]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/page_alloc.c
Merge branch 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-eoan-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
edbe7d23 23#include <linux/memblock.h>
1da177e4 24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b8c73fc2 26#include <linux/kasan.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
a238ab5b 32#include <linux/ratelimit.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
a6cccdc3 41#include <linux/vmstat.h>
4be38e35 42#include <linux/mempolicy.h>
4b94ffdc 43#include <linux/memremap.h>
6811378e 44#include <linux/stop_machine.h>
c713216d
MG
45#include <linux/sort.h>
46#include <linux/pfn.h>
3fcfab16 47#include <linux/backing-dev.h>
933e312e 48#include <linux/fault-inject.h>
a5d76b54 49#include <linux/page-isolation.h>
eefa864b 50#include <linux/page_ext.h>
3ac7fe5a 51#include <linux/debugobjects.h>
dbb1f81c 52#include <linux/kmemleak.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
d379f01d 55#include <trace/events/oom.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
949f7ec5 59#include <linux/hugetlb.h>
8bd75c77 60#include <linux/sched/rt.h>
5b3cc15a 61#include <linux/sched/mm.h>
48c96a36 62#include <linux/page_owner.h>
0e1cc95b 63#include <linux/kthread.h>
4949148a 64#include <linux/memcontrol.h>
42c269c8 65#include <linux/ftrace.h>
d92a8cfc 66#include <linux/lockdep.h>
556b969a 67#include <linux/nmi.h>
eb414681 68#include <linux/psi.h>
1da177e4 69
7ee3d4e8 70#include <asm/sections.h>
1da177e4 71#include <asm/tlbflush.h>
ac924c60 72#include <asm/div64.h>
1da177e4
LT
73#include "internal.h"
74
c8e251fa
CS
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 77#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 78
72812019
LS
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
4518085e
KW
84DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
7aac7898
LS
86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
87/*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 95int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
96#endif
97
bd233f53
MG
98/* work_structs for global per-cpu drains */
99DEFINE_MUTEX(pcpu_drain_mutex);
100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
38addce8 102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 103volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
104EXPORT_SYMBOL(latent_entropy);
105#endif
106
1da177e4 107/*
13808910 108 * Array of node states.
1da177e4 109 */
13808910
CL
110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113#ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115#ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 117#endif
20b2f52b 118 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
bb14c2c7
VB
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
452aa699
RW
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
452aa699 161 */
c9e664f1
RW
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
452aa699 166{
55f2503c 167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
452aa699
RW
172}
173
c9e664f1 174void pm_restrict_gfp_mask(void)
452aa699 175{
55f2503c 176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
d0164adc 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 180}
f90ac398
MG
181
182bool pm_suspended_storage(void)
183{
d0164adc 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
185 return false;
186 return true;
187}
452aa699
RW
188#endif /* CONFIG_PM_SLEEP */
189
d9c23400 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 191unsigned int pageblock_order __read_mostly;
d9c23400
MG
192#endif
193
d98c7a09 194static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 195
1da177e4
LT
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
1da177e4 206 */
d3cda233 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 208#ifdef CONFIG_ZONE_DMA
d3cda233 209 [ZONE_DMA] = 256,
4b51d669 210#endif
fb0e7942 211#ifdef CONFIG_ZONE_DMA32
d3cda233 212 [ZONE_DMA32] = 256,
fb0e7942 213#endif
d3cda233 214 [ZONE_NORMAL] = 32,
e53ef38d 215#ifdef CONFIG_HIGHMEM
d3cda233 216 [ZONE_HIGHMEM] = 0,
e53ef38d 217#endif
d3cda233 218 [ZONE_MOVABLE] = 0,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
7f16f91f
DR
268static unsigned long nr_kernel_pages __meminitdata;
269static unsigned long nr_all_pages __meminitdata;
270static unsigned long dma_reserve __meminitdata;
1da177e4 271
0ee332c1 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7f16f91f
DR
273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long required_kernelcore __initdata;
a5c6d650 276static unsigned long required_kernelcore_percent __initdata;
7f16f91f 277static unsigned long required_movablecore __initdata;
a5c6d650 278static unsigned long required_movablecore_percent __initdata;
7f16f91f
DR
279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
281
282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283int movable_zone;
284EXPORT_SYMBOL(movable_zone);
285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 286
418508c1
MS
287#if MAX_NUMNODES > 1
288int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 289int nr_online_nodes __read_mostly = 1;
418508c1 290EXPORT_SYMBOL(nr_node_ids);
62bc62a8 291EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
292#endif
293
9ef9acb0
MG
294int page_group_by_mobility_disabled __read_mostly;
295
3a80a7fa 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3a80a7fa 297/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 299{
ef70b6f4
MG
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
303 return true;
304
305 return false;
306}
307
308/*
d3035be4 309 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
310 * later in the boot cycle when it can be parallelised.
311 */
d3035be4
PT
312static bool __meminit
313defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 314{
d3035be4
PT
315 static unsigned long prev_end_pfn, nr_initialised;
316
317 /*
318 * prev_end_pfn static that contains the end of previous zone
319 * No need to protect because called very early in boot before smp_init.
320 */
321 if (prev_end_pfn != end_pfn) {
322 prev_end_pfn = end_pfn;
323 nr_initialised = 0;
324 }
325
3c2c6488 326 /* Always populate low zones for address-constrained allocations */
d3035be4 327 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 328 return false;
d3035be4
PT
329 nr_initialised++;
330 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 NODE_DATA(nid)->first_deferred_pfn = pfn;
333 return true;
3a80a7fa 334 }
d3035be4 335 return false;
3a80a7fa
MG
336}
337#else
3a80a7fa
MG
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
d3035be4 343static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 344{
d3035be4 345 return false;
3a80a7fa
MG
346}
347#endif
348
0b423ca2
MG
349/* Return a pointer to the bitmap storing bits affecting a block of pages */
350static inline unsigned long *get_pageblock_bitmap(struct page *page,
351 unsigned long pfn)
352{
353#ifdef CONFIG_SPARSEMEM
354 return __pfn_to_section(pfn)->pageblock_flags;
355#else
356 return page_zone(page)->pageblock_flags;
357#endif /* CONFIG_SPARSEMEM */
358}
359
360static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
361{
362#ifdef CONFIG_SPARSEMEM
363 pfn &= (PAGES_PER_SECTION-1);
364 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365#else
366 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368#endif /* CONFIG_SPARSEMEM */
369}
370
371/**
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @end_bitidx: The last bit of interest to retrieve
376 * @mask: mask of bits that the caller is interested in
377 *
378 * Return: pageblock_bits flags
379 */
380static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
381 unsigned long pfn,
382 unsigned long end_bitidx,
383 unsigned long mask)
384{
385 unsigned long *bitmap;
386 unsigned long bitidx, word_bitidx;
387 unsigned long word;
388
389 bitmap = get_pageblock_bitmap(page, pfn);
390 bitidx = pfn_to_bitidx(page, pfn);
391 word_bitidx = bitidx / BITS_PER_LONG;
392 bitidx &= (BITS_PER_LONG-1);
393
394 word = bitmap[word_bitidx];
395 bitidx += end_bitidx;
396 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
397}
398
399unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402{
403 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
404}
405
406static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
407{
408 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
409}
410
411/**
412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413 * @page: The page within the block of interest
414 * @flags: The flags to set
415 * @pfn: The target page frame number
416 * @end_bitidx: The last bit of interest
417 * @mask: mask of bits that the caller is interested in
418 */
419void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
420 unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423{
424 unsigned long *bitmap;
425 unsigned long bitidx, word_bitidx;
426 unsigned long old_word, word;
427
428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
429
430 bitmap = get_pageblock_bitmap(page, pfn);
431 bitidx = pfn_to_bitidx(page, pfn);
432 word_bitidx = bitidx / BITS_PER_LONG;
433 bitidx &= (BITS_PER_LONG-1);
434
435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
436
437 bitidx += end_bitidx;
438 mask <<= (BITS_PER_LONG - bitidx - 1);
439 flags <<= (BITS_PER_LONG - bitidx - 1);
440
441 word = READ_ONCE(bitmap[word_bitidx]);
442 for (;;) {
443 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
444 if (word == old_word)
445 break;
446 word = old_word;
447 }
448}
3a80a7fa 449
ee6f509c 450void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 451{
5d0f3f72
KM
452 if (unlikely(page_group_by_mobility_disabled &&
453 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
454 migratetype = MIGRATE_UNMOVABLE;
455
b2a0ac88
MG
456 set_pageblock_flags_group(page, (unsigned long)migratetype,
457 PB_migrate, PB_migrate_end);
458}
459
13e7444b 460#ifdef CONFIG_DEBUG_VM
c6a57e19 461static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 462{
bdc8cb98
DH
463 int ret = 0;
464 unsigned seq;
465 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 466 unsigned long sp, start_pfn;
c6a57e19 467
bdc8cb98
DH
468 do {
469 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
470 start_pfn = zone->zone_start_pfn;
471 sp = zone->spanned_pages;
108bcc96 472 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
473 ret = 1;
474 } while (zone_span_seqretry(zone, seq));
475
b5e6a5a2 476 if (ret)
613813e8
DH
477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 pfn, zone_to_nid(zone), zone->name,
479 start_pfn, start_pfn + sp);
b5e6a5a2 480
bdc8cb98 481 return ret;
c6a57e19
DH
482}
483
484static int page_is_consistent(struct zone *zone, struct page *page)
485{
14e07298 486 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 487 return 0;
1da177e4 488 if (zone != page_zone(page))
c6a57e19
DH
489 return 0;
490
491 return 1;
492}
493/*
494 * Temporary debugging check for pages not lying within a given zone.
495 */
d73d3c9f 496static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
497{
498 if (page_outside_zone_boundaries(zone, page))
1da177e4 499 return 1;
c6a57e19
DH
500 if (!page_is_consistent(zone, page))
501 return 1;
502
1da177e4
LT
503 return 0;
504}
13e7444b 505#else
d73d3c9f 506static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
507{
508 return 0;
509}
510#endif
511
d230dec1
KS
512static void bad_page(struct page *page, const char *reason,
513 unsigned long bad_flags)
1da177e4 514{
d936cf9b
HD
515 static unsigned long resume;
516 static unsigned long nr_shown;
517 static unsigned long nr_unshown;
518
519 /*
520 * Allow a burst of 60 reports, then keep quiet for that minute;
521 * or allow a steady drip of one report per second.
522 */
523 if (nr_shown == 60) {
524 if (time_before(jiffies, resume)) {
525 nr_unshown++;
526 goto out;
527 }
528 if (nr_unshown) {
ff8e8116 529 pr_alert(
1e9e6365 530 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
531 nr_unshown);
532 nr_unshown = 0;
533 }
534 nr_shown = 0;
535 }
536 if (nr_shown++ == 0)
537 resume = jiffies + 60 * HZ;
538
ff8e8116 539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 540 current->comm, page_to_pfn(page));
ff8e8116
VB
541 __dump_page(page, reason);
542 bad_flags &= page->flags;
543 if (bad_flags)
544 pr_alert("bad because of flags: %#lx(%pGp)\n",
545 bad_flags, &bad_flags);
4e462112 546 dump_page_owner(page);
3dc14741 547
4f31888c 548 print_modules();
1da177e4 549 dump_stack();
d936cf9b 550out:
8cc3b392 551 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 552 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 553 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
554}
555
1da177e4
LT
556/*
557 * Higher-order pages are called "compound pages". They are structured thusly:
558 *
1d798ca3 559 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 560 *
1d798ca3
KS
561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 563 *
1d798ca3
KS
564 * The first tail page's ->compound_dtor holds the offset in array of compound
565 * page destructors. See compound_page_dtors.
1da177e4 566 *
1d798ca3 567 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 568 * This usage means that zero-order pages may not be compound.
1da177e4 569 */
d98c7a09 570
9a982250 571void free_compound_page(struct page *page)
d98c7a09 572{
d85f3385 573 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
574}
575
d00181b9 576void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
577{
578 int i;
579 int nr_pages = 1 << order;
580
f1e61557 581 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++) {
585 struct page *p = page + i;
58a84aa9 586 set_page_count(p, 0);
1c290f64 587 p->mapping = TAIL_MAPPING;
1d798ca3 588 set_compound_head(p, page);
18229df5 589 }
53f9263b 590 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
591}
592
c0a32fc5
SG
593#ifdef CONFIG_DEBUG_PAGEALLOC
594unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
595bool _debug_pagealloc_enabled __read_mostly
596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 597EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
598bool _debug_guardpage_enabled __read_mostly;
599
031bc574
JK
600static int __init early_debug_pagealloc(char *buf)
601{
602 if (!buf)
603 return -EINVAL;
2a138dc7 604 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
605}
606early_param("debug_pagealloc", early_debug_pagealloc);
607
e30825f1
JK
608static bool need_debug_guardpage(void)
609{
031bc574
JK
610 /* If we don't use debug_pagealloc, we don't need guard page */
611 if (!debug_pagealloc_enabled())
612 return false;
613
f1c1e9f7
JK
614 if (!debug_guardpage_minorder())
615 return false;
616
e30825f1
JK
617 return true;
618}
619
620static void init_debug_guardpage(void)
621{
031bc574
JK
622 if (!debug_pagealloc_enabled())
623 return;
624
f1c1e9f7
JK
625 if (!debug_guardpage_minorder())
626 return;
627
e30825f1
JK
628 _debug_guardpage_enabled = true;
629}
630
631struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
634};
c0a32fc5
SG
635
636static int __init debug_guardpage_minorder_setup(char *buf)
637{
638 unsigned long res;
639
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 641 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
642 return 0;
643 }
644 _debug_guardpage_minorder = res;
1170532b 645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
646 return 0;
647}
f1c1e9f7 648early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 649
acbc15a4 650static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 651 unsigned int order, int migratetype)
c0a32fc5 652{
e30825f1
JK
653 struct page_ext *page_ext;
654
655 if (!debug_guardpage_enabled())
acbc15a4
JK
656 return false;
657
658 if (order >= debug_guardpage_minorder())
659 return false;
e30825f1
JK
660
661 page_ext = lookup_page_ext(page);
f86e4271 662 if (unlikely(!page_ext))
acbc15a4 663 return false;
f86e4271 664
e30825f1
JK
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
2847cf95
JK
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
671
672 return true;
c0a32fc5
SG
673}
674
2847cf95
JK
675static inline void clear_page_guard(struct zone *zone, struct page *page,
676 unsigned int order, int migratetype)
c0a32fc5 677{
e30825f1
JK
678 struct page_ext *page_ext;
679
680 if (!debug_guardpage_enabled())
681 return;
682
683 page_ext = lookup_page_ext(page);
f86e4271
YS
684 if (unlikely(!page_ext))
685 return;
686
e30825f1
JK
687 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688
2847cf95
JK
689 set_page_private(page, 0);
690 if (!is_migrate_isolate(migratetype))
691 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
692}
693#else
980ac167 694struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
695static inline bool set_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) { return false; }
2847cf95
JK
697static inline void clear_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
c0a32fc5
SG
699#endif
700
7aeb09f9 701static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 702{
4c21e2f2 703 set_page_private(page, order);
676165a8 704 __SetPageBuddy(page);
1da177e4
LT
705}
706
707static inline void rmv_page_order(struct page *page)
708{
676165a8 709 __ClearPageBuddy(page);
4c21e2f2 710 set_page_private(page, 0);
1da177e4
LT
711}
712
1da177e4
LT
713/*
714 * This function checks whether a page is free && is the buddy
6e292b9b 715 * we can coalesce a page and its buddy if
13ad59df 716 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 717 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
718 * (c) a page and its buddy have the same order &&
719 * (d) a page and its buddy are in the same zone.
676165a8 720 *
6e292b9b
MW
721 * For recording whether a page is in the buddy system, we set PageBuddy.
722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 723 *
676165a8 724 * For recording page's order, we use page_private(page).
1da177e4 725 */
cb2b95e1 726static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 727 unsigned int order)
1da177e4 728{
c0a32fc5 729 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
4c5018ce
WY
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
c0a32fc5
SG
735 return 1;
736 }
737
cb2b95e1 738 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
4c5018ce
WY
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
6aa3001b 749 return 1;
676165a8 750 }
6aa3001b 751 return 0;
1da177e4
LT
752}
753
754/*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
767 * free pages of length of (1 << order) and marked with PageBuddy.
768 * Page's order is recorded in page_private(page) field.
1da177e4 769 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
770 * other. That is, if we allocate a small block, and both were
771 * free, the remainder of the region must be split into blocks.
1da177e4 772 * If a block is freed, and its buddy is also free, then this
5f63b720 773 * triggers coalescing into a block of larger size.
1da177e4 774 *
6d49e352 775 * -- nyc
1da177e4
LT
776 */
777
48db57f8 778static inline void __free_one_page(struct page *page,
dc4b0caf 779 unsigned long pfn,
ed0ae21d
MG
780 struct zone *zone, unsigned int order,
781 int migratetype)
1da177e4 782{
76741e77
VB
783 unsigned long combined_pfn;
784 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 785 struct page *buddy;
d9dddbf5
VB
786 unsigned int max_order;
787
788 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 789
d29bb978 790 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 792
ed0ae21d 793 VM_BUG_ON(migratetype == -1);
d9dddbf5 794 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 795 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 796
76741e77 797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 799
d9dddbf5 800continue_merging:
3c605096 801 while (order < max_order - 1) {
76741e77
VB
802 buddy_pfn = __find_buddy_pfn(pfn, order);
803 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
804
805 if (!pfn_valid_within(buddy_pfn))
806 goto done_merging;
cb2b95e1 807 if (!page_is_buddy(page, buddy, order))
d9dddbf5 808 goto done_merging;
c0a32fc5
SG
809 /*
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
812 */
813 if (page_is_guard(buddy)) {
2847cf95 814 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
815 } else {
816 list_del(&buddy->lru);
817 zone->free_area[order].nr_free--;
818 rmv_page_order(buddy);
819 }
76741e77
VB
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
1da177e4
LT
823 order++;
824 }
d9dddbf5
VB
825 if (max_order < MAX_ORDER) {
826 /* If we are here, it means order is >= pageblock_order.
827 * We want to prevent merge between freepages on isolate
828 * pageblock and normal pageblock. Without this, pageblock
829 * isolation could cause incorrect freepage or CMA accounting.
830 *
831 * We don't want to hit this code for the more frequent
832 * low-order merging.
833 */
834 if (unlikely(has_isolate_pageblock(zone))) {
835 int buddy_mt;
836
76741e77
VB
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
839 buddy_mt = get_pageblock_migratetype(buddy);
840
841 if (migratetype != buddy_mt
842 && (is_migrate_isolate(migratetype) ||
843 is_migrate_isolate(buddy_mt)))
844 goto done_merging;
845 }
846 max_order++;
847 goto continue_merging;
848 }
849
850done_merging:
1da177e4 851 set_page_order(page, order);
6dda9d55
CZ
852
853 /*
854 * If this is not the largest possible page, check if the buddy
855 * of the next-highest order is free. If it is, it's possible
856 * that pages are being freed that will coalesce soon. In case,
857 * that is happening, add the free page to the tail of the list
858 * so it's less likely to be used soon and more likely to be merged
859 * as a higher order page
860 */
13ad59df 861 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 862 struct page *higher_page, *higher_buddy;
76741e77
VB
863 combined_pfn = buddy_pfn & pfn;
864 higher_page = page + (combined_pfn - pfn);
865 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
866 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
867 if (pfn_valid_within(buddy_pfn) &&
868 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876out:
1da177e4
LT
877 zone->free_area[order].nr_free++;
878}
879
7bfec6f4
MG
880/*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887{
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893#ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895#endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900}
901
bb552ac6 902static void free_pages_check_bad(struct page *page)
1da177e4 903{
7bfec6f4
MG
904 const char *bad_reason;
905 unsigned long bad_flags;
906
7bfec6f4
MG
907 bad_reason = NULL;
908 bad_flags = 0;
f0b791a3 909
53f9263b 910 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
fe896d18 914 if (unlikely(page_ref_count(page) != 0))
0139aa7b 915 bad_reason = "nonzero _refcount";
f0b791a3
DH
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
9edad6ea
JW
920#ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923#endif
7bfec6f4 924 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
925}
926
927static inline int free_pages_check(struct page *page)
928{
da838d4f 929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 930 return 0;
bb552ac6
MG
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
7bfec6f4 934 return 1;
1da177e4
LT
935}
936
4db7548c
MG
937static int free_tail_pages_check(struct page *head_page, struct page *page)
938{
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
4da1984e 953 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
fa3015b7 962 * deferred_list.next -- ignore value.
4db7548c
MG
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985}
986
e2769dbd
MG
987static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
4db7548c 989{
e2769dbd 990 int bad = 0;
4db7548c 991
4db7548c
MG
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
e2769dbd 994 trace_mm_page_free(page, order);
e2769dbd
MG
995
996 /*
997 * Check tail pages before head page information is cleared to
998 * avoid checking PageCompound for order-0 pages.
999 */
1000 if (unlikely(order)) {
1001 bool compound = PageCompound(page);
1002 int i;
1003
1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1005
9a73f61b
KS
1006 if (compound)
1007 ClearPageDoubleMap(page);
e2769dbd
MG
1008 for (i = 1; i < (1 << order); i++) {
1009 if (compound)
1010 bad += free_tail_pages_check(page, page + i);
1011 if (unlikely(free_pages_check(page + i))) {
1012 bad++;
1013 continue;
1014 }
1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1016 }
1017 }
bda807d4 1018 if (PageMappingFlags(page))
4db7548c 1019 page->mapping = NULL;
c4159a75 1020 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1021 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1022 if (check_free)
1023 bad += free_pages_check(page);
1024 if (bad)
1025 return false;
4db7548c 1026
e2769dbd
MG
1027 page_cpupid_reset_last(page);
1028 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 reset_page_owner(page, order);
4db7548c
MG
1030
1031 if (!PageHighMem(page)) {
1032 debug_check_no_locks_freed(page_address(page),
e2769dbd 1033 PAGE_SIZE << order);
4db7548c 1034 debug_check_no_obj_freed(page_address(page),
e2769dbd 1035 PAGE_SIZE << order);
4db7548c 1036 }
e2769dbd
MG
1037 arch_free_page(page, order);
1038 kernel_poison_pages(page, 1 << order, 0);
1039 kernel_map_pages(page, 1 << order, 0);
29b52de1 1040 kasan_free_pages(page, order);
4db7548c 1041
4db7548c
MG
1042 return true;
1043}
1044
e2769dbd
MG
1045#ifdef CONFIG_DEBUG_VM
1046static inline bool free_pcp_prepare(struct page *page)
1047{
1048 return free_pages_prepare(page, 0, true);
1049}
1050
1051static inline bool bulkfree_pcp_prepare(struct page *page)
1052{
1053 return false;
1054}
1055#else
1056static bool free_pcp_prepare(struct page *page)
1057{
1058 return free_pages_prepare(page, 0, false);
1059}
1060
4db7548c
MG
1061static bool bulkfree_pcp_prepare(struct page *page)
1062{
1063 return free_pages_check(page);
1064}
1065#endif /* CONFIG_DEBUG_VM */
1066
97334162
AL
1067static inline void prefetch_buddy(struct page *page)
1068{
1069 unsigned long pfn = page_to_pfn(page);
1070 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1071 struct page *buddy = page + (buddy_pfn - pfn);
1072
1073 prefetch(buddy);
1074}
1075
1da177e4 1076/*
5f8dcc21 1077 * Frees a number of pages from the PCP lists
1da177e4 1078 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1079 * count is the number of pages to free.
1da177e4
LT
1080 *
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1083 *
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1086 */
5f8dcc21
MG
1087static void free_pcppages_bulk(struct zone *zone, int count,
1088 struct per_cpu_pages *pcp)
1da177e4 1089{
5f8dcc21 1090 int migratetype = 0;
a6f9edd6 1091 int batch_free = 0;
97334162 1092 int prefetch_nr = 0;
3777999d 1093 bool isolated_pageblocks;
0a5f4e5b
AL
1094 struct page *page, *tmp;
1095 LIST_HEAD(head);
f2260e6b 1096
e5b31ac2 1097 while (count) {
5f8dcc21
MG
1098 struct list_head *list;
1099
1100 /*
a6f9edd6
MG
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
5f8dcc21
MG
1106 */
1107 do {
a6f9edd6 1108 batch_free++;
5f8dcc21
MG
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
48db57f8 1113
1d16871d
NK
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1116 batch_free = count;
1d16871d 1117
a6f9edd6 1118 do {
a16601c5 1119 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1120 /* must delete to avoid corrupting pcp list */
a6f9edd6 1121 list_del(&page->lru);
77ba9062 1122 pcp->count--;
aa016d14 1123
4db7548c
MG
1124 if (bulkfree_pcp_prepare(page))
1125 continue;
1126
0a5f4e5b 1127 list_add_tail(&page->lru, &head);
97334162
AL
1128
1129 /*
1130 * We are going to put the page back to the global
1131 * pool, prefetch its buddy to speed up later access
1132 * under zone->lock. It is believed the overhead of
1133 * an additional test and calculating buddy_pfn here
1134 * can be offset by reduced memory latency later. To
1135 * avoid excessive prefetching due to large count, only
1136 * prefetch buddy for the first pcp->batch nr of pages.
1137 */
1138 if (prefetch_nr++ < pcp->batch)
1139 prefetch_buddy(page);
e5b31ac2 1140 } while (--count && --batch_free && !list_empty(list));
1da177e4 1141 }
0a5f4e5b
AL
1142
1143 spin_lock(&zone->lock);
1144 isolated_pageblocks = has_isolate_pageblock(zone);
1145
1146 /*
1147 * Use safe version since after __free_one_page(),
1148 * page->lru.next will not point to original list.
1149 */
1150 list_for_each_entry_safe(page, tmp, &head, lru) {
1151 int mt = get_pcppage_migratetype(page);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks))
1156 mt = get_pageblock_migratetype(page);
1157
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 }
d34b0733 1161 spin_unlock(&zone->lock);
1da177e4
LT
1162}
1163
dc4b0caf
MG
1164static void free_one_page(struct zone *zone,
1165 struct page *page, unsigned long pfn,
7aeb09f9 1166 unsigned int order,
ed0ae21d 1167 int migratetype)
1da177e4 1168{
d34b0733 1169 spin_lock(&zone->lock);
ad53f92e
JK
1170 if (unlikely(has_isolate_pageblock(zone) ||
1171 is_migrate_isolate(migratetype))) {
1172 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1173 }
dc4b0caf 1174 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1175 spin_unlock(&zone->lock);
48db57f8
NP
1176}
1177
1e8ce83c 1178static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1179 unsigned long zone, int nid)
1e8ce83c 1180{
d0dc12e8 1181 mm_zero_struct_page(page);
1e8ce83c 1182 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1183 init_page_count(page);
1184 page_mapcount_reset(page);
1185 page_cpupid_reset_last(page);
1e8ce83c 1186
1e8ce83c
RH
1187 INIT_LIST_HEAD(&page->lru);
1188#ifdef WANT_PAGE_VIRTUAL
1189 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1190 if (!is_highmem_idx(zone))
1191 set_page_address(page, __va(pfn << PAGE_SHIFT));
1192#endif
1193}
1194
7e18adb4 1195#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1196static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1197{
1198 pg_data_t *pgdat;
1199 int nid, zid;
1200
1201 if (!early_page_uninitialised(pfn))
1202 return;
1203
1204 nid = early_pfn_to_nid(pfn);
1205 pgdat = NODE_DATA(nid);
1206
1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 struct zone *zone = &pgdat->node_zones[zid];
1209
1210 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1211 break;
1212 }
d0dc12e8 1213 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1214}
1215#else
1216static inline void init_reserved_page(unsigned long pfn)
1217{
1218}
1219#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1220
92923ca3
NZ
1221/*
1222 * Initialised pages do not have PageReserved set. This function is
1223 * called for each range allocated by the bootmem allocator and
1224 * marks the pages PageReserved. The remaining valid pages are later
1225 * sent to the buddy page allocator.
1226 */
4b50bcc7 1227void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1228{
1229 unsigned long start_pfn = PFN_DOWN(start);
1230 unsigned long end_pfn = PFN_UP(end);
1231
7e18adb4
MG
1232 for (; start_pfn < end_pfn; start_pfn++) {
1233 if (pfn_valid(start_pfn)) {
1234 struct page *page = pfn_to_page(start_pfn);
1235
1236 init_reserved_page(start_pfn);
1d798ca3
KS
1237
1238 /* Avoid false-positive PageTail() */
1239 INIT_LIST_HEAD(&page->lru);
1240
d483da5b
AD
1241 /*
1242 * no need for atomic set_bit because the struct
1243 * page is not visible yet so nobody should
1244 * access it yet.
1245 */
1246 __SetPageReserved(page);
7e18adb4
MG
1247 }
1248 }
92923ca3
NZ
1249}
1250
ec95f53a
KM
1251static void __free_pages_ok(struct page *page, unsigned int order)
1252{
d34b0733 1253 unsigned long flags;
95e34412 1254 int migratetype;
dc4b0caf 1255 unsigned long pfn = page_to_pfn(page);
ec95f53a 1256
e2769dbd 1257 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1258 return;
1259
cfc47a28 1260 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1261 local_irq_save(flags);
1262 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1263 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1264 local_irq_restore(flags);
1da177e4
LT
1265}
1266
949698a3 1267static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1268{
c3993076 1269 unsigned int nr_pages = 1 << order;
e2d0bd2b 1270 struct page *p = page;
c3993076 1271 unsigned int loop;
a226f6c8 1272
e2d0bd2b
YL
1273 prefetchw(p);
1274 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1275 prefetchw(p + 1);
c3993076
JW
1276 __ClearPageReserved(p);
1277 set_page_count(p, 0);
a226f6c8 1278 }
e2d0bd2b
YL
1279 __ClearPageReserved(p);
1280 set_page_count(p, 0);
c3993076 1281
e2d0bd2b 1282 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1283 set_page_refcounted(page);
1284 __free_pages(page, order);
a226f6c8
DH
1285}
1286
75a592a4
MG
1287#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1289
75a592a4
MG
1290static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1291
1292int __meminit early_pfn_to_nid(unsigned long pfn)
1293{
7ace9917 1294 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1295 int nid;
1296
7ace9917 1297 spin_lock(&early_pfn_lock);
75a592a4 1298 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1299 if (nid < 0)
e4568d38 1300 nid = first_online_node;
7ace9917
MG
1301 spin_unlock(&early_pfn_lock);
1302
1303 return nid;
75a592a4
MG
1304}
1305#endif
1306
1307#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1308static inline bool __meminit __maybe_unused
1309meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
75a592a4
MG
1311{
1312 int nid;
1313
1314 nid = __early_pfn_to_nid(pfn, state);
1315 if (nid >= 0 && nid != node)
1316 return false;
1317 return true;
1318}
1319
1320/* Only safe to use early in boot when initialisation is single-threaded */
1321static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322{
1323 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1324}
1325
1326#else
1327
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return true;
1331}
d73d3c9f
MK
1332static inline bool __meminit __maybe_unused
1333meminit_pfn_in_nid(unsigned long pfn, int node,
1334 struct mminit_pfnnid_cache *state)
75a592a4
MG
1335{
1336 return true;
1337}
1338#endif
1339
1340
7c2ee349 1341void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1342 unsigned int order)
1343{
1344 if (early_page_uninitialised(pfn))
1345 return;
949698a3 1346 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1347}
1348
7cf91a98
JK
1349/*
1350 * Check that the whole (or subset of) a pageblock given by the interval of
1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352 * with the migration of free compaction scanner. The scanners then need to
1353 * use only pfn_valid_within() check for arches that allow holes within
1354 * pageblocks.
