONE_MOVABLE.
7795 */
7796 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7797 goto out;
2a1e274a
MG
7798
7799 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7800 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7801
7802restart:
7803 /* Spread kernelcore memory as evenly as possible throughout nodes */
7804 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7805 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7806 unsigned long start_pfn, end_pfn;
7807
2a1e274a
MG
7808 /*
7809 * Recalculate kernelcore_node if the division per node
7810 * now exceeds what is necessary to satisfy the requested
7811 * amount of memory for the kernel
7812 */
7813 if (required_kernelcore < kernelcore_node)
7814 kernelcore_node = required_kernelcore / usable_nodes;
7815
7816 /*
7817 * As the map is walked, we track how much memory is usable
7818 * by the kernel using kernelcore_remaining. When it is
7819 * 0, the rest of the node is usable by ZONE_MOVABLE
7820 */
7821 kernelcore_remaining = kernelcore_node;
7822
7823 /* Go through each range of PFNs within this node */
c13291a5 7824 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7825 unsigned long size_pages;
7826
c13291a5 7827 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7828 if (start_pfn >= end_pfn)
7829 continue;
7830
7831 /* Account for what is only usable for kernelcore */
7832 if (start_pfn < usable_startpfn) {
7833 unsigned long kernel_pages;
7834 kernel_pages = min(end_pfn, usable_startpfn)
7835 - start_pfn;
7836
7837 kernelcore_remaining -= min(kernel_pages,
7838 kernelcore_remaining);
7839 required_kernelcore -= min(kernel_pages,
7840 required_kernelcore);
7841
7842 /* Continue if range is now fully accounted */
7843 if (end_pfn <= usable_startpfn) {
7844
7845 /*
7846 * Push zone_movable_pfn to the end so
7847 * that if we have to rebalance
7848 * kernelcore across nodes, we will
7849 * not double account here
7850 */
7851 zone_movable_pfn[nid] = end_pfn;
7852 continue;
7853 }
7854 start_pfn = usable_startpfn;
7855 }
7856
7857 /*
7858 * The usable PFN range for ZONE_MOVABLE is from
7859 * start_pfn->end_pfn. Calculate size_pages as the
7860 * number of pages used as kernelcore
7861 */
7862 size_pages = end_pfn - start_pfn;
7863 if (size_pages > kernelcore_remaining)
7864 size_pages = kernelcore_remaining;
7865 zone_movable_pfn[nid] = start_pfn + size_pages;
7866
7867 /*
7868 * Some kernelcore has been met, update counts and
7869 * break if the kernelcore for this node has been
b8af2941 7870 * satisfied
2a1e274a
MG
7871 */
7872 required_kernelcore -= min(required_kernelcore,
7873 size_pages);
7874 kernelcore_remaining -= size_pages;
7875 if (!kernelcore_remaining)
7876 break;
7877 }
7878 }
7879
7880 /*
7881 * If there is still required_kernelcore, we do another pass with one
7882 * less node in the count. This will push zone_movable_pfn[nid] further
7883 * along on the nodes that still have memory until kernelcore is
b8af2941 7884 * satisfied
2a1e274a
MG
7885 */
7886 usable_nodes--;
7887 if (usable_nodes && required_kernelcore > usable_nodes)
7888 goto restart;
7889
b2f3eebe 7890out2:
2a1e274a
MG
7891 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7892 for (nid = 0; nid < MAX_NUMNODES; nid++)
7893 zone_movable_pfn[nid] =
7894 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7895
20e6926d 7896out:
66918dcd 7897 /* restore the node_state */
4b0ef1fe 7898 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7899}
7900
4b0ef1fe
LJ
7901/* Any regular or high memory on that node ? */
7902static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7903{
37b07e41
LS
7904 enum zone_type zone_type;
7905
4b0ef1fe 7906 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7907 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7908 if (populated_zone(zone)) {
7b0e0c0e
OS
7909 if (IS_ENABLED(CONFIG_HIGHMEM))
7910 node_set_state(nid, N_HIGH_MEMORY);
7911 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7912 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7913 break;
7914 }
37b07e41 7915 }
37b07e41
LS
7916}
7917
51930df5 7918/*
f0953a1b 7919 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
7920 * such cases we allow max_zone_pfn sorted in the descending order
7921 */
7922bool __weak arch_has_descending_max_zone_pfns(void)
7923{
7924 return false;
7925}
7926
c713216d 7927/**
9691a071 7928 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7929 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7930 *
7931 * This will call free_area_init_node() for each active node in the system.
7d018176 7932 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7933 * zone in each node and their holes is calculated. If the maximum PFN
7934 * between two adjacent zones match, it is assumed that the zone is empty.
7935 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7936 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7937 * starts where the previous one ended. For example, ZONE_DMA32 starts
7938 * at arch_max_dma_pfn.
7939 */
9691a071 7940void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7941{
c13291a5 7942 unsigned long start_pfn, end_pfn;
51930df5
MR
7943 int i, nid, zone;
7944 bool descending;
a6af2bc3 7945
c713216d
MG
7946 /* Record where the zone boundaries are */
7947 memset(arch_zone_lowest_possible_pfn, 0,
7948 sizeof(arch_zone_lowest_possible_pfn));
7949 memset(arch_zone_highest_possible_pfn, 0,
7950 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7951
7952 start_pfn = find_min_pfn_with_active_regions();
51930df5 7953 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7954
7955 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7956 if (descending)
7957 zone = MAX_NR_ZONES - i - 1;
7958 else
7959 zone = i;
7960
7961 if (zone == ZONE_MOVABLE)
2a1e274a 7962 continue;
90cae1fe 7963
51930df5
MR
7964 end_pfn = max(max_zone_pfn[zone], start_pfn);
7965 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7966 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7967
7968 start_pfn = end_pfn;
c713216d 7969 }
2a1e274a
MG
7970
7971 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7972 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7973 find_zone_movable_pfns_for_nodes();
c713216d 7974
c713216d 7975 /* Print out the zone ranges */
f88dfff5 7976 pr_info("Zone ranges:\n");
2a1e274a
MG
7977 for (i = 0; i < MAX_NR_ZONES; i++) {
7978 if (i == ZONE_MOVABLE)
7979 continue;
f88dfff5 7980 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7981 if (arch_zone_lowest_possible_pfn[i] ==
7982 arch_zone_highest_possible_pfn[i])
f88dfff5 7983 pr_cont("empty\n");
72f0ba02 7984 else
8d29e18a
JG
7985 pr_cont("[mem %#018Lx-%#018Lx]\n",
7986 (u64)arch_zone_lowest_possible_pfn[i]
7987 << PAGE_SHIFT,
7988 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7989 << PAGE_SHIFT) - 1);
2a1e274a
MG
7990 }
7991
7992 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7993 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7994 for (i = 0; i < MAX_NUMNODES; i++) {
7995 if (zone_movable_pfn[i])
8d29e18a
JG
7996 pr_info(" Node %d: %#018Lx\n", i,
7997 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7998 }
c713216d 7999
f46edbd1
DW
8000 /*
8001 * Print out the early node map, and initialize the
8002 * subsection-map relative to active online memory ranges to
8003 * enable future "sub-section" extensions of the memory map.
