]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: split buffered_rmqueue()
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
e30825f1 62#include <linux/page_ext.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
1da177e4 68
7ee3d4e8 69#include <asm/sections.h>
1da177e4 70#include <asm/tlbflush.h>
ac924c60 71#include <asm/div64.h>
1da177e4
LT
72#include "internal.h"
73
c8e251fa
CS
74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 76#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 77
72812019
LS
78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79DEFINE_PER_CPU(int, numa_node);
80EXPORT_PER_CPU_SYMBOL(numa_node);
81#endif
82
7aac7898
LS
83#ifdef CONFIG_HAVE_MEMORYLESS_NODES
84/*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 92int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
93#endif
94
38addce8 95#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 96volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
97EXPORT_SYMBOL(latent_entropy);
98#endif
99
1da177e4 100/*
13808910 101 * Array of node states.
1da177e4 102 */
13808910
CL
103nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
104 [N_POSSIBLE] = NODE_MASK_ALL,
105 [N_ONLINE] = { { [0] = 1UL } },
106#ifndef CONFIG_NUMA
107 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
108#ifdef CONFIG_HIGHMEM
109 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
110#endif
111#ifdef CONFIG_MOVABLE_NODE
112 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
113#endif
114 [N_CPU] = { { [0] = 1UL } },
115#endif /* NUMA */
116};
117EXPORT_SYMBOL(node_states);
118
c3d5f5f0
JL
119/* Protect totalram_pages and zone->managed_pages */
120static DEFINE_SPINLOCK(managed_page_count_lock);
121
6c231b7b 122unsigned long totalram_pages __read_mostly;
cb45b0e9 123unsigned long totalreserve_pages __read_mostly;
e48322ab 124unsigned long totalcma_pages __read_mostly;
ab8fabd4 125
1b76b02f 126int percpu_pagelist_fraction;
dcce284a 127gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 128
bb14c2c7
VB
129/*
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
136 */
137static inline int get_pcppage_migratetype(struct page *page)
138{
139 return page->index;
140}
141
142static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143{
144 page->index = migratetype;
145}
146
452aa699
RW
147#ifdef CONFIG_PM_SLEEP
148/*
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
155 */
c9e664f1
RW
156
157static gfp_t saved_gfp_mask;
158
159void pm_restore_gfp_mask(void)
452aa699
RW
160{
161 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
164 saved_gfp_mask = 0;
165 }
452aa699
RW
166}
167
c9e664f1 168void pm_restrict_gfp_mask(void)
452aa699 169{
452aa699 170 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
d0164adc 173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 174}
f90ac398
MG
175
176bool pm_suspended_storage(void)
177{
d0164adc 178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
179 return false;
180 return true;
181}
452aa699
RW
182#endif /* CONFIG_PM_SLEEP */
183
d9c23400 184#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 185unsigned int pageblock_order __read_mostly;
d9c23400
MG
186#endif
187
d98c7a09 188static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 189
1da177e4
LT
190/*
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
197 *
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
1da177e4 200 */
2f1b6248 201int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 202#ifdef CONFIG_ZONE_DMA
2f1b6248 203 256,
4b51d669 204#endif
fb0e7942 205#ifdef CONFIG_ZONE_DMA32
2f1b6248 206 256,
fb0e7942 207#endif
e53ef38d 208#ifdef CONFIG_HIGHMEM
2a1e274a 209 32,
e53ef38d 210#endif
2a1e274a 211 32,
2f1b6248 212};
1da177e4
LT
213
214EXPORT_SYMBOL(totalram_pages);
1da177e4 215
15ad7cdc 216static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 217#ifdef CONFIG_ZONE_DMA
2f1b6248 218 "DMA",
4b51d669 219#endif
fb0e7942 220#ifdef CONFIG_ZONE_DMA32
2f1b6248 221 "DMA32",
fb0e7942 222#endif
2f1b6248 223 "Normal",
e53ef38d 224#ifdef CONFIG_HIGHMEM
2a1e274a 225 "HighMem",
e53ef38d 226#endif
2a1e274a 227 "Movable",
033fbae9
DW
228#ifdef CONFIG_ZONE_DEVICE
229 "Device",
230#endif
2f1b6248
CL
231};
232
60f30350
VB
233char * const migratetype_names[MIGRATE_TYPES] = {
234 "Unmovable",
235 "Movable",
236 "Reclaimable",
237 "HighAtomic",
238#ifdef CONFIG_CMA
239 "CMA",
240#endif
241#ifdef CONFIG_MEMORY_ISOLATION
242 "Isolate",
243#endif
244};
245
f1e61557
KS
246compound_page_dtor * const compound_page_dtors[] = {
247 NULL,
248 free_compound_page,
249#ifdef CONFIG_HUGETLB_PAGE
250 free_huge_page,
251#endif
9a982250
KS
252#ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 free_transhuge_page,
254#endif
f1e61557
KS
255};
256
1da177e4 257int min_free_kbytes = 1024;
42aa83cb 258int user_min_free_kbytes = -1;
795ae7a0 259int watermark_scale_factor = 10;
1da177e4 260
2c85f51d
JB
261static unsigned long __meminitdata nr_kernel_pages;
262static unsigned long __meminitdata nr_all_pages;
a3142c8e 263static unsigned long __meminitdata dma_reserve;
1da177e4 264
0ee332c1
TH
265#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
266static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
268static unsigned long __initdata required_kernelcore;
269static unsigned long __initdata required_movablecore;
270static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 271static bool mirrored_kernelcore;
0ee332c1
TH
272
273/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274int movable_zone;
275EXPORT_SYMBOL(movable_zone);
276#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 277
418508c1
MS
278#if MAX_NUMNODES > 1
279int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 280int nr_online_nodes __read_mostly = 1;
418508c1 281EXPORT_SYMBOL(nr_node_ids);
62bc62a8 282EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
283#endif
284
9ef9acb0
MG
285int page_group_by_mobility_disabled __read_mostly;
286
3a80a7fa
MG
287#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288static inline void reset_deferred_meminit(pg_data_t *pgdat)
289{
290 pgdat->first_deferred_pfn = ULONG_MAX;
291}
292
293/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 294static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 295{
ef70b6f4
MG
296 int nid = early_pfn_to_nid(pfn);
297
298 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
299 return true;
300
301 return false;
302}
303
304/*
305 * Returns false when the remaining initialisation should be deferred until
306 * later in the boot cycle when it can be parallelised.
307 */
308static inline bool update_defer_init(pg_data_t *pgdat,
309 unsigned long pfn, unsigned long zone_end,
310 unsigned long *nr_initialised)
311{
987b3095
LZ
312 unsigned long max_initialise;
313
3a80a7fa
MG
314 /* Always populate low zones for address-contrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
316 return true;
987b3095
LZ
317 /*
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
320 */
321 max_initialise = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
3a80a7fa 323
3a80a7fa 324 (*nr_initialised)++;
987b3095 325 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
326 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
327 pgdat->first_deferred_pfn = pfn;
328 return false;
329 }
330
331 return true;
332}
333#else
334static inline void reset_deferred_meminit(pg_data_t *pgdat)
335{
336}
337
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
343static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346{
347 return true;
348}
349#endif
350
0b423ca2
MG
351/* Return a pointer to the bitmap storing bits affecting a block of pages */
352static inline unsigned long *get_pageblock_bitmap(struct page *page,
353 unsigned long pfn)
354{
355#ifdef CONFIG_SPARSEMEM
356 return __pfn_to_section(pfn)->pageblock_flags;
357#else
358 return page_zone(page)->pageblock_flags;
359#endif /* CONFIG_SPARSEMEM */
360}
361
362static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
363{
364#ifdef CONFIG_SPARSEMEM
365 pfn &= (PAGES_PER_SECTION-1);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367#else
368 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370#endif /* CONFIG_SPARSEMEM */
371}
372
373/**
374 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
375 * @page: The page within the block of interest
376 * @pfn: The target page frame number
377 * @end_bitidx: The last bit of interest to retrieve
378 * @mask: mask of bits that the caller is interested in
379 *
380 * Return: pageblock_bits flags
381 */
382static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long pfn,
384 unsigned long end_bitidx,
385 unsigned long mask)
386{
387 unsigned long *bitmap;
388 unsigned long bitidx, word_bitidx;
389 unsigned long word;
390
391 bitmap = get_pageblock_bitmap(page, pfn);
392 bitidx = pfn_to_bitidx(page, pfn);
393 word_bitidx = bitidx / BITS_PER_LONG;
394 bitidx &= (BITS_PER_LONG-1);
395
396 word = bitmap[word_bitidx];
397 bitidx += end_bitidx;
398 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
399}
400
401unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
404{
405 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
406}
407
408static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
409{
410 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
411}
412
413/**
414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
415 * @page: The page within the block of interest
416 * @flags: The flags to set
417 * @pfn: The target page frame number
418 * @end_bitidx: The last bit of interest
419 * @mask: mask of bits that the caller is interested in
420 */
421void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long pfn,
423 unsigned long end_bitidx,
424 unsigned long mask)
425{
426 unsigned long *bitmap;
427 unsigned long bitidx, word_bitidx;
428 unsigned long old_word, word;
429
430 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
431
432 bitmap = get_pageblock_bitmap(page, pfn);
433 bitidx = pfn_to_bitidx(page, pfn);
434 word_bitidx = bitidx / BITS_PER_LONG;
435 bitidx &= (BITS_PER_LONG-1);
436
437 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438
439 bitidx += end_bitidx;
440 mask <<= (BITS_PER_LONG - bitidx - 1);
441 flags <<= (BITS_PER_LONG - bitidx - 1);
442
443 word = READ_ONCE(bitmap[word_bitidx]);
444 for (;;) {
445 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
446 if (word == old_word)
447 break;
448 word = old_word;
449 }
450}
3a80a7fa 451
ee6f509c 452void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 453{
5d0f3f72
KM
454 if (unlikely(page_group_by_mobility_disabled &&
455 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
456 migratetype = MIGRATE_UNMOVABLE;
457
b2a0ac88
MG
458 set_pageblock_flags_group(page, (unsigned long)migratetype,
459 PB_migrate, PB_migrate_end);
460}
461
13e7444b 462#ifdef CONFIG_DEBUG_VM
c6a57e19 463static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 464{
bdc8cb98
DH
465 int ret = 0;
466 unsigned seq;
467 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 468 unsigned long sp, start_pfn;
c6a57e19 469
bdc8cb98
DH
470 do {
471 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
472 start_pfn = zone->zone_start_pfn;
473 sp = zone->spanned_pages;
108bcc96 474 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
475 ret = 1;
476 } while (zone_span_seqretry(zone, seq));
477
b5e6a5a2 478 if (ret)
613813e8
DH
479 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
480 pfn, zone_to_nid(zone), zone->name,
481 start_pfn, start_pfn + sp);
b5e6a5a2 482
bdc8cb98 483 return ret;
c6a57e19
DH
484}
485
486static int page_is_consistent(struct zone *zone, struct page *page)
487{
14e07298 488 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 489 return 0;
1da177e4 490 if (zone != page_zone(page))
c6a57e19
DH
491 return 0;
492
493 return 1;
494}
495/*
496 * Temporary debugging check for pages not lying within a given zone.
497 */
498static int bad_range(struct zone *zone, struct page *page)
499{
500 if (page_outside_zone_boundaries(zone, page))
1da177e4 501 return 1;
c6a57e19
DH
502 if (!page_is_consistent(zone, page))
503 return 1;
504
1da177e4
LT
505 return 0;
506}
13e7444b
NP
507#else
508static inline int bad_range(struct zone *zone, struct page *page)
509{
510 return 0;
511}
512#endif
513
d230dec1
KS
514static void bad_page(struct page *page, const char *reason,
515 unsigned long bad_flags)
1da177e4 516{
d936cf9b
HD
517 static unsigned long resume;
518 static unsigned long nr_shown;
519 static unsigned long nr_unshown;
520
521 /*
522 * Allow a burst of 60 reports, then keep quiet for that minute;
523 * or allow a steady drip of one report per second.
524 */
525 if (nr_shown == 60) {
526 if (time_before(jiffies, resume)) {
527 nr_unshown++;
528 goto out;
529 }
530 if (nr_unshown) {
ff8e8116 531 pr_alert(
1e9e6365 532 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
533 nr_unshown);
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
540
ff8e8116 541 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 542 current->comm, page_to_pfn(page));
ff8e8116
VB
543 __dump_page(page, reason);
544 bad_flags &= page->flags;
545 if (bad_flags)
546 pr_alert("bad because of flags: %#lx(%pGp)\n",
547 bad_flags, &bad_flags);
4e462112 548 dump_page_owner(page);
3dc14741 549
4f31888c 550 print_modules();
1da177e4 551 dump_stack();
d936cf9b 552out:
8cc3b392 553 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 554 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 555 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
556}
557
1da177e4
LT
558/*
559 * Higher-order pages are called "compound pages". They are structured thusly:
560 *
1d798ca3 561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 562 *
1d798ca3
KS
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 565 *
1d798ca3
KS
566 * The first tail page's ->compound_dtor holds the offset in array of compound
567 * page destructors. See compound_page_dtors.
1da177e4 568 *
1d798ca3 569 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 570 * This usage means that zero-order pages may not be compound.
1da177e4 571 */
d98c7a09 572
9a982250 573void free_compound_page(struct page *page)
d98c7a09 574{
d85f3385 575 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
576}
577
d00181b9 578void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
579{
580 int i;
581 int nr_pages = 1 << order;
582
f1e61557 583 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
584 set_compound_order(page, order);
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++) {
587 struct page *p = page + i;
58a84aa9 588 set_page_count(p, 0);
1c290f64 589 p->mapping = TAIL_MAPPING;
1d798ca3 590 set_compound_head(p, page);
18229df5 591 }
53f9263b 592 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
593}
594
c0a32fc5
SG
595#ifdef CONFIG_DEBUG_PAGEALLOC
596unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
597bool _debug_pagealloc_enabled __read_mostly
598 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 599EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
600bool _debug_guardpage_enabled __read_mostly;
601
031bc574
JK
602static int __init early_debug_pagealloc(char *buf)
603{
604 if (!buf)
605 return -EINVAL;
2a138dc7 606 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
607}
608early_param("debug_pagealloc", early_debug_pagealloc);
609
e30825f1
JK
610static bool need_debug_guardpage(void)
611{
031bc574
JK
612 /* If we don't use debug_pagealloc, we don't need guard page */
613 if (!debug_pagealloc_enabled())
614 return false;
615
f1c1e9f7
JK
616 if (!debug_guardpage_minorder())
617 return false;
618
e30825f1
JK
619 return true;
620}
621
622static void init_debug_guardpage(void)
623{
031bc574
JK
624 if (!debug_pagealloc_enabled())
625 return;
626
f1c1e9f7
JK
627 if (!debug_guardpage_minorder())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
f1c1e9f7 650early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 651
acbc15a4 652static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
acbc15a4
JK
658 return false;
659
660 if (order >= debug_guardpage_minorder())
661 return false;
e30825f1
JK
662
663 page_ext = lookup_page_ext(page);
f86e4271 664 if (unlikely(!page_ext))
acbc15a4 665 return false;
f86e4271 666
e30825f1
JK
667 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
668
2847cf95
JK
669 INIT_LIST_HEAD(&page->lru);
670 set_page_private(page, order);
671 /* Guard pages are not available for any usage */
672 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
673
674 return true;
c0a32fc5
SG
675}
676
2847cf95
JK
677static inline void clear_page_guard(struct zone *zone, struct page *page,
678 unsigned int order, int migratetype)
c0a32fc5 679{
e30825f1
JK
680 struct page_ext *page_ext;
681
682 if (!debug_guardpage_enabled())
683 return;
684
685 page_ext = lookup_page_ext(page);
f86e4271
YS
686 if (unlikely(!page_ext))
687 return;
688
e30825f1
JK
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
980ac167 696struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
697static inline bool set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) { return false; }
2847cf95
JK
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13ad59df 718 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
c0a32fc5 733 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
4c5018ce
WY
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
c0a32fc5
SG
739 return 1;
740 }
741
cb2b95e1 742 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
743 /*
744 * zone check is done late to avoid uselessly
745 * calculating zone/node ids for pages that could
746 * never merge.
747 */
748 if (page_zone_id(page) != page_zone_id(buddy))
749 return 0;
750
4c5018ce
WY
751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752
6aa3001b 753 return 1;
676165a8 754 }
6aa3001b 755 return 0;
1da177e4
LT
756}
757
758/*
759 * Freeing function for a buddy system allocator.
760 *
761 * The concept of a buddy system is to maintain direct-mapped table
762 * (containing bit values) for memory blocks of various "orders".
763 * The bottom level table contains the map for the smallest allocatable
764 * units of memory (here, pages), and each level above it describes
765 * pairs of units from the levels below, hence, "buddies".
766 * At a high level, all that happens here is marking the table entry
767 * at the bottom level available, and propagating the changes upward
768 * as necessary, plus some accounting needed to play nicely with other
769 * parts of the VM system.
770 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
771 * free pages of length of (1 << order) and marked with _mapcount
772 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
773 * field.
1da177e4 774 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
775 * other. That is, if we allocate a small block, and both were
776 * free, the remainder of the region must be split into blocks.
1da177e4 777 * If a block is freed, and its buddy is also free, then this
5f63b720 778 * triggers coalescing into a block of larger size.
1da177e4 779 *
6d49e352 780 * -- nyc
1da177e4
LT
781 */
782
48db57f8 783static inline void __free_one_page(struct page *page,
dc4b0caf 784 unsigned long pfn,
ed0ae21d
MG
785 struct zone *zone, unsigned int order,
786 int migratetype)
1da177e4 787{
76741e77
VB
788 unsigned long combined_pfn;
789 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 790 struct page *buddy;
d9dddbf5
VB
791 unsigned int max_order;
792
793 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 794
d29bb978 795 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 796 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 797
ed0ae21d 798 VM_BUG_ON(migratetype == -1);
d9dddbf5 799 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 800 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 801
76741e77 802 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 804
d9dddbf5 805continue_merging:
3c605096 806 while (order < max_order - 1) {
76741e77
VB
807 buddy_pfn = __find_buddy_pfn(pfn, order);
808 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
809
810 if (!pfn_valid_within(buddy_pfn))
811 goto done_merging;
cb2b95e1 812 if (!page_is_buddy(page, buddy, order))
d9dddbf5 813 goto done_merging;
c0a32fc5
SG
814 /*
815 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
816 * merge with it and move up one order.
817 */
818 if (page_is_guard(buddy)) {
2847cf95 819 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
820 } else {
821 list_del(&buddy->lru);
822 zone->free_area[order].nr_free--;
823 rmv_page_order(buddy);
824 }
76741e77
VB
825 combined_pfn = buddy_pfn & pfn;
826 page = page + (combined_pfn - pfn);
827 pfn = combined_pfn;
1da177e4
LT
828 order++;
829 }
d9dddbf5
VB
830 if (max_order < MAX_ORDER) {
831 /* If we are here, it means order is >= pageblock_order.
832 * We want to prevent merge between freepages on isolate
833 * pageblock and normal pageblock. Without this, pageblock
834 * isolation could cause incorrect freepage or CMA accounting.
835 *
836 * We don't want to hit this code for the more frequent
837 * low-order merging.
838 */
839 if (unlikely(has_isolate_pageblock(zone))) {
840 int buddy_mt;
841
76741e77
VB
842 buddy_pfn = __find_buddy_pfn(pfn, order);
843 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
844 buddy_mt = get_pageblock_migratetype(buddy);
845
846 if (migratetype != buddy_mt
847 && (is_migrate_isolate(migratetype) ||
848 is_migrate_isolate(buddy_mt)))
849 goto done_merging;
850 }
851 max_order++;
852 goto continue_merging;
853 }
854
855done_merging:
1da177e4 856 set_page_order(page, order);
6dda9d55
CZ
857
858 /*
859 * If this is not the largest possible page, check if the buddy
860 * of the next-highest order is free. If it is, it's possible
861 * that pages are being freed that will coalesce soon. In case,
862 * that is happening, add the free page to the tail of the list
863 * so it's less likely to be used soon and more likely to be merged
864 * as a higher order page
865 */
13ad59df 866 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 867 struct page *higher_page, *higher_buddy;
76741e77
VB
868 combined_pfn = buddy_pfn & pfn;
869 higher_page = page + (combined_pfn - pfn);
870 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
871 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
6dda9d55
CZ
872 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
873 list_add_tail(&page->lru,
874 &zone->free_area[order].free_list[migratetype]);
875 goto out;
876 }
877 }
878
879 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
880out:
1da177e4
LT
881 zone->free_area[order].nr_free++;
882}
883
7bfec6f4
MG
884/*
885 * A bad page could be due to a number of fields. Instead of multiple branches,
886 * try and check multiple fields with one check. The caller must do a detailed
887 * check if necessary.
888 */
889static inline bool page_expected_state(struct page *page,
890 unsigned long check_flags)
891{
892 if (unlikely(atomic_read(&page->_mapcount) != -1))
893 return false;
894
895 if (unlikely((unsigned long)page->mapping |
896 page_ref_count(page) |
897#ifdef CONFIG_MEMCG
898 (unsigned long)page->mem_cgroup |
899#endif
900 (page->flags & check_flags)))
901 return false;
902
903 return true;
904}
905
bb552ac6 906static void free_pages_check_bad(struct page *page)
1da177e4 907{
7bfec6f4
MG
908 const char *bad_reason;
909 unsigned long bad_flags;
910
7bfec6f4
MG
911 bad_reason = NULL;
912 bad_flags = 0;
f0b791a3 913
53f9263b 914 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
915 bad_reason = "nonzero mapcount";
916 if (unlikely(page->mapping != NULL))
917 bad_reason = "non-NULL mapping";
fe896d18 918 if (unlikely(page_ref_count(page) != 0))
0139aa7b 919 bad_reason = "nonzero _refcount";
f0b791a3
DH
920 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
921 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
922 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
923 }
9edad6ea
JW
924#ifdef CONFIG_MEMCG
925 if (unlikely(page->mem_cgroup))
926 bad_reason = "page still charged to cgroup";
927#endif
7bfec6f4 928 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
929}
930
931static inline int free_pages_check(struct page *page)
932{
da838d4f 933 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 934 return 0;
bb552ac6
MG
935
936 /* Something has gone sideways, find it */
937 free_pages_check_bad(page);
7bfec6f4 938 return 1;
1da177e4
LT
939}
940
4db7548c
MG
941static int free_tail_pages_check(struct page *head_page, struct page *page)
942{
943 int ret = 1;
944
945 /*
946 * We rely page->lru.next never has bit 0 set, unless the page
947 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
948 */
949 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
950
951 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
952 ret = 0;
953 goto out;
954 }
955 switch (page - head_page) {
956 case 1:
957 /* the first tail page: ->mapping is compound_mapcount() */
958 if (unlikely(compound_mapcount(page))) {
959 bad_page(page, "nonzero compound_mapcount", 0);
960 goto out;
961 }
962 break;
963 case 2:
964 /*
965 * the second tail page: ->mapping is
966 * page_deferred_list().next -- ignore value.
967 */
968 break;
969 default:
970 if (page->mapping != TAIL_MAPPING) {
971 bad_page(page, "corrupted mapping in tail page", 0);
972 goto out;
973 }
974 break;
975 }
976 if (unlikely(!PageTail(page))) {
977 bad_page(page, "PageTail not set", 0);
978 goto out;
979 }
980 if (unlikely(compound_head(page) != head_page)) {
981 bad_page(page, "compound_head not consistent", 0);
982 goto out;
983 }
984 ret = 0;
985out:
986 page->mapping = NULL;
987 clear_compound_head(page);
988 return ret;
989}
990
e2769dbd
MG
991static __always_inline bool free_pages_prepare(struct page *page,
992 unsigned int order, bool check_free)
4db7548c 993{
e2769dbd 994 int bad = 0;
4db7548c 995
4db7548c
MG
996 VM_BUG_ON_PAGE(PageTail(page), page);
997
e2769dbd
MG
998 trace_mm_page_free(page, order);
999 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1000
1001 /*
1002 * Check tail pages before head page information is cleared to
1003 * avoid checking PageCompound for order-0 pages.
1004 */
1005 if (unlikely(order)) {
1006 bool compound = PageCompound(page);
1007 int i;
1008
1009 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1010
9a73f61b
KS
1011 if (compound)
1012 ClearPageDoubleMap(page);
e2769dbd
MG
1013 for (i = 1; i < (1 << order); i++) {
1014 if (compound)
1015 bad += free_tail_pages_check(page, page + i);
1016 if (unlikely(free_pages_check(page + i))) {
1017 bad++;
1018 continue;
1019 }
1020 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1021 }
1022 }
bda807d4 1023 if (PageMappingFlags(page))
4db7548c 1024 page->mapping = NULL;
c4159a75 1025 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1026 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
4db7548c 1031
e2769dbd
MG
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
4db7548c
MG
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
e2769dbd 1038 PAGE_SIZE << order);
4db7548c 1039 debug_check_no_obj_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 }
e2769dbd
MG
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
29b52de1 1045 kasan_free_pages(page, order);
4db7548c 1046
4db7548c
MG
1047 return true;
1048}
1049
e2769dbd
MG
1050#ifdef CONFIG_DEBUG_VM
1051static inline bool free_pcp_prepare(struct page *page)
1052{
1053 return free_pages_prepare(page, 0, true);
1054}
1055
1056static inline bool bulkfree_pcp_prepare(struct page *page)
1057{
1058 return false;
1059}
1060#else
1061static bool free_pcp_prepare(struct page *page)
1062{
1063 return free_pages_prepare(page, 0, false);
1064}
1065
4db7548c
MG
1066static bool bulkfree_pcp_prepare(struct page *page)
1067{
1068 return free_pages_check(page);
1069}
1070#endif /* CONFIG_DEBUG_VM */
1071
1da177e4 1072/*
5f8dcc21 1073 * Frees a number of pages from the PCP lists
1da177e4 1074 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1075 * count is the number of pages to free.
