]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm: try to exhaust highatomic reserve before the OOM
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
38addce8 94#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 95volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
96EXPORT_SYMBOL(latent_entropy);
97#endif
98
1da177e4 99/*
13808910 100 * Array of node states.
1da177e4 101 */
13808910
CL
102nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105#ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107#ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
109#endif
110#ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
112#endif
113 [N_CPU] = { { [0] = 1UL } },
114#endif /* NUMA */
115};
116EXPORT_SYMBOL(node_states);
117
c3d5f5f0
JL
118/* Protect totalram_pages and zone->managed_pages */
119static DEFINE_SPINLOCK(managed_page_count_lock);
120
6c231b7b 121unsigned long totalram_pages __read_mostly;
cb45b0e9 122unsigned long totalreserve_pages __read_mostly;
e48322ab 123unsigned long totalcma_pages __read_mostly;
ab8fabd4 124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
d0164adc 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
d0164adc 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400 183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 184unsigned int pageblock_order __read_mostly;
d9c23400
MG
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
033fbae9
DW
227#ifdef CONFIG_ZONE_DEVICE
228 "Device",
229#endif
2f1b6248
CL
230};
231
60f30350
VB
232char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237#ifdef CONFIG_CMA
238 "CMA",
239#endif
240#ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242#endif
243};
244
f1e61557
KS
245compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248#ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250#endif
9a982250
KS
251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253#endif
f1e61557
KS
254};
255
1da177e4 256int min_free_kbytes = 1024;
42aa83cb 257int user_min_free_kbytes = -1;
795ae7a0 258int watermark_scale_factor = 10;
1da177e4 259
2c85f51d
JB
260static unsigned long __meminitdata nr_kernel_pages;
261static unsigned long __meminitdata nr_all_pages;
a3142c8e 262static unsigned long __meminitdata dma_reserve;
1da177e4 263
0ee332c1
TH
264#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __initdata required_kernelcore;
268static unsigned long __initdata required_movablecore;
269static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 270static bool mirrored_kernelcore;
0ee332c1
TH
271
272/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273int movable_zone;
274EXPORT_SYMBOL(movable_zone);
275#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 276
418508c1
MS
277#if MAX_NUMNODES > 1
278int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 279int nr_online_nodes __read_mostly = 1;
418508c1 280EXPORT_SYMBOL(nr_node_ids);
62bc62a8 281EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
282#endif
283
9ef9acb0
MG
284int page_group_by_mobility_disabled __read_mostly;
285
3a80a7fa
MG
286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287static inline void reset_deferred_meminit(pg_data_t *pgdat)
288{
289 pgdat->first_deferred_pfn = ULONG_MAX;
290}
291
292/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 293static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 294{
ef70b6f4
MG
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
298 return true;
299
300 return false;
301}
302
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
342static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345{
346 return true;
347}
348#endif
349
0b423ca2
MG
350/* Return a pointer to the bitmap storing bits affecting a block of pages */
351static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353{
354#ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356#else
357 return page_zone(page)->pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359}
360
361static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362{
363#ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366#else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369#endif /* CONFIG_SPARSEMEM */
370}
371
372/**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385{
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398}
399
400unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403{
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405}
406
407static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408{
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410}
411
412/**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424{
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449}
3a80a7fa 450
ee6f509c 451void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 452{
5d0f3f72
KM
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
455 migratetype = MIGRATE_UNMOVABLE;
456
b2a0ac88
MG
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459}
460
13e7444b 461#ifdef CONFIG_DEBUG_VM
c6a57e19 462static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 463{
bdc8cb98
DH
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 467 unsigned long sp, start_pfn;
c6a57e19 468
bdc8cb98
DH
469 do {
470 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
108bcc96 473 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
b5e6a5a2 477 if (ret)
613813e8
DH
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
b5e6a5a2 481
bdc8cb98 482 return ret;
c6a57e19
DH
483}
484
485static int page_is_consistent(struct zone *zone, struct page *page)
486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 488 return 0;
1da177e4 489 if (zone != page_zone(page))
c6a57e19
DH
490 return 0;
491
492 return 1;
493}
494/*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497static int bad_range(struct zone *zone, struct page *page)
498{
499 if (page_outside_zone_boundaries(zone, page))
1da177e4 500 return 1;
c6a57e19
DH
501 if (!page_is_consistent(zone, page))
502 return 1;
503
1da177e4
LT
504 return 0;
505}
13e7444b
NP
506#else
507static inline int bad_range(struct zone *zone, struct page *page)
508{
509 return 0;
510}
511#endif
512
d230dec1
KS
513static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
1da177e4 515{
d936cf9b
HD
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
ff8e8116 530 pr_alert(
1e9e6365 531 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
ff8e8116 540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 541 current->comm, page_to_pfn(page));
ff8e8116
VB
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
4e462112 547 dump_page_owner(page);
3dc14741 548
4f31888c 549 print_modules();
1da177e4 550 dump_stack();
d936cf9b 551out:
8cc3b392 552 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 553 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
555}
556
1da177e4
LT
557/*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
1d798ca3 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 561 *
1d798ca3
KS
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 564 *
1d798ca3
KS
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
1da177e4 567 *
1d798ca3 568 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 569 * This usage means that zero-order pages may not be compound.
1da177e4 570 */
d98c7a09 571
9a982250 572void free_compound_page(struct page *page)
d98c7a09 573{
d85f3385 574 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
575}
576
d00181b9 577void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
578{
579 int i;
580 int nr_pages = 1 << order;
581
f1e61557 582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
58a84aa9 587 set_page_count(p, 0);
1c290f64 588 p->mapping = TAIL_MAPPING;
1d798ca3 589 set_compound_head(p, page);
18229df5 590 }
53f9263b 591 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
592}
593
c0a32fc5
SG
594#ifdef CONFIG_DEBUG_PAGEALLOC
595unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
596bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 598EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
599bool _debug_guardpage_enabled __read_mostly;
600
031bc574
JK
601static int __init early_debug_pagealloc(char *buf)
602{
603 if (!buf)
604 return -EINVAL;
2a138dc7 605 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
606}
607early_param("debug_pagealloc", early_debug_pagealloc);
608
e30825f1
JK
609static bool need_debug_guardpage(void)
610{
031bc574
JK
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
f1c1e9f7
JK
615 if (!debug_guardpage_minorder())
616 return false;
617
e30825f1
JK
618 return true;
619}
620
621static void init_debug_guardpage(void)
622{
031bc574
JK
623 if (!debug_pagealloc_enabled())
624 return;
625
f1c1e9f7
JK
626 if (!debug_guardpage_minorder())
627 return;
628
e30825f1
JK
629 _debug_guardpage_enabled = true;
630}
631
632struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635};
c0a32fc5
SG
636
637static int __init debug_guardpage_minorder_setup(char *buf)
638{
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 642 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
1170532b 646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
647 return 0;
648}
f1c1e9f7 649early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 650
acbc15a4 651static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 652 unsigned int order, int migratetype)
c0a32fc5 653{
e30825f1
JK
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
acbc15a4
JK
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
e30825f1
JK
661
662 page_ext = lookup_page_ext(page);
f86e4271 663 if (unlikely(!page_ext))
acbc15a4 664 return false;
f86e4271 665
e30825f1
JK
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
2847cf95
JK
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
672
673 return true;
c0a32fc5
SG
674}
675
2847cf95
JK
676static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
c0a32fc5 678{
e30825f1
JK
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
f86e4271
YS
685 if (unlikely(!page_ext))
686 return;
687
e30825f1
JK
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
2847cf95
JK
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
693}
694#else
980ac167 695struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
696static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
2847cf95
JK
698static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
c0a32fc5
SG
700#endif
701
7aeb09f9 702static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 703{
4c21e2f2 704 set_page_private(page, order);
676165a8 705 __SetPageBuddy(page);
1da177e4
LT
706}
707
708static inline void rmv_page_order(struct page *page)
709{
676165a8 710 __ClearPageBuddy(page);
4c21e2f2 711 set_page_private(page, 0);
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
13e7444b 717 * (a) the buddy is not in a hole &&
676165a8 718 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
676165a8 721 *
cf6fe945
WSH
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
1da177e4 726 *
676165a8 727 * For recording page's order, we use page_private(page).
1da177e4 728 */
cb2b95e1 729static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 730 unsigned int order)
1da177e4 731{
14e07298 732 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 733 return 0;
13e7444b 734
c0a32fc5 735 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
4c5018ce
WY
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
c0a32fc5
SG
741 return 1;
742 }
743
cb2b95e1 744 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
4c5018ce
WY
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
6aa3001b 755 return 1;
676165a8 756 }
6aa3001b 757 return 0;
1da177e4
LT
758}
759
760/*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
1da177e4 776 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
1da177e4 779 * If a block is freed, and its buddy is also free, then this
5f63b720 780 * triggers coalescing into a block of larger size.
1da177e4 781 *
6d49e352 782 * -- nyc
1da177e4
LT
783 */
784
48db57f8 785static inline void __free_one_page(struct page *page,
dc4b0caf 786 unsigned long pfn,
ed0ae21d
MG
787 struct zone *zone, unsigned int order,
788 int migratetype)
1da177e4
LT
789{
790 unsigned long page_idx;
6dda9d55 791 unsigned long combined_idx;
43506fad 792 unsigned long uninitialized_var(buddy_idx);
6dda9d55 793 struct page *buddy;
d9dddbf5
VB
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 797
d29bb978 798 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 800
ed0ae21d 801 VM_BUG_ON(migratetype == -1);
d9dddbf5 802 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 804
d9dddbf5 805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 806
309381fe
SL
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 809
d9dddbf5 810continue_merging:
3c605096 811 while (order < max_order - 1) {
43506fad
KC
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
cb2b95e1 814 if (!page_is_buddy(page, buddy, order))
d9dddbf5 815 goto done_merging;
c0a32fc5
SG
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
2847cf95 821 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
43506fad 827 combined_idx = buddy_idx & page_idx;
1da177e4
LT
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
d9dddbf5
VB
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857done_merging:
1da177e4 858 set_page_order(page, order);
6dda9d55
CZ
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
b7f50cfa 868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 869 struct page *higher_page, *higher_buddy;
43506fad
KC
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 873 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882out:
1da177e4
LT
883 zone->free_area[order].nr_free++;
884}
885
7bfec6f4
MG
886/*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893{
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899#ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901#endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906}
907
bb552ac6 908static void free_pages_check_bad(struct page *page)
1da177e4 909{
7bfec6f4
MG
910 const char *bad_reason;
911 unsigned long bad_flags;
912
7bfec6f4
MG
913 bad_reason = NULL;
914 bad_flags = 0;
f0b791a3 915
53f9263b 916 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
fe896d18 920 if (unlikely(page_ref_count(page) != 0))
0139aa7b 921 bad_reason = "nonzero _refcount";
f0b791a3
DH
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
9edad6ea
JW
926#ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929#endif
7bfec6f4 930 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
931}
932
933static inline int free_pages_check(struct page *page)
934{
da838d4f 935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 936 return 0;
bb552ac6
MG
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
7bfec6f4 940 return 1;
1da177e4
LT
941}
942
4db7548c
MG
943static int free_tail_pages_check(struct page *head_page, struct page *page)
944{
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991}
992
e2769dbd
MG
993static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
4db7548c 995{
e2769dbd 996 int bad = 0;
4db7548c 997
4db7548c
MG
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
e2769dbd
MG
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1012
9a73f61b
KS
1013 if (compound)
1014 ClearPageDoubleMap(page);
e2769dbd
MG
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
bda807d4 1025 if (PageMappingFlags(page))
4db7548c 1026 page->mapping = NULL;
c4159a75 1027 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1028 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
4db7548c 1033
e2769dbd
MG
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
4db7548c
MG
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 debug_check_no_obj_freed(page_address(page),
e2769dbd 1042 PAGE_SIZE << order);
4db7548c 1043 }
e2769dbd
MG
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
29b52de1 1047 kasan_free_pages(page, order);
4db7548c 1048
4db7548c
MG
1049 return true;
1050}
1051
e2769dbd
MG
1052#ifdef CONFIG_DEBUG_VM
1053static inline bool free_pcp_prepare(struct page *page)
1054{
1055 return free_pages_prepare(page, 0, true);
1056}
1057
1058static inline bool bulkfree_pcp_prepare(struct page *page)
1059{
1060 return false;
1061}
1062#else
1063static bool free_pcp_prepare(struct page *page)
1064{
1065 return free_pages_prepare(page, 0, false);
1066}
1067
4db7548c
MG
1068static bool bulkfree_pcp_prepare(struct page *page)
1069{
1070 return free_pages_check(page);
1071}
1072#endif /* CONFIG_DEBUG_VM */
1073
1da177e4 1074/*
5f8dcc21 1075 * Frees a number of pages from the PCP lists
1da177e4 1076 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1077 * count is the number of pages to free.
1da177e4
LT
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
5f8dcc21
MG
1085static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1da177e4 1087{
5f8dcc21 1088 int migratetype = 0;
a6f9edd6 1089 int batch_free = 0;
0d5d823a 1090 unsigned long nr_scanned;
3777999d 1091 bool isolated_pageblocks;
5f8dcc21 1092
c54ad30c 1093 spin_lock(&zone->lock);
3777999d 1094 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1096 if (nr_scanned)
599d0c95 1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1098
e5b31ac2 1099 while (count) {
48db57f8 1100 struct page *page;
5f8dcc21
MG
1101 struct list_head *list;
1102
1103 /*
a6f9edd6
MG
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
5f8dcc21
MG
1109 */
1110 do {
a6f9edd6 1111 batch_free++;
5f8dcc21
MG
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
48db57f8 1116
1d16871d
NK
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1119 batch_free = count;
1d16871d 1120
a6f9edd6 1121 do {
770c8aaa
BZ
1122 int mt; /* migratetype of the to-be-freed page */
1123
a16601c5 1124 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
aa016d14 1127
bb14c2c7 1128 mt = get_pcppage_migratetype(page);
aa016d14
VB
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
3777999d 1132 if (unlikely(isolated_pageblocks))
51bb1a40 1133 mt = get_pageblock_migratetype(page);
51bb1a40 1134
4db7548c
MG
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
dc4b0caf 1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1139 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1140 } while (--count && --batch_free && !list_empty(list));
1da177e4 1141 }
c54ad30c 1142 spin_unlock(&zone->lock);
1da177e4
LT
1143}
1144
dc4b0caf
MG
1145static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
7aeb09f9 1147 unsigned int order,
ed0ae21d 1148 int migratetype)
1da177e4 1149{
0d5d823a 1150 unsigned long nr_scanned;
006d22d9 1151 spin_lock(&zone->lock);
599d0c95 1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1153 if (nr_scanned)
599d0c95 1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1155
ad53f92e
JK
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1159 }
dc4b0caf 1160 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1161 spin_unlock(&zone->lock);
48db57f8
NP
1162}
1163
1e8ce83c
RH
1164static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166{
1e8ce83c 1167 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1e8ce83c 1171
1e8ce83c
RH
1172 INIT_LIST_HEAD(&page->lru);
1173#ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177#endif
1178}
1179
1180static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182{
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184}
1185
7e18adb4
MG
1186#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187static void init_reserved_page(unsigned long pfn)
1188{
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205}
1206#else
1207static inline void init_reserved_page(unsigned long pfn)
1208{
1209}
1210#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
92923ca3
NZ
1212/*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
4b50bcc7 1218void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1219{
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
7e18adb4
MG
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1d798ca3
KS
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
7e18adb4
MG
1232 SetPageReserved(page);
1233 }
1234 }
92923ca3
NZ
1235}
1236
ec95f53a
KM
1237static void __free_pages_ok(struct page *page, unsigned int order)
1238{
1239 unsigned long flags;
95e34412 1240 int migratetype;
dc4b0caf 1241 unsigned long pfn = page_to_pfn(page);
ec95f53a 1242
e2769dbd 1243 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1244 return;
1245
cfc47a28 1246 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1247 local_irq_save(flags);
f8891e5e 1248 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1250 local_irq_restore(flags);
1da177e4
LT
1251}
1252
949698a3 1253static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1254{
c3993076 1255 unsigned int nr_pages = 1 << order;
e2d0bd2b 1256 struct page *p = page;
c3993076 1257 unsigned int loop;
a226f6c8 1258
e2d0bd2b
YL
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
c3993076
JW
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
a226f6c8 1264 }
e2d0bd2b
YL
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
c3993076 1267
e2d0bd2b 1268 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
a226f6c8
DH
1271}
1272
75a592a4
MG
1273#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1275
75a592a4
MG
1276static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278int __meminit early_pfn_to_nid(unsigned long pfn)
1279{
7ace9917 1280 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1281 int nid;
1282
7ace9917 1283 spin_lock(&early_pfn_lock);
75a592a4 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1285 if (nid < 0)
e4568d38 1286 nid = first_online_node;
7ace9917
MG
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
75a592a4
MG
1290}
1291#endif
1292
1293#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296{
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303}
1304
1305/* Only safe to use early in boot when initialisation is single-threaded */
1306static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307{
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309}
1310
1311#else
1312
1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314{
1315 return true;
1316}
1317static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319{
1320 return true;
1321}
1322#endif
1323
1324
0e1cc95b 1325void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1326 unsigned int order)
1327{
1328 if (early_page_uninitialised(pfn))
1329 return;
949698a3 1330 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1331}
1332
7cf91a98
JK
1333/*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352{
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374}
1375
1376void set_zone_contiguous(struct zone *zone)
1377{
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395}
1396
1397void clear_zone_contiguous(struct zone *zone)
1398{
1399 zone->contiguous = false;
1400}
1401
7e18adb4 1402#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1403static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1404 unsigned long pfn, int nr_pages)
1405{
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1415 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1416 return;
1417 }
1418
e780149b
XQ
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1422 __free_pages_boot_core(page, 0);
e780149b 1423 }
a4de83dd
MG
1424}
1425
d3cd131d
NS
1426/* Completion tracking for deferred_init_memmap() threads */
1427static atomic_t pgdat_init_n_undone __initdata;
1428static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430static inline void __init pgdat_init_report_one_done(void)
1431{
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434}
0e1cc95b 1435
7e18adb4 1436/* Initialise remaining memory on a node */
0e1cc95b 1437static int __init deferred_init_memmap(void *data)
7e18adb4 1438{
0e1cc95b
MG
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
7e18adb4
MG
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
7e18adb4 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1449
0e1cc95b 1450 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1451 pgdat_init_report_one_done();
0e1cc95b
MG
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
54608c3f 1473 struct page *page = NULL;
a4de83dd
MG
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
7e18adb4
MG
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
54608c3f 1486 if (!pfn_valid_within(pfn))
a4de83dd 1487 goto free_range;
7e18adb4 1488
54608c3f
MG
1489 /*
1490 * Ensure pfn_valid is checked every
e780149b 1491 * pageblock_nr_pages for memory holes
54608c3f 1492 */
e780149b 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
a4de83dd 1502 goto free_range;
54608c3f
MG
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
e780149b 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1507 page++;
1508 } else {
a4de83dd
MG
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
54608c3f
MG
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
7e18adb4
MG
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1521 goto free_range;
7e18adb4
MG
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
7e18adb4 1541 }
e780149b
XQ
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1545
7e18adb4
MG
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
0e1cc95b 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1553 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1554
1555 pgdat_init_report_one_done();
0e1cc95b
MG
1556 return 0;
1557}
7cf91a98 1558#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1559
1560void __init page_alloc_init_late(void)
1561{
7cf91a98
JK
1562 struct zone *zone;
1563
1564#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1565 int nid;
1566
d3cd131d
NS
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1569 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
d3cd131d 1574 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
7cf91a98
JK
1578#endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
7e18adb4 1582}
7e18adb4 1583
47118af0 1584#ifdef CONFIG_CMA
9cf510a5 1585/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1586void __init init_cma_reserved_pageblock(struct page *page)
1587{
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
47118af0 1596 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
3dcc0571 1611 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1612}
1613#endif
1da177e4
LT
1614
1615/*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
6d49e352 1627 * -- nyc
1da177e4 1628 */
085cc7d5 1629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1da177e4
LT
1632{
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
309381fe 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1640
acbc15a4
JK
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1648 continue;
acbc15a4 1649
b2a0ac88 1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1da177e4
LT
1654}
1655
4e611801 1656static void check_new_page_bad(struct page *page)
1da177e4 1657{
4e611801
VB
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
7bfec6f4 1660
53f9263b 1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
fe896d18 1665 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1666 bad_reason = "nonzero _count";
f4c18e6f
NH
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
e570f56c
NH
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
f4c18e6f 1673 }
f0b791a3
DH
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
9edad6ea
JW
1678#ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681#endif
4e611801
VB
1682 bad_page(page, bad_reason, bad_flags);
1683}
1684
1685/*
1686 * This page is about to be returned from the page allocator
1687 */
1688static inline int check_new_page(struct page *page)
1689{
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
2a7684a2
WF
1696}
1697
1414c7f4
LA
1698static inline bool free_pages_prezeroed(bool poisoned)
1699{
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702}
1703
479f854a
MG
1704#ifdef CONFIG_DEBUG_VM
1705static bool check_pcp_refill(struct page *page)
1706{
1707 return false;
1708}
1709
1710static bool check_new_pcp(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714#else
1715static bool check_pcp_refill(struct page *page)
1716{
1717 return check_new_page(page);
1718}
1719static bool check_new_pcp(struct page *page)
1720{
1721 return false;
1722}
1723#endif /* CONFIG_DEBUG_VM */
1724
1725static bool check_new_pages(struct page *page, unsigned int order)
1726{
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736}
1737
46f24fd8
JK
1738inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740{
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749}
1750
479f854a 1751static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1752 unsigned int alloc_flags)
2a7684a2
WF
1753{
1754 int i;
1414c7f4 1755 bool poisoned = true;
2a7684a2
WF
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1414c7f4
LA
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
2a7684a2 1761 }
689bcebf 1762
46f24fd8 1763 post_alloc_hook(page, order, gfp_flags);
17cf4406 1764
1414c7f4 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
17cf4406
NP
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
75379191 1772 /*
2f064f34 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
2f064f34
MH
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1da177e4
LT
1782}
1783
56fd56b8
MG
1784/*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
728ec980
MG
1788static inline
1789struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1790 int migratetype)
1791{
1792 unsigned int current_order;
b8af2941 1793 struct free_area *area;
56fd56b8
MG
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
a16601c5 1799 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1800 struct page, lru);
a16601c5
GT
1801 if (!page)
1802 continue;
56fd56b8
MG
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
56fd56b8 1806 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1807 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1808 return page;
1809 }
1810
1811 return NULL;
1812}
1813
1814
b2a0ac88
MG
1815/*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
47118af0 1819static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1823#ifdef CONFIG_CMA
974a786e 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1825#endif
194159fb 1826#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1828#endif
b2a0ac88
MG
1829};
1830
dc67647b
JK
1831#ifdef CONFIG_CMA
1832static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834{
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836}
1837#else
1838static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840#endif
1841
c361be55
MG
1842/*
1843 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1844 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
435b405c 1847int move_freepages(struct zone *zone,
b69a7288
AB
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
c361be55
MG
1850{
1851 struct page *page;
d00181b9 1852 unsigned int order;
d100313f 1853 int pages_moved = 0;
c361be55
MG
1854
1855#ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1861 * grouping pages by mobility
c361be55 1862 */
97ee4ba7 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1864#endif
1865
1866 for (page = start_page; page <= end_page;) {
344c790e 1867 /* Make sure we are not inadvertently changing nodes */
309381fe 1868 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1869
c361be55
MG
1870 if (!pfn_valid_within(page_to_pfn(page))) {
1871 page++;
1872 continue;
1873 }
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
84be48d8
KS
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
c361be55 1883 page += 1 << order;
d100313f 1884 pages_moved += 1 << order;
c361be55
MG
1885 }
1886
d100313f 1887 return pages_moved;
c361be55
MG
1888}
1889
ee6f509c 1890int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1891 int migratetype)
c361be55
MG
1892{
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
d9c23400 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1898 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1901
1902 /* Do not cross zone boundaries */
108bcc96 1903 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1904 start_page = page;
108bcc96 1905 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909}
1910
2f66a68f
MG
1911static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913{
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920}
1921
fef903ef 1922/*
9c0415eb
VB
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
fef903ef 1933 */
4eb7dce6
JK
1934static bool can_steal_fallback(unsigned int order, int start_mt)
1935{
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953}
1954
1955/*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
fef903ef 1964{
d00181b9 1965 unsigned int current_order = page_order(page);
4eb7dce6 1966 int pages;
fef903ef 1967
fef903ef
SB
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
3a1086fb 1971 return;
fef903ef
SB
1972 }
1973
4eb7dce6 1974 pages = move_freepages_block(zone, page, start_type);
fef903ef 1975
4eb7dce6
JK
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980}
1981
2149cdae
JK
1982/*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1990{
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
974a786e 2000 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
fef903ef 2005
4eb7dce6
JK
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2149cdae
JK
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
fef903ef 2014 }
4eb7dce6
JK
2015
2016 return -1;
fef903ef
SB
2017}
2018
0aaa29a5
MG
2019/*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025{
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054}
2055
2056/*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 */
04c8716f 2062static bool unreserve_highatomic_pageblock(const struct alloc_context *ac)
0aaa29a5
MG
2063{
2064 struct zonelist *zonelist = ac->zonelist;
2065 unsigned long flags;
2066 struct zoneref *z;
2067 struct zone *zone;
2068 struct page *page;
2069 int order;
04c8716f 2070 bool ret;
0aaa29a5
MG
2071
2072 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2073 ac->nodemask) {
2074 /* Preserve at least one pageblock */
2075 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2076 continue;
2077
2078 spin_lock_irqsave(&zone->lock, flags);
2079 for (order = 0; order < MAX_ORDER; order++) {
2080 struct free_area *area = &(zone->free_area[order]);
2081
a16601c5
GT
2082 page = list_first_entry_or_null(
2083 &area->free_list[MIGRATE_HIGHATOMIC],
2084 struct page, lru);
2085 if (!page)
0aaa29a5
MG
2086 continue;
2087
0aaa29a5 2088 /*
4855e4a7
MK
2089 * In page freeing path, migratetype change is racy so
2090 * we can counter several free pages in a pageblock
2091 * in this loop althoug we changed the pageblock type
2092 * from highatomic to ac->migratetype. So we should
2093 * adjust the count once.