8004 */
f88dfff5 8005 pr_info("Early memory node ranges\n");
f46edbd1 8006 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8007 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8008 (u64)start_pfn << PAGE_SHIFT,
8009 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8010 subsection_map_init(start_pfn, end_pfn - start_pfn);
8011 }
c713216d
MG
8012
8013 /* Initialise every node */
708614e6 8014 mminit_verify_pageflags_layout();
8ef82866 8015 setup_nr_node_ids();
c713216d
MG
8016 for_each_online_node(nid) {
8017 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 8018 free_area_init_node(nid);
37b07e41
LS
8019
8020 /* Any memory on that node */
8021 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8022 node_set_state(nid, N_MEMORY);
8023 check_for_memory(pgdat, nid);
c713216d 8024 }
122e093c
MR
8025
8026 memmap_init();
c713216d 8027}
2a1e274a 8028
a5c6d650
DR
8029static int __init cmdline_parse_core(char *p, unsigned long *core,
8030 unsigned long *percent)
2a1e274a
MG
8031{
8032 unsigned long long coremem;
a5c6d650
DR
8033 char *endptr;
8034
2a1e274a
MG
8035 if (!p)
8036 return -EINVAL;
8037
a5c6d650
DR
8038 /* Value may be a percentage of total memory, otherwise bytes */
8039 coremem = simple_strtoull(p, &endptr, 0);
8040 if (*endptr == '%') {
8041 /* Paranoid check for percent values greater than 100 */
8042 WARN_ON(coremem > 100);
2a1e274a 8043
a5c6d650
DR
8044 *percent = coremem;
8045 } else {
8046 coremem = memparse(p, &p);
8047 /* Paranoid check that UL is enough for the coremem value */
8048 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8049
a5c6d650
DR
8050 *core = coremem >> PAGE_SHIFT;
8051 *percent = 0UL;
8052 }
2a1e274a
MG
8053 return 0;
8054}
ed7ed365 8055
7e63efef
MG
8056/*
8057 * kernelcore=size sets the amount of memory for use for allocations that
8058 * cannot be reclaimed or migrated.
8059 */
8060static int __init cmdline_parse_kernelcore(char *p)
8061{
342332e6
TI
8062 /* parse kernelcore=mirror */
8063 if (parse_option_str(p, "mirror")) {
8064 mirrored_kernelcore = true;
8065 return 0;
8066 }
8067
a5c6d650
DR
8068 return cmdline_parse_core(p, &required_kernelcore,
8069 &required_kernelcore_percent);
7e63efef
MG
8070}
8071
8072/*
8073 * movablecore=size sets the amount of memory for use for allocations that
8074 * can be reclaimed or migrated.
8075 */
8076static int __init cmdline_parse_movablecore(char *p)
8077{
a5c6d650
DR
8078 return cmdline_parse_core(p, &required_movablecore,
8079 &required_movablecore_percent);
7e63efef
MG
8080}
8081
ed7ed365 8082early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8083early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8084
c3d5f5f0
JL
8085void adjust_managed_page_count(struct page *page, long count)
8086{
9705bea5 8087 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8088 totalram_pages_add(count);
3dcc0571
JL
8089#ifdef CONFIG_HIGHMEM
8090 if (PageHighMem(page))
ca79b0c2 8091 totalhigh_pages_add(count);
3dcc0571 8092#endif
c3d5f5f0 8093}
3dcc0571 8094EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8095
e5cb113f 8096unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8097{
11199692
JL
8098 void *pos;
8099 unsigned long pages = 0;
69afade7 8100
11199692
JL
8101 start = (void *)PAGE_ALIGN((unsigned long)start);
8102 end = (void *)((unsigned long)end & PAGE_MASK);
8103 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8104 struct page *page = virt_to_page(pos);
8105 void *direct_map_addr;
8106
8107 /*
8108 * 'direct_map_addr' might be different from 'pos'
8109 * because some architectures' virt_to_page()
8110 * work with aliases. Getting the direct map
8111 * address ensures that we get a _writeable_
8112 * alias for the memset().
8113 */
8114 direct_map_addr = page_address(page);
c746170d
VF
8115 /*
8116 * Perform a kasan-unchecked memset() since this memory
8117 * has not been initialized.
8118 */
8119 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8120 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8121 memset(direct_map_addr, poison, PAGE_SIZE);
8122
8123 free_reserved_page(page);
69afade7
JL
8124 }
8125
8126 if (pages && s)
adb1fe9a
JP
8127 pr_info("Freeing %s memory: %ldK\n",
8128 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
8129
8130 return pages;
8131}
8132
1f9d03c5 8133void __init mem_init_print_info(void)
7ee3d4e8
JL
8134{
8135 unsigned long physpages, codesize, datasize, rosize, bss_size;
8136 unsigned long init_code_size, init_data_size;
8137
8138 physpages = get_num_physpages();
8139 codesize = _etext - _stext;
8140 datasize = _edata - _sdata;
8141 rosize = __end_rodata - __start_rodata;
8142 bss_size = __bss_stop - __bss_start;
8143 init_data_size = __init_end - __init_begin;
8144 init_code_size = _einittext - _sinittext;
8145
8146 /*
8147 * Detect special cases and adjust section sizes accordingly:
8148 * 1) .init.* may be embedded into .data sections
8149 * 2) .init.text.* may be out of [__init_begin, __init_end],
8150 * please refer to arch/tile/kernel/vmlinux.lds.S.
8151 * 3) .rodata.* may be embedded into .text or .data sections.
8152 */
8153#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
8154 do { \
8155 if (start <= pos && pos < end && size > adj) \
8156 size -= adj; \
8157 } while (0)
7ee3d4e8
JL
8158
8159 adj_init_size(__init_begin, __init_end, init_data_size,
8160 _sinittext, init_code_size);
8161 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8162 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8163 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8164 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8165
8166#undef adj_init_size
8167
756a025f 8168 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8169#ifdef CONFIG_HIGHMEM
756a025f 8170 ", %luK highmem"
7ee3d4e8 8171#endif
1f9d03c5 8172 ")\n",
756a025f
JP
8173 nr_free_pages() << (PAGE_SHIFT - 10),
8174 physpages << (PAGE_SHIFT - 10),
8175 codesize >> 10, datasize >> 10, rosize >> 10,
8176 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 8177 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
1f9d03c5 8178 totalcma_pages << (PAGE_SHIFT - 10)
7ee3d4e8 8179#ifdef CONFIG_HIGHMEM
1f9d03c5 8180 , totalhigh_pages() << (PAGE_SHIFT - 10)
7ee3d4e8 8181#endif
1f9d03c5 8182 );
7ee3d4e8
JL
8183}
8184
0e0b864e 8185/**
88ca3b94
RD
8186 * set_dma_reserve - set the specified number of pages reserved in the first zone
8187 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8188 *
013110a7 8189 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8190 * In the DMA zone, a significant percentage may be consumed by kernel image
8191 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8192 * function may optionally be used to account for unfreeable pages in the
8193 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8194 * smaller per-cpu batchsize.