1da177e4
LT
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
5f8dcc21
MG
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084 struct per_cpu_pages *pcp)
1da177e4 1085{
5f8dcc21 1086 int migratetype = 0;
a6f9edd6 1087 int batch_free = 0;
0d5d823a 1088 unsigned long nr_scanned;
3777999d 1089 bool isolated_pageblocks;
5f8dcc21 1090
c54ad30c 1091 spin_lock(&zone->lock);
3777999d 1092 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1093 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1094 if (nr_scanned)
599d0c95 1095 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1096
e5b31ac2 1097 while (count) {
48db57f8 1098 struct page *page;
5f8dcc21
MG
1099 struct list_head *list;
1100
1101 /*
a6f9edd6
MG
1102 * Remove pages from lists in a round-robin fashion. A
1103 * batch_free count is maintained that is incremented when an
1104 * empty list is encountered. This is so more pages are freed
1105 * off fuller lists instead of spinning excessively around empty
1106 * lists
5f8dcc21
MG
1107 */
1108 do {
a6f9edd6 1109 batch_free++;
5f8dcc21
MG
1110 if (++migratetype == MIGRATE_PCPTYPES)
1111 migratetype = 0;
1112 list = &pcp->lists[migratetype];
1113 } while (list_empty(list));
48db57f8 1114
1d16871d
NK
1115 /* This is the only non-empty list. Free them all. */
1116 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1117 batch_free = count;
1d16871d 1118
a6f9edd6 1119 do {
770c8aaa
BZ
1120 int mt; /* migratetype of the to-be-freed page */
1121
a16601c5 1122 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1123 /* must delete as __free_one_page list manipulates */
1124 list_del(&page->lru);
aa016d14 1125
bb14c2c7 1126 mt = get_pcppage_migratetype(page);
aa016d14
VB
1127 /* MIGRATE_ISOLATE page should not go to pcplists */
1128 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1129 /* Pageblock could have been isolated meanwhile */
3777999d 1130 if (unlikely(isolated_pageblocks))
51bb1a40 1131 mt = get_pageblock_migratetype(page);
51bb1a40 1132
4db7548c
MG
1133 if (bulkfree_pcp_prepare(page))
1134 continue;
1135
dc4b0caf 1136 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1137 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1138 } while (--count && --batch_free && !list_empty(list));
1da177e4 1139 }
c54ad30c 1140 spin_unlock(&zone->lock);
1da177e4
LT
1141}
1142
dc4b0caf
MG
1143static void free_one_page(struct zone *zone,
1144 struct page *page, unsigned long pfn,
7aeb09f9 1145 unsigned int order,
ed0ae21d 1146 int migratetype)
1da177e4 1147{
0d5d823a 1148 unsigned long nr_scanned;
006d22d9 1149 spin_lock(&zone->lock);
599d0c95 1150 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1151 if (nr_scanned)
599d0c95 1152 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1153
ad53f92e
JK
1154 if (unlikely(has_isolate_pageblock(zone) ||
1155 is_migrate_isolate(migratetype))) {
1156 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1157 }
dc4b0caf 1158 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1159 spin_unlock(&zone->lock);
48db57f8
NP
1160}
1161
1e8ce83c
RH
1162static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1163 unsigned long zone, int nid)
1164{
1e8ce83c 1165 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1166 init_page_count(page);
1167 page_mapcount_reset(page);
1168 page_cpupid_reset_last(page);
1e8ce83c 1169
1e8ce83c
RH
1170 INIT_LIST_HEAD(&page->lru);
1171#ifdef WANT_PAGE_VIRTUAL
1172 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1173 if (!is_highmem_idx(zone))
1174 set_page_address(page, __va(pfn << PAGE_SHIFT));
1175#endif
1176}
1177
1178static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1179 int nid)
1180{
1181 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1182}
1183
7e18adb4
MG
1184#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1185static void init_reserved_page(unsigned long pfn)
1186{
1187 pg_data_t *pgdat;
1188 int nid, zid;
1189
1190 if (!early_page_uninitialised(pfn))
1191 return;
1192
1193 nid = early_pfn_to_nid(pfn);
1194 pgdat = NODE_DATA(nid);
1195
1196 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1197 struct zone *zone = &pgdat->node_zones[zid];
1198
1199 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1200 break;
1201 }
1202 __init_single_pfn(pfn, zid, nid);
1203}
1204#else
1205static inline void init_reserved_page(unsigned long pfn)
1206{
1207}
1208#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1209
92923ca3
NZ
1210/*
1211 * Initialised pages do not have PageReserved set. This function is
1212 * called for each range allocated by the bootmem allocator and
1213 * marks the pages PageReserved. The remaining valid pages are later
1214 * sent to the buddy page allocator.
1215 */
4b50bcc7 1216void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1217{
1218 unsigned long start_pfn = PFN_DOWN(start);
1219 unsigned long end_pfn = PFN_UP(end);
1220
7e18adb4
MG
1221 for (; start_pfn < end_pfn; start_pfn++) {
1222 if (pfn_valid(start_pfn)) {
1223 struct page *page = pfn_to_page(start_pfn);
1224
1225 init_reserved_page(start_pfn);
1d798ca3
KS
1226
1227 /* Avoid false-positive PageTail() */
1228 INIT_LIST_HEAD(&page->lru);
1229
7e18adb4
MG
1230 SetPageReserved(page);
1231 }
1232 }
92923ca3
NZ
1233}
1234
ec95f53a
KM
1235static void __free_pages_ok(struct page *page, unsigned int order)
1236{
1237 unsigned long flags;
95e34412 1238 int migratetype;
dc4b0caf 1239 unsigned long pfn = page_to_pfn(page);
ec95f53a 1240
e2769dbd 1241 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1242 return;
1243
cfc47a28 1244 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1245 local_irq_save(flags);
f8891e5e 1246 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1247 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1248 local_irq_restore(flags);
1da177e4
LT
1249}
1250
949698a3 1251static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1252{
c3993076 1253 unsigned int nr_pages = 1 << order;
e2d0bd2b 1254 struct page *p = page;
c3993076 1255 unsigned int loop;
a226f6c8 1256
e2d0bd2b
YL
1257 prefetchw(p);
1258 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1259 prefetchw(p + 1);
c3993076
JW
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
a226f6c8 1262 }
e2d0bd2b
YL
1263 __ClearPageReserved(p);
1264 set_page_count(p, 0);
c3993076 1265
e2d0bd2b 1266 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1267 set_page_refcounted(page);
1268 __free_pages(page, order);
a226f6c8
DH
1269}
1270
75a592a4
MG
1271#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1272 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1273
75a592a4
MG
1274static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1275
1276int __meminit early_pfn_to_nid(unsigned long pfn)
1277{
7ace9917 1278 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1279 int nid;
1280
7ace9917 1281 spin_lock(&early_pfn_lock);
75a592a4 1282 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1283 if (nid < 0)
e4568d38 1284 nid = first_online_node;
7ace9917
MG
1285 spin_unlock(&early_pfn_lock);
1286
1287 return nid;
75a592a4
MG
1288}
1289#endif
1290
1291#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1292static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1293 struct mminit_pfnnid_cache *state)
1294{
1295 int nid;
1296
1297 nid = __early_pfn_to_nid(pfn, state);
1298 if (nid >= 0 && nid != node)
1299 return false;
1300 return true;
1301}
1302
1303/* Only safe to use early in boot when initialisation is single-threaded */
1304static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1305{
1306 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1307}
1308
1309#else
1310
1311static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312{
1313 return true;
1314}
1315static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1316 struct mminit_pfnnid_cache *state)
1317{
1318 return true;
1319}
1320#endif
1321
1322
0e1cc95b 1323void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1324 unsigned int order)
1325{
1326 if (early_page_uninitialised(pfn))
1327 return;
949698a3 1328 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1329}
1330
7cf91a98
JK
1331/*
1332 * Check that the whole (or subset of) a pageblock given by the interval of
1333 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1334 * with the migration of free compaction scanner. The scanners then need to
1335 * use only pfn_valid_within() check for arches that allow holes within
1336 * pageblocks.
1337 *
1338 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1339 *
1340 * It's possible on some configurations to have a setup like node0 node1 node0
1341 * i.e. it's possible that all pages within a zones range of pages do not
1342 * belong to a single zone. We assume that a border between node0 and node1
1343 * can occur within a single pageblock, but not a node0 node1 node0
1344 * interleaving within a single pageblock. It is therefore sufficient to check
1345 * the first and last page of a pageblock and avoid checking each individual
1346 * page in a pageblock.
1347 */
1348struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1349 unsigned long end_pfn, struct zone *zone)
1350{
1351 struct page *start_page;
1352 struct page *end_page;
1353
1354 /* end_pfn is one past the range we are checking */
1355 end_pfn--;
1356
1357 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1358 return NULL;
1359
1360 start_page = pfn_to_page(start_pfn);
1361
1362 if (page_zone(start_page) != zone)
1363 return NULL;
1364
1365 end_page = pfn_to_page(end_pfn);
1366
1367 /* This gives a shorter code than deriving page_zone(end_page) */
1368 if (page_zone_id(start_page) != page_zone_id(end_page))
1369 return NULL;
1370
1371 return start_page;
1372}
1373
1374void set_zone_contiguous(struct zone *zone)
1375{
1376 unsigned long block_start_pfn = zone->zone_start_pfn;
1377 unsigned long block_end_pfn;
1378
1379 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1380 for (; block_start_pfn < zone_end_pfn(zone);
1381 block_start_pfn = block_end_pfn,
1382 block_end_pfn += pageblock_nr_pages) {
1383
1384 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1385
1386 if (!__pageblock_pfn_to_page(block_start_pfn,
1387 block_end_pfn, zone))
1388 return;
1389 }
1390
1391 /* We confirm that there is no hole */
1392 zone->contiguous = true;
1393}
1394
1395void clear_zone_contiguous(struct zone *zone)
1396{
1397 zone->contiguous = false;
1398}
1399
7e18adb4 1400#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1401static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1402 unsigned long pfn, int nr_pages)
1403{
1404 int i;
1405
1406 if (!page)
1407 return;
1408
1409 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1410 if (nr_pages == pageblock_nr_pages &&
1411 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1412 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1413 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1414 return;
1415 }
1416
e780149b
XQ
1417 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1418 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1419 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1420 __free_pages_boot_core(page, 0);
e780149b 1421 }
a4de83dd
MG
1422}
1423
d3cd131d
NS
1424/* Completion tracking for deferred_init_memmap() threads */
1425static atomic_t pgdat_init_n_undone __initdata;
1426static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1427
1428static inline void __init pgdat_init_report_one_done(void)
1429{
1430 if (atomic_dec_and_test(&pgdat_init_n_undone))
1431 complete(&pgdat_init_all_done_comp);
1432}
0e1cc95b 1433
7e18adb4 1434/* Initialise remaining memory on a node */
0e1cc95b 1435static int __init deferred_init_memmap(void *data)
7e18adb4 1436{
0e1cc95b
MG
1437 pg_data_t *pgdat = data;
1438 int nid = pgdat->node_id;
7e18adb4
MG
1439 struct mminit_pfnnid_cache nid_init_state = { };
1440 unsigned long start = jiffies;
1441 unsigned long nr_pages = 0;
1442 unsigned long walk_start, walk_end;
1443 int i, zid;
1444 struct zone *zone;
7e18adb4 1445 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1446 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1447
0e1cc95b 1448 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1449 pgdat_init_report_one_done();
0e1cc95b
MG
1450 return 0;
1451 }
1452
1453 /* Bind memory initialisation thread to a local node if possible */
1454 if (!cpumask_empty(cpumask))
1455 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1456
1457 /* Sanity check boundaries */
1458 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1459 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1460 pgdat->first_deferred_pfn = ULONG_MAX;
1461
1462 /* Only the highest zone is deferred so find it */
1463 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1464 zone = pgdat->node_zones + zid;
1465 if (first_init_pfn < zone_end_pfn(zone))
1466 break;
1467 }
1468
1469 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1470 unsigned long pfn, end_pfn;
54608c3f 1471 struct page *page = NULL;
a4de83dd
MG
1472 struct page *free_base_page = NULL;
1473 unsigned long free_base_pfn = 0;
1474 int nr_to_free = 0;
7e18adb4
MG
1475
1476 end_pfn = min(walk_end, zone_end_pfn(zone));
1477 pfn = first_init_pfn;
1478 if (pfn < walk_start)
1479 pfn = walk_start;
1480 if (pfn < zone->zone_start_pfn)
1481 pfn = zone->zone_start_pfn;
1482
1483 for (; pfn < end_pfn; pfn++) {
54608c3f 1484 if (!pfn_valid_within(pfn))
a4de83dd 1485 goto free_range;
7e18adb4 1486
54608c3f
MG
1487 /*
1488 * Ensure pfn_valid is checked every
e780149b 1489 * pageblock_nr_pages for memory holes
54608c3f 1490 */
e780149b 1491 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1492 if (!pfn_valid(pfn)) {
1493 page = NULL;
a4de83dd 1494 goto free_range;
54608c3f
MG
1495 }
1496 }
1497
1498 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1499 page = NULL;
a4de83dd 1500 goto free_range;
54608c3f
MG
1501 }
1502
1503 /* Minimise pfn page lookups and scheduler checks */
e780149b 1504 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1505 page++;
1506 } else {
a4de83dd
MG
1507 nr_pages += nr_to_free;
1508 deferred_free_range(free_base_page,
1509 free_base_pfn, nr_to_free);
1510 free_base_page = NULL;
1511 free_base_pfn = nr_to_free = 0;
1512
54608c3f
MG
1513 page = pfn_to_page(pfn);
1514 cond_resched();
1515 }
7e18adb4
MG
1516
1517 if (page->flags) {
1518 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1519 goto free_range;
7e18adb4
MG
1520 }
1521
1522 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1523 if (!free_base_page) {
1524 free_base_page = page;
1525 free_base_pfn = pfn;
1526 nr_to_free = 0;
1527 }
1528 nr_to_free++;
1529
1530 /* Where possible, batch up pages for a single free */
1531 continue;
1532free_range:
1533 /* Free the current block of pages to allocator */
1534 nr_pages += nr_to_free;
1535 deferred_free_range(free_base_page, free_base_pfn,
1536 nr_to_free);
1537 free_base_page = NULL;
1538 free_base_pfn = nr_to_free = 0;
7e18adb4 1539 }
e780149b
XQ
1540 /* Free the last block of pages to allocator */
1541 nr_pages += nr_to_free;
1542 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1543
7e18adb4
MG
1544 first_init_pfn = max(end_pfn, first_init_pfn);
1545 }
1546
1547 /* Sanity check that the next zone really is unpopulated */
1548 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1549
0e1cc95b 1550 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1551 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1552
1553 pgdat_init_report_one_done();
0e1cc95b
MG
1554 return 0;
1555}
7cf91a98 1556#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1557
1558void __init page_alloc_init_late(void)
1559{
7cf91a98
JK
1560 struct zone *zone;
1561
1562#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1563 int nid;
1564
d3cd131d
NS
1565 /* There will be num_node_state(N_MEMORY) threads */
1566 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1567 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1568 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1569 }
1570
1571 /* Block until all are initialised */
d3cd131d 1572 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1573
1574 /* Reinit limits that are based on free pages after the kernel is up */
1575 files_maxfiles_init();
7cf91a98
JK
1576#endif
1577
1578 for_each_populated_zone(zone)
1579 set_zone_contiguous(zone);
7e18adb4 1580}
7e18adb4 1581
47118af0 1582#ifdef CONFIG_CMA
9cf510a5 1583/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1584void __init init_cma_reserved_pageblock(struct page *page)
1585{
1586 unsigned i = pageblock_nr_pages;
1587 struct page *p = page;
1588
1589 do {
1590 __ClearPageReserved(p);
1591 set_page_count(p, 0);
1592 } while (++p, --i);
1593
47118af0 1594 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1595
1596 if (pageblock_order >= MAX_ORDER) {
1597 i = pageblock_nr_pages;
1598 p = page;
1599 do {
1600 set_page_refcounted(p);
1601 __free_pages(p, MAX_ORDER - 1);
1602 p += MAX_ORDER_NR_PAGES;
1603 } while (i -= MAX_ORDER_NR_PAGES);
1604 } else {
1605 set_page_refcounted(page);
1606 __free_pages(page, pageblock_order);
1607 }
1608
3dcc0571 1609 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1610}
1611#endif
1da177e4
LT
1612
1613/*
1614 * The order of subdivision here is critical for the IO subsystem.
1615 * Please do not alter this order without good reasons and regression
1616 * testing. Specifically, as large blocks of memory are subdivided,
1617 * the order in which smaller blocks are delivered depends on the order
1618 * they're subdivided in this function. This is the primary factor
1619 * influencing the order in which pages are delivered to the IO
1620 * subsystem according to empirical testing, and this is also justified
1621 * by considering the behavior of a buddy system containing a single
1622 * large block of memory acted on by a series of small allocations.
1623 * This behavior is a critical factor in sglist merging's success.
1624 *
6d49e352 1625 * -- nyc
1da177e4 1626 */
085cc7d5 1627static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1628 int low, int high, struct free_area *area,
1629 int migratetype)
1da177e4
LT
1630{
1631 unsigned long size = 1 << high;
1632
1633 while (high > low) {
1634 area--;
1635 high--;
1636 size >>= 1;
309381fe 1637 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1638
acbc15a4
JK
1639 /*
1640 * Mark as guard pages (or page), that will allow to
1641 * merge back to allocator when buddy will be freed.
1642 * Corresponding page table entries will not be touched,
1643 * pages will stay not present in virtual address space
1644 */
1645 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1646 continue;
acbc15a4 1647
b2a0ac88 1648 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1649 area->nr_free++;
1650 set_page_order(&page[size], high);
1651 }
1da177e4
LT
1652}
1653
4e611801 1654static void check_new_page_bad(struct page *page)
1da177e4 1655{
4e611801
VB
1656 const char *bad_reason = NULL;
1657 unsigned long bad_flags = 0;
7bfec6f4 1658
53f9263b 1659 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1660 bad_reason = "nonzero mapcount";
1661 if (unlikely(page->mapping != NULL))
1662 bad_reason = "non-NULL mapping";
fe896d18 1663 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1664 bad_reason = "nonzero _count";
f4c18e6f
NH
1665 if (unlikely(page->flags & __PG_HWPOISON)) {
1666 bad_reason = "HWPoisoned (hardware-corrupted)";
1667 bad_flags = __PG_HWPOISON;
e570f56c
NH
1668 /* Don't complain about hwpoisoned pages */
1669 page_mapcount_reset(page); /* remove PageBuddy */
1670 return;
f4c18e6f 1671 }
f0b791a3
DH
1672 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1673 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1674 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1675 }
9edad6ea
JW
1676#ifdef CONFIG_MEMCG
1677 if (unlikely(page->mem_cgroup))
1678 bad_reason = "page still charged to cgroup";
1679#endif
4e611801
VB
1680 bad_page(page, bad_reason, bad_flags);
1681}
1682
1683/*
1684 * This page is about to be returned from the page allocator
1685 */
1686static inline int check_new_page(struct page *page)
1687{
1688 if (likely(page_expected_state(page,
1689 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1690 return 0;
1691
1692 check_new_page_bad(page);
1693 return 1;
2a7684a2
WF
1694}
1695
1414c7f4
LA
1696static inline bool free_pages_prezeroed(bool poisoned)
1697{
1698 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1699 page_poisoning_enabled() && poisoned;
1700}
1701
479f854a
MG
1702#ifdef CONFIG_DEBUG_VM
1703static bool check_pcp_refill(struct page *page)
1704{
1705 return false;
1706}
1707
1708static bool check_new_pcp(struct page *page)
1709{
1710 return check_new_page(page);
1711}
1712#else
1713static bool check_pcp_refill(struct page *page)
1714{
1715 return check_new_page(page);
1716}
1717static bool check_new_pcp(struct page *page)
1718{
1719 return false;
1720}
1721#endif /* CONFIG_DEBUG_VM */
1722
1723static bool check_new_pages(struct page *page, unsigned int order)
1724{
1725 int i;
1726 for (i = 0; i < (1 << order); i++) {
1727 struct page *p = page + i;
1728
1729 if (unlikely(check_new_page(p)))
1730 return true;
1731 }
1732
1733 return false;
1734}
1735
46f24fd8
JK
1736inline void post_alloc_hook(struct page *page, unsigned int order,
1737 gfp_t gfp_flags)
1738{
1739 set_page_private(page, 0);
1740 set_page_refcounted(page);
1741
1742 arch_alloc_page(page, order);
1743 kernel_map_pages(page, 1 << order, 1);
1744 kernel_poison_pages(page, 1 << order, 1);
1745 kasan_alloc_pages(page, order);
1746 set_page_owner(page, order, gfp_flags);
1747}
1748
479f854a 1749static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1750 unsigned int alloc_flags)
2a7684a2
WF
1751{
1752 int i;
1414c7f4 1753 bool poisoned = true;
2a7684a2
WF
1754
1755 for (i = 0; i < (1 << order); i++) {
1756 struct page *p = page + i;
1414c7f4
LA
1757 if (poisoned)
1758 poisoned &= page_is_poisoned(p);
2a7684a2 1759 }
689bcebf 1760
46f24fd8 1761 post_alloc_hook(page, order, gfp_flags);
17cf4406 1762
1414c7f4 1763 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1764 for (i = 0; i < (1 << order); i++)
1765 clear_highpage(page + i);
17cf4406
NP
1766
1767 if (order && (gfp_flags & __GFP_COMP))
1768 prep_compound_page(page, order);
1769
75379191 1770 /*
2f064f34 1771 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1772 * allocate the page. The expectation is that the caller is taking
1773 * steps that will free more memory. The caller should avoid the page
1774 * being used for !PFMEMALLOC purposes.
1775 */
2f064f34
MH
1776 if (alloc_flags & ALLOC_NO_WATERMARKS)
1777 set_page_pfmemalloc(page);
1778 else
1779 clear_page_pfmemalloc(page);
1da177e4
LT
1780}
1781
56fd56b8
MG
1782/*
1783 * Go through the free lists for the given migratetype and remove
1784 * the smallest available page from the freelists
1785 */
728ec980
MG
1786static inline
1787struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1788 int migratetype)
1789{
1790 unsigned int current_order;
b8af2941 1791 struct free_area *area;
56fd56b8
MG
1792 struct page *page;
1793
1794 /* Find a page of the appropriate size in the preferred list */
1795 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1796 area = &(zone->free_area[current_order]);
a16601c5 1797 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1798 struct page, lru);
a16601c5
GT
1799 if (!page)
1800 continue;
56fd56b8
MG
1801 list_del(&page->lru);
1802 rmv_page_order(page);
1803 area->nr_free--;
56fd56b8 1804 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1805 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1806 return page;
1807 }
1808
1809 return NULL;
1810}
1811
1812
b2a0ac88
MG
1813/*
1814 * This array describes the order lists are fallen back to when
1815 * the free lists for the desirable migrate type are depleted
1816 */
47118af0 1817static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1818 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1819 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1820 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1821#ifdef CONFIG_CMA
974a786e 1822 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1823#endif
194159fb 1824#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1825 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1826#endif
b2a0ac88
MG
1827};
1828
dc67647b
JK
1829#ifdef CONFIG_CMA
1830static struct page *__rmqueue_cma_fallback(struct zone *zone,
1831 unsigned int order)
1832{
1833 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1834}
1835#else
1836static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1837 unsigned int order) { return NULL; }
1838#endif
1839
c361be55
MG
1840/*
1841 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1842 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1843 * boundary. If alignment is required, use move_freepages_block()
1844 */
435b405c 1845int move_freepages(struct zone *zone,
b69a7288
AB
1846 struct page *start_page, struct page *end_page,
1847 int migratetype)
c361be55
MG
1848{
1849 struct page *page;
d00181b9 1850 unsigned int order;
d100313f 1851 int pages_moved = 0;
c361be55
MG
1852
1853#ifndef CONFIG_HOLES_IN_ZONE
1854 /*
1855 * page_zone is not safe to call in this context when
1856 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1857 * anyway as we check zone boundaries in move_freepages_block().