0aaa29a5 2094 */
4855e4a7
MK
2095 if (get_pageblock_migratetype(page) ==
2096 MIGRATE_HIGHATOMIC) {
2097 /*
2098 * It should never happen but changes to
2099 * locking could inadvertently allow a per-cpu
2100 * drain to add pages to MIGRATE_HIGHATOMIC
2101 * while unreserving so be safe and watch for
2102 * underflows.
2103 */
2104 zone->nr_reserved_highatomic -= min(
2105 pageblock_nr_pages,
2106 zone->nr_reserved_highatomic);
2107 }
0aaa29a5
MG
2108
2109 /*
2110 * Convert to ac->migratetype and avoid the normal
2111 * pageblock stealing heuristics. Minimally, the caller
2112 * is doing the work and needs the pages. More
2113 * importantly, if the block was always converted to
2114 * MIGRATE_UNMOVABLE or another type then the number
2115 * of pageblocks that cannot be completely freed
2116 * may increase.
2117 */
2118 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2119 ret = move_freepages_block(zone, page, ac->migratetype);
0aaa29a5 2120 spin_unlock_irqrestore(&zone->lock, flags);
04c8716f 2121 return ret;
0aaa29a5
MG
2122 }
2123 spin_unlock_irqrestore(&zone->lock, flags);
2124 }
04c8716f
MK
2125
2126 return false;
0aaa29a5
MG
2127}
2128
b2a0ac88 2129/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2130static inline struct page *
7aeb09f9 2131__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2132{
b8af2941 2133 struct free_area *area;
7aeb09f9 2134 unsigned int current_order;
b2a0ac88 2135 struct page *page;
4eb7dce6
JK
2136 int fallback_mt;
2137 bool can_steal;
b2a0ac88
MG
2138
2139 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2140 for (current_order = MAX_ORDER-1;
2141 current_order >= order && current_order <= MAX_ORDER-1;
2142 --current_order) {
4eb7dce6
JK
2143 area = &(zone->free_area[current_order]);
2144 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2145 start_migratetype, false, &can_steal);
4eb7dce6
JK
2146 if (fallback_mt == -1)
2147 continue;
b2a0ac88 2148
a16601c5 2149 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2150 struct page, lru);
88ed365e
MK
2151 if (can_steal &&
2152 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2153 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2154
4eb7dce6
JK
2155 /* Remove the page from the freelists */
2156 area->nr_free--;
2157 list_del(&page->lru);
2158 rmv_page_order(page);
3a1086fb 2159
4eb7dce6
JK
2160 expand(zone, page, order, current_order, area,
2161 start_migratetype);
2162 /*
bb14c2c7 2163 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2164 * migratetype depending on the decisions in
bb14c2c7
VB
2165 * find_suitable_fallback(). This is OK as long as it does not
2166 * differ for MIGRATE_CMA pageblocks. Those can be used as
2167 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2168 */
bb14c2c7 2169 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2170
4eb7dce6
JK
2171 trace_mm_page_alloc_extfrag(page, order, current_order,
2172 start_migratetype, fallback_mt);
e0fff1bd 2173
4eb7dce6 2174 return page;
b2a0ac88
MG
2175 }
2176
728ec980 2177 return NULL;
b2a0ac88
MG
2178}
2179
56fd56b8 2180/*
1da177e4
LT
2181 * Do the hard work of removing an element from the buddy allocator.
2182 * Call me with the zone->lock already held.
2183 */
b2a0ac88 2184static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2185 int migratetype)
1da177e4 2186{
1da177e4
LT
2187 struct page *page;
2188
56fd56b8 2189 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2190 if (unlikely(!page)) {
dc67647b
JK
2191 if (migratetype == MIGRATE_MOVABLE)
2192 page = __rmqueue_cma_fallback(zone, order);
2193
2194 if (!page)
2195 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2196 }
2197
0d3d062a 2198 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2199 return page;
1da177e4
LT
2200}
2201
5f63b720 2202/*
1da177e4
LT
2203 * Obtain a specified number of elements from the buddy allocator, all under
2204 * a single hold of the lock, for efficiency. Add them to the supplied list.
2205 * Returns the number of new pages which were placed at *list.
2206 */
5f63b720 2207static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2208 unsigned long count, struct list_head *list,
b745bc85 2209 int migratetype, bool cold)
1da177e4 2210{
5bcc9f86 2211 int i;
5f63b720 2212
c54ad30c 2213 spin_lock(&zone->lock);
1da177e4 2214 for (i = 0; i < count; ++i) {
6ac0206b 2215 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2216 if (unlikely(page == NULL))
1da177e4 2217 break;
81eabcbe 2218
479f854a
MG
2219 if (unlikely(check_pcp_refill(page)))
2220 continue;
2221
81eabcbe
MG
2222 /*
2223 * Split buddy pages returned by expand() are received here
2224 * in physical page order. The page is added to the callers and
2225 * list and the list head then moves forward. From the callers
2226 * perspective, the linked list is ordered by page number in
2227 * some conditions. This is useful for IO devices that can
2228 * merge IO requests if the physical pages are ordered
2229 * properly.
2230 */
b745bc85 2231 if (likely(!cold))
e084b2d9
MG
2232 list_add(&page->lru, list);
2233 else
2234 list_add_tail(&page->lru, list);
81eabcbe 2235 list = &page->lru;
bb14c2c7 2236 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2237 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2238 -(1 << order));
1da177e4 2239 }
f2260e6b 2240 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2241 spin_unlock(&zone->lock);
085cc7d5 2242 return i;
1da177e4
LT
2243}
2244
4ae7c039 2245#ifdef CONFIG_NUMA
8fce4d8e 2246/*
4037d452
CL
2247 * Called from the vmstat counter updater to drain pagesets of this
2248 * currently executing processor on remote nodes after they have
2249 * expired.
2250 *
879336c3
CL
2251 * Note that this function must be called with the thread pinned to
2252 * a single processor.
8fce4d8e 2253 */
4037d452 2254void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2255{
4ae7c039 2256 unsigned long flags;
7be12fc9 2257 int to_drain, batch;
4ae7c039 2258
4037d452 2259 local_irq_save(flags);
4db0c3c2 2260 batch = READ_ONCE(pcp->batch);
7be12fc9 2261 to_drain = min(pcp->count, batch);
2a13515c
KM
2262 if (to_drain > 0) {
2263 free_pcppages_bulk(zone, to_drain, pcp);
2264 pcp->count -= to_drain;
2265 }
4037d452 2266 local_irq_restore(flags);
4ae7c039
CL
2267}
2268#endif
2269
9f8f2172 2270/*
93481ff0 2271 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2272 *
2273 * The processor must either be the current processor and the
2274 * thread pinned to the current processor or a processor that
2275 * is not online.
2276 */
93481ff0 2277static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2278{
c54ad30c 2279 unsigned long flags;
93481ff0
VB
2280 struct per_cpu_pageset *pset;
2281 struct per_cpu_pages *pcp;
1da177e4 2282
93481ff0
VB
2283 local_irq_save(flags);
2284 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2285
93481ff0
VB
2286 pcp = &pset->pcp;
2287 if (pcp->count) {
2288 free_pcppages_bulk(zone, pcp->count, pcp);
2289 pcp->count = 0;
2290 }
2291 local_irq_restore(flags);
2292}
3dfa5721 2293
93481ff0
VB
2294/*
2295 * Drain pcplists of all zones on the indicated processor.
2296 *
2297 * The processor must either be the current processor and the
2298 * thread pinned to the current processor or a processor that
2299 * is not online.
2300 */
2301static void drain_pages(unsigned int cpu)
2302{
2303 struct zone *zone;
2304
2305 for_each_populated_zone(zone) {
2306 drain_pages_zone(cpu, zone);
1da177e4
LT
2307 }
2308}
1da177e4 2309
9f8f2172
CL
2310/*
2311 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2312 *
2313 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2314 * the single zone's pages.
9f8f2172 2315 */
93481ff0 2316void drain_local_pages(struct zone *zone)
9f8f2172 2317{
93481ff0
VB
2318 int cpu = smp_processor_id();
2319
2320 if (zone)
2321 drain_pages_zone(cpu, zone);
2322 else
2323 drain_pages(cpu);
9f8f2172
CL
2324}
2325
2326/*
74046494
GBY
2327 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2328 *
93481ff0
VB
2329 * When zone parameter is non-NULL, spill just the single zone's pages.
2330 *
74046494
GBY
2331 * Note that this code is protected against sending an IPI to an offline
2332 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2333 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2334 * nothing keeps CPUs from showing up after we populated the cpumask and
2335 * before the call to on_each_cpu_mask().
9f8f2172 2336 */
93481ff0 2337void drain_all_pages(struct zone *zone)
9f8f2172 2338{
74046494 2339 int cpu;
74046494
GBY
2340
2341 /*
2342 * Allocate in the BSS so we wont require allocation in
2343 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2344 */
2345 static cpumask_t cpus_with_pcps;
2346
2347 /*
2348 * We don't care about racing with CPU hotplug event
2349 * as offline notification will cause the notified
2350 * cpu to drain that CPU pcps and on_each_cpu_mask
2351 * disables preemption as part of its processing
2352 */
2353 for_each_online_cpu(cpu) {
93481ff0
VB
2354 struct per_cpu_pageset *pcp;
2355 struct zone *z;
74046494 2356 bool has_pcps = false;
93481ff0
VB
2357
2358 if (zone) {
74046494 2359 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2360 if (pcp->pcp.count)
74046494 2361 has_pcps = true;
93481ff0
VB
2362 } else {
2363 for_each_populated_zone(z) {
2364 pcp = per_cpu_ptr(z->pageset, cpu);
2365 if (pcp->pcp.count) {
2366 has_pcps = true;
2367 break;
2368 }
74046494
GBY
2369 }
2370 }
93481ff0 2371
74046494
GBY
2372 if (has_pcps)
2373 cpumask_set_cpu(cpu, &cpus_with_pcps);
2374 else
2375 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2376 }
93481ff0
VB
2377 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2378 zone, 1);
9f8f2172
CL
2379}
2380
296699de 2381#ifdef CONFIG_HIBERNATION
1da177e4
LT
2382
2383void mark_free_pages(struct zone *zone)
2384{
f623f0db
RW
2385 unsigned long pfn, max_zone_pfn;
2386 unsigned long flags;
7aeb09f9 2387 unsigned int order, t;
86760a2c 2388 struct page *page;
1da177e4 2389
8080fc03 2390 if (zone_is_empty(zone))
1da177e4
LT
2391 return;
2392
2393 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2394
108bcc96 2395 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2396 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2397 if (pfn_valid(pfn)) {
86760a2c 2398 page = pfn_to_page(pfn);
ba6b0979
JK
2399
2400 if (page_zone(page) != zone)
2401 continue;
2402
7be98234
RW
2403 if (!swsusp_page_is_forbidden(page))
2404 swsusp_unset_page_free(page);
f623f0db 2405 }
1da177e4 2406
b2a0ac88 2407 for_each_migratetype_order(order, t) {
86760a2c
GT
2408 list_for_each_entry(page,
2409 &zone->free_area[order].free_list[t], lru) {
f623f0db 2410 unsigned long i;
1da177e4 2411
86760a2c 2412 pfn = page_to_pfn(page);
f623f0db 2413 for (i = 0; i < (1UL << order); i++)
7be98234 2414 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2415 }
b2a0ac88 2416 }
1da177e4
LT
2417 spin_unlock_irqrestore(&zone->lock, flags);
2418}
e2c55dc8 2419#endif /* CONFIG_PM */
1da177e4 2420
1da177e4
LT
2421/*
2422 * Free a 0-order page
b745bc85 2423 * cold == true ? free a cold page : free a hot page
1da177e4 2424 */
b745bc85 2425void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2426{
2427 struct zone *zone = page_zone(page);
2428 struct per_cpu_pages *pcp;
2429 unsigned long flags;
dc4b0caf 2430 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2431 int migratetype;
1da177e4 2432
4db7548c 2433 if (!free_pcp_prepare(page))
689bcebf
HD
2434 return;
2435
dc4b0caf 2436 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2437 set_pcppage_migratetype(page, migratetype);
1da177e4 2438 local_irq_save(flags);
f8891e5e 2439 __count_vm_event(PGFREE);
da456f14 2440
5f8dcc21
MG
2441 /*
2442 * We only track unmovable, reclaimable and movable on pcp lists.
2443 * Free ISOLATE pages back to the allocator because they are being
2444 * offlined but treat RESERVE as movable pages so we can get those
2445 * areas back if necessary. Otherwise, we may have to free
2446 * excessively into the page allocator
2447 */
2448 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2449 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2450 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2451 goto out;
2452 }
2453 migratetype = MIGRATE_MOVABLE;
2454 }
2455
99dcc3e5 2456 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2457 if (!cold)
5f8dcc21 2458 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2459 else
2460 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2461 pcp->count++;
48db57f8 2462 if (pcp->count >= pcp->high) {
4db0c3c2 2463 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2464 free_pcppages_bulk(zone, batch, pcp);
2465 pcp->count -= batch;
48db57f8 2466 }
5f8dcc21
MG
2467
2468out:
1da177e4 2469 local_irq_restore(flags);
1da177e4
LT
2470}
2471
cc59850e
KK
2472/*
2473 * Free a list of 0-order pages
2474 */
b745bc85 2475void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2476{
2477 struct page *page, *next;
2478
2479 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2480 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2481 free_hot_cold_page(page, cold);
2482 }
2483}
2484
8dfcc9ba
NP
2485/*
2486 * split_page takes a non-compound higher-order page, and splits it into
2487 * n (1<<order) sub-pages: page[0..n]
2488 * Each sub-page must be freed individually.
2489 *
2490 * Note: this is probably too low level an operation for use in drivers.
2491 * Please consult with lkml before using this in your driver.
2492 */
2493void split_page(struct page *page, unsigned int order)
2494{
2495 int i;
2496
309381fe
SL
2497 VM_BUG_ON_PAGE(PageCompound(page), page);
2498 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2499
2500#ifdef CONFIG_KMEMCHECK
2501 /*
2502 * Split shadow pages too, because free(page[0]) would
2503 * otherwise free the whole shadow.
2504 */
2505 if (kmemcheck_page_is_tracked(page))
2506 split_page(virt_to_page(page[0].shadow), order);
2507#endif
2508
a9627bc5 2509 for (i = 1; i < (1 << order); i++)
7835e98b 2510 set_page_refcounted(page + i);
a9627bc5 2511 split_page_owner(page, order);
8dfcc9ba 2512}
5853ff23 2513EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2514
3c605096 2515int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2516{
748446bb
MG
2517 unsigned long watermark;
2518 struct zone *zone;
2139cbe6 2519 int mt;
748446bb
MG
2520
2521 BUG_ON(!PageBuddy(page));
2522
2523 zone = page_zone(page);
2e30abd1 2524 mt = get_pageblock_migratetype(page);
748446bb 2525
194159fb 2526 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2527 /*
2528 * Obey watermarks as if the page was being allocated. We can
2529 * emulate a high-order watermark check with a raised order-0
2530 * watermark, because we already know our high-order page
2531 * exists.
2532 */
2533 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2534 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2535 return 0;
2536
8fb74b9f 2537 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2538 }
748446bb
MG
2539
2540 /* Remove page from free list */
2541 list_del(&page->lru);
2542 zone->free_area[order].nr_free--;
2543 rmv_page_order(page);
2139cbe6 2544
400bc7fd 2545 /*
2546 * Set the pageblock if the isolated page is at least half of a
2547 * pageblock
2548 */
748446bb
MG
2549 if (order >= pageblock_order - 1) {
2550 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2551 for (; page < endpage; page += pageblock_nr_pages) {
2552 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2553 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2554 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2555 set_pageblock_migratetype(page,
2556 MIGRATE_MOVABLE);
2557 }
748446bb
MG
2558 }
2559
f3a14ced 2560
8fb74b9f 2561 return 1UL << order;
1fb3f8ca
MG
2562}
2563
060e7417
MG
2564/*
2565 * Update NUMA hit/miss statistics
2566 *
2567 * Must be called with interrupts disabled.
2568 *
2569 * When __GFP_OTHER_NODE is set assume the node of the preferred
2570 * zone is the local node. This is useful for daemons who allocate
2571 * memory on behalf of other processes.
2572 */
2573static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2574 gfp_t flags)
2575{
2576#ifdef CONFIG_NUMA
2577 int local_nid = numa_node_id();
2578 enum zone_stat_item local_stat = NUMA_LOCAL;
2579
2580 if (unlikely(flags & __GFP_OTHER_NODE)) {
2581 local_stat = NUMA_OTHER;
2582 local_nid = preferred_zone->node;
2583 }
2584
2585 if (z->node == local_nid) {
2586 __inc_zone_state(z, NUMA_HIT);
2587 __inc_zone_state(z, local_stat);
2588 } else {
2589 __inc_zone_state(z, NUMA_MISS);
2590 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2591 }
2592#endif
2593}
2594
1da177e4 2595/*
75379191 2596 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2597 */
0a15c3e9
MG
2598static inline
2599struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2600 struct zone *zone, unsigned int order,
c603844b
MG
2601 gfp_t gfp_flags, unsigned int alloc_flags,
2602 int migratetype)
1da177e4
LT
2603{
2604 unsigned long flags;
689bcebf 2605 struct page *page;
b745bc85 2606 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2607
48db57f8 2608 if (likely(order == 0)) {
1da177e4 2609 struct per_cpu_pages *pcp;
5f8dcc21 2610 struct list_head *list;
1da177e4 2611
1da177e4 2612 local_irq_save(flags);
479f854a
MG
2613 do {
2614 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2615 list = &pcp->lists[migratetype];
2616 if (list_empty(list)) {
2617 pcp->count += rmqueue_bulk(zone, 0,
2618 pcp->batch, list,
2619 migratetype, cold);
2620 if (unlikely(list_empty(list)))
2621 goto failed;
2622 }
b92a6edd 2623
479f854a
MG
2624 if (cold)
2625 page = list_last_entry(list, struct page, lru);
2626 else
2627 page = list_first_entry(list, struct page, lru);
5f8dcc21 2628
83b9355b
VB
2629 list_del(&page->lru);
2630 pcp->count--;
2631
2632 } while (check_new_pcp(page));
7fb1d9fc 2633 } else {
0f352e53
MH
2634 /*
2635 * We most definitely don't want callers attempting to
2636 * allocate greater than order-1 page units with __GFP_NOFAIL.
2637 */
2638 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2639 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2640
479f854a
MG
2641 do {
2642 page = NULL;
2643 if (alloc_flags & ALLOC_HARDER) {
2644 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2645 if (page)
2646 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2647 }
2648 if (!page)
2649 page = __rmqueue(zone, order, migratetype);
2650 } while (page && check_new_pages(page, order));
a74609fa
NP
2651 spin_unlock(&zone->lock);
2652 if (!page)
2653 goto failed;
d1ce749a 2654 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2655 get_pcppage_migratetype(page));
1da177e4
LT
2656 }
2657
16709d1d 2658 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2659 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2660 local_irq_restore(flags);
1da177e4 2661
309381fe 2662 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2663 return page;
a74609fa
NP
2664
2665failed:
2666 local_irq_restore(flags);
a74609fa 2667 return NULL;
1da177e4
LT
2668}
2669
933e312e
AM
2670#ifdef CONFIG_FAIL_PAGE_ALLOC
2671
b2588c4b 2672static struct {
933e312e
AM
2673 struct fault_attr attr;
2674
621a5f7a 2675 bool ignore_gfp_highmem;
71baba4b 2676 bool ignore_gfp_reclaim;
54114994 2677 u32 min_order;
933e312e
AM
2678} fail_page_alloc = {
2679 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2680 .ignore_gfp_reclaim = true,
621a5f7a 2681 .ignore_gfp_highmem = true,
54114994 2682 .min_order = 1,
933e312e
AM
2683};
2684
2685static int __init setup_fail_page_alloc(char *str)
2686{
2687 return setup_fault_attr(&fail_page_alloc.attr, str);
2688}
2689__setup("fail_page_alloc=", setup_fail_page_alloc);
2690
deaf386e 2691static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2692{
54114994 2693 if (order < fail_page_alloc.min_order)
deaf386e 2694 return false;
933e312e 2695 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2696 return false;
933e312e 2697 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2698 return false;
71baba4b
MG
2699 if (fail_page_alloc.ignore_gfp_reclaim &&
2700 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2701 return false;
933e312e
AM
2702
2703 return should_fail(&fail_page_alloc.attr, 1 << order);
2704}
2705
2706#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2707
2708static int __init fail_page_alloc_debugfs(void)
2709{
f4ae40a6 2710 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2711 struct dentry *dir;
933e312e 2712
dd48c085
AM
2713 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2714 &fail_page_alloc.attr);
2715 if (IS_ERR(dir))
2716 return PTR_ERR(dir);
933e312e 2717
b2588c4b 2718 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2719 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2720 goto fail;
2721 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2722 &fail_page_alloc.ignore_gfp_highmem))
2723 goto fail;
2724 if (!debugfs_create_u32("min-order", mode, dir,
2725 &fail_page_alloc.min_order))
2726 goto fail;
2727
2728 return 0;
2729fail:
dd48c085 2730 debugfs_remove_recursive(dir);
933e312e 2731
b2588c4b 2732 return -ENOMEM;
933e312e
AM
2733}
2734
2735late_initcall(fail_page_alloc_debugfs);
2736
2737#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2738
2739#else /* CONFIG_FAIL_PAGE_ALLOC */
2740
deaf386e 2741static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2742{
deaf386e 2743 return false;
933e312e
AM
2744}
2745
2746#endif /* CONFIG_FAIL_PAGE_ALLOC */
2747
1da177e4 2748/*
97a16fc8
MG
2749 * Return true if free base pages are above 'mark'. For high-order checks it
2750 * will return true of the order-0 watermark is reached and there is at least
2751 * one free page of a suitable size. Checking now avoids taking the zone lock
2752 * to check in the allocation paths if no pages are free.
1da177e4 2753 */
86a294a8
MH
2754bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2755 int classzone_idx, unsigned int alloc_flags,
2756 long free_pages)
1da177e4 2757{
d23ad423 2758 long min = mark;
1da177e4 2759 int o;
c603844b 2760 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2761
0aaa29a5 2762 /* free_pages may go negative - that's OK */
df0a6daa 2763 free_pages -= (1 << order) - 1;
0aaa29a5 2764
7fb1d9fc 2765 if (alloc_flags & ALLOC_HIGH)
1da177e4 2766 min -= min / 2;
0aaa29a5
MG
2767
2768 /*
2769 * If the caller does not have rights to ALLOC_HARDER then subtract
2770 * the high-atomic reserves. This will over-estimate the size of the
2771 * atomic reserve but it avoids a search.
2772 */
97a16fc8 2773 if (likely(!alloc_harder))
0aaa29a5
MG
2774 free_pages -= z->nr_reserved_highatomic;
2775 else
1da177e4 2776 min -= min / 4;
e2b19197 2777
d95ea5d1
BZ
2778#ifdef CONFIG_CMA
2779 /* If allocation can't use CMA areas don't use free CMA pages */
2780 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2781 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2782#endif
026b0814 2783
97a16fc8
MG
2784 /*
2785 * Check watermarks for an order-0 allocation request. If these
2786 * are not met, then a high-order request also cannot go ahead
2787 * even if a suitable page happened to be free.