1355 *
1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1357 *
1358 * It's possible on some configurations to have a setup like node0 node1 node0
1359 * i.e. it's possible that all pages within a zones range of pages do not
1360 * belong to a single zone. We assume that a border between node0 and node1
1361 * can occur within a single pageblock, but not a node0 node1 node0
1362 * interleaving within a single pageblock. It is therefore sufficient to check
1363 * the first and last page of a pageblock and avoid checking each individual
1364 * page in a pageblock.
1365 */
1366struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 unsigned long end_pfn, struct zone *zone)
1368{
1369 struct page *start_page;
1370 struct page *end_page;
1371
1372 /* end_pfn is one past the range we are checking */
1373 end_pfn--;
1374
1375 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1376 return NULL;
1377
2d070eab
MH
1378 start_page = pfn_to_online_page(start_pfn);
1379 if (!start_page)
1380 return NULL;
7cf91a98
JK
1381
1382 if (page_zone(start_page) != zone)
1383 return NULL;
1384
1385 end_page = pfn_to_page(end_pfn);
1386
1387 /* This gives a shorter code than deriving page_zone(end_page) */
1388 if (page_zone_id(start_page) != page_zone_id(end_page))
1389 return NULL;
1390
1391 return start_page;
1392}
1393
1394void set_zone_contiguous(struct zone *zone)
1395{
1396 unsigned long block_start_pfn = zone->zone_start_pfn;
1397 unsigned long block_end_pfn;
1398
1399 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1400 for (; block_start_pfn < zone_end_pfn(zone);
1401 block_start_pfn = block_end_pfn,
1402 block_end_pfn += pageblock_nr_pages) {
1403
1404 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1405
1406 if (!__pageblock_pfn_to_page(block_start_pfn,
1407 block_end_pfn, zone))
1408 return;
1409 }
1410
1411 /* We confirm that there is no hole */
1412 zone->contiguous = true;
1413}
1414
1415void clear_zone_contiguous(struct zone *zone)
1416{
1417 zone->contiguous = false;
1418}
1419
7e18adb4 1420#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1421static void __init deferred_free_range(unsigned long pfn,
1422 unsigned long nr_pages)
a4de83dd 1423{
2f47a91f
PT
1424 struct page *page;
1425 unsigned long i;
a4de83dd 1426
2f47a91f 1427 if (!nr_pages)
a4de83dd
MG
1428 return;
1429
2f47a91f
PT
1430 page = pfn_to_page(pfn);
1431
a4de83dd 1432 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1433 if (nr_pages == pageblock_nr_pages &&
1434 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1436 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1437 return;
1438 }
1439
e780149b
XQ
1440 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1443 __free_pages_boot_core(page, 0);
e780149b 1444 }
a4de83dd
MG
1445}
1446
d3cd131d
NS
1447/* Completion tracking for deferred_init_memmap() threads */
1448static atomic_t pgdat_init_n_undone __initdata;
1449static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450
1451static inline void __init pgdat_init_report_one_done(void)
1452{
1453 if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 complete(&pgdat_init_all_done_comp);
1455}
0e1cc95b 1456
2f47a91f 1457/*
80b1f41c
PT
1458 * Returns true if page needs to be initialized or freed to buddy allocator.
1459 *
1460 * First we check if pfn is valid on architectures where it is possible to have
1461 * holes within pageblock_nr_pages. On systems where it is not possible, this
1462 * function is optimized out.
1463 *
1464 * Then, we check if a current large page is valid by only checking the validity
1465 * of the head pfn.
1466 *
1467 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1468 * within a node: a pfn is between start and end of a node, but does not belong
1469 * to this memory node.
2f47a91f 1470 */
80b1f41c
PT
1471static inline bool __init
1472deferred_pfn_valid(int nid, unsigned long pfn,
1473 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1474{
80b1f41c
PT
1475 if (!pfn_valid_within(pfn))
1476 return false;
1477 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1478 return false;
1479 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1480 return false;
1481 return true;
1482}
2f47a91f 1483
80b1f41c
PT
1484/*
1485 * Free pages to buddy allocator. Try to free aligned pages in
1486 * pageblock_nr_pages sizes.
1487 */
1488static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1489 unsigned long end_pfn)
1490{
1491 struct mminit_pfnnid_cache nid_init_state = { };
1492 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1493 unsigned long nr_free = 0;
2f47a91f 1494
80b1f41c
PT
1495 for (; pfn < end_pfn; pfn++) {
1496 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1497 deferred_free_range(pfn - nr_free, nr_free);
1498 nr_free = 0;
1499 } else if (!(pfn & nr_pgmask)) {
1500 deferred_free_range(pfn - nr_free, nr_free);
1501 nr_free = 1;
3a2d7fa8 1502 touch_nmi_watchdog();
80b1f41c
PT
1503 } else {
1504 nr_free++;
1505 }
1506 }
1507 /* Free the last block of pages to allocator */
1508 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1509}
1510
80b1f41c
PT
1511/*
1512 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1513 * by performing it only once every pageblock_nr_pages.
1514 * Return number of pages initialized.
1515 */
1516static unsigned long __init deferred_init_pages(int nid, int zid,
1517 unsigned long pfn,
1518 unsigned long end_pfn)
2f47a91f
PT
1519{
1520 struct mminit_pfnnid_cache nid_init_state = { };
1521 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1522 unsigned long nr_pages = 0;
2f47a91f 1523 struct page *page = NULL;
2f47a91f 1524
80b1f41c
PT
1525 for (; pfn < end_pfn; pfn++) {
1526 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1527 page = NULL;
2f47a91f 1528 continue;
80b1f41c 1529 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1530 page = pfn_to_page(pfn);
3a2d7fa8 1531 touch_nmi_watchdog();
80b1f41c
PT
1532 } else {
1533 page++;
2f47a91f 1534 }
d0dc12e8 1535 __init_single_page(page, pfn, zid, nid);
80b1f41c 1536 nr_pages++;
2f47a91f 1537 }
80b1f41c 1538 return (nr_pages);
2f47a91f
PT
1539}
1540
7e18adb4 1541/* Initialise remaining memory on a node */
0e1cc95b 1542static int __init deferred_init_memmap(void *data)
7e18adb4 1543{
0e1cc95b
MG
1544 pg_data_t *pgdat = data;
1545 int nid = pgdat->node_id;
7e18adb4
MG
1546 unsigned long start = jiffies;
1547 unsigned long nr_pages = 0;
3a2d7fa8 1548 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1549 phys_addr_t spa, epa;
1550 int zid;
7e18adb4 1551 struct zone *zone;
0e1cc95b 1552 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1553 u64 i;
7e18adb4 1554
3a2d7fa8
PT
1555 /* Bind memory initialisation thread to a local node if possible */
1556 if (!cpumask_empty(cpumask))
1557 set_cpus_allowed_ptr(current, cpumask);
1558
1559 pgdat_resize_lock(pgdat, &flags);
1560 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1561 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1562 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1563 pgdat_init_report_one_done();
0e1cc95b
MG
1564 return 0;
1565 }
1566
7e18adb4
MG
1567 /* Sanity check boundaries */
1568 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1569 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1570 pgdat->first_deferred_pfn = ULONG_MAX;
1571
1572 /* Only the highest zone is deferred so find it */
1573 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1574 zone = pgdat->node_zones + zid;
1575 if (first_init_pfn < zone_end_pfn(zone))
1576 break;
1577 }
2f47a91f 1578 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1579
80b1f41c
PT
1580 /*
1581 * Initialize and free pages. We do it in two loops: first we initialize
1582 * struct page, than free to buddy allocator, because while we are
1583 * freeing pages we can access pages that are ahead (computing buddy
1584 * page in __free_one_page()).
1585 */
1586 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1587 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1588 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1589 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1590 }
2f47a91f
PT
1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1594 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1595 }
3a2d7fa8 1596 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1597
1598 /* Sanity check that the next zone really is unpopulated */
1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1600
0e1cc95b 1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1602 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1603
1604 pgdat_init_report_one_done();
0e1cc95b
MG
1605 return 0;
1606}
c9e97a19
PT
1607
1608/*
1609 * During boot we initialize deferred pages on-demand, as needed, but once
1610 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1611 * and we can permanently disable that path.
1612 */
1613static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1614
1615/*
1616 * If this zone has deferred pages, try to grow it by initializing enough
1617 * deferred pages to satisfy the allocation specified by order, rounded up to
1618 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1619 * of SECTION_SIZE bytes by initializing struct pages in increments of
1620 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1621 *
1622 * Return true when zone was grown, otherwise return false. We return true even
1623 * when we grow less than requested, to let the caller decide if there are
1624 * enough pages to satisfy the allocation.
1625 *
1626 * Note: We use noinline because this function is needed only during boot, and
1627 * it is called from a __ref function _deferred_grow_zone. This way we are
1628 * making sure that it is not inlined into permanent text section.
1629 */
1630static noinline bool __init
1631deferred_grow_zone(struct zone *zone, unsigned int order)
1632{
1633 int zid = zone_idx(zone);
1634 int nid = zone_to_nid(zone);
1635 pg_data_t *pgdat = NODE_DATA(nid);
1636 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1637 unsigned long nr_pages = 0;
1638 unsigned long first_init_pfn, spfn, epfn, t, flags;
1639 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1640 phys_addr_t spa, epa;
1641 u64 i;
1642
1643 /* Only the last zone may have deferred pages */
1644 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1645 return false;
1646
1647 pgdat_resize_lock(pgdat, &flags);
1648
1649 /*
1650 * If deferred pages have been initialized while we were waiting for
1651 * the lock, return true, as the zone was grown. The caller will retry
1652 * this zone. We won't return to this function since the caller also
1653 * has this static branch.
1654 */
1655 if (!static_branch_unlikely(&deferred_pages)) {
1656 pgdat_resize_unlock(pgdat, &flags);
1657 return true;
1658 }
1659
1660 /*
1661 * If someone grew this zone while we were waiting for spinlock, return
1662 * true, as there might be enough pages already.
1663 */
1664 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1665 pgdat_resize_unlock(pgdat, &flags);
1666 return true;
1667 }
1668
1669 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1670
1671 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1672 pgdat_resize_unlock(pgdat, &flags);
1673 return false;
1674 }
1675
1676 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1677 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1678 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1679
1680 while (spfn < epfn && nr_pages < nr_pages_needed) {
1681 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1682 first_deferred_pfn = min(t, epfn);
1683 nr_pages += deferred_init_pages(nid, zid, spfn,
1684 first_deferred_pfn);
1685 spfn = first_deferred_pfn;
1686 }
1687
1688 if (nr_pages >= nr_pages_needed)
1689 break;
1690 }
1691
1692 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1693 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1694 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1695 deferred_free_pages(nid, zid, spfn, epfn);
1696
1697 if (first_deferred_pfn == epfn)
1698 break;
1699 }
1700 pgdat->first_deferred_pfn = first_deferred_pfn;
1701 pgdat_resize_unlock(pgdat, &flags);
1702
1703 return nr_pages > 0;
1704}
1705
1706/*
1707 * deferred_grow_zone() is __init, but it is called from
1708 * get_page_from_freelist() during early boot until deferred_pages permanently
1709 * disables this call. This is why we have refdata wrapper to avoid warning,
1710 * and to ensure that the function body gets unloaded.
1711 */
1712static bool __ref
1713_deferred_grow_zone(struct zone *zone, unsigned int order)
1714{
1715 return deferred_grow_zone(zone, order);
1716}
1717
7cf91a98 1718#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1719
1720void __init page_alloc_init_late(void)
1721{
7cf91a98
JK
1722 struct zone *zone;
1723
1724#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1725 int nid;
1726
d3cd131d
NS
1727 /* There will be num_node_state(N_MEMORY) threads */
1728 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1729 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1730 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1731 }
1732
1733 /* Block until all are initialised */
d3cd131d 1734 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1735
c9e97a19
PT
1736 /*
1737 * We initialized the rest of the deferred pages. Permanently disable
1738 * on-demand struct page initialization.
1739 */
1740 static_branch_disable(&deferred_pages);
1741
4248b0da
MG
1742 /* Reinit limits that are based on free pages after the kernel is up */
1743 files_maxfiles_init();
7cf91a98 1744#endif
3010f876
PT
1745#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1746 /* Discard memblock private memory */
1747 memblock_discard();
1748#endif
7cf91a98
JK
1749
1750 for_each_populated_zone(zone)
1751 set_zone_contiguous(zone);
7e18adb4 1752}
7e18adb4 1753
47118af0 1754#ifdef CONFIG_CMA
9cf510a5 1755/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1756void __init init_cma_reserved_pageblock(struct page *page)
1757{
1758 unsigned i = pageblock_nr_pages;
1759 struct page *p = page;
1760
1761 do {
1762 __ClearPageReserved(p);
1763 set_page_count(p, 0);
d883c6cf 1764 } while (++p, --i);
47118af0 1765
47118af0 1766 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1767
1768 if (pageblock_order >= MAX_ORDER) {
1769 i = pageblock_nr_pages;
1770 p = page;
1771 do {
1772 set_page_refcounted(p);
1773 __free_pages(p, MAX_ORDER - 1);
1774 p += MAX_ORDER_NR_PAGES;
1775 } while (i -= MAX_ORDER_NR_PAGES);
1776 } else {
1777 set_page_refcounted(page);
1778 __free_pages(page, pageblock_order);
1779 }
1780
3dcc0571 1781 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1782}
1783#endif
1da177e4
LT
1784
1785/*
1786 * The order of subdivision here is critical for the IO subsystem.
1787 * Please do not alter this order without good reasons and regression
1788 * testing. Specifically, as large blocks of memory are subdivided,
1789 * the order in which smaller blocks are delivered depends on the order
1790 * they're subdivided in this function. This is the primary factor
1791 * influencing the order in which pages are delivered to the IO
1792 * subsystem according to empirical testing, and this is also justified
1793 * by considering the behavior of a buddy system containing a single
1794 * large block of memory acted on by a series of small allocations.
1795 * This behavior is a critical factor in sglist merging's success.
1796 *
6d49e352 1797 * -- nyc
1da177e4 1798 */
085cc7d5 1799static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1800 int low, int high, struct free_area *area,
1801 int migratetype)
1da177e4
LT
1802{
1803 unsigned long size = 1 << high;
1804
1805 while (high > low) {
1806 area--;
1807 high--;
1808 size >>= 1;
309381fe 1809 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1810
acbc15a4
JK
1811 /*
1812 * Mark as guard pages (or page), that will allow to
1813 * merge back to allocator when buddy will be freed.
1814 * Corresponding page table entries will not be touched,
1815 * pages will stay not present in virtual address space
1816 */
1817 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1818 continue;
acbc15a4 1819
b2a0ac88 1820 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1821 area->nr_free++;
1822 set_page_order(&page[size], high);
1823 }
1da177e4
LT
1824}
1825
4e611801 1826static void check_new_page_bad(struct page *page)
1da177e4 1827{
4e611801
VB
1828 const char *bad_reason = NULL;
1829 unsigned long bad_flags = 0;
7bfec6f4 1830
53f9263b 1831 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1832 bad_reason = "nonzero mapcount";
1833 if (unlikely(page->mapping != NULL))
1834 bad_reason = "non-NULL mapping";
fe896d18 1835 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1836 bad_reason = "nonzero _count";
f4c18e6f
NH
1837 if (unlikely(page->flags & __PG_HWPOISON)) {
1838 bad_reason = "HWPoisoned (hardware-corrupted)";
1839 bad_flags = __PG_HWPOISON;
e570f56c
NH
1840 /* Don't complain about hwpoisoned pages */
1841 page_mapcount_reset(page); /* remove PageBuddy */
1842 return;
f4c18e6f 1843 }
f0b791a3
DH
1844 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1845 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1846 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1847 }
9edad6ea
JW
1848#ifdef CONFIG_MEMCG
1849 if (unlikely(page->mem_cgroup))
1850 bad_reason = "page still charged to cgroup";
1851#endif
4e611801
VB
1852 bad_page(page, bad_reason, bad_flags);
1853}
1854
1855/*
1856 * This page is about to be returned from the page allocator
1857 */
1858static inline int check_new_page(struct page *page)
1859{
1860 if (likely(page_expected_state(page,
1861 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1862 return 0;
1863
1864 check_new_page_bad(page);
1865 return 1;
2a7684a2
WF
1866}
1867
bd33ef36 1868static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1869{
1870 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1871 page_poisoning_enabled();
1414c7f4
LA
1872}
1873
479f854a
MG
1874#ifdef CONFIG_DEBUG_VM
1875static bool check_pcp_refill(struct page *page)
1876{
1877 return false;
1878}
1879
1880static bool check_new_pcp(struct page *page)
1881{
1882 return check_new_page(page);
1883}
1884#else
1885static bool check_pcp_refill(struct page *page)
1886{
1887 return check_new_page(page);
1888}
1889static bool check_new_pcp(struct page *page)
1890{
1891 return false;
1892}
1893#endif /* CONFIG_DEBUG_VM */
1894
1895static bool check_new_pages(struct page *page, unsigned int order)
1896{
1897 int i;
1898 for (i = 0; i < (1 << order); i++) {
1899 struct page *p = page + i;
1900
1901 if (unlikely(check_new_page(p)))
1902 return true;
1903 }
1904
1905 return false;
1906}
1907
46f24fd8
JK
1908inline void post_alloc_hook(struct page *page, unsigned int order,
1909 gfp_t gfp_flags)
1910{
1911 set_page_private(page, 0);
1912 set_page_refcounted(page);
1913
1914 arch_alloc_page(page, order);
1915 kernel_map_pages(page, 1 << order, 1);
1916 kernel_poison_pages(page, 1 << order, 1);
1917 kasan_alloc_pages(page, order);
1918 set_page_owner(page, order, gfp_flags);
1919}
1920
479f854a 1921static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1922 unsigned int alloc_flags)
2a7684a2
WF
1923{
1924 int i;
689bcebf 1925
46f24fd8 1926 post_alloc_hook(page, order, gfp_flags);
17cf4406 1927
bd33ef36 1928 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1929 for (i = 0; i < (1 << order); i++)
1930 clear_highpage(page + i);
17cf4406
NP
1931
1932 if (order && (gfp_flags & __GFP_COMP))
1933 prep_compound_page(page, order);
1934
75379191 1935 /*
2f064f34 1936 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1937 * allocate the page. The expectation is that the caller is taking
1938 * steps that will free more memory. The caller should avoid the page
1939 * being used for !PFMEMALLOC purposes.
1940 */
2f064f34
MH
1941 if (alloc_flags & ALLOC_NO_WATERMARKS)
1942 set_page_pfmemalloc(page);
1943 else
1944 clear_page_pfmemalloc(page);
1da177e4
LT
1945}
1946
56fd56b8
MG
1947/*
1948 * Go through the free lists for the given migratetype and remove
1949 * the smallest available page from the freelists
1950 */
85ccc8fa 1951static __always_inline
728ec980 1952struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1953 int migratetype)
1954{
1955 unsigned int current_order;
b8af2941 1956 struct free_area *area;
56fd56b8
MG
1957 struct page *page;
1958
1959 /* Find a page of the appropriate size in the preferred list */
1960 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1961 area = &(zone->free_area[current_order]);
a16601c5 1962 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1963 struct page, lru);
a16601c5
GT
1964 if (!page)
1965 continue;
56fd56b8
MG
1966 list_del(&page->lru);
1967 rmv_page_order(page);
1968 area->nr_free--;
56fd56b8 1969 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1970 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1971 return page;
1972 }
1973
1974 return NULL;
1975}
1976
1977
b2a0ac88
MG
1978/*
1979 * This array describes the order lists are fallen back to when
1980 * the free lists for the desirable migrate type are depleted
1981 */
47118af0 1982static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1986#ifdef CONFIG_CMA
974a786e 1987 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1988#endif
194159fb 1989#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1990 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1991#endif
b2a0ac88
MG
1992};
1993
dc67647b 1994#ifdef CONFIG_CMA
85ccc8fa 1995static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1996 unsigned int order)
1997{
1998 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1999}
2000#else
2001static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2002 unsigned int order) { return NULL; }
2003#endif
2004
c361be55
MG
2005/*
2006 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2007 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2008 * boundary. If alignment is required, use move_freepages_block()
2009 */
02aa0cdd 2010static int move_freepages(struct zone *zone,
b69a7288 2011 struct page *start_page, struct page *end_page,
02aa0cdd 2012 int migratetype, int *num_movable)
c361be55
MG
2013{
2014 struct page *page;
d00181b9 2015 unsigned int order;
d100313f 2016 int pages_moved = 0;
c361be55
MG
2017
2018#ifndef CONFIG_HOLES_IN_ZONE
2019 /*
2020 * page_zone is not safe to call in this context when
2021 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2022 * anyway as we check zone boundaries in move_freepages_block().
2023 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2024 * grouping pages by mobility
c361be55 2025 */
3e04040d
AB
2026 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2027 pfn_valid(page_to_pfn(end_page)) &&
2028 page_zone(start_page) != page_zone(end_page));
c361be55 2029#endif
c361be55
MG
2030 for (page = start_page; page <= end_page;) {
2031 if (!pfn_valid_within(page_to_pfn(page))) {
2032 page++;
2033 continue;
2034 }
2035
f073bdc5
AB
2036 /* Make sure we are not inadvertently changing nodes */
2037 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2038
c361be55 2039 if (!PageBuddy(page)) {
02aa0cdd
VB
2040 /*
2041 * We assume that pages that could be isolated for
2042 * migration are movable. But we don't actually try
2043 * isolating, as that would be expensive.
2044 */
2045 if (num_movable &&
2046 (PageLRU(page) || __PageMovable(page)))
2047 (*num_movable)++;
2048
c361be55
MG
2049 page++;
2050 continue;
2051 }
2052
2053 order = page_order(page);
84be48d8
KS
2054 list_move(&page->lru,
2055 &zone->free_area[order].free_list[migratetype]);
c361be55 2056 page += 1 << order;
d100313f 2057 pages_moved += 1 << order;
c361be55
MG
2058 }
2059
d100313f 2060 return pages_moved;
c361be55
MG
2061}
2062
ee6f509c 2063int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2064 int migratetype, int *num_movable)
c361be55
MG
2065{
2066 unsigned long start_pfn, end_pfn;
2067 struct page *start_page, *end_page;
2068
4a222127
DR
2069 if (num_movable)
2070 *num_movable = 0;
2071
c361be55 2072 start_pfn = page_to_pfn(page);
d9c23400 2073 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2074 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2075 end_page = start_page + pageblock_nr_pages - 1;
2076 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2077
2078 /* Do not cross zone boundaries */
108bcc96 2079 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2080 start_page = page;
108bcc96 2081 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2082 return 0;
2083
02aa0cdd
VB
2084 return move_freepages(zone, start_page, end_page, migratetype,
2085 num_movable);
c361be55
MG
2086}
2087
2f66a68f
MG
2088static void change_pageblock_range(struct page *pageblock_page,
2089 int start_order, int migratetype)
2090{
2091 int nr_pageblocks = 1 << (start_order - pageblock_order);
2092
2093 while (nr_pageblocks--) {
2094 set_pageblock_migratetype(pageblock_page, migratetype);
2095 pageblock_page += pageblock_nr_pages;
2096 }
2097}
2098
fef903ef 2099/*
9c0415eb
VB
2100 * When we are falling back to another migratetype during allocation, try to
2101 * steal extra free pages from the same pageblocks to satisfy further
2102 * allocations, instead of polluting multiple pageblocks.
2103 *
2104 * If we are stealing a relatively large buddy page, it is likely there will
2105 * be more free pages in the pageblock, so try to steal them all. For
2106 * reclaimable and unmovable allocations, we steal regardless of page size,
2107 * as fragmentation caused by those allocations polluting movable pageblocks
2108 * is worse than movable allocations stealing from unmovable and reclaimable
2109 * pageblocks.
fef903ef 2110 */
4eb7dce6
JK
2111static bool can_steal_fallback(unsigned int order, int start_mt)
2112{
2113 /*
2114 * Leaving this order check is intended, although there is
2115 * relaxed order check in next check. The reason is that
2116 * we can actually steal whole pageblock if this condition met,
2117 * but, below check doesn't guarantee it and that is just heuristic
2118 * so could be changed anytime.
2119 */
2120 if (order >= pageblock_order)
2121 return true;
2122
2123 if (order >= pageblock_order / 2 ||
2124 start_mt == MIGRATE_RECLAIMABLE ||
2125 start_mt == MIGRATE_UNMOVABLE ||
2126 page_group_by_mobility_disabled)
2127 return true;
2128
2129 return false;
2130}
2131
2132/*
2133 * This function implements actual steal behaviour. If order is large enough,
2134 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2135 * pageblock to our migratetype and determine how many already-allocated pages
2136 * are there in the pageblock with a compatible migratetype. If at least half
2137 * of pages are free or compatible, we can change migratetype of the pageblock
2138 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2139 */
2140static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2141 int start_type, bool whole_block)
fef903ef 2142{
d00181b9 2143 unsigned int current_order = page_order(page);
3bc48f96 2144 struct free_area *area;
02aa0cdd
VB
2145 int free_pages, movable_pages, alike_pages;
2146 int old_block_type;
2147
2148 old_block_type = get_pageblock_migratetype(page);
fef903ef 2149
3bc48f96
VB
2150 /*
2151 * This can happen due to races and we want to prevent broken
2152 * highatomic accounting.
2153 */
02aa0cdd 2154 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2155 goto single_page;
2156
fef903ef
SB
2157 /* Take ownership for orders >= pageblock_order */
2158 if (current_order >= pageblock_order) {
2159 change_pageblock_range(page, current_order, start_type);
3bc48f96 2160 goto single_page;
fef903ef
SB
2161 }
2162
3bc48f96
VB
2163 /* We are not allowed to try stealing from the whole block */
2164 if (!whole_block)
2165 goto single_page;
2166
02aa0cdd
VB
2167 free_pages = move_freepages_block(zone, page, start_type,
2168 &movable_pages);
2169 /*
2170 * Determine how many pages are compatible with our allocation.
2171 * For movable allocation, it's the number of movable pages which
2172 * we just obtained. For other types it's a bit more tricky.
2173 */
2174 if (start_type == MIGRATE_MOVABLE) {
2175 alike_pages = movable_pages;
2176 } else {
2177 /*
2178 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2179 * to MOVABLE pageblock, consider all non-movable pages as
2180 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2181 * vice versa, be conservative since we can't distinguish the
2182 * exact migratetype of non-movable pages.
2183 */
2184 if (old_block_type == MIGRATE_MOVABLE)
2185 alike_pages = pageblock_nr_pages
2186 - (free_pages + movable_pages);
2187 else
2188 alike_pages = 0;
2189 }
2190
3bc48f96 2191 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2192 if (!free_pages)
3bc48f96 2193 goto single_page;
fef903ef 2194
02aa0cdd
VB
2195 /*
2196 * If a sufficient number of pages in the block are either free or of
2197 * comparable migratability as our allocation, claim the whole block.
2198 */
2199 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2200 page_group_by_mobility_disabled)
2201 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2202
2203 return;
2204
2205single_page:
2206 area = &zone->free_area[current_order];
2207 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2208}
2209
2149cdae
JK
2210/*
2211 * Check whether there is a suitable fallback freepage with requested order.
2212 * If only_stealable is true, this function returns fallback_mt only if
2213 * we can steal other freepages all together. This would help to reduce
2214 * fragmentation due to mixed migratetype pages in one pageblock.
2215 */
2216int find_suitable_fallback(struct free_area *area, unsigned int order,
2217 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2218{
2219 int i;
2220 int fallback_mt;
2221
2222 if (area->nr_free == 0)
2223 return -1;
2224
2225 *can_steal = false;
2226 for (i = 0;; i++) {
2227 fallback_mt = fallbacks[migratetype][i];
974a786e 2228 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2229 break;
2230
2231 if (list_empty(&area->free_list[fallback_mt]))
2232 continue;
fef903ef 2233
4eb7dce6
JK
2234 if (can_steal_fallback(order, migratetype))
2235 *can_steal = true;
2236
2149cdae
JK
2237 if (!only_stealable)
2238 return fallback_mt;
2239
2240 if (*can_steal)
2241 return fallback_mt;
fef903ef 2242 }
4eb7dce6
JK
2243
2244 return -1;
fef903ef
SB
2245}
2246
0aaa29a5
MG
2247/*
2248 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2249 * there are no empty page blocks that contain a page with a suitable order
2250 */
2251static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2252 unsigned int alloc_order)
2253{
2254 int mt;
2255 unsigned long max_managed, flags;
2256
2257 /*
2258 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2259 * Check is race-prone but harmless.
2260 */
2261 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2262 if (zone->nr_reserved_highatomic >= max_managed)
2263 return;
2264
2265 spin_lock_irqsave(&zone->lock, flags);
2266
2267 /* Recheck the nr_reserved_highatomic limit under the lock */
2268 if (zone->nr_reserved_highatomic >= max_managed)
2269 goto out_unlock;
2270
2271 /* Yoink! */
2272 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2273 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2274 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2275 zone->nr_reserved_highatomic += pageblock_nr_pages;
2276 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2277 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2278 }
2279
2280out_unlock:
2281 spin_unlock_irqrestore(&zone->lock, flags);
2282}
2283
2284/*
2285 * Used when an allocation is about to fail under memory pressure. This
2286 * potentially hurts the reliability of high-order allocations when under
2287 * intense memory pressure but failed atomic allocations should be easier
2288 * to recover from than an OOM.
29fac03b
MK
2289 *
2290 * If @force is true, try to unreserve a pageblock even though highatomic
2291 * pageblock is exhausted.
0aaa29a5 2292 */
29fac03b
MK
2293static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2294 bool force)
0aaa29a5
MG
2295{
2296 struct zonelist *zonelist = ac->zonelist;
2297 unsigned long flags;
2298 struct zoneref *z;
2299 struct zone *zone;
2300 struct page *page;
2301 int order;
04c8716f 2302 bool ret;
0aaa29a5
MG
2303
2304 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2305 ac->nodemask) {
29fac03b
MK
2306 /*
2307 * Preserve at least one pageblock unless memory pressure
2308 * is really high.
2309 */
2310 if (!force && zone->nr_reserved_highatomic <=
2311 pageblock_nr_pages)
0aaa29a5
MG
2312 continue;
2313
2314 spin_lock_irqsave(&zone->lock, flags);
2315 for (order = 0; order < MAX_ORDER; order++) {
2316 struct free_area *area = &(zone->free_area[order]);
2317
a16601c5
GT
2318 page = list_first_entry_or_null(
2319 &area->free_list[MIGRATE_HIGHATOMIC],
2320 struct page, lru);
2321 if (!page)
0aaa29a5
MG
2322 continue;
2323
0aaa29a5 2324 /*
4855e4a7
MK
2325 * In page freeing path, migratetype change is racy so
2326 * we can counter several free pages in a pageblock
2327 * in this loop althoug we changed the pageblock type
2328 * from highatomic to ac->migratetype. So we should
2329 * adjust the count once.