1858 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1859 * grouping pages by mobility
c361be55 1860 */
97ee4ba7 1861 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1862#endif
1863
1864 for (page = start_page; page <= end_page;) {
1865 if (!pfn_valid_within(page_to_pfn(page))) {
1866 page++;
1867 continue;
1868 }
1869
f073bdc5
AB
1870 /* Make sure we are not inadvertently changing nodes */
1871 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1872
c361be55
MG
1873 if (!PageBuddy(page)) {
1874 page++;
1875 continue;
1876 }
1877
1878 order = page_order(page);
84be48d8
KS
1879 list_move(&page->lru,
1880 &zone->free_area[order].free_list[migratetype]);
c361be55 1881 page += 1 << order;
d100313f 1882 pages_moved += 1 << order;
c361be55
MG
1883 }
1884
d100313f 1885 return pages_moved;
c361be55
MG
1886}
1887
ee6f509c 1888int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1889 int migratetype)
c361be55
MG
1890{
1891 unsigned long start_pfn, end_pfn;
1892 struct page *start_page, *end_page;
1893
1894 start_pfn = page_to_pfn(page);
d9c23400 1895 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1896 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1897 end_page = start_page + pageblock_nr_pages - 1;
1898 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1899
1900 /* Do not cross zone boundaries */
108bcc96 1901 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1902 start_page = page;
108bcc96 1903 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1904 return 0;
1905
1906 return move_freepages(zone, start_page, end_page, migratetype);
1907}
1908
2f66a68f
MG
1909static void change_pageblock_range(struct page *pageblock_page,
1910 int start_order, int migratetype)
1911{
1912 int nr_pageblocks = 1 << (start_order - pageblock_order);
1913
1914 while (nr_pageblocks--) {
1915 set_pageblock_migratetype(pageblock_page, migratetype);
1916 pageblock_page += pageblock_nr_pages;
1917 }
1918}
1919
fef903ef 1920/*
9c0415eb
VB
1921 * When we are falling back to another migratetype during allocation, try to
1922 * steal extra free pages from the same pageblocks to satisfy further
1923 * allocations, instead of polluting multiple pageblocks.
1924 *
1925 * If we are stealing a relatively large buddy page, it is likely there will
1926 * be more free pages in the pageblock, so try to steal them all. For
1927 * reclaimable and unmovable allocations, we steal regardless of page size,
1928 * as fragmentation caused by those allocations polluting movable pageblocks
1929 * is worse than movable allocations stealing from unmovable and reclaimable
1930 * pageblocks.
fef903ef 1931 */
4eb7dce6
JK
1932static bool can_steal_fallback(unsigned int order, int start_mt)
1933{
1934 /*
1935 * Leaving this order check is intended, although there is
1936 * relaxed order check in next check. The reason is that
1937 * we can actually steal whole pageblock if this condition met,
1938 * but, below check doesn't guarantee it and that is just heuristic
1939 * so could be changed anytime.
1940 */
1941 if (order >= pageblock_order)
1942 return true;
1943
1944 if (order >= pageblock_order / 2 ||
1945 start_mt == MIGRATE_RECLAIMABLE ||
1946 start_mt == MIGRATE_UNMOVABLE ||
1947 page_group_by_mobility_disabled)
1948 return true;
1949
1950 return false;
1951}
1952
1953/*
1954 * This function implements actual steal behaviour. If order is large enough,
1955 * we can steal whole pageblock. If not, we first move freepages in this
1956 * pageblock and check whether half of pages are moved or not. If half of
1957 * pages are moved, we can change migratetype of pageblock and permanently
1958 * use it's pages as requested migratetype in the future.
1959 */
1960static void steal_suitable_fallback(struct zone *zone, struct page *page,
1961 int start_type)
fef903ef 1962{
d00181b9 1963 unsigned int current_order = page_order(page);
4eb7dce6 1964 int pages;
fef903ef 1965
fef903ef
SB
1966 /* Take ownership for orders >= pageblock_order */
1967 if (current_order >= pageblock_order) {
1968 change_pageblock_range(page, current_order, start_type);
3a1086fb 1969 return;
fef903ef
SB
1970 }
1971
4eb7dce6 1972 pages = move_freepages_block(zone, page, start_type);
fef903ef 1973
4eb7dce6
JK
1974 /* Claim the whole block if over half of it is free */
1975 if (pages >= (1 << (pageblock_order-1)) ||
1976 page_group_by_mobility_disabled)
1977 set_pageblock_migratetype(page, start_type);
1978}
1979
2149cdae
JK
1980/*
1981 * Check whether there is a suitable fallback freepage with requested order.
1982 * If only_stealable is true, this function returns fallback_mt only if
1983 * we can steal other freepages all together. This would help to reduce
1984 * fragmentation due to mixed migratetype pages in one pageblock.
1985 */
1986int find_suitable_fallback(struct free_area *area, unsigned int order,
1987 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1988{
1989 int i;
1990 int fallback_mt;
1991
1992 if (area->nr_free == 0)
1993 return -1;
1994
1995 *can_steal = false;
1996 for (i = 0;; i++) {
1997 fallback_mt = fallbacks[migratetype][i];
974a786e 1998 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1999 break;
2000
2001 if (list_empty(&area->free_list[fallback_mt]))
2002 continue;
fef903ef 2003
4eb7dce6
JK
2004 if (can_steal_fallback(order, migratetype))
2005 *can_steal = true;
2006
2149cdae
JK
2007 if (!only_stealable)
2008 return fallback_mt;
2009
2010 if (*can_steal)
2011 return fallback_mt;
fef903ef 2012 }
4eb7dce6
JK
2013
2014 return -1;
fef903ef
SB
2015}
2016
0aaa29a5
MG
2017/*
2018 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2019 * there are no empty page blocks that contain a page with a suitable order
2020 */
2021static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2022 unsigned int alloc_order)
2023{
2024 int mt;
2025 unsigned long max_managed, flags;
2026
2027 /*
2028 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2029 * Check is race-prone but harmless.
2030 */
2031 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2032 if (zone->nr_reserved_highatomic >= max_managed)
2033 return;
2034
2035 spin_lock_irqsave(&zone->lock, flags);
2036
2037 /* Recheck the nr_reserved_highatomic limit under the lock */
2038 if (zone->nr_reserved_highatomic >= max_managed)
2039 goto out_unlock;
2040
2041 /* Yoink! */
2042 mt = get_pageblock_migratetype(page);
2043 if (mt != MIGRATE_HIGHATOMIC &&
2044 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2045 zone->nr_reserved_highatomic += pageblock_nr_pages;
2046 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2047 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2048 }
2049
2050out_unlock:
2051 spin_unlock_irqrestore(&zone->lock, flags);
2052}
2053
2054/*
2055 * Used when an allocation is about to fail under memory pressure. This
2056 * potentially hurts the reliability of high-order allocations when under
2057 * intense memory pressure but failed atomic allocations should be easier
2058 * to recover from than an OOM.
29fac03b
MK
2059 *
2060 * If @force is true, try to unreserve a pageblock even though highatomic
2061 * pageblock is exhausted.
0aaa29a5 2062 */
29fac03b
MK
2063static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2064 bool force)
0aaa29a5
MG
2065{
2066 struct zonelist *zonelist = ac->zonelist;
2067 unsigned long flags;
2068 struct zoneref *z;
2069 struct zone *zone;
2070 struct page *page;
2071 int order;
04c8716f 2072 bool ret;
0aaa29a5
MG
2073
2074 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2075 ac->nodemask) {
29fac03b
MK
2076 /*
2077 * Preserve at least one pageblock unless memory pressure
2078 * is really high.
2079 */
2080 if (!force && zone->nr_reserved_highatomic <=
2081 pageblock_nr_pages)
0aaa29a5
MG
2082 continue;
2083
2084 spin_lock_irqsave(&zone->lock, flags);
2085 for (order = 0; order < MAX_ORDER; order++) {
2086 struct free_area *area = &(zone->free_area[order]);
2087
a16601c5
GT
2088 page = list_first_entry_or_null(
2089 &area->free_list[MIGRATE_HIGHATOMIC],
2090 struct page, lru);
2091 if (!page)
0aaa29a5
MG
2092 continue;
2093
0aaa29a5 2094 /*
4855e4a7
MK
2095 * In page freeing path, migratetype change is racy so
2096 * we can counter several free pages in a pageblock
2097 * in this loop althoug we changed the pageblock type
2098 * from highatomic to ac->migratetype. So we should
2099 * adjust the count once.
0aaa29a5 2100 */
4855e4a7
MK
2101 if (get_pageblock_migratetype(page) ==
2102 MIGRATE_HIGHATOMIC) {
2103 /*
2104 * It should never happen but changes to
2105 * locking could inadvertently allow a per-cpu
2106 * drain to add pages to MIGRATE_HIGHATOMIC
2107 * while unreserving so be safe and watch for
2108 * underflows.
2109 */
2110 zone->nr_reserved_highatomic -= min(
2111 pageblock_nr_pages,
2112 zone->nr_reserved_highatomic);
2113 }
0aaa29a5
MG
2114
2115 /*
2116 * Convert to ac->migratetype and avoid the normal
2117 * pageblock stealing heuristics. Minimally, the caller
2118 * is doing the work and needs the pages. More
2119 * importantly, if the block was always converted to
2120 * MIGRATE_UNMOVABLE or another type then the number
2121 * of pageblocks that cannot be completely freed
2122 * may increase.
2123 */
2124 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2125 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2126 if (ret) {
2127 spin_unlock_irqrestore(&zone->lock, flags);
2128 return ret;
2129 }
0aaa29a5
MG
2130 }
2131 spin_unlock_irqrestore(&zone->lock, flags);
2132 }
04c8716f
MK
2133
2134 return false;
0aaa29a5
MG
2135}
2136
b2a0ac88 2137/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2138static inline struct page *
7aeb09f9 2139__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2140{
b8af2941 2141 struct free_area *area;
7aeb09f9 2142 unsigned int current_order;
b2a0ac88 2143 struct page *page;
4eb7dce6
JK
2144 int fallback_mt;
2145 bool can_steal;
b2a0ac88
MG
2146
2147 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2148 for (current_order = MAX_ORDER-1;
2149 current_order >= order && current_order <= MAX_ORDER-1;
2150 --current_order) {
4eb7dce6
JK
2151 area = &(zone->free_area[current_order]);
2152 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2153 start_migratetype, false, &can_steal);
4eb7dce6
JK
2154 if (fallback_mt == -1)
2155 continue;
b2a0ac88 2156
a16601c5 2157 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2158 struct page, lru);
88ed365e
MK
2159 if (can_steal &&
2160 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2161 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2162
4eb7dce6
JK
2163 /* Remove the page from the freelists */
2164 area->nr_free--;
2165 list_del(&page->lru);
2166 rmv_page_order(page);
3a1086fb 2167
4eb7dce6
JK
2168 expand(zone, page, order, current_order, area,
2169 start_migratetype);
2170 /*
bb14c2c7 2171 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2172 * migratetype depending on the decisions in
bb14c2c7
VB
2173 * find_suitable_fallback(). This is OK as long as it does not
2174 * differ for MIGRATE_CMA pageblocks. Those can be used as
2175 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2176 */
bb14c2c7 2177 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2178
4eb7dce6
JK
2179 trace_mm_page_alloc_extfrag(page, order, current_order,
2180 start_migratetype, fallback_mt);
e0fff1bd 2181
4eb7dce6 2182 return page;
b2a0ac88
MG
2183 }
2184
728ec980 2185 return NULL;
b2a0ac88
MG
2186}
2187
56fd56b8 2188/*
1da177e4
LT
2189 * Do the hard work of removing an element from the buddy allocator.
2190 * Call me with the zone->lock already held.
2191 */
b2a0ac88 2192static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2193 int migratetype)
1da177e4 2194{
1da177e4
LT
2195 struct page *page;
2196
56fd56b8 2197 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2198 if (unlikely(!page)) {
dc67647b
JK
2199 if (migratetype == MIGRATE_MOVABLE)
2200 page = __rmqueue_cma_fallback(zone, order);
2201
2202 if (!page)
2203 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2204 }
2205
0d3d062a 2206 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2207 return page;
1da177e4
LT
2208}
2209
5f63b720 2210/*
1da177e4
LT
2211 * Obtain a specified number of elements from the buddy allocator, all under
2212 * a single hold of the lock, for efficiency. Add them to the supplied list.
2213 * Returns the number of new pages which were placed at *list.
2214 */
5f63b720 2215static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2216 unsigned long count, struct list_head *list,
b745bc85 2217 int migratetype, bool cold)
1da177e4 2218{
a6de734b 2219 int i, alloced = 0;
5f63b720 2220
c54ad30c 2221 spin_lock(&zone->lock);
1da177e4 2222 for (i = 0; i < count; ++i) {
6ac0206b 2223 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2224 if (unlikely(page == NULL))
1da177e4 2225 break;
81eabcbe 2226
479f854a
MG
2227 if (unlikely(check_pcp_refill(page)))
2228 continue;
2229
81eabcbe
MG
2230 /*
2231 * Split buddy pages returned by expand() are received here
2232 * in physical page order. The page is added to the callers and
2233 * list and the list head then moves forward. From the callers
2234 * perspective, the linked list is ordered by page number in
2235 * some conditions. This is useful for IO devices that can
2236 * merge IO requests if the physical pages are ordered
2237 * properly.
2238 */
b745bc85 2239 if (likely(!cold))
e084b2d9
MG
2240 list_add(&page->lru, list);
2241 else
2242 list_add_tail(&page->lru, list);
81eabcbe 2243 list = &page->lru;
a6de734b 2244 alloced++;
bb14c2c7 2245 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2246 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2247 -(1 << order));
1da177e4 2248 }
a6de734b
MG
2249
2250 /*
2251 * i pages were removed from the buddy list even if some leak due
2252 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2253 * on i. Do not confuse with 'alloced' which is the number of
2254 * pages added to the pcp list.
2255 */
f2260e6b 2256 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2257 spin_unlock(&zone->lock);
a6de734b 2258 return alloced;
1da177e4
LT
2259}
2260
4ae7c039 2261#ifdef CONFIG_NUMA
8fce4d8e 2262/*
4037d452
CL
2263 * Called from the vmstat counter updater to drain pagesets of this
2264 * currently executing processor on remote nodes after they have
2265 * expired.
2266 *
879336c3
CL
2267 * Note that this function must be called with the thread pinned to
2268 * a single processor.
8fce4d8e 2269 */
4037d452 2270void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2271{
4ae7c039 2272 unsigned long flags;
7be12fc9 2273 int to_drain, batch;
4ae7c039 2274
4037d452 2275 local_irq_save(flags);
4db0c3c2 2276 batch = READ_ONCE(pcp->batch);
7be12fc9 2277 to_drain = min(pcp->count, batch);
2a13515c
KM
2278 if (to_drain > 0) {
2279 free_pcppages_bulk(zone, to_drain, pcp);
2280 pcp->count -= to_drain;
2281 }
4037d452 2282 local_irq_restore(flags);
4ae7c039
CL
2283}
2284#endif
2285
9f8f2172 2286/*
93481ff0 2287 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2288 *
2289 * The processor must either be the current processor and the
2290 * thread pinned to the current processor or a processor that
2291 * is not online.
2292 */
93481ff0 2293static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2294{
c54ad30c 2295 unsigned long flags;
93481ff0
VB
2296 struct per_cpu_pageset *pset;
2297 struct per_cpu_pages *pcp;
1da177e4 2298
93481ff0
VB
2299 local_irq_save(flags);
2300 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2301
93481ff0
VB
2302 pcp = &pset->pcp;
2303 if (pcp->count) {
2304 free_pcppages_bulk(zone, pcp->count, pcp);
2305 pcp->count = 0;
2306 }
2307 local_irq_restore(flags);
2308}
3dfa5721 2309
93481ff0
VB
2310/*
2311 * Drain pcplists of all zones on the indicated processor.
2312 *
2313 * The processor must either be the current processor and the
2314 * thread pinned to the current processor or a processor that
2315 * is not online.
2316 */
2317static void drain_pages(unsigned int cpu)
2318{
2319 struct zone *zone;
2320
2321 for_each_populated_zone(zone) {
2322 drain_pages_zone(cpu, zone);
1da177e4
LT
2323 }
2324}
1da177e4 2325
9f8f2172
CL
2326/*
2327 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2328 *
2329 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2330 * the single zone's pages.
9f8f2172 2331 */
93481ff0 2332void drain_local_pages(struct zone *zone)
9f8f2172 2333{
93481ff0
VB
2334 int cpu = smp_processor_id();
2335
2336 if (zone)
2337 drain_pages_zone(cpu, zone);
2338 else
2339 drain_pages(cpu);
9f8f2172
CL
2340}
2341
2342/*
74046494
GBY
2343 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2344 *
93481ff0
VB
2345 * When zone parameter is non-NULL, spill just the single zone's pages.
2346 *
74046494
GBY
2347 * Note that this code is protected against sending an IPI to an offline
2348 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2349 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2350 * nothing keeps CPUs from showing up after we populated the cpumask and
2351 * before the call to on_each_cpu_mask().
9f8f2172 2352 */
93481ff0 2353void drain_all_pages(struct zone *zone)
9f8f2172 2354{
74046494 2355 int cpu;
74046494
GBY
2356
2357 /*
2358 * Allocate in the BSS so we wont require allocation in
2359 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2360 */
2361 static cpumask_t cpus_with_pcps;
2362
2363 /*
2364 * We don't care about racing with CPU hotplug event
2365 * as offline notification will cause the notified
2366 * cpu to drain that CPU pcps and on_each_cpu_mask
2367 * disables preemption as part of its processing
2368 */
2369 for_each_online_cpu(cpu) {
93481ff0
VB
2370 struct per_cpu_pageset *pcp;
2371 struct zone *z;
74046494 2372 bool has_pcps = false;
93481ff0
VB
2373
2374 if (zone) {
74046494 2375 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2376 if (pcp->pcp.count)
74046494 2377 has_pcps = true;
93481ff0
VB
2378 } else {
2379 for_each_populated_zone(z) {
2380 pcp = per_cpu_ptr(z->pageset, cpu);
2381 if (pcp->pcp.count) {
2382 has_pcps = true;
2383 break;
2384 }
74046494
GBY
2385 }
2386 }
93481ff0 2387
74046494
GBY
2388 if (has_pcps)
2389 cpumask_set_cpu(cpu, &cpus_with_pcps);
2390 else
2391 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2392 }
93481ff0
VB
2393 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2394 zone, 1);
9f8f2172
CL
2395}
2396
296699de 2397#ifdef CONFIG_HIBERNATION
1da177e4
LT
2398
2399void mark_free_pages(struct zone *zone)
2400{
f623f0db
RW
2401 unsigned long pfn, max_zone_pfn;
2402 unsigned long flags;
7aeb09f9 2403 unsigned int order, t;
86760a2c 2404 struct page *page;
1da177e4 2405
8080fc03 2406 if (zone_is_empty(zone))
1da177e4
LT
2407 return;
2408
2409 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2410
108bcc96 2411 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2412 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2413 if (pfn_valid(pfn)) {
86760a2c 2414 page = pfn_to_page(pfn);
ba6b0979
JK
2415
2416 if (page_zone(page) != zone)
2417 continue;
2418
7be98234
RW
2419 if (!swsusp_page_is_forbidden(page))
2420 swsusp_unset_page_free(page);
f623f0db 2421 }
1da177e4 2422
b2a0ac88 2423 for_each_migratetype_order(order, t) {
86760a2c
GT
2424 list_for_each_entry(page,
2425 &zone->free_area[order].free_list[t], lru) {
f623f0db 2426 unsigned long i;
1da177e4 2427
86760a2c 2428 pfn = page_to_pfn(page);
f623f0db 2429 for (i = 0; i < (1UL << order); i++)
7be98234 2430 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2431 }
b2a0ac88 2432 }
1da177e4
LT
2433 spin_unlock_irqrestore(&zone->lock, flags);
2434}
e2c55dc8 2435#endif /* CONFIG_PM */
1da177e4 2436
1da177e4
LT
2437/*
2438 * Free a 0-order page
b745bc85 2439 * cold == true ? free a cold page : free a hot page
1da177e4 2440 */
b745bc85 2441void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2442{
2443 struct zone *zone = page_zone(page);
2444 struct per_cpu_pages *pcp;
2445 unsigned long flags;
dc4b0caf 2446 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2447 int migratetype;
1da177e4 2448
4db7548c 2449 if (!free_pcp_prepare(page))
689bcebf
HD
2450 return;
2451
dc4b0caf 2452 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2453 set_pcppage_migratetype(page, migratetype);
1da177e4 2454 local_irq_save(flags);
f8891e5e 2455 __count_vm_event(PGFREE);
da456f14 2456
5f8dcc21
MG
2457 /*
2458 * We only track unmovable, reclaimable and movable on pcp lists.
2459 * Free ISOLATE pages back to the allocator because they are being
2460 * offlined but treat RESERVE as movable pages so we can get those
2461 * areas back if necessary. Otherwise, we may have to free
2462 * excessively into the page allocator
2463 */
2464 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2465 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2466 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2467 goto out;
2468 }
2469 migratetype = MIGRATE_MOVABLE;
2470 }
2471
99dcc3e5 2472 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2473 if (!cold)
5f8dcc21 2474 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2475 else
2476 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2477 pcp->count++;
48db57f8 2478 if (pcp->count >= pcp->high) {
4db0c3c2 2479 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2480 free_pcppages_bulk(zone, batch, pcp);
2481 pcp->count -= batch;
48db57f8 2482 }
5f8dcc21
MG
2483
2484out:
1da177e4 2485 local_irq_restore(flags);
1da177e4
LT
2486}
2487
cc59850e
KK
2488/*
2489 * Free a list of 0-order pages
2490 */
b745bc85 2491void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2492{
2493 struct page *page, *next;
2494
2495 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2496 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2497 free_hot_cold_page(page, cold);
2498 }
2499}
2500
8dfcc9ba
NP
2501/*
2502 * split_page takes a non-compound higher-order page, and splits it into
2503 * n (1<<order) sub-pages: page[0..n]
2504 * Each sub-page must be freed individually.
2505 *
2506 * Note: this is probably too low level an operation for use in drivers.
2507 * Please consult with lkml before using this in your driver.
2508 */
2509void split_page(struct page *page, unsigned int order)
2510{
2511 int i;
2512
309381fe
SL
2513 VM_BUG_ON_PAGE(PageCompound(page), page);
2514 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2515
2516#ifdef CONFIG_KMEMCHECK
2517 /*
2518 * Split shadow pages too, because free(page[0]) would
2519 * otherwise free the whole shadow.
2520 */
2521 if (kmemcheck_page_is_tracked(page))
2522 split_page(virt_to_page(page[0].shadow), order);
2523#endif
2524
a9627bc5 2525 for (i = 1; i < (1 << order); i++)
7835e98b 2526 set_page_refcounted(page + i);
a9627bc5 2527 split_page_owner(page, order);
8dfcc9ba 2528}
5853ff23 2529EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2530
3c605096 2531int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2532{
748446bb
MG
2533 unsigned long watermark;
2534 struct zone *zone;
2139cbe6 2535 int mt;
748446bb
MG
2536
2537 BUG_ON(!PageBuddy(page));
2538
2539 zone = page_zone(page);
2e30abd1 2540 mt = get_pageblock_migratetype(page);
748446bb 2541
194159fb 2542 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2543 /*
2544 * Obey watermarks as if the page was being allocated. We can
2545 * emulate a high-order watermark check with a raised order-0
2546 * watermark, because we already know our high-order page
2547 * exists.
2548 */
2549 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2550 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2551 return 0;
2552
8fb74b9f 2553 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2554 }
748446bb
MG
2555
2556 /* Remove page from free list */
2557 list_del(&page->lru);
2558 zone->free_area[order].nr_free--;
2559 rmv_page_order(page);
2139cbe6 2560
400bc7fd 2561 /*
2562 * Set the pageblock if the isolated page is at least half of a
2563 * pageblock
2564 */
748446bb
MG
2565 if (order >= pageblock_order - 1) {
2566 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2567 for (; page < endpage; page += pageblock_nr_pages) {
2568 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2569 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2570 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2571 set_pageblock_migratetype(page,
2572 MIGRATE_MOVABLE);
2573 }
748446bb
MG
2574 }
2575
f3a14ced 2576
8fb74b9f 2577 return 1UL << order;
1fb3f8ca
MG
2578}
2579
060e7417
MG
2580/*
2581 * Update NUMA hit/miss statistics
2582 *
2583 * Must be called with interrupts disabled.
060e7417 2584 */
41b6167e 2585static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2586{
2587#ifdef CONFIG_NUMA
060e7417
MG
2588 enum zone_stat_item local_stat = NUMA_LOCAL;
2589
2df26639 2590 if (z->node != numa_node_id())
060e7417 2591 local_stat = NUMA_OTHER;
060e7417 2592
2df26639 2593 if (z->node == preferred_zone->node)
060e7417 2594 __inc_zone_state(z, NUMA_HIT);
2df26639 2595 else {
060e7417
MG
2596 __inc_zone_state(z, NUMA_MISS);
2597 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2598 }
2df26639 2599 __inc_zone_state(z, local_stat);
060e7417
MG
2600#endif
2601}
2602
066b2393
MG
2603/* Remove page from the per-cpu list, caller must protect the list */
2604static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2605 bool cold, struct per_cpu_pages *pcp,
2606 struct list_head *list)
2607{
2608 struct page *page;
2609
2610 do {
2611 if (list_empty(list)) {
2612 pcp->count += rmqueue_bulk(zone, 0,
2613 pcp->batch, list,
2614 migratetype, cold);
2615 if (unlikely(list_empty(list)))
2616 return NULL;
2617 }
2618
2619 if (cold)
2620 page = list_last_entry(list, struct page, lru);
2621 else
2622 page = list_first_entry(list, struct page, lru);
2623
2624 list_del(&page->lru);
2625 pcp->count--;
2626 } while (check_new_pcp(page));
2627
2628 return page;
2629}
2630
2631/* Lock and remove page from the per-cpu list */
2632static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2633 struct zone *zone, unsigned int order,
2634 gfp_t gfp_flags, int migratetype)
2635{
2636 struct per_cpu_pages *pcp;
2637 struct list_head *list;
2638 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2639 struct page *page;
2640 unsigned long flags;
2641
2642 local_irq_save(flags);
2643 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2644 list = &pcp->lists[migratetype];
2645 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2646 if (page) {
2647 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2648 zone_statistics(preferred_zone, zone);
2649 }
2650 local_irq_restore(flags);
2651 return page;
2652}
2653
1da177e4 2654/*
75379191 2655 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2656 */
0a15c3e9 2657static inline
066b2393 2658struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2659 struct zone *zone, unsigned int order,
c603844b
MG
2660 gfp_t gfp_flags, unsigned int alloc_flags,
2661 int migratetype)
1da177e4
LT
2662{
2663 unsigned long flags;
689bcebf 2664 struct page *page;
1da177e4 2665
48db57f8 2666 if (likely(order == 0)) {
066b2393
MG
2667 page = rmqueue_pcplist(preferred_zone, zone, order,
2668 gfp_flags, migratetype);
2669 goto out;
2670 }
83b9355b 2671
066b2393
MG
2672 /*
2673 * We most definitely don't want callers attempting to
2674 * allocate greater than order-1 page units with __GFP_NOFAIL.