0e0b864e
MG
8195 */
8196void __init set_dma_reserve(unsigned long new_dma_reserve)
8197{
8198 dma_reserve = new_dma_reserve;
8199}
8200
005fd4bb 8201static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8202{
04f8cfea 8203 struct zone *zone;
1da177e4 8204
005fd4bb
SAS
8205 lru_add_drain_cpu(cpu);
8206 drain_pages(cpu);
9f8f2172 8207
005fd4bb
SAS
8208 /*
8209 * Spill the event counters of the dead processor
8210 * into the current processors event counters.
8211 * This artificially elevates the count of the current
8212 * processor.
8213 */
8214 vm_events_fold_cpu(cpu);
9f8f2172 8215
005fd4bb
SAS
8216 /*
8217 * Zero the differential counters of the dead processor
8218 * so that the vm statistics are consistent.
8219 *
8220 * This is only okay since the processor is dead and cannot
8221 * race with what we are doing.
8222 */
8223 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8224
8225 for_each_populated_zone(zone)
8226 zone_pcp_update(zone, 0);
8227
8228 return 0;
8229}
8230
8231static int page_alloc_cpu_online(unsigned int cpu)
8232{
8233 struct zone *zone;
8234
8235 for_each_populated_zone(zone)
8236 zone_pcp_update(zone, 1);
005fd4bb 8237 return 0;
1da177e4 8238}
1da177e4 8239
e03a5125
NP
8240#ifdef CONFIG_NUMA
8241int hashdist = HASHDIST_DEFAULT;
8242
8243static int __init set_hashdist(char *str)
8244{
8245 if (!str)
8246 return 0;
8247 hashdist = simple_strtoul(str, &str, 0);
8248 return 1;
8249}
8250__setup("hashdist=", set_hashdist);
8251#endif
8252
1da177e4
LT
8253void __init page_alloc_init(void)
8254{
005fd4bb
SAS
8255 int ret;
8256
e03a5125
NP
8257#ifdef CONFIG_NUMA
8258 if (num_node_state(N_MEMORY) == 1)
8259 hashdist = 0;
8260#endif
8261
04f8cfea
MG
8262 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8263 "mm/page_alloc:pcp",
8264 page_alloc_cpu_online,
005fd4bb
SAS
8265 page_alloc_cpu_dead);
8266 WARN_ON(ret < 0);
1da177e4
LT
8267}
8268
cb45b0e9 8269/*
34b10060 8270 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8271 * or min_free_kbytes changes.
8272 */
8273static void calculate_totalreserve_pages(void)
8274{
8275 struct pglist_data *pgdat;
8276 unsigned long reserve_pages = 0;
2f6726e5 8277 enum zone_type i, j;
cb45b0e9
HA
8278
8279 for_each_online_pgdat(pgdat) {
281e3726
MG
8280
8281 pgdat->totalreserve_pages = 0;
8282
cb45b0e9
HA
8283 for (i = 0; i < MAX_NR_ZONES; i++) {
8284 struct zone *zone = pgdat->node_zones + i;
3484b2de 8285 long max = 0;
9705bea5 8286 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8287
8288 /* Find valid and maximum lowmem_reserve in the zone */
8289 for (j = i; j < MAX_NR_ZONES; j++) {
8290 if (zone->lowmem_reserve[j] > max)
8291 max = zone->lowmem_reserve[j];
8292 }
8293
41858966
MG
8294 /* we treat the high watermark as reserved pages. */
8295 max += high_wmark_pages(zone);
cb45b0e9 8296
3d6357de
AK
8297 if (max > managed_pages)
8298 max = managed_pages;
a8d01437 8299
281e3726 8300 pgdat->totalreserve_pages += max;
a8d01437 8301
cb45b0e9
HA
8302 reserve_pages += max;
8303 }
8304 }
8305 totalreserve_pages = reserve_pages;
8306}
8307
1da177e4
LT
8308/*
8309 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8310 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8311 * has a correct pages reserved value, so an adequate number of
8312 * pages are left in the zone after a successful __alloc_pages().
8313 */
8314static void setup_per_zone_lowmem_reserve(void)
8315{
8316 struct pglist_data *pgdat;
470c61d7 8317 enum zone_type i, j;
1da177e4 8318
ec936fc5 8319 for_each_online_pgdat(pgdat) {
470c61d7
LS
8320 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8321 struct zone *zone = &pgdat->node_zones[i];
8322 int ratio = sysctl_lowmem_reserve_ratio[i];
8323 bool clear = !ratio || !zone_managed_pages(zone);
8324 unsigned long managed_pages = 0;
8325
8326 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8327 struct zone *upper_zone = &pgdat->node_zones[j];
8328
8329 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8330
f7ec1044
LS
8331 if (clear)
8332 zone->lowmem_reserve[j] = 0;
8333 else
470c61d7 8334 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8335 }
8336 }
8337 }
cb45b0e9
HA
8338
8339 /* update totalreserve_pages */
8340 calculate_totalreserve_pages();
1da177e4
LT
8341}
8342
cfd3da1e 8343static void __setup_per_zone_wmarks(void)
1da177e4
LT
8344{
8345 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8346 unsigned long lowmem_pages = 0;
8347 struct zone *zone;
8348 unsigned long flags;
8349
8350 /* Calculate total number of !ZONE_HIGHMEM pages */
8351 for_each_zone(zone) {
8352 if (!is_highmem(zone))
9705bea5 8353 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8354 }
8355
8356 for_each_zone(zone) {
ac924c60
AM
8357 u64 tmp;
8358
1125b4e3 8359 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8360 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8361 do_div(tmp, lowmem_pages);
1da177e4
LT
8362 if (is_highmem(zone)) {
8363 /*
669ed175
NP
8364 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8365 * need highmem pages, so cap pages_min to a small
8366 * value here.
8367 *
41858966 8368 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8369 * deltas control async page reclaim, and so should
669ed175 8370 * not be capped for highmem.
1da177e4 8371 */
90ae8d67 8372 unsigned long min_pages;
1da177e4 8373
9705bea5 8374 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8375 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8376 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8377 } else {
669ed175
NP
8378 /*
8379 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8380 * proportionate to the zone's size.
8381 */
a9214443 8382 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8383 }
8384
795ae7a0
JW
8385 /*
8386 * Set the kswapd watermarks distance according to the
8387 * scale factor in proportion to available memory, but
8388 * ensure a minimum size on small systems.