0aaa29a5 2330 */
a6ffdc07 2331 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2332 /*
2333 * It should never happen but changes to
2334 * locking could inadvertently allow a per-cpu
2335 * drain to add pages to MIGRATE_HIGHATOMIC
2336 * while unreserving so be safe and watch for
2337 * underflows.
2338 */
2339 zone->nr_reserved_highatomic -= min(
2340 pageblock_nr_pages,
2341 zone->nr_reserved_highatomic);
2342 }
0aaa29a5
MG
2343
2344 /*
2345 * Convert to ac->migratetype and avoid the normal
2346 * pageblock stealing heuristics. Minimally, the caller
2347 * is doing the work and needs the pages. More
2348 * importantly, if the block was always converted to
2349 * MIGRATE_UNMOVABLE or another type then the number
2350 * of pageblocks that cannot be completely freed
2351 * may increase.
2352 */
2353 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2354 ret = move_freepages_block(zone, page, ac->migratetype,
2355 NULL);
29fac03b
MK
2356 if (ret) {
2357 spin_unlock_irqrestore(&zone->lock, flags);
2358 return ret;
2359 }
0aaa29a5
MG
2360 }
2361 spin_unlock_irqrestore(&zone->lock, flags);
2362 }
04c8716f
MK
2363
2364 return false;
0aaa29a5
MG
2365}
2366
3bc48f96
VB
2367/*
2368 * Try finding a free buddy page on the fallback list and put it on the free
2369 * list of requested migratetype, possibly along with other pages from the same
2370 * block, depending on fragmentation avoidance heuristics. Returns true if
2371 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2372 *
2373 * The use of signed ints for order and current_order is a deliberate
2374 * deviation from the rest of this file, to make the for loop
2375 * condition simpler.
3bc48f96 2376 */
85ccc8fa 2377static __always_inline bool
b002529d 2378__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2379{
b8af2941 2380 struct free_area *area;
b002529d 2381 int current_order;
b2a0ac88 2382 struct page *page;
4eb7dce6
JK
2383 int fallback_mt;
2384 bool can_steal;
b2a0ac88 2385
7a8f58f3
VB
2386 /*
2387 * Find the largest available free page in the other list. This roughly
2388 * approximates finding the pageblock with the most free pages, which
2389 * would be too costly to do exactly.
2390 */
b002529d 2391 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2392 --current_order) {
4eb7dce6
JK
2393 area = &(zone->free_area[current_order]);
2394 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2395 start_migratetype, false, &can_steal);
4eb7dce6
JK
2396 if (fallback_mt == -1)
2397 continue;
b2a0ac88 2398
7a8f58f3
VB
2399 /*
2400 * We cannot steal all free pages from the pageblock and the
2401 * requested migratetype is movable. In that case it's better to
2402 * steal and split the smallest available page instead of the
2403 * largest available page, because even if the next movable
2404 * allocation falls back into a different pageblock than this
2405 * one, it won't cause permanent fragmentation.
2406 */
2407 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2408 && current_order > order)
2409 goto find_smallest;
b2a0ac88 2410
7a8f58f3
VB
2411 goto do_steal;
2412 }
e0fff1bd 2413
7a8f58f3 2414 return false;
e0fff1bd 2415
7a8f58f3
VB
2416find_smallest:
2417 for (current_order = order; current_order < MAX_ORDER;
2418 current_order++) {
2419 area = &(zone->free_area[current_order]);
2420 fallback_mt = find_suitable_fallback(area, current_order,
2421 start_migratetype, false, &can_steal);
2422 if (fallback_mt != -1)
2423 break;
b2a0ac88
MG
2424 }
2425
7a8f58f3
VB
2426 /*
2427 * This should not happen - we already found a suitable fallback
2428 * when looking for the largest page.
2429 */
2430 VM_BUG_ON(current_order == MAX_ORDER);
2431
2432do_steal:
2433 page = list_first_entry(&area->free_list[fallback_mt],
2434 struct page, lru);
2435
2436 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2437
2438 trace_mm_page_alloc_extfrag(page, order, current_order,
2439 start_migratetype, fallback_mt);
2440
2441 return true;
2442
b2a0ac88
MG
2443}
2444
56fd56b8 2445/*
1da177e4
LT
2446 * Do the hard work of removing an element from the buddy allocator.
2447 * Call me with the zone->lock already held.
2448 */
85ccc8fa
AL
2449static __always_inline struct page *
2450__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2451{
1da177e4
LT
2452 struct page *page;
2453
3bc48f96 2454retry:
56fd56b8 2455 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2456 if (unlikely(!page)) {
dc67647b
JK
2457 if (migratetype == MIGRATE_MOVABLE)
2458 page = __rmqueue_cma_fallback(zone, order);
2459
3bc48f96
VB
2460 if (!page && __rmqueue_fallback(zone, order, migratetype))
2461 goto retry;
728ec980
MG
2462 }
2463
0d3d062a 2464 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2465 return page;
1da177e4
LT
2466}
2467
5f63b720 2468/*
1da177e4
LT
2469 * Obtain a specified number of elements from the buddy allocator, all under
2470 * a single hold of the lock, for efficiency. Add them to the supplied list.
2471 * Returns the number of new pages which were placed at *list.
2472 */
5f63b720 2473static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2474 unsigned long count, struct list_head *list,
453f85d4 2475 int migratetype)
1da177e4 2476{
a6de734b 2477 int i, alloced = 0;
5f63b720 2478
d34b0733 2479 spin_lock(&zone->lock);
1da177e4 2480 for (i = 0; i < count; ++i) {
6ac0206b 2481 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2482 if (unlikely(page == NULL))
1da177e4 2483 break;
81eabcbe 2484
479f854a
MG
2485 if (unlikely(check_pcp_refill(page)))
2486 continue;
2487
81eabcbe 2488 /*
0fac3ba5
VB
2489 * Split buddy pages returned by expand() are received here in
2490 * physical page order. The page is added to the tail of
2491 * caller's list. From the callers perspective, the linked list
2492 * is ordered by page number under some conditions. This is
2493 * useful for IO devices that can forward direction from the
2494 * head, thus also in the physical page order. This is useful
2495 * for IO devices that can merge IO requests if the physical
2496 * pages are ordered properly.
81eabcbe 2497 */
0fac3ba5 2498 list_add_tail(&page->lru, list);
a6de734b 2499 alloced++;
bb14c2c7 2500 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2501 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2502 -(1 << order));
1da177e4 2503 }
a6de734b
MG
2504
2505 /*
2506 * i pages were removed from the buddy list even if some leak due
2507 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2508 * on i. Do not confuse with 'alloced' which is the number of
2509 * pages added to the pcp list.
2510 */
f2260e6b 2511 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2512 spin_unlock(&zone->lock);
a6de734b 2513 return alloced;
1da177e4
LT
2514}
2515
4ae7c039 2516#ifdef CONFIG_NUMA
8fce4d8e 2517/*
4037d452
CL
2518 * Called from the vmstat counter updater to drain pagesets of this
2519 * currently executing processor on remote nodes after they have
2520 * expired.
2521 *
879336c3
CL
2522 * Note that this function must be called with the thread pinned to
2523 * a single processor.
8fce4d8e 2524 */
4037d452 2525void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2526{
4ae7c039 2527 unsigned long flags;
7be12fc9 2528 int to_drain, batch;
4ae7c039 2529
4037d452 2530 local_irq_save(flags);
4db0c3c2 2531 batch = READ_ONCE(pcp->batch);
7be12fc9 2532 to_drain = min(pcp->count, batch);
77ba9062 2533 if (to_drain > 0)
2a13515c 2534 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2535 local_irq_restore(flags);
4ae7c039
CL
2536}
2537#endif
2538
9f8f2172 2539/*
93481ff0 2540 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2541 *
2542 * The processor must either be the current processor and the
2543 * thread pinned to the current processor or a processor that
2544 * is not online.
2545 */
93481ff0 2546static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2547{
c54ad30c 2548 unsigned long flags;
93481ff0
VB
2549 struct per_cpu_pageset *pset;
2550 struct per_cpu_pages *pcp;
1da177e4 2551
93481ff0
VB
2552 local_irq_save(flags);
2553 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2554
93481ff0 2555 pcp = &pset->pcp;
77ba9062 2556 if (pcp->count)
93481ff0 2557 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2558 local_irq_restore(flags);
2559}
3dfa5721 2560
93481ff0
VB
2561/*
2562 * Drain pcplists of all zones on the indicated processor.
2563 *
2564 * The processor must either be the current processor and the
2565 * thread pinned to the current processor or a processor that
2566 * is not online.
2567 */
2568static void drain_pages(unsigned int cpu)
2569{
2570 struct zone *zone;
2571
2572 for_each_populated_zone(zone) {
2573 drain_pages_zone(cpu, zone);
1da177e4
LT
2574 }
2575}
1da177e4 2576
9f8f2172
CL
2577/*
2578 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2579 *
2580 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2581 * the single zone's pages.
9f8f2172 2582 */
93481ff0 2583void drain_local_pages(struct zone *zone)
9f8f2172 2584{
93481ff0
VB
2585 int cpu = smp_processor_id();
2586
2587 if (zone)
2588 drain_pages_zone(cpu, zone);
2589 else
2590 drain_pages(cpu);
9f8f2172
CL
2591}
2592
0ccce3b9
MG
2593static void drain_local_pages_wq(struct work_struct *work)
2594{
a459eeb7
MH
2595 /*
2596 * drain_all_pages doesn't use proper cpu hotplug protection so
2597 * we can race with cpu offline when the WQ can move this from
2598 * a cpu pinned worker to an unbound one. We can operate on a different
2599 * cpu which is allright but we also have to make sure to not move to
2600 * a different one.
2601 */
2602 preempt_disable();
0ccce3b9 2603 drain_local_pages(NULL);
a459eeb7 2604 preempt_enable();
0ccce3b9
MG
2605}
2606
9f8f2172 2607/*
74046494
GBY
2608 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2609 *
93481ff0
VB
2610 * When zone parameter is non-NULL, spill just the single zone's pages.
2611 *
0ccce3b9 2612 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2613 */
93481ff0 2614void drain_all_pages(struct zone *zone)
9f8f2172 2615{
74046494 2616 int cpu;
74046494
GBY
2617
2618 /*
2619 * Allocate in the BSS so we wont require allocation in
2620 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2621 */
2622 static cpumask_t cpus_with_pcps;
2623
ce612879
MH
2624 /*
2625 * Make sure nobody triggers this path before mm_percpu_wq is fully
2626 * initialized.
2627 */
2628 if (WARN_ON_ONCE(!mm_percpu_wq))
2629 return;
2630
bd233f53
MG
2631 /*
2632 * Do not drain if one is already in progress unless it's specific to
2633 * a zone. Such callers are primarily CMA and memory hotplug and need
2634 * the drain to be complete when the call returns.
2635 */
2636 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2637 if (!zone)
2638 return;
2639 mutex_lock(&pcpu_drain_mutex);
2640 }
0ccce3b9 2641
74046494
GBY
2642 /*
2643 * We don't care about racing with CPU hotplug event
2644 * as offline notification will cause the notified
2645 * cpu to drain that CPU pcps and on_each_cpu_mask
2646 * disables preemption as part of its processing
2647 */
2648 for_each_online_cpu(cpu) {
93481ff0
VB
2649 struct per_cpu_pageset *pcp;
2650 struct zone *z;
74046494 2651 bool has_pcps = false;
93481ff0
VB
2652
2653 if (zone) {
74046494 2654 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2655 if (pcp->pcp.count)
74046494 2656 has_pcps = true;
93481ff0
VB
2657 } else {
2658 for_each_populated_zone(z) {
2659 pcp = per_cpu_ptr(z->pageset, cpu);
2660 if (pcp->pcp.count) {
2661 has_pcps = true;
2662 break;
2663 }
74046494
GBY
2664 }
2665 }
93481ff0 2666
74046494
GBY
2667 if (has_pcps)
2668 cpumask_set_cpu(cpu, &cpus_with_pcps);
2669 else
2670 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2671 }
0ccce3b9 2672
bd233f53
MG
2673 for_each_cpu(cpu, &cpus_with_pcps) {
2674 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2675 INIT_WORK(work, drain_local_pages_wq);
ce612879 2676 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2677 }
bd233f53
MG
2678 for_each_cpu(cpu, &cpus_with_pcps)
2679 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2680
2681 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2682}
2683
296699de 2684#ifdef CONFIG_HIBERNATION
1da177e4 2685
556b969a
CY
2686/*
2687 * Touch the watchdog for every WD_PAGE_COUNT pages.
2688 */
2689#define WD_PAGE_COUNT (128*1024)
2690
1da177e4
LT
2691void mark_free_pages(struct zone *zone)
2692{
556b969a 2693 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2694 unsigned long flags;
7aeb09f9 2695 unsigned int order, t;
86760a2c 2696 struct page *page;
1da177e4 2697
8080fc03 2698 if (zone_is_empty(zone))
1da177e4
LT
2699 return;
2700
2701 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2702
108bcc96 2703 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2704 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2705 if (pfn_valid(pfn)) {
86760a2c 2706 page = pfn_to_page(pfn);
ba6b0979 2707
556b969a
CY
2708 if (!--page_count) {
2709 touch_nmi_watchdog();
2710 page_count = WD_PAGE_COUNT;
2711 }
2712
ba6b0979
JK
2713 if (page_zone(page) != zone)
2714 continue;
2715
7be98234
RW
2716 if (!swsusp_page_is_forbidden(page))
2717 swsusp_unset_page_free(page);
f623f0db 2718 }
1da177e4 2719
b2a0ac88 2720 for_each_migratetype_order(order, t) {
86760a2c
GT
2721 list_for_each_entry(page,
2722 &zone->free_area[order].free_list[t], lru) {
f623f0db 2723 unsigned long i;
1da177e4 2724
86760a2c 2725 pfn = page_to_pfn(page);
556b969a
CY
2726 for (i = 0; i < (1UL << order); i++) {
2727 if (!--page_count) {
2728 touch_nmi_watchdog();
2729 page_count = WD_PAGE_COUNT;
2730 }
7be98234 2731 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2732 }
f623f0db 2733 }
b2a0ac88 2734 }
1da177e4
LT
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736}
e2c55dc8 2737#endif /* CONFIG_PM */
1da177e4 2738
2d4894b5 2739static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2740{
5f8dcc21 2741 int migratetype;
1da177e4 2742
4db7548c 2743 if (!free_pcp_prepare(page))
9cca35d4 2744 return false;
689bcebf 2745
dc4b0caf 2746 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2747 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2748 return true;
2749}
2750
2d4894b5 2751static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2752{
2753 struct zone *zone = page_zone(page);
2754 struct per_cpu_pages *pcp;
2755 int migratetype;
2756
2757 migratetype = get_pcppage_migratetype(page);
d34b0733 2758 __count_vm_event(PGFREE);
da456f14 2759
5f8dcc21
MG
2760 /*
2761 * We only track unmovable, reclaimable and movable on pcp lists.
2762 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2763 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2764 * areas back if necessary. Otherwise, we may have to free
2765 * excessively into the page allocator
2766 */
2767 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2768 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2769 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2770 return;
5f8dcc21
MG
2771 }
2772 migratetype = MIGRATE_MOVABLE;
2773 }
2774
99dcc3e5 2775 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2776 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2777 pcp->count++;
48db57f8 2778 if (pcp->count >= pcp->high) {
4db0c3c2 2779 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2780 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2781 }
9cca35d4 2782}
5f8dcc21 2783
9cca35d4
MG
2784/*
2785 * Free a 0-order page
9cca35d4 2786 */
2d4894b5 2787void free_unref_page(struct page *page)
9cca35d4
MG
2788{
2789 unsigned long flags;
2790 unsigned long pfn = page_to_pfn(page);
2791
2d4894b5 2792 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2793 return;
2794
2795 local_irq_save(flags);
2d4894b5 2796 free_unref_page_commit(page, pfn);
d34b0733 2797 local_irq_restore(flags);
1da177e4
LT
2798}
2799
cc59850e
KK
2800/*
2801 * Free a list of 0-order pages
2802 */
2d4894b5 2803void free_unref_page_list(struct list_head *list)
cc59850e
KK
2804{
2805 struct page *page, *next;
9cca35d4 2806 unsigned long flags, pfn;
c24ad77d 2807 int batch_count = 0;
9cca35d4
MG
2808
2809 /* Prepare pages for freeing */
2810 list_for_each_entry_safe(page, next, list, lru) {
2811 pfn = page_to_pfn(page);
2d4894b5 2812 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2813 list_del(&page->lru);
2814 set_page_private(page, pfn);
2815 }
cc59850e 2816
9cca35d4 2817 local_irq_save(flags);
cc59850e 2818 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2819 unsigned long pfn = page_private(page);
2820
2821 set_page_private(page, 0);
2d4894b5
MG
2822 trace_mm_page_free_batched(page);
2823 free_unref_page_commit(page, pfn);
c24ad77d
LS
2824
2825 /*
2826 * Guard against excessive IRQ disabled times when we get
2827 * a large list of pages to free.
2828 */
2829 if (++batch_count == SWAP_CLUSTER_MAX) {
2830 local_irq_restore(flags);
2831 batch_count = 0;
2832 local_irq_save(flags);
2833 }
cc59850e 2834 }
9cca35d4 2835 local_irq_restore(flags);
cc59850e
KK
2836}
2837
8dfcc9ba
NP
2838/*
2839 * split_page takes a non-compound higher-order page, and splits it into
2840 * n (1<<order) sub-pages: page[0..n]
2841 * Each sub-page must be freed individually.
2842 *
2843 * Note: this is probably too low level an operation for use in drivers.
2844 * Please consult with lkml before using this in your driver.
2845 */
2846void split_page(struct page *page, unsigned int order)
2847{
2848 int i;
2849
309381fe
SL
2850 VM_BUG_ON_PAGE(PageCompound(page), page);
2851 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2852
a9627bc5 2853 for (i = 1; i < (1 << order); i++)
7835e98b 2854 set_page_refcounted(page + i);
a9627bc5 2855 split_page_owner(page, order);
8dfcc9ba 2856}
5853ff23 2857EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2858
3c605096 2859int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2860{
748446bb
MG
2861 unsigned long watermark;
2862 struct zone *zone;
2139cbe6 2863 int mt;
748446bb
MG
2864
2865 BUG_ON(!PageBuddy(page));
2866
2867 zone = page_zone(page);
2e30abd1 2868 mt = get_pageblock_migratetype(page);
748446bb 2869
194159fb 2870 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2871 /*
2872 * Obey watermarks as if the page was being allocated. We can
2873 * emulate a high-order watermark check with a raised order-0
2874 * watermark, because we already know our high-order page
2875 * exists.
2876 */
2877 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2878 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2879 return 0;
2880
8fb74b9f 2881 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2882 }
748446bb
MG
2883
2884 /* Remove page from free list */
2885 list_del(&page->lru);
2886 zone->free_area[order].nr_free--;
2887 rmv_page_order(page);
2139cbe6 2888
400bc7fd 2889 /*
2890 * Set the pageblock if the isolated page is at least half of a
2891 * pageblock
2892 */
748446bb
MG
2893 if (order >= pageblock_order - 1) {
2894 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2895 for (; page < endpage; page += pageblock_nr_pages) {
2896 int mt = get_pageblock_migratetype(page);
88ed365e 2897 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2898 && !is_migrate_highatomic(mt))
47118af0
MN
2899 set_pageblock_migratetype(page,
2900 MIGRATE_MOVABLE);
2901 }
748446bb
MG
2902 }
2903
f3a14ced 2904
8fb74b9f 2905 return 1UL << order;
1fb3f8ca
MG
2906}
2907
060e7417
MG
2908/*
2909 * Update NUMA hit/miss statistics
2910 *
2911 * Must be called with interrupts disabled.
060e7417 2912 */
41b6167e 2913static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2914{
2915#ifdef CONFIG_NUMA
3a321d2a 2916 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2917
4518085e
KW
2918 /* skip numa counters update if numa stats is disabled */
2919 if (!static_branch_likely(&vm_numa_stat_key))
2920 return;
2921
c1093b74 2922 if (zone_to_nid(z) != numa_node_id())
060e7417 2923 local_stat = NUMA_OTHER;
060e7417 2924
c1093b74 2925 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 2926 __inc_numa_state(z, NUMA_HIT);
2df26639 2927 else {
3a321d2a
KW
2928 __inc_numa_state(z, NUMA_MISS);
2929 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2930 }
3a321d2a 2931 __inc_numa_state(z, local_stat);
060e7417
MG
2932#endif
2933}
2934
066b2393
MG
2935/* Remove page from the per-cpu list, caller must protect the list */
2936static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2937 struct per_cpu_pages *pcp,
066b2393
MG
2938 struct list_head *list)
2939{
2940 struct page *page;
2941
2942 do {
2943 if (list_empty(list)) {
2944 pcp->count += rmqueue_bulk(zone, 0,
2945 pcp->batch, list,
453f85d4 2946 migratetype);
066b2393
MG
2947 if (unlikely(list_empty(list)))
2948 return NULL;
2949 }
2950
453f85d4 2951 page = list_first_entry(list, struct page, lru);
066b2393
MG
2952 list_del(&page->lru);
2953 pcp->count--;
2954 } while (check_new_pcp(page));
2955
2956 return page;
2957}
2958
2959/* Lock and remove page from the per-cpu list */
2960static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2961 struct zone *zone, unsigned int order,
2962 gfp_t gfp_flags, int migratetype)
2963{
2964 struct per_cpu_pages *pcp;
2965 struct list_head *list;
066b2393 2966 struct page *page;
d34b0733 2967 unsigned long flags;
066b2393 2968
d34b0733 2969 local_irq_save(flags);
066b2393
MG
2970 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2971 list = &pcp->lists[migratetype];
453f85d4 2972 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2973 if (page) {
2974 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2975 zone_statistics(preferred_zone, zone);
2976 }
d34b0733 2977 local_irq_restore(flags);
066b2393
MG
2978 return page;
2979}
2980
1da177e4 2981/*
75379191 2982 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2983 */
0a15c3e9 2984static inline
066b2393 2985struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2986 struct zone *zone, unsigned int order,
c603844b
MG
2987 gfp_t gfp_flags, unsigned int alloc_flags,
2988 int migratetype)
1da177e4
LT
2989{
2990 unsigned long flags;
689bcebf 2991 struct page *page;
1da177e4 2992
d34b0733 2993 if (likely(order == 0)) {
066b2393
MG
2994 page = rmqueue_pcplist(preferred_zone, zone, order,
2995 gfp_flags, migratetype);
2996 goto out;
2997 }
83b9355b 2998
066b2393
MG
2999 /*
3000 * We most definitely don't want callers attempting to
3001 * allocate greater than order-1 page units with __GFP_NOFAIL.
3002 */
3003 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3004 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3005
066b2393
MG
3006 do {
3007 page = NULL;
3008 if (alloc_flags & ALLOC_HARDER) {
3009 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3010 if (page)
3011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3012 }
a74609fa 3013 if (!page)
066b2393
MG
3014 page = __rmqueue(zone, order, migratetype);
3015 } while (page && check_new_pages(page, order));
3016 spin_unlock(&zone->lock);
3017 if (!page)
3018 goto failed;
3019 __mod_zone_freepage_state(zone, -(1 << order),
3020 get_pcppage_migratetype(page));
1da177e4 3021
16709d1d 3022 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3023 zone_statistics(preferred_zone, zone);
a74609fa 3024 local_irq_restore(flags);
1da177e4 3025
066b2393
MG
3026out:
3027 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3028 return page;
a74609fa
NP
3029
3030failed:
3031 local_irq_restore(flags);
a74609fa 3032 return NULL;
1da177e4
LT
3033}
3034
933e312e
AM
3035#ifdef CONFIG_FAIL_PAGE_ALLOC
3036
b2588c4b 3037static struct {
933e312e
AM
3038 struct fault_attr attr;
3039
621a5f7a 3040 bool ignore_gfp_highmem;
71baba4b 3041 bool ignore_gfp_reclaim;
54114994 3042 u32 min_order;
933e312e
AM
3043} fail_page_alloc = {
3044 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3045 .ignore_gfp_reclaim = true,
621a5f7a 3046 .ignore_gfp_highmem = true,
54114994 3047 .min_order = 1,
933e312e
AM
3048};
3049
3050static int __init setup_fail_page_alloc(char *str)
3051{
3052 return setup_fault_attr(&fail_page_alloc.attr, str);
3053}
3054__setup("fail_page_alloc=", setup_fail_page_alloc);
3055
deaf386e 3056static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3057{
54114994 3058 if (order < fail_page_alloc.min_order)
deaf386e 3059 return false;
933e312e 3060 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3061 return false;
933e312e 3062 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3063 return false;
71baba4b
MG
3064 if (fail_page_alloc.ignore_gfp_reclaim &&
3065 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3066 return false;
933e312e
AM
3067
3068 return should_fail(&fail_page_alloc.attr, 1 << order);
3069}
3070
3071#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3072
3073static int __init fail_page_alloc_debugfs(void)
3074{
0825a6f9 3075 umode_t mode = S_IFREG | 0600;
933e312e 3076 struct dentry *dir;
933e312e 3077
dd48c085
AM
3078 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3079 &fail_page_alloc.attr);
3080 if (IS_ERR(dir))
3081 return PTR_ERR(dir);
933e312e 3082
b2588c4b 3083 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3084 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3085 goto fail;
3086 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3087 &fail_page_alloc.ignore_gfp_highmem))
3088 goto fail;
3089 if (!debugfs_create_u32("min-order", mode, dir,
3090 &fail_page_alloc.min_order))
3091 goto fail;
3092
3093 return 0;
3094fail:
dd48c085 3095 debugfs_remove_recursive(dir);
933e312e 3096
b2588c4b 3097 return -ENOMEM;
933e312e
AM
3098}
3099
3100late_initcall(fail_page_alloc_debugfs);
3101
3102#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3103
3104#else /* CONFIG_FAIL_PAGE_ALLOC */
3105
deaf386e 3106static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3107{
deaf386e 3108 return false;
933e312e
AM
3109}
3110
3111#endif /* CONFIG_FAIL_PAGE_ALLOC */
3112
1da177e4 3113/*
97a16fc8
MG
3114 * Return true if free base pages are above 'mark'. For high-order checks it
3115 * will return true of the order-0 watermark is reached and there is at least
3116 * one free page of a suitable size. Checking now avoids taking the zone lock
3117 * to check in the allocation paths if no pages are free.
1da177e4 3118 */
86a294a8
MH
3119bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3120 int classzone_idx, unsigned int alloc_flags,
3121 long free_pages)
1da177e4 3122{
d23ad423 3123 long min = mark;
1da177e4 3124 int o;
cd04ae1e 3125 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3126
0aaa29a5 3127 /* free_pages may go negative - that's OK */
df0a6daa 3128 free_pages -= (1 << order) - 1;
0aaa29a5 3129
7fb1d9fc 3130 if (alloc_flags & ALLOC_HIGH)
1da177e4 3131 min -= min / 2;
0aaa29a5
MG
3132
3133 /*
3134 * If the caller does not have rights to ALLOC_HARDER then subtract
3135 * the high-atomic reserves. This will over-estimate the size of the
3136 * atomic reserve but it avoids a search.
3137 */
cd04ae1e 3138 if (likely(!alloc_harder)) {
0aaa29a5 3139 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3140 } else {
3141 /*
3142 * OOM victims can try even harder than normal ALLOC_HARDER
3143 * users on the grounds that it's definitely going to be in
3144 * the exit path shortly and free memory. Any allocation it
3145 * makes during the free path will be small and short-lived.
3146 */
3147 if (alloc_flags & ALLOC_OOM)
3148 min -= min / 2;
3149 else
3150 min -= min / 4;
3151 }
3152
e2b19197 3153
d883c6cf
JK
3154#ifdef CONFIG_CMA
3155 /* If allocation can't use CMA areas don't use free CMA pages */
3156 if (!(alloc_flags & ALLOC_CMA))
3157 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3158#endif
3159
97a16fc8
MG
3160 /*
3161 * Check watermarks for an order-0 allocation request. If these
3162 * are not met, then a high-order request also cannot go ahead
3163 * even if a suitable page happened to be free.
3164 */
3165 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3166 return false;
1da177e4 3167
97a16fc8
MG
3168 /* If this is an order-0 request then the watermark is fine */
3169 if (!order)
3170 return true;
3171
3172 /* For a high-order request, check at least one suitable page is free */
3173 for (o = order; o < MAX_ORDER; o++) {
3174 struct free_area *area = &z->free_area[o];
3175 int mt;
3176
3177 if (!area->nr_free)
3178 continue;
3179
97a16fc8
MG
3180 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3181 if (!list_empty(&area->free_list[mt]))
3182 return true;
3183 }
3184
3185#ifdef CONFIG_CMA
d883c6cf
JK
3186 if ((alloc_flags & ALLOC_CMA) &&
3187 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3188 return true;
d883c6cf 3189 }
97a16fc8 3190#endif
b050e376
VB
3191 if (alloc_harder &&
3192 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3193 return true;
1da177e4 3194 }
97a16fc8 3195 return false;
88f5acf8
MG
3196}
3197
7aeb09f9 3198bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3199 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3200{
3201 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3202 zone_page_state(z, NR_FREE_PAGES));
3203}
3204
48ee5f36
MG
3205static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3206 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3207{
3208 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3209 long cma_pages = 0;
3210
3211#ifdef CONFIG_CMA
3212 /* If allocation can't use CMA areas don't use free CMA pages */
3213 if (!(alloc_flags & ALLOC_CMA))
3214 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3215#endif
48ee5f36
MG
3216
3217 /*
3218 * Fast check for order-0 only. If this fails then the reserves
3219 * need to be calculated. There is a corner case where the check
3220 * passes but only the high-order atomic reserve are free. If
3221 * the caller is !atomic then it'll uselessly search the free
3222 * list. That corner case is then slower but it is harmless.
3223 */
d883c6cf 3224 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3225 return true;
3226
3227 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3228 free_pages);
3229}
3230
7aeb09f9 3231bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3232 unsigned long mark, int classzone_idx)
88f5acf8
MG
3233{
3234 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3235
3236 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3237 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3238
e2b19197 3239 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3240 free_pages);
1da177e4
LT
3241}
3242
9276b1bc 3243#ifdef CONFIG_NUMA
957f822a
DR
3244static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3245{
e02dc017 3246 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3247 RECLAIM_DISTANCE;
957f822a 3248}
9276b1bc 3249#else /* CONFIG_NUMA */
957f822a
DR
3250static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3251{
3252 return true;
3253}
9276b1bc
PJ
3254#endif /* CONFIG_NUMA */
3255
7fb1d9fc 3256/*
0798e519 3257 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3258 * a page.
3259 */
3260static struct page *
a9263751
VB
3261get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3262 const struct alloc_context *ac)
753ee728 3263{
c33d6c06 3264 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3265 struct zone *zone;
3b8c0be4
MG
3266 struct pglist_data *last_pgdat_dirty_limit = NULL;
3267
7fb1d9fc 3268 /*
9276b1bc 3269 * Scan zonelist, looking for a zone with enough free.