2675 */
2676 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2677 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2678
066b2393
MG
2679 do {
2680 page = NULL;
2681 if (alloc_flags & ALLOC_HARDER) {
2682 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2683 if (page)
2684 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2685 }
a74609fa 2686 if (!page)
066b2393
MG
2687 page = __rmqueue(zone, order, migratetype);
2688 } while (page && check_new_pages(page, order));
2689 spin_unlock(&zone->lock);
2690 if (!page)
2691 goto failed;
2692 __mod_zone_freepage_state(zone, -(1 << order),
2693 get_pcppage_migratetype(page));
1da177e4 2694
16709d1d 2695 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2696 zone_statistics(preferred_zone, zone);
a74609fa 2697 local_irq_restore(flags);
1da177e4 2698
066b2393
MG
2699out:
2700 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2701 return page;
a74609fa
NP
2702
2703failed:
2704 local_irq_restore(flags);
a74609fa 2705 return NULL;
1da177e4
LT
2706}
2707
933e312e
AM
2708#ifdef CONFIG_FAIL_PAGE_ALLOC
2709
b2588c4b 2710static struct {
933e312e
AM
2711 struct fault_attr attr;
2712
621a5f7a 2713 bool ignore_gfp_highmem;
71baba4b 2714 bool ignore_gfp_reclaim;
54114994 2715 u32 min_order;
933e312e
AM
2716} fail_page_alloc = {
2717 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2718 .ignore_gfp_reclaim = true,
621a5f7a 2719 .ignore_gfp_highmem = true,
54114994 2720 .min_order = 1,
933e312e
AM
2721};
2722
2723static int __init setup_fail_page_alloc(char *str)
2724{
2725 return setup_fault_attr(&fail_page_alloc.attr, str);
2726}
2727__setup("fail_page_alloc=", setup_fail_page_alloc);
2728
deaf386e 2729static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2730{
54114994 2731 if (order < fail_page_alloc.min_order)
deaf386e 2732 return false;
933e312e 2733 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2734 return false;
933e312e 2735 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2736 return false;
71baba4b
MG
2737 if (fail_page_alloc.ignore_gfp_reclaim &&
2738 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2739 return false;
933e312e
AM
2740
2741 return should_fail(&fail_page_alloc.attr, 1 << order);
2742}
2743
2744#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2745
2746static int __init fail_page_alloc_debugfs(void)
2747{
f4ae40a6 2748 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2749 struct dentry *dir;
933e312e 2750
dd48c085
AM
2751 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2752 &fail_page_alloc.attr);
2753 if (IS_ERR(dir))
2754 return PTR_ERR(dir);
933e312e 2755
b2588c4b 2756 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2757 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2758 goto fail;
2759 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2760 &fail_page_alloc.ignore_gfp_highmem))
2761 goto fail;
2762 if (!debugfs_create_u32("min-order", mode, dir,
2763 &fail_page_alloc.min_order))
2764 goto fail;
2765
2766 return 0;
2767fail:
dd48c085 2768 debugfs_remove_recursive(dir);
933e312e 2769
b2588c4b 2770 return -ENOMEM;
933e312e
AM
2771}
2772
2773late_initcall(fail_page_alloc_debugfs);
2774
2775#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2776
2777#else /* CONFIG_FAIL_PAGE_ALLOC */
2778
deaf386e 2779static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2780{
deaf386e 2781 return false;
933e312e
AM
2782}
2783
2784#endif /* CONFIG_FAIL_PAGE_ALLOC */
2785
1da177e4 2786/*
97a16fc8
MG
2787 * Return true if free base pages are above 'mark'. For high-order checks it
2788 * will return true of the order-0 watermark is reached and there is at least
2789 * one free page of a suitable size. Checking now avoids taking the zone lock
2790 * to check in the allocation paths if no pages are free.
1da177e4 2791 */
86a294a8
MH
2792bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2793 int classzone_idx, unsigned int alloc_flags,
2794 long free_pages)
1da177e4 2795{
d23ad423 2796 long min = mark;
1da177e4 2797 int o;
c603844b 2798 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2799
0aaa29a5 2800 /* free_pages may go negative - that's OK */
df0a6daa 2801 free_pages -= (1 << order) - 1;
0aaa29a5 2802
7fb1d9fc 2803 if (alloc_flags & ALLOC_HIGH)
1da177e4 2804 min -= min / 2;
0aaa29a5
MG
2805
2806 /*
2807 * If the caller does not have rights to ALLOC_HARDER then subtract
2808 * the high-atomic reserves. This will over-estimate the size of the
2809 * atomic reserve but it avoids a search.
2810 */
97a16fc8 2811 if (likely(!alloc_harder))
0aaa29a5
MG
2812 free_pages -= z->nr_reserved_highatomic;
2813 else
1da177e4 2814 min -= min / 4;
e2b19197 2815
d95ea5d1
BZ
2816#ifdef CONFIG_CMA
2817 /* If allocation can't use CMA areas don't use free CMA pages */
2818 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2819 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2820#endif
026b0814 2821
97a16fc8
MG
2822 /*
2823 * Check watermarks for an order-0 allocation request. If these
2824 * are not met, then a high-order request also cannot go ahead
2825 * even if a suitable page happened to be free.
2826 */
2827 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2828 return false;
1da177e4 2829
97a16fc8
MG
2830 /* If this is an order-0 request then the watermark is fine */
2831 if (!order)
2832 return true;
2833
2834 /* For a high-order request, check at least one suitable page is free */
2835 for (o = order; o < MAX_ORDER; o++) {
2836 struct free_area *area = &z->free_area[o];
2837 int mt;
2838
2839 if (!area->nr_free)
2840 continue;
2841
2842 if (alloc_harder)
2843 return true;
1da177e4 2844
97a16fc8
MG
2845 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2846 if (!list_empty(&area->free_list[mt]))
2847 return true;
2848 }
2849
2850#ifdef CONFIG_CMA
2851 if ((alloc_flags & ALLOC_CMA) &&
2852 !list_empty(&area->free_list[MIGRATE_CMA])) {
2853 return true;
2854 }
2855#endif
1da177e4 2856 }
97a16fc8 2857 return false;
88f5acf8
MG
2858}
2859
7aeb09f9 2860bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2861 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2862{
2863 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2864 zone_page_state(z, NR_FREE_PAGES));
2865}
2866
48ee5f36
MG
2867static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2868 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2869{
2870 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2871 long cma_pages = 0;
2872
2873#ifdef CONFIG_CMA
2874 /* If allocation can't use CMA areas don't use free CMA pages */
2875 if (!(alloc_flags & ALLOC_CMA))
2876 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2877#endif
2878
2879 /*
2880 * Fast check for order-0 only. If this fails then the reserves
2881 * need to be calculated. There is a corner case where the check
2882 * passes but only the high-order atomic reserve are free. If
2883 * the caller is !atomic then it'll uselessly search the free
2884 * list. That corner case is then slower but it is harmless.
2885 */
2886 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2887 return true;
2888
2889 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2890 free_pages);
2891}
2892
7aeb09f9 2893bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2894 unsigned long mark, int classzone_idx)
88f5acf8
MG
2895{
2896 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2897
2898 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2899 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2900
e2b19197 2901 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2902 free_pages);
1da177e4
LT
2903}
2904
9276b1bc 2905#ifdef CONFIG_NUMA
957f822a
DR
2906static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2907{
5f7a75ac
MG
2908 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2909 RECLAIM_DISTANCE;
957f822a 2910}
9276b1bc 2911#else /* CONFIG_NUMA */
957f822a
DR
2912static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2913{
2914 return true;
2915}
9276b1bc
PJ
2916#endif /* CONFIG_NUMA */
2917
7fb1d9fc 2918/*
0798e519 2919 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2920 * a page.
2921 */
2922static struct page *
a9263751
VB
2923get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2924 const struct alloc_context *ac)
753ee728 2925{
c33d6c06 2926 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2927 struct zone *zone;
3b8c0be4
MG
2928 struct pglist_data *last_pgdat_dirty_limit = NULL;
2929
7fb1d9fc 2930 /*
9276b1bc 2931 * Scan zonelist, looking for a zone with enough free.
344736f2 2932 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2933 */
c33d6c06 2934 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2935 ac->nodemask) {
be06af00 2936 struct page *page;
e085dbc5
JW
2937 unsigned long mark;
2938
664eedde
MG
2939 if (cpusets_enabled() &&
2940 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2941 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2942 continue;
a756cf59
JW
2943 /*
2944 * When allocating a page cache page for writing, we
281e3726
MG
2945 * want to get it from a node that is within its dirty
2946 * limit, such that no single node holds more than its
a756cf59 2947 * proportional share of globally allowed dirty pages.
281e3726 2948 * The dirty limits take into account the node's
a756cf59
JW
2949 * lowmem reserves and high watermark so that kswapd
2950 * should be able to balance it without having to
2951 * write pages from its LRU list.
2952 *
a756cf59 2953 * XXX: For now, allow allocations to potentially
281e3726 2954 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2955 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2956 * which is important when on a NUMA setup the allowed
281e3726 2957 * nodes are together not big enough to reach the
a756cf59 2958 * global limit. The proper fix for these situations
281e3726 2959 * will require awareness of nodes in the
a756cf59
JW
2960 * dirty-throttling and the flusher threads.
2961 */
3b8c0be4
MG
2962 if (ac->spread_dirty_pages) {
2963 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2964 continue;
2965
2966 if (!node_dirty_ok(zone->zone_pgdat)) {
2967 last_pgdat_dirty_limit = zone->zone_pgdat;
2968 continue;
2969 }
2970 }
7fb1d9fc 2971
e085dbc5 2972 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2973 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2974 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2975 int ret;
2976
5dab2911
MG
2977 /* Checked here to keep the fast path fast */
2978 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2979 if (alloc_flags & ALLOC_NO_WATERMARKS)
2980 goto try_this_zone;
2981
a5f5f91d 2982 if (node_reclaim_mode == 0 ||
c33d6c06 2983 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2984 continue;
2985
a5f5f91d 2986 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2987 switch (ret) {
a5f5f91d 2988 case NODE_RECLAIM_NOSCAN:
fa5e084e 2989 /* did not scan */
cd38b115 2990 continue;
a5f5f91d 2991 case NODE_RECLAIM_FULL:
fa5e084e 2992 /* scanned but unreclaimable */
cd38b115 2993 continue;
fa5e084e
MG
2994 default:
2995 /* did we reclaim enough */
fed2719e 2996 if (zone_watermark_ok(zone, order, mark,
93ea9964 2997 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2998 goto try_this_zone;
2999
fed2719e 3000 continue;
0798e519 3001 }
7fb1d9fc
RS
3002 }
3003
fa5e084e 3004try_this_zone:
066b2393 3005 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3006 gfp_mask, alloc_flags, ac->migratetype);
75379191 3007 if (page) {
479f854a 3008 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3009
3010 /*
3011 * If this is a high-order atomic allocation then check
3012 * if the pageblock should be reserved for the future
3013 */
3014 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3015 reserve_highatomic_pageblock(page, zone, order);
3016
75379191
VB
3017 return page;
3018 }
54a6eb5c 3019 }
9276b1bc 3020
4ffeaf35 3021 return NULL;
753ee728
MH
3022}
3023
29423e77
DR
3024/*
3025 * Large machines with many possible nodes should not always dump per-node
3026 * meminfo in irq context.
3027 */
3028static inline bool should_suppress_show_mem(void)
3029{
3030 bool ret = false;
3031
3032#if NODES_SHIFT > 8
3033 ret = in_interrupt();
3034#endif
3035 return ret;
3036}
3037
9af744d7 3038static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3039{
a238ab5b 3040 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3041 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3042
aa187507 3043 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3044 return;
3045
3046 /*
3047 * This documents exceptions given to allocations in certain
3048 * contexts that are allowed to allocate outside current's set
3049 * of allowed nodes.
3050 */
3051 if (!(gfp_mask & __GFP_NOMEMALLOC))
3052 if (test_thread_flag(TIF_MEMDIE) ||
3053 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3054 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3055 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3056 filter &= ~SHOW_MEM_FILTER_NODES;
3057
9af744d7 3058 show_mem(filter, nodemask);
aa187507
MH
3059}
3060
a8e99259 3061void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3062{
3063 struct va_format vaf;
3064 va_list args;
3065 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3066 DEFAULT_RATELIMIT_BURST);
3067
3068 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3069 debug_guardpage_minorder() > 0)
3070 return;
3071
7877cdcc 3072 pr_warn("%s: ", current->comm);
3ee9a4f0 3073
7877cdcc
MH
3074 va_start(args, fmt);
3075 vaf.fmt = fmt;
3076 vaf.va = &args;
3077 pr_cont("%pV", &vaf);
3078 va_end(args);
3ee9a4f0 3079
685dbf6f
DR
3080 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3081 if (nodemask)
3082 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3083 else
3084 pr_cont("(null)\n");
3085
a8e99259 3086 cpuset_print_current_mems_allowed();
3ee9a4f0 3087
a238ab5b 3088 dump_stack();
685dbf6f 3089 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3090}
3091
6c18ba7a
MH
3092static inline struct page *
3093__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3094 unsigned int alloc_flags,
3095 const struct alloc_context *ac)
3096{
3097 struct page *page;
3098
3099 page = get_page_from_freelist(gfp_mask, order,
3100 alloc_flags|ALLOC_CPUSET, ac);
3101 /*
3102 * fallback to ignore cpuset restriction if our nodes
3103 * are depleted
3104 */
3105 if (!page)
3106 page = get_page_from_freelist(gfp_mask, order,
3107 alloc_flags, ac);
3108
3109 return page;
3110}
3111
11e33f6a
MG
3112static inline struct page *
3113__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3114 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3115{
6e0fc46d
DR
3116 struct oom_control oc = {
3117 .zonelist = ac->zonelist,
3118 .nodemask = ac->nodemask,
2a966b77 3119 .memcg = NULL,
6e0fc46d
DR
3120 .gfp_mask = gfp_mask,
3121 .order = order,
6e0fc46d 3122 };
11e33f6a
MG
3123 struct page *page;
3124
9879de73
JW
3125 *did_some_progress = 0;
3126
9879de73 3127 /*
dc56401f
JW
3128 * Acquire the oom lock. If that fails, somebody else is
3129 * making progress for us.
9879de73 3130 */
dc56401f 3131 if (!mutex_trylock(&oom_lock)) {
9879de73 3132 *did_some_progress = 1;
11e33f6a 3133 schedule_timeout_uninterruptible(1);
1da177e4
LT
3134 return NULL;
3135 }
6b1de916 3136
11e33f6a
MG
3137 /*
3138 * Go through the zonelist yet one more time, keep very high watermark
3139 * here, this is only to catch a parallel oom killing, we must fail if
3140 * we're still under heavy pressure.
3141 */
a9263751
VB
3142 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3143 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3144 if (page)
11e33f6a
MG
3145 goto out;
3146
06ad276a
MH
3147 /* Coredumps can quickly deplete all memory reserves */
3148 if (current->flags & PF_DUMPCORE)
3149 goto out;
3150 /* The OOM killer will not help higher order allocs */
3151 if (order > PAGE_ALLOC_COSTLY_ORDER)
3152 goto out;
3153 /* The OOM killer does not needlessly kill tasks for lowmem */
3154 if (ac->high_zoneidx < ZONE_NORMAL)
3155 goto out;
3156 if (pm_suspended_storage())
3157 goto out;
3158 /*
3159 * XXX: GFP_NOFS allocations should rather fail than rely on
3160 * other request to make a forward progress.
3161 * We are in an unfortunate situation where out_of_memory cannot
3162 * do much for this context but let's try it to at least get
3163 * access to memory reserved if the current task is killed (see
3164 * out_of_memory). Once filesystems are ready to handle allocation
3165 * failures more gracefully we should just bail out here.
3166 */
3167
3168 /* The OOM killer may not free memory on a specific node */
3169 if (gfp_mask & __GFP_THISNODE)
3170 goto out;
3da88fb3 3171
11e33f6a 3172 /* Exhausted what can be done so it's blamo time */
5020e285 3173 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3174 *did_some_progress = 1;
5020e285 3175
6c18ba7a
MH
3176 /*
3177 * Help non-failing allocations by giving them access to memory
3178 * reserves
3179 */
3180 if (gfp_mask & __GFP_NOFAIL)
3181 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3182 ALLOC_NO_WATERMARKS, ac);
5020e285 3183 }
11e33f6a 3184out:
dc56401f 3185 mutex_unlock(&oom_lock);
11e33f6a
MG
3186 return page;
3187}
3188
33c2d214
MH
3189/*
3190 * Maximum number of compaction retries wit a progress before OOM
3191 * killer is consider as the only way to move forward.
3192 */
3193#define MAX_COMPACT_RETRIES 16
3194
56de7263
MG
3195#ifdef CONFIG_COMPACTION
3196/* Try memory compaction for high-order allocations before reclaim */
3197static struct page *
3198__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3199 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3200 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3201{
98dd3b48 3202 struct page *page;
53853e2d
VB
3203
3204 if (!order)
66199712 3205 return NULL;
66199712 3206
c06b1fca 3207 current->flags |= PF_MEMALLOC;
c5d01d0d 3208 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3209 prio);
c06b1fca 3210 current->flags &= ~PF_MEMALLOC;
56de7263 3211
c5d01d0d 3212 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3213 return NULL;
53853e2d 3214
98dd3b48
VB
3215 /*
3216 * At least in one zone compaction wasn't deferred or skipped, so let's
3217 * count a compaction stall
3218 */
3219 count_vm_event(COMPACTSTALL);
8fb74b9f 3220
31a6c190 3221 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3222
98dd3b48
VB
3223 if (page) {
3224 struct zone *zone = page_zone(page);
53853e2d 3225
98dd3b48
VB
3226 zone->compact_blockskip_flush = false;
3227 compaction_defer_reset(zone, order, true);
3228 count_vm_event(COMPACTSUCCESS);
3229 return page;
3230 }
56de7263 3231
98dd3b48
VB
3232 /*
3233 * It's bad if compaction run occurs and fails. The most likely reason
3234 * is that pages exist, but not enough to satisfy watermarks.
3235 */
3236 count_vm_event(COMPACTFAIL);
66199712 3237
98dd3b48 3238 cond_resched();
56de7263
MG
3239
3240 return NULL;
3241}
33c2d214 3242
3250845d
VB
3243static inline bool
3244should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3245 enum compact_result compact_result,
3246 enum compact_priority *compact_priority,
d9436498 3247 int *compaction_retries)
3250845d
VB
3248{
3249 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3250 int min_priority;
65190cff
MH
3251 bool ret = false;
3252 int retries = *compaction_retries;
3253 enum compact_priority priority = *compact_priority;
3250845d
VB
3254
3255 if (!order)
3256 return false;
3257
d9436498
VB
3258 if (compaction_made_progress(compact_result))
3259 (*compaction_retries)++;
3260
3250845d
VB
3261 /*
3262 * compaction considers all the zone as desperately out of memory
3263 * so it doesn't really make much sense to retry except when the
3264 * failure could be caused by insufficient priority
3265 */
d9436498
VB
3266 if (compaction_failed(compact_result))
3267 goto check_priority;
3250845d
VB
3268
3269 /*
3270 * make sure the compaction wasn't deferred or didn't bail out early
3271 * due to locks contention before we declare that we should give up.
3272 * But do not retry if the given zonelist is not suitable for
3273 * compaction.
3274 */
65190cff
MH
3275 if (compaction_withdrawn(compact_result)) {
3276 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3277 goto out;
3278 }
3250845d
VB
3279
3280 /*
3281 * !costly requests are much more important than __GFP_REPEAT
3282 * costly ones because they are de facto nofail and invoke OOM
3283 * killer to move on while costly can fail and users are ready
3284 * to cope with that. 1/4 retries is rather arbitrary but we
3285 * would need much more detailed feedback from compaction to
3286 * make a better decision.
3287 */
3288 if (order > PAGE_ALLOC_COSTLY_ORDER)
3289 max_retries /= 4;
65190cff
MH
3290 if (*compaction_retries <= max_retries) {
3291 ret = true;
3292 goto out;
3293 }
3250845d 3294
d9436498
VB
3295 /*
3296 * Make sure there are attempts at the highest priority if we exhausted
3297 * all retries or failed at the lower priorities.
3298 */
3299check_priority:
c2033b00
VB
3300 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3301 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3302
c2033b00 3303 if (*compact_priority > min_priority) {
d9436498
VB
3304 (*compact_priority)--;
3305 *compaction_retries = 0;
65190cff 3306 ret = true;
d9436498 3307 }
65190cff
MH
3308out:
3309 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3310 return ret;
3250845d 3311}
56de7263
MG
3312#else
3313static inline struct page *
3314__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3315 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3316 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3317{
33c2d214 3318 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3319 return NULL;
3320}
33c2d214
MH
3321
3322static inline bool
86a294a8
MH
3323should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3324 enum compact_result compact_result,
a5508cd8 3325 enum compact_priority *compact_priority,
d9436498 3326 int *compaction_retries)
33c2d214 3327{
31e49bfd
MH
3328 struct zone *zone;
3329 struct zoneref *z;
3330
3331 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3332 return false;
3333
3334 /*
3335 * There are setups with compaction disabled which would prefer to loop
3336 * inside the allocator rather than hit the oom killer prematurely.
3337 * Let's give them a good hope and keep retrying while the order-0
3338 * watermarks are OK.
3339 */
3340 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3341 ac->nodemask) {
3342 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3343 ac_classzone_idx(ac), alloc_flags))
3344 return true;
3345 }
33c2d214
MH
3346 return false;
3347}
3250845d 3348#endif /* CONFIG_COMPACTION */
56de7263 3349
bba90710
MS
3350/* Perform direct synchronous page reclaim */
3351static int
a9263751
VB
3352__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3353 const struct alloc_context *ac)
11e33f6a 3354{
11e33f6a 3355 struct reclaim_state reclaim_state;
bba90710 3356 int progress;
11e33f6a
MG
3357
3358 cond_resched();
3359
3360 /* We now go into synchronous reclaim */
3361 cpuset_memory_pressure_bump();
c06b1fca 3362 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3363 lockdep_set_current_reclaim_state(gfp_mask);
3364 reclaim_state.reclaimed_slab = 0;
c06b1fca 3365 current->reclaim_state = &reclaim_state;
11e33f6a 3366
a9263751
VB
3367 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3368 ac->nodemask);
11e33f6a 3369
c06b1fca 3370 current->reclaim_state = NULL;
11e33f6a 3371 lockdep_clear_current_reclaim_state();
c06b1fca 3372 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3373
3374 cond_resched();
3375
bba90710
MS
3376 return progress;
3377}
3378
3379/* The really slow allocator path where we enter direct reclaim */
3380static inline struct page *
3381__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3382 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3383 unsigned long *did_some_progress)
bba90710
MS
3384{
3385 struct page *page = NULL;
3386 bool drained = false;
3387
a9263751 3388 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3389 if (unlikely(!(*did_some_progress)))
3390 return NULL;
11e33f6a 3391
9ee493ce 3392retry:
31a6c190 3393 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3394
3395 /*
3396 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3397 * pages are pinned on the per-cpu lists or in high alloc reserves.
3398 * Shrink them them and try again
9ee493ce
MG
3399 */
3400 if (!page && !drained) {
29fac03b 3401 unreserve_highatomic_pageblock(ac, false);
93481ff0 3402 drain_all_pages(NULL);
9ee493ce
MG
3403 drained = true;
3404 goto retry;
3405 }
3406
11e33f6a
MG
3407 return page;
3408}
3409
a9263751 3410static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3411{
3412 struct zoneref *z;
3413 struct zone *zone;
e1a55637 3414 pg_data_t *last_pgdat = NULL;
3a025760 3415
a9263751 3416 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3417 ac->high_zoneidx, ac->nodemask) {
3418 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3419 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3420 last_pgdat = zone->zone_pgdat;
3421 }
3a025760
JW
3422}
3423
c603844b 3424static inline unsigned int
341ce06f
PZ
3425gfp_to_alloc_flags(gfp_t gfp_mask)
3426{
c603844b 3427 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3428
a56f57ff 3429 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3430 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3431
341ce06f
PZ
3432 /*
3433 * The caller may dip into page reserves a bit more if the caller
3434 * cannot run direct reclaim, or if the caller has realtime scheduling
3435 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3436 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3437 */
e6223a3b 3438 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3439
d0164adc 3440 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3441 /*
b104a35d
DR
3442 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3443 * if it can't schedule.