8389 */
8390 tmp = max_t(u64, tmp >> 2,
9705bea5 8391 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8392 watermark_scale_factor, 10000));
8393
aa092591 8394 zone->watermark_boost = 0;
a9214443
MG
8395 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8396 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8397
1125b4e3 8398 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8399 }
cb45b0e9
HA
8400
8401 /* update totalreserve_pages */
8402 calculate_totalreserve_pages();
1da177e4
LT
8403}
8404
cfd3da1e
MG
8405/**
8406 * setup_per_zone_wmarks - called when min_free_kbytes changes
8407 * or when memory is hot-{added|removed}
8408 *
8409 * Ensures that the watermark[min,low,high] values for each zone are set
8410 * correctly with respect to min_free_kbytes.
8411 */
8412void setup_per_zone_wmarks(void)
8413{
b92ca18e 8414 struct zone *zone;
b93e0f32
MH
8415 static DEFINE_SPINLOCK(lock);
8416
8417 spin_lock(&lock);
cfd3da1e 8418 __setup_per_zone_wmarks();
b93e0f32 8419 spin_unlock(&lock);
b92ca18e
MG
8420
8421 /*
8422 * The watermark size have changed so update the pcpu batch
8423 * and high limits or the limits may be inappropriate.
8424 */
8425 for_each_zone(zone)
04f8cfea 8426 zone_pcp_update(zone, 0);
cfd3da1e
MG
8427}
8428
1da177e4
LT
8429/*
8430 * Initialise min_free_kbytes.
8431 *
8432 * For small machines we want it small (128k min). For large machines
8beeae86 8433 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8434 * bandwidth does not increase linearly with machine size. We use
8435 *
b8af2941 8436 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8437 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8438 *
8439 * which yields
8440 *
8441 * 16MB: 512k
8442 * 32MB: 724k
8443 * 64MB: 1024k
8444 * 128MB: 1448k
8445 * 256MB: 2048k
8446 * 512MB: 2896k
8447 * 1024MB: 4096k
8448 * 2048MB: 5792k
8449 * 4096MB: 8192k
8450 * 8192MB: 11584k
8451 * 16384MB: 16384k
8452 */
1b79acc9 8453int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8454{
8455 unsigned long lowmem_kbytes;
5f12733e 8456 int new_min_free_kbytes;
1da177e4
LT
8457
8458 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8459 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8460
8461 if (new_min_free_kbytes > user_min_free_kbytes) {
8462 min_free_kbytes = new_min_free_kbytes;
8463 if (min_free_kbytes < 128)
8464 min_free_kbytes = 128;
ee8eb9a5
JS
8465 if (min_free_kbytes > 262144)
8466 min_free_kbytes = 262144;
5f12733e
MH
8467 } else {
8468 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8469 new_min_free_kbytes, user_min_free_kbytes);
8470 }
bc75d33f 8471 setup_per_zone_wmarks();
a6cccdc3 8472 refresh_zone_stat_thresholds();
1da177e4 8473 setup_per_zone_lowmem_reserve();
6423aa81
JK
8474
8475#ifdef CONFIG_NUMA
8476 setup_min_unmapped_ratio();
8477 setup_min_slab_ratio();
8478#endif
8479
4aab2be0
VB
8480 khugepaged_min_free_kbytes_update();
8481
1da177e4
LT
8482 return 0;
8483}
e08d3fdf 8484postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8485
8486/*
b8af2941 8487 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8488 * that we can call two helper functions whenever min_free_kbytes
8489 * changes.
8490 */
cccad5b9 8491int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8492 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8493{
da8c757b
HP
8494 int rc;
8495
8496 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8497 if (rc)
8498 return rc;
8499
5f12733e
MH
8500 if (write) {
8501 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8502 setup_per_zone_wmarks();
5f12733e 8503 }
1da177e4
LT
8504 return 0;
8505}
8506
795ae7a0 8507int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8508 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8509{
8510 int rc;
8511
8512 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8513 if (rc)
8514 return rc;
8515
8516 if (write)
8517 setup_per_zone_wmarks();
8518
8519 return 0;
8520}
8521
9614634f 8522#ifdef CONFIG_NUMA
6423aa81 8523static void setup_min_unmapped_ratio(void)
9614634f 8524{
6423aa81 8525 pg_data_t *pgdat;
9614634f 8526 struct zone *zone;
9614634f 8527
a5f5f91d 8528 for_each_online_pgdat(pgdat)
81cbcbc2 8529 pgdat->min_unmapped_pages = 0;
a5f5f91d 8530
9614634f 8531 for_each_zone(zone)
9705bea5
AK
8532 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8533 sysctl_min_unmapped_ratio) / 100;
9614634f 8534}
0ff38490 8535
6423aa81
JK
8536
8537int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8538 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8539{
0ff38490
CL
8540 int rc;
8541
8d65af78 8542 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8543 if (rc)
8544 return rc;
8545
6423aa81
JK
8546 setup_min_unmapped_ratio();
8547
8548 return 0;
8549}
8550
8551static void setup_min_slab_ratio(void)
8552{
8553 pg_data_t *pgdat;
8554 struct zone *zone;
8555
a5f5f91d
MG
8556 for_each_online_pgdat(pgdat)
8557 pgdat->min_slab_pages = 0;
8558
0ff38490 8559 for_each_zone(zone)
9705bea5
AK
8560 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8561 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8562}
8563
8564int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8565 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8566{
8567 int rc;
8568
8569 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8570 if (rc)
8571 return rc;
8572
8573 setup_min_slab_ratio();
8574
0ff38490
CL
8575 return 0;
8576}
9614634f
CL
8577#endif
8578
1da177e4
LT
8579/*
8580 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8581 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8582 * whenever sysctl_lowmem_reserve_ratio changes.
8583 *
8584 * The reserve ratio obviously has absolutely no relation with the
41858966 8585 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8586 * if in function of the boot time zone sizes.
8587 */
cccad5b9 8588int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8589 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8590{
86aaf255
BH
8591 int i;
8592
8d65af78 8593 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8594
8595 for (i = 0; i < MAX_NR_ZONES; i++) {
8596 if (sysctl_lowmem_reserve_ratio[i] < 1)
8597 sysctl_lowmem_reserve_ratio[i] = 0;
8598 }
8599
1da177e4
LT
8600 setup_per_zone_lowmem_reserve();
8601 return 0;
8602}
8603
8ad4b1fb 8604/*
74f44822
MG
8605 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8606 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8607 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8608 */
74f44822
MG
8609int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8610 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8611{
8612 struct zone *zone;
74f44822 8613 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8614 int ret;
8615
7cd2b0a3 8616 mutex_lock(&pcp_batch_high_lock);
74f44822 8617 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8618
8d65af78 8619 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8620 if (!write || ret < 0)
8621 goto out;
8622
8623 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8624 if (percpu_pagelist_high_fraction &&
8625 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8626 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8627 ret = -EINVAL;
8628 goto out;
8629 }
8630
8631 /* No change? */
74f44822 8632 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8633 goto out;
c8e251fa 8634
cb1ef534 8635 for_each_populated_zone(zone)
74f44822 8636 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8637out:
c8e251fa 8638 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8639 return ret;
8ad4b1fb
RS
8640}
8641
f6f34b43
SD
8642#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8643/*
8644 * Returns the number of pages that arch has reserved but
8645 * is not known to alloc_large_system_hash().