344736f2 3270 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3271 */
c33d6c06 3272 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3273 ac->nodemask) {
be06af00 3274 struct page *page;
e085dbc5
JW
3275 unsigned long mark;
3276
664eedde
MG
3277 if (cpusets_enabled() &&
3278 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3279 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3280 continue;
a756cf59
JW
3281 /*
3282 * When allocating a page cache page for writing, we
281e3726
MG
3283 * want to get it from a node that is within its dirty
3284 * limit, such that no single node holds more than its
a756cf59 3285 * proportional share of globally allowed dirty pages.
281e3726 3286 * The dirty limits take into account the node's
a756cf59
JW
3287 * lowmem reserves and high watermark so that kswapd
3288 * should be able to balance it without having to
3289 * write pages from its LRU list.
3290 *
a756cf59 3291 * XXX: For now, allow allocations to potentially
281e3726 3292 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3293 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3294 * which is important when on a NUMA setup the allowed
281e3726 3295 * nodes are together not big enough to reach the
a756cf59 3296 * global limit. The proper fix for these situations
281e3726 3297 * will require awareness of nodes in the
a756cf59
JW
3298 * dirty-throttling and the flusher threads.
3299 */
3b8c0be4
MG
3300 if (ac->spread_dirty_pages) {
3301 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3302 continue;
3303
3304 if (!node_dirty_ok(zone->zone_pgdat)) {
3305 last_pgdat_dirty_limit = zone->zone_pgdat;
3306 continue;
3307 }
3308 }
7fb1d9fc 3309
e085dbc5 3310 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3311 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3312 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3313 int ret;
3314
c9e97a19
PT
3315#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3316 /*
3317 * Watermark failed for this zone, but see if we can
3318 * grow this zone if it contains deferred pages.
3319 */
3320 if (static_branch_unlikely(&deferred_pages)) {
3321 if (_deferred_grow_zone(zone, order))
3322 goto try_this_zone;
3323 }
3324#endif
5dab2911
MG
3325 /* Checked here to keep the fast path fast */
3326 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3327 if (alloc_flags & ALLOC_NO_WATERMARKS)
3328 goto try_this_zone;
3329
a5f5f91d 3330 if (node_reclaim_mode == 0 ||
c33d6c06 3331 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3332 continue;
3333
a5f5f91d 3334 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3335 switch (ret) {
a5f5f91d 3336 case NODE_RECLAIM_NOSCAN:
fa5e084e 3337 /* did not scan */
cd38b115 3338 continue;
a5f5f91d 3339 case NODE_RECLAIM_FULL:
fa5e084e 3340 /* scanned but unreclaimable */
cd38b115 3341 continue;
fa5e084e
MG
3342 default:
3343 /* did we reclaim enough */
fed2719e 3344 if (zone_watermark_ok(zone, order, mark,
93ea9964 3345 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3346 goto try_this_zone;
3347
fed2719e 3348 continue;
0798e519 3349 }
7fb1d9fc
RS
3350 }
3351
fa5e084e 3352try_this_zone:
066b2393 3353 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3354 gfp_mask, alloc_flags, ac->migratetype);
75379191 3355 if (page) {
479f854a 3356 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3357
3358 /*
3359 * If this is a high-order atomic allocation then check
3360 * if the pageblock should be reserved for the future
3361 */
3362 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3363 reserve_highatomic_pageblock(page, zone, order);
3364
75379191 3365 return page;
c9e97a19
PT
3366 } else {
3367#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3368 /* Try again if zone has deferred pages */
3369 if (static_branch_unlikely(&deferred_pages)) {
3370 if (_deferred_grow_zone(zone, order))
3371 goto try_this_zone;
3372 }
3373#endif
75379191 3374 }
54a6eb5c 3375 }
9276b1bc 3376
4ffeaf35 3377 return NULL;
753ee728
MH
3378}
3379
9af744d7 3380static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3381{
a238ab5b 3382 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3383 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3384
2c029a1e 3385 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3386 return;
3387
3388 /*
3389 * This documents exceptions given to allocations in certain
3390 * contexts that are allowed to allocate outside current's set
3391 * of allowed nodes.
3392 */
3393 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3394 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3395 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3396 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3397 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3398 filter &= ~SHOW_MEM_FILTER_NODES;
3399
9af744d7 3400 show_mem(filter, nodemask);
aa187507
MH
3401}
3402
a8e99259 3403void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3404{
3405 struct va_format vaf;
3406 va_list args;
3407 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3408 DEFAULT_RATELIMIT_BURST);
3409
0f7896f1 3410 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3411 return;
3412
7877cdcc
MH
3413 va_start(args, fmt);
3414 vaf.fmt = fmt;
3415 vaf.va = &args;
0205f755
MH
3416 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3417 current->comm, &vaf, gfp_mask, &gfp_mask,
3418 nodemask_pr_args(nodemask));
7877cdcc 3419 va_end(args);
3ee9a4f0 3420
a8e99259 3421 cpuset_print_current_mems_allowed();
3ee9a4f0 3422
a238ab5b 3423 dump_stack();
685dbf6f 3424 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3425}
3426
6c18ba7a
MH
3427static inline struct page *
3428__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3429 unsigned int alloc_flags,
3430 const struct alloc_context *ac)
3431{
3432 struct page *page;
3433
3434 page = get_page_from_freelist(gfp_mask, order,
3435 alloc_flags|ALLOC_CPUSET, ac);
3436 /*
3437 * fallback to ignore cpuset restriction if our nodes
3438 * are depleted
3439 */
3440 if (!page)
3441 page = get_page_from_freelist(gfp_mask, order,
3442 alloc_flags, ac);
3443
3444 return page;
3445}
3446
11e33f6a
MG
3447static inline struct page *
3448__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3449 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3450{
6e0fc46d
DR
3451 struct oom_control oc = {
3452 .zonelist = ac->zonelist,
3453 .nodemask = ac->nodemask,
2a966b77 3454 .memcg = NULL,
6e0fc46d
DR
3455 .gfp_mask = gfp_mask,
3456 .order = order,
6e0fc46d 3457 };
11e33f6a
MG
3458 struct page *page;
3459
9879de73
JW
3460 *did_some_progress = 0;
3461
9879de73 3462 /*
dc56401f
JW
3463 * Acquire the oom lock. If that fails, somebody else is
3464 * making progress for us.
9879de73 3465 */
dc56401f 3466 if (!mutex_trylock(&oom_lock)) {
9879de73 3467 *did_some_progress = 1;
11e33f6a 3468 schedule_timeout_uninterruptible(1);
1da177e4
LT
3469 return NULL;
3470 }
6b1de916 3471
11e33f6a
MG
3472 /*
3473 * Go through the zonelist yet one more time, keep very high watermark
3474 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3475 * we're still under heavy pressure. But make sure that this reclaim
3476 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3477 * allocation which will never fail due to oom_lock already held.
11e33f6a 3478 */
e746bf73
TH
3479 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3480 ~__GFP_DIRECT_RECLAIM, order,
3481 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3482 if (page)
11e33f6a
MG
3483 goto out;
3484
06ad276a
MH
3485 /* Coredumps can quickly deplete all memory reserves */
3486 if (current->flags & PF_DUMPCORE)
3487 goto out;
3488 /* The OOM killer will not help higher order allocs */
3489 if (order > PAGE_ALLOC_COSTLY_ORDER)
3490 goto out;
dcda9b04
MH
3491 /*
3492 * We have already exhausted all our reclaim opportunities without any
3493 * success so it is time to admit defeat. We will skip the OOM killer
3494 * because it is very likely that the caller has a more reasonable
3495 * fallback than shooting a random task.
3496 */
3497 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3498 goto out;
06ad276a
MH
3499 /* The OOM killer does not needlessly kill tasks for lowmem */
3500 if (ac->high_zoneidx < ZONE_NORMAL)
3501 goto out;
3502 if (pm_suspended_storage())
3503 goto out;
3504 /*
3505 * XXX: GFP_NOFS allocations should rather fail than rely on
3506 * other request to make a forward progress.
3507 * We are in an unfortunate situation where out_of_memory cannot
3508 * do much for this context but let's try it to at least get
3509 * access to memory reserved if the current task is killed (see
3510 * out_of_memory). Once filesystems are ready to handle allocation
3511 * failures more gracefully we should just bail out here.
3512 */
3513
3514 /* The OOM killer may not free memory on a specific node */
3515 if (gfp_mask & __GFP_THISNODE)
3516 goto out;
3da88fb3 3517
3c2c6488 3518 /* Exhausted what can be done so it's blame time */
5020e285 3519 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3520 *did_some_progress = 1;
5020e285 3521
6c18ba7a
MH
3522 /*
3523 * Help non-failing allocations by giving them access to memory
3524 * reserves
3525 */
3526 if (gfp_mask & __GFP_NOFAIL)
3527 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3528 ALLOC_NO_WATERMARKS, ac);
5020e285 3529 }
11e33f6a 3530out:
dc56401f 3531 mutex_unlock(&oom_lock);
11e33f6a
MG
3532 return page;
3533}
3534
33c2d214
MH
3535/*
3536 * Maximum number of compaction retries wit a progress before OOM
3537 * killer is consider as the only way to move forward.
3538 */
3539#define MAX_COMPACT_RETRIES 16
3540
56de7263
MG
3541#ifdef CONFIG_COMPACTION
3542/* Try memory compaction for high-order allocations before reclaim */
3543static struct page *
3544__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3545 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3546 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3547{
98dd3b48 3548 struct page *page;
eb414681 3549 unsigned long pflags;
499118e9 3550 unsigned int noreclaim_flag;
53853e2d
VB
3551
3552 if (!order)
66199712 3553 return NULL;
66199712 3554
eb414681 3555 psi_memstall_enter(&pflags);
499118e9 3556 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3557
c5d01d0d 3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3559 prio);
eb414681 3560
499118e9 3561 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3562 psi_memstall_leave(&pflags);
56de7263 3563
c5d01d0d 3564 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3565 return NULL;
53853e2d 3566
98dd3b48
VB
3567 /*
3568 * At least in one zone compaction wasn't deferred or skipped, so let's
3569 * count a compaction stall
3570 */
3571 count_vm_event(COMPACTSTALL);
8fb74b9f 3572
31a6c190 3573 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3574
98dd3b48
VB
3575 if (page) {
3576 struct zone *zone = page_zone(page);
53853e2d 3577
98dd3b48
VB
3578 zone->compact_blockskip_flush = false;
3579 compaction_defer_reset(zone, order, true);
3580 count_vm_event(COMPACTSUCCESS);
3581 return page;
3582 }
56de7263 3583
98dd3b48
VB
3584 /*
3585 * It's bad if compaction run occurs and fails. The most likely reason
3586 * is that pages exist, but not enough to satisfy watermarks.
3587 */
3588 count_vm_event(COMPACTFAIL);
66199712 3589
98dd3b48 3590 cond_resched();
56de7263
MG
3591
3592 return NULL;
3593}
33c2d214 3594
3250845d
VB
3595static inline bool
3596should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3597 enum compact_result compact_result,
3598 enum compact_priority *compact_priority,
d9436498 3599 int *compaction_retries)
3250845d
VB
3600{
3601 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3602 int min_priority;
65190cff
MH
3603 bool ret = false;
3604 int retries = *compaction_retries;
3605 enum compact_priority priority = *compact_priority;
3250845d
VB
3606
3607 if (!order)
3608 return false;
3609
d9436498
VB
3610 if (compaction_made_progress(compact_result))
3611 (*compaction_retries)++;
3612
3250845d
VB
3613 /*
3614 * compaction considers all the zone as desperately out of memory
3615 * so it doesn't really make much sense to retry except when the
3616 * failure could be caused by insufficient priority
3617 */
d9436498
VB
3618 if (compaction_failed(compact_result))
3619 goto check_priority;
3250845d
VB
3620
3621 /*
3622 * make sure the compaction wasn't deferred or didn't bail out early
3623 * due to locks contention before we declare that we should give up.
3624 * But do not retry if the given zonelist is not suitable for
3625 * compaction.
3626 */
65190cff
MH
3627 if (compaction_withdrawn(compact_result)) {
3628 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3629 goto out;
3630 }
3250845d
VB
3631
3632 /*
dcda9b04 3633 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3634 * costly ones because they are de facto nofail and invoke OOM
3635 * killer to move on while costly can fail and users are ready
3636 * to cope with that. 1/4 retries is rather arbitrary but we
3637 * would need much more detailed feedback from compaction to
3638 * make a better decision.
3639 */
3640 if (order > PAGE_ALLOC_COSTLY_ORDER)
3641 max_retries /= 4;
65190cff
MH
3642 if (*compaction_retries <= max_retries) {
3643 ret = true;
3644 goto out;
3645 }
3250845d 3646
d9436498
VB
3647 /*
3648 * Make sure there are attempts at the highest priority if we exhausted
3649 * all retries or failed at the lower priorities.
3650 */
3651check_priority:
c2033b00
VB
3652 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3653 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3654
c2033b00 3655 if (*compact_priority > min_priority) {
d9436498
VB
3656 (*compact_priority)--;
3657 *compaction_retries = 0;
65190cff 3658 ret = true;
d9436498 3659 }
65190cff
MH
3660out:
3661 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3662 return ret;
3250845d 3663}
56de7263
MG
3664#else
3665static inline struct page *
3666__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3667 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3668 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3669{
33c2d214 3670 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3671 return NULL;
3672}
33c2d214
MH
3673
3674static inline bool
86a294a8
MH
3675should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3676 enum compact_result compact_result,
a5508cd8 3677 enum compact_priority *compact_priority,
d9436498 3678 int *compaction_retries)
33c2d214 3679{
31e49bfd
MH
3680 struct zone *zone;
3681 struct zoneref *z;
3682
3683 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3684 return false;
3685
3686 /*
3687 * There are setups with compaction disabled which would prefer to loop
3688 * inside the allocator rather than hit the oom killer prematurely.
3689 * Let's give them a good hope and keep retrying while the order-0
3690 * watermarks are OK.
3691 */
3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3693 ac->nodemask) {
3694 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3695 ac_classzone_idx(ac), alloc_flags))
3696 return true;
3697 }
33c2d214
MH
3698 return false;
3699}
3250845d 3700#endif /* CONFIG_COMPACTION */
56de7263 3701
d92a8cfc 3702#ifdef CONFIG_LOCKDEP
93781325 3703static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3704 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3705
3706static bool __need_fs_reclaim(gfp_t gfp_mask)
3707{
3708 gfp_mask = current_gfp_context(gfp_mask);
3709
3710 /* no reclaim without waiting on it */
3711 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3712 return false;
3713
3714 /* this guy won't enter reclaim */
2e517d68 3715 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3716 return false;
3717
3718 /* We're only interested __GFP_FS allocations for now */
3719 if (!(gfp_mask & __GFP_FS))
3720 return false;
3721
3722 if (gfp_mask & __GFP_NOLOCKDEP)
3723 return false;
3724
3725 return true;
3726}
3727
93781325
OS
3728void __fs_reclaim_acquire(void)
3729{
3730 lock_map_acquire(&__fs_reclaim_map);
3731}
3732
3733void __fs_reclaim_release(void)
3734{
3735 lock_map_release(&__fs_reclaim_map);
3736}
3737
d92a8cfc
PZ
3738void fs_reclaim_acquire(gfp_t gfp_mask)
3739{
3740 if (__need_fs_reclaim(gfp_mask))
93781325 3741 __fs_reclaim_acquire();
d92a8cfc
PZ
3742}
3743EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3744
3745void fs_reclaim_release(gfp_t gfp_mask)
3746{
3747 if (__need_fs_reclaim(gfp_mask))
93781325 3748 __fs_reclaim_release();
d92a8cfc
PZ
3749}
3750EXPORT_SYMBOL_GPL(fs_reclaim_release);
3751#endif
3752
bba90710
MS
3753/* Perform direct synchronous page reclaim */
3754static int
a9263751
VB
3755__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756 const struct alloc_context *ac)
11e33f6a 3757{
11e33f6a 3758 struct reclaim_state reclaim_state;
bba90710 3759 int progress;
499118e9 3760 unsigned int noreclaim_flag;
eb414681 3761 unsigned long pflags;
11e33f6a
MG
3762
3763 cond_resched();
3764
3765 /* We now go into synchronous reclaim */
3766 cpuset_memory_pressure_bump();
eb414681 3767 psi_memstall_enter(&pflags);
d92a8cfc 3768 fs_reclaim_acquire(gfp_mask);
93781325 3769 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3770 reclaim_state.reclaimed_slab = 0;
c06b1fca 3771 current->reclaim_state = &reclaim_state;
11e33f6a 3772
a9263751
VB
3773 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3774 ac->nodemask);
11e33f6a 3775
c06b1fca 3776 current->reclaim_state = NULL;
499118e9 3777 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3778 fs_reclaim_release(gfp_mask);
eb414681 3779 psi_memstall_leave(&pflags);
11e33f6a
MG
3780
3781 cond_resched();
3782
bba90710
MS
3783 return progress;
3784}
3785
3786/* The really slow allocator path where we enter direct reclaim */
3787static inline struct page *
3788__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3789 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3790 unsigned long *did_some_progress)
bba90710
MS
3791{
3792 struct page *page = NULL;
3793 bool drained = false;
3794
a9263751 3795 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3796 if (unlikely(!(*did_some_progress)))
3797 return NULL;
11e33f6a 3798
9ee493ce 3799retry:
31a6c190 3800 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3801
3802 /*
3803 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3804 * pages are pinned on the per-cpu lists or in high alloc reserves.
3805 * Shrink them them and try again
9ee493ce
MG
3806 */
3807 if (!page && !drained) {
29fac03b 3808 unreserve_highatomic_pageblock(ac, false);
93481ff0 3809 drain_all_pages(NULL);
9ee493ce
MG
3810 drained = true;
3811 goto retry;
3812 }
3813
11e33f6a
MG
3814 return page;
3815}
3816
5ecd9d40
DR
3817static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3818 const struct alloc_context *ac)
3a025760
JW
3819{
3820 struct zoneref *z;
3821 struct zone *zone;
e1a55637 3822 pg_data_t *last_pgdat = NULL;
5ecd9d40 3823 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3824
5ecd9d40
DR
3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3826 ac->nodemask) {
e1a55637 3827 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3828 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3829 last_pgdat = zone->zone_pgdat;
3830 }
3a025760
JW
3831}
3832
c603844b 3833static inline unsigned int
341ce06f
PZ
3834gfp_to_alloc_flags(gfp_t gfp_mask)
3835{
c603844b 3836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3837
a56f57ff 3838 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3839 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3840
341ce06f
PZ
3841 /*
3842 * The caller may dip into page reserves a bit more if the caller
3843 * cannot run direct reclaim, or if the caller has realtime scheduling
3844 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3845 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3846 */
e6223a3b 3847 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3848
d0164adc 3849 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3850 /*
b104a35d
DR
3851 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3852 * if it can't schedule.
5c3240d9 3853 */
b104a35d 3854 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3855 alloc_flags |= ALLOC_HARDER;
523b9458 3856 /*
b104a35d 3857 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3858 * comment for __cpuset_node_allowed().
523b9458 3859 */
341ce06f 3860 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3861 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3862 alloc_flags |= ALLOC_HARDER;
3863
d883c6cf
JK
3864#ifdef CONFIG_CMA
3865 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3866 alloc_flags |= ALLOC_CMA;
3867#endif
341ce06f
PZ
3868 return alloc_flags;
3869}
3870
cd04ae1e 3871static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3872{
cd04ae1e
MH
3873 if (!tsk_is_oom_victim(tsk))
3874 return false;
3875
3876 /*
3877 * !MMU doesn't have oom reaper so give access to memory reserves
3878 * only to the thread with TIF_MEMDIE set
3879 */
3880 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3881 return false;
3882
cd04ae1e
MH
3883 return true;
3884}
3885
3886/*
3887 * Distinguish requests which really need access to full memory
3888 * reserves from oom victims which can live with a portion of it
3889 */
3890static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3891{
3892 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3893 return 0;
31a6c190 3894 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3895 return ALLOC_NO_WATERMARKS;
31a6c190 3896 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3897 return ALLOC_NO_WATERMARKS;
3898 if (!in_interrupt()) {
3899 if (current->flags & PF_MEMALLOC)
3900 return ALLOC_NO_WATERMARKS;
3901 else if (oom_reserves_allowed(current))
3902 return ALLOC_OOM;
3903 }
31a6c190 3904
cd04ae1e
MH
3905 return 0;
3906}
3907
3908bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3909{
3910 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3911}
3912
0a0337e0
MH
3913/*
3914 * Checks whether it makes sense to retry the reclaim to make a forward progress
3915 * for the given allocation request.
491d79ae
JW
3916 *
3917 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3918 * without success, or when we couldn't even meet the watermark if we
3919 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3920 *
3921 * Returns true if a retry is viable or false to enter the oom path.
3922 */
3923static inline bool
3924should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3925 struct alloc_context *ac, int alloc_flags,
423b452e 3926 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3927{
3928 struct zone *zone;
3929 struct zoneref *z;
15f570bf 3930 bool ret = false;
0a0337e0 3931
423b452e
VB
3932 /*
3933 * Costly allocations might have made a progress but this doesn't mean
3934 * their order will become available due to high fragmentation so
3935 * always increment the no progress counter for them
3936 */
3937 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3938 *no_progress_loops = 0;
3939 else
3940 (*no_progress_loops)++;
3941
0a0337e0
MH
3942 /*
3943 * Make sure we converge to OOM if we cannot make any progress
3944 * several times in the row.
3945 */
04c8716f
MK
3946 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3947 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3948 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3949 }
0a0337e0 3950
bca67592
MG
3951 /*
3952 * Keep reclaiming pages while there is a chance this will lead
3953 * somewhere. If none of the target zones can satisfy our allocation
3954 * request even if all reclaimable pages are considered then we are
3955 * screwed and have to go OOM.
0a0337e0
MH
3956 */
3957 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3958 ac->nodemask) {
3959 unsigned long available;
ede37713 3960 unsigned long reclaimable;
d379f01d
MH
3961 unsigned long min_wmark = min_wmark_pages(zone);
3962 bool wmark;
0a0337e0 3963
5a1c84b4 3964 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3965 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3966
3967 /*
491d79ae
JW
3968 * Would the allocation succeed if we reclaimed all
3969 * reclaimable pages?
0a0337e0 3970 */
d379f01d
MH
3971 wmark = __zone_watermark_ok(zone, order, min_wmark,
3972 ac_classzone_idx(ac), alloc_flags, available);
3973 trace_reclaim_retry_zone(z, order, reclaimable,
3974 available, min_wmark, *no_progress_loops, wmark);
3975 if (wmark) {
ede37713
MH
3976 /*
3977 * If we didn't make any progress and have a lot of
3978 * dirty + writeback pages then we should wait for
3979 * an IO to complete to slow down the reclaim and
3980 * prevent from pre mature OOM
3981 */
3982 if (!did_some_progress) {
11fb9989 3983 unsigned long write_pending;
ede37713 3984
5a1c84b4
MG
3985 write_pending = zone_page_state_snapshot(zone,
3986 NR_ZONE_WRITE_PENDING);
ede37713 3987
11fb9989 3988 if (2 * write_pending > reclaimable) {
ede37713
MH
3989 congestion_wait(BLK_RW_ASYNC, HZ/10);
3990 return true;
3991 }
3992 }
5a1c84b4 3993
15f570bf
MH
3994 ret = true;
3995 goto out;
0a0337e0
MH
3996 }
3997 }
3998
15f570bf
MH
3999out:
4000 /*
4001 * Memory allocation/reclaim might be called from a WQ context and the
4002 * current implementation of the WQ concurrency control doesn't
4003 * recognize that a particular WQ is congested if the worker thread is
4004 * looping without ever sleeping. Therefore we have to do a short sleep
4005 * here rather than calling cond_resched().
4006 */
4007 if (current->flags & PF_WQ_WORKER)
4008 schedule_timeout_uninterruptible(1);
4009 else
4010 cond_resched();
4011 return ret;
0a0337e0
MH
4012}
4013
902b6281
VB
4014static inline bool
4015check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4016{
4017 /*
4018 * It's possible that cpuset's mems_allowed and the nodemask from
4019 * mempolicy don't intersect. This should be normally dealt with by
4020 * policy_nodemask(), but it's possible to race with cpuset update in
4021 * such a way the check therein was true, and then it became false
4022 * before we got our cpuset_mems_cookie here.
4023 * This assumes that for all allocations, ac->nodemask can come only
4024 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4025 * when it does not intersect with the cpuset restrictions) or the
4026 * caller can deal with a violated nodemask.
4027 */
4028 if (cpusets_enabled() && ac->nodemask &&
4029 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4030 ac->nodemask = NULL;
4031 return true;
4032 }
4033
4034 /*
4035 * When updating a task's mems_allowed or mempolicy nodemask, it is
4036 * possible to race with parallel threads in such a way that our
4037 * allocation can fail while the mask is being updated. If we are about
4038 * to fail, check if the cpuset changed during allocation and if so,
4039 * retry.
4040 */
4041 if (read_mems_allowed_retry(cpuset_mems_cookie))
4042 return true;
4043
4044 return false;
4045}
4046
11e33f6a
MG
4047static inline struct page *
4048__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4049 struct alloc_context *ac)
11e33f6a 4050{
d0164adc 4051 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4052 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4053 struct page *page = NULL;
c603844b 4054 unsigned int alloc_flags;
11e33f6a 4055 unsigned long did_some_progress;
5ce9bfef 4056 enum compact_priority compact_priority;
c5d01d0d 4057 enum compact_result compact_result;
5ce9bfef
VB
4058 int compaction_retries;
4059 int no_progress_loops;
5ce9bfef 4060 unsigned int cpuset_mems_cookie;
cd04ae1e 4061 int reserve_flags;
1da177e4 4062
d0164adc
MG
4063 /*
4064 * We also sanity check to catch abuse of atomic reserves being used by
4065 * callers that are not in atomic context.
4066 */
4067 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4068 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4069 gfp_mask &= ~__GFP_ATOMIC;
4070
5ce9bfef
VB
4071retry_cpuset:
4072 compaction_retries = 0;
4073 no_progress_loops = 0;
4074 compact_priority = DEF_COMPACT_PRIORITY;
4075 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4076
4077 /*
4078 * The fast path uses conservative alloc_flags to succeed only until
4079 * kswapd needs to be woken up, and to avoid the cost of setting up
4080 * alloc_flags precisely. So we do that now.
4081 */
4082 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4083
e47483bc
VB
4084 /*
4085 * We need to recalculate the starting point for the zonelist iterator
4086 * because we might have used different nodemask in the fast path, or
4087 * there was a cpuset modification and we are retrying - otherwise we
4088 * could end up iterating over non-eligible zones endlessly.
4089 */
4090 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4091 ac->high_zoneidx, ac->nodemask);
4092 if (!ac->preferred_zoneref->zone)
4093 goto nopage;
4094
23771235 4095 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4096 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4097
4098 /*
4099 * The adjusted alloc_flags might result in immediate success, so try
4100 * that first
4101 */
4102 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4103 if (page)
4104 goto got_pg;
4105
a8161d1e
VB
4106 /*
4107 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4108 * that we have enough base pages and don't need to reclaim. For non-
4109 * movable high-order allocations, do that as well, as compaction will
4110 * try prevent permanent fragmentation by migrating from blocks of the
4111 * same migratetype.
4112 * Don't try this for allocations that are allowed to ignore
4113 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4114 */
282722b0
VB
4115 if (can_direct_reclaim &&
4116 (costly_order ||
4117 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4118 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4119 page = __alloc_pages_direct_compact(gfp_mask, order,
4120 alloc_flags, ac,
a5508cd8 4121 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4122 &compact_result);
4123 if (page)
4124 goto got_pg;
4125
3eb2771b
VB
4126 /*
4127 * Checks for costly allocations with __GFP_NORETRY, which
4128 * includes THP page fault allocations
4129 */
282722b0 4130 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4131 /*
4132 * If compaction is deferred for high-order allocations,
4133 * it is because sync compaction recently failed. If
4134 * this is the case and the caller requested a THP
4135 * allocation, we do not want to heavily disrupt the
4136 * system, so we fail the allocation instead of entering
4137 * direct reclaim.
4138 */
4139 if (compact_result == COMPACT_DEFERRED)
4140 goto nopage;
4141
a8161d1e 4142 /*
3eb2771b
VB
4143 * Looks like reclaim/compaction is worth trying, but
4144 * sync compaction could be very expensive, so keep
25160354 4145 * using async compaction.
a8161d1e 4146 */
a5508cd8 4147 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4148 }
4149 }
23771235 4150
31a6c190 4151retry:
23771235 4152 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190 4153 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4154 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4155
cd04ae1e
MH
4156 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4157 if (reserve_flags)
4158 alloc_flags = reserve_flags;
23771235 4159
e46e7b77 4160 /*
d6a24df0
VB
4161 * Reset the nodemask and zonelist iterators if memory policies can be
4162 * ignored. These allocations are high priority and system rather than
4163 * user oriented.
e46e7b77 4164 */
cd04ae1e 4165 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4166 ac->nodemask = NULL;
e46e7b77
MG
4167 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4168 ac->high_zoneidx, ac->nodemask);
4169 }
4170
23771235 4171 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4172 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4173 if (page)
4174 goto got_pg;
1da177e4 4175
d0164adc 4176 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4177 if (!can_direct_reclaim)
1da177e4
LT
4178 goto nopage;
4179
9a67f648
MH
4180 /* Avoid recursion of direct reclaim */
4181 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4182 goto nopage;
4183
a8161d1e
VB
4184 /* Try direct reclaim and then allocating */
4185 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4186 &did_some_progress);
4187 if (page)
4188 goto got_pg;
4189
4190 /* Try direct compaction and then allocating */
a9263751 4191 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4192 compact_priority, &compact_result);
56de7263
MG
4193 if (page)
4194 goto got_pg;
75f30861 4195
9083905a
JW
4196 /* Do not loop if specifically requested */
4197 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4198 goto nopage;
9083905a 4199
0a0337e0
MH
4200 /*
4201 * Do not retry costly high order allocations unless they are
dcda9b04 4202 * __GFP_RETRY_MAYFAIL
0a0337e0 4203 */
dcda9b04 4204 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4205 goto nopage;
0a0337e0 4206
0a0337e0 4207 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4208 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4209 goto retry;
4210
33c2d214
MH
4211 /*
4212 * It doesn't make any sense to retry for the compaction if the order-0
4213 * reclaim is not able to make any progress because the current
4214 * implementation of the compaction depends on the sufficient amount
4215 * of free memory (see __compaction_suitable)
4216 */
4217 if (did_some_progress > 0 &&
86a294a8 4218 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4219 compact_result, &compact_priority,
d9436498 4220 &compaction_retries))
33c2d214
MH
4221 goto retry;
4222
902b6281
VB
4223
4224 /* Deal with possible cpuset update races before we start OOM killing */
4225 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4226 goto retry_cpuset;
4227
9083905a
JW
4228 /* Reclaim has failed us, start killing things */
4229 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4230 if (page)
4231 goto got_pg;
4232
9a67f648 4233 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4234 if (tsk_is_oom_victim(current) &&
4235 (alloc_flags == ALLOC_OOM ||
c288983d 4236 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4237 goto nopage;
4238
9083905a 4239 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4240 if (did_some_progress) {
4241 no_progress_loops = 0;
9083905a 4242 goto retry;
0a0337e0 4243 }
9083905a 4244
1da177e4 4245nopage:
902b6281
VB
4246 /* Deal with possible cpuset update races before we fail */
4247 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4248 goto retry_cpuset;
4249
9a67f648
MH
4250 /*
4251 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4252 * we always retry
4253 */
4254 if (gfp_mask & __GFP_NOFAIL) {
4255 /*
4256 * All existing users of the __GFP_NOFAIL are blockable, so warn
4257 * of any new users that actually require GFP_NOWAIT
4258 */
4259 if (WARN_ON_ONCE(!can_direct_reclaim))
4260 goto fail;
4261
4262 /*
4263 * PF_MEMALLOC request from this context is rather bizarre
4264 * because we cannot reclaim anything and only can loop waiting
4265 * for somebody to do a work for us
4266 */
4267 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4268
4269 /*
4270 * non failing costly orders are a hard requirement which we
4271 * are not prepared for much so let's warn about these users
4272 * so that we can identify them and convert them to something
4273 * else.