5c3240d9 3444 */
b104a35d 3445 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3446 alloc_flags |= ALLOC_HARDER;
523b9458 3447 /*
b104a35d 3448 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3449 * comment for __cpuset_node_allowed().
523b9458 3450 */
341ce06f 3451 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3452 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3453 alloc_flags |= ALLOC_HARDER;
3454
d95ea5d1 3455#ifdef CONFIG_CMA
43e7a34d 3456 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3457 alloc_flags |= ALLOC_CMA;
3458#endif
341ce06f
PZ
3459 return alloc_flags;
3460}
3461
072bb0aa
MG
3462bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3463{
31a6c190
VB
3464 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3465 return false;
3466
3467 if (gfp_mask & __GFP_MEMALLOC)
3468 return true;
3469 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3470 return true;
3471 if (!in_interrupt() &&
3472 ((current->flags & PF_MEMALLOC) ||
3473 unlikely(test_thread_flag(TIF_MEMDIE))))
3474 return true;
3475
3476 return false;
072bb0aa
MG
3477}
3478
0a0337e0
MH
3479/*
3480 * Maximum number of reclaim retries without any progress before OOM killer
3481 * is consider as the only way to move forward.
3482 */
3483#define MAX_RECLAIM_RETRIES 16
3484
3485/*
3486 * Checks whether it makes sense to retry the reclaim to make a forward progress
3487 * for the given allocation request.
3488 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3489 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3490 * any progress in a row) is considered as well as the reclaimable pages on the
3491 * applicable zone list (with a backoff mechanism which is a function of
3492 * no_progress_loops).
0a0337e0
MH
3493 *
3494 * Returns true if a retry is viable or false to enter the oom path.
3495 */
3496static inline bool
3497should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3498 struct alloc_context *ac, int alloc_flags,
423b452e 3499 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3500{
3501 struct zone *zone;
3502 struct zoneref *z;
3503
423b452e
VB
3504 /*
3505 * Costly allocations might have made a progress but this doesn't mean
3506 * their order will become available due to high fragmentation so
3507 * always increment the no progress counter for them
3508 */
3509 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3510 *no_progress_loops = 0;
3511 else
3512 (*no_progress_loops)++;
3513
0a0337e0
MH
3514 /*
3515 * Make sure we converge to OOM if we cannot make any progress
3516 * several times in the row.
3517 */
04c8716f
MK
3518 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3519 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3520 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3521 }
0a0337e0 3522
bca67592
MG
3523 /*
3524 * Keep reclaiming pages while there is a chance this will lead
3525 * somewhere. If none of the target zones can satisfy our allocation
3526 * request even if all reclaimable pages are considered then we are
3527 * screwed and have to go OOM.
0a0337e0
MH
3528 */
3529 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3530 ac->nodemask) {
3531 unsigned long available;
ede37713 3532 unsigned long reclaimable;
d379f01d
MH
3533 unsigned long min_wmark = min_wmark_pages(zone);
3534 bool wmark;
0a0337e0 3535
5a1c84b4 3536 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3537 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3538 MAX_RECLAIM_RETRIES);
5a1c84b4 3539 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3540
3541 /*
3542 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3543 * available?
0a0337e0 3544 */
d379f01d
MH
3545 wmark = __zone_watermark_ok(zone, order, min_wmark,
3546 ac_classzone_idx(ac), alloc_flags, available);
3547 trace_reclaim_retry_zone(z, order, reclaimable,
3548 available, min_wmark, *no_progress_loops, wmark);
3549 if (wmark) {
ede37713
MH
3550 /*
3551 * If we didn't make any progress and have a lot of
3552 * dirty + writeback pages then we should wait for
3553 * an IO to complete to slow down the reclaim and
3554 * prevent from pre mature OOM
3555 */
3556 if (!did_some_progress) {
11fb9989 3557 unsigned long write_pending;
ede37713 3558
5a1c84b4
MG
3559 write_pending = zone_page_state_snapshot(zone,
3560 NR_ZONE_WRITE_PENDING);
ede37713 3561
11fb9989 3562 if (2 * write_pending > reclaimable) {
ede37713
MH
3563 congestion_wait(BLK_RW_ASYNC, HZ/10);
3564 return true;
3565 }
3566 }
5a1c84b4 3567
ede37713
MH
3568 /*
3569 * Memory allocation/reclaim might be called from a WQ
3570 * context and the current implementation of the WQ
3571 * concurrency control doesn't recognize that
3572 * a particular WQ is congested if the worker thread is
3573 * looping without ever sleeping. Therefore we have to
3574 * do a short sleep here rather than calling
3575 * cond_resched().
3576 */
3577 if (current->flags & PF_WQ_WORKER)
3578 schedule_timeout_uninterruptible(1);
3579 else
3580 cond_resched();
3581
0a0337e0
MH
3582 return true;
3583 }
3584 }
3585
3586 return false;
3587}
3588
11e33f6a
MG
3589static inline struct page *
3590__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3591 struct alloc_context *ac)
11e33f6a 3592{
d0164adc 3593 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3594 struct page *page = NULL;
c603844b 3595 unsigned int alloc_flags;
11e33f6a 3596 unsigned long did_some_progress;
5ce9bfef 3597 enum compact_priority compact_priority;
c5d01d0d 3598 enum compact_result compact_result;
5ce9bfef
VB
3599 int compaction_retries;
3600 int no_progress_loops;
63f53dea
MH
3601 unsigned long alloc_start = jiffies;
3602 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3603 unsigned int cpuset_mems_cookie;
1da177e4 3604
72807a74
MG
3605 /*
3606 * In the slowpath, we sanity check order to avoid ever trying to
3607 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3608 * be using allocators in order of preference for an area that is
3609 * too large.
3610 */
1fc28b70
MG
3611 if (order >= MAX_ORDER) {
3612 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3613 return NULL;
1fc28b70 3614 }
1da177e4 3615
d0164adc
MG
3616 /*
3617 * We also sanity check to catch abuse of atomic reserves being used by
3618 * callers that are not in atomic context.
3619 */
3620 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3621 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3622 gfp_mask &= ~__GFP_ATOMIC;
3623
5ce9bfef
VB
3624retry_cpuset:
3625 compaction_retries = 0;
3626 no_progress_loops = 0;
3627 compact_priority = DEF_COMPACT_PRIORITY;
3628 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3629
3630 /*
3631 * The fast path uses conservative alloc_flags to succeed only until
3632 * kswapd needs to be woken up, and to avoid the cost of setting up
3633 * alloc_flags precisely. So we do that now.
3634 */
3635 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3636
e47483bc
VB
3637 /*
3638 * We need to recalculate the starting point for the zonelist iterator
3639 * because we might have used different nodemask in the fast path, or
3640 * there was a cpuset modification and we are retrying - otherwise we
3641 * could end up iterating over non-eligible zones endlessly.
3642 */
3643 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3644 ac->high_zoneidx, ac->nodemask);
3645 if (!ac->preferred_zoneref->zone)
3646 goto nopage;
3647
23771235
VB
3648 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3649 wake_all_kswapds(order, ac);
3650
3651 /*
3652 * The adjusted alloc_flags might result in immediate success, so try
3653 * that first
3654 */
3655 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3656 if (page)
3657 goto got_pg;
3658
a8161d1e
VB
3659 /*
3660 * For costly allocations, try direct compaction first, as it's likely
3661 * that we have enough base pages and don't need to reclaim. Don't try
3662 * that for allocations that are allowed to ignore watermarks, as the
3663 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3664 */
3665 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3666 !gfp_pfmemalloc_allowed(gfp_mask)) {
3667 page = __alloc_pages_direct_compact(gfp_mask, order,
3668 alloc_flags, ac,
a5508cd8 3669 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3670 &compact_result);
3671 if (page)
3672 goto got_pg;
3673
3eb2771b
VB
3674 /*
3675 * Checks for costly allocations with __GFP_NORETRY, which
3676 * includes THP page fault allocations
3677 */
3678 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3679 /*
3680 * If compaction is deferred for high-order allocations,
3681 * it is because sync compaction recently failed. If
3682 * this is the case and the caller requested a THP
3683 * allocation, we do not want to heavily disrupt the
3684 * system, so we fail the allocation instead of entering
3685 * direct reclaim.
3686 */
3687 if (compact_result == COMPACT_DEFERRED)
3688 goto nopage;
3689
a8161d1e 3690 /*
3eb2771b
VB
3691 * Looks like reclaim/compaction is worth trying, but
3692 * sync compaction could be very expensive, so keep
25160354 3693 * using async compaction.
a8161d1e 3694 */
a5508cd8 3695 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3696 }
3697 }
23771235 3698
31a6c190 3699retry:
23771235 3700 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3701 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3702 wake_all_kswapds(order, ac);
3703
23771235
VB
3704 if (gfp_pfmemalloc_allowed(gfp_mask))
3705 alloc_flags = ALLOC_NO_WATERMARKS;
3706
e46e7b77
MG
3707 /*
3708 * Reset the zonelist iterators if memory policies can be ignored.
3709 * These allocations are high priority and system rather than user
3710 * orientated.
3711 */
23771235 3712 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3713 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3714 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3715 ac->high_zoneidx, ac->nodemask);
3716 }
3717
23771235 3718 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3719 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3720 if (page)
3721 goto got_pg;
1da177e4 3722
d0164adc 3723 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3724 if (!can_direct_reclaim)
1da177e4
LT
3725 goto nopage;
3726
9a67f648
MH
3727 /* Make sure we know about allocations which stall for too long */
3728 if (time_after(jiffies, alloc_start + stall_timeout)) {
3729 warn_alloc(gfp_mask, ac->nodemask,
3730 "page allocation stalls for %ums, order:%u",
3731 jiffies_to_msecs(jiffies-alloc_start), order);
3732 stall_timeout += 10 * HZ;
33d53103 3733 }
341ce06f 3734
9a67f648
MH
3735 /* Avoid recursion of direct reclaim */
3736 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3737 goto nopage;
3738
a8161d1e
VB
3739 /* Try direct reclaim and then allocating */
3740 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3741 &did_some_progress);
3742 if (page)
3743 goto got_pg;
3744
3745 /* Try direct compaction and then allocating */
a9263751 3746 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3747 compact_priority, &compact_result);
56de7263
MG
3748 if (page)
3749 goto got_pg;
75f30861 3750
9083905a
JW
3751 /* Do not loop if specifically requested */
3752 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3753 goto nopage;
9083905a 3754
0a0337e0
MH
3755 /*
3756 * Do not retry costly high order allocations unless they are
3757 * __GFP_REPEAT
3758 */
3759 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3760 goto nopage;
0a0337e0 3761
0a0337e0 3762 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3763 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3764 goto retry;
3765
33c2d214
MH
3766 /*
3767 * It doesn't make any sense to retry for the compaction if the order-0
3768 * reclaim is not able to make any progress because the current
3769 * implementation of the compaction depends on the sufficient amount
3770 * of free memory (see __compaction_suitable)
3771 */
3772 if (did_some_progress > 0 &&
86a294a8 3773 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3774 compact_result, &compact_priority,
d9436498 3775 &compaction_retries))
33c2d214
MH
3776 goto retry;
3777
e47483bc
VB
3778 /*
3779 * It's possible we raced with cpuset update so the OOM would be
3780 * premature (see below the nopage: label for full explanation).
3781 */
3782 if (read_mems_allowed_retry(cpuset_mems_cookie))
3783 goto retry_cpuset;
3784
9083905a
JW
3785 /* Reclaim has failed us, start killing things */
3786 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3787 if (page)
3788 goto got_pg;
3789
9a67f648
MH
3790 /* Avoid allocations with no watermarks from looping endlessly */
3791 if (test_thread_flag(TIF_MEMDIE))
3792 goto nopage;
3793
9083905a 3794 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3795 if (did_some_progress) {
3796 no_progress_loops = 0;
9083905a 3797 goto retry;
0a0337e0 3798 }
9083905a 3799
1da177e4 3800nopage:
5ce9bfef 3801 /*
e47483bc
VB
3802 * When updating a task's mems_allowed or mempolicy nodemask, it is
3803 * possible to race with parallel threads in such a way that our
3804 * allocation can fail while the mask is being updated. If we are about
3805 * to fail, check if the cpuset changed during allocation and if so,
3806 * retry.
5ce9bfef
VB
3807 */
3808 if (read_mems_allowed_retry(cpuset_mems_cookie))
3809 goto retry_cpuset;
3810
9a67f648
MH
3811 /*
3812 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3813 * we always retry
3814 */
3815 if (gfp_mask & __GFP_NOFAIL) {
3816 /*
3817 * All existing users of the __GFP_NOFAIL are blockable, so warn
3818 * of any new users that actually require GFP_NOWAIT
3819 */
3820 if (WARN_ON_ONCE(!can_direct_reclaim))
3821 goto fail;
3822
3823 /*
3824 * PF_MEMALLOC request from this context is rather bizarre
3825 * because we cannot reclaim anything and only can loop waiting
3826 * for somebody to do a work for us
3827 */
3828 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3829
3830 /*
3831 * non failing costly orders are a hard requirement which we
3832 * are not prepared for much so let's warn about these users
3833 * so that we can identify them and convert them to something
3834 * else.
3835 */
3836 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3837
6c18ba7a
MH
3838 /*
3839 * Help non-failing allocations by giving them access to memory
3840 * reserves but do not use ALLOC_NO_WATERMARKS because this
3841 * could deplete whole memory reserves which would just make
3842 * the situation worse
3843 */
3844 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3845 if (page)
3846 goto got_pg;
3847
9a67f648
MH
3848 cond_resched();
3849 goto retry;
3850 }
3851fail:
a8e99259 3852 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3853 "page allocation failure: order:%u", order);
1da177e4 3854got_pg:
072bb0aa 3855 return page;
1da177e4 3856}
11e33f6a
MG
3857
3858/*
3859 * This is the 'heart' of the zoned buddy allocator.
3860 */
3861struct page *
3862__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3863 struct zonelist *zonelist, nodemask_t *nodemask)
3864{
5bb1b169 3865 struct page *page;
e6cbd7f2 3866 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3867 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3868 struct alloc_context ac = {
3869 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3870 .zonelist = zonelist,
a9263751
VB
3871 .nodemask = nodemask,
3872 .migratetype = gfpflags_to_migratetype(gfp_mask),
3873 };
11e33f6a 3874
682a3385 3875 if (cpusets_enabled()) {
83d4ca81 3876 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3877 alloc_flags |= ALLOC_CPUSET;
3878 if (!ac.nodemask)
3879 ac.nodemask = &cpuset_current_mems_allowed;
3880 }
3881
dcce284a
BH
3882 gfp_mask &= gfp_allowed_mask;
3883
11e33f6a
MG
3884 lockdep_trace_alloc(gfp_mask);
3885
d0164adc 3886 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3887
3888 if (should_fail_alloc_page(gfp_mask, order))
3889 return NULL;
3890
3891 /*
3892 * Check the zones suitable for the gfp_mask contain at least one
3893 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3894 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3895 */
3896 if (unlikely(!zonelist->_zonerefs->zone))
3897 return NULL;
3898
a9263751 3899 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3900 alloc_flags |= ALLOC_CMA;
3901
c9ab0c4f
MG
3902 /* Dirty zone balancing only done in the fast path */
3903 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3904
e46e7b77
MG
3905 /*
3906 * The preferred zone is used for statistics but crucially it is
3907 * also used as the starting point for the zonelist iterator. It
3908 * may get reset for allocations that ignore memory policies.
3909 */
c33d6c06
MG
3910 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3911 ac.high_zoneidx, ac.nodemask);
ea57485a 3912 if (!ac.preferred_zoneref->zone) {
5bb1b169 3913 page = NULL;
5ce9bfef
VB
3914 /*
3915 * This might be due to race with cpuset_current_mems_allowed
3916 * update, so make sure we retry with original nodemask in the
3917 * slow path.
3918 */
4fcb0971 3919 goto no_zone;
5bb1b169
MG
3920 }
3921
5117f45d 3922 /* First allocation attempt */
a9263751 3923 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3924 if (likely(page))
3925 goto out;
11e33f6a 3926
5ce9bfef 3927no_zone:
4fcb0971
MG
3928 /*
3929 * Runtime PM, block IO and its error handling path can deadlock
3930 * because I/O on the device might not complete.
3931 */
3932 alloc_mask = memalloc_noio_flags(gfp_mask);
3933 ac.spread_dirty_pages = false;
23f086f9 3934
4741526b
MG
3935 /*
3936 * Restore the original nodemask if it was potentially replaced with
3937 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3938 */
e47483bc 3939 if (unlikely(ac.nodemask != nodemask))
4741526b 3940 ac.nodemask = nodemask;
16096c25 3941
4fcb0971 3942 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3943
4fcb0971 3944out:
c4159a75
VD
3945 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3946 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3947 __free_pages(page, order);
3948 page = NULL;
4949148a
VD
3949 }
3950
4fcb0971
MG
3951 if (kmemcheck_enabled && page)
3952 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3953
3954 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3955
11e33f6a 3956 return page;
1da177e4 3957}
d239171e 3958EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3959
3960/*
3961 * Common helper functions.
3962 */
920c7a5d 3963unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3964{
945a1113
AM
3965 struct page *page;
3966
3967 /*
3968 * __get_free_pages() returns a 32-bit address, which cannot represent
3969 * a highmem page
3970 */
3971 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3972
1da177e4
LT
3973 page = alloc_pages(gfp_mask, order);
3974 if (!page)
3975 return 0;
3976 return (unsigned long) page_address(page);
3977}
1da177e4
LT
3978EXPORT_SYMBOL(__get_free_pages);
3979
920c7a5d 3980unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3981{
945a1113 3982 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3983}
1da177e4
LT
3984EXPORT_SYMBOL(get_zeroed_page);
3985
920c7a5d 3986void __free_pages(struct page *page, unsigned int order)
1da177e4 3987{
b5810039 3988 if (put_page_testzero(page)) {
1da177e4 3989 if (order == 0)
b745bc85 3990 free_hot_cold_page(page, false);
1da177e4
LT
3991 else
3992 __free_pages_ok(page, order);
3993 }
3994}
3995
3996EXPORT_SYMBOL(__free_pages);
3997
920c7a5d 3998void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3999{
4000 if (addr != 0) {
725d704e 4001 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4002 __free_pages(virt_to_page((void *)addr), order);
4003 }
4004}
4005
4006EXPORT_SYMBOL(free_pages);
4007
b63ae8ca
AD
4008/*
4009 * Page Fragment:
4010 * An arbitrary-length arbitrary-offset area of memory which resides
4011 * within a 0 or higher order page. Multiple fragments within that page
4012 * are individually refcounted, in the page's reference counter.
4013 *
4014 * The page_frag functions below provide a simple allocation framework for
4015 * page fragments. This is used by the network stack and network device
4016 * drivers to provide a backing region of memory for use as either an
4017 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4018 */
2976db80
AD
4019static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4020 gfp_t gfp_mask)
b63ae8ca
AD
4021{
4022 struct page *page = NULL;
4023 gfp_t gfp = gfp_mask;
4024
4025#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4026 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4027 __GFP_NOMEMALLOC;
4028 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4029 PAGE_FRAG_CACHE_MAX_ORDER);
4030 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4031#endif
4032 if (unlikely(!page))
4033 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4034
4035 nc->va = page ? page_address(page) : NULL;
4036
4037 return page;
4038}
4039
2976db80 4040void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4041{
4042 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4043
4044 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4045 unsigned int order = compound_order(page);
4046
44fdffd7
AD
4047 if (order == 0)
4048 free_hot_cold_page(page, false);
4049 else
4050 __free_pages_ok(page, order);
4051 }
4052}
2976db80 4053EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4054
8c2dd3e4
AD
4055void *page_frag_alloc(struct page_frag_cache *nc,
4056 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4057{
4058 unsigned int size = PAGE_SIZE;
4059 struct page *page;
4060 int offset;
4061
4062 if (unlikely(!nc->va)) {
4063refill:
2976db80 4064 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4065 if (!page)
4066 return NULL;
4067
4068#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4069 /* if size can vary use size else just use PAGE_SIZE */
4070 size = nc->size;
4071#endif
4072 /* Even if we own the page, we do not use atomic_set().
4073 * This would break get_page_unless_zero() users.
4074 */
fe896d18 4075 page_ref_add(page, size - 1);
b63ae8ca
AD
4076
4077 /* reset page count bias and offset to start of new frag */
2f064f34 4078 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4079 nc->pagecnt_bias = size;
4080 nc->offset = size;
4081 }
4082
4083 offset = nc->offset - fragsz;
4084 if (unlikely(offset < 0)) {
4085 page = virt_to_page(nc->va);
4086
fe896d18 4087 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4088 goto refill;
4089
4090#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4091 /* if size can vary use size else just use PAGE_SIZE */
4092 size = nc->size;
4093#endif
4094 /* OK, page count is 0, we can safely set it */
fe896d18 4095 set_page_count(page, size);
b63ae8ca
AD
4096
4097 /* reset page count bias and offset to start of new frag */
4098 nc->pagecnt_bias = size;
4099 offset = size - fragsz;
4100 }
4101
4102 nc->pagecnt_bias--;
4103 nc->offset = offset;
4104
4105 return nc->va + offset;
4106}
8c2dd3e4 4107EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4108
4109/*
4110 * Frees a page fragment allocated out of either a compound or order 0 page.
4111 */
8c2dd3e4 4112void page_frag_free(void *addr)
b63ae8ca
AD
4113{
4114 struct page *page = virt_to_head_page(addr);
4115
4116 if (unlikely(put_page_testzero(page)))
4117 __free_pages_ok(page, compound_order(page));
4118}
8c2dd3e4 4119EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4120
d00181b9
KS
4121static void *make_alloc_exact(unsigned long addr, unsigned int order,
4122 size_t size)
ee85c2e1
AK
4123{
4124 if (addr) {
4125 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4126 unsigned long used = addr + PAGE_ALIGN(size);
4127
4128 split_page(virt_to_page((void *)addr), order);
4129 while (used < alloc_end) {
4130 free_page(used);
4131 used += PAGE_SIZE;
4132 }
4133 }
4134 return (void *)addr;
4135}
4136
2be0ffe2
TT
4137/**
4138 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4139 * @size: the number of bytes to allocate
4140 * @gfp_mask: GFP flags for the allocation
4141 *
4142 * This function is similar to alloc_pages(), except that it allocates the
4143 * minimum number of pages to satisfy the request. alloc_pages() can only
4144 * allocate memory in power-of-two pages.
4145 *
4146 * This function is also limited by MAX_ORDER.
4147 *
4148 * Memory allocated by this function must be released by free_pages_exact().
4149 */
4150void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4151{
4152 unsigned int order = get_order(size);
4153 unsigned long addr;
4154
4155 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4156 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4157}
4158EXPORT_SYMBOL(alloc_pages_exact);
4159
ee85c2e1
AK
4160/**
4161 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4162 * pages on a node.
b5e6ab58 4163 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4164 * @size: the number of bytes to allocate
4165 * @gfp_mask: GFP flags for the allocation
4166 *
4167 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4168 * back.
ee85c2e1 4169 */
e1931811 4170void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4171{
d00181b9 4172 unsigned int order = get_order(size);
ee85c2e1
AK
4173 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4174 if (!p)
4175 return NULL;
4176 return make_alloc_exact((unsigned long)page_address(p), order, size);
4177}
ee85c2e1 4178
2be0ffe2
TT
4179/**
4180 * free_pages_exact - release memory allocated via alloc_pages_exact()
4181 * @virt: the value returned by alloc_pages_exact.
4182 * @size: size of allocation, same value as passed to alloc_pages_exact().
4183 *
4184 * Release the memory allocated by a previous call to alloc_pages_exact.
4185 */
4186void free_pages_exact(void *virt, size_t size)
4187{
4188 unsigned long addr = (unsigned long)virt;
4189 unsigned long end = addr + PAGE_ALIGN(size);
4190
4191 while (addr < end) {
4192 free_page(addr);
4193 addr += PAGE_SIZE;
4194 }
4195}
4196EXPORT_SYMBOL(free_pages_exact);
4197
e0fb5815
ZY
4198/**
4199 * nr_free_zone_pages - count number of pages beyond high watermark
4200 * @offset: The zone index of the highest zone
4201 *
4202 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4203 * high watermark within all zones at or below a given zone index. For each
4204 * zone, the number of pages is calculated as:
834405c3 4205 * managed_pages - high_pages
e0fb5815 4206 */
ebec3862 4207static unsigned long nr_free_zone_pages(int offset)
1da177e4 4208{
dd1a239f 4209 struct zoneref *z;
54a6eb5c
MG
4210 struct zone *zone;
4211
e310fd43 4212 /* Just pick one node, since fallback list is circular */
ebec3862 4213 unsigned long sum = 0;
1da177e4 4214
0e88460d 4215 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4216
54a6eb5c 4217 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4218 unsigned long size = zone->managed_pages;
41858966 4219 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4220 if (size > high)
4221 sum += size - high;
1da177e4
LT
4222 }
4223
4224 return sum;
4225}
4226
e0fb5815
ZY
4227/**
4228 * nr_free_buffer_pages - count number of pages beyond high watermark
4229 *
4230 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4231 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4232 */
ebec3862 4233unsigned long nr_free_buffer_pages(void)
1da177e4 4234{
af4ca457 4235 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4236}
c2f1a551 4237EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4238
e0fb5815
ZY
4239/**
4240 * nr_free_pagecache_pages - count number of pages beyond high watermark
4241 *
4242 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4243 * high watermark within all zones.