8646 */
8647static unsigned long __init arch_reserved_kernel_pages(void)
8648{
8649 return 0;
8650}
8651#endif
8652
9017217b
PT
8653/*
8654 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8655 * machines. As memory size is increased the scale is also increased but at
8656 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8657 * quadruples the scale is increased by one, which means the size of hash table
8658 * only doubles, instead of quadrupling as well.
8659 * Because 32-bit systems cannot have large physical memory, where this scaling
8660 * makes sense, it is disabled on such platforms.
8661 */
8662#if __BITS_PER_LONG > 32
8663#define ADAPT_SCALE_BASE (64ul << 30)
8664#define ADAPT_SCALE_SHIFT 2
8665#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8666#endif
8667
1da177e4
LT
8668/*
8669 * allocate a large system hash table from bootmem
8670 * - it is assumed that the hash table must contain an exact power-of-2
8671 * quantity of entries
8672 * - limit is the number of hash buckets, not the total allocation size
8673 */
8674void *__init alloc_large_system_hash(const char *tablename,
8675 unsigned long bucketsize,
8676 unsigned long numentries,
8677 int scale,
8678 int flags,
8679 unsigned int *_hash_shift,
8680 unsigned int *_hash_mask,
31fe62b9
TB
8681 unsigned long low_limit,
8682 unsigned long high_limit)
1da177e4 8683{
31fe62b9 8684 unsigned long long max = high_limit;
1da177e4
LT
8685 unsigned long log2qty, size;
8686 void *table = NULL;
3749a8f0 8687 gfp_t gfp_flags;
ec11408a 8688 bool virt;
121e6f32 8689 bool huge;
1da177e4
LT
8690
8691 /* allow the kernel cmdline to have a say */
8692 if (!numentries) {
8693 /* round applicable memory size up to nearest megabyte */
04903664 8694 numentries = nr_kernel_pages;
f6f34b43 8695 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8696
8697 /* It isn't necessary when PAGE_SIZE >= 1MB */
8698 if (PAGE_SHIFT < 20)
8699 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8700
9017217b
PT
8701#if __BITS_PER_LONG > 32
8702 if (!high_limit) {
8703 unsigned long adapt;
8704
8705 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8706 adapt <<= ADAPT_SCALE_SHIFT)
8707 scale++;
8708 }
8709#endif
8710
1da177e4
LT
8711 /* limit to 1 bucket per 2^scale bytes of low memory */
8712 if (scale > PAGE_SHIFT)
8713 numentries >>= (scale - PAGE_SHIFT);
8714 else
8715 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8716
8717 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8718 if (unlikely(flags & HASH_SMALL)) {
8719 /* Makes no sense without HASH_EARLY */
8720 WARN_ON(!(flags & HASH_EARLY));
8721 if (!(numentries >> *_hash_shift)) {
8722 numentries = 1UL << *_hash_shift;
8723 BUG_ON(!numentries);
8724 }
8725 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8726 numentries = PAGE_SIZE / bucketsize;
1da177e4 8727 }
6e692ed3 8728 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8729
8730 /* limit allocation size to 1/16 total memory by default */
8731 if (max == 0) {
8732 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8733 do_div(max, bucketsize);
8734 }
074b8517 8735 max = min(max, 0x80000000ULL);
1da177e4 8736
31fe62b9
TB
8737 if (numentries < low_limit)
8738 numentries = low_limit;
1da177e4
LT
8739 if (numentries > max)
8740 numentries = max;
8741
f0d1b0b3 8742 log2qty = ilog2(numentries);
1da177e4 8743
3749a8f0 8744 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8745 do {
ec11408a 8746 virt = false;
1da177e4 8747 size = bucketsize << log2qty;
ea1f5f37
PT
8748 if (flags & HASH_EARLY) {
8749 if (flags & HASH_ZERO)
26fb3dae 8750 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8751 else
7e1c4e27
MR
8752 table = memblock_alloc_raw(size,
8753 SMP_CACHE_BYTES);
ec11408a 8754 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8755 table = __vmalloc(size, gfp_flags);
ec11408a 8756 virt = true;
121e6f32 8757 huge = is_vm_area_hugepages(table);
ea1f5f37 8758 } else {
1037b83b
ED
8759 /*
8760 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8761 * some pages at the end of hash table which
8762 * alloc_pages_exact() automatically does
1037b83b 8763 */
ec11408a
NP
8764 table = alloc_pages_exact(size, gfp_flags);
8765 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8766 }
8767 } while (!table && size > PAGE_SIZE && --log2qty);
8768
8769 if (!table)
8770 panic("Failed to allocate %s hash table\n", tablename);
8771
ec11408a
NP
8772 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8773 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8774 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8775
8776 if (_hash_shift)
8777 *_hash_shift = log2qty;
8778 if (_hash_mask)
8779 *_hash_mask = (1 << log2qty) - 1;
8780
8781 return table;
8782}
a117e66e 8783
a5d76b54 8784/*
80934513 8785 * This function checks whether pageblock includes unmovable pages or not.
80934513 8786 *
b8af2941 8787 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8788 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8789 * check without lock_page also may miss some movable non-lru pages at
8790 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8791 *
8792 * Returns a page without holding a reference. If the caller wants to
047b9967 8793 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8794 * cannot get removed (e.g., via memory unplug) concurrently.
8795 *
a5d76b54 8796 */
4a55c047
QC
8797struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8798 int migratetype, int flags)
49ac8255 8799{
1a9f2191
QC
8800 unsigned long iter = 0;
8801 unsigned long pfn = page_to_pfn(page);
6a654e36 8802 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8803
1a9f2191
QC
8804 if (is_migrate_cma_page(page)) {
8805 /*
8806 * CMA allocations (alloc_contig_range) really need to mark
8807 * isolate CMA pageblocks even when they are not movable in fact
8808 * so consider them movable here.
8809 */
8810 if (is_migrate_cma(migratetype))
4a55c047 8811 return NULL;
1a9f2191 8812
3d680bdf 8813 return page;
1a9f2191 8814 }
4da2ce25 8815
6a654e36 8816 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8817 page = pfn_to_page(pfn + iter);
c8721bbb 8818
c9c510dc
DH
8819 /*
8820 * Both, bootmem allocations and memory holes are marked
8821 * PG_reserved and are unmovable. We can even have unmovable
8822 * allocations inside ZONE_MOVABLE, for example when
8823 * specifying "movablecore".