4274 */
4275 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4276
6c18ba7a
MH
4277 /*
4278 * Help non-failing allocations by giving them access to memory
4279 * reserves but do not use ALLOC_NO_WATERMARKS because this
4280 * could deplete whole memory reserves which would just make
4281 * the situation worse
4282 */
4283 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4284 if (page)
4285 goto got_pg;
4286
9a67f648
MH
4287 cond_resched();
4288 goto retry;
4289 }
4290fail:
a8e99259 4291 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4292 "page allocation failure: order:%u", order);
1da177e4 4293got_pg:
072bb0aa 4294 return page;
1da177e4 4295}
11e33f6a 4296
9cd75558 4297static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4298 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4299 struct alloc_context *ac, gfp_t *alloc_mask,
4300 unsigned int *alloc_flags)
11e33f6a 4301{
9cd75558 4302 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4303 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4304 ac->nodemask = nodemask;
4305 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4306
682a3385 4307 if (cpusets_enabled()) {
9cd75558 4308 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4309 if (!ac->nodemask)
4310 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4311 else
4312 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4313 }
4314
d92a8cfc
PZ
4315 fs_reclaim_acquire(gfp_mask);
4316 fs_reclaim_release(gfp_mask);
11e33f6a 4317
d0164adc 4318 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4319
4320 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4321 return false;
11e33f6a 4322
d883c6cf
JK
4323 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4324 *alloc_flags |= ALLOC_CMA;
4325
9cd75558
MG
4326 return true;
4327}
21bb9bd1 4328
9cd75558 4329/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4330static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4331{
c9ab0c4f 4332 /* Dirty zone balancing only done in the fast path */
9cd75558 4333 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4334
e46e7b77
MG
4335 /*
4336 * The preferred zone is used for statistics but crucially it is
4337 * also used as the starting point for the zonelist iterator. It
4338 * may get reset for allocations that ignore memory policies.
4339 */
9cd75558
MG
4340 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341 ac->high_zoneidx, ac->nodemask);
4342}
4343
4344/*
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
04ec6264
VB
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349 nodemask_t *nodemask)
9cd75558
MG
4350{
4351 struct page *page;
4352 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4353 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4354 struct alloc_context ac = { };
4355
c63ae43b
MH
4356 /*
4357 * There are several places where we assume that the order value is sane
4358 * so bail out early if the request is out of bound.
4359 */
4360 if (unlikely(order >= MAX_ORDER)) {
4361 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4362 return NULL;
4363 }
4364
9cd75558 4365 gfp_mask &= gfp_allowed_mask;
f19360f0 4366 alloc_mask = gfp_mask;
04ec6264 4367 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4368 return NULL;
4369
a380b40a 4370 finalise_ac(gfp_mask, &ac);
5bb1b169 4371
5117f45d 4372 /* First allocation attempt */
a9263751 4373 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4374 if (likely(page))
4375 goto out;
11e33f6a 4376
4fcb0971 4377 /*
7dea19f9
MH
4378 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4379 * resp. GFP_NOIO which has to be inherited for all allocation requests
4380 * from a particular context which has been marked by
4381 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4382 */
7dea19f9 4383 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4384 ac.spread_dirty_pages = false;
23f086f9 4385
4741526b
MG
4386 /*
4387 * Restore the original nodemask if it was potentially replaced with
4388 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4389 */
e47483bc 4390 if (unlikely(ac.nodemask != nodemask))
4741526b 4391 ac.nodemask = nodemask;
16096c25 4392
4fcb0971 4393 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4394
4fcb0971 4395out:
c4159a75
VD
4396 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4397 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4398 __free_pages(page, order);
4399 page = NULL;
4949148a
VD
4400 }
4401
4fcb0971
MG
4402 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4403
11e33f6a 4404 return page;
1da177e4 4405}
d239171e 4406EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4407
4408/*
9ea9a680
MH
4409 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4410 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4411 * you need to access high mem.
1da177e4 4412 */
920c7a5d 4413unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4414{
945a1113
AM
4415 struct page *page;
4416
9ea9a680 4417 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4418 if (!page)
4419 return 0;
4420 return (unsigned long) page_address(page);
4421}
1da177e4
LT
4422EXPORT_SYMBOL(__get_free_pages);
4423
920c7a5d 4424unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4425{
945a1113 4426 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4427}
1da177e4
LT
4428EXPORT_SYMBOL(get_zeroed_page);
4429
920c7a5d 4430void __free_pages(struct page *page, unsigned int order)
1da177e4 4431{
b5810039 4432 if (put_page_testzero(page)) {
1da177e4 4433 if (order == 0)
2d4894b5 4434 free_unref_page(page);
1da177e4
LT
4435 else
4436 __free_pages_ok(page, order);
4437 }
4438}
4439
4440EXPORT_SYMBOL(__free_pages);
4441
920c7a5d 4442void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4443{
4444 if (addr != 0) {
725d704e 4445 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4446 __free_pages(virt_to_page((void *)addr), order);
4447 }
4448}
4449
4450EXPORT_SYMBOL(free_pages);
4451
b63ae8ca
AD
4452/*
4453 * Page Fragment:
4454 * An arbitrary-length arbitrary-offset area of memory which resides
4455 * within a 0 or higher order page. Multiple fragments within that page
4456 * are individually refcounted, in the page's reference counter.
4457 *
4458 * The page_frag functions below provide a simple allocation framework for
4459 * page fragments. This is used by the network stack and network device
4460 * drivers to provide a backing region of memory for use as either an
4461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4462 */
2976db80
AD
4463static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4464 gfp_t gfp_mask)
b63ae8ca
AD
4465{
4466 struct page *page = NULL;
4467 gfp_t gfp = gfp_mask;
4468
4469#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4471 __GFP_NOMEMALLOC;
4472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4473 PAGE_FRAG_CACHE_MAX_ORDER);
4474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4475#endif
4476 if (unlikely(!page))
4477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4478
4479 nc->va = page ? page_address(page) : NULL;
4480
4481 return page;
4482}
4483
2976db80 4484void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4485{
4486 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4487
4488 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4489 unsigned int order = compound_order(page);
4490
44fdffd7 4491 if (order == 0)
2d4894b5 4492 free_unref_page(page);
44fdffd7
AD
4493 else
4494 __free_pages_ok(page, order);
4495 }
4496}
2976db80 4497EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4498
8c2dd3e4
AD
4499void *page_frag_alloc(struct page_frag_cache *nc,
4500 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4501{
4502 unsigned int size = PAGE_SIZE;
4503 struct page *page;
4504 int offset;
4505
4506 if (unlikely(!nc->va)) {
4507refill:
2976db80 4508 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4509 if (!page)
4510 return NULL;
4511
4512#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4513 /* if size can vary use size else just use PAGE_SIZE */
4514 size = nc->size;
4515#endif
4516 /* Even if we own the page, we do not use atomic_set().
4517 * This would break get_page_unless_zero() users.
4518 */
fe896d18 4519 page_ref_add(page, size - 1);
b63ae8ca
AD
4520
4521 /* reset page count bias and offset to start of new frag */
2f064f34 4522 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4523 nc->pagecnt_bias = size;
4524 nc->offset = size;
4525 }
4526
4527 offset = nc->offset - fragsz;
4528 if (unlikely(offset < 0)) {
4529 page = virt_to_page(nc->va);
4530
fe896d18 4531 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4532 goto refill;
4533
4534#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4535 /* if size can vary use size else just use PAGE_SIZE */
4536 size = nc->size;
4537#endif
4538 /* OK, page count is 0, we can safely set it */
fe896d18 4539 set_page_count(page, size);
b63ae8ca
AD
4540
4541 /* reset page count bias and offset to start of new frag */
4542 nc->pagecnt_bias = size;
4543 offset = size - fragsz;
4544 }
4545
4546 nc->pagecnt_bias--;
4547 nc->offset = offset;
4548
4549 return nc->va + offset;
4550}
8c2dd3e4 4551EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4552
4553/*
4554 * Frees a page fragment allocated out of either a compound or order 0 page.
4555 */
8c2dd3e4 4556void page_frag_free(void *addr)
b63ae8ca
AD
4557{
4558 struct page *page = virt_to_head_page(addr);
4559
4560 if (unlikely(put_page_testzero(page)))
4561 __free_pages_ok(page, compound_order(page));
4562}
8c2dd3e4 4563EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4564
d00181b9
KS
4565static void *make_alloc_exact(unsigned long addr, unsigned int order,
4566 size_t size)
ee85c2e1
AK
4567{
4568 if (addr) {
4569 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4570 unsigned long used = addr + PAGE_ALIGN(size);
4571
4572 split_page(virt_to_page((void *)addr), order);
4573 while (used < alloc_end) {
4574 free_page(used);
4575 used += PAGE_SIZE;
4576 }
4577 }
4578 return (void *)addr;
4579}
4580
2be0ffe2
TT
4581/**
4582 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4583 * @size: the number of bytes to allocate
4584 * @gfp_mask: GFP flags for the allocation
4585 *
4586 * This function is similar to alloc_pages(), except that it allocates the
4587 * minimum number of pages to satisfy the request. alloc_pages() can only
4588 * allocate memory in power-of-two pages.
4589 *
4590 * This function is also limited by MAX_ORDER.
4591 *
4592 * Memory allocated by this function must be released by free_pages_exact().
4593 */
4594void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4595{
4596 unsigned int order = get_order(size);
4597 unsigned long addr;
4598
4599 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4600 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4601}
4602EXPORT_SYMBOL(alloc_pages_exact);
4603
ee85c2e1
AK
4604/**
4605 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4606 * pages on a node.
b5e6ab58 4607 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4608 * @size: the number of bytes to allocate
4609 * @gfp_mask: GFP flags for the allocation
4610 *
4611 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4612 * back.
ee85c2e1 4613 */
e1931811 4614void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4615{
d00181b9 4616 unsigned int order = get_order(size);
ee85c2e1
AK
4617 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4618 if (!p)
4619 return NULL;
4620 return make_alloc_exact((unsigned long)page_address(p), order, size);
4621}
ee85c2e1 4622
2be0ffe2
TT
4623/**
4624 * free_pages_exact - release memory allocated via alloc_pages_exact()
4625 * @virt: the value returned by alloc_pages_exact.
4626 * @size: size of allocation, same value as passed to alloc_pages_exact().
4627 *
4628 * Release the memory allocated by a previous call to alloc_pages_exact.
4629 */
4630void free_pages_exact(void *virt, size_t size)
4631{
4632 unsigned long addr = (unsigned long)virt;
4633 unsigned long end = addr + PAGE_ALIGN(size);
4634
4635 while (addr < end) {
4636 free_page(addr);
4637 addr += PAGE_SIZE;
4638 }
4639}
4640EXPORT_SYMBOL(free_pages_exact);
4641
e0fb5815
ZY
4642/**
4643 * nr_free_zone_pages - count number of pages beyond high watermark
4644 * @offset: The zone index of the highest zone
4645 *
4646 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4647 * high watermark within all zones at or below a given zone index. For each
4648 * zone, the number of pages is calculated as:
0e056eb5
MCC
4649 *
4650 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4651 */
ebec3862 4652static unsigned long nr_free_zone_pages(int offset)
1da177e4 4653{
dd1a239f 4654 struct zoneref *z;
54a6eb5c
MG
4655 struct zone *zone;
4656
e310fd43 4657 /* Just pick one node, since fallback list is circular */
ebec3862 4658 unsigned long sum = 0;
1da177e4 4659
0e88460d 4660 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4661
54a6eb5c 4662 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4663 unsigned long size = zone->managed_pages;
41858966 4664 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4665 if (size > high)
4666 sum += size - high;
1da177e4
LT
4667 }
4668
4669 return sum;
4670}
4671
e0fb5815
ZY
4672/**
4673 * nr_free_buffer_pages - count number of pages beyond high watermark
4674 *
4675 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4676 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4677 */
ebec3862 4678unsigned long nr_free_buffer_pages(void)
1da177e4 4679{
af4ca457 4680 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4681}
c2f1a551 4682EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4683
e0fb5815
ZY
4684/**
4685 * nr_free_pagecache_pages - count number of pages beyond high watermark
4686 *
4687 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4688 * high watermark within all zones.
1da177e4 4689 */
ebec3862 4690unsigned long nr_free_pagecache_pages(void)
1da177e4 4691{
2a1e274a 4692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4693}
08e0f6a9
CL
4694
4695static inline void show_node(struct zone *zone)
1da177e4 4696{
e5adfffc 4697 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4698 printk("Node %d ", zone_to_nid(zone));
1da177e4 4699}
1da177e4 4700
d02bd27b
IR
4701long si_mem_available(void)
4702{
4703 long available;
4704 unsigned long pagecache;
4705 unsigned long wmark_low = 0;
4706 unsigned long pages[NR_LRU_LISTS];
b29940c1 4707 unsigned long reclaimable;
d02bd27b
IR
4708 struct zone *zone;
4709 int lru;
4710
4711 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4712 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4713
4714 for_each_zone(zone)
4715 wmark_low += zone->watermark[WMARK_LOW];
4716
4717 /*
4718 * Estimate the amount of memory available for userspace allocations,
4719 * without causing swapping.
4720 */
c41f012a 4721 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4722
4723 /*
4724 * Not all the page cache can be freed, otherwise the system will
4725 * start swapping. Assume at least half of the page cache, or the
4726 * low watermark worth of cache, needs to stay.
4727 */
4728 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4729 pagecache -= min(pagecache / 2, wmark_low);
4730 available += pagecache;
4731
4732 /*
b29940c1
VB
4733 * Part of the reclaimable slab and other kernel memory consists of
4734 * items that are in use, and cannot be freed. Cap this estimate at the
4735 * low watermark.
d02bd27b 4736 */
b29940c1
VB
4737 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4738 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4739 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4740
d02bd27b
IR
4741 if (available < 0)
4742 available = 0;
4743 return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
1da177e4
LT
4747void si_meminfo(struct sysinfo *val)
4748{
4749 val->totalram = totalram_pages;
11fb9989 4750 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4751 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4752 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4753 val->totalhigh = totalhigh_pages;
4754 val->freehigh = nr_free_highpages();
1da177e4
LT
4755 val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
cdd91a77
JL
4763 int zone_type; /* needs to be signed */
4764 unsigned long managed_pages = 0;
fc2bd799
JK
4765 unsigned long managed_highpages = 0;
4766 unsigned long free_highpages = 0;
1da177e4
LT
4767 pg_data_t *pgdat = NODE_DATA(nid);
4768
cdd91a77
JL
4769 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771 val->totalram = managed_pages;
11fb9989 4772 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4773 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4774#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4775 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776 struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778 if (is_highmem(zone)) {
4779 managed_highpages += zone->managed_pages;
4780 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781 }
4782 }
4783 val->totalhigh = managed_highpages;
4784 val->freehigh = free_highpages;
98d2b0eb 4785#else
fc2bd799
JK
4786 val->totalhigh = managed_highpages;
4787 val->freehigh = free_highpages;
98d2b0eb 4788#endif
1da177e4
LT
4789 val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
ddd588b5 4793/*
7bf02ea2
DR
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4796 */
9af744d7 4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4798{
ddd588b5 4799 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4800 return false;
ddd588b5 4801
9af744d7
MH
4802 /*
4803 * no node mask - aka implicit memory numa policy. Do not bother with
4804 * the synchronization - read_mems_allowed_begin - because we do not
4805 * have to be precise here.
4806 */
4807 if (!nodemask)
4808 nodemask = &cpuset_current_mems_allowed;
4809
4810 return !node_isset(nid, *nodemask);
ddd588b5
DR
4811}
4812
1da177e4
LT
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
377e4f16
RV
4815static void show_migration_types(unsigned char type)
4816{
4817 static const char types[MIGRATE_TYPES] = {
4818 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4819 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4820 [MIGRATE_RECLAIMABLE] = 'E',
4821 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4822#ifdef CONFIG_CMA
4823 [MIGRATE_CMA] = 'C',
4824#endif
194159fb 4825#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4826 [MIGRATE_ISOLATE] = 'I',
194159fb 4827#endif
377e4f16
RV
4828 };
4829 char tmp[MIGRATE_TYPES + 1];
4830 char *p = tmp;
4831 int i;
4832
4833 for (i = 0; i < MIGRATE_TYPES; i++) {
4834 if (type & (1 << i))
4835 *p++ = types[i];
4836 }
4837
4838 *p = '\0';
1f84a18f 4839 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4840}
4841
1da177e4
LT
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 * cpuset.
1da177e4 4850 */
9af744d7 4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4852{
d1bfcdb8 4853 unsigned long free_pcp = 0;
c7241913 4854 int cpu;
1da177e4 4855 struct zone *zone;
599d0c95 4856 pg_data_t *pgdat;
1da177e4 4857
ee99c71c 4858 for_each_populated_zone(zone) {
9af744d7 4859 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4860 continue;
d1bfcdb8 4861
761b0677
KK
4862 for_each_online_cpu(cpu)
4863 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4864 }
4865
a731286d
KM
4866 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4868 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4870 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4871 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4872 global_node_page_state(NR_ACTIVE_ANON),
4873 global_node_page_state(NR_INACTIVE_ANON),
4874 global_node_page_state(NR_ISOLATED_ANON),
4875 global_node_page_state(NR_ACTIVE_FILE),
4876 global_node_page_state(NR_INACTIVE_FILE),
4877 global_node_page_state(NR_ISOLATED_FILE),
4878 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4879 global_node_page_state(NR_FILE_DIRTY),
4880 global_node_page_state(NR_WRITEBACK),
4881 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4882 global_node_page_state(NR_SLAB_RECLAIMABLE),
4883 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4884 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4885 global_node_page_state(NR_SHMEM),
c41f012a
MH
4886 global_zone_page_state(NR_PAGETABLE),
4887 global_zone_page_state(NR_BOUNCE),
4888 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4889 free_pcp,
c41f012a 4890 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4891
599d0c95 4892 for_each_online_pgdat(pgdat) {
9af744d7 4893 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4894 continue;
4895
599d0c95
MG
4896 printk("Node %d"
4897 " active_anon:%lukB"
4898 " inactive_anon:%lukB"
4899 " active_file:%lukB"
4900 " inactive_file:%lukB"
4901 " unevictable:%lukB"
4902 " isolated(anon):%lukB"
4903 " isolated(file):%lukB"
50658e2e 4904 " mapped:%lukB"
11fb9989
MG
4905 " dirty:%lukB"
4906 " writeback:%lukB"
4907 " shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909 " shmem_thp: %lukB"
4910 " shmem_pmdmapped: %lukB"
4911 " anon_thp: %lukB"
4912#endif
4913 " writeback_tmp:%lukB"
4914 " unstable:%lukB"
599d0c95
MG
4915 " all_unreclaimable? %s"
4916 "\n",
4917 pgdat->node_id,
4918 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4925 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4926 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4928 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932 * HPAGE_PMD_NR),
4933 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
11fb9989
MG
4935 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4937 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938 "yes" : "no");
599d0c95
MG
4939 }
4940
ee99c71c 4941 for_each_populated_zone(zone) {
1da177e4
LT
4942 int i;
4943
9af744d7 4944 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4945 continue;
d1bfcdb8
KK
4946
4947 free_pcp = 0;
4948 for_each_online_cpu(cpu)
4949 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
1da177e4 4951 show_node(zone);
1f84a18f
JP
4952 printk(KERN_CONT
4953 "%s"
1da177e4
LT
4954 " free:%lukB"
4955 " min:%lukB"
4956 " low:%lukB"
4957 " high:%lukB"
71c799f4
MK
4958 " active_anon:%lukB"
4959 " inactive_anon:%lukB"
4960 " active_file:%lukB"
4961 " inactive_file:%lukB"
4962 " unevictable:%lukB"
5a1c84b4 4963 " writepending:%lukB"
1da177e4 4964 " present:%lukB"
9feedc9d 4965 " managed:%lukB"
4a0aa73f 4966 " mlocked:%lukB"
c6a7f572 4967 " kernel_stack:%lukB"
4a0aa73f 4968 " pagetables:%lukB"
4a0aa73f 4969 " bounce:%lukB"
d1bfcdb8
KK
4970 " free_pcp:%lukB"
4971 " local_pcp:%ukB"
d1ce749a 4972 " free_cma:%lukB"
1da177e4
LT
4973 "\n",
4974 zone->name,
88f5acf8 4975 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4976 K(min_wmark_pages(zone)),
4977 K(low_wmark_pages(zone)),
4978 K(high_wmark_pages(zone)),
71c799f4
MK
4979 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4984 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4985 K(zone->present_pages),
9feedc9d 4986 K(zone->managed_pages),
4a0aa73f 4987 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4988 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4989 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4990 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4991 K(free_pcp),
4992 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4993 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4994 printk("lowmem_reserve[]:");
4995 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4996 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997 printk(KERN_CONT "\n");
1da177e4
LT
4998 }
4999
ee99c71c 5000 for_each_populated_zone(zone) {
d00181b9
KS
5001 unsigned int order;
5002 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5003 unsigned char types[MAX_ORDER];
1da177e4 5004
9af744d7 5005 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5006 continue;
1da177e4 5007 show_node(zone);
1f84a18f 5008 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5009
5010 spin_lock_irqsave(&zone->lock, flags);
5011 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5012 struct free_area *area = &zone->free_area[order];
5013 int type;
5014
5015 nr[order] = area->nr_free;
8f9de51a 5016 total += nr[order] << order;
377e4f16
RV
5017
5018 types[order] = 0;
5019 for (type = 0; type < MIGRATE_TYPES; type++) {
5020 if (!list_empty(&area->free_list[type]))
5021 types[order] |= 1 << type;
5022 }
1da177e4
LT
5023 }
5024 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5025 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5026 printk(KERN_CONT "%lu*%lukB ",
5027 nr[order], K(1UL) << order);
377e4f16
RV
5028 if (nr[order])
5029 show_migration_types(types[order]);
5030 }
1f84a18f 5031 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5032 }
5033
949f7ec5
DR
5034 hugetlb_show_meminfo();
5035
11fb9989 5036 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5037
1da177e4
LT
5038 show_swap_cache_info();
5039}
5040
19770b32
MG
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043 zoneref->zone = zone;
5044 zoneref->zone_idx = zone_idx(zone);
5045}
5046
1da177e4
LT
5047/*
5048 * Builds allocation fallback zone lists.
1a93205b
CL
5049 *
5050 * Add all populated zones of a node to the zonelist.
1da177e4 5051 */
9d3be21b 5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5053{
1a93205b 5054 struct zone *zone;
bc732f1d 5055 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5056 int nr_zones = 0;
02a68a5e
CL
5057
5058 do {
2f6726e5 5059 zone_type--;
070f8032 5060 zone = pgdat->node_zones + zone_type;
6aa303de 5061 if (managed_zone(zone)) {
9d3be21b 5062 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5063 check_highest_zone(zone_type);
1da177e4 5064 }
2f6726e5 5065 } while (zone_type);
bc732f1d 5066
070f8032 5067 return nr_zones;
1da177e4
LT
5068}
5069
5070#ifdef CONFIG_NUMA
f0c0b2b8
KH
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
c9bff3ee
MH
5074 /*
5075 * We used to support different zonlists modes but they turned
5076 * out to be just not useful. Let's keep the warning in place
5077 * if somebody still use the cmd line parameter so that we do
5078 * not fail it silently
5079 */
5080 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5082 return -EINVAL;
5083 }
5084 return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
ecb256f8
VL
5089 if (!s)
5090 return 0;
5091
c9bff3ee 5092 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
c9bff3ee
MH
5096char numa_zonelist_order[] = "Node";
5097
f0c0b2b8
KH
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
cccad5b9 5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5102 void __user *buffer, size_t *length,
f0c0b2b8
KH
5103 loff_t *ppos)
5104{
c9bff3ee 5105 char *str;
f0c0b2b8
KH
5106 int ret;
5107
c9bff3ee
MH
5108 if (!write)
5109 return proc_dostring(table, write, buffer, length, ppos);
5110 str = memdup_user_nul(buffer, 16);
5111 if (IS_ERR(str))
5112 return PTR_ERR(str);
dacbde09 5113
c9bff3ee
MH
5114 ret = __parse_numa_zonelist_order(str);
5115 kfree(str);
443c6f14 5116 return ret;
f0c0b2b8
KH
5117}
5118
5119
62bc62a8 5120#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5121static int node_load[MAX_NUMNODES];
5122
1da177e4 5123/**
4dc3b16b 5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list. The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
5136 */
f0c0b2b8 5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5138{
4cf808eb 5139 int n, val;
1da177e4 5140 int min_val = INT_MAX;
00ef2d2f 5141 int best_node = NUMA_NO_NODE;
a70f7302 5142 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5143
4cf808eb
LT
5144 /* Use the local node if we haven't already */
5145 if (!node_isset(node, *used_node_mask)) {
5146 node_set(node, *used_node_mask);
5147 return node;
5148 }
1da177e4 5149
4b0ef1fe 5150 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5151
5152 /* Don't want a node to appear more than once */
5153 if (node_isset(n, *used_node_mask))
5154 continue;
5155
1da177e4
LT
5156 /* Use the distance array to find the distance */
5157 val = node_distance(node, n);
5158
4cf808eb
LT
5159 /* Penalize nodes under us ("prefer the next node") */
5160 val += (n < node);
5161
1da177e4 5162 /* Give preference to headless and unused nodes */
a70f7302
RR
5163 tmp = cpumask_of_node(n);
5164 if (!cpumask_empty(tmp))
1da177e4
LT
5165 val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167 /* Slight preference for less loaded node */
5168 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169 val += node_load[n];
5170
5171 if (val < min_val) {
5172 min_val = val;
5173 best_node = n;
5174 }
5175 }
5176
5177 if (best_node >= 0)
5178 node_set(best_node, *used_node_mask);
5179
5180 return best_node;
5181}
5182
f0c0b2b8
KH
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
9d3be21b
MH
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190 unsigned nr_nodes)
1da177e4 5191{
9d3be21b
MH
5192 struct zoneref *zonerefs;
5193 int i;
5194
5195 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197 for (i = 0; i < nr_nodes; i++) {
5198 int nr_zones;
5199
5200 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5201
9d3be21b
MH
5202 nr_zones = build_zonerefs_node(node, zonerefs);
5203 zonerefs += nr_zones;
5204 }
5205 zonerefs->zone = NULL;
5206 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5207}
5208
523b9458
CL
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
9d3be21b
MH
5214 struct zoneref *zonerefs;
5215 int nr_zones;
523b9458 5216
9d3be21b
MH
5217 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219 zonerefs += nr_zones;
5220 zonerefs->zone = NULL;
5221 zonerefs->zone_idx = 0;
523b9458
CL
5222}
5223
f0c0b2b8
KH
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
f0c0b2b8 5230
f0c0b2b8
KH
5231static void build_zonelists(pg_data_t *pgdat)
5232{
9d3be21b
MH
5233 static int node_order[MAX_NUMNODES];
5234 int node, load, nr_nodes = 0;
1da177e4 5235 nodemask_t used_mask;
f0c0b2b8 5236 int local_node, prev_node;
1da177e4
LT
5237
5238 /* NUMA-aware ordering of nodes */
5239 local_node = pgdat->node_id;
62bc62a8 5240 load = nr_online_nodes;
1da177e4
LT
5241 prev_node = local_node;
5242 nodes_clear(used_mask);
f0c0b2b8 5243
f0c0b2b8 5244 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5245 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246 /*
5247 * We don't want to pressure a particular node.
5248 * So adding penalty to the first node in same
5249 * distance group to make it round-robin.
5250 */
957f822a
DR
5251 if (node_distance(local_node, node) !=
5252 node_distance(local_node, prev_node))
f0c0b2b8
KH
5253 node_load[node] = load;
5254
9d3be21b 5255 node_order[nr_nodes++] = node;
1da177e4
LT
5256 prev_node = node;
5257 load--;
1da177e4 5258 }
523b9458 5259
9d3be21b 5260 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5261 build_thisnode_zonelists(pgdat);
1da177e4
LT
5262}
5263
7aac7898
LS
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
c33d6c06 5273 struct zoneref *z;
7aac7898 5274
c33d6c06 5275 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5276 gfp_zone(GFP_KERNEL),
c33d6c06 5277 NULL);
c1093b74 5278 return zone_to_nid(z->zone);
7aac7898
LS
5279}
5280#endif
f0c0b2b8 5281
6423aa81
JK
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
1da177e4
LT
5284#else /* CONFIG_NUMA */
5285
f0c0b2b8 5286static void build_zonelists(pg_data_t *pgdat)
1da177e4 5287{
19655d34 5288 int node, local_node;
9d3be21b
MH
5289 struct zoneref *zonerefs;
5290 int nr_zones;
1da177e4
LT
5291
5292 local_node = pgdat->node_id;
1da177e4 5293
9d3be21b
MH
5294 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296 zonerefs += nr_zones;
1da177e4 5297
54a6eb5c
MG
5298 /*
5299 * Now we build the zonelist so that it contains the zones
5300 * of all the other nodes.
5301 * We don't want to pressure a particular node, so when
5302 * building the zones for node N, we make sure that the
5303 * zones coming right after the local ones are those from
5304 * node N+1 (modulo N)
5305 */
5306 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307 if (!node_online(node))
5308 continue;
9d3be21b
MH
5309 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310 zonerefs += nr_zones;
1da177e4 5311 }
54a6eb5c
MG
5312 for (node = 0; node < local_node; node++) {
5313 if (!node_online(node))
5314 continue;
9d3be21b
MH
5315 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316 zonerefs += nr_zones;
54a6eb5c
MG
5317 }
5318
9d3be21b
MH
5319 zonerefs->zone = NULL;
5320 zonerefs->zone_idx = 0;
1da177e4
LT
5321}
5322
5323#endif /* CONFIG_NUMA */
5324
99dcc3e5
CL
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5343
11cd8638 5344static void __build_all_zonelists(void *data)
1da177e4 5345{
6811378e 5346 int nid;
afb6ebb3 5347 int __maybe_unused cpu;
9adb62a5 5348 pg_data_t *self = data;
b93e0f32
MH
5349 static DEFINE_SPINLOCK(lock);
5350
5351 spin_lock(&lock);
9276b1bc 5352
7f9cfb31
BL
5353#ifdef CONFIG_NUMA
5354 memset(node_load, 0, sizeof(node_load));
5355#endif
9adb62a5 5356
c1152583
WY
5357 /*
5358 * This node is hotadded and no memory is yet present. So just
5359 * building zonelists is fine - no need to touch other nodes.