2788 */
2789 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2790 return false;
1da177e4 2791
97a16fc8
MG
2792 /* If this is an order-0 request then the watermark is fine */
2793 if (!order)
2794 return true;
2795
2796 /* For a high-order request, check at least one suitable page is free */
2797 for (o = order; o < MAX_ORDER; o++) {
2798 struct free_area *area = &z->free_area[o];
2799 int mt;
2800
2801 if (!area->nr_free)
2802 continue;
2803
2804 if (alloc_harder)
2805 return true;
1da177e4 2806
97a16fc8
MG
2807 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2808 if (!list_empty(&area->free_list[mt]))
2809 return true;
2810 }
2811
2812#ifdef CONFIG_CMA
2813 if ((alloc_flags & ALLOC_CMA) &&
2814 !list_empty(&area->free_list[MIGRATE_CMA])) {
2815 return true;
2816 }
2817#endif
1da177e4 2818 }
97a16fc8 2819 return false;
88f5acf8
MG
2820}
2821
7aeb09f9 2822bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2823 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2824{
2825 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2826 zone_page_state(z, NR_FREE_PAGES));
2827}
2828
48ee5f36
MG
2829static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2830 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2831{
2832 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2833 long cma_pages = 0;
2834
2835#ifdef CONFIG_CMA
2836 /* If allocation can't use CMA areas don't use free CMA pages */
2837 if (!(alloc_flags & ALLOC_CMA))
2838 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2839#endif
2840
2841 /*
2842 * Fast check for order-0 only. If this fails then the reserves
2843 * need to be calculated. There is a corner case where the check
2844 * passes but only the high-order atomic reserve are free. If
2845 * the caller is !atomic then it'll uselessly search the free
2846 * list. That corner case is then slower but it is harmless.
2847 */
2848 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2849 return true;
2850
2851 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2852 free_pages);
2853}
2854
7aeb09f9 2855bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2856 unsigned long mark, int classzone_idx)
88f5acf8
MG
2857{
2858 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2859
2860 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2861 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2862
e2b19197 2863 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2864 free_pages);
1da177e4
LT
2865}
2866
9276b1bc 2867#ifdef CONFIG_NUMA
957f822a
DR
2868static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2869{
5f7a75ac
MG
2870 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2871 RECLAIM_DISTANCE;
957f822a 2872}
9276b1bc 2873#else /* CONFIG_NUMA */
957f822a
DR
2874static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2875{
2876 return true;
2877}
9276b1bc
PJ
2878#endif /* CONFIG_NUMA */
2879
7fb1d9fc 2880/*
0798e519 2881 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2882 * a page.
2883 */
2884static struct page *
a9263751
VB
2885get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2886 const struct alloc_context *ac)
753ee728 2887{
c33d6c06 2888 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2889 struct zone *zone;
3b8c0be4
MG
2890 struct pglist_data *last_pgdat_dirty_limit = NULL;
2891
7fb1d9fc 2892 /*
9276b1bc 2893 * Scan zonelist, looking for a zone with enough free.
344736f2 2894 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2895 */
c33d6c06 2896 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2897 ac->nodemask) {
be06af00 2898 struct page *page;
e085dbc5
JW
2899 unsigned long mark;
2900
664eedde
MG
2901 if (cpusets_enabled() &&
2902 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2903 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2904 continue;
a756cf59
JW
2905 /*
2906 * When allocating a page cache page for writing, we
281e3726
MG
2907 * want to get it from a node that is within its dirty
2908 * limit, such that no single node holds more than its
a756cf59 2909 * proportional share of globally allowed dirty pages.
281e3726 2910 * The dirty limits take into account the node's
a756cf59
JW
2911 * lowmem reserves and high watermark so that kswapd
2912 * should be able to balance it without having to
2913 * write pages from its LRU list.
2914 *
a756cf59 2915 * XXX: For now, allow allocations to potentially
281e3726 2916 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2917 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2918 * which is important when on a NUMA setup the allowed
281e3726 2919 * nodes are together not big enough to reach the
a756cf59 2920 * global limit. The proper fix for these situations
281e3726 2921 * will require awareness of nodes in the
a756cf59
JW
2922 * dirty-throttling and the flusher threads.
2923 */
3b8c0be4
MG
2924 if (ac->spread_dirty_pages) {
2925 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2926 continue;
2927
2928 if (!node_dirty_ok(zone->zone_pgdat)) {
2929 last_pgdat_dirty_limit = zone->zone_pgdat;
2930 continue;
2931 }
2932 }
7fb1d9fc 2933
e085dbc5 2934 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2935 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2936 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2937 int ret;
2938
5dab2911
MG
2939 /* Checked here to keep the fast path fast */
2940 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2941 if (alloc_flags & ALLOC_NO_WATERMARKS)
2942 goto try_this_zone;
2943
a5f5f91d 2944 if (node_reclaim_mode == 0 ||
c33d6c06 2945 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2946 continue;
2947
a5f5f91d 2948 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2949 switch (ret) {
a5f5f91d 2950 case NODE_RECLAIM_NOSCAN:
fa5e084e 2951 /* did not scan */
cd38b115 2952 continue;
a5f5f91d 2953 case NODE_RECLAIM_FULL:
fa5e084e 2954 /* scanned but unreclaimable */
cd38b115 2955 continue;
fa5e084e
MG
2956 default:
2957 /* did we reclaim enough */
fed2719e 2958 if (zone_watermark_ok(zone, order, mark,
93ea9964 2959 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2960 goto try_this_zone;
2961
fed2719e 2962 continue;
0798e519 2963 }
7fb1d9fc
RS
2964 }
2965
fa5e084e 2966try_this_zone:
c33d6c06 2967 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2968 gfp_mask, alloc_flags, ac->migratetype);
75379191 2969 if (page) {
479f854a 2970 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2971
2972 /*
2973 * If this is a high-order atomic allocation then check
2974 * if the pageblock should be reserved for the future
2975 */
2976 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2977 reserve_highatomic_pageblock(page, zone, order);
2978
75379191
VB
2979 return page;
2980 }
54a6eb5c 2981 }
9276b1bc 2982
4ffeaf35 2983 return NULL;
753ee728
MH
2984}
2985
29423e77
DR
2986/*
2987 * Large machines with many possible nodes should not always dump per-node
2988 * meminfo in irq context.
2989 */
2990static inline bool should_suppress_show_mem(void)
2991{
2992 bool ret = false;
2993
2994#if NODES_SHIFT > 8
2995 ret = in_interrupt();
2996#endif
2997 return ret;
2998}
2999
a238ab5b
DH
3000static DEFINE_RATELIMIT_STATE(nopage_rs,
3001 DEFAULT_RATELIMIT_INTERVAL,
3002 DEFAULT_RATELIMIT_BURST);
3003
7877cdcc 3004void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
a238ab5b 3005{
a238ab5b 3006 unsigned int filter = SHOW_MEM_FILTER_NODES;
7877cdcc
MH
3007 struct va_format vaf;
3008 va_list args;
a238ab5b 3009
c0a32fc5
SG
3010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3011 debug_guardpage_minorder() > 0)
a238ab5b
DH
3012 return;
3013
3014 /*
3015 * This documents exceptions given to allocations in certain
3016 * contexts that are allowed to allocate outside current's set
3017 * of allowed nodes.
3018 */
3019 if (!(gfp_mask & __GFP_NOMEMALLOC))
3020 if (test_thread_flag(TIF_MEMDIE) ||
3021 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3022 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3023 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3024 filter &= ~SHOW_MEM_FILTER_NODES;
3025
7877cdcc 3026 pr_warn("%s: ", current->comm);
3ee9a4f0 3027
7877cdcc
MH
3028 va_start(args, fmt);
3029 vaf.fmt = fmt;
3030 vaf.va = &args;
3031 pr_cont("%pV", &vaf);
3032 va_end(args);
3ee9a4f0 3033
7877cdcc 3034 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3ee9a4f0 3035
a238ab5b
DH
3036 dump_stack();
3037 if (!should_suppress_show_mem())
3038 show_mem(filter);
3039}
3040
11e33f6a
MG
3041static inline struct page *
3042__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3043 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3044{
6e0fc46d
DR
3045 struct oom_control oc = {
3046 .zonelist = ac->zonelist,
3047 .nodemask = ac->nodemask,
2a966b77 3048 .memcg = NULL,
6e0fc46d
DR
3049 .gfp_mask = gfp_mask,
3050 .order = order,
6e0fc46d 3051 };
11e33f6a
MG
3052 struct page *page;
3053
9879de73
JW
3054 *did_some_progress = 0;
3055
9879de73 3056 /*
dc56401f
JW
3057 * Acquire the oom lock. If that fails, somebody else is
3058 * making progress for us.
9879de73 3059 */
dc56401f 3060 if (!mutex_trylock(&oom_lock)) {
9879de73 3061 *did_some_progress = 1;
11e33f6a 3062 schedule_timeout_uninterruptible(1);
1da177e4
LT
3063 return NULL;
3064 }
6b1de916 3065
11e33f6a
MG
3066 /*
3067 * Go through the zonelist yet one more time, keep very high watermark
3068 * here, this is only to catch a parallel oom killing, we must fail if
3069 * we're still under heavy pressure.
3070 */
a9263751
VB
3071 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3072 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3073 if (page)
11e33f6a
MG
3074 goto out;
3075
4365a567 3076 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3077 /* Coredumps can quickly deplete all memory reserves */
3078 if (current->flags & PF_DUMPCORE)
3079 goto out;
4365a567
KH
3080 /* The OOM killer will not help higher order allocs */
3081 if (order > PAGE_ALLOC_COSTLY_ORDER)
3082 goto out;
03668b3c 3083 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3084 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3085 goto out;
9083905a
JW
3086 if (pm_suspended_storage())
3087 goto out;
3da88fb3
MH
3088 /*
3089 * XXX: GFP_NOFS allocations should rather fail than rely on
3090 * other request to make a forward progress.
3091 * We are in an unfortunate situation where out_of_memory cannot
3092 * do much for this context but let's try it to at least get
3093 * access to memory reserved if the current task is killed (see
3094 * out_of_memory). Once filesystems are ready to handle allocation
3095 * failures more gracefully we should just bail out here.
3096 */
3097
4167e9b2 3098 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3099 if (gfp_mask & __GFP_THISNODE)
3100 goto out;
3101 }
11e33f6a 3102 /* Exhausted what can be done so it's blamo time */
5020e285 3103 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3104 *did_some_progress = 1;
5020e285
MH
3105
3106 if (gfp_mask & __GFP_NOFAIL) {
3107 page = get_page_from_freelist(gfp_mask, order,
3108 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3109 /*
3110 * fallback to ignore cpuset restriction if our nodes
3111 * are depleted
3112 */
3113 if (!page)
3114 page = get_page_from_freelist(gfp_mask, order,
3115 ALLOC_NO_WATERMARKS, ac);
3116 }
3117 }
11e33f6a 3118out:
dc56401f 3119 mutex_unlock(&oom_lock);
11e33f6a
MG
3120 return page;
3121}
3122
33c2d214
MH
3123/*
3124 * Maximum number of compaction retries wit a progress before OOM
3125 * killer is consider as the only way to move forward.
3126 */
3127#define MAX_COMPACT_RETRIES 16
3128
56de7263
MG
3129#ifdef CONFIG_COMPACTION
3130/* Try memory compaction for high-order allocations before reclaim */
3131static struct page *
3132__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3133 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3134 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3135{
98dd3b48 3136 struct page *page;
53853e2d
VB
3137
3138 if (!order)
66199712 3139 return NULL;
66199712 3140
c06b1fca 3141 current->flags |= PF_MEMALLOC;
c5d01d0d 3142 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3143 prio);
c06b1fca 3144 current->flags &= ~PF_MEMALLOC;
56de7263 3145
c5d01d0d 3146 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3147 return NULL;
53853e2d 3148
98dd3b48
VB
3149 /*
3150 * At least in one zone compaction wasn't deferred or skipped, so let's
3151 * count a compaction stall
3152 */
3153 count_vm_event(COMPACTSTALL);
8fb74b9f 3154
31a6c190 3155 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3156
98dd3b48
VB
3157 if (page) {
3158 struct zone *zone = page_zone(page);
53853e2d 3159
98dd3b48
VB
3160 zone->compact_blockskip_flush = false;
3161 compaction_defer_reset(zone, order, true);
3162 count_vm_event(COMPACTSUCCESS);
3163 return page;
3164 }
56de7263 3165
98dd3b48
VB
3166 /*
3167 * It's bad if compaction run occurs and fails. The most likely reason
3168 * is that pages exist, but not enough to satisfy watermarks.
3169 */
3170 count_vm_event(COMPACTFAIL);
66199712 3171
98dd3b48 3172 cond_resched();
56de7263
MG
3173
3174 return NULL;
3175}
33c2d214 3176
3250845d
VB
3177static inline bool
3178should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3179 enum compact_result compact_result,
3180 enum compact_priority *compact_priority,
d9436498 3181 int *compaction_retries)
3250845d
VB
3182{
3183 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3184 int min_priority;
3250845d
VB
3185
3186 if (!order)
3187 return false;
3188
d9436498
VB
3189 if (compaction_made_progress(compact_result))
3190 (*compaction_retries)++;
3191
3250845d
VB
3192 /*
3193 * compaction considers all the zone as desperately out of memory
3194 * so it doesn't really make much sense to retry except when the
3195 * failure could be caused by insufficient priority
3196 */
d9436498
VB
3197 if (compaction_failed(compact_result))
3198 goto check_priority;
3250845d
VB
3199
3200 /*
3201 * make sure the compaction wasn't deferred or didn't bail out early
3202 * due to locks contention before we declare that we should give up.
3203 * But do not retry if the given zonelist is not suitable for
3204 * compaction.
3205 */
3206 if (compaction_withdrawn(compact_result))
3207 return compaction_zonelist_suitable(ac, order, alloc_flags);
3208
3209 /*
3210 * !costly requests are much more important than __GFP_REPEAT
3211 * costly ones because they are de facto nofail and invoke OOM
3212 * killer to move on while costly can fail and users are ready
3213 * to cope with that. 1/4 retries is rather arbitrary but we
3214 * would need much more detailed feedback from compaction to
3215 * make a better decision.
3216 */
3217 if (order > PAGE_ALLOC_COSTLY_ORDER)
3218 max_retries /= 4;
d9436498 3219 if (*compaction_retries <= max_retries)
3250845d
VB
3220 return true;
3221
d9436498
VB
3222 /*
3223 * Make sure there are attempts at the highest priority if we exhausted
3224 * all retries or failed at the lower priorities.
3225 */
3226check_priority:
c2033b00
VB
3227 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3228 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3229 if (*compact_priority > min_priority) {
d9436498
VB
3230 (*compact_priority)--;
3231 *compaction_retries = 0;
3232 return true;
3233 }
3250845d
VB
3234 return false;
3235}
56de7263
MG
3236#else
3237static inline struct page *
3238__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3239 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3240 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3241{
33c2d214 3242 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3243 return NULL;
3244}
33c2d214
MH
3245
3246static inline bool
86a294a8
MH
3247should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3248 enum compact_result compact_result,
a5508cd8 3249 enum compact_priority *compact_priority,
d9436498 3250 int *compaction_retries)
33c2d214 3251{
31e49bfd
MH
3252 struct zone *zone;
3253 struct zoneref *z;
3254
3255 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3256 return false;
3257
3258 /*
3259 * There are setups with compaction disabled which would prefer to loop
3260 * inside the allocator rather than hit the oom killer prematurely.
3261 * Let's give them a good hope and keep retrying while the order-0
3262 * watermarks are OK.
3263 */
3264 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265 ac->nodemask) {
3266 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3267 ac_classzone_idx(ac), alloc_flags))
3268 return true;
3269 }
33c2d214
MH
3270 return false;
3271}
3250845d 3272#endif /* CONFIG_COMPACTION */
56de7263 3273
bba90710
MS
3274/* Perform direct synchronous page reclaim */
3275static int
a9263751
VB
3276__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3277 const struct alloc_context *ac)
11e33f6a 3278{
11e33f6a 3279 struct reclaim_state reclaim_state;
bba90710 3280 int progress;
11e33f6a
MG
3281
3282 cond_resched();
3283
3284 /* We now go into synchronous reclaim */
3285 cpuset_memory_pressure_bump();
c06b1fca 3286 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3287 lockdep_set_current_reclaim_state(gfp_mask);
3288 reclaim_state.reclaimed_slab = 0;
c06b1fca 3289 current->reclaim_state = &reclaim_state;
11e33f6a 3290
a9263751
VB
3291 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3292 ac->nodemask);
11e33f6a 3293
c06b1fca 3294 current->reclaim_state = NULL;
11e33f6a 3295 lockdep_clear_current_reclaim_state();
c06b1fca 3296 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3297
3298 cond_resched();
3299
bba90710
MS
3300 return progress;
3301}
3302
3303/* The really slow allocator path where we enter direct reclaim */
3304static inline struct page *
3305__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3306 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3307 unsigned long *did_some_progress)
bba90710
MS
3308{
3309 struct page *page = NULL;
3310 bool drained = false;
3311
a9263751 3312 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3313 if (unlikely(!(*did_some_progress)))
3314 return NULL;
11e33f6a 3315
9ee493ce 3316retry:
31a6c190 3317 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3318
3319 /*
3320 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3321 * pages are pinned on the per-cpu lists or in high alloc reserves.
3322 * Shrink them them and try again
9ee493ce
MG
3323 */
3324 if (!page && !drained) {
0aaa29a5 3325 unreserve_highatomic_pageblock(ac);
93481ff0 3326 drain_all_pages(NULL);
9ee493ce
MG
3327 drained = true;
3328 goto retry;
3329 }
3330
11e33f6a
MG
3331 return page;
3332}
3333
a9263751 3334static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3335{
3336 struct zoneref *z;
3337 struct zone *zone;
e1a55637 3338 pg_data_t *last_pgdat = NULL;
3a025760 3339
a9263751 3340 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3341 ac->high_zoneidx, ac->nodemask) {
3342 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3343 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3344 last_pgdat = zone->zone_pgdat;
3345 }
3a025760
JW
3346}
3347
c603844b 3348static inline unsigned int
341ce06f
PZ
3349gfp_to_alloc_flags(gfp_t gfp_mask)
3350{
c603844b 3351 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3352
a56f57ff 3353 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3354 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3355
341ce06f
PZ
3356 /*
3357 * The caller may dip into page reserves a bit more if the caller
3358 * cannot run direct reclaim, or if the caller has realtime scheduling
3359 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3360 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3361 */
e6223a3b 3362 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3363
d0164adc 3364 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3365 /*
b104a35d
DR
3366 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3367 * if it can't schedule.
5c3240d9 3368 */
b104a35d 3369 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3370 alloc_flags |= ALLOC_HARDER;
523b9458 3371 /*
b104a35d 3372 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3373 * comment for __cpuset_node_allowed().
523b9458 3374 */
341ce06f 3375 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3376 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3377 alloc_flags |= ALLOC_HARDER;
3378
d95ea5d1 3379#ifdef CONFIG_CMA
43e7a34d 3380 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3381 alloc_flags |= ALLOC_CMA;
3382#endif
341ce06f
PZ
3383 return alloc_flags;
3384}
3385
072bb0aa
MG
3386bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3387{
31a6c190
VB
3388 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3389 return false;
3390
3391 if (gfp_mask & __GFP_MEMALLOC)
3392 return true;
3393 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3394 return true;
3395 if (!in_interrupt() &&
3396 ((current->flags & PF_MEMALLOC) ||
3397 unlikely(test_thread_flag(TIF_MEMDIE))))
3398 return true;
3399
3400 return false;
072bb0aa
MG
3401}
3402
0a0337e0
MH
3403/*
3404 * Maximum number of reclaim retries without any progress before OOM killer
3405 * is consider as the only way to move forward.
3406 */
3407#define MAX_RECLAIM_RETRIES 16
3408
3409/*
3410 * Checks whether it makes sense to retry the reclaim to make a forward progress
3411 * for the given allocation request.
3412 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3413 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3414 * any progress in a row) is considered as well as the reclaimable pages on the
3415 * applicable zone list (with a backoff mechanism which is a function of
3416 * no_progress_loops).
0a0337e0
MH
3417 *
3418 * Returns true if a retry is viable or false to enter the oom path.
3419 */
3420static inline bool
3421should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3422 struct alloc_context *ac, int alloc_flags,
423b452e 3423 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3424{
3425 struct zone *zone;
3426 struct zoneref *z;
3427
423b452e
VB
3428 /*
3429 * Costly allocations might have made a progress but this doesn't mean
3430 * their order will become available due to high fragmentation so
3431 * always increment the no progress counter for them
3432 */
3433 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3434 *no_progress_loops = 0;
3435 else
3436 (*no_progress_loops)++;
3437
0a0337e0
MH
3438 /*
3439 * Make sure we converge to OOM if we cannot make any progress
3440 * several times in the row.
3441 */
04c8716f
MK
3442 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3443 /* Before OOM, exhaust highatomic_reserve */
3444 return unreserve_highatomic_pageblock(ac);
3445 }
0a0337e0 3446
bca67592
MG
3447 /*
3448 * Keep reclaiming pages while there is a chance this will lead
3449 * somewhere. If none of the target zones can satisfy our allocation
3450 * request even if all reclaimable pages are considered then we are
3451 * screwed and have to go OOM.
0a0337e0
MH
3452 */
3453 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3454 ac->nodemask) {
3455 unsigned long available;
ede37713 3456 unsigned long reclaimable;
0a0337e0 3457
5a1c84b4 3458 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3459 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3460 MAX_RECLAIM_RETRIES);
5a1c84b4 3461 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3462
3463 /*
3464 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3465 * available?
0a0337e0 3466 */
5a1c84b4
MG
3467 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3468 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3469 /*
3470 * If we didn't make any progress and have a lot of
3471 * dirty + writeback pages then we should wait for
3472 * an IO to complete to slow down the reclaim and
3473 * prevent from pre mature OOM
3474 */
3475 if (!did_some_progress) {
11fb9989 3476 unsigned long write_pending;
ede37713 3477
5a1c84b4
MG
3478 write_pending = zone_page_state_snapshot(zone,
3479 NR_ZONE_WRITE_PENDING);
ede37713 3480
11fb9989 3481 if (2 * write_pending > reclaimable) {
ede37713
MH
3482 congestion_wait(BLK_RW_ASYNC, HZ/10);
3483 return true;
3484 }
3485 }
5a1c84b4 3486
ede37713
MH
3487 /*
3488 * Memory allocation/reclaim might be called from a WQ
3489 * context and the current implementation of the WQ
3490 * concurrency control doesn't recognize that
3491 * a particular WQ is congested if the worker thread is
3492 * looping without ever sleeping. Therefore we have to
3493 * do a short sleep here rather than calling
3494 * cond_resched().
3495 */
3496 if (current->flags & PF_WQ_WORKER)
3497 schedule_timeout_uninterruptible(1);
3498 else
3499 cond_resched();
3500
0a0337e0
MH
3501 return true;
3502 }
3503 }
3504
3505 return false;
3506}
3507
11e33f6a
MG
3508static inline struct page *
3509__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3510 struct alloc_context *ac)
11e33f6a 3511{
d0164adc 3512 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3513 struct page *page = NULL;
c603844b 3514 unsigned int alloc_flags;
11e33f6a 3515 unsigned long did_some_progress;
a5508cd8 3516 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3517 enum compact_result compact_result;
33c2d214 3518 int compaction_retries = 0;
0a0337e0 3519 int no_progress_loops = 0;
63f53dea
MH
3520 unsigned long alloc_start = jiffies;
3521 unsigned int stall_timeout = 10 * HZ;
1da177e4 3522
72807a74
MG
3523 /*
3524 * In the slowpath, we sanity check order to avoid ever trying to
3525 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3526 * be using allocators in order of preference for an area that is
3527 * too large.
3528 */
1fc28b70
MG
3529 if (order >= MAX_ORDER) {
3530 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3531 return NULL;
1fc28b70 3532 }
1da177e4 3533
d0164adc
MG
3534 /*
3535 * We also sanity check to catch abuse of atomic reserves being used by
3536 * callers that are not in atomic context.
3537 */
3538 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3539 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3540 gfp_mask &= ~__GFP_ATOMIC;
3541
9bf2229f 3542 /*
31a6c190
VB
3543 * The fast path uses conservative alloc_flags to succeed only until
3544 * kswapd needs to be woken up, and to avoid the cost of setting up
3545 * alloc_flags precisely. So we do that now.
9bf2229f 3546 */
341ce06f 3547 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3548
23771235
VB
3549 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3550 wake_all_kswapds(order, ac);
3551
3552 /*
3553 * The adjusted alloc_flags might result in immediate success, so try
3554 * that first
3555 */
3556 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3557 if (page)
3558 goto got_pg;
3559
a8161d1e
VB
3560 /*
3561 * For costly allocations, try direct compaction first, as it's likely
3562 * that we have enough base pages and don't need to reclaim. Don't try
3563 * that for allocations that are allowed to ignore watermarks, as the
3564 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3565 */
3566 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3567 !gfp_pfmemalloc_allowed(gfp_mask)) {
3568 page = __alloc_pages_direct_compact(gfp_mask, order,
3569 alloc_flags, ac,
a5508cd8 3570 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3571 &compact_result);
3572 if (page)
3573 goto got_pg;
3574
3eb2771b
VB
3575 /*
3576 * Checks for costly allocations with __GFP_NORETRY, which
3577 * includes THP page fault allocations
3578 */
3579 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3580 /*
3581 * If compaction is deferred for high-order allocations,
3582 * it is because sync compaction recently failed. If
3583 * this is the case and the caller requested a THP
3584 * allocation, we do not want to heavily disrupt the
3585 * system, so we fail the allocation instead of entering
3586 * direct reclaim.