8824 */
d7ab3672 8825 if (PageReserved(page))
3d680bdf 8826 return page;
d7ab3672 8827
9d789999
MH
8828 /*
8829 * If the zone is movable and we have ruled out all reserved
8830 * pages then it should be reasonably safe to assume the rest
8831 * is movable.
8832 */
8833 if (zone_idx(zone) == ZONE_MOVABLE)
8834 continue;
8835
c8721bbb
NH
8836 /*
8837 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8838 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8839 * We need not scan over tail pages because we don't
c8721bbb
NH
8840 * handle each tail page individually in migration.
8841 */
1da2f328 8842 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8843 struct page *head = compound_head(page);
8844 unsigned int skip_pages;
464c7ffb 8845
1da2f328
RR
8846 if (PageHuge(page)) {
8847 if (!hugepage_migration_supported(page_hstate(head)))
8848 return page;
8849 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8850 return page;
1da2f328 8851 }
464c7ffb 8852
d8c6546b 8853 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8854 iter += skip_pages - 1;
c8721bbb
NH
8855 continue;
8856 }
8857
97d255c8
MK
8858 /*
8859 * We can't use page_count without pin a page
8860 * because another CPU can free compound page.
8861 * This check already skips compound tails of THP
0139aa7b 8862 * because their page->_refcount is zero at all time.
97d255c8 8863 */
fe896d18 8864 if (!page_ref_count(page)) {
49ac8255 8865 if (PageBuddy(page))
ab130f91 8866 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8867 continue;
8868 }
97d255c8 8869
b023f468
WC
8870 /*
8871 * The HWPoisoned page may be not in buddy system, and
8872 * page_count() is not 0.
8873 */
756d25be 8874 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8875 continue;
8876
aa218795
DH
8877 /*
8878 * We treat all PageOffline() pages as movable when offlining
8879 * to give drivers a chance to decrement their reference count
8880 * in MEM_GOING_OFFLINE in order to indicate that these pages
8881 * can be offlined as there are no direct references anymore.
8882 * For actually unmovable PageOffline() where the driver does
8883 * not support this, we will fail later when trying to actually
8884 * move these pages that still have a reference count > 0.
8885 * (false negatives in this function only)
8886 */
8887 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8888 continue;
8889
fe4c86c9 8890 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8891 continue;
8892
49ac8255 8893 /*
6b4f7799
JW
8894 * If there are RECLAIMABLE pages, we need to check
8895 * it. But now, memory offline itself doesn't call
8896 * shrink_node_slabs() and it still to be fixed.
49ac8255 8897 */
3d680bdf 8898 return page;
49ac8255 8899 }
4a55c047 8900 return NULL;
49ac8255
KH
8901}
8902
8df995f6 8903#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8904static unsigned long pfn_max_align_down(unsigned long pfn)
8905{
8906 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8907 pageblock_nr_pages) - 1);
8908}
8909
8910static unsigned long pfn_max_align_up(unsigned long pfn)
8911{
8912 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8913 pageblock_nr_pages));
8914}
8915
a1394bdd
MK
8916#if defined(CONFIG_DYNAMIC_DEBUG) || \
8917 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8918/* Usage: See admin-guide/dynamic-debug-howto.rst */
8919static void alloc_contig_dump_pages(struct list_head *page_list)
8920{
8921 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8922
8923 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8924 struct page *page;
8925
8926 dump_stack();
8927 list_for_each_entry(page, page_list, lru)
8928 dump_page(page, "migration failure");
8929 }
8930}
8931#else
8932static inline void alloc_contig_dump_pages(struct list_head *page_list)
8933{
8934}
8935#endif
8936
041d3a8c 8937/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8938static int __alloc_contig_migrate_range(struct compact_control *cc,
8939 unsigned long start, unsigned long end)
041d3a8c
MN
8940{
8941 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8942 unsigned int nr_reclaimed;
041d3a8c
MN
8943 unsigned long pfn = start;
8944 unsigned int tries = 0;
8945 int ret = 0;
8b94e0b8
JK
8946 struct migration_target_control mtc = {
8947 .nid = zone_to_nid(cc->zone),
8948 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8949 };
041d3a8c 8950
361a2a22 8951 lru_cache_disable();
041d3a8c 8952
bb13ffeb 8953 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8954 if (fatal_signal_pending(current)) {
8955 ret = -EINTR;
8956 break;
8957 }
8958
bb13ffeb
MG
8959 if (list_empty(&cc->migratepages)) {
8960 cc->nr_migratepages = 0;
c2ad7a1f
OS
8961 ret = isolate_migratepages_range(cc, pfn, end);
8962 if (ret && ret != -EAGAIN)
041d3a8c 8963 break;
c2ad7a1f 8964 pfn = cc->migrate_pfn;
041d3a8c
MN
8965 tries = 0;
8966 } else if (++tries == 5) {
c8e28b47 8967 ret = -EBUSY;
041d3a8c
MN
8968 break;
8969 }
8970
beb51eaa
MK
8971 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8972 &cc->migratepages);
8973 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8974
8b94e0b8 8975 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 8976 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
8977
8978 /*
8979 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8980 * to retry again over this error, so do the same here.
8981 */
8982 if (ret == -ENOMEM)
8983 break;
041d3a8c 8984 }
d479960e 8985
361a2a22 8986 lru_cache_enable();
2a6f5124 8987 if (ret < 0) {
151e084a
MK
8988 if (ret == -EBUSY)
8989 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
8990 putback_movable_pages(&cc->migratepages);
8991 return ret;
8992 }
8993 return 0;
041d3a8c
MN
8994}
8995
8996/**
8997 * alloc_contig_range() -- tries to allocate given range of pages
8998 * @start: start PFN to allocate
8999 * @end: one-past-the-last PFN to allocate
f0953a1b 9000 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9001 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9002 * in range must have the same migratetype and it must
9003 * be either of the two.
ca96b625 9004 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
9005 *
9006 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 9007 * aligned. The PFN range must belong to a single zone.
041d3a8c 9008 *
2c7452a0
MK
9009 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9010 * pageblocks in the range. Once isolated, the pageblocks should not
9011 * be modified by others.
041d3a8c 9012 *
a862f68a 9013 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9014 * pages which PFN is in [start, end) are allocated for the caller and
9015 * need to be freed with free_contig_range().
9016 */
0815f3d8 9017int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9018 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9019{
041d3a8c 9020 unsigned long outer_start, outer_end;
d00181b9
KS
9021 unsigned int order;
9022 int ret = 0;
041d3a8c 9023
bb13ffeb
MG
9024 struct compact_control cc = {
9025 .nr_migratepages = 0,
9026 .order = -1,
9027 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9028 .mode = MIGRATE_SYNC,
bb13ffeb 9029 .ignore_skip_hint = true,
2583d671 9030 .no_set_skip_hint = true,
7dea19f9 9031 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9032 .alloc_contig = true,
bb13ffeb
MG
9033 };
9034 INIT_LIST_HEAD(&cc.migratepages);
9035
041d3a8c
MN
9036 /*
9037 * What we do here is we mark all pageblocks in range as
9038 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9039 * have different sizes, and due to the way page allocator
9040 * work, we align the range to biggest of the two pages so
9041 * that page allocator won't try to merge buddies from
9042 * different pageblocks and change MIGRATE_ISOLATE to some
9043 * other migration type.