5360 */
9adb62a5
JL
5361 if (self && !node_online(self->node_id)) {
5362 build_zonelists(self);
c1152583
WY
5363 } else {
5364 for_each_online_node(nid) {
5365 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5366
c1152583
WY
5367 build_zonelists(pgdat);
5368 }
99dcc3e5 5369
7aac7898
LS
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371 /*
5372 * We now know the "local memory node" for each node--
5373 * i.e., the node of the first zone in the generic zonelist.
5374 * Set up numa_mem percpu variable for on-line cpus. During
5375 * boot, only the boot cpu should be on-line; we'll init the
5376 * secondary cpus' numa_mem as they come on-line. During
5377 * node/memory hotplug, we'll fixup all on-line cpus.
5378 */
d9c9a0b9 5379 for_each_online_cpu(cpu)
7aac7898 5380 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5381#endif
d9c9a0b9 5382 }
b93e0f32
MH
5383
5384 spin_unlock(&lock);
6811378e
YG
5385}
5386
061f67bc
RV
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
afb6ebb3
MH
5390 int cpu;
5391
061f67bc 5392 __build_all_zonelists(NULL);
afb6ebb3
MH
5393
5394 /*
5395 * Initialize the boot_pagesets that are going to be used
5396 * for bootstrapping processors. The real pagesets for
5397 * each zone will be allocated later when the per cpu
5398 * allocator is available.
5399 *
5400 * boot_pagesets are used also for bootstrapping offline
5401 * cpus if the system is already booted because the pagesets
5402 * are needed to initialize allocators on a specific cpu too.
5403 * F.e. the percpu allocator needs the page allocator which
5404 * needs the percpu allocator in order to allocate its pagesets
5405 * (a chicken-egg dilemma).
5406 */
5407 for_each_possible_cpu(cpu)
5408 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
061f67bc
RV
5410 mminit_verify_zonelist();
5411 cpuset_init_current_mems_allowed();
5412}
5413
4eaf3f64 5414/*
4eaf3f64 5415 * unless system_state == SYSTEM_BOOTING.
061f67bc 5416 *
72675e13 5417 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5418 * [protected by SYSTEM_BOOTING].
4eaf3f64 5419 */
72675e13 5420void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5421{
5422 if (system_state == SYSTEM_BOOTING) {
061f67bc 5423 build_all_zonelists_init();
6811378e 5424 } else {
11cd8638 5425 __build_all_zonelists(pgdat);
6811378e
YG
5426 /* cpuset refresh routine should be here */
5427 }
bd1e22b8 5428 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5429 /*
5430 * Disable grouping by mobility if the number of pages in the
5431 * system is too low to allow the mechanism to work. It would be
5432 * more accurate, but expensive to check per-zone. This check is
5433 * made on memory-hotadd so a system can start with mobility
5434 * disabled and enable it later
5435 */
d9c23400 5436 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5437 page_group_by_mobility_disabled = 1;
5438 else
5439 page_group_by_mobility_disabled = 0;
5440
c9bff3ee 5441 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5442 nr_online_nodes,
756a025f
JP
5443 page_group_by_mobility_disabled ? "off" : "on",
5444 vm_total_pages);
f0c0b2b8 5445#ifdef CONFIG_NUMA
f88dfff5 5446 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5447#endif
1da177e4
LT
5448}
5449
a9a9e77f
PT
5450/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5451static bool __meminit
5452overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5453{
5454#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5455 static struct memblock_region *r;
5456
5457 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5458 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5459 for_each_memblock(memory, r) {
5460 if (*pfn < memblock_region_memory_end_pfn(r))
5461 break;
5462 }
5463 }
5464 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5465 memblock_is_mirror(r)) {
5466 *pfn = memblock_region_memory_end_pfn(r);
5467 return true;
5468 }
5469 }
5470#endif
5471 return false;
5472}
5473
1da177e4
LT
5474/*
5475 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5476 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5477 * done. Non-atomic initialization, single-pass.
5478 */
c09b4240 5479void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5480 unsigned long start_pfn, enum memmap_context context,
5481 struct vmem_altmap *altmap)
1da177e4 5482{
a9a9e77f 5483 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5484 struct page *page;
1da177e4 5485
22b31eec
HD
5486 if (highest_memmap_pfn < end_pfn - 1)
5487 highest_memmap_pfn = end_pfn - 1;
5488
966cf44f 5489#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5490 /*
5491 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5492 * memory. We limit the total number of pages to initialize to just
5493 * those that might contain the memory mapping. We will defer the
5494 * ZONE_DEVICE page initialization until after we have released
5495 * the hotplug lock.
4b94ffdc 5496 */
966cf44f
AD
5497 if (zone == ZONE_DEVICE) {
5498 if (!altmap)
5499 return;
5500
5501 if (start_pfn == altmap->base_pfn)
5502 start_pfn += altmap->reserve;
5503 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5504 }
5505#endif
4b94ffdc 5506
cbe8dd4a 5507 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5508 /*
b72d0ffb
AM
5509 * There can be holes in boot-time mem_map[]s handed to this
5510 * function. They do not exist on hotplugged memory.
a2f3aa02 5511 */
a9a9e77f
PT
5512 if (context == MEMMAP_EARLY) {
5513 if (!early_pfn_valid(pfn))
b72d0ffb 5514 continue;
a9a9e77f
PT
5515 if (!early_pfn_in_nid(pfn, nid))
5516 continue;
5517 if (overlap_memmap_init(zone, &pfn))
5518 continue;
5519 if (defer_init(nid, pfn, end_pfn))
5520 break;
a2f3aa02 5521 }
ac5d2539 5522
d0dc12e8
PT
5523 page = pfn_to_page(pfn);
5524 __init_single_page(page, pfn, zone, nid);
5525 if (context == MEMMAP_HOTPLUG)
d483da5b 5526 __SetPageReserved(page);
d0dc12e8 5527
ac5d2539
MG
5528 /*
5529 * Mark the block movable so that blocks are reserved for
5530 * movable at startup. This will force kernel allocations
5531 * to reserve their blocks rather than leaking throughout
5532 * the address space during boot when many long-lived
974a786e 5533 * kernel allocations are made.
ac5d2539
MG
5534 *
5535 * bitmap is created for zone's valid pfn range. but memmap
5536 * can be created for invalid pages (for alignment)
5537 * check here not to call set_pageblock_migratetype() against
5538 * pfn out of zone.
5539 */
5540 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5541 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5542 cond_resched();
ac5d2539 5543 }
1da177e4 5544 }
2830bf6f
MZ
5545#ifdef CONFIG_SPARSEMEM
5546 /*
5547 * If the zone does not span the rest of the section then
5548 * we should at least initialize those pages. Otherwise we
5549 * could blow up on a poisoned page in some paths which depend
5550 * on full sections being initialized (e.g. memory hotplug).
5551 */
5552 while (end_pfn % PAGES_PER_SECTION) {
5553 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5554 end_pfn++;
5555 }
5556#endif
1da177e4
LT
5557}
5558
966cf44f
AD
5559#ifdef CONFIG_ZONE_DEVICE
5560void __ref memmap_init_zone_device(struct zone *zone,
5561 unsigned long start_pfn,
5562 unsigned long size,
5563 struct dev_pagemap *pgmap)
5564{
5565 unsigned long pfn, end_pfn = start_pfn + size;
5566 struct pglist_data *pgdat = zone->zone_pgdat;
5567 unsigned long zone_idx = zone_idx(zone);
5568 unsigned long start = jiffies;
5569 int nid = pgdat->node_id;
5570
5571 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5572 return;
5573
5574 /*
5575 * The call to memmap_init_zone should have already taken care
5576 * of the pages reserved for the memmap, so we can just jump to
5577 * the end of that region and start processing the device pages.
5578 */
5579 if (pgmap->altmap_valid) {
5580 struct vmem_altmap *altmap = &pgmap->altmap;
5581
5582 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5583 size = end_pfn - start_pfn;
5584 }
5585
5586 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5587 struct page *page = pfn_to_page(pfn);
5588
5589 __init_single_page(page, pfn, zone_idx, nid);
5590
5591 /*
5592 * Mark page reserved as it will need to wait for onlining
5593 * phase for it to be fully associated with a zone.
5594 *
5595 * We can use the non-atomic __set_bit operation for setting
5596 * the flag as we are still initializing the pages.
5597 */
5598 __SetPageReserved(page);
5599
5600 /*
5601 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5602 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5603 * page is ever freed or placed on a driver-private list.
5604 */
5605 page->pgmap = pgmap;
5606 page->hmm_data = 0;
5607
5608 /*
5609 * Mark the block movable so that blocks are reserved for
5610 * movable at startup. This will force kernel allocations
5611 * to reserve their blocks rather than leaking throughout
5612 * the address space during boot when many long-lived
5613 * kernel allocations are made.
5614 *
5615 * bitmap is created for zone's valid pfn range. but memmap
5616 * can be created for invalid pages (for alignment)
5617 * check here not to call set_pageblock_migratetype() against
5618 * pfn out of zone.
5619 *
5620 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5621 * because this is done early in sparse_add_one_section
5622 */
5623 if (!(pfn & (pageblock_nr_pages - 1))) {
5624 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5625 cond_resched();
5626 }
5627 }
5628
5629 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5630 size, jiffies_to_msecs(jiffies - start));
5631}
5632
5633#endif
1e548deb 5634static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5635{
7aeb09f9 5636 unsigned int order, t;
b2a0ac88
MG
5637 for_each_migratetype_order(order, t) {
5638 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5639 zone->free_area[order].nr_free = 0;
5640 }
5641}
5642
dfb3ccd0
PT
5643void __meminit __weak memmap_init(unsigned long size, int nid,
5644 unsigned long zone, unsigned long start_pfn)
5645{
5646 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5647}
1da177e4 5648
7cd2b0a3 5649static int zone_batchsize(struct zone *zone)
e7c8d5c9 5650{
3a6be87f 5651#ifdef CONFIG_MMU
e7c8d5c9
CL
5652 int batch;
5653
5654 /*
5655 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5656 * size of the zone.
e7c8d5c9 5657 */
b40da049 5658 batch = zone->managed_pages / 1024;
d8a759b5
AL
5659 /* But no more than a meg. */
5660 if (batch * PAGE_SIZE > 1024 * 1024)
5661 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5662 batch /= 4; /* We effectively *= 4 below */
5663 if (batch < 1)
5664 batch = 1;
5665
5666 /*
0ceaacc9
NP
5667 * Clamp the batch to a 2^n - 1 value. Having a power
5668 * of 2 value was found to be more likely to have
5669 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5670 *
0ceaacc9
NP
5671 * For example if 2 tasks are alternately allocating
5672 * batches of pages, one task can end up with a lot
5673 * of pages of one half of the possible page colors
5674 * and the other with pages of the other colors.
e7c8d5c9 5675 */
9155203a 5676 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5677
e7c8d5c9 5678 return batch;
3a6be87f
DH
5679
5680#else
5681 /* The deferral and batching of frees should be suppressed under NOMMU
5682 * conditions.
5683 *
5684 * The problem is that NOMMU needs to be able to allocate large chunks
5685 * of contiguous memory as there's no hardware page translation to
5686 * assemble apparent contiguous memory from discontiguous pages.
5687 *
5688 * Queueing large contiguous runs of pages for batching, however,
5689 * causes the pages to actually be freed in smaller chunks. As there
5690 * can be a significant delay between the individual batches being
5691 * recycled, this leads to the once large chunks of space being
5692 * fragmented and becoming unavailable for high-order allocations.
5693 */
5694 return 0;
5695#endif
e7c8d5c9
CL
5696}
5697
8d7a8fa9
CS
5698/*
5699 * pcp->high and pcp->batch values are related and dependent on one another:
5700 * ->batch must never be higher then ->high.
5701 * The following function updates them in a safe manner without read side
5702 * locking.
5703 *
5704 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5705 * those fields changing asynchronously (acording the the above rule).
5706 *
5707 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5708 * outside of boot time (or some other assurance that no concurrent updaters
5709 * exist).
5710 */
5711static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5712 unsigned long batch)
5713{
5714 /* start with a fail safe value for batch */
5715 pcp->batch = 1;
5716 smp_wmb();
5717
5718 /* Update high, then batch, in order */
5719 pcp->high = high;
5720 smp_wmb();
5721
5722 pcp->batch = batch;
5723}
5724
3664033c 5725/* a companion to pageset_set_high() */
4008bab7
CS
5726static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5727{
8d7a8fa9 5728 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5729}
5730
88c90dbc 5731static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5732{
5733 struct per_cpu_pages *pcp;
5f8dcc21 5734 int migratetype;
2caaad41 5735
1c6fe946
MD
5736 memset(p, 0, sizeof(*p));
5737
3dfa5721 5738 pcp = &p->pcp;
2caaad41 5739 pcp->count = 0;
5f8dcc21
MG
5740 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5741 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5742}
5743
88c90dbc
CS
5744static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5745{
5746 pageset_init(p);
5747 pageset_set_batch(p, batch);
5748}
5749
8ad4b1fb 5750/*
3664033c 5751 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5752 * to the value high for the pageset p.
5753 */
3664033c 5754static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5755 unsigned long high)
5756{
8d7a8fa9
CS
5757 unsigned long batch = max(1UL, high / 4);
5758 if ((high / 4) > (PAGE_SHIFT * 8))
5759 batch = PAGE_SHIFT * 8;
8ad4b1fb 5760
8d7a8fa9 5761 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5762}
5763
7cd2b0a3
DR
5764static void pageset_set_high_and_batch(struct zone *zone,
5765 struct per_cpu_pageset *pcp)
56cef2b8 5766{
56cef2b8 5767 if (percpu_pagelist_fraction)
3664033c 5768 pageset_set_high(pcp,
56cef2b8
CS
5769 (zone->managed_pages /
5770 percpu_pagelist_fraction));
5771 else
5772 pageset_set_batch(pcp, zone_batchsize(zone));
5773}
5774
169f6c19
CS
5775static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5776{
5777 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5778
5779 pageset_init(pcp);
5780 pageset_set_high_and_batch(zone, pcp);
5781}
5782
72675e13 5783void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5784{
5785 int cpu;
319774e2 5786 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5787 for_each_possible_cpu(cpu)
5788 zone_pageset_init(zone, cpu);
319774e2
WF
5789}
5790
2caaad41 5791/*
99dcc3e5
CL
5792 * Allocate per cpu pagesets and initialize them.
5793 * Before this call only boot pagesets were available.
e7c8d5c9 5794 */
99dcc3e5 5795void __init setup_per_cpu_pageset(void)
e7c8d5c9 5796{
b4911ea2 5797 struct pglist_data *pgdat;
99dcc3e5 5798 struct zone *zone;
e7c8d5c9 5799
319774e2
WF
5800 for_each_populated_zone(zone)
5801 setup_zone_pageset(zone);
b4911ea2
MG
5802
5803 for_each_online_pgdat(pgdat)
5804 pgdat->per_cpu_nodestats =
5805 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5806}
5807
c09b4240 5808static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5809{
99dcc3e5
CL
5810 /*
5811 * per cpu subsystem is not up at this point. The following code
5812 * relies on the ability of the linker to provide the
5813 * offset of a (static) per cpu variable into the per cpu area.
5814 */
5815 zone->pageset = &boot_pageset;
ed8ece2e 5816
b38a8725 5817 if (populated_zone(zone))
99dcc3e5
CL
5818 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5819 zone->name, zone->present_pages,
5820 zone_batchsize(zone));
ed8ece2e
DH
5821}
5822
dc0bbf3b 5823void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5824 unsigned long zone_start_pfn,
b171e409 5825 unsigned long size)
ed8ece2e
DH
5826{
5827 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 5828 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5829
8f416836
WY
5830 if (zone_idx > pgdat->nr_zones)
5831 pgdat->nr_zones = zone_idx;
ed8ece2e 5832
ed8ece2e
DH
5833 zone->zone_start_pfn = zone_start_pfn;
5834
708614e6
MG
5835 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5836 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5837 pgdat->node_id,
5838 (unsigned long)zone_idx(zone),
5839 zone_start_pfn, (zone_start_pfn + size));
5840
1e548deb 5841 zone_init_free_lists(zone);
9dcb8b68 5842 zone->initialized = 1;
ed8ece2e
DH
5843}
5844
0ee332c1 5845#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5846#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5847
c713216d
MG
5848/*
5849 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5850 */
8a942fde
MG
5851int __meminit __early_pfn_to_nid(unsigned long pfn,
5852 struct mminit_pfnnid_cache *state)
c713216d 5853{
c13291a5 5854 unsigned long start_pfn, end_pfn;
e76b63f8 5855 int nid;
7c243c71 5856
8a942fde
MG
5857 if (state->last_start <= pfn && pfn < state->last_end)
5858 return state->last_nid;
c713216d 5859
e76b63f8
YL
5860 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5861 if (nid != -1) {
8a942fde
MG
5862 state->last_start = start_pfn;
5863 state->last_end = end_pfn;
5864 state->last_nid = nid;
e76b63f8
YL
5865 }
5866
5867 return nid;
c713216d
MG
5868}
5869#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5870
c713216d 5871/**
6782832e 5872 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5873 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5874 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5875 *
7d018176
ZZ
5876 * If an architecture guarantees that all ranges registered contain no holes
5877 * and may be freed, this this function may be used instead of calling
5878 * memblock_free_early_nid() manually.
c713216d 5879 */
c13291a5 5880void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5881{
c13291a5
TH
5882 unsigned long start_pfn, end_pfn;
5883 int i, this_nid;
edbe7d23 5884
c13291a5
TH
5885 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5886 start_pfn = min(start_pfn, max_low_pfn);
5887 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5888
c13291a5 5889 if (start_pfn < end_pfn)
6782832e
SS
5890 memblock_free_early_nid(PFN_PHYS(start_pfn),
5891 (end_pfn - start_pfn) << PAGE_SHIFT,
5892 this_nid);
edbe7d23 5893 }
edbe7d23 5894}
edbe7d23 5895
c713216d
MG
5896/**
5897 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5898 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5899 *
7d018176
ZZ
5900 * If an architecture guarantees that all ranges registered contain no holes and may
5901 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5902 */
5903void __init sparse_memory_present_with_active_regions(int nid)
5904{
c13291a5
TH
5905 unsigned long start_pfn, end_pfn;
5906 int i, this_nid;
c713216d 5907
c13291a5
TH
5908 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5909 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5910}
5911
5912/**
5913 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5914 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5915 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5916 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5917 *
5918 * It returns the start and end page frame of a node based on information
7d018176 5919 * provided by memblock_set_node(). If called for a node
c713216d 5920 * with no available memory, a warning is printed and the start and end
88ca3b94 5921 * PFNs will be 0.
c713216d 5922 */
a3142c8e 5923void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5924 unsigned long *start_pfn, unsigned long *end_pfn)
5925{
c13291a5 5926 unsigned long this_start_pfn, this_end_pfn;
c713216d 5927 int i;
c13291a5 5928
c713216d
MG
5929 *start_pfn = -1UL;
5930 *end_pfn = 0;
5931
c13291a5
TH
5932 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5933 *start_pfn = min(*start_pfn, this_start_pfn);
5934 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5935 }
5936
633c0666 5937 if (*start_pfn == -1UL)
c713216d 5938 *start_pfn = 0;
c713216d
MG
5939}
5940
2a1e274a
MG
5941/*
5942 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5943 * assumption is made that zones within a node are ordered in monotonic
5944 * increasing memory addresses so that the "highest" populated zone is used
5945 */
b69a7288 5946static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5947{
5948 int zone_index;
5949 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5950 if (zone_index == ZONE_MOVABLE)
5951 continue;
5952
5953 if (arch_zone_highest_possible_pfn[zone_index] >
5954 arch_zone_lowest_possible_pfn[zone_index])
5955 break;
5956 }
5957
5958 VM_BUG_ON(zone_index == -1);
5959 movable_zone = zone_index;
5960}
5961
5962/*
5963 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5964 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5965 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5966 * in each node depending on the size of each node and how evenly kernelcore
5967 * is distributed. This helper function adjusts the zone ranges
5968 * provided by the architecture for a given node by using the end of the
5969 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5970 * zones within a node are in order of monotonic increases memory addresses
5971 */
b69a7288 5972static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5973 unsigned long zone_type,
5974 unsigned long node_start_pfn,
5975 unsigned long node_end_pfn,
5976 unsigned long *zone_start_pfn,
5977 unsigned long *zone_end_pfn)
5978{
5979 /* Only adjust if ZONE_MOVABLE is on this node */
5980 if (zone_movable_pfn[nid]) {
5981 /* Size ZONE_MOVABLE */
5982 if (zone_type == ZONE_MOVABLE) {
5983 *zone_start_pfn = zone_movable_pfn[nid];
5984 *zone_end_pfn = min(node_end_pfn,
5985 arch_zone_highest_possible_pfn[movable_zone]);
5986
e506b996
XQ
5987 /* Adjust for ZONE_MOVABLE starting within this range */
5988 } else if (!mirrored_kernelcore &&
5989 *zone_start_pfn < zone_movable_pfn[nid] &&
5990 *zone_end_pfn > zone_movable_pfn[nid]) {
5991 *zone_end_pfn = zone_movable_pfn[nid];
5992
2a1e274a
MG
5993 /* Check if this whole range is within ZONE_MOVABLE */
5994 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5995 *zone_start_pfn = *zone_end_pfn;
5996 }
5997}
5998
c713216d
MG
5999/*
6000 * Return the number of pages a zone spans in a node, including holes
6001 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6002 */
6ea6e688 6003static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6004 unsigned long zone_type,
7960aedd
ZY
6005 unsigned long node_start_pfn,
6006 unsigned long node_end_pfn,
d91749c1
TI
6007 unsigned long *zone_start_pfn,
6008 unsigned long *zone_end_pfn,
c713216d
MG
6009 unsigned long *ignored)
6010{
b5685e92 6011 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6012 if (!node_start_pfn && !node_end_pfn)
6013 return 0;
6014
7960aedd 6015 /* Get the start and end of the zone */
d91749c1
TI
6016 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6017 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6018 adjust_zone_range_for_zone_movable(nid, zone_type,
6019 node_start_pfn, node_end_pfn,
d91749c1 6020 zone_start_pfn, zone_end_pfn);
c713216d
MG
6021
6022 /* Check that this node has pages within the zone's required range */
d91749c1 6023 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6024 return 0;
6025
6026 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6027 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6028 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6029
6030 /* Return the spanned pages */
d91749c1 6031 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6032}
6033
6034/*
6035 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6036 * then all holes in the requested range will be accounted for.
c713216d 6037 */
32996250 6038unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
6039 unsigned long range_start_pfn,
6040 unsigned long range_end_pfn)
6041{
96e907d1
TH
6042 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6043 unsigned long start_pfn, end_pfn;
6044 int i;
c713216d 6045
96e907d1
TH
6046 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6047 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6048 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6049 nr_absent -= end_pfn - start_pfn;
c713216d 6050 }
96e907d1 6051 return nr_absent;
c713216d
MG
6052}
6053
6054/**
6055 * absent_pages_in_range - Return number of page frames in holes within a range
6056 * @start_pfn: The start PFN to start searching for holes
6057 * @end_pfn: The end PFN to stop searching for holes
6058 *
88ca3b94 6059 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6060 */
6061unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6062 unsigned long end_pfn)
6063{
6064 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6065}
6066
6067/* Return the number of page frames in holes in a zone on a node */
6ea6e688 6068static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6069 unsigned long zone_type,
7960aedd
ZY
6070 unsigned long node_start_pfn,
6071 unsigned long node_end_pfn,
c713216d
MG
6072 unsigned long *ignored)
6073{
96e907d1
TH
6074 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6075 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6076 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6077 unsigned long nr_absent;
9c7cd687 6078
b5685e92 6079 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6080 if (!node_start_pfn && !node_end_pfn)
6081 return 0;
6082
96e907d1
TH
6083 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6084 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6085
2a1e274a
MG
6086 adjust_zone_range_for_zone_movable(nid, zone_type,
6087 node_start_pfn, node_end_pfn,
6088 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6089 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6090
6091 /*
6092 * ZONE_MOVABLE handling.
6093 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6094 * and vice versa.
6095 */
e506b996
XQ
6096 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6097 unsigned long start_pfn, end_pfn;
6098 struct memblock_region *r;
6099
6100 for_each_memblock(memory, r) {
6101 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6102 zone_start_pfn, zone_end_pfn);
6103 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6104 zone_start_pfn, zone_end_pfn);
6105
6106 if (zone_type == ZONE_MOVABLE &&
6107 memblock_is_mirror(r))
6108 nr_absent += end_pfn - start_pfn;
6109
6110 if (zone_type == ZONE_NORMAL &&
6111 !memblock_is_mirror(r))
6112 nr_absent += end_pfn - start_pfn;
342332e6
TI
6113 }
6114 }
6115
6116 return nr_absent;
c713216d 6117}
0e0b864e 6118
0ee332c1 6119#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 6120static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6121 unsigned long zone_type,
7960aedd
ZY
6122 unsigned long node_start_pfn,
6123 unsigned long node_end_pfn,
d91749c1
TI
6124 unsigned long *zone_start_pfn,
6125 unsigned long *zone_end_pfn,
c713216d
MG
6126 unsigned long *zones_size)
6127{
d91749c1
TI
6128 unsigned int zone;
6129
6130 *zone_start_pfn = node_start_pfn;
6131 for (zone = 0; zone < zone_type; zone++)
6132 *zone_start_pfn += zones_size[zone];
6133
6134 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6135
c713216d
MG
6136 return zones_size[zone_type];
6137}
6138
6ea6e688 6139static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6140 unsigned long zone_type,
7960aedd
ZY
6141 unsigned long node_start_pfn,
6142 unsigned long node_end_pfn,
c713216d
MG
6143 unsigned long *zholes_size)
6144{
6145 if (!zholes_size)
6146 return 0;
6147
6148 return zholes_size[zone_type];
6149}
20e6926d 6150
0ee332c1 6151#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6152
a3142c8e 6153static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6154 unsigned long node_start_pfn,
6155 unsigned long node_end_pfn,
6156 unsigned long *zones_size,
6157 unsigned long *zholes_size)
c713216d 6158{
febd5949 6159 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6160 enum zone_type i;
6161
febd5949
GZ
6162 for (i = 0; i < MAX_NR_ZONES; i++) {
6163 struct zone *zone = pgdat->node_zones + i;
d91749c1 6164 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6165 unsigned long size, real_size;
c713216d 6166
febd5949
GZ
6167 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6168 node_start_pfn,
6169 node_end_pfn,
d91749c1
TI
6170 &zone_start_pfn,
6171 &zone_end_pfn,
febd5949
GZ
6172 zones_size);
6173 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6174 node_start_pfn, node_end_pfn,
6175 zholes_size);
d91749c1
TI
6176 if (size)
6177 zone->zone_start_pfn = zone_start_pfn;
6178 else
6179 zone->zone_start_pfn = 0;
febd5949
GZ
6180 zone->spanned_pages = size;
6181 zone->present_pages = real_size;
6182
6183 totalpages += size;
6184 realtotalpages += real_size;
6185 }
6186
6187 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6188 pgdat->node_present_pages = realtotalpages;
6189 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6190 realtotalpages);
6191}
6192
835c134e
MG
6193#ifndef CONFIG_SPARSEMEM
6194/*
6195 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6196 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6197 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6198 * round what is now in bits to nearest long in bits, then return it in
6199 * bytes.
6200 */
7c45512d 6201static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6202{
6203 unsigned long usemapsize;
6204
7c45512d 6205 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6206 usemapsize = roundup(zonesize, pageblock_nr_pages);
6207 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6208 usemapsize *= NR_PAGEBLOCK_BITS;
6209 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6210
6211 return usemapsize / 8;
6212}
6213
7cc2a959 6214static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6215 struct zone *zone,
6216 unsigned long zone_start_pfn,
6217 unsigned long zonesize)
835c134e 6218{
7c45512d 6219 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6220 zone->pageblock_flags = NULL;
58a01a45 6221 if (usemapsize)
6782832e 6222 zone->pageblock_flags =
eb31d559 6223 memblock_alloc_node_nopanic(usemapsize,
6782832e 6224 pgdat->node_id);
835c134e
MG
6225}
6226#else
7c45512d
LT
6227static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6228 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6229#endif /* CONFIG_SPARSEMEM */
6230
d9c23400 6231#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6232
d9c23400 6233/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6234void __init set_pageblock_order(void)
d9c23400 6235{
955c1cd7
AM
6236 unsigned int order;
6237
d9c23400
MG
6238 /* Check that pageblock_nr_pages has not already been setup */
6239 if (pageblock_order)
6240 return;
6241
955c1cd7
AM
6242 if (HPAGE_SHIFT > PAGE_SHIFT)
6243 order = HUGETLB_PAGE_ORDER;
6244 else
6245 order = MAX_ORDER - 1;
6246
d9c23400
MG
6247 /*
6248 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6249 * This value may be variable depending on boot parameters on IA64 and
6250 * powerpc.
d9c23400
MG
6251 */
6252 pageblock_order = order;
6253}
6254#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6255
ba72cb8c
MG
6256/*
6257 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6258 * is unused as pageblock_order is set at compile-time. See
6259 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6260 * the kernel config
ba72cb8c 6261 */
03e85f9d 6262void __init set_pageblock_order(void)
ba72cb8c 6263{
ba72cb8c 6264}
d9c23400
MG
6265
6266#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6267
03e85f9d 6268static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6269 unsigned long present_pages)
01cefaef
JL
6270{
6271 unsigned long pages = spanned_pages;
6272
6273 /*
6274 * Provide a more accurate estimation if there are holes within
6275 * the zone and SPARSEMEM is in use. If there are holes within the
6276 * zone, each populated memory region may cost us one or two extra
6277 * memmap pages due to alignment because memmap pages for each
89d790ab 6278 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6279 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6280 */
6281 if (spanned_pages > present_pages + (present_pages >> 4) &&
6282 IS_ENABLED(CONFIG_SPARSEMEM))
6283 pages = present_pages;
6284
6285 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6286}
6287
ace1db39
OS
6288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6289static void pgdat_init_split_queue(struct pglist_data *pgdat)
6290{
6291 spin_lock_init(&pgdat->split_queue_lock);
6292 INIT_LIST_HEAD(&pgdat->split_queue);
6293 pgdat->split_queue_len = 0;
6294}
6295#else
6296static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6297#endif
6298
6299#ifdef CONFIG_COMPACTION
6300static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6301{
6302 init_waitqueue_head(&pgdat->kcompactd_wait);
6303}
6304#else
6305static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6306#endif
6307
03e85f9d 6308static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6309{
208d54e5 6310 pgdat_resize_init(pgdat);
ace1db39 6311
ace1db39
OS
6312 pgdat_init_split_queue(pgdat);
6313 pgdat_init_kcompactd(pgdat);
6314
1da177e4 6315 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6316 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6317
eefa864b 6318 pgdat_page_ext_init(pgdat);
a52633d8 6319 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6320 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6321}
6322
6323static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6324 unsigned long remaining_pages)
6325{
6326 zone->managed_pages = remaining_pages;
6327 zone_set_nid(zone, nid);
6328 zone->name = zone_names[idx];
6329 zone->zone_pgdat = NODE_DATA(nid);
6330 spin_lock_init(&zone->lock);
6331 zone_seqlock_init(zone);
6332 zone_pcp_init(zone);
6333}
6334
6335/*
6336 * Set up the zone data structures
6337 * - init pgdat internals
6338 * - init all zones belonging to this node
6339 *
6340 * NOTE: this function is only called during memory hotplug
6341 */
6342#ifdef CONFIG_MEMORY_HOTPLUG
6343void __ref free_area_init_core_hotplug(int nid)
6344{
6345 enum zone_type z;
6346 pg_data_t *pgdat = NODE_DATA(nid);
6347
6348 pgdat_init_internals(pgdat);
6349 for (z = 0; z < MAX_NR_ZONES; z++)
6350 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6351}
6352#endif
6353
6354/*
6355 * Set up the zone data structures:
6356 * - mark all pages reserved
6357 * - mark all memory queues empty
6358 * - clear the memory bitmaps
6359 *
6360 * NOTE: pgdat should get zeroed by caller.