3587 */
3588 if (compact_result == COMPACT_DEFERRED)
3589 goto nopage;
3590
a8161d1e 3591 /*
3eb2771b
VB
3592 * Looks like reclaim/compaction is worth trying, but
3593 * sync compaction could be very expensive, so keep
25160354 3594 * using async compaction.
a8161d1e 3595 */
a5508cd8 3596 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3597 }
3598 }
23771235 3599
31a6c190 3600retry:
23771235 3601 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3602 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3603 wake_all_kswapds(order, ac);
3604
23771235
VB
3605 if (gfp_pfmemalloc_allowed(gfp_mask))
3606 alloc_flags = ALLOC_NO_WATERMARKS;
3607
e46e7b77
MG
3608 /*
3609 * Reset the zonelist iterators if memory policies can be ignored.
3610 * These allocations are high priority and system rather than user
3611 * orientated.
3612 */
23771235 3613 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3614 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3615 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3616 ac->high_zoneidx, ac->nodemask);
3617 }
3618
23771235 3619 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3620 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3621 if (page)
3622 goto got_pg;
1da177e4 3623
d0164adc
MG
3624 /* Caller is not willing to reclaim, we can't balance anything */
3625 if (!can_direct_reclaim) {
aed0a0e3 3626 /*
33d53103
MH
3627 * All existing users of the __GFP_NOFAIL are blockable, so warn
3628 * of any new users that actually allow this type of allocation
3629 * to fail.
aed0a0e3
DR
3630 */
3631 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3632 goto nopage;
aed0a0e3 3633 }
1da177e4 3634
341ce06f 3635 /* Avoid recursion of direct reclaim */
33d53103
MH
3636 if (current->flags & PF_MEMALLOC) {
3637 /*
3638 * __GFP_NOFAIL request from this context is rather bizarre
3639 * because we cannot reclaim anything and only can loop waiting
3640 * for somebody to do a work for us.
3641 */
3642 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3643 cond_resched();
3644 goto retry;
3645 }
341ce06f 3646 goto nopage;
33d53103 3647 }
341ce06f 3648
6583bb64
DR
3649 /* Avoid allocations with no watermarks from looping endlessly */
3650 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3651 goto nopage;
3652
a8161d1e
VB
3653
3654 /* Try direct reclaim and then allocating */
3655 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3656 &did_some_progress);
3657 if (page)
3658 goto got_pg;
3659
3660 /* Try direct compaction and then allocating */
a9263751 3661 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3662 compact_priority, &compact_result);
56de7263
MG
3663 if (page)
3664 goto got_pg;
75f30861 3665
9083905a
JW
3666 /* Do not loop if specifically requested */
3667 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3668 goto nopage;
9083905a 3669
0a0337e0
MH
3670 /*
3671 * Do not retry costly high order allocations unless they are
3672 * __GFP_REPEAT
3673 */
3674 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3675 goto nopage;
0a0337e0 3676
63f53dea
MH
3677 /* Make sure we know about allocations which stall for too long */
3678 if (time_after(jiffies, alloc_start + stall_timeout)) {
3679 warn_alloc(gfp_mask,
9e80c719 3680 "page allocation stalls for %ums, order:%u",
63f53dea
MH
3681 jiffies_to_msecs(jiffies-alloc_start), order);
3682 stall_timeout += 10 * HZ;
3683 }
3684
0a0337e0 3685 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3686 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3687 goto retry;
3688
33c2d214
MH
3689 /*
3690 * It doesn't make any sense to retry for the compaction if the order-0
3691 * reclaim is not able to make any progress because the current
3692 * implementation of the compaction depends on the sufficient amount
3693 * of free memory (see __compaction_suitable)
3694 */
3695 if (did_some_progress > 0 &&
86a294a8 3696 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3697 compact_result, &compact_priority,
d9436498 3698 &compaction_retries))
33c2d214
MH
3699 goto retry;
3700
9083905a
JW
3701 /* Reclaim has failed us, start killing things */
3702 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3703 if (page)
3704 goto got_pg;
3705
3706 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3707 if (did_some_progress) {
3708 no_progress_loops = 0;
9083905a 3709 goto retry;
0a0337e0 3710 }
9083905a 3711
1da177e4 3712nopage:
7877cdcc
MH
3713 warn_alloc(gfp_mask,
3714 "page allocation failure: order:%u", order);
1da177e4 3715got_pg:
072bb0aa 3716 return page;
1da177e4 3717}
11e33f6a
MG
3718
3719/*
3720 * This is the 'heart' of the zoned buddy allocator.
3721 */
3722struct page *
3723__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3724 struct zonelist *zonelist, nodemask_t *nodemask)
3725{
5bb1b169 3726 struct page *page;
cc9a6c87 3727 unsigned int cpuset_mems_cookie;
e6cbd7f2 3728 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3729 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3730 struct alloc_context ac = {
3731 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3732 .zonelist = zonelist,
a9263751
VB
3733 .nodemask = nodemask,
3734 .migratetype = gfpflags_to_migratetype(gfp_mask),
3735 };
11e33f6a 3736
682a3385 3737 if (cpusets_enabled()) {
83d4ca81 3738 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3739 alloc_flags |= ALLOC_CPUSET;
3740 if (!ac.nodemask)
3741 ac.nodemask = &cpuset_current_mems_allowed;
3742 }
3743
dcce284a
BH
3744 gfp_mask &= gfp_allowed_mask;
3745
11e33f6a
MG
3746 lockdep_trace_alloc(gfp_mask);
3747
d0164adc 3748 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3749
3750 if (should_fail_alloc_page(gfp_mask, order))
3751 return NULL;
3752
3753 /*
3754 * Check the zones suitable for the gfp_mask contain at least one
3755 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3756 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3757 */
3758 if (unlikely(!zonelist->_zonerefs->zone))
3759 return NULL;
3760
a9263751 3761 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3762 alloc_flags |= ALLOC_CMA;
3763
cc9a6c87 3764retry_cpuset:
d26914d1 3765 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3766
c9ab0c4f
MG
3767 /* Dirty zone balancing only done in the fast path */
3768 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3769
e46e7b77
MG
3770 /*
3771 * The preferred zone is used for statistics but crucially it is
3772 * also used as the starting point for the zonelist iterator. It
3773 * may get reset for allocations that ignore memory policies.
3774 */
c33d6c06
MG
3775 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3776 ac.high_zoneidx, ac.nodemask);
3777 if (!ac.preferred_zoneref) {
5bb1b169 3778 page = NULL;
4fcb0971 3779 goto no_zone;
5bb1b169
MG
3780 }
3781
5117f45d 3782 /* First allocation attempt */
a9263751 3783 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3784 if (likely(page))
3785 goto out;
11e33f6a 3786
4fcb0971
MG
3787 /*
3788 * Runtime PM, block IO and its error handling path can deadlock
3789 * because I/O on the device might not complete.
3790 */
3791 alloc_mask = memalloc_noio_flags(gfp_mask);
3792 ac.spread_dirty_pages = false;
23f086f9 3793
4741526b
MG
3794 /*
3795 * Restore the original nodemask if it was potentially replaced with
3796 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3797 */
3798 if (cpusets_enabled())
3799 ac.nodemask = nodemask;
4fcb0971 3800 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3801
4fcb0971 3802no_zone:
cc9a6c87
MG
3803 /*
3804 * When updating a task's mems_allowed, it is possible to race with
3805 * parallel threads in such a way that an allocation can fail while
3806 * the mask is being updated. If a page allocation is about to fail,
3807 * check if the cpuset changed during allocation and if so, retry.
3808 */
83d4ca81
MG
3809 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3810 alloc_mask = gfp_mask;
cc9a6c87 3811 goto retry_cpuset;
83d4ca81 3812 }
cc9a6c87 3813
4fcb0971 3814out:
c4159a75
VD
3815 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3816 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3817 __free_pages(page, order);
3818 page = NULL;
4949148a
VD
3819 }
3820
4fcb0971
MG
3821 if (kmemcheck_enabled && page)
3822 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3823
3824 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3825
11e33f6a 3826 return page;
1da177e4 3827}
d239171e 3828EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3829
3830/*
3831 * Common helper functions.
3832 */
920c7a5d 3833unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3834{
945a1113
AM
3835 struct page *page;
3836
3837 /*
3838 * __get_free_pages() returns a 32-bit address, which cannot represent
3839 * a highmem page
3840 */
3841 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3842
1da177e4
LT
3843 page = alloc_pages(gfp_mask, order);
3844 if (!page)
3845 return 0;
3846 return (unsigned long) page_address(page);
3847}
1da177e4
LT
3848EXPORT_SYMBOL(__get_free_pages);
3849
920c7a5d 3850unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3851{
945a1113 3852 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3853}
1da177e4
LT
3854EXPORT_SYMBOL(get_zeroed_page);
3855
920c7a5d 3856void __free_pages(struct page *page, unsigned int order)
1da177e4 3857{
b5810039 3858 if (put_page_testzero(page)) {
1da177e4 3859 if (order == 0)
b745bc85 3860 free_hot_cold_page(page, false);
1da177e4
LT
3861 else
3862 __free_pages_ok(page, order);
3863 }
3864}
3865
3866EXPORT_SYMBOL(__free_pages);
3867
920c7a5d 3868void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3869{
3870 if (addr != 0) {
725d704e 3871 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3872 __free_pages(virt_to_page((void *)addr), order);
3873 }
3874}
3875
3876EXPORT_SYMBOL(free_pages);
3877
b63ae8ca
AD
3878/*
3879 * Page Fragment:
3880 * An arbitrary-length arbitrary-offset area of memory which resides
3881 * within a 0 or higher order page. Multiple fragments within that page
3882 * are individually refcounted, in the page's reference counter.
3883 *
3884 * The page_frag functions below provide a simple allocation framework for
3885 * page fragments. This is used by the network stack and network device
3886 * drivers to provide a backing region of memory for use as either an
3887 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3888 */
3889static struct page *__page_frag_refill(struct page_frag_cache *nc,
3890 gfp_t gfp_mask)
3891{
3892 struct page *page = NULL;
3893 gfp_t gfp = gfp_mask;
3894
3895#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3896 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3897 __GFP_NOMEMALLOC;
3898 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3899 PAGE_FRAG_CACHE_MAX_ORDER);
3900 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3901#endif
3902 if (unlikely(!page))
3903 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3904
3905 nc->va = page ? page_address(page) : NULL;
3906
3907 return page;
3908}
3909
3910void *__alloc_page_frag(struct page_frag_cache *nc,
3911 unsigned int fragsz, gfp_t gfp_mask)
3912{
3913 unsigned int size = PAGE_SIZE;
3914 struct page *page;
3915 int offset;
3916
3917 if (unlikely(!nc->va)) {
3918refill:
3919 page = __page_frag_refill(nc, gfp_mask);
3920 if (!page)
3921 return NULL;
3922
3923#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3924 /* if size can vary use size else just use PAGE_SIZE */
3925 size = nc->size;
3926#endif
3927 /* Even if we own the page, we do not use atomic_set().
3928 * This would break get_page_unless_zero() users.
3929 */
fe896d18 3930 page_ref_add(page, size - 1);
b63ae8ca
AD
3931
3932 /* reset page count bias and offset to start of new frag */
2f064f34 3933 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3934 nc->pagecnt_bias = size;
3935 nc->offset = size;
3936 }
3937
3938 offset = nc->offset - fragsz;
3939 if (unlikely(offset < 0)) {
3940 page = virt_to_page(nc->va);
3941
fe896d18 3942 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3943 goto refill;
3944
3945#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3946 /* if size can vary use size else just use PAGE_SIZE */
3947 size = nc->size;
3948#endif
3949 /* OK, page count is 0, we can safely set it */
fe896d18 3950 set_page_count(page, size);
b63ae8ca
AD
3951
3952 /* reset page count bias and offset to start of new frag */
3953 nc->pagecnt_bias = size;
3954 offset = size - fragsz;
3955 }
3956
3957 nc->pagecnt_bias--;
3958 nc->offset = offset;
3959
3960 return nc->va + offset;
3961}
3962EXPORT_SYMBOL(__alloc_page_frag);
3963
3964/*
3965 * Frees a page fragment allocated out of either a compound or order 0 page.
3966 */
3967void __free_page_frag(void *addr)
3968{
3969 struct page *page = virt_to_head_page(addr);
3970
3971 if (unlikely(put_page_testzero(page)))
3972 __free_pages_ok(page, compound_order(page));
3973}
3974EXPORT_SYMBOL(__free_page_frag);
3975
d00181b9
KS
3976static void *make_alloc_exact(unsigned long addr, unsigned int order,
3977 size_t size)
ee85c2e1
AK
3978{
3979 if (addr) {
3980 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3981 unsigned long used = addr + PAGE_ALIGN(size);
3982
3983 split_page(virt_to_page((void *)addr), order);
3984 while (used < alloc_end) {
3985 free_page(used);
3986 used += PAGE_SIZE;
3987 }
3988 }
3989 return (void *)addr;
3990}
3991
2be0ffe2
TT
3992/**
3993 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3994 * @size: the number of bytes to allocate
3995 * @gfp_mask: GFP flags for the allocation
3996 *
3997 * This function is similar to alloc_pages(), except that it allocates the
3998 * minimum number of pages to satisfy the request. alloc_pages() can only
3999 * allocate memory in power-of-two pages.
4000 *
4001 * This function is also limited by MAX_ORDER.
4002 *
4003 * Memory allocated by this function must be released by free_pages_exact().
4004 */
4005void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4006{
4007 unsigned int order = get_order(size);
4008 unsigned long addr;
4009
4010 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4011 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4012}
4013EXPORT_SYMBOL(alloc_pages_exact);
4014
ee85c2e1
AK
4015/**
4016 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4017 * pages on a node.
b5e6ab58 4018 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4019 * @size: the number of bytes to allocate
4020 * @gfp_mask: GFP flags for the allocation
4021 *
4022 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4023 * back.
ee85c2e1 4024 */
e1931811 4025void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4026{
d00181b9 4027 unsigned int order = get_order(size);
ee85c2e1
AK
4028 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4029 if (!p)
4030 return NULL;
4031 return make_alloc_exact((unsigned long)page_address(p), order, size);
4032}
ee85c2e1 4033
2be0ffe2
TT
4034/**
4035 * free_pages_exact - release memory allocated via alloc_pages_exact()
4036 * @virt: the value returned by alloc_pages_exact.
4037 * @size: size of allocation, same value as passed to alloc_pages_exact().
4038 *
4039 * Release the memory allocated by a previous call to alloc_pages_exact.
4040 */
4041void free_pages_exact(void *virt, size_t size)
4042{
4043 unsigned long addr = (unsigned long)virt;
4044 unsigned long end = addr + PAGE_ALIGN(size);
4045
4046 while (addr < end) {
4047 free_page(addr);
4048 addr += PAGE_SIZE;
4049 }
4050}
4051EXPORT_SYMBOL(free_pages_exact);
4052
e0fb5815
ZY
4053/**
4054 * nr_free_zone_pages - count number of pages beyond high watermark
4055 * @offset: The zone index of the highest zone
4056 *
4057 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4058 * high watermark within all zones at or below a given zone index. For each
4059 * zone, the number of pages is calculated as:
834405c3 4060 * managed_pages - high_pages
e0fb5815 4061 */
ebec3862 4062static unsigned long nr_free_zone_pages(int offset)
1da177e4 4063{
dd1a239f 4064 struct zoneref *z;
54a6eb5c
MG
4065 struct zone *zone;
4066
e310fd43 4067 /* Just pick one node, since fallback list is circular */
ebec3862 4068 unsigned long sum = 0;
1da177e4 4069
0e88460d 4070 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4071
54a6eb5c 4072 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4073 unsigned long size = zone->managed_pages;
41858966 4074 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4075 if (size > high)
4076 sum += size - high;
1da177e4
LT
4077 }
4078
4079 return sum;
4080}
4081
e0fb5815
ZY
4082/**
4083 * nr_free_buffer_pages - count number of pages beyond high watermark
4084 *
4085 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4086 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4087 */
ebec3862 4088unsigned long nr_free_buffer_pages(void)
1da177e4 4089{
af4ca457 4090 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4091}
c2f1a551 4092EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4093
e0fb5815
ZY
4094/**
4095 * nr_free_pagecache_pages - count number of pages beyond high watermark
4096 *
4097 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4098 * high watermark within all zones.
1da177e4 4099 */
ebec3862 4100unsigned long nr_free_pagecache_pages(void)
1da177e4 4101{
2a1e274a 4102 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4103}
08e0f6a9
CL
4104
4105static inline void show_node(struct zone *zone)
1da177e4 4106{
e5adfffc 4107 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4108 printk("Node %d ", zone_to_nid(zone));
1da177e4 4109}
1da177e4 4110
d02bd27b
IR
4111long si_mem_available(void)
4112{
4113 long available;
4114 unsigned long pagecache;
4115 unsigned long wmark_low = 0;
4116 unsigned long pages[NR_LRU_LISTS];
4117 struct zone *zone;
4118 int lru;
4119
4120 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4121 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4122
4123 for_each_zone(zone)
4124 wmark_low += zone->watermark[WMARK_LOW];
4125
4126 /*
4127 * Estimate the amount of memory available for userspace allocations,
4128 * without causing swapping.
4129 */
4130 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4131
4132 /*
4133 * Not all the page cache can be freed, otherwise the system will
4134 * start swapping. Assume at least half of the page cache, or the
4135 * low watermark worth of cache, needs to stay.
4136 */
4137 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4138 pagecache -= min(pagecache / 2, wmark_low);
4139 available += pagecache;
4140
4141 /*
4142 * Part of the reclaimable slab consists of items that are in use,
4143 * and cannot be freed. Cap this estimate at the low watermark.
4144 */
4145 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4146 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4147
4148 if (available < 0)
4149 available = 0;
4150 return available;
4151}
4152EXPORT_SYMBOL_GPL(si_mem_available);
4153
1da177e4
LT
4154void si_meminfo(struct sysinfo *val)
4155{
4156 val->totalram = totalram_pages;
11fb9989 4157 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4158 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4159 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4160 val->totalhigh = totalhigh_pages;
4161 val->freehigh = nr_free_highpages();
1da177e4
LT
4162 val->mem_unit = PAGE_SIZE;
4163}
4164
4165EXPORT_SYMBOL(si_meminfo);
4166
4167#ifdef CONFIG_NUMA
4168void si_meminfo_node(struct sysinfo *val, int nid)
4169{
cdd91a77
JL
4170 int zone_type; /* needs to be signed */
4171 unsigned long managed_pages = 0;
fc2bd799
JK
4172 unsigned long managed_highpages = 0;
4173 unsigned long free_highpages = 0;
1da177e4
LT
4174 pg_data_t *pgdat = NODE_DATA(nid);
4175
cdd91a77
JL
4176 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4177 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4178 val->totalram = managed_pages;
11fb9989 4179 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4180 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4181#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4182 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4183 struct zone *zone = &pgdat->node_zones[zone_type];
4184
4185 if (is_highmem(zone)) {
4186 managed_highpages += zone->managed_pages;
4187 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4188 }
4189 }
4190 val->totalhigh = managed_highpages;
4191 val->freehigh = free_highpages;
98d2b0eb 4192#else
fc2bd799
JK
4193 val->totalhigh = managed_highpages;
4194 val->freehigh = free_highpages;
98d2b0eb 4195#endif
1da177e4
LT
4196 val->mem_unit = PAGE_SIZE;
4197}
4198#endif
4199
ddd588b5 4200/*
7bf02ea2
DR
4201 * Determine whether the node should be displayed or not, depending on whether
4202 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4203 */
7bf02ea2 4204bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4205{
4206 bool ret = false;
cc9a6c87 4207 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4208
4209 if (!(flags & SHOW_MEM_FILTER_NODES))
4210 goto out;
4211
cc9a6c87 4212 do {
d26914d1 4213 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4214 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4215 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4216out:
4217 return ret;
4218}
4219
1da177e4
LT
4220#define K(x) ((x) << (PAGE_SHIFT-10))
4221
377e4f16
RV
4222static void show_migration_types(unsigned char type)
4223{
4224 static const char types[MIGRATE_TYPES] = {
4225 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4226 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4227 [MIGRATE_RECLAIMABLE] = 'E',
4228 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4229#ifdef CONFIG_CMA
4230 [MIGRATE_CMA] = 'C',
4231#endif
194159fb 4232#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4233 [MIGRATE_ISOLATE] = 'I',
194159fb 4234#endif
377e4f16
RV
4235 };
4236 char tmp[MIGRATE_TYPES + 1];
4237 char *p = tmp;
4238 int i;
4239
4240 for (i = 0; i < MIGRATE_TYPES; i++) {
4241 if (type & (1 << i))
4242 *p++ = types[i];
4243 }
4244
4245 *p = '\0';
1f84a18f 4246 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4247}
4248
1da177e4
LT
4249/*
4250 * Show free area list (used inside shift_scroll-lock stuff)
4251 * We also calculate the percentage fragmentation. We do this by counting the
4252 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4253 *
4254 * Bits in @filter:
4255 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4256 * cpuset.
1da177e4 4257 */
7bf02ea2 4258void show_free_areas(unsigned int filter)
1da177e4 4259{
d1bfcdb8 4260 unsigned long free_pcp = 0;
c7241913 4261 int cpu;
1da177e4 4262 struct zone *zone;
599d0c95 4263 pg_data_t *pgdat;
1da177e4 4264
ee99c71c 4265 for_each_populated_zone(zone) {
7bf02ea2 4266 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4267 continue;
d1bfcdb8 4268
761b0677
KK
4269 for_each_online_cpu(cpu)
4270 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4271 }
4272
a731286d
KM
4273 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4274 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4275 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4276 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4277 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4278 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4279 global_node_page_state(NR_ACTIVE_ANON),
4280 global_node_page_state(NR_INACTIVE_ANON),
4281 global_node_page_state(NR_ISOLATED_ANON),
4282 global_node_page_state(NR_ACTIVE_FILE),
4283 global_node_page_state(NR_INACTIVE_FILE),
4284 global_node_page_state(NR_ISOLATED_FILE),
4285 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4286 global_node_page_state(NR_FILE_DIRTY),
4287 global_node_page_state(NR_WRITEBACK),
4288 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4289 global_page_state(NR_SLAB_RECLAIMABLE),
4290 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4291 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4292 global_node_page_state(NR_SHMEM),
a25700a5 4293 global_page_state(NR_PAGETABLE),
d1ce749a 4294 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4295 global_page_state(NR_FREE_PAGES),
4296 free_pcp,
d1ce749a 4297 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4298
599d0c95
MG
4299 for_each_online_pgdat(pgdat) {
4300 printk("Node %d"
4301 " active_anon:%lukB"
4302 " inactive_anon:%lukB"
4303 " active_file:%lukB"
4304 " inactive_file:%lukB"
4305 " unevictable:%lukB"
4306 " isolated(anon):%lukB"
4307 " isolated(file):%lukB"
50658e2e 4308 " mapped:%lukB"
11fb9989
MG
4309 " dirty:%lukB"
4310 " writeback:%lukB"
4311 " shmem:%lukB"
4312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4313 " shmem_thp: %lukB"
4314 " shmem_pmdmapped: %lukB"
4315 " anon_thp: %lukB"
4316#endif
4317 " writeback_tmp:%lukB"
4318 " unstable:%lukB"
33e077bd 4319 " pages_scanned:%lu"
599d0c95
MG
4320 " all_unreclaimable? %s"
4321 "\n",
4322 pgdat->node_id,
4323 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4324 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4325 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4326 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4327 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4328 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4329 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4330 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4331 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4332 K(node_page_state(pgdat, NR_WRITEBACK)),
4333#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4334 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4335 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4336 * HPAGE_PMD_NR),
4337 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4338#endif
4339 K(node_page_state(pgdat, NR_SHMEM)),
4340 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4341 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4342 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4343 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4344 }
4345
ee99c71c 4346 for_each_populated_zone(zone) {
1da177e4
LT
4347 int i;
4348
7bf02ea2 4349 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4350 continue;
d1bfcdb8
KK
4351
4352 free_pcp = 0;
4353 for_each_online_cpu(cpu)
4354 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4355
1da177e4 4356 show_node(zone);
1f84a18f
JP
4357 printk(KERN_CONT
4358 "%s"
1da177e4
LT
4359 " free:%lukB"
4360 " min:%lukB"
4361 " low:%lukB"
4362 " high:%lukB"
71c799f4
MK
4363 " active_anon:%lukB"
4364 " inactive_anon:%lukB"
4365 " active_file:%lukB"
4366 " inactive_file:%lukB"
4367 " unevictable:%lukB"
5a1c84b4 4368 " writepending:%lukB"
1da177e4 4369 " present:%lukB"
9feedc9d 4370 " managed:%lukB"
4a0aa73f 4371 " mlocked:%lukB"
4a0aa73f
KM
4372 " slab_reclaimable:%lukB"
4373 " slab_unreclaimable:%lukB"
c6a7f572 4374 " kernel_stack:%lukB"
4a0aa73f 4375 " pagetables:%lukB"
4a0aa73f 4376 " bounce:%lukB"
d1bfcdb8
KK
4377 " free_pcp:%lukB"
4378 " local_pcp:%ukB"
d1ce749a 4379 " free_cma:%lukB"
1da177e4
LT
4380 "\n",
4381 zone->name,
88f5acf8 4382 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4383 K(min_wmark_pages(zone)),
4384 K(low_wmark_pages(zone)),
4385 K(high_wmark_pages(zone)),
71c799f4
MK
4386 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4387 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4388 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4389 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4390 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4391 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4392 K(zone->present_pages),
9feedc9d 4393 K(zone->managed_pages),
4a0aa73f 4394 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4395 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4396 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4397 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4398 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4399 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4400 K(free_pcp),
4401 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4402 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4403 printk("lowmem_reserve[]:");
4404 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4405 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4406 printk(KERN_CONT "\n");
1da177e4
LT
4407 }
4408
ee99c71c 4409 for_each_populated_zone(zone) {
d00181b9
KS
4410 unsigned int order;
4411 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4412 unsigned char types[MAX_ORDER];
1da177e4 4413
7bf02ea2 4414 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4415 continue;
1da177e4 4416 show_node(zone);
1f84a18f 4417 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4418
4419 spin_lock_irqsave(&zone->lock, flags);
4420 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4421 struct free_area *area = &zone->free_area[order];
4422 int type;
4423
4424 nr[order] = area->nr_free;
8f9de51a 4425 total += nr[order] << order;
377e4f16
RV
4426
4427 types[order] = 0;
4428 for (type = 0; type < MIGRATE_TYPES; type++) {
4429 if (!list_empty(&area->free_list[type]))
4430 types[order] |= 1 << type;
4431 }
1da177e4
LT
4432 }
4433 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4434 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4435 printk(KERN_CONT "%lu*%lukB ",
4436 nr[order], K(1UL) << order);
377e4f16
RV
4437 if (nr[order])
4438 show_migration_types(types[order]);
4439 }
1f84a18f 4440 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4441 }
4442
949f7ec5
DR
4443 hugetlb_show_meminfo();
4444
11fb9989 4445 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4446
1da177e4
LT
4447 show_swap_cache_info();
4448}
4449
19770b32
MG
4450static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4451{
4452 zoneref->zone = zone;
4453 zoneref->zone_idx = zone_idx(zone);
4454}
4455
1da177e4
LT
4456/*
4457 * Builds allocation fallback zone lists.