9044 *
9045 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9046 * migrate the pages from an unaligned range (ie. pages that
9047 * we are interested in). This will put all the pages in
9048 * range back to page allocator as MIGRATE_ISOLATE.
9049 *
9050 * When this is done, we take the pages in range from page
9051 * allocator removing them from the buddy system. This way
9052 * page allocator will never consider using them.
9053 *
9054 * This lets us mark the pageblocks back as
9055 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9056 * aligned range but not in the unaligned, original range are
9057 * put back to page allocator so that buddy can use them.
9058 */
9059
9060 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 9061 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 9062 if (ret)
86a595f9 9063 return ret;
041d3a8c 9064
7612921f
VB
9065 drain_all_pages(cc.zone);
9066
8ef5849f
JK
9067 /*
9068 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9069 * So, just fall through. test_pages_isolated() has a tracepoint
9070 * which will report the busy page.
9071 *
9072 * It is possible that busy pages could become available before
9073 * the call to test_pages_isolated, and the range will actually be
9074 * allocated. So, if we fall through be sure to clear ret so that
9075 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9076 */
bb13ffeb 9077 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9078 if (ret && ret != -EBUSY)
041d3a8c 9079 goto done;
68d68ff6 9080 ret = 0;
041d3a8c
MN
9081
9082 /*
9083 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9084 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9085 * more, all pages in [start, end) are free in page allocator.
9086 * What we are going to do is to allocate all pages from
9087 * [start, end) (that is remove them from page allocator).
9088 *
9089 * The only problem is that pages at the beginning and at the
9090 * end of interesting range may be not aligned with pages that
9091 * page allocator holds, ie. they can be part of higher order
9092 * pages. Because of this, we reserve the bigger range and
9093 * once this is done free the pages we are not interested in.
9094 *
9095 * We don't have to hold zone->lock here because the pages are
9096 * isolated thus they won't get removed from buddy.
9097 */
9098
041d3a8c
MN
9099 order = 0;
9100 outer_start = start;
9101 while (!PageBuddy(pfn_to_page(outer_start))) {
9102 if (++order >= MAX_ORDER) {
8ef5849f
JK
9103 outer_start = start;
9104 break;
041d3a8c
MN
9105 }
9106 outer_start &= ~0UL << order;
9107 }
9108
8ef5849f 9109 if (outer_start != start) {
ab130f91 9110 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9111
9112 /*
9113 * outer_start page could be small order buddy page and
9114 * it doesn't include start page. Adjust outer_start
9115 * in this case to report failed page properly
9116 * on tracepoint in test_pages_isolated()
9117 */
9118 if (outer_start + (1UL << order) <= start)
9119 outer_start = start;
9120 }
9121
041d3a8c 9122 /* Make sure the range is really isolated. */
756d25be 9123 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9124 ret = -EBUSY;
9125 goto done;
9126 }
9127
49f223a9 9128 /* Grab isolated pages from freelists. */
bb13ffeb 9129 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9130 if (!outer_end) {
9131 ret = -EBUSY;
9132 goto done;
9133 }
9134
9135 /* Free head and tail (if any) */
9136 if (start != outer_start)
9137 free_contig_range(outer_start, start - outer_start);
9138 if (end != outer_end)
9139 free_contig_range(end, outer_end - end);
9140
9141done:
9142 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9143 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9144 return ret;
9145}
255f5985 9146EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9147
9148static int __alloc_contig_pages(unsigned long start_pfn,
9149 unsigned long nr_pages, gfp_t gfp_mask)
9150{
9151 unsigned long end_pfn = start_pfn + nr_pages;
9152
9153 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9154 gfp_mask);
9155}
9156
9157static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9158 unsigned long nr_pages)
9159{
9160 unsigned long i, end_pfn = start_pfn + nr_pages;
9161 struct page *page;
9162
9163 for (i = start_pfn; i < end_pfn; i++) {
9164 page = pfn_to_online_page(i);
9165 if (!page)
9166 return false;
9167
9168 if (page_zone(page) != z)
9169 return false;
9170
9171 if (PageReserved(page))
9172 return false;
5e27a2df
AK
9173 }
9174 return true;
9175}
9176
9177static bool zone_spans_last_pfn(const struct zone *zone,
9178 unsigned long start_pfn, unsigned long nr_pages)
9179{
9180 unsigned long last_pfn = start_pfn + nr_pages - 1;
9181
9182 return zone_spans_pfn(zone, last_pfn);
9183}
9184
9185/**
9186 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9187 * @nr_pages: Number of contiguous pages to allocate
9188 * @gfp_mask: GFP mask to limit search and used during compaction
9189 * @nid: Target node
9190 * @nodemask: Mask for other possible nodes
9191 *
9192 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9193 * on an applicable zonelist to find a contiguous pfn range which can then be
9194 * tried for allocation with alloc_contig_range(). This routine is intended
9195 * for allocation requests which can not be fulfilled with the buddy allocator.
9196 *
9197 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9198 * power of two then the alignment is guaranteed to be to the given nr_pages
9199 * (e.g. 1GB request would be aligned to 1GB).
9200 *
9201 * Allocated pages can be freed with free_contig_range() or by manually calling
9202 * __free_page() on each allocated page.
9203 *
9204 * Return: pointer to contiguous pages on success, or NULL if not successful.
9205 */
9206struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9207 int nid, nodemask_t *nodemask)
9208{
9209 unsigned long ret, pfn, flags;
9210 struct zonelist *zonelist;
9211 struct zone *zone;
9212 struct zoneref *z;
9213
9214 zonelist = node_zonelist(nid, gfp_mask);
9215 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9216 gfp_zone(gfp_mask), nodemask) {
9217 spin_lock_irqsave(&zone->lock, flags);
9218
9219 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9220 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9221 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9222 /*
9223 * We release the zone lock here because
9224 * alloc_contig_range() will also lock the zone
9225 * at some point. If there's an allocation
9226 * spinning on this lock, it may win the race
9227 * and cause alloc_contig_range() to fail...