1da177e4 4244 */
ebec3862 4245unsigned long nr_free_pagecache_pages(void)
1da177e4 4246{
2a1e274a 4247 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4248}
08e0f6a9
CL
4249
4250static inline void show_node(struct zone *zone)
1da177e4 4251{
e5adfffc 4252 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4253 printk("Node %d ", zone_to_nid(zone));
1da177e4 4254}
1da177e4 4255
d02bd27b
IR
4256long si_mem_available(void)
4257{
4258 long available;
4259 unsigned long pagecache;
4260 unsigned long wmark_low = 0;
4261 unsigned long pages[NR_LRU_LISTS];
4262 struct zone *zone;
4263 int lru;
4264
4265 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4266 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4267
4268 for_each_zone(zone)
4269 wmark_low += zone->watermark[WMARK_LOW];
4270
4271 /*
4272 * Estimate the amount of memory available for userspace allocations,
4273 * without causing swapping.
4274 */
4275 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4276
4277 /*
4278 * Not all the page cache can be freed, otherwise the system will
4279 * start swapping. Assume at least half of the page cache, or the
4280 * low watermark worth of cache, needs to stay.
4281 */
4282 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4283 pagecache -= min(pagecache / 2, wmark_low);
4284 available += pagecache;
4285
4286 /*
4287 * Part of the reclaimable slab consists of items that are in use,
4288 * and cannot be freed. Cap this estimate at the low watermark.
4289 */
4290 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4291 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4292
4293 if (available < 0)
4294 available = 0;
4295 return available;
4296}
4297EXPORT_SYMBOL_GPL(si_mem_available);
4298
1da177e4
LT
4299void si_meminfo(struct sysinfo *val)
4300{
4301 val->totalram = totalram_pages;
11fb9989 4302 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4303 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4304 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4305 val->totalhigh = totalhigh_pages;
4306 val->freehigh = nr_free_highpages();
1da177e4
LT
4307 val->mem_unit = PAGE_SIZE;
4308}
4309
4310EXPORT_SYMBOL(si_meminfo);
4311
4312#ifdef CONFIG_NUMA
4313void si_meminfo_node(struct sysinfo *val, int nid)
4314{
cdd91a77
JL
4315 int zone_type; /* needs to be signed */
4316 unsigned long managed_pages = 0;
fc2bd799
JK
4317 unsigned long managed_highpages = 0;
4318 unsigned long free_highpages = 0;
1da177e4
LT
4319 pg_data_t *pgdat = NODE_DATA(nid);
4320
cdd91a77
JL
4321 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4322 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4323 val->totalram = managed_pages;
11fb9989 4324 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4325 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4326#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4327 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4328 struct zone *zone = &pgdat->node_zones[zone_type];
4329
4330 if (is_highmem(zone)) {
4331 managed_highpages += zone->managed_pages;
4332 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4333 }
4334 }
4335 val->totalhigh = managed_highpages;
4336 val->freehigh = free_highpages;
98d2b0eb 4337#else
fc2bd799
JK
4338 val->totalhigh = managed_highpages;
4339 val->freehigh = free_highpages;
98d2b0eb 4340#endif
1da177e4
LT
4341 val->mem_unit = PAGE_SIZE;
4342}
4343#endif
4344
ddd588b5 4345/*
7bf02ea2
DR
4346 * Determine whether the node should be displayed or not, depending on whether
4347 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4348 */
9af744d7 4349static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4350{
ddd588b5 4351 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4352 return false;
ddd588b5 4353
9af744d7
MH
4354 /*
4355 * no node mask - aka implicit memory numa policy. Do not bother with
4356 * the synchronization - read_mems_allowed_begin - because we do not
4357 * have to be precise here.
4358 */
4359 if (!nodemask)
4360 nodemask = &cpuset_current_mems_allowed;
4361
4362 return !node_isset(nid, *nodemask);
ddd588b5
DR
4363}
4364
1da177e4
LT
4365#define K(x) ((x) << (PAGE_SHIFT-10))
4366
377e4f16
RV
4367static void show_migration_types(unsigned char type)
4368{
4369 static const char types[MIGRATE_TYPES] = {
4370 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4371 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4372 [MIGRATE_RECLAIMABLE] = 'E',
4373 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4374#ifdef CONFIG_CMA
4375 [MIGRATE_CMA] = 'C',
4376#endif
194159fb 4377#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4378 [MIGRATE_ISOLATE] = 'I',
194159fb 4379#endif
377e4f16
RV
4380 };
4381 char tmp[MIGRATE_TYPES + 1];
4382 char *p = tmp;
4383 int i;
4384
4385 for (i = 0; i < MIGRATE_TYPES; i++) {
4386 if (type & (1 << i))
4387 *p++ = types[i];
4388 }
4389
4390 *p = '\0';
1f84a18f 4391 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4392}
4393
1da177e4
LT
4394/*
4395 * Show free area list (used inside shift_scroll-lock stuff)
4396 * We also calculate the percentage fragmentation. We do this by counting the
4397 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4398 *
4399 * Bits in @filter:
4400 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4401 * cpuset.
1da177e4 4402 */
9af744d7 4403void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4404{
d1bfcdb8 4405 unsigned long free_pcp = 0;
c7241913 4406 int cpu;
1da177e4 4407 struct zone *zone;
599d0c95 4408 pg_data_t *pgdat;
1da177e4 4409
ee99c71c 4410 for_each_populated_zone(zone) {
9af744d7 4411 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4412 continue;
d1bfcdb8 4413
761b0677
KK
4414 for_each_online_cpu(cpu)
4415 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4416 }
4417
a731286d
KM
4418 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4419 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4420 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4421 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4422 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4423 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4424 global_node_page_state(NR_ACTIVE_ANON),
4425 global_node_page_state(NR_INACTIVE_ANON),
4426 global_node_page_state(NR_ISOLATED_ANON),
4427 global_node_page_state(NR_ACTIVE_FILE),
4428 global_node_page_state(NR_INACTIVE_FILE),
4429 global_node_page_state(NR_ISOLATED_FILE),
4430 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4431 global_node_page_state(NR_FILE_DIRTY),
4432 global_node_page_state(NR_WRITEBACK),
4433 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4434 global_page_state(NR_SLAB_RECLAIMABLE),
4435 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4436 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4437 global_node_page_state(NR_SHMEM),
a25700a5 4438 global_page_state(NR_PAGETABLE),
d1ce749a 4439 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4440 global_page_state(NR_FREE_PAGES),
4441 free_pcp,
d1ce749a 4442 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4443
599d0c95 4444 for_each_online_pgdat(pgdat) {
9af744d7 4445 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4446 continue;
4447
599d0c95
MG
4448 printk("Node %d"
4449 " active_anon:%lukB"
4450 " inactive_anon:%lukB"
4451 " active_file:%lukB"
4452 " inactive_file:%lukB"
4453 " unevictable:%lukB"
4454 " isolated(anon):%lukB"
4455 " isolated(file):%lukB"
50658e2e 4456 " mapped:%lukB"
11fb9989
MG
4457 " dirty:%lukB"
4458 " writeback:%lukB"
4459 " shmem:%lukB"
4460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4461 " shmem_thp: %lukB"
4462 " shmem_pmdmapped: %lukB"
4463 " anon_thp: %lukB"
4464#endif
4465 " writeback_tmp:%lukB"
4466 " unstable:%lukB"
33e077bd 4467 " pages_scanned:%lu"
599d0c95
MG
4468 " all_unreclaimable? %s"
4469 "\n",
4470 pgdat->node_id,
4471 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4472 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4473 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4474 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4475 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4476 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4477 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4478 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4479 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4480 K(node_page_state(pgdat, NR_WRITEBACK)),
4481#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4482 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4483 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4484 * HPAGE_PMD_NR),
4485 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4486#endif
4487 K(node_page_state(pgdat, NR_SHMEM)),
4488 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4489 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4490 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4491 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4492 }
4493
ee99c71c 4494 for_each_populated_zone(zone) {
1da177e4
LT
4495 int i;
4496
9af744d7 4497 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4498 continue;
d1bfcdb8
KK
4499
4500 free_pcp = 0;
4501 for_each_online_cpu(cpu)
4502 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4503
1da177e4 4504 show_node(zone);
1f84a18f
JP
4505 printk(KERN_CONT
4506 "%s"
1da177e4
LT
4507 " free:%lukB"
4508 " min:%lukB"
4509 " low:%lukB"
4510 " high:%lukB"
71c799f4
MK
4511 " active_anon:%lukB"
4512 " inactive_anon:%lukB"
4513 " active_file:%lukB"
4514 " inactive_file:%lukB"
4515 " unevictable:%lukB"
5a1c84b4 4516 " writepending:%lukB"
1da177e4 4517 " present:%lukB"
9feedc9d 4518 " managed:%lukB"
4a0aa73f 4519 " mlocked:%lukB"
4a0aa73f
KM
4520 " slab_reclaimable:%lukB"
4521 " slab_unreclaimable:%lukB"
c6a7f572 4522 " kernel_stack:%lukB"
4a0aa73f 4523 " pagetables:%lukB"
4a0aa73f 4524 " bounce:%lukB"
d1bfcdb8
KK
4525 " free_pcp:%lukB"
4526 " local_pcp:%ukB"
d1ce749a 4527 " free_cma:%lukB"
1da177e4
LT
4528 "\n",
4529 zone->name,
88f5acf8 4530 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4531 K(min_wmark_pages(zone)),
4532 K(low_wmark_pages(zone)),
4533 K(high_wmark_pages(zone)),
71c799f4
MK
4534 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4535 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4536 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4537 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4538 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4539 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4540 K(zone->present_pages),
9feedc9d 4541 K(zone->managed_pages),
4a0aa73f 4542 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4543 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4544 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4545 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4546 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4547 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4548 K(free_pcp),
4549 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4550 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4551 printk("lowmem_reserve[]:");
4552 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4553 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4554 printk(KERN_CONT "\n");
1da177e4
LT
4555 }
4556
ee99c71c 4557 for_each_populated_zone(zone) {
d00181b9
KS
4558 unsigned int order;
4559 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4560 unsigned char types[MAX_ORDER];
1da177e4 4561
9af744d7 4562 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4563 continue;
1da177e4 4564 show_node(zone);
1f84a18f 4565 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4566
4567 spin_lock_irqsave(&zone->lock, flags);
4568 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4569 struct free_area *area = &zone->free_area[order];
4570 int type;
4571
4572 nr[order] = area->nr_free;
8f9de51a 4573 total += nr[order] << order;
377e4f16
RV
4574
4575 types[order] = 0;
4576 for (type = 0; type < MIGRATE_TYPES; type++) {
4577 if (!list_empty(&area->free_list[type]))
4578 types[order] |= 1 << type;
4579 }
1da177e4
LT
4580 }
4581 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4582 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4583 printk(KERN_CONT "%lu*%lukB ",
4584 nr[order], K(1UL) << order);
377e4f16
RV
4585 if (nr[order])
4586 show_migration_types(types[order]);
4587 }
1f84a18f 4588 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4589 }
4590
949f7ec5
DR
4591 hugetlb_show_meminfo();
4592
11fb9989 4593 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4594
1da177e4
LT
4595 show_swap_cache_info();
4596}
4597
19770b32
MG
4598static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4599{
4600 zoneref->zone = zone;
4601 zoneref->zone_idx = zone_idx(zone);
4602}
4603
1da177e4
LT
4604/*
4605 * Builds allocation fallback zone lists.
1a93205b
CL
4606 *
4607 * Add all populated zones of a node to the zonelist.
1da177e4 4608 */
f0c0b2b8 4609static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4610 int nr_zones)
1da177e4 4611{
1a93205b 4612 struct zone *zone;
bc732f1d 4613 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4614
4615 do {
2f6726e5 4616 zone_type--;
070f8032 4617 zone = pgdat->node_zones + zone_type;
6aa303de 4618 if (managed_zone(zone)) {
dd1a239f
MG
4619 zoneref_set_zone(zone,
4620 &zonelist->_zonerefs[nr_zones++]);
070f8032 4621 check_highest_zone(zone_type);
1da177e4 4622 }
2f6726e5 4623 } while (zone_type);
bc732f1d 4624
070f8032 4625 return nr_zones;
1da177e4
LT
4626}
4627
f0c0b2b8
KH
4628
4629/*
4630 * zonelist_order:
4631 * 0 = automatic detection of better ordering.
4632 * 1 = order by ([node] distance, -zonetype)
4633 * 2 = order by (-zonetype, [node] distance)
4634 *
4635 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4636 * the same zonelist. So only NUMA can configure this param.
4637 */
4638#define ZONELIST_ORDER_DEFAULT 0
4639#define ZONELIST_ORDER_NODE 1
4640#define ZONELIST_ORDER_ZONE 2
4641
4642/* zonelist order in the kernel.
4643 * set_zonelist_order() will set this to NODE or ZONE.
4644 */
4645static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4646static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4647
4648
1da177e4 4649#ifdef CONFIG_NUMA
f0c0b2b8
KH
4650/* The value user specified ....changed by config */
4651static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4652/* string for sysctl */
4653#define NUMA_ZONELIST_ORDER_LEN 16
4654char numa_zonelist_order[16] = "default";
4655
4656/*
4657 * interface for configure zonelist ordering.
4658 * command line option "numa_zonelist_order"
4659 * = "[dD]efault - default, automatic configuration.
4660 * = "[nN]ode - order by node locality, then by zone within node
4661 * = "[zZ]one - order by zone, then by locality within zone
4662 */
4663
4664static int __parse_numa_zonelist_order(char *s)
4665{
4666 if (*s == 'd' || *s == 'D') {
4667 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4668 } else if (*s == 'n' || *s == 'N') {
4669 user_zonelist_order = ZONELIST_ORDER_NODE;
4670 } else if (*s == 'z' || *s == 'Z') {
4671 user_zonelist_order = ZONELIST_ORDER_ZONE;
4672 } else {
1170532b 4673 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4674 return -EINVAL;
4675 }
4676 return 0;
4677}
4678
4679static __init int setup_numa_zonelist_order(char *s)
4680{
ecb256f8
VL
4681 int ret;
4682
4683 if (!s)
4684 return 0;
4685
4686 ret = __parse_numa_zonelist_order(s);
4687 if (ret == 0)
4688 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4689
4690 return ret;
f0c0b2b8
KH
4691}
4692early_param("numa_zonelist_order", setup_numa_zonelist_order);
4693
4694/*
4695 * sysctl handler for numa_zonelist_order
4696 */
cccad5b9 4697int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4698 void __user *buffer, size_t *length,
f0c0b2b8
KH
4699 loff_t *ppos)
4700{
4701 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4702 int ret;
443c6f14 4703 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4704
443c6f14 4705 mutex_lock(&zl_order_mutex);
dacbde09
CG
4706 if (write) {
4707 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4708 ret = -EINVAL;
4709 goto out;
4710 }
4711 strcpy(saved_string, (char *)table->data);
4712 }
8d65af78 4713 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4714 if (ret)
443c6f14 4715 goto out;
f0c0b2b8
KH
4716 if (write) {
4717 int oldval = user_zonelist_order;
dacbde09
CG
4718
4719 ret = __parse_numa_zonelist_order((char *)table->data);
4720 if (ret) {
f0c0b2b8
KH
4721 /*
4722 * bogus value. restore saved string
4723 */
dacbde09 4724 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4725 NUMA_ZONELIST_ORDER_LEN);
4726 user_zonelist_order = oldval;
4eaf3f64
HL
4727 } else if (oldval != user_zonelist_order) {
4728 mutex_lock(&zonelists_mutex);
9adb62a5 4729 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4730 mutex_unlock(&zonelists_mutex);
4731 }
f0c0b2b8 4732 }
443c6f14
AK
4733out:
4734 mutex_unlock(&zl_order_mutex);
4735 return ret;
f0c0b2b8
KH
4736}
4737
4738
62bc62a8 4739#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4740static int node_load[MAX_NUMNODES];
4741
1da177e4 4742/**
4dc3b16b 4743 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4744 * @node: node whose fallback list we're appending
4745 * @used_node_mask: nodemask_t of already used nodes
4746 *
4747 * We use a number of factors to determine which is the next node that should
4748 * appear on a given node's fallback list. The node should not have appeared
4749 * already in @node's fallback list, and it should be the next closest node
4750 * according to the distance array (which contains arbitrary distance values
4751 * from each node to each node in the system), and should also prefer nodes
4752 * with no CPUs, since presumably they'll have very little allocation pressure
4753 * on them otherwise.
4754 * It returns -1 if no node is found.
4755 */
f0c0b2b8 4756static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4757{
4cf808eb 4758 int n, val;
1da177e4 4759 int min_val = INT_MAX;
00ef2d2f 4760 int best_node = NUMA_NO_NODE;
a70f7302 4761 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4762
4cf808eb
LT
4763 /* Use the local node if we haven't already */
4764 if (!node_isset(node, *used_node_mask)) {
4765 node_set(node, *used_node_mask);
4766 return node;
4767 }
1da177e4 4768
4b0ef1fe 4769 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4770
4771 /* Don't want a node to appear more than once */
4772 if (node_isset(n, *used_node_mask))
4773 continue;
4774
1da177e4
LT
4775 /* Use the distance array to find the distance */
4776 val = node_distance(node, n);
4777
4cf808eb
LT
4778 /* Penalize nodes under us ("prefer the next node") */
4779 val += (n < node);
4780
1da177e4 4781 /* Give preference to headless and unused nodes */
a70f7302
RR
4782 tmp = cpumask_of_node(n);
4783 if (!cpumask_empty(tmp))
1da177e4
LT
4784 val += PENALTY_FOR_NODE_WITH_CPUS;
4785
4786 /* Slight preference for less loaded node */
4787 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4788 val += node_load[n];
4789
4790 if (val < min_val) {
4791 min_val = val;
4792 best_node = n;
4793 }
4794 }
4795
4796 if (best_node >= 0)
4797 node_set(best_node, *used_node_mask);
4798
4799 return best_node;
4800}
4801
f0c0b2b8
KH
4802
4803/*
4804 * Build zonelists ordered by node and zones within node.
4805 * This results in maximum locality--normal zone overflows into local
4806 * DMA zone, if any--but risks exhausting DMA zone.
4807 */
4808static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4809{
f0c0b2b8 4810 int j;
1da177e4 4811 struct zonelist *zonelist;
f0c0b2b8 4812
c9634cf0 4813 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4814 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4815 ;
bc732f1d 4816 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4817 zonelist->_zonerefs[j].zone = NULL;
4818 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4819}
4820
523b9458
CL
4821/*
4822 * Build gfp_thisnode zonelists
4823 */
4824static void build_thisnode_zonelists(pg_data_t *pgdat)
4825{
523b9458
CL
4826 int j;
4827 struct zonelist *zonelist;
4828
c9634cf0 4829 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4830 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4831 zonelist->_zonerefs[j].zone = NULL;
4832 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4833}
4834
f0c0b2b8
KH
4835/*
4836 * Build zonelists ordered by zone and nodes within zones.
4837 * This results in conserving DMA zone[s] until all Normal memory is
4838 * exhausted, but results in overflowing to remote node while memory
4839 * may still exist in local DMA zone.
4840 */
4841static int node_order[MAX_NUMNODES];
4842
4843static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4844{
f0c0b2b8
KH
4845 int pos, j, node;
4846 int zone_type; /* needs to be signed */
4847 struct zone *z;
4848 struct zonelist *zonelist;
4849
c9634cf0 4850 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4851 pos = 0;
4852 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4853 for (j = 0; j < nr_nodes; j++) {
4854 node = node_order[j];
4855 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4856 if (managed_zone(z)) {
dd1a239f
MG
4857 zoneref_set_zone(z,
4858 &zonelist->_zonerefs[pos++]);
54a6eb5c 4859 check_highest_zone(zone_type);
f0c0b2b8
KH
4860 }
4861 }
f0c0b2b8 4862 }
dd1a239f
MG
4863 zonelist->_zonerefs[pos].zone = NULL;
4864 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4865}
4866
3193913c
MG
4867#if defined(CONFIG_64BIT)
4868/*
4869 * Devices that require DMA32/DMA are relatively rare and do not justify a
4870 * penalty to every machine in case the specialised case applies. Default
4871 * to Node-ordering on 64-bit NUMA machines
4872 */
4873static int default_zonelist_order(void)
4874{
4875 return ZONELIST_ORDER_NODE;
4876}
4877#else
4878/*
4879 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4880 * by the kernel. If processes running on node 0 deplete the low memory zone
4881 * then reclaim will occur more frequency increasing stalls and potentially
4882 * be easier to OOM if a large percentage of the zone is under writeback or
4883 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4884 * Hence, default to zone ordering on 32-bit.
4885 */
f0c0b2b8
KH
4886static int default_zonelist_order(void)
4887{
f0c0b2b8
KH
4888 return ZONELIST_ORDER_ZONE;
4889}
3193913c 4890#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4891
4892static void set_zonelist_order(void)
4893{
4894 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4895 current_zonelist_order = default_zonelist_order();
4896 else
4897 current_zonelist_order = user_zonelist_order;
4898}
4899
4900static void build_zonelists(pg_data_t *pgdat)
4901{
c00eb15a 4902 int i, node, load;
1da177e4 4903 nodemask_t used_mask;
f0c0b2b8
KH
4904 int local_node, prev_node;
4905 struct zonelist *zonelist;
d00181b9 4906 unsigned int order = current_zonelist_order;
1da177e4
LT
4907
4908 /* initialize zonelists */
523b9458 4909 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4910 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4911 zonelist->_zonerefs[0].zone = NULL;
4912 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4913 }
4914
4915 /* NUMA-aware ordering of nodes */
4916 local_node = pgdat->node_id;
62bc62a8 4917 load = nr_online_nodes;
1da177e4
LT
4918 prev_node = local_node;
4919 nodes_clear(used_mask);
f0c0b2b8 4920
f0c0b2b8 4921 memset(node_order, 0, sizeof(node_order));
c00eb15a 4922 i = 0;
f0c0b2b8 4923
1da177e4
LT
4924 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4925 /*
4926 * We don't want to pressure a particular node.
4927 * So adding penalty to the first node in same
4928 * distance group to make it round-robin.
4929 */
957f822a
DR
4930 if (node_distance(local_node, node) !=
4931 node_distance(local_node, prev_node))
f0c0b2b8
KH
4932 node_load[node] = load;
4933
1da177e4
LT
4934 prev_node = node;
4935 load--;
f0c0b2b8
KH
4936 if (order == ZONELIST_ORDER_NODE)
4937 build_zonelists_in_node_order(pgdat, node);
4938 else
c00eb15a 4939 node_order[i++] = node; /* remember order */
f0c0b2b8 4940 }
1da177e4 4941
f0c0b2b8
KH
4942 if (order == ZONELIST_ORDER_ZONE) {
4943 /* calculate node order -- i.e., DMA last! */
c00eb15a 4944 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4945 }
523b9458
CL
4946
4947 build_thisnode_zonelists(pgdat);
1da177e4
LT
4948}
4949
7aac7898
LS
4950#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4951/*
4952 * Return node id of node used for "local" allocations.
4953 * I.e., first node id of first zone in arg node's generic zonelist.
4954 * Used for initializing percpu 'numa_mem', which is used primarily
4955 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4956 */
4957int local_memory_node(int node)
4958{
c33d6c06 4959 struct zoneref *z;
7aac7898 4960
c33d6c06 4961 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4962 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4963 NULL);
4964 return z->zone->node;
7aac7898
LS
4965}
4966#endif
f0c0b2b8 4967
6423aa81
JK
4968static void setup_min_unmapped_ratio(void);
4969static void setup_min_slab_ratio(void);
1da177e4
LT
4970#else /* CONFIG_NUMA */
4971
f0c0b2b8
KH
4972static void set_zonelist_order(void)
4973{
4974 current_zonelist_order = ZONELIST_ORDER_ZONE;
4975}
4976
4977static void build_zonelists(pg_data_t *pgdat)
1da177e4 4978{
19655d34 4979 int node, local_node;
54a6eb5c
MG
4980 enum zone_type j;
4981 struct zonelist *zonelist;
1da177e4
LT
4982
4983 local_node = pgdat->node_id;
1da177e4 4984
c9634cf0 4985 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4986 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4987
54a6eb5c
MG
4988 /*
4989 * Now we build the zonelist so that it contains the zones
4990 * of all the other nodes.
4991 * We don't want to pressure a particular node, so when
4992 * building the zones for node N, we make sure that the
4993 * zones coming right after the local ones are those from
4994 * node N+1 (modulo N)
4995 */
4996 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4997 if (!node_online(node))
4998 continue;
bc732f1d 4999 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5000 }
54a6eb5c
MG
5001 for (node = 0; node < local_node; node++) {
5002 if (!node_online(node))
5003 continue;
bc732f1d 5004 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5005 }
5006
dd1a239f
MG
5007 zonelist->_zonerefs[j].zone = NULL;
5008 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5009}
5010
5011#endif /* CONFIG_NUMA */
5012
99dcc3e5
CL
5013/*
5014 * Boot pageset table. One per cpu which is going to be used for all
5015 * zones and all nodes. The parameters will be set in such a way
5016 * that an item put on a list will immediately be handed over to
5017 * the buddy list. This is safe since pageset manipulation is done
5018 * with interrupts disabled.