1a93205b
CL
4458 *
4459 * Add all populated zones of a node to the zonelist.
1da177e4 4460 */
f0c0b2b8 4461static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4462 int nr_zones)
1da177e4 4463{
1a93205b 4464 struct zone *zone;
bc732f1d 4465 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4466
4467 do {
2f6726e5 4468 zone_type--;
070f8032 4469 zone = pgdat->node_zones + zone_type;
6aa303de 4470 if (managed_zone(zone)) {
dd1a239f
MG
4471 zoneref_set_zone(zone,
4472 &zonelist->_zonerefs[nr_zones++]);
070f8032 4473 check_highest_zone(zone_type);
1da177e4 4474 }
2f6726e5 4475 } while (zone_type);
bc732f1d 4476
070f8032 4477 return nr_zones;
1da177e4
LT
4478}
4479
f0c0b2b8
KH
4480
4481/*
4482 * zonelist_order:
4483 * 0 = automatic detection of better ordering.
4484 * 1 = order by ([node] distance, -zonetype)
4485 * 2 = order by (-zonetype, [node] distance)
4486 *
4487 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4488 * the same zonelist. So only NUMA can configure this param.
4489 */
4490#define ZONELIST_ORDER_DEFAULT 0
4491#define ZONELIST_ORDER_NODE 1
4492#define ZONELIST_ORDER_ZONE 2
4493
4494/* zonelist order in the kernel.
4495 * set_zonelist_order() will set this to NODE or ZONE.
4496 */
4497static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4498static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4499
4500
1da177e4 4501#ifdef CONFIG_NUMA
f0c0b2b8
KH
4502/* The value user specified ....changed by config */
4503static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4504/* string for sysctl */
4505#define NUMA_ZONELIST_ORDER_LEN 16
4506char numa_zonelist_order[16] = "default";
4507
4508/*
4509 * interface for configure zonelist ordering.
4510 * command line option "numa_zonelist_order"
4511 * = "[dD]efault - default, automatic configuration.
4512 * = "[nN]ode - order by node locality, then by zone within node
4513 * = "[zZ]one - order by zone, then by locality within zone
4514 */
4515
4516static int __parse_numa_zonelist_order(char *s)
4517{
4518 if (*s == 'd' || *s == 'D') {
4519 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4520 } else if (*s == 'n' || *s == 'N') {
4521 user_zonelist_order = ZONELIST_ORDER_NODE;
4522 } else if (*s == 'z' || *s == 'Z') {
4523 user_zonelist_order = ZONELIST_ORDER_ZONE;
4524 } else {
1170532b 4525 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4526 return -EINVAL;
4527 }
4528 return 0;
4529}
4530
4531static __init int setup_numa_zonelist_order(char *s)
4532{
ecb256f8
VL
4533 int ret;
4534
4535 if (!s)
4536 return 0;
4537
4538 ret = __parse_numa_zonelist_order(s);
4539 if (ret == 0)
4540 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4541
4542 return ret;
f0c0b2b8
KH
4543}
4544early_param("numa_zonelist_order", setup_numa_zonelist_order);
4545
4546/*
4547 * sysctl handler for numa_zonelist_order
4548 */
cccad5b9 4549int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4550 void __user *buffer, size_t *length,
f0c0b2b8
KH
4551 loff_t *ppos)
4552{
4553 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4554 int ret;
443c6f14 4555 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4556
443c6f14 4557 mutex_lock(&zl_order_mutex);
dacbde09
CG
4558 if (write) {
4559 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4560 ret = -EINVAL;
4561 goto out;
4562 }
4563 strcpy(saved_string, (char *)table->data);
4564 }
8d65af78 4565 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4566 if (ret)
443c6f14 4567 goto out;
f0c0b2b8
KH
4568 if (write) {
4569 int oldval = user_zonelist_order;
dacbde09
CG
4570
4571 ret = __parse_numa_zonelist_order((char *)table->data);
4572 if (ret) {
f0c0b2b8
KH
4573 /*
4574 * bogus value. restore saved string
4575 */
dacbde09 4576 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4577 NUMA_ZONELIST_ORDER_LEN);
4578 user_zonelist_order = oldval;
4eaf3f64
HL
4579 } else if (oldval != user_zonelist_order) {
4580 mutex_lock(&zonelists_mutex);
9adb62a5 4581 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4582 mutex_unlock(&zonelists_mutex);
4583 }
f0c0b2b8 4584 }
443c6f14
AK
4585out:
4586 mutex_unlock(&zl_order_mutex);
4587 return ret;
f0c0b2b8
KH
4588}
4589
4590
62bc62a8 4591#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4592static int node_load[MAX_NUMNODES];
4593
1da177e4 4594/**
4dc3b16b 4595 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4596 * @node: node whose fallback list we're appending
4597 * @used_node_mask: nodemask_t of already used nodes
4598 *
4599 * We use a number of factors to determine which is the next node that should
4600 * appear on a given node's fallback list. The node should not have appeared
4601 * already in @node's fallback list, and it should be the next closest node
4602 * according to the distance array (which contains arbitrary distance values
4603 * from each node to each node in the system), and should also prefer nodes
4604 * with no CPUs, since presumably they'll have very little allocation pressure
4605 * on them otherwise.
4606 * It returns -1 if no node is found.
4607 */
f0c0b2b8 4608static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4609{
4cf808eb 4610 int n, val;
1da177e4 4611 int min_val = INT_MAX;
00ef2d2f 4612 int best_node = NUMA_NO_NODE;
a70f7302 4613 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4614
4cf808eb
LT
4615 /* Use the local node if we haven't already */
4616 if (!node_isset(node, *used_node_mask)) {
4617 node_set(node, *used_node_mask);
4618 return node;
4619 }
1da177e4 4620
4b0ef1fe 4621 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4622
4623 /* Don't want a node to appear more than once */
4624 if (node_isset(n, *used_node_mask))
4625 continue;
4626
1da177e4
LT
4627 /* Use the distance array to find the distance */
4628 val = node_distance(node, n);
4629
4cf808eb
LT
4630 /* Penalize nodes under us ("prefer the next node") */
4631 val += (n < node);
4632
1da177e4 4633 /* Give preference to headless and unused nodes */
a70f7302
RR
4634 tmp = cpumask_of_node(n);
4635 if (!cpumask_empty(tmp))
1da177e4
LT
4636 val += PENALTY_FOR_NODE_WITH_CPUS;
4637
4638 /* Slight preference for less loaded node */
4639 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4640 val += node_load[n];
4641
4642 if (val < min_val) {
4643 min_val = val;
4644 best_node = n;
4645 }
4646 }
4647
4648 if (best_node >= 0)
4649 node_set(best_node, *used_node_mask);
4650
4651 return best_node;
4652}
4653
f0c0b2b8
KH
4654
4655/*
4656 * Build zonelists ordered by node and zones within node.
4657 * This results in maximum locality--normal zone overflows into local
4658 * DMA zone, if any--but risks exhausting DMA zone.
4659 */
4660static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4661{
f0c0b2b8 4662 int j;
1da177e4 4663 struct zonelist *zonelist;
f0c0b2b8 4664
c9634cf0 4665 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4666 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4667 ;
bc732f1d 4668 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4669 zonelist->_zonerefs[j].zone = NULL;
4670 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4671}
4672
523b9458
CL
4673/*
4674 * Build gfp_thisnode zonelists
4675 */
4676static void build_thisnode_zonelists(pg_data_t *pgdat)
4677{
523b9458
CL
4678 int j;
4679 struct zonelist *zonelist;
4680
c9634cf0 4681 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4682 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4683 zonelist->_zonerefs[j].zone = NULL;
4684 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4685}
4686
f0c0b2b8
KH
4687/*
4688 * Build zonelists ordered by zone and nodes within zones.
4689 * This results in conserving DMA zone[s] until all Normal memory is
4690 * exhausted, but results in overflowing to remote node while memory
4691 * may still exist in local DMA zone.
4692 */
4693static int node_order[MAX_NUMNODES];
4694
4695static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4696{
f0c0b2b8
KH
4697 int pos, j, node;
4698 int zone_type; /* needs to be signed */
4699 struct zone *z;
4700 struct zonelist *zonelist;
4701
c9634cf0 4702 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4703 pos = 0;
4704 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4705 for (j = 0; j < nr_nodes; j++) {
4706 node = node_order[j];
4707 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4708 if (managed_zone(z)) {
dd1a239f
MG
4709 zoneref_set_zone(z,
4710 &zonelist->_zonerefs[pos++]);
54a6eb5c 4711 check_highest_zone(zone_type);
f0c0b2b8
KH
4712 }
4713 }
f0c0b2b8 4714 }
dd1a239f
MG
4715 zonelist->_zonerefs[pos].zone = NULL;
4716 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4717}
4718
3193913c
MG
4719#if defined(CONFIG_64BIT)
4720/*
4721 * Devices that require DMA32/DMA are relatively rare and do not justify a
4722 * penalty to every machine in case the specialised case applies. Default
4723 * to Node-ordering on 64-bit NUMA machines
4724 */
4725static int default_zonelist_order(void)
4726{
4727 return ZONELIST_ORDER_NODE;
4728}
4729#else
4730/*
4731 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4732 * by the kernel. If processes running on node 0 deplete the low memory zone
4733 * then reclaim will occur more frequency increasing stalls and potentially
4734 * be easier to OOM if a large percentage of the zone is under writeback or
4735 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4736 * Hence, default to zone ordering on 32-bit.
4737 */
f0c0b2b8
KH
4738static int default_zonelist_order(void)
4739{
f0c0b2b8
KH
4740 return ZONELIST_ORDER_ZONE;
4741}
3193913c 4742#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4743
4744static void set_zonelist_order(void)
4745{
4746 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4747 current_zonelist_order = default_zonelist_order();
4748 else
4749 current_zonelist_order = user_zonelist_order;
4750}
4751
4752static void build_zonelists(pg_data_t *pgdat)
4753{
c00eb15a 4754 int i, node, load;
1da177e4 4755 nodemask_t used_mask;
f0c0b2b8
KH
4756 int local_node, prev_node;
4757 struct zonelist *zonelist;
d00181b9 4758 unsigned int order = current_zonelist_order;
1da177e4
LT
4759
4760 /* initialize zonelists */
523b9458 4761 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4762 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4763 zonelist->_zonerefs[0].zone = NULL;
4764 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4765 }
4766
4767 /* NUMA-aware ordering of nodes */
4768 local_node = pgdat->node_id;
62bc62a8 4769 load = nr_online_nodes;
1da177e4
LT
4770 prev_node = local_node;
4771 nodes_clear(used_mask);
f0c0b2b8 4772
f0c0b2b8 4773 memset(node_order, 0, sizeof(node_order));
c00eb15a 4774 i = 0;
f0c0b2b8 4775
1da177e4
LT
4776 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4777 /*
4778 * We don't want to pressure a particular node.
4779 * So adding penalty to the first node in same
4780 * distance group to make it round-robin.
4781 */
957f822a
DR
4782 if (node_distance(local_node, node) !=
4783 node_distance(local_node, prev_node))
f0c0b2b8
KH
4784 node_load[node] = load;
4785
1da177e4
LT
4786 prev_node = node;
4787 load--;
f0c0b2b8
KH
4788 if (order == ZONELIST_ORDER_NODE)
4789 build_zonelists_in_node_order(pgdat, node);
4790 else
c00eb15a 4791 node_order[i++] = node; /* remember order */
f0c0b2b8 4792 }
1da177e4 4793
f0c0b2b8
KH
4794 if (order == ZONELIST_ORDER_ZONE) {
4795 /* calculate node order -- i.e., DMA last! */
c00eb15a 4796 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4797 }
523b9458
CL
4798
4799 build_thisnode_zonelists(pgdat);
1da177e4
LT
4800}
4801
7aac7898
LS
4802#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4803/*
4804 * Return node id of node used for "local" allocations.
4805 * I.e., first node id of first zone in arg node's generic zonelist.
4806 * Used for initializing percpu 'numa_mem', which is used primarily
4807 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4808 */
4809int local_memory_node(int node)
4810{
c33d6c06 4811 struct zoneref *z;
7aac7898 4812
c33d6c06 4813 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4814 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4815 NULL);
4816 return z->zone->node;
7aac7898
LS
4817}
4818#endif
f0c0b2b8 4819
6423aa81
JK
4820static void setup_min_unmapped_ratio(void);
4821static void setup_min_slab_ratio(void);
1da177e4
LT
4822#else /* CONFIG_NUMA */
4823
f0c0b2b8
KH
4824static void set_zonelist_order(void)
4825{
4826 current_zonelist_order = ZONELIST_ORDER_ZONE;
4827}
4828
4829static void build_zonelists(pg_data_t *pgdat)
1da177e4 4830{
19655d34 4831 int node, local_node;
54a6eb5c
MG
4832 enum zone_type j;
4833 struct zonelist *zonelist;
1da177e4
LT
4834
4835 local_node = pgdat->node_id;
1da177e4 4836
c9634cf0 4837 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4838 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4839
54a6eb5c
MG
4840 /*
4841 * Now we build the zonelist so that it contains the zones
4842 * of all the other nodes.
4843 * We don't want to pressure a particular node, so when
4844 * building the zones for node N, we make sure that the
4845 * zones coming right after the local ones are those from
4846 * node N+1 (modulo N)
4847 */
4848 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4849 if (!node_online(node))
4850 continue;
bc732f1d 4851 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4852 }
54a6eb5c
MG
4853 for (node = 0; node < local_node; node++) {
4854 if (!node_online(node))
4855 continue;
bc732f1d 4856 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4857 }
4858
dd1a239f
MG
4859 zonelist->_zonerefs[j].zone = NULL;
4860 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4861}
4862
4863#endif /* CONFIG_NUMA */
4864
99dcc3e5
CL
4865/*
4866 * Boot pageset table. One per cpu which is going to be used for all
4867 * zones and all nodes. The parameters will be set in such a way
4868 * that an item put on a list will immediately be handed over to
4869 * the buddy list. This is safe since pageset manipulation is done
4870 * with interrupts disabled.
4871 *
4872 * The boot_pagesets must be kept even after bootup is complete for
4873 * unused processors and/or zones. They do play a role for bootstrapping
4874 * hotplugged processors.
4875 *
4876 * zoneinfo_show() and maybe other functions do
4877 * not check if the processor is online before following the pageset pointer.
4878 * Other parts of the kernel may not check if the zone is available.
4879 */
4880static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4881static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4882static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4883
4eaf3f64
HL
4884/*
4885 * Global mutex to protect against size modification of zonelists
4886 * as well as to serialize pageset setup for the new populated zone.
4887 */
4888DEFINE_MUTEX(zonelists_mutex);
4889
9b1a4d38 4890/* return values int ....just for stop_machine() */
4ed7e022 4891static int __build_all_zonelists(void *data)
1da177e4 4892{
6811378e 4893 int nid;
99dcc3e5 4894 int cpu;
9adb62a5 4895 pg_data_t *self = data;
9276b1bc 4896
7f9cfb31
BL
4897#ifdef CONFIG_NUMA
4898 memset(node_load, 0, sizeof(node_load));
4899#endif
9adb62a5
JL
4900
4901 if (self && !node_online(self->node_id)) {
4902 build_zonelists(self);
9adb62a5
JL
4903 }
4904
9276b1bc 4905 for_each_online_node(nid) {
7ea1530a
CL
4906 pg_data_t *pgdat = NODE_DATA(nid);
4907
4908 build_zonelists(pgdat);
9276b1bc 4909 }
99dcc3e5
CL
4910
4911 /*
4912 * Initialize the boot_pagesets that are going to be used
4913 * for bootstrapping processors. The real pagesets for
4914 * each zone will be allocated later when the per cpu
4915 * allocator is available.
4916 *
4917 * boot_pagesets are used also for bootstrapping offline
4918 * cpus if the system is already booted because the pagesets
4919 * are needed to initialize allocators on a specific cpu too.
4920 * F.e. the percpu allocator needs the page allocator which
4921 * needs the percpu allocator in order to allocate its pagesets
4922 * (a chicken-egg dilemma).
4923 */
7aac7898 4924 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4925 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4926
7aac7898
LS
4927#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4928 /*
4929 * We now know the "local memory node" for each node--
4930 * i.e., the node of the first zone in the generic zonelist.
4931 * Set up numa_mem percpu variable for on-line cpus. During
4932 * boot, only the boot cpu should be on-line; we'll init the
4933 * secondary cpus' numa_mem as they come on-line. During
4934 * node/memory hotplug, we'll fixup all on-line cpus.
4935 */
4936 if (cpu_online(cpu))
4937 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4938#endif
4939 }
4940
6811378e
YG
4941 return 0;
4942}
4943
061f67bc
RV
4944static noinline void __init
4945build_all_zonelists_init(void)
4946{
4947 __build_all_zonelists(NULL);
4948 mminit_verify_zonelist();
4949 cpuset_init_current_mems_allowed();
4950}
4951
4eaf3f64
HL
4952/*
4953 * Called with zonelists_mutex held always
4954 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4955 *
4956 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4957 * [we're only called with non-NULL zone through __meminit paths] and
4958 * (2) call of __init annotated helper build_all_zonelists_init
4959 * [protected by SYSTEM_BOOTING].
4eaf3f64 4960 */
9adb62a5 4961void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4962{
f0c0b2b8
KH
4963 set_zonelist_order();
4964
6811378e 4965 if (system_state == SYSTEM_BOOTING) {
061f67bc 4966 build_all_zonelists_init();
6811378e 4967 } else {
e9959f0f 4968#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4969 if (zone)
4970 setup_zone_pageset(zone);
e9959f0f 4971#endif
dd1895e2
CS
4972 /* we have to stop all cpus to guarantee there is no user
4973 of zonelist */
9adb62a5 4974 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4975 /* cpuset refresh routine should be here */
4976 }
bd1e22b8 4977 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4978 /*
4979 * Disable grouping by mobility if the number of pages in the
4980 * system is too low to allow the mechanism to work. It would be
4981 * more accurate, but expensive to check per-zone. This check is
4982 * made on memory-hotadd so a system can start with mobility
4983 * disabled and enable it later
4984 */
d9c23400 4985 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4986 page_group_by_mobility_disabled = 1;
4987 else
4988 page_group_by_mobility_disabled = 0;
4989
756a025f
JP
4990 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4991 nr_online_nodes,
4992 zonelist_order_name[current_zonelist_order],
4993 page_group_by_mobility_disabled ? "off" : "on",
4994 vm_total_pages);
f0c0b2b8 4995#ifdef CONFIG_NUMA
f88dfff5 4996 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4997#endif
1da177e4
LT
4998}
4999
1da177e4
LT
5000/*
5001 * Initially all pages are reserved - free ones are freed
5002 * up by free_all_bootmem() once the early boot process is
5003 * done. Non-atomic initialization, single-pass.
5004 */
c09b4240 5005void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5006 unsigned long start_pfn, enum memmap_context context)
1da177e4 5007{
4b94ffdc 5008 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5009 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5010 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5011 unsigned long pfn;
3a80a7fa 5012 unsigned long nr_initialised = 0;
342332e6
TI
5013#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5014 struct memblock_region *r = NULL, *tmp;
5015#endif
1da177e4 5016
22b31eec
HD
5017 if (highest_memmap_pfn < end_pfn - 1)
5018 highest_memmap_pfn = end_pfn - 1;
5019
4b94ffdc
DW
5020 /*
5021 * Honor reservation requested by the driver for this ZONE_DEVICE
5022 * memory
5023 */
5024 if (altmap && start_pfn == altmap->base_pfn)
5025 start_pfn += altmap->reserve;
5026
cbe8dd4a 5027 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5028 /*
b72d0ffb
AM
5029 * There can be holes in boot-time mem_map[]s handed to this
5030 * function. They do not exist on hotplugged memory.
a2f3aa02 5031 */
b72d0ffb
AM
5032 if (context != MEMMAP_EARLY)
5033 goto not_early;
5034
5035 if (!early_pfn_valid(pfn))
5036 continue;
5037 if (!early_pfn_in_nid(pfn, nid))
5038 continue;
5039 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5040 break;
342332e6
TI
5041
5042#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5043 /*
5044 * Check given memblock attribute by firmware which can affect
5045 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5046 * mirrored, it's an overlapped memmap init. skip it.
5047 */
5048 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5049 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5050 for_each_memblock(memory, tmp)
5051 if (pfn < memblock_region_memory_end_pfn(tmp))
5052 break;
5053 r = tmp;
5054 }
5055 if (pfn >= memblock_region_memory_base_pfn(r) &&
5056 memblock_is_mirror(r)) {
5057 /* already initialized as NORMAL */
5058 pfn = memblock_region_memory_end_pfn(r);
5059 continue;
342332e6 5060 }
a2f3aa02 5061 }
b72d0ffb 5062#endif
ac5d2539 5063
b72d0ffb 5064not_early:
ac5d2539
MG
5065 /*
5066 * Mark the block movable so that blocks are reserved for
5067 * movable at startup. This will force kernel allocations
5068 * to reserve their blocks rather than leaking throughout
5069 * the address space during boot when many long-lived
974a786e 5070 * kernel allocations are made.
ac5d2539
MG
5071 *
5072 * bitmap is created for zone's valid pfn range. but memmap
5073 * can be created for invalid pages (for alignment)
5074 * check here not to call set_pageblock_migratetype() against
5075 * pfn out of zone.
5076 */
5077 if (!(pfn & (pageblock_nr_pages - 1))) {
5078 struct page *page = pfn_to_page(pfn);
5079
5080 __init_single_page(page, pfn, zone, nid);
5081 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5082 } else {
5083 __init_single_pfn(pfn, zone, nid);
5084 }
1da177e4
LT
5085 }
5086}
5087
1e548deb 5088static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5089{
7aeb09f9 5090 unsigned int order, t;
b2a0ac88
MG
5091 for_each_migratetype_order(order, t) {
5092 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5093 zone->free_area[order].nr_free = 0;
5094 }
5095}
5096
5097#ifndef __HAVE_ARCH_MEMMAP_INIT
5098#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5099 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5100#endif
5101
7cd2b0a3 5102static int zone_batchsize(struct zone *zone)
e7c8d5c9 5103{
3a6be87f 5104#ifdef CONFIG_MMU
e7c8d5c9
CL
5105 int batch;
5106
5107 /*
5108 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5109 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5110 *
5111 * OK, so we don't know how big the cache is. So guess.