9228 */
9229 spin_unlock_irqrestore(&zone->lock, flags);
9230 ret = __alloc_contig_pages(pfn, nr_pages,
9231 gfp_mask);
9232 if (!ret)
9233 return pfn_to_page(pfn);
9234 spin_lock_irqsave(&zone->lock, flags);
9235 }
9236 pfn += nr_pages;
9237 }
9238 spin_unlock_irqrestore(&zone->lock, flags);
9239 }
9240 return NULL;
9241}
4eb0716e 9242#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9243
78fa5150 9244void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9245{
78fa5150 9246 unsigned long count = 0;
bcc2b02f
MS
9247
9248 for (; nr_pages--; pfn++) {
9249 struct page *page = pfn_to_page(pfn);
9250
9251 count += page_count(page) != 1;
9252 __free_page(page);
9253 }
78fa5150 9254 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9255}
255f5985 9256EXPORT_SYMBOL(free_contig_range);
041d3a8c 9257
0a647f38
CS
9258/*
9259 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9260 * page high values need to be recalculated.
0a647f38 9261 */
04f8cfea 9262void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9263{
c8e251fa 9264 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9265 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9266 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9267}
4ed7e022 9268
ec6e8c7e
VB
9269/*
9270 * Effectively disable pcplists for the zone by setting the high limit to 0
9271 * and draining all cpus. A concurrent page freeing on another CPU that's about
9272 * to put the page on pcplist will either finish before the drain and the page
9273 * will be drained, or observe the new high limit and skip the pcplist.
9274 *
9275 * Must be paired with a call to zone_pcp_enable().
9276 */
9277void zone_pcp_disable(struct zone *zone)
9278{
9279 mutex_lock(&pcp_batch_high_lock);
9280 __zone_set_pageset_high_and_batch(zone, 0, 1);
9281 __drain_all_pages(zone, true);
9282}
9283
9284void zone_pcp_enable(struct zone *zone)
9285{
9286 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9287 mutex_unlock(&pcp_batch_high_lock);
9288}
9289
340175b7
JL
9290void zone_pcp_reset(struct zone *zone)
9291{
5a883813 9292 int cpu;
28f836b6 9293 struct per_cpu_zonestat *pzstats;
340175b7 9294
28f836b6 9295 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9296 for_each_online_cpu(cpu) {
28f836b6
MG
9297 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9298 drain_zonestat(zone, pzstats);
5a883813 9299 }
28f836b6
MG
9300 free_percpu(zone->per_cpu_pageset);
9301 free_percpu(zone->per_cpu_zonestats);
9302 zone->per_cpu_pageset = &boot_pageset;
9303 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9304 }
340175b7
JL
9305}
9306
6dcd73d7 9307#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9308/*
257bea71
DH
9309 * All pages in the range must be in a single zone, must not contain holes,
9310 * must span full sections, and must be isolated before calling this function.
0c0e6195 9311 */
257bea71 9312void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9313{
257bea71 9314 unsigned long pfn = start_pfn;
0c0e6195
KH
9315 struct page *page;
9316 struct zone *zone;
0ee5f4f3 9317 unsigned int order;
0c0e6195 9318 unsigned long flags;
5557c766 9319
2d070eab 9320 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9321 zone = page_zone(pfn_to_page(pfn));
9322 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9323 while (pfn < end_pfn) {
0c0e6195 9324 page = pfn_to_page(pfn);
b023f468
WC
9325 /*
9326 * The HWPoisoned page may be not in buddy system, and
9327 * page_count() is not 0.
9328 */
9329 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9330 pfn++;
b023f468
WC
9331 continue;
9332 }
aa218795
DH
9333 /*
9334 * At this point all remaining PageOffline() pages have a
9335 * reference count of 0 and can simply be skipped.
9336 */
9337 if (PageOffline(page)) {
9338 BUG_ON(page_count(page));
9339 BUG_ON(PageBuddy(page));
9340 pfn++;
aa218795
DH
9341 continue;
9342 }
b023f468 9343
0c0e6195
KH
9344 BUG_ON(page_count(page));
9345 BUG_ON(!PageBuddy(page));
ab130f91 9346 order = buddy_order(page);
6ab01363 9347 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9348 pfn += (1 << order);
9349 }
9350 spin_unlock_irqrestore(&zone->lock, flags);
9351}
9352#endif
8d22ba1b 9353
8d22ba1b
WF
9354bool is_free_buddy_page(struct page *page)
9355{
9356 struct zone *zone = page_zone(page);
9357 unsigned long pfn = page_to_pfn(page);
9358 unsigned long flags;
7aeb09f9 9359 unsigned int order;
8d22ba1b
WF
9360
9361 spin_lock_irqsave(&zone->lock, flags);
9362 for (order = 0; order < MAX_ORDER; order++) {
9363 struct page *page_head = page - (pfn & ((1 << order) - 1));
9364
ab130f91 9365 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
9366 break;
9367 }
9368 spin_unlock_irqrestore(&zone->lock, flags);
9369
9370 return order < MAX_ORDER;
9371}
d4ae9916
NH
9372
9373#ifdef CONFIG_MEMORY_FAILURE
9374/*
06be6ff3
OS
9375 * Break down a higher-order page in sub-pages, and keep our target out of
9376 * buddy allocator.
d4ae9916 9377 */
06be6ff3
OS
9378static void break_down_buddy_pages(struct zone *zone, struct page *page,
9379 struct page *target, int low, int high,
9380 int migratetype)
9381{
9382 unsigned long size = 1 << high;
9383 struct page *current_buddy, *next_page;
9384
9385 while (high > low) {
9386 high--;
9387 size >>= 1;
9388
9389 if (target >= &page[size]) {
9390 next_page = page + size;
9391 current_buddy = page;
9392 } else {
9393 next_page = page;
9394 current_buddy = page + size;
9395 }
9396
9397 if (set_page_guard(zone, current_buddy, high, migratetype))
9398 continue;
9399
9400 if (current_buddy != target) {
9401 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9402 set_buddy_order(current_buddy, high);
06be6ff3
OS
9403 page = next_page;
9404 }
9405 }
9406}
9407
9408/*
9409 * Take a page that will be marked as poisoned off the buddy allocator.
9410 */
9411bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9412{
9413 struct zone *zone = page_zone(page);
9414 unsigned long pfn = page_to_pfn(page);
9415 unsigned long flags;
9416 unsigned int order;
06be6ff3 9417 bool ret = false;
d4ae9916
NH
9418
9419 spin_lock_irqsave(&zone->lock, flags);
9420 for (order = 0; order < MAX_ORDER; order++) {
9421 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9422 int page_order = buddy_order(page_head);
d4ae9916 9423
ab130f91 9424 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9425 unsigned long pfn_head = page_to_pfn(page_head);
9426 int migratetype = get_pfnblock_migratetype(page_head,
9427 pfn_head);
9428
ab130f91 9429 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9430 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9431 page_order, migratetype);
bac9c6fa
DH
9432 if (!is_migrate_isolate(migratetype))
9433 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9434 ret = true;
d4ae9916
NH
9435 break;
9436 }
06be6ff3
OS
9437 if (page_count(page_head) > 0)
9438 break;
d4ae9916
NH
9439 }
9440 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9441 return ret;
d4ae9916
NH
9442}
9443#endif