5019 *
5020 * The boot_pagesets must be kept even after bootup is complete for
5021 * unused processors and/or zones. They do play a role for bootstrapping
5022 * hotplugged processors.
5023 *
5024 * zoneinfo_show() and maybe other functions do
5025 * not check if the processor is online before following the pageset pointer.
5026 * Other parts of the kernel may not check if the zone is available.
5027 */
5028static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5029static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5030static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5031
4eaf3f64
HL
5032/*
5033 * Global mutex to protect against size modification of zonelists
5034 * as well as to serialize pageset setup for the new populated zone.
5035 */
5036DEFINE_MUTEX(zonelists_mutex);
5037
9b1a4d38 5038/* return values int ....just for stop_machine() */
4ed7e022 5039static int __build_all_zonelists(void *data)
1da177e4 5040{
6811378e 5041 int nid;
99dcc3e5 5042 int cpu;
9adb62a5 5043 pg_data_t *self = data;
9276b1bc 5044
7f9cfb31
BL
5045#ifdef CONFIG_NUMA
5046 memset(node_load, 0, sizeof(node_load));
5047#endif
9adb62a5
JL
5048
5049 if (self && !node_online(self->node_id)) {
5050 build_zonelists(self);
9adb62a5
JL
5051 }
5052
9276b1bc 5053 for_each_online_node(nid) {
7ea1530a
CL
5054 pg_data_t *pgdat = NODE_DATA(nid);
5055
5056 build_zonelists(pgdat);
9276b1bc 5057 }
99dcc3e5
CL
5058
5059 /*
5060 * Initialize the boot_pagesets that are going to be used
5061 * for bootstrapping processors. The real pagesets for
5062 * each zone will be allocated later when the per cpu
5063 * allocator is available.
5064 *
5065 * boot_pagesets are used also for bootstrapping offline
5066 * cpus if the system is already booted because the pagesets
5067 * are needed to initialize allocators on a specific cpu too.
5068 * F.e. the percpu allocator needs the page allocator which
5069 * needs the percpu allocator in order to allocate its pagesets
5070 * (a chicken-egg dilemma).
5071 */
7aac7898 5072 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5073 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5074
7aac7898
LS
5075#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5076 /*
5077 * We now know the "local memory node" for each node--
5078 * i.e., the node of the first zone in the generic zonelist.
5079 * Set up numa_mem percpu variable for on-line cpus. During
5080 * boot, only the boot cpu should be on-line; we'll init the
5081 * secondary cpus' numa_mem as they come on-line. During
5082 * node/memory hotplug, we'll fixup all on-line cpus.
5083 */
5084 if (cpu_online(cpu))
5085 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5086#endif
5087 }
5088
6811378e
YG
5089 return 0;
5090}
5091
061f67bc
RV
5092static noinline void __init
5093build_all_zonelists_init(void)
5094{
5095 __build_all_zonelists(NULL);
5096 mminit_verify_zonelist();
5097 cpuset_init_current_mems_allowed();
5098}
5099
4eaf3f64
HL
5100/*
5101 * Called with zonelists_mutex held always
5102 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5103 *
5104 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5105 * [we're only called with non-NULL zone through __meminit paths] and
5106 * (2) call of __init annotated helper build_all_zonelists_init
5107 * [protected by SYSTEM_BOOTING].
4eaf3f64 5108 */
9adb62a5 5109void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5110{
f0c0b2b8
KH
5111 set_zonelist_order();
5112
6811378e 5113 if (system_state == SYSTEM_BOOTING) {
061f67bc 5114 build_all_zonelists_init();
6811378e 5115 } else {
e9959f0f 5116#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5117 if (zone)
5118 setup_zone_pageset(zone);
e9959f0f 5119#endif
dd1895e2
CS
5120 /* we have to stop all cpus to guarantee there is no user
5121 of zonelist */
9adb62a5 5122 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5123 /* cpuset refresh routine should be here */
5124 }
bd1e22b8 5125 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5126 /*
5127 * Disable grouping by mobility if the number of pages in the
5128 * system is too low to allow the mechanism to work. It would be
5129 * more accurate, but expensive to check per-zone. This check is
5130 * made on memory-hotadd so a system can start with mobility
5131 * disabled and enable it later
5132 */
d9c23400 5133 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5134 page_group_by_mobility_disabled = 1;
5135 else
5136 page_group_by_mobility_disabled = 0;
5137
756a025f
JP
5138 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5139 nr_online_nodes,
5140 zonelist_order_name[current_zonelist_order],
5141 page_group_by_mobility_disabled ? "off" : "on",
5142 vm_total_pages);
f0c0b2b8 5143#ifdef CONFIG_NUMA
f88dfff5 5144 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5145#endif
1da177e4
LT
5146}
5147
1da177e4
LT
5148/*
5149 * Initially all pages are reserved - free ones are freed
5150 * up by free_all_bootmem() once the early boot process is
5151 * done. Non-atomic initialization, single-pass.
5152 */
c09b4240 5153void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5154 unsigned long start_pfn, enum memmap_context context)
1da177e4 5155{
4b94ffdc 5156 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5157 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5158 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5159 unsigned long pfn;
3a80a7fa 5160 unsigned long nr_initialised = 0;
342332e6
TI
5161#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5162 struct memblock_region *r = NULL, *tmp;
5163#endif
1da177e4 5164
22b31eec
HD
5165 if (highest_memmap_pfn < end_pfn - 1)
5166 highest_memmap_pfn = end_pfn - 1;
5167
4b94ffdc
DW
5168 /*
5169 * Honor reservation requested by the driver for this ZONE_DEVICE
5170 * memory
5171 */
5172 if (altmap && start_pfn == altmap->base_pfn)
5173 start_pfn += altmap->reserve;
5174
cbe8dd4a 5175 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5176 /*
b72d0ffb
AM
5177 * There can be holes in boot-time mem_map[]s handed to this
5178 * function. They do not exist on hotplugged memory.
a2f3aa02 5179 */
b72d0ffb
AM
5180 if (context != MEMMAP_EARLY)
5181 goto not_early;
5182
b92df1de
PB
5183 if (!early_pfn_valid(pfn)) {
5184#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5185 /*
5186 * Skip to the pfn preceding the next valid one (or
5187 * end_pfn), such that we hit a valid pfn (or end_pfn)
5188 * on our next iteration of the loop.
5189 */
5190 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5191#endif
b72d0ffb 5192 continue;
b92df1de 5193 }
b72d0ffb
AM
5194 if (!early_pfn_in_nid(pfn, nid))
5195 continue;
5196 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5197 break;
342332e6
TI
5198
5199#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5200 /*
5201 * Check given memblock attribute by firmware which can affect
5202 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5203 * mirrored, it's an overlapped memmap init. skip it.
5204 */
5205 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5206 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5207 for_each_memblock(memory, tmp)
5208 if (pfn < memblock_region_memory_end_pfn(tmp))
5209 break;
5210 r = tmp;
5211 }
5212 if (pfn >= memblock_region_memory_base_pfn(r) &&
5213 memblock_is_mirror(r)) {
5214 /* already initialized as NORMAL */
5215 pfn = memblock_region_memory_end_pfn(r);
5216 continue;
342332e6 5217 }
a2f3aa02 5218 }
b72d0ffb 5219#endif
ac5d2539 5220
b72d0ffb 5221not_early:
ac5d2539
MG
5222 /*
5223 * Mark the block movable so that blocks are reserved for
5224 * movable at startup. This will force kernel allocations
5225 * to reserve their blocks rather than leaking throughout
5226 * the address space during boot when many long-lived
974a786e 5227 * kernel allocations are made.
ac5d2539
MG
5228 *
5229 * bitmap is created for zone's valid pfn range. but memmap
5230 * can be created for invalid pages (for alignment)
5231 * check here not to call set_pageblock_migratetype() against
5232 * pfn out of zone.
5233 */
5234 if (!(pfn & (pageblock_nr_pages - 1))) {
5235 struct page *page = pfn_to_page(pfn);
5236
5237 __init_single_page(page, pfn, zone, nid);
5238 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5239 } else {
5240 __init_single_pfn(pfn, zone, nid);
5241 }
1da177e4
LT
5242 }
5243}
5244
1e548deb 5245static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5246{
7aeb09f9 5247 unsigned int order, t;
b2a0ac88
MG
5248 for_each_migratetype_order(order, t) {
5249 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5250 zone->free_area[order].nr_free = 0;
5251 }
5252}
5253
5254#ifndef __HAVE_ARCH_MEMMAP_INIT
5255#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5256 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5257#endif
5258
7cd2b0a3 5259static int zone_batchsize(struct zone *zone)
e7c8d5c9 5260{
3a6be87f 5261#ifdef CONFIG_MMU
e7c8d5c9
CL
5262 int batch;
5263
5264 /*
5265 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5266 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5267 *
5268 * OK, so we don't know how big the cache is. So guess.
5269 */
b40da049 5270 batch = zone->managed_pages / 1024;
ba56e91c
SR
5271 if (batch * PAGE_SIZE > 512 * 1024)
5272 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5273 batch /= 4; /* We effectively *= 4 below */
5274 if (batch < 1)
5275 batch = 1;
5276
5277 /*
0ceaacc9
NP
5278 * Clamp the batch to a 2^n - 1 value. Having a power
5279 * of 2 value was found to be more likely to have
5280 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5281 *
0ceaacc9
NP
5282 * For example if 2 tasks are alternately allocating
5283 * batches of pages, one task can end up with a lot
5284 * of pages of one half of the possible page colors
5285 * and the other with pages of the other colors.
e7c8d5c9 5286 */
9155203a 5287 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5288
e7c8d5c9 5289 return batch;
3a6be87f
DH
5290
5291#else
5292 /* The deferral and batching of frees should be suppressed under NOMMU
5293 * conditions.
5294 *
5295 * The problem is that NOMMU needs to be able to allocate large chunks
5296 * of contiguous memory as there's no hardware page translation to
5297 * assemble apparent contiguous memory from discontiguous pages.
5298 *
5299 * Queueing large contiguous runs of pages for batching, however,
5300 * causes the pages to actually be freed in smaller chunks. As there
5301 * can be a significant delay between the individual batches being
5302 * recycled, this leads to the once large chunks of space being
5303 * fragmented and becoming unavailable for high-order allocations.
5304 */
5305 return 0;
5306#endif
e7c8d5c9
CL
5307}
5308
8d7a8fa9
CS
5309/*
5310 * pcp->high and pcp->batch values are related and dependent on one another:
5311 * ->batch must never be higher then ->high.
5312 * The following function updates them in a safe manner without read side
5313 * locking.
5314 *
5315 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5316 * those fields changing asynchronously (acording the the above rule).
5317 *
5318 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5319 * outside of boot time (or some other assurance that no concurrent updaters
5320 * exist).
5321 */
5322static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5323 unsigned long batch)
5324{
5325 /* start with a fail safe value for batch */
5326 pcp->batch = 1;
5327 smp_wmb();
5328
5329 /* Update high, then batch, in order */
5330 pcp->high = high;
5331 smp_wmb();
5332
5333 pcp->batch = batch;
5334}
5335
3664033c 5336/* a companion to pageset_set_high() */
4008bab7
CS
5337static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5338{
8d7a8fa9 5339 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5340}
5341
88c90dbc 5342static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5343{
5344 struct per_cpu_pages *pcp;
5f8dcc21 5345 int migratetype;
2caaad41 5346
1c6fe946
MD
5347 memset(p, 0, sizeof(*p));
5348
3dfa5721 5349 pcp = &p->pcp;
2caaad41 5350 pcp->count = 0;
5f8dcc21
MG
5351 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5352 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5353}
5354
88c90dbc
CS
5355static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5356{
5357 pageset_init(p);
5358 pageset_set_batch(p, batch);
5359}
5360
8ad4b1fb 5361/*
3664033c 5362 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5363 * to the value high for the pageset p.
5364 */
3664033c 5365static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5366 unsigned long high)
5367{
8d7a8fa9
CS
5368 unsigned long batch = max(1UL, high / 4);
5369 if ((high / 4) > (PAGE_SHIFT * 8))
5370 batch = PAGE_SHIFT * 8;
8ad4b1fb 5371
8d7a8fa9 5372 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5373}
5374
7cd2b0a3
DR
5375static void pageset_set_high_and_batch(struct zone *zone,
5376 struct per_cpu_pageset *pcp)
56cef2b8 5377{
56cef2b8 5378 if (percpu_pagelist_fraction)
3664033c 5379 pageset_set_high(pcp,
56cef2b8
CS
5380 (zone->managed_pages /
5381 percpu_pagelist_fraction));
5382 else
5383 pageset_set_batch(pcp, zone_batchsize(zone));
5384}
5385
169f6c19
CS
5386static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5387{
5388 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5389
5390 pageset_init(pcp);
5391 pageset_set_high_and_batch(zone, pcp);
5392}
5393
4ed7e022 5394static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5395{
5396 int cpu;
319774e2 5397 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5398 for_each_possible_cpu(cpu)
5399 zone_pageset_init(zone, cpu);
319774e2
WF
5400}
5401
2caaad41 5402/*
99dcc3e5
CL
5403 * Allocate per cpu pagesets and initialize them.
5404 * Before this call only boot pagesets were available.
e7c8d5c9 5405 */
99dcc3e5 5406void __init setup_per_cpu_pageset(void)
e7c8d5c9 5407{
b4911ea2 5408 struct pglist_data *pgdat;
99dcc3e5 5409 struct zone *zone;
e7c8d5c9 5410
319774e2
WF
5411 for_each_populated_zone(zone)
5412 setup_zone_pageset(zone);
b4911ea2
MG
5413
5414 for_each_online_pgdat(pgdat)
5415 pgdat->per_cpu_nodestats =
5416 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5417}
5418
c09b4240 5419static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5420{
99dcc3e5
CL
5421 /*
5422 * per cpu subsystem is not up at this point. The following code
5423 * relies on the ability of the linker to provide the
5424 * offset of a (static) per cpu variable into the per cpu area.
5425 */
5426 zone->pageset = &boot_pageset;
ed8ece2e 5427
b38a8725 5428 if (populated_zone(zone))
99dcc3e5
CL
5429 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5430 zone->name, zone->present_pages,
5431 zone_batchsize(zone));
ed8ece2e
DH
5432}
5433
4ed7e022 5434int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5435 unsigned long zone_start_pfn,
b171e409 5436 unsigned long size)
ed8ece2e
DH
5437{
5438 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5439
ed8ece2e
DH
5440 pgdat->nr_zones = zone_idx(zone) + 1;
5441
ed8ece2e
DH
5442 zone->zone_start_pfn = zone_start_pfn;
5443
708614e6
MG
5444 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5445 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5446 pgdat->node_id,
5447 (unsigned long)zone_idx(zone),
5448 zone_start_pfn, (zone_start_pfn + size));
5449
1e548deb 5450 zone_init_free_lists(zone);
9dcb8b68 5451 zone->initialized = 1;
718127cc
YG
5452
5453 return 0;
ed8ece2e
DH
5454}
5455
0ee332c1 5456#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5457#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5458
c713216d
MG
5459/*
5460 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5461 */
8a942fde
MG
5462int __meminit __early_pfn_to_nid(unsigned long pfn,
5463 struct mminit_pfnnid_cache *state)
c713216d 5464{
c13291a5 5465 unsigned long start_pfn, end_pfn;
e76b63f8 5466 int nid;
7c243c71 5467
8a942fde
MG
5468 if (state->last_start <= pfn && pfn < state->last_end)
5469 return state->last_nid;
c713216d 5470
e76b63f8
YL
5471 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5472 if (nid != -1) {
8a942fde
MG
5473 state->last_start = start_pfn;
5474 state->last_end = end_pfn;
5475 state->last_nid = nid;
e76b63f8
YL
5476 }
5477
5478 return nid;
c713216d
MG
5479}
5480#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5481
c713216d 5482/**
6782832e 5483 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5484 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5485 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5486 *
7d018176
ZZ
5487 * If an architecture guarantees that all ranges registered contain no holes
5488 * and may be freed, this this function may be used instead of calling
5489 * memblock_free_early_nid() manually.
c713216d 5490 */
c13291a5 5491void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5492{
c13291a5
TH
5493 unsigned long start_pfn, end_pfn;
5494 int i, this_nid;
edbe7d23 5495
c13291a5
TH
5496 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5497 start_pfn = min(start_pfn, max_low_pfn);
5498 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5499
c13291a5 5500 if (start_pfn < end_pfn)
6782832e
SS
5501 memblock_free_early_nid(PFN_PHYS(start_pfn),
5502 (end_pfn - start_pfn) << PAGE_SHIFT,
5503 this_nid);
edbe7d23 5504 }
edbe7d23 5505}
edbe7d23 5506
c713216d
MG
5507/**
5508 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5509 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5510 *
7d018176
ZZ
5511 * If an architecture guarantees that all ranges registered contain no holes and may
5512 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5513 */
5514void __init sparse_memory_present_with_active_regions(int nid)
5515{
c13291a5
TH
5516 unsigned long start_pfn, end_pfn;
5517 int i, this_nid;
c713216d 5518
c13291a5
TH
5519 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5520 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5521}
5522
5523/**
5524 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5525 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5526 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5527 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5528 *
5529 * It returns the start and end page frame of a node based on information
7d018176 5530 * provided by memblock_set_node(). If called for a node
c713216d 5531 * with no available memory, a warning is printed and the start and end
88ca3b94 5532 * PFNs will be 0.
c713216d 5533 */
a3142c8e 5534void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5535 unsigned long *start_pfn, unsigned long *end_pfn)
5536{
c13291a5 5537 unsigned long this_start_pfn, this_end_pfn;
c713216d 5538 int i;
c13291a5 5539
c713216d
MG
5540 *start_pfn = -1UL;
5541 *end_pfn = 0;
5542
c13291a5
TH
5543 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5544 *start_pfn = min(*start_pfn, this_start_pfn);
5545 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5546 }
5547
633c0666 5548 if (*start_pfn == -1UL)
c713216d 5549 *start_pfn = 0;
c713216d
MG
5550}
5551
2a1e274a
MG
5552/*
5553 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5554 * assumption is made that zones within a node are ordered in monotonic
5555 * increasing memory addresses so that the "highest" populated zone is used
5556 */
b69a7288 5557static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5558{
5559 int zone_index;
5560 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5561 if (zone_index == ZONE_MOVABLE)
5562 continue;
5563
5564 if (arch_zone_highest_possible_pfn[zone_index] >
5565 arch_zone_lowest_possible_pfn[zone_index])
5566 break;
5567 }
5568
5569 VM_BUG_ON(zone_index == -1);
5570 movable_zone = zone_index;
5571}
5572
5573/*
5574 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5575 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5576 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5577 * in each node depending on the size of each node and how evenly kernelcore
5578 * is distributed. This helper function adjusts the zone ranges
5579 * provided by the architecture for a given node by using the end of the
5580 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5581 * zones within a node are in order of monotonic increases memory addresses
5582 */
b69a7288 5583static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5584 unsigned long zone_type,
5585 unsigned long node_start_pfn,
5586 unsigned long node_end_pfn,
5587 unsigned long *zone_start_pfn,
5588 unsigned long *zone_end_pfn)
5589{
5590 /* Only adjust if ZONE_MOVABLE is on this node */
5591 if (zone_movable_pfn[nid]) {
5592 /* Size ZONE_MOVABLE */
5593 if (zone_type == ZONE_MOVABLE) {
5594 *zone_start_pfn = zone_movable_pfn[nid];
5595 *zone_end_pfn = min(node_end_pfn,
5596 arch_zone_highest_possible_pfn[movable_zone]);
5597
e506b996
XQ
5598 /* Adjust for ZONE_MOVABLE starting within this range */
5599 } else if (!mirrored_kernelcore &&
5600 *zone_start_pfn < zone_movable_pfn[nid] &&
5601 *zone_end_pfn > zone_movable_pfn[nid]) {
5602 *zone_end_pfn = zone_movable_pfn[nid];
5603
2a1e274a
MG
5604 /* Check if this whole range is within ZONE_MOVABLE */
5605 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5606 *zone_start_pfn = *zone_end_pfn;
5607 }
5608}
5609
c713216d
MG
5610/*
5611 * Return the number of pages a zone spans in a node, including holes
5612 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5613 */
6ea6e688 5614static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5615 unsigned long zone_type,
7960aedd
ZY
5616 unsigned long node_start_pfn,
5617 unsigned long node_end_pfn,
d91749c1
TI
5618 unsigned long *zone_start_pfn,
5619 unsigned long *zone_end_pfn,
c713216d
MG
5620 unsigned long *ignored)
5621{
b5685e92 5622 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5623 if (!node_start_pfn && !node_end_pfn)
5624 return 0;
5625
7960aedd 5626 /* Get the start and end of the zone */
d91749c1
TI
5627 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5628 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5629 adjust_zone_range_for_zone_movable(nid, zone_type,
5630 node_start_pfn, node_end_pfn,
d91749c1 5631 zone_start_pfn, zone_end_pfn);
c713216d
MG
5632
5633 /* Check that this node has pages within the zone's required range */
d91749c1 5634 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5635 return 0;
5636
5637 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5638 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5639 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5640
5641 /* Return the spanned pages */
d91749c1 5642 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5643}
5644
5645/*
5646 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5647 * then all holes in the requested range will be accounted for.
c713216d 5648 */
32996250 5649unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5650 unsigned long range_start_pfn,
5651 unsigned long range_end_pfn)
5652{
96e907d1
TH
5653 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5654 unsigned long start_pfn, end_pfn;
5655 int i;
c713216d 5656
96e907d1
TH
5657 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5658 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5659 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5660 nr_absent -= end_pfn - start_pfn;
c713216d 5661 }
96e907d1 5662 return nr_absent;
c713216d
MG
5663}
5664
5665/**
5666 * absent_pages_in_range - Return number of page frames in holes within a range
5667 * @start_pfn: The start PFN to start searching for holes
5668 * @end_pfn: The end PFN to stop searching for holes
5669 *
88ca3b94 5670 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5671 */
5672unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5673 unsigned long end_pfn)
5674{
5675 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5676}
5677
5678/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5679static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5680 unsigned long zone_type,
7960aedd
ZY
5681 unsigned long node_start_pfn,
5682 unsigned long node_end_pfn,
c713216d
MG
5683 unsigned long *ignored)
5684{
96e907d1
TH
5685 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5686 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5687 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5688 unsigned long nr_absent;
9c7cd687 5689
b5685e92 5690 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5691 if (!node_start_pfn && !node_end_pfn)
5692 return 0;
5693
96e907d1
TH
5694 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5695 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5696
2a1e274a
MG
5697 adjust_zone_range_for_zone_movable(nid, zone_type,
5698 node_start_pfn, node_end_pfn,
5699 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5700 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5701
5702 /*
5703 * ZONE_MOVABLE handling.
5704 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5705 * and vice versa.
5706 */
e506b996
XQ
5707 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5708 unsigned long start_pfn, end_pfn;
5709 struct memblock_region *r;
5710
5711 for_each_memblock(memory, r) {
5712 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5713 zone_start_pfn, zone_end_pfn);
5714 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5715 zone_start_pfn, zone_end_pfn);
5716
5717 if (zone_type == ZONE_MOVABLE &&
5718 memblock_is_mirror(r))
5719 nr_absent += end_pfn - start_pfn;
5720
5721 if (zone_type == ZONE_NORMAL &&
5722 !memblock_is_mirror(r))
5723 nr_absent += end_pfn - start_pfn;
342332e6
TI
5724 }
5725 }
5726
5727 return nr_absent;
c713216d 5728}
0e0b864e 5729
0ee332c1 5730#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5731static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5732 unsigned long zone_type,
7960aedd
ZY
5733 unsigned long node_start_pfn,
5734 unsigned long node_end_pfn,
d91749c1
TI
5735 unsigned long *zone_start_pfn,
5736 unsigned long *zone_end_pfn,
c713216d
MG
5737 unsigned long *zones_size)
5738{
d91749c1
TI
5739 unsigned int zone;
5740
5741 *zone_start_pfn = node_start_pfn;
5742 for (zone = 0; zone < zone_type; zone++)
5743 *zone_start_pfn += zones_size[zone];
5744
5745 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5746
c713216d
MG
5747 return zones_size[zone_type];
5748}
5749
6ea6e688 5750static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5751 unsigned long zone_type,
7960aedd
ZY
5752 unsigned long node_start_pfn,
5753 unsigned long node_end_pfn,
c713216d
MG
5754 unsigned long *zholes_size)
5755{
5756 if (!zholes_size)
5757 return 0;
5758
5759 return zholes_size[zone_type];
5760}
20e6926d 5761
0ee332c1 5762#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5763
a3142c8e 5764static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5765 unsigned long node_start_pfn,
5766 unsigned long node_end_pfn,
5767 unsigned long *zones_size,
5768 unsigned long *zholes_size)
c713216d 5769{
febd5949 5770 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5771 enum zone_type i;
5772
febd5949
GZ
5773 for (i = 0; i < MAX_NR_ZONES; i++) {
5774 struct zone *zone = pgdat->node_zones + i;
d91749c1 5775 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5776 unsigned long size, real_size;
c713216d 5777
febd5949
GZ
5778 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5779 node_start_pfn,
5780 node_end_pfn,
d91749c1
TI
5781 &zone_start_pfn,
5782 &zone_end_pfn,
febd5949
GZ
5783 zones_size);
5784 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5785 node_start_pfn, node_end_pfn,
5786 zholes_size);
d91749c1
TI
5787 if (size)
5788 zone->zone_start_pfn = zone_start_pfn;
5789 else
5790 zone->zone_start_pfn = 0;
febd5949
GZ
5791 zone->spanned_pages = size;
5792 zone->present_pages = real_size;
5793
5794 totalpages += size;
5795 realtotalpages += real_size;
5796 }
5797
5798 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5799 pgdat->node_present_pages = realtotalpages;
5800 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5801 realtotalpages);
5802}
5803
835c134e
MG
5804#ifndef CONFIG_SPARSEMEM
5805/*
5806 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5807 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5808 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5809 * round what is now in bits to nearest long in bits, then return it in
5810 * bytes.