5112 */
b40da049 5113 batch = zone->managed_pages / 1024;
ba56e91c
SR
5114 if (batch * PAGE_SIZE > 512 * 1024)
5115 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5116 batch /= 4; /* We effectively *= 4 below */
5117 if (batch < 1)
5118 batch = 1;
5119
5120 /*
0ceaacc9
NP
5121 * Clamp the batch to a 2^n - 1 value. Having a power
5122 * of 2 value was found to be more likely to have
5123 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5124 *
0ceaacc9
NP
5125 * For example if 2 tasks are alternately allocating
5126 * batches of pages, one task can end up with a lot
5127 * of pages of one half of the possible page colors
5128 * and the other with pages of the other colors.
e7c8d5c9 5129 */
9155203a 5130 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5131
e7c8d5c9 5132 return batch;
3a6be87f
DH
5133
5134#else
5135 /* The deferral and batching of frees should be suppressed under NOMMU
5136 * conditions.
5137 *
5138 * The problem is that NOMMU needs to be able to allocate large chunks
5139 * of contiguous memory as there's no hardware page translation to
5140 * assemble apparent contiguous memory from discontiguous pages.
5141 *
5142 * Queueing large contiguous runs of pages for batching, however,
5143 * causes the pages to actually be freed in smaller chunks. As there
5144 * can be a significant delay between the individual batches being
5145 * recycled, this leads to the once large chunks of space being
5146 * fragmented and becoming unavailable for high-order allocations.
5147 */
5148 return 0;
5149#endif
e7c8d5c9
CL
5150}
5151
8d7a8fa9
CS
5152/*
5153 * pcp->high and pcp->batch values are related and dependent on one another:
5154 * ->batch must never be higher then ->high.
5155 * The following function updates them in a safe manner without read side
5156 * locking.
5157 *
5158 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5159 * those fields changing asynchronously (acording the the above rule).
5160 *
5161 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5162 * outside of boot time (or some other assurance that no concurrent updaters
5163 * exist).
5164 */
5165static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5166 unsigned long batch)
5167{
5168 /* start with a fail safe value for batch */
5169 pcp->batch = 1;
5170 smp_wmb();
5171
5172 /* Update high, then batch, in order */
5173 pcp->high = high;
5174 smp_wmb();
5175
5176 pcp->batch = batch;
5177}
5178
3664033c 5179/* a companion to pageset_set_high() */
4008bab7
CS
5180static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5181{
8d7a8fa9 5182 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5183}
5184
88c90dbc 5185static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5186{
5187 struct per_cpu_pages *pcp;
5f8dcc21 5188 int migratetype;
2caaad41 5189
1c6fe946
MD
5190 memset(p, 0, sizeof(*p));
5191
3dfa5721 5192 pcp = &p->pcp;
2caaad41 5193 pcp->count = 0;
5f8dcc21
MG
5194 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5195 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5196}
5197
88c90dbc
CS
5198static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5199{
5200 pageset_init(p);
5201 pageset_set_batch(p, batch);
5202}
5203
8ad4b1fb 5204/*
3664033c 5205 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5206 * to the value high for the pageset p.
5207 */
3664033c 5208static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5209 unsigned long high)
5210{
8d7a8fa9
CS
5211 unsigned long batch = max(1UL, high / 4);
5212 if ((high / 4) > (PAGE_SHIFT * 8))
5213 batch = PAGE_SHIFT * 8;
8ad4b1fb 5214
8d7a8fa9 5215 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5216}
5217
7cd2b0a3
DR
5218static void pageset_set_high_and_batch(struct zone *zone,
5219 struct per_cpu_pageset *pcp)
56cef2b8 5220{
56cef2b8 5221 if (percpu_pagelist_fraction)
3664033c 5222 pageset_set_high(pcp,
56cef2b8
CS
5223 (zone->managed_pages /
5224 percpu_pagelist_fraction));
5225 else
5226 pageset_set_batch(pcp, zone_batchsize(zone));
5227}
5228
169f6c19
CS
5229static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5230{
5231 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5232
5233 pageset_init(pcp);
5234 pageset_set_high_and_batch(zone, pcp);
5235}
5236
4ed7e022 5237static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5238{
5239 int cpu;
319774e2 5240 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5241 for_each_possible_cpu(cpu)
5242 zone_pageset_init(zone, cpu);
319774e2
WF
5243}
5244
2caaad41 5245/*
99dcc3e5
CL
5246 * Allocate per cpu pagesets and initialize them.
5247 * Before this call only boot pagesets were available.
e7c8d5c9 5248 */
99dcc3e5 5249void __init setup_per_cpu_pageset(void)
e7c8d5c9 5250{
b4911ea2 5251 struct pglist_data *pgdat;
99dcc3e5 5252 struct zone *zone;
e7c8d5c9 5253
319774e2
WF
5254 for_each_populated_zone(zone)
5255 setup_zone_pageset(zone);
b4911ea2
MG
5256
5257 for_each_online_pgdat(pgdat)
5258 pgdat->per_cpu_nodestats =
5259 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5260}
5261
c09b4240 5262static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5263{
99dcc3e5
CL
5264 /*
5265 * per cpu subsystem is not up at this point. The following code
5266 * relies on the ability of the linker to provide the
5267 * offset of a (static) per cpu variable into the per cpu area.
5268 */
5269 zone->pageset = &boot_pageset;
ed8ece2e 5270
b38a8725 5271 if (populated_zone(zone))
99dcc3e5
CL
5272 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5273 zone->name, zone->present_pages,
5274 zone_batchsize(zone));
ed8ece2e
DH
5275}
5276
4ed7e022 5277int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5278 unsigned long zone_start_pfn,
b171e409 5279 unsigned long size)
ed8ece2e
DH
5280{
5281 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5282
ed8ece2e
DH
5283 pgdat->nr_zones = zone_idx(zone) + 1;
5284
ed8ece2e
DH
5285 zone->zone_start_pfn = zone_start_pfn;
5286
708614e6
MG
5287 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5288 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5289 pgdat->node_id,
5290 (unsigned long)zone_idx(zone),
5291 zone_start_pfn, (zone_start_pfn + size));
5292
1e548deb 5293 zone_init_free_lists(zone);
9dcb8b68 5294 zone->initialized = 1;
718127cc
YG
5295
5296 return 0;
ed8ece2e
DH
5297}
5298
0ee332c1 5299#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5300#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5301
c713216d
MG
5302/*
5303 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5304 */
8a942fde
MG
5305int __meminit __early_pfn_to_nid(unsigned long pfn,
5306 struct mminit_pfnnid_cache *state)
c713216d 5307{
c13291a5 5308 unsigned long start_pfn, end_pfn;
e76b63f8 5309 int nid;
7c243c71 5310
8a942fde
MG
5311 if (state->last_start <= pfn && pfn < state->last_end)
5312 return state->last_nid;
c713216d 5313
e76b63f8
YL
5314 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5315 if (nid != -1) {
8a942fde
MG
5316 state->last_start = start_pfn;
5317 state->last_end = end_pfn;
5318 state->last_nid = nid;
e76b63f8
YL
5319 }
5320
5321 return nid;
c713216d
MG
5322}
5323#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5324
c713216d 5325/**
6782832e 5326 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5327 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5328 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5329 *
7d018176
ZZ
5330 * If an architecture guarantees that all ranges registered contain no holes
5331 * and may be freed, this this function may be used instead of calling
5332 * memblock_free_early_nid() manually.
c713216d 5333 */
c13291a5 5334void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5335{
c13291a5
TH
5336 unsigned long start_pfn, end_pfn;
5337 int i, this_nid;
edbe7d23 5338
c13291a5
TH
5339 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5340 start_pfn = min(start_pfn, max_low_pfn);
5341 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5342
c13291a5 5343 if (start_pfn < end_pfn)
6782832e
SS
5344 memblock_free_early_nid(PFN_PHYS(start_pfn),
5345 (end_pfn - start_pfn) << PAGE_SHIFT,
5346 this_nid);
edbe7d23 5347 }
edbe7d23 5348}
edbe7d23 5349
c713216d
MG
5350/**
5351 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5352 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5353 *
7d018176
ZZ
5354 * If an architecture guarantees that all ranges registered contain no holes and may
5355 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5356 */
5357void __init sparse_memory_present_with_active_regions(int nid)
5358{
c13291a5
TH
5359 unsigned long start_pfn, end_pfn;
5360 int i, this_nid;
c713216d 5361
c13291a5
TH
5362 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5363 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5364}
5365
5366/**
5367 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5368 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5369 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5370 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5371 *
5372 * It returns the start and end page frame of a node based on information
7d018176 5373 * provided by memblock_set_node(). If called for a node
c713216d 5374 * with no available memory, a warning is printed and the start and end
88ca3b94 5375 * PFNs will be 0.
c713216d 5376 */
a3142c8e 5377void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5378 unsigned long *start_pfn, unsigned long *end_pfn)
5379{
c13291a5 5380 unsigned long this_start_pfn, this_end_pfn;
c713216d 5381 int i;
c13291a5 5382
c713216d
MG
5383 *start_pfn = -1UL;
5384 *end_pfn = 0;
5385
c13291a5
TH
5386 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5387 *start_pfn = min(*start_pfn, this_start_pfn);
5388 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5389 }
5390
633c0666 5391 if (*start_pfn == -1UL)
c713216d 5392 *start_pfn = 0;
c713216d
MG
5393}
5394
2a1e274a
MG
5395/*
5396 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5397 * assumption is made that zones within a node are ordered in monotonic
5398 * increasing memory addresses so that the "highest" populated zone is used
5399 */
b69a7288 5400static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5401{
5402 int zone_index;
5403 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5404 if (zone_index == ZONE_MOVABLE)
5405 continue;
5406
5407 if (arch_zone_highest_possible_pfn[zone_index] >
5408 arch_zone_lowest_possible_pfn[zone_index])
5409 break;
5410 }
5411
5412 VM_BUG_ON(zone_index == -1);
5413 movable_zone = zone_index;
5414}
5415
5416/*
5417 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5418 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5419 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5420 * in each node depending on the size of each node and how evenly kernelcore
5421 * is distributed. This helper function adjusts the zone ranges
5422 * provided by the architecture for a given node by using the end of the
5423 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5424 * zones within a node are in order of monotonic increases memory addresses
5425 */
b69a7288 5426static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5427 unsigned long zone_type,
5428 unsigned long node_start_pfn,
5429 unsigned long node_end_pfn,
5430 unsigned long *zone_start_pfn,
5431 unsigned long *zone_end_pfn)
5432{
5433 /* Only adjust if ZONE_MOVABLE is on this node */
5434 if (zone_movable_pfn[nid]) {
5435 /* Size ZONE_MOVABLE */
5436 if (zone_type == ZONE_MOVABLE) {
5437 *zone_start_pfn = zone_movable_pfn[nid];
5438 *zone_end_pfn = min(node_end_pfn,
5439 arch_zone_highest_possible_pfn[movable_zone]);
5440
e506b996
XQ
5441 /* Adjust for ZONE_MOVABLE starting within this range */
5442 } else if (!mirrored_kernelcore &&
5443 *zone_start_pfn < zone_movable_pfn[nid] &&
5444 *zone_end_pfn > zone_movable_pfn[nid]) {
5445 *zone_end_pfn = zone_movable_pfn[nid];
5446
2a1e274a
MG
5447 /* Check if this whole range is within ZONE_MOVABLE */
5448 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5449 *zone_start_pfn = *zone_end_pfn;
5450 }
5451}
5452
c713216d
MG
5453/*
5454 * Return the number of pages a zone spans in a node, including holes
5455 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5456 */
6ea6e688 5457static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5458 unsigned long zone_type,
7960aedd
ZY
5459 unsigned long node_start_pfn,
5460 unsigned long node_end_pfn,
d91749c1
TI
5461 unsigned long *zone_start_pfn,
5462 unsigned long *zone_end_pfn,
c713216d
MG
5463 unsigned long *ignored)
5464{
b5685e92 5465 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5466 if (!node_start_pfn && !node_end_pfn)
5467 return 0;
5468
7960aedd 5469 /* Get the start and end of the zone */
d91749c1
TI
5470 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5471 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5472 adjust_zone_range_for_zone_movable(nid, zone_type,
5473 node_start_pfn, node_end_pfn,
d91749c1 5474 zone_start_pfn, zone_end_pfn);
c713216d
MG
5475
5476 /* Check that this node has pages within the zone's required range */
d91749c1 5477 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5478 return 0;
5479
5480 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5481 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5482 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5483
5484 /* Return the spanned pages */
d91749c1 5485 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5486}
5487
5488/*
5489 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5490 * then all holes in the requested range will be accounted for.
c713216d 5491 */
32996250 5492unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5493 unsigned long range_start_pfn,
5494 unsigned long range_end_pfn)
5495{
96e907d1
TH
5496 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5497 unsigned long start_pfn, end_pfn;
5498 int i;
c713216d 5499
96e907d1
TH
5500 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5501 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5502 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5503 nr_absent -= end_pfn - start_pfn;
c713216d 5504 }
96e907d1 5505 return nr_absent;
c713216d
MG
5506}
5507
5508/**
5509 * absent_pages_in_range - Return number of page frames in holes within a range
5510 * @start_pfn: The start PFN to start searching for holes
5511 * @end_pfn: The end PFN to stop searching for holes
5512 *
88ca3b94 5513 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5514 */
5515unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5516 unsigned long end_pfn)
5517{
5518 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5519}
5520
5521/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5522static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5523 unsigned long zone_type,
7960aedd
ZY
5524 unsigned long node_start_pfn,
5525 unsigned long node_end_pfn,
c713216d
MG
5526 unsigned long *ignored)
5527{
96e907d1
TH
5528 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5529 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5530 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5531 unsigned long nr_absent;
9c7cd687 5532
b5685e92 5533 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5534 if (!node_start_pfn && !node_end_pfn)
5535 return 0;
5536
96e907d1
TH
5537 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5538 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5539
2a1e274a
MG
5540 adjust_zone_range_for_zone_movable(nid, zone_type,
5541 node_start_pfn, node_end_pfn,
5542 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5543 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5544
5545 /*
5546 * ZONE_MOVABLE handling.
5547 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5548 * and vice versa.
5549 */
e506b996
XQ
5550 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5551 unsigned long start_pfn, end_pfn;
5552 struct memblock_region *r;
5553
5554 for_each_memblock(memory, r) {
5555 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5556 zone_start_pfn, zone_end_pfn);
5557 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5558 zone_start_pfn, zone_end_pfn);
5559
5560 if (zone_type == ZONE_MOVABLE &&
5561 memblock_is_mirror(r))
5562 nr_absent += end_pfn - start_pfn;
5563
5564 if (zone_type == ZONE_NORMAL &&
5565 !memblock_is_mirror(r))
5566 nr_absent += end_pfn - start_pfn;
342332e6
TI
5567 }
5568 }
5569
5570 return nr_absent;
c713216d 5571}
0e0b864e 5572
0ee332c1 5573#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5574static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5575 unsigned long zone_type,
7960aedd
ZY
5576 unsigned long node_start_pfn,
5577 unsigned long node_end_pfn,
d91749c1
TI
5578 unsigned long *zone_start_pfn,
5579 unsigned long *zone_end_pfn,
c713216d
MG
5580 unsigned long *zones_size)
5581{
d91749c1
TI
5582 unsigned int zone;
5583
5584 *zone_start_pfn = node_start_pfn;
5585 for (zone = 0; zone < zone_type; zone++)
5586 *zone_start_pfn += zones_size[zone];
5587
5588 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5589
c713216d
MG
5590 return zones_size[zone_type];
5591}
5592
6ea6e688 5593static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5594 unsigned long zone_type,
7960aedd
ZY
5595 unsigned long node_start_pfn,
5596 unsigned long node_end_pfn,
c713216d
MG
5597 unsigned long *zholes_size)
5598{
5599 if (!zholes_size)
5600 return 0;
5601
5602 return zholes_size[zone_type];
5603}
20e6926d 5604
0ee332c1 5605#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5606
a3142c8e 5607static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5608 unsigned long node_start_pfn,
5609 unsigned long node_end_pfn,
5610 unsigned long *zones_size,
5611 unsigned long *zholes_size)
c713216d 5612{
febd5949 5613 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5614 enum zone_type i;
5615
febd5949
GZ
5616 for (i = 0; i < MAX_NR_ZONES; i++) {
5617 struct zone *zone = pgdat->node_zones + i;
d91749c1 5618 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5619 unsigned long size, real_size;
c713216d 5620
febd5949
GZ
5621 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5622 node_start_pfn,
5623 node_end_pfn,
d91749c1
TI
5624 &zone_start_pfn,
5625 &zone_end_pfn,
febd5949
GZ
5626 zones_size);
5627 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5628 node_start_pfn, node_end_pfn,
5629 zholes_size);
d91749c1
TI
5630 if (size)
5631 zone->zone_start_pfn = zone_start_pfn;
5632 else
5633 zone->zone_start_pfn = 0;
febd5949
GZ
5634 zone->spanned_pages = size;
5635 zone->present_pages = real_size;
5636
5637 totalpages += size;
5638 realtotalpages += real_size;
5639 }
5640
5641 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5642 pgdat->node_present_pages = realtotalpages;
5643 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5644 realtotalpages);
5645}
5646
835c134e
MG
5647#ifndef CONFIG_SPARSEMEM
5648/*
5649 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5650 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5651 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5652 * round what is now in bits to nearest long in bits, then return it in
5653 * bytes.
5654 */
7c45512d 5655static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5656{
5657 unsigned long usemapsize;
5658
7c45512d 5659 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5660 usemapsize = roundup(zonesize, pageblock_nr_pages);
5661 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5662 usemapsize *= NR_PAGEBLOCK_BITS;
5663 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5664
5665 return usemapsize / 8;
5666}
5667
5668static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5669 struct zone *zone,
5670 unsigned long zone_start_pfn,
5671 unsigned long zonesize)
835c134e 5672{
7c45512d 5673 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5674 zone->pageblock_flags = NULL;
58a01a45 5675 if (usemapsize)
6782832e
SS
5676 zone->pageblock_flags =
5677 memblock_virt_alloc_node_nopanic(usemapsize,
5678 pgdat->node_id);
835c134e
MG
5679}
5680#else
7c45512d
LT
5681static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5682 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5683#endif /* CONFIG_SPARSEMEM */
5684
d9c23400 5685#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5686
d9c23400 5687/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5688void __paginginit set_pageblock_order(void)
d9c23400 5689{
955c1cd7
AM
5690 unsigned int order;
5691
d9c23400
MG
5692 /* Check that pageblock_nr_pages has not already been setup */
5693 if (pageblock_order)
5694 return;
5695
955c1cd7
AM
5696 if (HPAGE_SHIFT > PAGE_SHIFT)
5697 order = HUGETLB_PAGE_ORDER;
5698 else
5699 order = MAX_ORDER - 1;
5700
d9c23400
MG
5701 /*
5702 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5703 * This value may be variable depending on boot parameters on IA64 and
5704 * powerpc.
d9c23400
MG
5705 */
5706 pageblock_order = order;
5707}
5708#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5709
ba72cb8c
MG
5710/*
5711 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5712 * is unused as pageblock_order is set at compile-time. See
5713 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5714 * the kernel config
ba72cb8c 5715 */
15ca220e 5716void __paginginit set_pageblock_order(void)
ba72cb8c 5717{
ba72cb8c 5718}
d9c23400
MG
5719
5720#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5721
01cefaef
JL
5722static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5723 unsigned long present_pages)
5724{
5725 unsigned long pages = spanned_pages;
5726
5727 /*
5728 * Provide a more accurate estimation if there are holes within
5729 * the zone and SPARSEMEM is in use. If there are holes within the
5730 * zone, each populated memory region may cost us one or two extra
5731 * memmap pages due to alignment because memmap pages for each
5732 * populated regions may not naturally algined on page boundary.
5733 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5734 */
5735 if (spanned_pages > present_pages + (present_pages >> 4) &&
5736 IS_ENABLED(CONFIG_SPARSEMEM))
5737 pages = present_pages;
5738
5739 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5740}
5741
1da177e4
LT
5742/*
5743 * Set up the zone data structures:
5744 * - mark all pages reserved
5745 * - mark all memory queues empty
5746 * - clear the memory bitmaps
6527af5d
MK
5747 *
5748 * NOTE: pgdat should get zeroed by caller.
1da177e4 5749 */
7f3eb55b 5750static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5751{
2f1b6248 5752 enum zone_type j;
ed8ece2e 5753 int nid = pgdat->node_id;
718127cc 5754 int ret;
1da177e4 5755
208d54e5 5756 pgdat_resize_init(pgdat);
8177a420
AA
5757#ifdef CONFIG_NUMA_BALANCING
5758 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5759 pgdat->numabalancing_migrate_nr_pages = 0;
5760 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5761#endif
5762#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5763 spin_lock_init(&pgdat->split_queue_lock);
5764 INIT_LIST_HEAD(&pgdat->split_queue);
5765 pgdat->split_queue_len = 0;
8177a420 5766#endif
1da177e4 5767 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5768 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5769#ifdef CONFIG_COMPACTION
5770 init_waitqueue_head(&pgdat->kcompactd_wait);
5771#endif
eefa864b 5772 pgdat_page_ext_init(pgdat);
a52633d8 5773 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5774 lruvec_init(node_lruvec(pgdat));
5f63b720 5775
1da177e4
LT
5776 for (j = 0; j < MAX_NR_ZONES; j++) {
5777 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5778 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5779 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5780
febd5949
GZ
5781 size = zone->spanned_pages;
5782 realsize = freesize = zone->present_pages;
1da177e4 5783
0e0b864e 5784 /*
9feedc9d 5785 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5786 * is used by this zone for memmap. This affects the watermark
5787 * and per-cpu initialisations
5788 */
01cefaef 5789 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5790 if (!is_highmem_idx(j)) {
5791 if (freesize >= memmap_pages) {
5792 freesize -= memmap_pages;
5793 if (memmap_pages)
5794 printk(KERN_DEBUG
5795 " %s zone: %lu pages used for memmap\n",
5796 zone_names[j], memmap_pages);
5797 } else
1170532b 5798 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5799 zone_names[j], memmap_pages, freesize);
5800 }
0e0b864e 5801
6267276f 5802 /* Account for reserved pages */
9feedc9d
JL
5803 if (j == 0 && freesize > dma_reserve) {
5804 freesize -= dma_reserve;
d903ef9f 5805 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5806 zone_names[0], dma_reserve);
0e0b864e
MG
5807 }
5808
98d2b0eb 5809 if (!is_highmem_idx(j))
9feedc9d 5810 nr_kernel_pages += freesize;
01cefaef
JL
5811 /* Charge for highmem memmap if there are enough kernel pages */
5812 else if (nr_kernel_pages > memmap_pages * 2)
5813 nr_kernel_pages -= memmap_pages;
9feedc9d 5814 nr_all_pages += freesize;
1da177e4 5815
9feedc9d
JL
5816 /*
5817 * Set an approximate value for lowmem here, it will be adjusted
5818 * when the bootmem allocator frees pages into the buddy system.
5819 * And all highmem pages will be managed by the buddy system.
5820 */
5821 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5822#ifdef CONFIG_NUMA
d5f541ed 5823 zone->node = nid;
9614634f 5824#endif
1da177e4 5825 zone->name = zone_names[j];
a52633d8 5826 zone->zone_pgdat = pgdat;
1da177e4 5827 spin_lock_init(&zone->lock);
bdc8cb98 5828 zone_seqlock_init(zone);
ed8ece2e 5829 zone_pcp_init(zone);
81c0a2bb 5830
1da177e4
LT
5831 if (!size)
5832 continue;
5833
955c1cd7 5834 set_pageblock_order();
7c45512d 5835 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5836 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5837 BUG_ON(ret);
76cdd58e 5838 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5839 }
5840}
5841
bd721ea7 5842static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5843{
b0aeba74 5844 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5845 unsigned long __maybe_unused offset = 0;
5846
1da177e4
LT
5847 /* Skip empty nodes */
5848 if (!pgdat->node_spanned_pages)
5849 return;
5850
d41dee36 5851#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5852 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5853 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5854 /* ia64 gets its own node_mem_map, before this, without bootmem */
5855 if (!pgdat->node_mem_map) {
b0aeba74 5856 unsigned long size, end;
d41dee36
AW
5857 struct page *map;
5858
e984bb43
BP
5859 /*
5860 * The zone's endpoints aren't required to be MAX_ORDER
5861 * aligned but the node_mem_map endpoints must be in order
5862 * for the buddy allocator to function correctly.