6361 * NOTE: this function is only called during early init.
6362 */
6363static void __init free_area_init_core(struct pglist_data *pgdat)
6364{
6365 enum zone_type j;
6366 int nid = pgdat->node_id;
5f63b720 6367
03e85f9d 6368 pgdat_init_internals(pgdat);
385386cf
JW
6369 pgdat->per_cpu_nodestats = &boot_nodestats;
6370
1da177e4
LT
6371 for (j = 0; j < MAX_NR_ZONES; j++) {
6372 struct zone *zone = pgdat->node_zones + j;
e6943859 6373 unsigned long size, freesize, memmap_pages;
d91749c1 6374 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6375
febd5949 6376 size = zone->spanned_pages;
e6943859 6377 freesize = zone->present_pages;
1da177e4 6378
0e0b864e 6379 /*
9feedc9d 6380 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6381 * is used by this zone for memmap. This affects the watermark
6382 * and per-cpu initialisations
6383 */
e6943859 6384 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6385 if (!is_highmem_idx(j)) {
6386 if (freesize >= memmap_pages) {
6387 freesize -= memmap_pages;
6388 if (memmap_pages)
6389 printk(KERN_DEBUG
6390 " %s zone: %lu pages used for memmap\n",
6391 zone_names[j], memmap_pages);
6392 } else
1170532b 6393 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6394 zone_names[j], memmap_pages, freesize);
6395 }
0e0b864e 6396
6267276f 6397 /* Account for reserved pages */
9feedc9d
JL
6398 if (j == 0 && freesize > dma_reserve) {
6399 freesize -= dma_reserve;
d903ef9f 6400 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6401 zone_names[0], dma_reserve);
0e0b864e
MG
6402 }
6403
98d2b0eb 6404 if (!is_highmem_idx(j))
9feedc9d 6405 nr_kernel_pages += freesize;
01cefaef
JL
6406 /* Charge for highmem memmap if there are enough kernel pages */
6407 else if (nr_kernel_pages > memmap_pages * 2)
6408 nr_kernel_pages -= memmap_pages;
9feedc9d 6409 nr_all_pages += freesize;
1da177e4 6410
9feedc9d
JL
6411 /*
6412 * Set an approximate value for lowmem here, it will be adjusted
6413 * when the bootmem allocator frees pages into the buddy system.
6414 * And all highmem pages will be managed by the buddy system.
6415 */
03e85f9d 6416 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6417
d883c6cf 6418 if (!size)
1da177e4
LT
6419 continue;
6420
955c1cd7 6421 set_pageblock_order();
d883c6cf
JK
6422 setup_usemap(pgdat, zone, zone_start_pfn, size);
6423 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6424 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6425 }
6426}
6427
0cd842f9 6428#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6429static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6430{
b0aeba74 6431 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6432 unsigned long __maybe_unused offset = 0;
6433
1da177e4
LT
6434 /* Skip empty nodes */
6435 if (!pgdat->node_spanned_pages)
6436 return;
6437
b0aeba74
TL
6438 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6439 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6440 /* ia64 gets its own node_mem_map, before this, without bootmem */
6441 if (!pgdat->node_mem_map) {
b0aeba74 6442 unsigned long size, end;
d41dee36
AW
6443 struct page *map;
6444
e984bb43
BP
6445 /*
6446 * The zone's endpoints aren't required to be MAX_ORDER
6447 * aligned but the node_mem_map endpoints must be in order
6448 * for the buddy allocator to function correctly.
6449 */
108bcc96 6450 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6451 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6452 size = (end - start) * sizeof(struct page);
eb31d559 6453 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6454 pgdat->node_mem_map = map + offset;
1da177e4 6455 }
0cd842f9
OS
6456 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6457 __func__, pgdat->node_id, (unsigned long)pgdat,
6458 (unsigned long)pgdat->node_mem_map);
12d810c1 6459#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6460 /*
6461 * With no DISCONTIG, the global mem_map is just set as node 0's
6462 */
c713216d 6463 if (pgdat == NODE_DATA(0)) {
1da177e4 6464 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6465#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6466 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6467 mem_map -= offset;
0ee332c1 6468#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6469 }
1da177e4
LT
6470#endif
6471}
0cd842f9
OS
6472#else
6473static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6474#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6475
0188dc98
OS
6476#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6477static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6478{
6479 /*
6480 * We start only with one section of pages, more pages are added as
6481 * needed until the rest of deferred pages are initialized.
6482 */
6483 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6484 pgdat->node_spanned_pages);
6485 pgdat->first_deferred_pfn = ULONG_MAX;
6486}
6487#else
6488static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6489#endif
6490
03e85f9d 6491void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6492 unsigned long node_start_pfn,
6493 unsigned long *zholes_size)
1da177e4 6494{
9109fb7b 6495 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6496 unsigned long start_pfn = 0;
6497 unsigned long end_pfn = 0;
9109fb7b 6498
88fdf75d 6499 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6500 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6501
1da177e4
LT
6502 pgdat->node_id = nid;
6503 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6504 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6505#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6506 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6507 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6508 (u64)start_pfn << PAGE_SHIFT,
6509 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6510#else
6511 start_pfn = node_start_pfn;
7960aedd
ZY
6512#endif
6513 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6514 zones_size, zholes_size);
1da177e4
LT
6515
6516 alloc_node_mem_map(pgdat);
0188dc98 6517 pgdat_set_deferred_range(pgdat);
1da177e4 6518
7f3eb55b 6519 free_area_init_core(pgdat);
1da177e4
LT
6520}
6521
aca52c39 6522#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6523/*
6524 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6525 * pages zeroed
6526 */
6527static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6528{
6529 unsigned long pfn;
6530 u64 pgcnt = 0;
6531
6532 for (pfn = spfn; pfn < epfn; pfn++) {
6533 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6534 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6535 + pageblock_nr_pages - 1;
6536 continue;
6537 }
6538 mm_zero_struct_page(pfn_to_page(pfn));
6539 pgcnt++;
6540 }
6541
6542 return pgcnt;
6543}
6544
a4a3ede2
PT
6545/*
6546 * Only struct pages that are backed by physical memory are zeroed and
6547 * initialized by going through __init_single_page(). But, there are some
6548 * struct pages which are reserved in memblock allocator and their fields
6549 * may be accessed (for example page_to_pfn() on some configuration accesses
6550 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6551 *
6552 * This function also addresses a similar issue where struct pages are left
6553 * uninitialized because the physical address range is not covered by
6554 * memblock.memory or memblock.reserved. That could happen when memblock
6555 * layout is manually configured via memmap=.
a4a3ede2 6556 */
03e85f9d 6557void __init zero_resv_unavail(void)
a4a3ede2
PT
6558{
6559 phys_addr_t start, end;
a4a3ede2 6560 u64 i, pgcnt;
907ec5fc 6561 phys_addr_t next = 0;
a4a3ede2
PT
6562
6563 /*
907ec5fc 6564 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6565 */
6566 pgcnt = 0;
907ec5fc
NH
6567 for_each_mem_range(i, &memblock.memory, NULL,
6568 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6569 if (next < start)
6570 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6571 next = end;
6572 }
ec393a0f 6573 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6574
a4a3ede2
PT
6575 /*
6576 * Struct pages that do not have backing memory. This could be because
6577 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6578 */
6579 if (pgcnt)
907ec5fc 6580 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6581}
aca52c39 6582#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6583
0ee332c1 6584#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6585
6586#if MAX_NUMNODES > 1
6587/*
6588 * Figure out the number of possible node ids.
6589 */
f9872caf 6590void __init setup_nr_node_ids(void)
418508c1 6591{
904a9553 6592 unsigned int highest;
418508c1 6593
904a9553 6594 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6595 nr_node_ids = highest + 1;
6596}
418508c1
MS
6597#endif
6598
1e01979c
TH
6599/**
6600 * node_map_pfn_alignment - determine the maximum internode alignment
6601 *
6602 * This function should be called after node map is populated and sorted.
6603 * It calculates the maximum power of two alignment which can distinguish
6604 * all the nodes.
6605 *
6606 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6607 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6608 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6609 * shifted, 1GiB is enough and this function will indicate so.
6610 *
6611 * This is used to test whether pfn -> nid mapping of the chosen memory
6612 * model has fine enough granularity to avoid incorrect mapping for the
6613 * populated node map.
6614 *
6615 * Returns the determined alignment in pfn's. 0 if there is no alignment
6616 * requirement (single node).
6617 */
6618unsigned long __init node_map_pfn_alignment(void)
6619{
6620 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6621 unsigned long start, end, mask;
1e01979c 6622 int last_nid = -1;
c13291a5 6623 int i, nid;
1e01979c 6624
c13291a5 6625 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6626 if (!start || last_nid < 0 || last_nid == nid) {
6627 last_nid = nid;
6628 last_end = end;
6629 continue;
6630 }
6631
6632 /*
6633 * Start with a mask granular enough to pin-point to the
6634 * start pfn and tick off bits one-by-one until it becomes
6635 * too coarse to separate the current node from the last.
6636 */
6637 mask = ~((1 << __ffs(start)) - 1);
6638 while (mask && last_end <= (start & (mask << 1)))
6639 mask <<= 1;
6640
6641 /* accumulate all internode masks */
6642 accl_mask |= mask;
6643 }
6644
6645 /* convert mask to number of pages */
6646 return ~accl_mask + 1;
6647}
6648
a6af2bc3 6649/* Find the lowest pfn for a node */
b69a7288 6650static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6651{
a6af2bc3 6652 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6653 unsigned long start_pfn;
6654 int i;
1abbfb41 6655
c13291a5
TH
6656 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6657 min_pfn = min(min_pfn, start_pfn);
c713216d 6658
a6af2bc3 6659 if (min_pfn == ULONG_MAX) {
1170532b 6660 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6661 return 0;
6662 }
6663
6664 return min_pfn;
c713216d
MG
6665}
6666
6667/**
6668 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6669 *
6670 * It returns the minimum PFN based on information provided via
7d018176 6671 * memblock_set_node().
c713216d
MG
6672 */
6673unsigned long __init find_min_pfn_with_active_regions(void)
6674{
6675 return find_min_pfn_for_node(MAX_NUMNODES);
6676}
6677
37b07e41
LS
6678/*
6679 * early_calculate_totalpages()
6680 * Sum pages in active regions for movable zone.
4b0ef1fe 6681 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6682 */
484f51f8 6683static unsigned long __init early_calculate_totalpages(void)
7e63efef 6684{
7e63efef 6685 unsigned long totalpages = 0;
c13291a5
TH
6686 unsigned long start_pfn, end_pfn;
6687 int i, nid;
6688
6689 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6690 unsigned long pages = end_pfn - start_pfn;
7e63efef 6691
37b07e41
LS
6692 totalpages += pages;
6693 if (pages)
4b0ef1fe 6694 node_set_state(nid, N_MEMORY);
37b07e41 6695 }
b8af2941 6696 return totalpages;
7e63efef
MG
6697}
6698
2a1e274a
MG
6699/*
6700 * Find the PFN the Movable zone begins in each node. Kernel memory
6701 * is spread evenly between nodes as long as the nodes have enough
6702 * memory. When they don't, some nodes will have more kernelcore than
6703 * others
6704 */
b224ef85 6705static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6706{
6707 int i, nid;
6708 unsigned long usable_startpfn;
6709 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6710 /* save the state before borrow the nodemask */
4b0ef1fe 6711 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6712 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6713 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6714 struct memblock_region *r;
b2f3eebe
TC
6715
6716 /* Need to find movable_zone earlier when movable_node is specified. */
6717 find_usable_zone_for_movable();
6718
6719 /*
6720 * If movable_node is specified, ignore kernelcore and movablecore
6721 * options.
6722 */
6723 if (movable_node_is_enabled()) {
136199f0
EM
6724 for_each_memblock(memory, r) {
6725 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6726 continue;
6727
136199f0 6728 nid = r->nid;
b2f3eebe 6729
136199f0 6730 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6731 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6732 min(usable_startpfn, zone_movable_pfn[nid]) :
6733 usable_startpfn;
6734 }
6735
6736 goto out2;
6737 }
2a1e274a 6738
342332e6
TI
6739 /*
6740 * If kernelcore=mirror is specified, ignore movablecore option
6741 */
6742 if (mirrored_kernelcore) {
6743 bool mem_below_4gb_not_mirrored = false;
6744
6745 for_each_memblock(memory, r) {
6746 if (memblock_is_mirror(r))
6747 continue;
6748
6749 nid = r->nid;
6750
6751 usable_startpfn = memblock_region_memory_base_pfn(r);
6752
6753 if (usable_startpfn < 0x100000) {
6754 mem_below_4gb_not_mirrored = true;
6755 continue;
6756 }
6757
6758 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6759 min(usable_startpfn, zone_movable_pfn[nid]) :
6760 usable_startpfn;
6761 }
6762
6763 if (mem_below_4gb_not_mirrored)
6764 pr_warn("This configuration results in unmirrored kernel memory.");
6765
6766 goto out2;
6767 }
6768
7e63efef 6769 /*
a5c6d650
DR
6770 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6771 * amount of necessary memory.
6772 */
6773 if (required_kernelcore_percent)
6774 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6775 10000UL;
6776 if (required_movablecore_percent)
6777 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6778 10000UL;
6779
6780 /*
6781 * If movablecore= was specified, calculate what size of
7e63efef
MG
6782 * kernelcore that corresponds so that memory usable for
6783 * any allocation type is evenly spread. If both kernelcore
6784 * and movablecore are specified, then the value of kernelcore
6785 * will be used for required_kernelcore if it's greater than
6786 * what movablecore would have allowed.
6787 */
6788 if (required_movablecore) {
7e63efef
MG
6789 unsigned long corepages;
6790
6791 /*
6792 * Round-up so that ZONE_MOVABLE is at least as large as what
6793 * was requested by the user
6794 */
6795 required_movablecore =
6796 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6797 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6798 corepages = totalpages - required_movablecore;
6799
6800 required_kernelcore = max(required_kernelcore, corepages);
6801 }
6802
bde304bd
XQ
6803 /*
6804 * If kernelcore was not specified or kernelcore size is larger
6805 * than totalpages, there is no ZONE_MOVABLE.
6806 */
6807 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6808 goto out;
2a1e274a
MG
6809
6810 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6811 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6812
6813restart:
6814 /* Spread kernelcore memory as evenly as possible throughout nodes */
6815 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6816 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6817 unsigned long start_pfn, end_pfn;
6818
2a1e274a
MG
6819 /*
6820 * Recalculate kernelcore_node if the division per node
6821 * now exceeds what is necessary to satisfy the requested
6822 * amount of memory for the kernel
6823 */
6824 if (required_kernelcore < kernelcore_node)
6825 kernelcore_node = required_kernelcore / usable_nodes;
6826
6827 /*
6828 * As the map is walked, we track how much memory is usable
6829 * by the kernel using kernelcore_remaining. When it is
6830 * 0, the rest of the node is usable by ZONE_MOVABLE
6831 */
6832 kernelcore_remaining = kernelcore_node;
6833
6834 /* Go through each range of PFNs within this node */
c13291a5 6835 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6836 unsigned long size_pages;
6837
c13291a5 6838 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6839 if (start_pfn >= end_pfn)
6840 continue;
6841
6842 /* Account for what is only usable for kernelcore */
6843 if (start_pfn < usable_startpfn) {
6844 unsigned long kernel_pages;
6845 kernel_pages = min(end_pfn, usable_startpfn)
6846 - start_pfn;
6847
6848 kernelcore_remaining -= min(kernel_pages,
6849 kernelcore_remaining);
6850 required_kernelcore -= min(kernel_pages,
6851 required_kernelcore);
6852
6853 /* Continue if range is now fully accounted */
6854 if (end_pfn <= usable_startpfn) {
6855
6856 /*
6857 * Push zone_movable_pfn to the end so
6858 * that if we have to rebalance
6859 * kernelcore across nodes, we will
6860 * not double account here
6861 */
6862 zone_movable_pfn[nid] = end_pfn;
6863 continue;
6864 }
6865 start_pfn = usable_startpfn;
6866 }
6867
6868 /*
6869 * The usable PFN range for ZONE_MOVABLE is from
6870 * start_pfn->end_pfn. Calculate size_pages as the
6871 * number of pages used as kernelcore
6872 */
6873 size_pages = end_pfn - start_pfn;
6874 if (size_pages > kernelcore_remaining)
6875 size_pages = kernelcore_remaining;
6876 zone_movable_pfn[nid] = start_pfn + size_pages;
6877
6878 /*
6879 * Some kernelcore has been met, update counts and
6880 * break if the kernelcore for this node has been
b8af2941 6881 * satisfied
2a1e274a
MG
6882 */
6883 required_kernelcore -= min(required_kernelcore,
6884 size_pages);
6885 kernelcore_remaining -= size_pages;
6886 if (!kernelcore_remaining)
6887 break;
6888 }
6889 }
6890
6891 /*
6892 * If there is still required_kernelcore, we do another pass with one
6893 * less node in the count. This will push zone_movable_pfn[nid] further
6894 * along on the nodes that still have memory until kernelcore is
b8af2941 6895 * satisfied
2a1e274a
MG
6896 */
6897 usable_nodes--;
6898 if (usable_nodes && required_kernelcore > usable_nodes)
6899 goto restart;
6900
b2f3eebe 6901out2:
2a1e274a
MG
6902 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6903 for (nid = 0; nid < MAX_NUMNODES; nid++)
6904 zone_movable_pfn[nid] =
6905 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6906
20e6926d 6907out:
66918dcd 6908 /* restore the node_state */
4b0ef1fe 6909 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6910}
6911
4b0ef1fe
LJ
6912/* Any regular or high memory on that node ? */
6913static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6914{
37b07e41
LS
6915 enum zone_type zone_type;
6916
4b0ef1fe 6917 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6918 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6919 if (populated_zone(zone)) {
7b0e0c0e
OS
6920 if (IS_ENABLED(CONFIG_HIGHMEM))
6921 node_set_state(nid, N_HIGH_MEMORY);
6922 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 6923 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6924 break;
6925 }
37b07e41 6926 }
37b07e41
LS
6927}
6928
c713216d
MG
6929/**
6930 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6931 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6932 *
6933 * This will call free_area_init_node() for each active node in the system.
7d018176 6934 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6935 * zone in each node and their holes is calculated. If the maximum PFN
6936 * between two adjacent zones match, it is assumed that the zone is empty.
6937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6939 * starts where the previous one ended. For example, ZONE_DMA32 starts
6940 * at arch_max_dma_pfn.
6941 */
6942void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6943{
c13291a5
TH
6944 unsigned long start_pfn, end_pfn;
6945 int i, nid;
a6af2bc3 6946
c713216d
MG
6947 /* Record where the zone boundaries are */
6948 memset(arch_zone_lowest_possible_pfn, 0,
6949 sizeof(arch_zone_lowest_possible_pfn));
6950 memset(arch_zone_highest_possible_pfn, 0,
6951 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6952
6953 start_pfn = find_min_pfn_with_active_regions();
6954
6955 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6956 if (i == ZONE_MOVABLE)
6957 continue;
90cae1fe
OH
6958
6959 end_pfn = max(max_zone_pfn[i], start_pfn);
6960 arch_zone_lowest_possible_pfn[i] = start_pfn;
6961 arch_zone_highest_possible_pfn[i] = end_pfn;
6962
6963 start_pfn = end_pfn;
c713216d 6964 }
2a1e274a
MG
6965
6966 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6967 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6968 find_zone_movable_pfns_for_nodes();
c713216d 6969
c713216d 6970 /* Print out the zone ranges */
f88dfff5 6971 pr_info("Zone ranges:\n");
2a1e274a
MG
6972 for (i = 0; i < MAX_NR_ZONES; i++) {
6973 if (i == ZONE_MOVABLE)
6974 continue;
f88dfff5 6975 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6976 if (arch_zone_lowest_possible_pfn[i] ==
6977 arch_zone_highest_possible_pfn[i])
f88dfff5 6978 pr_cont("empty\n");
72f0ba02 6979 else
8d29e18a
JG
6980 pr_cont("[mem %#018Lx-%#018Lx]\n",
6981 (u64)arch_zone_lowest_possible_pfn[i]
6982 << PAGE_SHIFT,
6983 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6984 << PAGE_SHIFT) - 1);
2a1e274a
MG
6985 }
6986
6987 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6988 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6989 for (i = 0; i < MAX_NUMNODES; i++) {
6990 if (zone_movable_pfn[i])
8d29e18a
JG
6991 pr_info(" Node %d: %#018Lx\n", i,
6992 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6993 }
c713216d 6994
f2d52fe5 6995 /* Print out the early node map */
f88dfff5 6996 pr_info("Early memory node ranges\n");
c13291a5 6997 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6998 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6999 (u64)start_pfn << PAGE_SHIFT,
7000 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7001
7002 /* Initialise every node */
708614e6 7003 mminit_verify_pageflags_layout();
8ef82866 7004 setup_nr_node_ids();
e181ae0c 7005 zero_resv_unavail();
c713216d
MG
7006 for_each_online_node(nid) {
7007 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7008 free_area_init_node(nid, NULL,
c713216d 7009 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7010
7011 /* Any memory on that node */
7012 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7013 node_set_state(nid, N_MEMORY);
7014 check_for_memory(pgdat, nid);
c713216d
MG
7015 }
7016}
2a1e274a 7017
a5c6d650
DR
7018static int __init cmdline_parse_core(char *p, unsigned long *core,
7019 unsigned long *percent)
2a1e274a
MG
7020{
7021 unsigned long long coremem;
a5c6d650
DR
7022 char *endptr;
7023
2a1e274a
MG
7024 if (!p)
7025 return -EINVAL;
7026
a5c6d650
DR
7027 /* Value may be a percentage of total memory, otherwise bytes */
7028 coremem = simple_strtoull(p, &endptr, 0);
7029 if (*endptr == '%') {
7030 /* Paranoid check for percent values greater than 100 */
7031 WARN_ON(coremem > 100);
2a1e274a 7032
a5c6d650
DR
7033 *percent = coremem;
7034 } else {
7035 coremem = memparse(p, &p);
7036 /* Paranoid check that UL is enough for the coremem value */
7037 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7038
a5c6d650
DR
7039 *core = coremem >> PAGE_SHIFT;
7040 *percent = 0UL;
7041 }
2a1e274a
MG
7042 return 0;
7043}
ed7ed365 7044
7e63efef
MG
7045/*
7046 * kernelcore=size sets the amount of memory for use for allocations that
7047 * cannot be reclaimed or migrated.
7048 */
7049static int __init cmdline_parse_kernelcore(char *p)
7050{
342332e6
TI
7051 /* parse kernelcore=mirror */
7052 if (parse_option_str(p, "mirror")) {
7053 mirrored_kernelcore = true;
7054 return 0;
7055 }
7056
a5c6d650
DR
7057 return cmdline_parse_core(p, &required_kernelcore,
7058 &required_kernelcore_percent);
7e63efef
MG
7059}
7060
7061/*
7062 * movablecore=size sets the amount of memory for use for allocations that
7063 * can be reclaimed or migrated.
7064 */
7065static int __init cmdline_parse_movablecore(char *p)
7066{
a5c6d650
DR
7067 return cmdline_parse_core(p, &required_movablecore,
7068 &required_movablecore_percent);
7e63efef
MG
7069}
7070
ed7ed365 7071early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7072early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7073
0ee332c1 7074#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7075
c3d5f5f0
JL
7076void adjust_managed_page_count(struct page *page, long count)
7077{
7078 spin_lock(&managed_page_count_lock);
7079 page_zone(page)->managed_pages += count;
7080 totalram_pages += count;
3dcc0571
JL
7081#ifdef CONFIG_HIGHMEM
7082 if (PageHighMem(page))
7083 totalhigh_pages += count;
7084#endif
c3d5f5f0
JL
7085 spin_unlock(&managed_page_count_lock);
7086}
3dcc0571 7087EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7088
11199692 7089unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 7090{
11199692
JL
7091 void *pos;
7092 unsigned long pages = 0;
69afade7 7093
11199692
JL
7094 start = (void *)PAGE_ALIGN((unsigned long)start);
7095 end = (void *)((unsigned long)end & PAGE_MASK);
7096 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7097 struct page *page = virt_to_page(pos);
7098 void *direct_map_addr;
7099
7100 /*
7101 * 'direct_map_addr' might be different from 'pos'
7102 * because some architectures' virt_to_page()
7103 * work with aliases. Getting the direct map
7104 * address ensures that we get a _writeable_
7105 * alias for the memset().
7106 */
7107 direct_map_addr = page_address(page);
dbe67df4 7108 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7109 memset(direct_map_addr, poison, PAGE_SIZE);
7110
7111 free_reserved_page(page);
69afade7
JL
7112 }
7113
7114 if (pages && s)
adb1fe9a
JP
7115 pr_info("Freeing %s memory: %ldK\n",
7116 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7117
7118 return pages;
7119}
11199692 7120EXPORT_SYMBOL(free_reserved_area);
69afade7 7121
cfa11e08
JL
7122#ifdef CONFIG_HIGHMEM
7123void free_highmem_page(struct page *page)
7124{
7125 __free_reserved_page(page);
7126 totalram_pages++;
7b4b2a0d 7127 page_zone(page)->managed_pages++;
cfa11e08
JL
7128 totalhigh_pages++;
7129}
7130#endif
7131
7ee3d4e8
JL
7132
7133void __init mem_init_print_info(const char *str)
7134{
7135 unsigned long physpages, codesize, datasize, rosize, bss_size;
7136 unsigned long init_code_size, init_data_size;
7137
7138 physpages = get_num_physpages();
7139 codesize = _etext - _stext;
7140 datasize = _edata - _sdata;
7141 rosize = __end_rodata - __start_rodata;
7142 bss_size = __bss_stop - __bss_start;
7143 init_data_size = __init_end - __init_begin;
7144 init_code_size = _einittext - _sinittext;
7145
7146 /*
7147 * Detect special cases and adjust section sizes accordingly:
7148 * 1) .init.* may be embedded into .data sections
7149 * 2) .init.text.* may be out of [__init_begin, __init_end],
7150 * please refer to arch/tile/kernel/vmlinux.lds.S.
7151 * 3) .rodata.* may be embedded into .text or .data sections.
7152 */
7153#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7154 do { \
7155 if (start <= pos && pos < end && size > adj) \
7156 size -= adj; \
7157 } while (0)
7ee3d4e8
JL
7158
7159 adj_init_size(__init_begin, __init_end, init_data_size,
7160 _sinittext, init_code_size);
7161 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7162 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7163 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7164 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7165
7166#undef adj_init_size
7167
756a025f 7168 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7169#ifdef CONFIG_HIGHMEM
756a025f 7170 ", %luK highmem"
7ee3d4e8 7171#endif
756a025f
JP
7172 "%s%s)\n",
7173 nr_free_pages() << (PAGE_SHIFT - 10),
7174 physpages << (PAGE_SHIFT - 10),
7175 codesize >> 10, datasize >> 10, rosize >> 10,
7176 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7177 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7178 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7179#ifdef CONFIG_HIGHMEM
756a025f 7180 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7181#endif
756a025f 7182 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7183}
7184
0e0b864e 7185/**
88ca3b94
RD
7186 * set_dma_reserve - set the specified number of pages reserved in the first zone
7187 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7188 *
013110a7 7189 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7190 * In the DMA zone, a significant percentage may be consumed by kernel image
7191 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7192 * function may optionally be used to account for unfreeable pages in the
7193 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7194 * smaller per-cpu batchsize.
0e0b864e
MG
7195 */
7196void __init set_dma_reserve(unsigned long new_dma_reserve)
7197{
7198 dma_reserve = new_dma_reserve;
7199}
7200
1da177e4
LT
7201void __init free_area_init(unsigned long *zones_size)
7202{
e181ae0c 7203 zero_resv_unavail();
9109fb7b 7204 free_area_init_node(0, zones_size,
1da177e4
LT
7205 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7206}
1da177e4 7207
005fd4bb 7208static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7209{
1da177e4 7210
005fd4bb
SAS
7211 lru_add_drain_cpu(cpu);
7212 drain_pages(cpu);
9f8f2172 7213
005fd4bb
SAS
7214 /*
7215 * Spill the event counters of the dead processor
7216 * into the current processors event counters.
7217 * This artificially elevates the count of the current
7218 * processor.
7219 */
7220 vm_events_fold_cpu(cpu);
9f8f2172 7221
005fd4bb
SAS
7222 /*
7223 * Zero the differential counters of the dead processor
7224 * so that the vm statistics are consistent.
7225 *
7226 * This is only okay since the processor is dead and cannot
7227 * race with what we are doing.
7228 */
7229 cpu_vm_stats_fold(cpu);
7230 return 0;
1da177e4 7231}
1da177e4
LT
7232
7233void __init page_alloc_init(void)
7234{
005fd4bb
SAS
7235 int ret;
7236
7237 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7238 "mm/page_alloc:dead", NULL,
7239 page_alloc_cpu_dead);
7240 WARN_ON(ret < 0);
1da177e4
LT
7241}
7242
cb45b0e9 7243/*
34b10060 7244 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7245 * or min_free_kbytes changes.
7246 */
7247static void calculate_totalreserve_pages(void)
7248{
7249 struct pglist_data *pgdat;
7250 unsigned long reserve_pages = 0;
2f6726e5 7251 enum zone_type i, j;
cb45b0e9
HA
7252
7253 for_each_online_pgdat(pgdat) {
281e3726
MG
7254
7255 pgdat->totalreserve_pages = 0;
7256
cb45b0e9
HA
7257 for (i = 0; i < MAX_NR_ZONES; i++) {
7258 struct zone *zone = pgdat->node_zones + i;
3484b2de 7259 long max = 0;
cb45b0e9
HA
7260
7261 /* Find valid and maximum lowmem_reserve in the zone */
7262 for (j = i; j < MAX_NR_ZONES; j++) {
7263 if (zone->lowmem_reserve[j] > max)
7264 max = zone->lowmem_reserve[j];
7265 }
7266
41858966
MG
7267 /* we treat the high watermark as reserved pages. */
7268 max += high_wmark_pages(zone);
cb45b0e9 7269
b40da049
JL
7270 if (max > zone->managed_pages)
7271 max = zone->managed_pages;
a8d01437 7272
281e3726 7273 pgdat->totalreserve_pages += max;
a8d01437 7274
cb45b0e9
HA
7275 reserve_pages += max;
7276 }
7277 }
7278 totalreserve_pages = reserve_pages;
7279}
7280
1da177e4
LT
7281/*
7282 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7283 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7284 * has a correct pages reserved value, so an adequate number of
7285 * pages are left in the zone after a successful __alloc_pages().