5863 */
108bcc96 5864 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5865 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5866 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5867 map = alloc_remap(pgdat->node_id, size);
5868 if (!map)
6782832e
SS
5869 map = memblock_virt_alloc_node_nopanic(size,
5870 pgdat->node_id);
a1c34a3b 5871 pgdat->node_mem_map = map + offset;
1da177e4 5872 }
12d810c1 5873#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5874 /*
5875 * With no DISCONTIG, the global mem_map is just set as node 0's
5876 */
c713216d 5877 if (pgdat == NODE_DATA(0)) {
1da177e4 5878 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5879#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5880 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5881 mem_map -= offset;
0ee332c1 5882#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5883 }
1da177e4 5884#endif
d41dee36 5885#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5886}
5887
9109fb7b
JW
5888void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5889 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5890{
9109fb7b 5891 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5892 unsigned long start_pfn = 0;
5893 unsigned long end_pfn = 0;
9109fb7b 5894
88fdf75d 5895 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5896 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5897
3a80a7fa 5898 reset_deferred_meminit(pgdat);
1da177e4
LT
5899 pgdat->node_id = nid;
5900 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5901 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5902#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5903 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5904 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5905 (u64)start_pfn << PAGE_SHIFT,
5906 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5907#else
5908 start_pfn = node_start_pfn;
7960aedd
ZY
5909#endif
5910 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5911 zones_size, zholes_size);
1da177e4
LT
5912
5913 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5914#ifdef CONFIG_FLAT_NODE_MEM_MAP
5915 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5916 nid, (unsigned long)pgdat,
5917 (unsigned long)pgdat->node_mem_map);
5918#endif
1da177e4 5919
7f3eb55b 5920 free_area_init_core(pgdat);
1da177e4
LT
5921}
5922
0ee332c1 5923#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5924
5925#if MAX_NUMNODES > 1
5926/*
5927 * Figure out the number of possible node ids.
5928 */
f9872caf 5929void __init setup_nr_node_ids(void)
418508c1 5930{
904a9553 5931 unsigned int highest;
418508c1 5932
904a9553 5933 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5934 nr_node_ids = highest + 1;
5935}
418508c1
MS
5936#endif
5937
1e01979c
TH
5938/**
5939 * node_map_pfn_alignment - determine the maximum internode alignment
5940 *
5941 * This function should be called after node map is populated and sorted.
5942 * It calculates the maximum power of two alignment which can distinguish
5943 * all the nodes.
5944 *
5945 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5946 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5947 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5948 * shifted, 1GiB is enough and this function will indicate so.
5949 *
5950 * This is used to test whether pfn -> nid mapping of the chosen memory
5951 * model has fine enough granularity to avoid incorrect mapping for the
5952 * populated node map.
5953 *
5954 * Returns the determined alignment in pfn's. 0 if there is no alignment
5955 * requirement (single node).
5956 */
5957unsigned long __init node_map_pfn_alignment(void)
5958{
5959 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5960 unsigned long start, end, mask;
1e01979c 5961 int last_nid = -1;
c13291a5 5962 int i, nid;
1e01979c 5963
c13291a5 5964 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5965 if (!start || last_nid < 0 || last_nid == nid) {
5966 last_nid = nid;
5967 last_end = end;
5968 continue;
5969 }
5970
5971 /*
5972 * Start with a mask granular enough to pin-point to the
5973 * start pfn and tick off bits one-by-one until it becomes
5974 * too coarse to separate the current node from the last.
5975 */
5976 mask = ~((1 << __ffs(start)) - 1);
5977 while (mask && last_end <= (start & (mask << 1)))
5978 mask <<= 1;
5979
5980 /* accumulate all internode masks */
5981 accl_mask |= mask;
5982 }
5983
5984 /* convert mask to number of pages */
5985 return ~accl_mask + 1;
5986}
5987
a6af2bc3 5988/* Find the lowest pfn for a node */
b69a7288 5989static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5990{
a6af2bc3 5991 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5992 unsigned long start_pfn;
5993 int i;
1abbfb41 5994
c13291a5
TH
5995 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5996 min_pfn = min(min_pfn, start_pfn);
c713216d 5997
a6af2bc3 5998 if (min_pfn == ULONG_MAX) {
1170532b 5999 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6000 return 0;
6001 }
6002
6003 return min_pfn;
c713216d
MG
6004}
6005
6006/**
6007 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6008 *
6009 * It returns the minimum PFN based on information provided via
7d018176 6010 * memblock_set_node().
c713216d
MG
6011 */
6012unsigned long __init find_min_pfn_with_active_regions(void)
6013{
6014 return find_min_pfn_for_node(MAX_NUMNODES);
6015}
6016
37b07e41
LS
6017/*
6018 * early_calculate_totalpages()
6019 * Sum pages in active regions for movable zone.
4b0ef1fe 6020 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6021 */
484f51f8 6022static unsigned long __init early_calculate_totalpages(void)
7e63efef 6023{
7e63efef 6024 unsigned long totalpages = 0;
c13291a5
TH
6025 unsigned long start_pfn, end_pfn;
6026 int i, nid;
6027
6028 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6029 unsigned long pages = end_pfn - start_pfn;
7e63efef 6030
37b07e41
LS
6031 totalpages += pages;
6032 if (pages)
4b0ef1fe 6033 node_set_state(nid, N_MEMORY);
37b07e41 6034 }
b8af2941 6035 return totalpages;
7e63efef
MG
6036}
6037
2a1e274a
MG
6038/*
6039 * Find the PFN the Movable zone begins in each node. Kernel memory
6040 * is spread evenly between nodes as long as the nodes have enough
6041 * memory. When they don't, some nodes will have more kernelcore than
6042 * others
6043 */
b224ef85 6044static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6045{
6046 int i, nid;
6047 unsigned long usable_startpfn;
6048 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6049 /* save the state before borrow the nodemask */
4b0ef1fe 6050 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6051 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6052 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6053 struct memblock_region *r;
b2f3eebe
TC
6054
6055 /* Need to find movable_zone earlier when movable_node is specified. */
6056 find_usable_zone_for_movable();
6057
6058 /*
6059 * If movable_node is specified, ignore kernelcore and movablecore
6060 * options.
6061 */
6062 if (movable_node_is_enabled()) {
136199f0
EM
6063 for_each_memblock(memory, r) {
6064 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6065 continue;
6066
136199f0 6067 nid = r->nid;
b2f3eebe 6068
136199f0 6069 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6070 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6071 min(usable_startpfn, zone_movable_pfn[nid]) :
6072 usable_startpfn;
6073 }
6074
6075 goto out2;
6076 }
2a1e274a 6077
342332e6
TI
6078 /*
6079 * If kernelcore=mirror is specified, ignore movablecore option
6080 */
6081 if (mirrored_kernelcore) {
6082 bool mem_below_4gb_not_mirrored = false;
6083
6084 for_each_memblock(memory, r) {
6085 if (memblock_is_mirror(r))
6086 continue;
6087
6088 nid = r->nid;
6089
6090 usable_startpfn = memblock_region_memory_base_pfn(r);
6091
6092 if (usable_startpfn < 0x100000) {
6093 mem_below_4gb_not_mirrored = true;
6094 continue;
6095 }
6096
6097 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6098 min(usable_startpfn, zone_movable_pfn[nid]) :
6099 usable_startpfn;
6100 }
6101
6102 if (mem_below_4gb_not_mirrored)
6103 pr_warn("This configuration results in unmirrored kernel memory.");
6104
6105 goto out2;
6106 }
6107
7e63efef 6108 /*
b2f3eebe 6109 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6110 * kernelcore that corresponds so that memory usable for
6111 * any allocation type is evenly spread. If both kernelcore
6112 * and movablecore are specified, then the value of kernelcore
6113 * will be used for required_kernelcore if it's greater than
6114 * what movablecore would have allowed.
6115 */
6116 if (required_movablecore) {
7e63efef
MG
6117 unsigned long corepages;
6118
6119 /*
6120 * Round-up so that ZONE_MOVABLE is at least as large as what
6121 * was requested by the user
6122 */
6123 required_movablecore =
6124 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6125 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6126 corepages = totalpages - required_movablecore;
6127
6128 required_kernelcore = max(required_kernelcore, corepages);
6129 }
6130
bde304bd
XQ
6131 /*
6132 * If kernelcore was not specified or kernelcore size is larger
6133 * than totalpages, there is no ZONE_MOVABLE.
6134 */
6135 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6136 goto out;
2a1e274a
MG
6137
6138 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6139 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6140
6141restart:
6142 /* Spread kernelcore memory as evenly as possible throughout nodes */
6143 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6144 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6145 unsigned long start_pfn, end_pfn;
6146
2a1e274a
MG
6147 /*
6148 * Recalculate kernelcore_node if the division per node
6149 * now exceeds what is necessary to satisfy the requested
6150 * amount of memory for the kernel
6151 */
6152 if (required_kernelcore < kernelcore_node)
6153 kernelcore_node = required_kernelcore / usable_nodes;
6154
6155 /*
6156 * As the map is walked, we track how much memory is usable
6157 * by the kernel using kernelcore_remaining. When it is
6158 * 0, the rest of the node is usable by ZONE_MOVABLE
6159 */
6160 kernelcore_remaining = kernelcore_node;
6161
6162 /* Go through each range of PFNs within this node */
c13291a5 6163 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6164 unsigned long size_pages;
6165
c13291a5 6166 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6167 if (start_pfn >= end_pfn)
6168 continue;
6169
6170 /* Account for what is only usable for kernelcore */
6171 if (start_pfn < usable_startpfn) {
6172 unsigned long kernel_pages;
6173 kernel_pages = min(end_pfn, usable_startpfn)
6174 - start_pfn;
6175
6176 kernelcore_remaining -= min(kernel_pages,
6177 kernelcore_remaining);
6178 required_kernelcore -= min(kernel_pages,
6179 required_kernelcore);
6180
6181 /* Continue if range is now fully accounted */
6182 if (end_pfn <= usable_startpfn) {
6183
6184 /*
6185 * Push zone_movable_pfn to the end so
6186 * that if we have to rebalance
6187 * kernelcore across nodes, we will
6188 * not double account here
6189 */
6190 zone_movable_pfn[nid] = end_pfn;
6191 continue;
6192 }
6193 start_pfn = usable_startpfn;
6194 }
6195
6196 /*
6197 * The usable PFN range for ZONE_MOVABLE is from
6198 * start_pfn->end_pfn. Calculate size_pages as the
6199 * number of pages used as kernelcore
6200 */
6201 size_pages = end_pfn - start_pfn;
6202 if (size_pages > kernelcore_remaining)
6203 size_pages = kernelcore_remaining;
6204 zone_movable_pfn[nid] = start_pfn + size_pages;
6205
6206 /*
6207 * Some kernelcore has been met, update counts and
6208 * break if the kernelcore for this node has been
b8af2941 6209 * satisfied
2a1e274a
MG
6210 */
6211 required_kernelcore -= min(required_kernelcore,
6212 size_pages);
6213 kernelcore_remaining -= size_pages;
6214 if (!kernelcore_remaining)
6215 break;
6216 }
6217 }
6218
6219 /*
6220 * If there is still required_kernelcore, we do another pass with one
6221 * less node in the count. This will push zone_movable_pfn[nid] further
6222 * along on the nodes that still have memory until kernelcore is
b8af2941 6223 * satisfied
2a1e274a
MG
6224 */
6225 usable_nodes--;
6226 if (usable_nodes && required_kernelcore > usable_nodes)
6227 goto restart;
6228
b2f3eebe 6229out2:
2a1e274a
MG
6230 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6231 for (nid = 0; nid < MAX_NUMNODES; nid++)
6232 zone_movable_pfn[nid] =
6233 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6234
20e6926d 6235out:
66918dcd 6236 /* restore the node_state */
4b0ef1fe 6237 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6238}
6239
4b0ef1fe
LJ
6240/* Any regular or high memory on that node ? */
6241static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6242{
37b07e41
LS
6243 enum zone_type zone_type;
6244
4b0ef1fe
LJ
6245 if (N_MEMORY == N_NORMAL_MEMORY)
6246 return;
6247
6248 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6249 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6250 if (populated_zone(zone)) {
4b0ef1fe
LJ
6251 node_set_state(nid, N_HIGH_MEMORY);
6252 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6253 zone_type <= ZONE_NORMAL)
6254 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6255 break;
6256 }
37b07e41 6257 }
37b07e41
LS
6258}
6259
c713216d
MG
6260/**
6261 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6262 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6263 *
6264 * This will call free_area_init_node() for each active node in the system.
7d018176 6265 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6266 * zone in each node and their holes is calculated. If the maximum PFN
6267 * between two adjacent zones match, it is assumed that the zone is empty.
6268 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6269 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6270 * starts where the previous one ended. For example, ZONE_DMA32 starts
6271 * at arch_max_dma_pfn.
6272 */
6273void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6274{
c13291a5
TH
6275 unsigned long start_pfn, end_pfn;
6276 int i, nid;
a6af2bc3 6277
c713216d
MG
6278 /* Record where the zone boundaries are */
6279 memset(arch_zone_lowest_possible_pfn, 0,
6280 sizeof(arch_zone_lowest_possible_pfn));
6281 memset(arch_zone_highest_possible_pfn, 0,
6282 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6283
6284 start_pfn = find_min_pfn_with_active_regions();
6285
6286 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6287 if (i == ZONE_MOVABLE)
6288 continue;
90cae1fe
OH
6289
6290 end_pfn = max(max_zone_pfn[i], start_pfn);
6291 arch_zone_lowest_possible_pfn[i] = start_pfn;
6292 arch_zone_highest_possible_pfn[i] = end_pfn;
6293
6294 start_pfn = end_pfn;
c713216d 6295 }
2a1e274a
MG
6296 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6297 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6298
6299 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6300 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6301 find_zone_movable_pfns_for_nodes();
c713216d 6302
c713216d 6303 /* Print out the zone ranges */
f88dfff5 6304 pr_info("Zone ranges:\n");
2a1e274a
MG
6305 for (i = 0; i < MAX_NR_ZONES; i++) {
6306 if (i == ZONE_MOVABLE)
6307 continue;
f88dfff5 6308 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6309 if (arch_zone_lowest_possible_pfn[i] ==
6310 arch_zone_highest_possible_pfn[i])
f88dfff5 6311 pr_cont("empty\n");
72f0ba02 6312 else
8d29e18a
JG
6313 pr_cont("[mem %#018Lx-%#018Lx]\n",
6314 (u64)arch_zone_lowest_possible_pfn[i]
6315 << PAGE_SHIFT,
6316 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6317 << PAGE_SHIFT) - 1);
2a1e274a
MG
6318 }
6319
6320 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6321 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6322 for (i = 0; i < MAX_NUMNODES; i++) {
6323 if (zone_movable_pfn[i])
8d29e18a
JG
6324 pr_info(" Node %d: %#018Lx\n", i,
6325 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6326 }
c713216d 6327
f2d52fe5 6328 /* Print out the early node map */
f88dfff5 6329 pr_info("Early memory node ranges\n");
c13291a5 6330 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6331 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6332 (u64)start_pfn << PAGE_SHIFT,
6333 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6334
6335 /* Initialise every node */
708614e6 6336 mminit_verify_pageflags_layout();
8ef82866 6337 setup_nr_node_ids();
c713216d
MG
6338 for_each_online_node(nid) {
6339 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6340 free_area_init_node(nid, NULL,
c713216d 6341 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6342
6343 /* Any memory on that node */
6344 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6345 node_set_state(nid, N_MEMORY);
6346 check_for_memory(pgdat, nid);
c713216d
MG
6347 }
6348}
2a1e274a 6349
7e63efef 6350static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6351{
6352 unsigned long long coremem;
6353 if (!p)
6354 return -EINVAL;
6355
6356 coremem = memparse(p, &p);
7e63efef 6357 *core = coremem >> PAGE_SHIFT;
2a1e274a 6358
7e63efef 6359 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6360 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6361
6362 return 0;
6363}
ed7ed365 6364
7e63efef
MG
6365/*
6366 * kernelcore=size sets the amount of memory for use for allocations that
6367 * cannot be reclaimed or migrated.
6368 */
6369static int __init cmdline_parse_kernelcore(char *p)
6370{
342332e6
TI
6371 /* parse kernelcore=mirror */
6372 if (parse_option_str(p, "mirror")) {
6373 mirrored_kernelcore = true;
6374 return 0;
6375 }
6376
7e63efef
MG
6377 return cmdline_parse_core(p, &required_kernelcore);
6378}
6379
6380/*
6381 * movablecore=size sets the amount of memory for use for allocations that
6382 * can be reclaimed or migrated.
6383 */
6384static int __init cmdline_parse_movablecore(char *p)
6385{
6386 return cmdline_parse_core(p, &required_movablecore);
6387}
6388
ed7ed365 6389early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6390early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6391
0ee332c1 6392#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6393
c3d5f5f0
JL
6394void adjust_managed_page_count(struct page *page, long count)
6395{
6396 spin_lock(&managed_page_count_lock);
6397 page_zone(page)->managed_pages += count;
6398 totalram_pages += count;
3dcc0571
JL
6399#ifdef CONFIG_HIGHMEM
6400 if (PageHighMem(page))
6401 totalhigh_pages += count;
6402#endif
c3d5f5f0
JL
6403 spin_unlock(&managed_page_count_lock);
6404}
3dcc0571 6405EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6406
11199692 6407unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6408{
11199692
JL
6409 void *pos;
6410 unsigned long pages = 0;
69afade7 6411
11199692
JL
6412 start = (void *)PAGE_ALIGN((unsigned long)start);
6413 end = (void *)((unsigned long)end & PAGE_MASK);
6414 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6415 if ((unsigned int)poison <= 0xFF)
11199692
JL
6416 memset(pos, poison, PAGE_SIZE);
6417 free_reserved_page(virt_to_page(pos));
69afade7
JL
6418 }
6419
6420 if (pages && s)
11199692 6421 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6422 s, pages << (PAGE_SHIFT - 10), start, end);
6423
6424 return pages;
6425}
11199692 6426EXPORT_SYMBOL(free_reserved_area);
69afade7 6427
cfa11e08
JL
6428#ifdef CONFIG_HIGHMEM
6429void free_highmem_page(struct page *page)
6430{
6431 __free_reserved_page(page);
6432 totalram_pages++;
7b4b2a0d 6433 page_zone(page)->managed_pages++;
cfa11e08
JL
6434 totalhigh_pages++;
6435}
6436#endif
6437
7ee3d4e8
JL
6438
6439void __init mem_init_print_info(const char *str)
6440{
6441 unsigned long physpages, codesize, datasize, rosize, bss_size;
6442 unsigned long init_code_size, init_data_size;
6443
6444 physpages = get_num_physpages();
6445 codesize = _etext - _stext;
6446 datasize = _edata - _sdata;
6447 rosize = __end_rodata - __start_rodata;
6448 bss_size = __bss_stop - __bss_start;
6449 init_data_size = __init_end - __init_begin;
6450 init_code_size = _einittext - _sinittext;
6451
6452 /*
6453 * Detect special cases and adjust section sizes accordingly:
6454 * 1) .init.* may be embedded into .data sections
6455 * 2) .init.text.* may be out of [__init_begin, __init_end],
6456 * please refer to arch/tile/kernel/vmlinux.lds.S.
6457 * 3) .rodata.* may be embedded into .text or .data sections.
6458 */
6459#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6460 do { \
6461 if (start <= pos && pos < end && size > adj) \
6462 size -= adj; \
6463 } while (0)
7ee3d4e8
JL
6464
6465 adj_init_size(__init_begin, __init_end, init_data_size,
6466 _sinittext, init_code_size);
6467 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6468 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6469 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6470 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6471
6472#undef adj_init_size
6473
756a025f 6474 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6475#ifdef CONFIG_HIGHMEM
756a025f 6476 ", %luK highmem"
7ee3d4e8 6477#endif
756a025f
JP
6478 "%s%s)\n",
6479 nr_free_pages() << (PAGE_SHIFT - 10),
6480 physpages << (PAGE_SHIFT - 10),
6481 codesize >> 10, datasize >> 10, rosize >> 10,
6482 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6483 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6484 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6485#ifdef CONFIG_HIGHMEM
756a025f 6486 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6487#endif
756a025f 6488 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6489}
6490
0e0b864e 6491/**
88ca3b94
RD
6492 * set_dma_reserve - set the specified number of pages reserved in the first zone
6493 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6494 *
013110a7 6495 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6496 * In the DMA zone, a significant percentage may be consumed by kernel image
6497 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6498 * function may optionally be used to account for unfreeable pages in the
6499 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6500 * smaller per-cpu batchsize.
0e0b864e
MG
6501 */
6502void __init set_dma_reserve(unsigned long new_dma_reserve)
6503{
6504 dma_reserve = new_dma_reserve;
6505}
6506
1da177e4
LT
6507void __init free_area_init(unsigned long *zones_size)
6508{
9109fb7b 6509 free_area_init_node(0, zones_size,
1da177e4
LT
6510 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6511}
1da177e4 6512
1da177e4
LT
6513static int page_alloc_cpu_notify(struct notifier_block *self,
6514 unsigned long action, void *hcpu)
6515{
6516 int cpu = (unsigned long)hcpu;
1da177e4 6517
8bb78442 6518 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6519 lru_add_drain_cpu(cpu);
9f8f2172
CL
6520 drain_pages(cpu);
6521
6522 /*
6523 * Spill the event counters of the dead processor
6524 * into the current processors event counters.
6525 * This artificially elevates the count of the current
6526 * processor.
6527 */
f8891e5e 6528 vm_events_fold_cpu(cpu);
9f8f2172
CL
6529
6530 /*
6531 * Zero the differential counters of the dead processor
6532 * so that the vm statistics are consistent.
6533 *
6534 * This is only okay since the processor is dead and cannot
6535 * race with what we are doing.
6536 */
2bb921e5 6537 cpu_vm_stats_fold(cpu);
1da177e4
LT
6538 }
6539 return NOTIFY_OK;
6540}
1da177e4
LT
6541
6542void __init page_alloc_init(void)
6543{
6544 hotcpu_notifier(page_alloc_cpu_notify, 0);
6545}
6546
cb45b0e9 6547/*
34b10060 6548 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6549 * or min_free_kbytes changes.
6550 */
6551static void calculate_totalreserve_pages(void)
6552{
6553 struct pglist_data *pgdat;
6554 unsigned long reserve_pages = 0;
2f6726e5 6555 enum zone_type i, j;
cb45b0e9
HA
6556
6557 for_each_online_pgdat(pgdat) {
281e3726
MG
6558
6559 pgdat->totalreserve_pages = 0;
6560
cb45b0e9
HA
6561 for (i = 0; i < MAX_NR_ZONES; i++) {
6562 struct zone *zone = pgdat->node_zones + i;
3484b2de 6563 long max = 0;
cb45b0e9
HA
6564
6565 /* Find valid and maximum lowmem_reserve in the zone */
6566 for (j = i; j < MAX_NR_ZONES; j++) {
6567 if (zone->lowmem_reserve[j] > max)
6568 max = zone->lowmem_reserve[j];
6569 }
6570
41858966
MG
6571 /* we treat the high watermark as reserved pages. */
6572 max += high_wmark_pages(zone);
cb45b0e9 6573
b40da049
JL
6574 if (max > zone->managed_pages)
6575 max = zone->managed_pages;
a8d01437 6576
281e3726 6577 pgdat->totalreserve_pages += max;
a8d01437 6578
cb45b0e9
HA
6579 reserve_pages += max;
6580 }
6581 }
6582 totalreserve_pages = reserve_pages;
6583}
6584
1da177e4
LT
6585/*
6586 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6587 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6588 * has a correct pages reserved value, so an adequate number of
6589 * pages are left in the zone after a successful __alloc_pages().
6590 */
6591static void setup_per_zone_lowmem_reserve(void)
6592{
6593 struct pglist_data *pgdat;
2f6726e5 6594 enum zone_type j, idx;
1da177e4 6595
ec936fc5 6596 for_each_online_pgdat(pgdat) {
1da177e4
LT
6597 for (j = 0; j < MAX_NR_ZONES; j++) {
6598 struct zone *zone = pgdat->node_zones + j;
b40da049 6599 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6600
6601 zone->lowmem_reserve[j] = 0;
6602
2f6726e5
CL
6603 idx = j;
6604 while (idx) {
1da177e4
LT
6605 struct zone *lower_zone;
6606
2f6726e5
CL
6607 idx--;
6608
1da177e4
LT
6609 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6610 sysctl_lowmem_reserve_ratio[idx] = 1;
6611
6612 lower_zone = pgdat->node_zones + idx;
b40da049 6613 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6614 sysctl_lowmem_reserve_ratio[idx];
b40da049 6615 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6616 }
6617 }
6618 }
cb45b0e9
HA
6619
6620 /* update totalreserve_pages */
6621 calculate_totalreserve_pages();
1da177e4
LT
6622}
6623
cfd3da1e 6624static void __setup_per_zone_wmarks(void)
1da177e4
LT
6625{
6626 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6627 unsigned long lowmem_pages = 0;
6628 struct zone *zone;
6629 unsigned long flags;
6630
6631 /* Calculate total number of !ZONE_HIGHMEM pages */
6632 for_each_zone(zone) {
6633 if (!is_highmem(zone))
b40da049 6634 lowmem_pages += zone->managed_pages;
1da177e4
LT
6635 }
6636
6637 for_each_zone(zone) {
ac924c60
AM
6638 u64 tmp;
6639
1125b4e3 6640 spin_lock_irqsave(&zone->lock, flags);
b40da049 6641 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6642 do_div(tmp, lowmem_pages);
1da177e4
LT
6643 if (is_highmem(zone)) {
6644 /*
669ed175
NP
6645 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6646 * need highmem pages, so cap pages_min to a small
6647 * value here.
6648 *
41858966 6649 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6650 * deltas control asynch page reclaim, and so should
669ed175 6651 * not be capped for highmem.
1da177e4 6652 */
90ae8d67 6653 unsigned long min_pages;
1da177e4 6654
b40da049 6655 min_pages = zone->managed_pages / 1024;
90ae8d67 6656 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6657 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6658 } else {
669ed175
NP
6659 /*
6660 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6661 * proportionate to the zone's size.
6662 */
41858966 6663 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6664 }
6665
795ae7a0
JW
6666 /*
6667 * Set the kswapd watermarks distance according to the
6668 * scale factor in proportion to available memory, but
6669 * ensure a minimum size on small systems.
6670 */
6671 tmp = max_t(u64, tmp >> 2,
6672 mult_frac(zone->managed_pages,
6673 watermark_scale_factor, 10000));
6674
6675 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6676 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6677
1125b4e3 6678 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6679 }
cb45b0e9
HA
6680
6681 /* update totalreserve_pages */
6682 calculate_totalreserve_pages();
1da177e4
LT
6683}
6684
cfd3da1e
MG
6685/**
6686 * setup_per_zone_wmarks - called when min_free_kbytes changes
6687 * or when memory is hot-{added|removed}
6688 *
6689 * Ensures that the watermark[min,low,high] values for each zone are set
6690 * correctly with respect to min_free_kbytes.
6691 */
6692void setup_per_zone_wmarks(void)
6693{
6694 mutex_lock(&zonelists_mutex);
6695 __setup_per_zone_wmarks();
6696 mutex_unlock(&zonelists_mutex);
6697}
6698
1da177e4
LT
6699/*
6700 * Initialise min_free_kbytes.
6701 *
6702 * For small machines we want it small (128k min). For large machines
6703 * we want it large (64MB max). But it is not linear, because network
6704 * bandwidth does not increase linearly with machine size. We use
6705 *
b8af2941 6706 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6707 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6708 *
6709 * which yields
6710 *
6711 * 16MB: 512k
6712 * 32MB: 724k
6713 * 64MB: 1024k
6714 * 128MB: 1448k
6715 * 256MB: 2048k
6716 * 512MB: 2896k
6717 * 1024MB: 4096k
6718 * 2048MB: 5792k
6719 * 4096MB: 8192k
6720 * 8192MB: 11584k
6721 * 16384MB: 16384k
6722 */
1b79acc9 6723int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6724{
6725 unsigned long lowmem_kbytes;
5f12733e 6726 int new_min_free_kbytes;
1da177e4
LT
6727
6728 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6729 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6730
6731 if (new_min_free_kbytes > user_min_free_kbytes) {
6732 min_free_kbytes = new_min_free_kbytes;
6733 if (min_free_kbytes < 128)
6734 min_free_kbytes = 128;
6735 if (min_free_kbytes > 65536)
6736 min_free_kbytes = 65536;
6737 } else {
6738 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6739 new_min_free_kbytes, user_min_free_kbytes);
6740 }
bc75d33f 6741 setup_per_zone_wmarks();
a6cccdc3 6742 refresh_zone_stat_thresholds();
1da177e4 6743 setup_per_zone_lowmem_reserve();
6423aa81
JK
6744
6745#ifdef CONFIG_NUMA
6746 setup_min_unmapped_ratio();
6747 setup_min_slab_ratio();
6748#endif
6749
1da177e4
LT
6750 return 0;
6751}
bc22af74 6752core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6753
6754/*
b8af2941 6755 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6756 * that we can call two helper functions whenever min_free_kbytes
6757 * changes.
6758 */
cccad5b9 6759int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6760 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6761{
da8c757b
HP
6762 int rc;
6763
6764 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6765 if (rc)
6766 return rc;
6767
5f12733e
MH
6768 if (write) {
6769 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6770 setup_per_zone_wmarks();
5f12733e 6771 }
1da177e4
LT
6772 return 0;
6773}
6774
795ae7a0
JW
6775int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6776 void __user *buffer, size_t *length, loff_t *ppos)
6777{
6778 int rc;
6779
6780 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6781 if (rc)
6782 return rc;
6783
6784 if (write)
6785 setup_per_zone_wmarks();
6786
6787 return 0;
6788}
6789
9614634f 6790#ifdef CONFIG_NUMA
6423aa81 6791static void setup_min_unmapped_ratio(void)
9614634f 6792{
6423aa81 6793 pg_data_t *pgdat;
9614634f 6794 struct zone *zone;
9614634f 6795
a5f5f91d 6796 for_each_online_pgdat(pgdat)
81cbcbc2 6797 pgdat->min_unmapped_pages = 0;
a5f5f91d 6798
9614634f 6799 for_each_zone(zone)
a5f5f91d 6800 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6801 sysctl_min_unmapped_ratio) / 100;
9614634f 6802}
0ff38490 6803
6423aa81
JK
6804
6805int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6806 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6807{
0ff38490
CL
6808 int rc;
6809
8d65af78 6810 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6811 if (rc)
6812 return rc;
6813
6423aa81
JK
6814 setup_min_unmapped_ratio();
6815
6816 return 0;
6817}
6818
6819static void setup_min_slab_ratio(void)
6820{
6821 pg_data_t *pgdat;
6822 struct zone *zone;
6823
a5f5f91d
MG
6824 for_each_online_pgdat(pgdat)
6825 pgdat->min_slab_pages = 0;
6826
0ff38490 6827 for_each_zone(zone)
a5f5f91d 6828 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6829 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6830}
6831
6832int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6833 void __user *buffer, size_t *length, loff_t *ppos)
6834{
6835 int rc;
6836
6837 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6838 if (rc)
6839 return rc;
6840
6841 setup_min_slab_ratio();
6842
0ff38490
CL
6843 return 0;
6844}
9614634f
CL
6845#endif
6846
1da177e4
LT
6847/*
6848 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6849 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6850 * whenever sysctl_lowmem_reserve_ratio changes.
6851 *
6852 * The reserve ratio obviously has absolutely no relation with the
41858966 6853 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6854 * if in function of the boot time zone sizes.
6855 */
cccad5b9 6856int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6857 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6858{
8d65af78 6859 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6860 setup_per_zone_lowmem_reserve();
6861 return 0;
6862}
6863
8ad4b1fb
RS
6864/*
6865 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6866 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6867 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6868 */
cccad5b9 6869int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6870 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6871{
6872 struct zone *zone;
7cd2b0a3 6873 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6874 int ret;
6875
7cd2b0a3
DR
6876 mutex_lock(&pcp_batch_high_lock);
6877 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6878
8d65af78 6879 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6880 if (!write || ret < 0)
6881 goto out;
6882
6883 /* Sanity checking to avoid pcp imbalance */
6884 if (percpu_pagelist_fraction &&
6885 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6886 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6887 ret = -EINVAL;
6888 goto out;
6889 }
6890
6891 /* No change? */
6892 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6893 goto out;
c8e251fa 6894
364df0eb 6895 for_each_populated_zone(zone) {
7cd2b0a3
DR
6896 unsigned int cpu;
6897
22a7f12b 6898 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6899 pageset_set_high_and_batch(zone,
6900 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6901 }
7cd2b0a3 6902out:
c8e251fa 6903 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6904 return ret;
8ad4b1fb
RS
6905}
6906
a9919c79 6907#ifdef CONFIG_NUMA
f034b5d4 6908int hashdist = HASHDIST_DEFAULT;
1da177e4 6909
1da177e4
LT
6910static int __init set_hashdist(char *str)
6911{
6912 if (!str)
6913 return 0;
6914 hashdist = simple_strtoul(str, &str, 0);
6915 return 1;
6916}
6917__setup("hashdist=", set_hashdist);
6918#endif
6919
f6f34b43
SD
6920#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6921/*
6922 * Returns the number of pages that arch has reserved but
6923 * is not known to alloc_large_system_hash().
6924 */
6925static unsigned long __init arch_reserved_kernel_pages(void)
6926{
6927 return 0;
6928}
6929#endif
6930
1da177e4
LT
6931/*
6932 * allocate a large system hash table from bootmem
6933 * - it is assumed that the hash table must contain an exact power-of-2
6934 * quantity of entries
6935 * - limit is the number of hash buckets, not the total allocation size
6936 */
6937void *__init alloc_large_system_hash(const char *tablename,
6938 unsigned long bucketsize,
6939 unsigned long numentries,
6940 int scale,
6941 int flags,
6942 unsigned int *_hash_shift,
6943 unsigned int *_hash_mask,
31fe62b9
TB
6944 unsigned long low_limit,
6945 unsigned long high_limit)
1da177e4 6946{
31fe62b9 6947 unsigned long long max = high_limit;
1da177e4
LT
6948 unsigned long log2qty, size;
6949 void *table = NULL;
6950
6951 /* allow the kernel cmdline to have a say */
6952 if (!numentries) {
6953 /* round applicable memory size up to nearest megabyte */
04903664 6954 numentries = nr_kernel_pages;
f6f34b43 6955 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
6956
6957 /* It isn't necessary when PAGE_SIZE >= 1MB */
6958 if (PAGE_SHIFT < 20)
6959 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6960
6961 /* limit to 1 bucket per 2^scale bytes of low memory */
6962 if (scale > PAGE_SHIFT)
6963 numentries >>= (scale - PAGE_SHIFT);
6964 else
6965 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6966
6967 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6968 if (unlikely(flags & HASH_SMALL)) {
6969 /* Makes no sense without HASH_EARLY */
6970 WARN_ON(!(flags & HASH_EARLY));
6971 if (!(numentries >> *_hash_shift)) {
6972 numentries = 1UL << *_hash_shift;
6973 BUG_ON(!numentries);
6974 }
6975 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6976 numentries = PAGE_SIZE / bucketsize;
1da177e4 6977 }
6e692ed3 6978 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6979
6980 /* limit allocation size to 1/16 total memory by default */
6981 if (max == 0) {
6982 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6983 do_div(max, bucketsize);
6984 }
074b8517 6985 max = min(max, 0x80000000ULL);
1da177e4 6986
31fe62b9
TB
6987 if (numentries < low_limit)
6988 numentries = low_limit;
1da177e4
LT
6989 if (numentries > max)
6990 numentries = max;
6991
f0d1b0b3 6992 log2qty = ilog2(numentries);
1da177e4
LT
6993
6994 do {
6995 size = bucketsize << log2qty;
6996 if (flags & HASH_EARLY)
6782832e 6997 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6998 else if (hashdist)
6999 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7000 else {
1037b83b
ED
7001 /*
7002 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7003 * some pages at the end of hash table which
7004 * alloc_pages_exact() automatically does
1037b83b 7005 */
264ef8a9 7006 if (get_order(size) < MAX_ORDER) {
a1dd268c 7007 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7008 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7009 }
1da177e4
LT
7010 }
7011 } while (!table && size > PAGE_SIZE && --log2qty);
7012
7013 if (!table)
7014 panic("Failed to allocate %s hash table\n", tablename);
7015
1170532b
JP
7016 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7017 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7018
7019 if (_hash_shift)
7020 *_hash_shift = log2qty;
7021 if (_hash_mask)
7022 *_hash_mask = (1 << log2qty) - 1;
7023
7024 return table;
7025}
a117e66e 7026
a5d76b54 7027/*
80934513
MK
7028 * This function checks whether pageblock includes unmovable pages or not.
7029 * If @count is not zero, it is okay to include less @count unmovable pages
7030 *
b8af2941 7031 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7032 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7033 * expect this function should be exact.
a5d76b54 7034 */
b023f468
WC
7035bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7036 bool skip_hwpoisoned_pages)
49ac8255
KH
7037{
7038 unsigned long pfn, iter, found;
47118af0
MN
7039 int mt;
7040
49ac8255
KH
7041 /*
7042 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7043 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7044 */
7045 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7046 return false;
47118af0
MN
7047 mt = get_pageblock_migratetype(page);
7048 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7049 return false;
49ac8255
KH
7050
7051 pfn = page_to_pfn(page);
7052 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7053 unsigned long check = pfn + iter;
7054
29723fcc 7055 if (!pfn_valid_within(check))
49ac8255 7056 continue;
29723fcc 7057
49ac8255 7058 page = pfn_to_page(check);
c8721bbb
NH
7059
7060 /*
7061 * Hugepages are not in LRU lists, but they're movable.
7062 * We need not scan over tail pages bacause we don't
7063 * handle each tail page individually in migration.
7064 */
7065 if (PageHuge(page)) {
7066 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7067 continue;
7068 }
7069
97d255c8
MK
7070 /*
7071 * We can't use page_count without pin a page
7072 * because another CPU can free compound page.
7073 * This check already skips compound tails of THP
0139aa7b 7074 * because their page->_refcount is zero at all time.
97d255c8 7075 */
fe896d18 7076 if (!page_ref_count(page)) {
49ac8255
KH
7077 if (PageBuddy(page))
7078 iter += (1 << page_order(page)) - 1;
7079 continue;
7080 }
97d255c8 7081
b023f468
WC
7082 /*
7083 * The HWPoisoned page may be not in buddy system, and
7084 * page_count() is not 0.
7085 */
7086 if (skip_hwpoisoned_pages && PageHWPoison(page))
7087 continue;
7088
49ac8255
KH
7089 if (!PageLRU(page))
7090 found++;
7091 /*
6b4f7799
JW
7092 * If there are RECLAIMABLE pages, we need to check
7093 * it. But now, memory offline itself doesn't call
7094 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7095 */
7096 /*
7097 * If the page is not RAM, page_count()should be 0.
7098 * we don't need more check. This is an _used_ not-movable page.
7099 *
7100 * The problematic thing here is PG_reserved pages. PG_reserved
7101 * is set to both of a memory hole page and a _used_ kernel
7102 * page at boot.
7103 */
7104 if (found > count)
80934513 7105 return true;
49ac8255 7106 }
80934513 7107 return false;
49ac8255
KH
7108}
7109
7110bool is_pageblock_removable_nolock(struct page *page)
7111{
656a0706
MH
7112 struct zone *zone;
7113 unsigned long pfn;
687875fb
MH
7114
7115 /*
7116 * We have to be careful here because we are iterating over memory
7117 * sections which are not zone aware so we might end up outside of
7118 * the zone but still within the section.
656a0706
MH
7119 * We have to take care about the node as well. If the node is offline
7120 * its NODE_DATA will be NULL - see page_zone.
687875fb 7121 */
656a0706
MH
7122 if (!node_online(page_to_nid(page)))
7123 return false;
7124
7125 zone = page_zone(page);
7126 pfn = page_to_pfn(page);
108bcc96 7127 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7128 return false;
7129
b023f468 7130 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7131}
0c0e6195 7132
080fe206 7133#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7134
7135static unsigned long pfn_max_align_down(unsigned long pfn)
7136{
7137 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7138 pageblock_nr_pages) - 1);
7139}
7140
7141static unsigned long pfn_max_align_up(unsigned long pfn)
7142{
7143 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7144 pageblock_nr_pages));
7145}
7146
041d3a8c 7147/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7148static int __alloc_contig_migrate_range(struct compact_control *cc,
7149 unsigned long start, unsigned long end)
041d3a8c
MN
7150{
7151 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7152 unsigned long nr_reclaimed;
041d3a8c
MN
7153 unsigned long pfn = start;
7154 unsigned int tries = 0;
7155 int ret = 0;
7156
be49a6e1 7157 migrate_prep();
041d3a8c 7158
bb13ffeb 7159 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7160 if (fatal_signal_pending(current)) {
7161 ret = -EINTR;
7162 break;
7163 }
7164
bb13ffeb
MG
7165 if (list_empty(&cc->migratepages)) {
7166 cc->nr_migratepages = 0;
edc2ca61 7167 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7168 if (!pfn) {
7169 ret = -EINTR;
7170 break;
7171 }
7172 tries = 0;
7173 } else if (++tries == 5) {
7174 ret = ret < 0 ? ret : -EBUSY;
7175 break;
7176 }
7177
beb51eaa
MK
7178 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7179 &cc->migratepages);
7180 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7181
9c620e2b 7182 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7183 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7184 }
2a6f5124
SP
7185 if (ret < 0) {
7186 putback_movable_pages(&cc->migratepages);
7187 return ret;
7188 }
7189 return 0;
041d3a8c
MN
7190}
7191
7192/**
7193 * alloc_contig_range() -- tries to allocate given range of pages
7194 * @start: start PFN to allocate
7195 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7196 * @migratetype: migratetype of the underlaying pageblocks (either
7197 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7198 * in range must have the same migratetype and it must
7199 * be either of the two.
041d3a8c
MN
7200 *
7201 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7202 * aligned, however it's the caller's responsibility to guarantee that
7203 * we are the only thread that changes migrate type of pageblocks the
7204 * pages fall in.
7205 *
7206 * The PFN range must belong to a single zone.
7207 *
7208 * Returns zero on success or negative error code. On success all
7209 * pages which PFN is in [start, end) are allocated for the caller and
7210 * need to be freed with free_contig_range().
7211 */
0815f3d8
MN
7212int alloc_contig_range(unsigned long start, unsigned long end,
7213 unsigned migratetype)
041d3a8c 7214{
041d3a8c 7215 unsigned long outer_start, outer_end;
d00181b9
KS
7216 unsigned int order;
7217 int ret = 0;
041d3a8c 7218
bb13ffeb
MG
7219 struct compact_control cc = {
7220 .nr_migratepages = 0,
7221 .order = -1,
7222 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7223 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7224 .ignore_skip_hint = true,
7225 };
7226 INIT_LIST_HEAD(&cc.migratepages);
7227
041d3a8c
MN
7228 /*
7229 * What we do here is we mark all pageblocks in range as
7230 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7231 * have different sizes, and due to the way page allocator
7232 * work, we align the range to biggest of the two pages so
7233 * that page allocator won't try to merge buddies from
7234 * different pageblocks and change MIGRATE_ISOLATE to some
7235 * other migration type.
7236 *
7237 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7238 * migrate the pages from an unaligned range (ie. pages that
7239 * we are interested in). This will put all the pages in
7240 * range back to page allocator as MIGRATE_ISOLATE.
7241 *
7242 * When this is done, we take the pages in range from page
7243 * allocator removing them from the buddy system. This way
7244 * page allocator will never consider using them.
7245 *
7246 * This lets us mark the pageblocks back as
7247 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7248 * aligned range but not in the unaligned, original range are
7249 * put back to page allocator so that buddy can use them.
7250 */
7251
7252 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7253 pfn_max_align_up(end), migratetype,
7254 false);
041d3a8c 7255 if (ret)
86a595f9 7256 return ret;
041d3a8c 7257
8ef5849f
JK
7258 /*
7259 * In case of -EBUSY, we'd like to know which page causes problem.
7260 * So, just fall through. We will check it in test_pages_isolated().
7261 */
bb13ffeb 7262 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7263 if (ret && ret != -EBUSY)
041d3a8c
MN
7264 goto done;
7265
7266 /*
7267 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7268 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7269 * more, all pages in [start, end) are free in page allocator.
7270 * What we are going to do is to allocate all pages from
7271 * [start, end) (that is remove them from page allocator).
7272 *
7273 * The only problem is that pages at the beginning and at the
7274 * end of interesting range may be not aligned with pages that
7275 * page allocator holds, ie. they can be part of higher order
7276 * pages. Because of this, we reserve the bigger range and
7277 * once this is done free the pages we are not interested in.
7278 *
7279 * We don't have to hold zone->lock here because the pages are
7280 * isolated thus they won't get removed from buddy.
7281 */
7282
7283 lru_add_drain_all();
510f5507 7284 drain_all_pages(cc.zone);
041d3a8c
MN
7285
7286 order = 0;
7287 outer_start = start;
7288 while (!PageBuddy(pfn_to_page(outer_start))) {
7289 if (++order >= MAX_ORDER) {
8ef5849f
JK
7290 outer_start = start;
7291 break;
041d3a8c
MN
7292 }
7293 outer_start &= ~0UL << order;
7294 }
7295
8ef5849f
JK
7296 if (outer_start != start) {
7297 order = page_order(pfn_to_page(outer_start));
7298
7299 /*
7300 * outer_start page could be small order buddy page and
7301 * it doesn't include start page. Adjust outer_start
7302 * in this case to report failed page properly
7303 * on tracepoint in test_pages_isolated()
7304 */
7305 if (outer_start + (1UL << order) <= start)
7306 outer_start = start;
7307 }
7308
041d3a8c 7309 /* Make sure the range is really isolated. */
b023f468 7310 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7311 pr_info("%s: [%lx, %lx) PFNs busy\n",
7312 __func__, outer_start, end);
041d3a8c
MN
7313 ret = -EBUSY;
7314 goto done;
7315 }
7316
49f223a9 7317 /* Grab isolated pages from freelists. */
bb13ffeb 7318 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7319 if (!outer_end) {
7320 ret = -EBUSY;
7321 goto done;
7322 }
7323
7324 /* Free head and tail (if any) */
7325 if (start != outer_start)
7326 free_contig_range(outer_start, start - outer_start);
7327 if (end != outer_end)
7328 free_contig_range(end, outer_end - end);
7329
7330done:
7331 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7332 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7333 return ret;
7334}
7335
7336void free_contig_range(unsigned long pfn, unsigned nr_pages)
7337{
bcc2b02f
MS
7338 unsigned int count = 0;
7339
7340 for (; nr_pages--; pfn++) {
7341 struct page *page = pfn_to_page(pfn);
7342
7343 count += page_count(page) != 1;
7344 __free_page(page);
7345 }
7346 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7347}
7348#endif
7349
4ed7e022 7350#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7351/*
7352 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7353 * page high values need to be recalulated.
7354 */
4ed7e022
JL
7355void __meminit zone_pcp_update(struct zone *zone)
7356{
0a647f38 7357 unsigned cpu;
c8e251fa 7358 mutex_lock(&pcp_batch_high_lock);
0a647f38 7359 for_each_possible_cpu(cpu)
169f6c19
CS
7360 pageset_set_high_and_batch(zone,
7361 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7362 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7363}
7364#endif
7365
340175b7
JL
7366void zone_pcp_reset(struct zone *zone)
7367{
7368 unsigned long flags;
5a883813
MK
7369 int cpu;
7370 struct per_cpu_pageset *pset;
340175b7
JL
7371
7372 /* avoid races with drain_pages() */
7373 local_irq_save(flags);
7374 if (zone->pageset != &boot_pageset) {
5a883813
MK
7375 for_each_online_cpu(cpu) {
7376 pset = per_cpu_ptr(zone->pageset, cpu);
7377 drain_zonestat(zone, pset);
7378 }
340175b7
JL
7379 free_percpu(zone->pageset);
7380 zone->pageset = &boot_pageset;
7381 }
7382 local_irq_restore(flags);
7383}
7384
6dcd73d7 7385#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7386/*
b9eb6319
JK
7387 * All pages in the range must be in a single zone and isolated
7388 * before calling this.
0c0e6195
KH
7389 */
7390void
7391__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7392{
7393 struct page *page;
7394 struct zone *zone;
7aeb09f9 7395 unsigned int order, i;
0c0e6195
KH
7396 unsigned long pfn;
7397 unsigned long flags;
7398 /* find the first valid pfn */
7399 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7400 if (pfn_valid(pfn))
7401 break;
7402 if (pfn == end_pfn)
7403 return;
7404 zone = page_zone(pfn_to_page(pfn));
7405 spin_lock_irqsave(&zone->lock, flags);
7406 pfn = start_pfn;
7407 while (pfn < end_pfn) {
7408 if (!pfn_valid(pfn)) {
7409 pfn++;
7410 continue;
7411 }
7412 page = pfn_to_page(pfn);
b023f468
WC
7413 /*
7414 * The HWPoisoned page may be not in buddy system, and
7415 * page_count() is not 0.
7416 */
7417 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7418 pfn++;
7419 SetPageReserved(page);
7420 continue;
7421 }
7422
0c0e6195
KH
7423 BUG_ON(page_count(page));
7424 BUG_ON(!PageBuddy(page));
7425 order = page_order(page);
7426#ifdef CONFIG_DEBUG_VM
1170532b
JP
7427 pr_info("remove from free list %lx %d %lx\n",
7428 pfn, 1 << order, end_pfn);
0c0e6195
KH
7429#endif
7430 list_del(&page->lru);
7431 rmv_page_order(page);
7432 zone->free_area[order].nr_free--;
0c0e6195
KH
7433 for (i = 0; i < (1 << order); i++)
7434 SetPageReserved((page+i));
7435 pfn += (1 << order);
7436 }
7437 spin_unlock_irqrestore(&zone->lock, flags);
7438}
7439#endif
8d22ba1b 7440
8d22ba1b
WF
7441bool is_free_buddy_page(struct page *page)
7442{
7443 struct zone *zone = page_zone(page);
7444 unsigned long pfn = page_to_pfn(page);
7445 unsigned long flags;
7aeb09f9 7446 unsigned int order;
8d22ba1b
WF
7447
7448 spin_lock_irqsave(&zone->lock, flags);
7449 for (order = 0; order < MAX_ORDER; order++) {
7450 struct page *page_head = page - (pfn & ((1 << order) - 1));
7451
7452 if (PageBuddy(page_head) && page_order(page_head) >= order)
7453 break;
7454 }
7455 spin_unlock_irqrestore(&zone->lock, flags);
7456
7457 return order < MAX_ORDER;
7458}