7286 */
7287static void setup_per_zone_lowmem_reserve(void)
7288{
7289 struct pglist_data *pgdat;
2f6726e5 7290 enum zone_type j, idx;
1da177e4 7291
ec936fc5 7292 for_each_online_pgdat(pgdat) {
1da177e4
LT
7293 for (j = 0; j < MAX_NR_ZONES; j++) {
7294 struct zone *zone = pgdat->node_zones + j;
b40da049 7295 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
7296
7297 zone->lowmem_reserve[j] = 0;
7298
2f6726e5
CL
7299 idx = j;
7300 while (idx) {
1da177e4
LT
7301 struct zone *lower_zone;
7302
2f6726e5 7303 idx--;
1da177e4 7304 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7305
7306 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7307 sysctl_lowmem_reserve_ratio[idx] = 0;
7308 lower_zone->lowmem_reserve[j] = 0;
7309 } else {
7310 lower_zone->lowmem_reserve[j] =
7311 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7312 }
b40da049 7313 managed_pages += lower_zone->managed_pages;
1da177e4
LT
7314 }
7315 }
7316 }
cb45b0e9
HA
7317
7318 /* update totalreserve_pages */
7319 calculate_totalreserve_pages();
1da177e4
LT
7320}
7321
cfd3da1e 7322static void __setup_per_zone_wmarks(void)
1da177e4
LT
7323{
7324 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7325 unsigned long lowmem_pages = 0;
7326 struct zone *zone;
7327 unsigned long flags;
7328
7329 /* Calculate total number of !ZONE_HIGHMEM pages */
7330 for_each_zone(zone) {
7331 if (!is_highmem(zone))
b40da049 7332 lowmem_pages += zone->managed_pages;
1da177e4
LT
7333 }
7334
7335 for_each_zone(zone) {
ac924c60
AM
7336 u64 tmp;
7337
1125b4e3 7338 spin_lock_irqsave(&zone->lock, flags);
b40da049 7339 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7340 do_div(tmp, lowmem_pages);
1da177e4
LT
7341 if (is_highmem(zone)) {
7342 /*
669ed175
NP
7343 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7344 * need highmem pages, so cap pages_min to a small
7345 * value here.
7346 *
41858966 7347 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7348 * deltas control asynch page reclaim, and so should
669ed175 7349 * not be capped for highmem.
1da177e4 7350 */
90ae8d67 7351 unsigned long min_pages;
1da177e4 7352
b40da049 7353 min_pages = zone->managed_pages / 1024;
90ae8d67 7354 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7355 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7356 } else {
669ed175
NP
7357 /*
7358 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7359 * proportionate to the zone's size.
7360 */
41858966 7361 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7362 }
7363
795ae7a0
JW
7364 /*
7365 * Set the kswapd watermarks distance according to the
7366 * scale factor in proportion to available memory, but
7367 * ensure a minimum size on small systems.
7368 */
7369 tmp = max_t(u64, tmp >> 2,
7370 mult_frac(zone->managed_pages,
7371 watermark_scale_factor, 10000));
7372
7373 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7374 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7375
1125b4e3 7376 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7377 }
cb45b0e9
HA
7378
7379 /* update totalreserve_pages */
7380 calculate_totalreserve_pages();
1da177e4
LT
7381}
7382
cfd3da1e
MG
7383/**
7384 * setup_per_zone_wmarks - called when min_free_kbytes changes
7385 * or when memory is hot-{added|removed}
7386 *
7387 * Ensures that the watermark[min,low,high] values for each zone are set
7388 * correctly with respect to min_free_kbytes.
7389 */
7390void setup_per_zone_wmarks(void)
7391{
b93e0f32
MH
7392 static DEFINE_SPINLOCK(lock);
7393
7394 spin_lock(&lock);
cfd3da1e 7395 __setup_per_zone_wmarks();
b93e0f32 7396 spin_unlock(&lock);
cfd3da1e
MG
7397}
7398
1da177e4
LT
7399/*
7400 * Initialise min_free_kbytes.
7401 *
7402 * For small machines we want it small (128k min). For large machines
7403 * we want it large (64MB max). But it is not linear, because network
7404 * bandwidth does not increase linearly with machine size. We use
7405 *
b8af2941 7406 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7407 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7408 *
7409 * which yields
7410 *
7411 * 16MB: 512k
7412 * 32MB: 724k
7413 * 64MB: 1024k
7414 * 128MB: 1448k
7415 * 256MB: 2048k
7416 * 512MB: 2896k
7417 * 1024MB: 4096k
7418 * 2048MB: 5792k
7419 * 4096MB: 8192k
7420 * 8192MB: 11584k
7421 * 16384MB: 16384k
7422 */
1b79acc9 7423int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7424{
7425 unsigned long lowmem_kbytes;
5f12733e 7426 int new_min_free_kbytes;
1da177e4
LT
7427
7428 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7429 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7430
7431 if (new_min_free_kbytes > user_min_free_kbytes) {
7432 min_free_kbytes = new_min_free_kbytes;
7433 if (min_free_kbytes < 128)
7434 min_free_kbytes = 128;
7435 if (min_free_kbytes > 65536)
7436 min_free_kbytes = 65536;
7437 } else {
7438 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7439 new_min_free_kbytes, user_min_free_kbytes);
7440 }
bc75d33f 7441 setup_per_zone_wmarks();
a6cccdc3 7442 refresh_zone_stat_thresholds();
1da177e4 7443 setup_per_zone_lowmem_reserve();
6423aa81
JK
7444
7445#ifdef CONFIG_NUMA
7446 setup_min_unmapped_ratio();
7447 setup_min_slab_ratio();
7448#endif
7449
1da177e4
LT
7450 return 0;
7451}
bc22af74 7452core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7453
7454/*
b8af2941 7455 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7456 * that we can call two helper functions whenever min_free_kbytes
7457 * changes.
7458 */
cccad5b9 7459int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7460 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7461{
da8c757b
HP
7462 int rc;
7463
7464 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7465 if (rc)
7466 return rc;
7467
5f12733e
MH
7468 if (write) {
7469 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7470 setup_per_zone_wmarks();
5f12733e 7471 }
1da177e4
LT
7472 return 0;
7473}
7474
795ae7a0
JW
7475int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7476 void __user *buffer, size_t *length, loff_t *ppos)
7477{
7478 int rc;
7479
7480 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7481 if (rc)
7482 return rc;
7483
7484 if (write)
7485 setup_per_zone_wmarks();
7486
7487 return 0;
7488}
7489
9614634f 7490#ifdef CONFIG_NUMA
6423aa81 7491static void setup_min_unmapped_ratio(void)
9614634f 7492{
6423aa81 7493 pg_data_t *pgdat;
9614634f 7494 struct zone *zone;
9614634f 7495
a5f5f91d 7496 for_each_online_pgdat(pgdat)
81cbcbc2 7497 pgdat->min_unmapped_pages = 0;
a5f5f91d 7498
9614634f 7499 for_each_zone(zone)
a5f5f91d 7500 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7501 sysctl_min_unmapped_ratio) / 100;
9614634f 7502}
0ff38490 7503
6423aa81
JK
7504
7505int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7506 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7507{
0ff38490
CL
7508 int rc;
7509
8d65af78 7510 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7511 if (rc)
7512 return rc;
7513
6423aa81
JK
7514 setup_min_unmapped_ratio();
7515
7516 return 0;
7517}
7518
7519static void setup_min_slab_ratio(void)
7520{
7521 pg_data_t *pgdat;
7522 struct zone *zone;
7523
a5f5f91d
MG
7524 for_each_online_pgdat(pgdat)
7525 pgdat->min_slab_pages = 0;
7526
0ff38490 7527 for_each_zone(zone)
a5f5f91d 7528 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7529 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7530}
7531
7532int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7533 void __user *buffer, size_t *length, loff_t *ppos)
7534{
7535 int rc;
7536
7537 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7538 if (rc)
7539 return rc;
7540
7541 setup_min_slab_ratio();
7542
0ff38490
CL
7543 return 0;
7544}
9614634f
CL
7545#endif
7546
1da177e4
LT
7547/*
7548 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7549 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7550 * whenever sysctl_lowmem_reserve_ratio changes.
7551 *
7552 * The reserve ratio obviously has absolutely no relation with the
41858966 7553 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7554 * if in function of the boot time zone sizes.
7555 */
cccad5b9 7556int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7557 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7558{
8d65af78 7559 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7560 setup_per_zone_lowmem_reserve();
7561 return 0;
7562}
7563
8ad4b1fb
RS
7564/*
7565 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7566 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7567 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7568 */
cccad5b9 7569int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7570 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7571{
7572 struct zone *zone;
7cd2b0a3 7573 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7574 int ret;
7575
7cd2b0a3
DR
7576 mutex_lock(&pcp_batch_high_lock);
7577 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7578
8d65af78 7579 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7580 if (!write || ret < 0)
7581 goto out;
7582
7583 /* Sanity checking to avoid pcp imbalance */
7584 if (percpu_pagelist_fraction &&
7585 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7586 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7587 ret = -EINVAL;
7588 goto out;
7589 }
7590
7591 /* No change? */
7592 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7593 goto out;
c8e251fa 7594
364df0eb 7595 for_each_populated_zone(zone) {
7cd2b0a3
DR
7596 unsigned int cpu;
7597
22a7f12b 7598 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7599 pageset_set_high_and_batch(zone,
7600 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7601 }
7cd2b0a3 7602out:
c8e251fa 7603 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7604 return ret;
8ad4b1fb
RS
7605}
7606
a9919c79 7607#ifdef CONFIG_NUMA
f034b5d4 7608int hashdist = HASHDIST_DEFAULT;
1da177e4 7609
1da177e4
LT
7610static int __init set_hashdist(char *str)
7611{
7612 if (!str)
7613 return 0;
7614 hashdist = simple_strtoul(str, &str, 0);
7615 return 1;
7616}
7617__setup("hashdist=", set_hashdist);
7618#endif
7619
f6f34b43
SD
7620#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7621/*
7622 * Returns the number of pages that arch has reserved but
7623 * is not known to alloc_large_system_hash().
7624 */
7625static unsigned long __init arch_reserved_kernel_pages(void)
7626{
7627 return 0;
7628}
7629#endif
7630
9017217b
PT
7631/*
7632 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7633 * machines. As memory size is increased the scale is also increased but at
7634 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7635 * quadruples the scale is increased by one, which means the size of hash table
7636 * only doubles, instead of quadrupling as well.
7637 * Because 32-bit systems cannot have large physical memory, where this scaling
7638 * makes sense, it is disabled on such platforms.
7639 */
7640#if __BITS_PER_LONG > 32
7641#define ADAPT_SCALE_BASE (64ul << 30)
7642#define ADAPT_SCALE_SHIFT 2
7643#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7644#endif
7645
1da177e4
LT
7646/*
7647 * allocate a large system hash table from bootmem
7648 * - it is assumed that the hash table must contain an exact power-of-2
7649 * quantity of entries
7650 * - limit is the number of hash buckets, not the total allocation size
7651 */
7652void *__init alloc_large_system_hash(const char *tablename,
7653 unsigned long bucketsize,
7654 unsigned long numentries,
7655 int scale,
7656 int flags,
7657 unsigned int *_hash_shift,
7658 unsigned int *_hash_mask,
31fe62b9
TB
7659 unsigned long low_limit,
7660 unsigned long high_limit)
1da177e4 7661{
31fe62b9 7662 unsigned long long max = high_limit;
1da177e4
LT
7663 unsigned long log2qty, size;
7664 void *table = NULL;
3749a8f0 7665 gfp_t gfp_flags;
1da177e4
LT
7666
7667 /* allow the kernel cmdline to have a say */
7668 if (!numentries) {
7669 /* round applicable memory size up to nearest megabyte */
04903664 7670 numentries = nr_kernel_pages;
f6f34b43 7671 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7672
7673 /* It isn't necessary when PAGE_SIZE >= 1MB */
7674 if (PAGE_SHIFT < 20)
7675 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7676
9017217b
PT
7677#if __BITS_PER_LONG > 32
7678 if (!high_limit) {
7679 unsigned long adapt;
7680
7681 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7682 adapt <<= ADAPT_SCALE_SHIFT)
7683 scale++;
7684 }
7685#endif
7686
1da177e4
LT
7687 /* limit to 1 bucket per 2^scale bytes of low memory */
7688 if (scale > PAGE_SHIFT)
7689 numentries >>= (scale - PAGE_SHIFT);
7690 else
7691 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7692
7693 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7694 if (unlikely(flags & HASH_SMALL)) {
7695 /* Makes no sense without HASH_EARLY */
7696 WARN_ON(!(flags & HASH_EARLY));
7697 if (!(numentries >> *_hash_shift)) {
7698 numentries = 1UL << *_hash_shift;
7699 BUG_ON(!numentries);
7700 }
7701 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7702 numentries = PAGE_SIZE / bucketsize;
1da177e4 7703 }
6e692ed3 7704 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7705
7706 /* limit allocation size to 1/16 total memory by default */
7707 if (max == 0) {
7708 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7709 do_div(max, bucketsize);
7710 }
074b8517 7711 max = min(max, 0x80000000ULL);
1da177e4 7712
31fe62b9
TB
7713 if (numentries < low_limit)
7714 numentries = low_limit;
1da177e4
LT
7715 if (numentries > max)
7716 numentries = max;
7717
f0d1b0b3 7718 log2qty = ilog2(numentries);
1da177e4 7719
3749a8f0 7720 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7721 do {
7722 size = bucketsize << log2qty;
ea1f5f37
PT
7723 if (flags & HASH_EARLY) {
7724 if (flags & HASH_ZERO)
7e1c4e27
MR
7725 table = memblock_alloc_nopanic(size,
7726 SMP_CACHE_BYTES);
ea1f5f37 7727 else
7e1c4e27
MR
7728 table = memblock_alloc_raw(size,
7729 SMP_CACHE_BYTES);
ea1f5f37 7730 } else if (hashdist) {
3749a8f0 7731 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7732 } else {
1037b83b
ED
7733 /*
7734 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7735 * some pages at the end of hash table which
7736 * alloc_pages_exact() automatically does
1037b83b 7737 */
264ef8a9 7738 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7739 table = alloc_pages_exact(size, gfp_flags);
7740 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7741 }
1da177e4
LT
7742 }
7743 } while (!table && size > PAGE_SIZE && --log2qty);
7744
7745 if (!table)
7746 panic("Failed to allocate %s hash table\n", tablename);
7747
1170532b
JP
7748 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7749 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7750
7751 if (_hash_shift)
7752 *_hash_shift = log2qty;
7753 if (_hash_mask)
7754 *_hash_mask = (1 << log2qty) - 1;
7755
7756 return table;
7757}
a117e66e 7758
a5d76b54 7759/*
80934513
MK
7760 * This function checks whether pageblock includes unmovable pages or not.
7761 * If @count is not zero, it is okay to include less @count unmovable pages
7762 *
b8af2941 7763 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7764 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7765 * check without lock_page also may miss some movable non-lru pages at
7766 * race condition. So you can't expect this function should be exact.
a5d76b54 7767 */
b023f468 7768bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7769 int migratetype,
b023f468 7770 bool skip_hwpoisoned_pages)
49ac8255
KH
7771{
7772 unsigned long pfn, iter, found;
47118af0 7773
49ac8255 7774 /*
15c30bc0
MH
7775 * TODO we could make this much more efficient by not checking every
7776 * page in the range if we know all of them are in MOVABLE_ZONE and
7777 * that the movable zone guarantees that pages are migratable but
7778 * the later is not the case right now unfortunatelly. E.g. movablecore
7779 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7780 */
49ac8255 7781
4da2ce25
MH
7782 /*
7783 * CMA allocations (alloc_contig_range) really need to mark isolate
7784 * CMA pageblocks even when they are not movable in fact so consider
7785 * them movable here.
7786 */
7787 if (is_migrate_cma(migratetype) &&
7788 is_migrate_cma(get_pageblock_migratetype(page)))
7789 return false;
7790
49ac8255
KH
7791 pfn = page_to_pfn(page);
7792 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7793 unsigned long check = pfn + iter;
7794
29723fcc 7795 if (!pfn_valid_within(check))
49ac8255 7796 continue;
29723fcc 7797
49ac8255 7798 page = pfn_to_page(check);
c8721bbb 7799
d7ab3672 7800 if (PageReserved(page))
15c30bc0 7801 goto unmovable;
d7ab3672 7802
9d789999
MH
7803 /*
7804 * If the zone is movable and we have ruled out all reserved
7805 * pages then it should be reasonably safe to assume the rest
7806 * is movable.
7807 */
7808 if (zone_idx(zone) == ZONE_MOVABLE)
7809 continue;
7810
c8721bbb
NH
7811 /*
7812 * Hugepages are not in LRU lists, but they're movable.
7813 * We need not scan over tail pages bacause we don't
7814 * handle each tail page individually in migration.
7815 */
7816 if (PageHuge(page)) {
17e2e7d7
OS
7817 struct page *head = compound_head(page);
7818 unsigned int skip_pages;
464c7ffb 7819
17e2e7d7 7820 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
7821 goto unmovable;
7822
17e2e7d7
OS
7823 skip_pages = (1 << compound_order(head)) - (page - head);
7824 iter += skip_pages - 1;
c8721bbb
NH
7825 continue;
7826 }
7827
97d255c8
MK
7828 /*
7829 * We can't use page_count without pin a page
7830 * because another CPU can free compound page.
7831 * This check already skips compound tails of THP
0139aa7b 7832 * because their page->_refcount is zero at all time.
97d255c8 7833 */
fe896d18 7834 if (!page_ref_count(page)) {
49ac8255
KH
7835 if (PageBuddy(page))
7836 iter += (1 << page_order(page)) - 1;
7837 continue;
7838 }
97d255c8 7839
b023f468
WC
7840 /*
7841 * The HWPoisoned page may be not in buddy system, and
7842 * page_count() is not 0.
7843 */
7844 if (skip_hwpoisoned_pages && PageHWPoison(page))
7845 continue;
7846
0efadf48
YX
7847 if (__PageMovable(page))
7848 continue;
7849
49ac8255
KH
7850 if (!PageLRU(page))
7851 found++;
7852 /*
6b4f7799
JW
7853 * If there are RECLAIMABLE pages, we need to check
7854 * it. But now, memory offline itself doesn't call
7855 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7856 */
7857 /*
7858 * If the page is not RAM, page_count()should be 0.
7859 * we don't need more check. This is an _used_ not-movable page.
7860 *
7861 * The problematic thing here is PG_reserved pages. PG_reserved
7862 * is set to both of a memory hole page and a _used_ kernel
7863 * page at boot.
7864 */
7865 if (found > count)
15c30bc0 7866 goto unmovable;
49ac8255 7867 }
80934513 7868 return false;
15c30bc0
MH
7869unmovable:
7870 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7871 return true;
49ac8255
KH
7872}
7873
080fe206 7874#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7875
7876static unsigned long pfn_max_align_down(unsigned long pfn)
7877{
7878 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7879 pageblock_nr_pages) - 1);
7880}
7881
7882static unsigned long pfn_max_align_up(unsigned long pfn)
7883{
7884 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7885 pageblock_nr_pages));
7886}
7887
041d3a8c 7888/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7889static int __alloc_contig_migrate_range(struct compact_control *cc,
7890 unsigned long start, unsigned long end)
041d3a8c
MN
7891{
7892 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7893 unsigned long nr_reclaimed;
041d3a8c
MN
7894 unsigned long pfn = start;
7895 unsigned int tries = 0;
7896 int ret = 0;
7897
be49a6e1 7898 migrate_prep();
041d3a8c 7899
bb13ffeb 7900 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7901 if (fatal_signal_pending(current)) {
7902 ret = -EINTR;
7903 break;
7904 }
7905
bb13ffeb
MG
7906 if (list_empty(&cc->migratepages)) {
7907 cc->nr_migratepages = 0;
edc2ca61 7908 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7909 if (!pfn) {
7910 ret = -EINTR;
7911 break;
7912 }
7913 tries = 0;
7914 } else if (++tries == 5) {
7915 ret = ret < 0 ? ret : -EBUSY;
7916 break;
7917 }
7918
beb51eaa
MK
7919 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7920 &cc->migratepages);
7921 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7922
9c620e2b 7923 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 7924 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 7925 }
2a6f5124
SP
7926 if (ret < 0) {
7927 putback_movable_pages(&cc->migratepages);
7928 return ret;
7929 }
7930 return 0;
041d3a8c
MN
7931}
7932
7933/**
7934 * alloc_contig_range() -- tries to allocate given range of pages
7935 * @start: start PFN to allocate
7936 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7937 * @migratetype: migratetype of the underlaying pageblocks (either
7938 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7939 * in range must have the same migratetype and it must
7940 * be either of the two.
ca96b625 7941 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7942 *
7943 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 7944 * aligned. The PFN range must belong to a single zone.
041d3a8c 7945 *
2c7452a0
MK
7946 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7947 * pageblocks in the range. Once isolated, the pageblocks should not
7948 * be modified by others.
041d3a8c
MN
7949 *
7950 * Returns zero on success or negative error code. On success all
7951 * pages which PFN is in [start, end) are allocated for the caller and
7952 * need to be freed with free_contig_range().
7953 */
0815f3d8 7954int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7955 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7956{
041d3a8c 7957 unsigned long outer_start, outer_end;
d00181b9
KS
7958 unsigned int order;
7959 int ret = 0;
041d3a8c 7960
bb13ffeb
MG
7961 struct compact_control cc = {
7962 .nr_migratepages = 0,
7963 .order = -1,
7964 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7965 .mode = MIGRATE_SYNC,
bb13ffeb 7966 .ignore_skip_hint = true,
2583d671 7967 .no_set_skip_hint = true,
7dea19f9 7968 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7969 };
7970 INIT_LIST_HEAD(&cc.migratepages);
7971
041d3a8c
MN
7972 /*
7973 * What we do here is we mark all pageblocks in range as
7974 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7975 * have different sizes, and due to the way page allocator
7976 * work, we align the range to biggest of the two pages so
7977 * that page allocator won't try to merge buddies from
7978 * different pageblocks and change MIGRATE_ISOLATE to some
7979 * other migration type.
7980 *
7981 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7982 * migrate the pages from an unaligned range (ie. pages that
7983 * we are interested in). This will put all the pages in
7984 * range back to page allocator as MIGRATE_ISOLATE.
7985 *
7986 * When this is done, we take the pages in range from page
7987 * allocator removing them from the buddy system. This way
7988 * page allocator will never consider using them.
7989 *
7990 * This lets us mark the pageblocks back as
7991 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7992 * aligned range but not in the unaligned, original range are
7993 * put back to page allocator so that buddy can use them.
7994 */
7995
7996 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7997 pfn_max_align_up(end), migratetype,
7998 false);
041d3a8c 7999 if (ret)
86a595f9 8000 return ret;
041d3a8c 8001
8ef5849f
JK
8002 /*
8003 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8004 * So, just fall through. test_pages_isolated() has a tracepoint
8005 * which will report the busy page.
8006 *
8007 * It is possible that busy pages could become available before
8008 * the call to test_pages_isolated, and the range will actually be
8009 * allocated. So, if we fall through be sure to clear ret so that
8010 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8011 */
bb13ffeb 8012 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8013 if (ret && ret != -EBUSY)
041d3a8c 8014 goto done;
63cd4489 8015 ret =0;
041d3a8c
MN
8016
8017 /*
8018 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8019 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8020 * more, all pages in [start, end) are free in page allocator.
8021 * What we are going to do is to allocate all pages from
8022 * [start, end) (that is remove them from page allocator).
8023 *
8024 * The only problem is that pages at the beginning and at the
8025 * end of interesting range may be not aligned with pages that
8026 * page allocator holds, ie. they can be part of higher order
8027 * pages. Because of this, we reserve the bigger range and
8028 * once this is done free the pages we are not interested in.
8029 *
8030 * We don't have to hold zone->lock here because the pages are
8031 * isolated thus they won't get removed from buddy.
8032 */
8033
8034 lru_add_drain_all();
510f5507 8035 drain_all_pages(cc.zone);
041d3a8c
MN
8036
8037 order = 0;
8038 outer_start = start;
8039 while (!PageBuddy(pfn_to_page(outer_start))) {
8040 if (++order >= MAX_ORDER) {
8ef5849f
JK
8041 outer_start = start;
8042 break;
041d3a8c
MN
8043 }
8044 outer_start &= ~0UL << order;
8045 }
8046
8ef5849f
JK
8047 if (outer_start != start) {
8048 order = page_order(pfn_to_page(outer_start));
8049
8050 /*
8051 * outer_start page could be small order buddy page and
8052 * it doesn't include start page. Adjust outer_start
8053 * in this case to report failed page properly
8054 * on tracepoint in test_pages_isolated()
8055 */
8056 if (outer_start + (1UL << order) <= start)
8057 outer_start = start;
8058 }
8059
041d3a8c 8060 /* Make sure the range is really isolated. */
b023f468 8061 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8062 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8063 __func__, outer_start, end);
041d3a8c
MN
8064 ret = -EBUSY;
8065 goto done;
8066 }
8067
49f223a9 8068 /* Grab isolated pages from freelists. */
bb13ffeb 8069 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8070 if (!outer_end) {
8071 ret = -EBUSY;
8072 goto done;
8073 }
8074
8075 /* Free head and tail (if any) */
8076 if (start != outer_start)
8077 free_contig_range(outer_start, start - outer_start);
8078 if (end != outer_end)
8079 free_contig_range(end, outer_end - end);
8080
8081done:
8082 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8083 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8084 return ret;
8085}
8086
8087void free_contig_range(unsigned long pfn, unsigned nr_pages)
8088{
bcc2b02f
MS
8089 unsigned int count = 0;
8090
8091 for (; nr_pages--; pfn++) {
8092 struct page *page = pfn_to_page(pfn);
8093
8094 count += page_count(page) != 1;
8095 __free_page(page);
8096 }
8097 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8098}
8099#endif
8100
d883c6cf 8101#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8102/*
8103 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8104 * page high values need to be recalulated.
8105 */
4ed7e022
JL
8106void __meminit zone_pcp_update(struct zone *zone)
8107{
0a647f38 8108 unsigned cpu;
c8e251fa 8109 mutex_lock(&pcp_batch_high_lock);
0a647f38 8110 for_each_possible_cpu(cpu)
169f6c19
CS
8111 pageset_set_high_and_batch(zone,
8112 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8113 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8114}
8115#endif
8116
340175b7
JL
8117void zone_pcp_reset(struct zone *zone)
8118{
8119 unsigned long flags;
5a883813
MK
8120 int cpu;
8121 struct per_cpu_pageset *pset;
340175b7
JL
8122
8123 /* avoid races with drain_pages() */
8124 local_irq_save(flags);
8125 if (zone->pageset != &boot_pageset) {
5a883813
MK
8126 for_each_online_cpu(cpu) {
8127 pset = per_cpu_ptr(zone->pageset, cpu);
8128 drain_zonestat(zone, pset);
8129 }
340175b7
JL
8130 free_percpu(zone->pageset);
8131 zone->pageset = &boot_pageset;
8132 }
8133 local_irq_restore(flags);
8134}
8135
6dcd73d7 8136#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8137/*
b9eb6319
JK
8138 * All pages in the range must be in a single zone and isolated
8139 * before calling this.
0c0e6195
KH
8140 */
8141void
8142__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8143{
8144 struct page *page;
8145 struct zone *zone;
7aeb09f9 8146 unsigned int order, i;
0c0e6195
KH
8147 unsigned long pfn;
8148 unsigned long flags;
8149 /* find the first valid pfn */
8150 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8151 if (pfn_valid(pfn))
8152 break;
8153 if (pfn == end_pfn)
8154 return;
2d070eab 8155 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8156 zone = page_zone(pfn_to_page(pfn));
8157 spin_lock_irqsave(&zone->lock, flags);
8158 pfn = start_pfn;
8159 while (pfn < end_pfn) {
8160 if (!pfn_valid(pfn)) {
8161 pfn++;
8162 continue;
8163 }
8164 page = pfn_to_page(pfn);
b023f468
WC
8165 /*
8166 * The HWPoisoned page may be not in buddy system, and
8167 * page_count() is not 0.
8168 */
8169 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8170 pfn++;
8171 SetPageReserved(page);
8172 continue;
8173 }
8174
0c0e6195
KH
8175 BUG_ON(page_count(page));
8176 BUG_ON(!PageBuddy(page));
8177 order = page_order(page);
8178#ifdef CONFIG_DEBUG_VM
1170532b
JP
8179 pr_info("remove from free list %lx %d %lx\n",
8180 pfn, 1 << order, end_pfn);
0c0e6195
KH
8181#endif
8182 list_del(&page->lru);
8183 rmv_page_order(page);
8184 zone->free_area[order].nr_free--;
0c0e6195
KH
8185 for (i = 0; i < (1 << order); i++)
8186 SetPageReserved((page+i));
8187 pfn += (1 << order);
8188 }
8189 spin_unlock_irqrestore(&zone->lock, flags);
8190}
8191#endif
8d22ba1b 8192
8d22ba1b
WF
8193bool is_free_buddy_page(struct page *page)
8194{
8195 struct zone *zone = page_zone(page);
8196 unsigned long pfn = page_to_pfn(page);
8197 unsigned long flags;
7aeb09f9 8198 unsigned int order;
8d22ba1b
WF
8199
8200 spin_lock_irqsave(&zone->lock, flags);
8201 for (order = 0; order < MAX_ORDER; order++) {
8202 struct page *page_head = page - (pfn & ((1 << order) - 1));
8203
8204 if (PageBuddy(page_head) && page_order(page_head) >= order)
8205 break;
8206 }
8207 spin_unlock_irqrestore(&zone->lock, flags);
8208
8209 return order < MAX_ORDER;
8210}
d4ae9916
NH
8211
8212#ifdef CONFIG_MEMORY_FAILURE
8213/*
8214 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8215 * test is performed under the zone lock to prevent a race against page
8216 * allocation.
8217 */
8218bool set_hwpoison_free_buddy_page(struct page *page)
8219{
8220 struct zone *zone = page_zone(page);
8221 unsigned long pfn = page_to_pfn(page);
8222 unsigned long flags;
8223 unsigned int order;
8224 bool hwpoisoned = false;
8225
8226 spin_lock_irqsave(&zone->lock, flags);
8227 for (order = 0; order < MAX_ORDER; order++) {
8228 struct page *page_head = page - (pfn & ((1 << order) - 1));
8229
8230 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8231 if (!TestSetPageHWPoison(page))
8232 hwpoisoned = true;
8233 break;
8234 }
8235 }
8236 spin_unlock_irqrestore(&zone->lock, flags);
8237
8238 return hwpoisoned;
8239}
8240#endif