5811 */
7c45512d 5812static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5813{
5814 unsigned long usemapsize;
5815
7c45512d 5816 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5817 usemapsize = roundup(zonesize, pageblock_nr_pages);
5818 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5819 usemapsize *= NR_PAGEBLOCK_BITS;
5820 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5821
5822 return usemapsize / 8;
5823}
5824
5825static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5826 struct zone *zone,
5827 unsigned long zone_start_pfn,
5828 unsigned long zonesize)
835c134e 5829{
7c45512d 5830 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5831 zone->pageblock_flags = NULL;
58a01a45 5832 if (usemapsize)
6782832e
SS
5833 zone->pageblock_flags =
5834 memblock_virt_alloc_node_nopanic(usemapsize,
5835 pgdat->node_id);
835c134e
MG
5836}
5837#else
7c45512d
LT
5838static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5839 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5840#endif /* CONFIG_SPARSEMEM */
5841
d9c23400 5842#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5843
d9c23400 5844/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5845void __paginginit set_pageblock_order(void)
d9c23400 5846{
955c1cd7
AM
5847 unsigned int order;
5848
d9c23400
MG
5849 /* Check that pageblock_nr_pages has not already been setup */
5850 if (pageblock_order)
5851 return;
5852
955c1cd7
AM
5853 if (HPAGE_SHIFT > PAGE_SHIFT)
5854 order = HUGETLB_PAGE_ORDER;
5855 else
5856 order = MAX_ORDER - 1;
5857
d9c23400
MG
5858 /*
5859 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5860 * This value may be variable depending on boot parameters on IA64 and
5861 * powerpc.
d9c23400
MG
5862 */
5863 pageblock_order = order;
5864}
5865#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5866
ba72cb8c
MG
5867/*
5868 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5869 * is unused as pageblock_order is set at compile-time. See
5870 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5871 * the kernel config
ba72cb8c 5872 */
15ca220e 5873void __paginginit set_pageblock_order(void)
ba72cb8c 5874{
ba72cb8c 5875}
d9c23400
MG
5876
5877#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5878
01cefaef
JL
5879static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5880 unsigned long present_pages)
5881{
5882 unsigned long pages = spanned_pages;
5883
5884 /*
5885 * Provide a more accurate estimation if there are holes within
5886 * the zone and SPARSEMEM is in use. If there are holes within the
5887 * zone, each populated memory region may cost us one or two extra
5888 * memmap pages due to alignment because memmap pages for each
5889 * populated regions may not naturally algined on page boundary.
5890 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5891 */
5892 if (spanned_pages > present_pages + (present_pages >> 4) &&
5893 IS_ENABLED(CONFIG_SPARSEMEM))
5894 pages = present_pages;
5895
5896 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5897}
5898
1da177e4
LT
5899/*
5900 * Set up the zone data structures:
5901 * - mark all pages reserved
5902 * - mark all memory queues empty
5903 * - clear the memory bitmaps
6527af5d
MK
5904 *
5905 * NOTE: pgdat should get zeroed by caller.
1da177e4 5906 */
7f3eb55b 5907static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5908{
2f1b6248 5909 enum zone_type j;
ed8ece2e 5910 int nid = pgdat->node_id;
718127cc 5911 int ret;
1da177e4 5912
208d54e5 5913 pgdat_resize_init(pgdat);
8177a420
AA
5914#ifdef CONFIG_NUMA_BALANCING
5915 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5916 pgdat->numabalancing_migrate_nr_pages = 0;
5917 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5918#endif
5919#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5920 spin_lock_init(&pgdat->split_queue_lock);
5921 INIT_LIST_HEAD(&pgdat->split_queue);
5922 pgdat->split_queue_len = 0;
8177a420 5923#endif
1da177e4 5924 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5925 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5926#ifdef CONFIG_COMPACTION
5927 init_waitqueue_head(&pgdat->kcompactd_wait);
5928#endif
eefa864b 5929 pgdat_page_ext_init(pgdat);
a52633d8 5930 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5931 lruvec_init(node_lruvec(pgdat));
5f63b720 5932
1da177e4
LT
5933 for (j = 0; j < MAX_NR_ZONES; j++) {
5934 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5935 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5936 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5937
febd5949
GZ
5938 size = zone->spanned_pages;
5939 realsize = freesize = zone->present_pages;
1da177e4 5940
0e0b864e 5941 /*
9feedc9d 5942 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5943 * is used by this zone for memmap. This affects the watermark
5944 * and per-cpu initialisations
5945 */
01cefaef 5946 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5947 if (!is_highmem_idx(j)) {
5948 if (freesize >= memmap_pages) {
5949 freesize -= memmap_pages;
5950 if (memmap_pages)
5951 printk(KERN_DEBUG
5952 " %s zone: %lu pages used for memmap\n",
5953 zone_names[j], memmap_pages);
5954 } else
1170532b 5955 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5956 zone_names[j], memmap_pages, freesize);
5957 }
0e0b864e 5958
6267276f 5959 /* Account for reserved pages */
9feedc9d
JL
5960 if (j == 0 && freesize > dma_reserve) {
5961 freesize -= dma_reserve;
d903ef9f 5962 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5963 zone_names[0], dma_reserve);
0e0b864e
MG
5964 }
5965
98d2b0eb 5966 if (!is_highmem_idx(j))
9feedc9d 5967 nr_kernel_pages += freesize;
01cefaef
JL
5968 /* Charge for highmem memmap if there are enough kernel pages */
5969 else if (nr_kernel_pages > memmap_pages * 2)
5970 nr_kernel_pages -= memmap_pages;
9feedc9d 5971 nr_all_pages += freesize;
1da177e4 5972
9feedc9d
JL
5973 /*
5974 * Set an approximate value for lowmem here, it will be adjusted
5975 * when the bootmem allocator frees pages into the buddy system.
5976 * And all highmem pages will be managed by the buddy system.
5977 */
5978 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5979#ifdef CONFIG_NUMA
d5f541ed 5980 zone->node = nid;
9614634f 5981#endif
1da177e4 5982 zone->name = zone_names[j];
a52633d8 5983 zone->zone_pgdat = pgdat;
1da177e4 5984 spin_lock_init(&zone->lock);
bdc8cb98 5985 zone_seqlock_init(zone);
ed8ece2e 5986 zone_pcp_init(zone);
81c0a2bb 5987
1da177e4
LT
5988 if (!size)
5989 continue;
5990
955c1cd7 5991 set_pageblock_order();
7c45512d 5992 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5993 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5994 BUG_ON(ret);
76cdd58e 5995 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5996 }
5997}
5998
bd721ea7 5999static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6000{
b0aeba74 6001 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6002 unsigned long __maybe_unused offset = 0;
6003
1da177e4
LT
6004 /* Skip empty nodes */
6005 if (!pgdat->node_spanned_pages)
6006 return;
6007
d41dee36 6008#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6009 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6010 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6011 /* ia64 gets its own node_mem_map, before this, without bootmem */
6012 if (!pgdat->node_mem_map) {
b0aeba74 6013 unsigned long size, end;
d41dee36
AW
6014 struct page *map;
6015
e984bb43
BP
6016 /*
6017 * The zone's endpoints aren't required to be MAX_ORDER
6018 * aligned but the node_mem_map endpoints must be in order
6019 * for the buddy allocator to function correctly.
6020 */
108bcc96 6021 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6022 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6023 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6024 map = alloc_remap(pgdat->node_id, size);
6025 if (!map)
6782832e
SS
6026 map = memblock_virt_alloc_node_nopanic(size,
6027 pgdat->node_id);
a1c34a3b 6028 pgdat->node_mem_map = map + offset;
1da177e4 6029 }
12d810c1 6030#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6031 /*
6032 * With no DISCONTIG, the global mem_map is just set as node 0's
6033 */
c713216d 6034 if (pgdat == NODE_DATA(0)) {
1da177e4 6035 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6036#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6037 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6038 mem_map -= offset;
0ee332c1 6039#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6040 }
1da177e4 6041#endif
d41dee36 6042#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6043}
6044
9109fb7b
JW
6045void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6046 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6047{
9109fb7b 6048 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6049 unsigned long start_pfn = 0;
6050 unsigned long end_pfn = 0;
9109fb7b 6051
88fdf75d 6052 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6053 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6054
3a80a7fa 6055 reset_deferred_meminit(pgdat);
1da177e4
LT
6056 pgdat->node_id = nid;
6057 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6058 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6059#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6060 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6061 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6062 (u64)start_pfn << PAGE_SHIFT,
6063 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6064#else
6065 start_pfn = node_start_pfn;
7960aedd
ZY
6066#endif
6067 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6068 zones_size, zholes_size);
1da177e4
LT
6069
6070 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6071#ifdef CONFIG_FLAT_NODE_MEM_MAP
6072 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6073 nid, (unsigned long)pgdat,
6074 (unsigned long)pgdat->node_mem_map);
6075#endif
1da177e4 6076
7f3eb55b 6077 free_area_init_core(pgdat);
1da177e4
LT
6078}
6079
0ee332c1 6080#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6081
6082#if MAX_NUMNODES > 1
6083/*
6084 * Figure out the number of possible node ids.
6085 */
f9872caf 6086void __init setup_nr_node_ids(void)
418508c1 6087{
904a9553 6088 unsigned int highest;
418508c1 6089
904a9553 6090 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6091 nr_node_ids = highest + 1;
6092}
418508c1
MS
6093#endif
6094
1e01979c
TH
6095/**
6096 * node_map_pfn_alignment - determine the maximum internode alignment
6097 *
6098 * This function should be called after node map is populated and sorted.
6099 * It calculates the maximum power of two alignment which can distinguish
6100 * all the nodes.
6101 *
6102 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6103 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6104 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6105 * shifted, 1GiB is enough and this function will indicate so.
6106 *
6107 * This is used to test whether pfn -> nid mapping of the chosen memory
6108 * model has fine enough granularity to avoid incorrect mapping for the
6109 * populated node map.
6110 *
6111 * Returns the determined alignment in pfn's. 0 if there is no alignment
6112 * requirement (single node).
6113 */
6114unsigned long __init node_map_pfn_alignment(void)
6115{
6116 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6117 unsigned long start, end, mask;
1e01979c 6118 int last_nid = -1;
c13291a5 6119 int i, nid;
1e01979c 6120
c13291a5 6121 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6122 if (!start || last_nid < 0 || last_nid == nid) {
6123 last_nid = nid;
6124 last_end = end;
6125 continue;
6126 }
6127
6128 /*
6129 * Start with a mask granular enough to pin-point to the
6130 * start pfn and tick off bits one-by-one until it becomes
6131 * too coarse to separate the current node from the last.
6132 */
6133 mask = ~((1 << __ffs(start)) - 1);
6134 while (mask && last_end <= (start & (mask << 1)))
6135 mask <<= 1;
6136
6137 /* accumulate all internode masks */
6138 accl_mask |= mask;
6139 }
6140
6141 /* convert mask to number of pages */
6142 return ~accl_mask + 1;
6143}
6144
a6af2bc3 6145/* Find the lowest pfn for a node */
b69a7288 6146static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6147{
a6af2bc3 6148 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6149 unsigned long start_pfn;
6150 int i;
1abbfb41 6151
c13291a5
TH
6152 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6153 min_pfn = min(min_pfn, start_pfn);
c713216d 6154
a6af2bc3 6155 if (min_pfn == ULONG_MAX) {
1170532b 6156 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6157 return 0;
6158 }
6159
6160 return min_pfn;
c713216d
MG
6161}
6162
6163/**
6164 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6165 *
6166 * It returns the minimum PFN based on information provided via
7d018176 6167 * memblock_set_node().
c713216d
MG
6168 */
6169unsigned long __init find_min_pfn_with_active_regions(void)
6170{
6171 return find_min_pfn_for_node(MAX_NUMNODES);
6172}
6173
37b07e41
LS
6174/*
6175 * early_calculate_totalpages()
6176 * Sum pages in active regions for movable zone.
4b0ef1fe 6177 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6178 */
484f51f8 6179static unsigned long __init early_calculate_totalpages(void)
7e63efef 6180{
7e63efef 6181 unsigned long totalpages = 0;
c13291a5
TH
6182 unsigned long start_pfn, end_pfn;
6183 int i, nid;
6184
6185 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6186 unsigned long pages = end_pfn - start_pfn;
7e63efef 6187
37b07e41
LS
6188 totalpages += pages;
6189 if (pages)
4b0ef1fe 6190 node_set_state(nid, N_MEMORY);
37b07e41 6191 }
b8af2941 6192 return totalpages;
7e63efef
MG
6193}
6194
2a1e274a
MG
6195/*
6196 * Find the PFN the Movable zone begins in each node. Kernel memory
6197 * is spread evenly between nodes as long as the nodes have enough
6198 * memory. When they don't, some nodes will have more kernelcore than
6199 * others
6200 */
b224ef85 6201static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6202{
6203 int i, nid;
6204 unsigned long usable_startpfn;
6205 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6206 /* save the state before borrow the nodemask */
4b0ef1fe 6207 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6208 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6209 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6210 struct memblock_region *r;
b2f3eebe
TC
6211
6212 /* Need to find movable_zone earlier when movable_node is specified. */
6213 find_usable_zone_for_movable();
6214
6215 /*
6216 * If movable_node is specified, ignore kernelcore and movablecore
6217 * options.
6218 */
6219 if (movable_node_is_enabled()) {
136199f0
EM
6220 for_each_memblock(memory, r) {
6221 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6222 continue;
6223
136199f0 6224 nid = r->nid;
b2f3eebe 6225
136199f0 6226 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6227 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6228 min(usable_startpfn, zone_movable_pfn[nid]) :
6229 usable_startpfn;
6230 }
6231
6232 goto out2;
6233 }
2a1e274a 6234
342332e6
TI
6235 /*
6236 * If kernelcore=mirror is specified, ignore movablecore option
6237 */
6238 if (mirrored_kernelcore) {
6239 bool mem_below_4gb_not_mirrored = false;
6240
6241 for_each_memblock(memory, r) {
6242 if (memblock_is_mirror(r))
6243 continue;
6244
6245 nid = r->nid;
6246
6247 usable_startpfn = memblock_region_memory_base_pfn(r);
6248
6249 if (usable_startpfn < 0x100000) {
6250 mem_below_4gb_not_mirrored = true;
6251 continue;
6252 }
6253
6254 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6255 min(usable_startpfn, zone_movable_pfn[nid]) :
6256 usable_startpfn;
6257 }
6258
6259 if (mem_below_4gb_not_mirrored)
6260 pr_warn("This configuration results in unmirrored kernel memory.");
6261
6262 goto out2;
6263 }
6264
7e63efef 6265 /*
b2f3eebe 6266 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6267 * kernelcore that corresponds so that memory usable for
6268 * any allocation type is evenly spread. If both kernelcore
6269 * and movablecore are specified, then the value of kernelcore
6270 * will be used for required_kernelcore if it's greater than
6271 * what movablecore would have allowed.
6272 */
6273 if (required_movablecore) {
7e63efef
MG
6274 unsigned long corepages;
6275
6276 /*
6277 * Round-up so that ZONE_MOVABLE is at least as large as what
6278 * was requested by the user
6279 */
6280 required_movablecore =
6281 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6282 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6283 corepages = totalpages - required_movablecore;
6284
6285 required_kernelcore = max(required_kernelcore, corepages);
6286 }
6287
bde304bd
XQ
6288 /*
6289 * If kernelcore was not specified or kernelcore size is larger
6290 * than totalpages, there is no ZONE_MOVABLE.
6291 */
6292 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6293 goto out;
2a1e274a
MG
6294
6295 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6296 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6297
6298restart:
6299 /* Spread kernelcore memory as evenly as possible throughout nodes */
6300 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6301 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6302 unsigned long start_pfn, end_pfn;
6303
2a1e274a
MG
6304 /*
6305 * Recalculate kernelcore_node if the division per node
6306 * now exceeds what is necessary to satisfy the requested
6307 * amount of memory for the kernel
6308 */
6309 if (required_kernelcore < kernelcore_node)
6310 kernelcore_node = required_kernelcore / usable_nodes;
6311
6312 /*
6313 * As the map is walked, we track how much memory is usable
6314 * by the kernel using kernelcore_remaining. When it is
6315 * 0, the rest of the node is usable by ZONE_MOVABLE
6316 */
6317 kernelcore_remaining = kernelcore_node;
6318
6319 /* Go through each range of PFNs within this node */
c13291a5 6320 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6321 unsigned long size_pages;
6322
c13291a5 6323 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6324 if (start_pfn >= end_pfn)
6325 continue;
6326
6327 /* Account for what is only usable for kernelcore */
6328 if (start_pfn < usable_startpfn) {
6329 unsigned long kernel_pages;
6330 kernel_pages = min(end_pfn, usable_startpfn)
6331 - start_pfn;
6332
6333 kernelcore_remaining -= min(kernel_pages,
6334 kernelcore_remaining);
6335 required_kernelcore -= min(kernel_pages,
6336 required_kernelcore);
6337
6338 /* Continue if range is now fully accounted */
6339 if (end_pfn <= usable_startpfn) {
6340
6341 /*
6342 * Push zone_movable_pfn to the end so
6343 * that if we have to rebalance
6344 * kernelcore across nodes, we will
6345 * not double account here
6346 */
6347 zone_movable_pfn[nid] = end_pfn;
6348 continue;
6349 }
6350 start_pfn = usable_startpfn;
6351 }
6352
6353 /*
6354 * The usable PFN range for ZONE_MOVABLE is from
6355 * start_pfn->end_pfn. Calculate size_pages as the
6356 * number of pages used as kernelcore
6357 */
6358 size_pages = end_pfn - start_pfn;
6359 if (size_pages > kernelcore_remaining)
6360 size_pages = kernelcore_remaining;
6361 zone_movable_pfn[nid] = start_pfn + size_pages;
6362
6363 /*
6364 * Some kernelcore has been met, update counts and
6365 * break if the kernelcore for this node has been
b8af2941 6366 * satisfied
2a1e274a
MG
6367 */
6368 required_kernelcore -= min(required_kernelcore,
6369 size_pages);
6370 kernelcore_remaining -= size_pages;
6371 if (!kernelcore_remaining)
6372 break;
6373 }
6374 }
6375
6376 /*
6377 * If there is still required_kernelcore, we do another pass with one
6378 * less node in the count. This will push zone_movable_pfn[nid] further
6379 * along on the nodes that still have memory until kernelcore is
b8af2941 6380 * satisfied
2a1e274a
MG
6381 */
6382 usable_nodes--;
6383 if (usable_nodes && required_kernelcore > usable_nodes)
6384 goto restart;
6385
b2f3eebe 6386out2:
2a1e274a
MG
6387 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6388 for (nid = 0; nid < MAX_NUMNODES; nid++)
6389 zone_movable_pfn[nid] =
6390 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6391
20e6926d 6392out:
66918dcd 6393 /* restore the node_state */
4b0ef1fe 6394 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6395}
6396
4b0ef1fe
LJ
6397/* Any regular or high memory on that node ? */
6398static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6399{
37b07e41
LS
6400 enum zone_type zone_type;
6401
4b0ef1fe
LJ
6402 if (N_MEMORY == N_NORMAL_MEMORY)
6403 return;
6404
6405 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6406 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6407 if (populated_zone(zone)) {
4b0ef1fe
LJ
6408 node_set_state(nid, N_HIGH_MEMORY);
6409 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6410 zone_type <= ZONE_NORMAL)
6411 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6412 break;
6413 }
37b07e41 6414 }
37b07e41
LS
6415}
6416
c713216d
MG
6417/**
6418 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6419 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6420 *
6421 * This will call free_area_init_node() for each active node in the system.
7d018176 6422 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6423 * zone in each node and their holes is calculated. If the maximum PFN
6424 * between two adjacent zones match, it is assumed that the zone is empty.
6425 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6426 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6427 * starts where the previous one ended. For example, ZONE_DMA32 starts
6428 * at arch_max_dma_pfn.
6429 */
6430void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6431{
c13291a5
TH
6432 unsigned long start_pfn, end_pfn;
6433 int i, nid;
a6af2bc3 6434
c713216d
MG
6435 /* Record where the zone boundaries are */
6436 memset(arch_zone_lowest_possible_pfn, 0,
6437 sizeof(arch_zone_lowest_possible_pfn));
6438 memset(arch_zone_highest_possible_pfn, 0,
6439 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6440
6441 start_pfn = find_min_pfn_with_active_regions();
6442
6443 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6444 if (i == ZONE_MOVABLE)
6445 continue;
90cae1fe
OH
6446
6447 end_pfn = max(max_zone_pfn[i], start_pfn);
6448 arch_zone_lowest_possible_pfn[i] = start_pfn;
6449 arch_zone_highest_possible_pfn[i] = end_pfn;
6450
6451 start_pfn = end_pfn;
c713216d 6452 }
2a1e274a
MG
6453 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6454 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6455
6456 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6457 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6458 find_zone_movable_pfns_for_nodes();
c713216d 6459
c713216d 6460 /* Print out the zone ranges */
f88dfff5 6461 pr_info("Zone ranges:\n");
2a1e274a
MG
6462 for (i = 0; i < MAX_NR_ZONES; i++) {
6463 if (i == ZONE_MOVABLE)
6464 continue;
f88dfff5 6465 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6466 if (arch_zone_lowest_possible_pfn[i] ==
6467 arch_zone_highest_possible_pfn[i])
f88dfff5 6468 pr_cont("empty\n");
72f0ba02 6469 else
8d29e18a
JG
6470 pr_cont("[mem %#018Lx-%#018Lx]\n",
6471 (u64)arch_zone_lowest_possible_pfn[i]
6472 << PAGE_SHIFT,
6473 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6474 << PAGE_SHIFT) - 1);
2a1e274a
MG
6475 }
6476
6477 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6478 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6479 for (i = 0; i < MAX_NUMNODES; i++) {
6480 if (zone_movable_pfn[i])
8d29e18a
JG
6481 pr_info(" Node %d: %#018Lx\n", i,
6482 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6483 }
c713216d 6484
f2d52fe5 6485 /* Print out the early node map */
f88dfff5 6486 pr_info("Early memory node ranges\n");
c13291a5 6487 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6488 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6489 (u64)start_pfn << PAGE_SHIFT,
6490 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6491
6492 /* Initialise every node */
708614e6 6493 mminit_verify_pageflags_layout();
8ef82866 6494 setup_nr_node_ids();
c713216d
MG
6495 for_each_online_node(nid) {
6496 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6497 free_area_init_node(nid, NULL,
c713216d 6498 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6499
6500 /* Any memory on that node */
6501 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6502 node_set_state(nid, N_MEMORY);
6503 check_for_memory(pgdat, nid);
c713216d
MG
6504 }
6505}
2a1e274a 6506
7e63efef 6507static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6508{
6509 unsigned long long coremem;
6510 if (!p)
6511 return -EINVAL;
6512
6513 coremem = memparse(p, &p);
7e63efef 6514 *core = coremem >> PAGE_SHIFT;
2a1e274a 6515
7e63efef 6516 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6517 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6518
6519 return 0;
6520}
ed7ed365 6521
7e63efef
MG
6522/*
6523 * kernelcore=size sets the amount of memory for use for allocations that
6524 * cannot be reclaimed or migrated.
6525 */
6526static int __init cmdline_parse_kernelcore(char *p)
6527{
342332e6
TI
6528 /* parse kernelcore=mirror */
6529 if (parse_option_str(p, "mirror")) {
6530 mirrored_kernelcore = true;
6531 return 0;
6532 }
6533
7e63efef
MG
6534 return cmdline_parse_core(p, &required_kernelcore);
6535}
6536
6537/*
6538 * movablecore=size sets the amount of memory for use for allocations that
6539 * can be reclaimed or migrated.
6540 */
6541static int __init cmdline_parse_movablecore(char *p)
6542{
6543 return cmdline_parse_core(p, &required_movablecore);
6544}
6545
ed7ed365 6546early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6547early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6548
0ee332c1 6549#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6550
c3d5f5f0
JL
6551void adjust_managed_page_count(struct page *page, long count)
6552{
6553 spin_lock(&managed_page_count_lock);
6554 page_zone(page)->managed_pages += count;
6555 totalram_pages += count;
3dcc0571
JL
6556#ifdef CONFIG_HIGHMEM
6557 if (PageHighMem(page))
6558 totalhigh_pages += count;
6559#endif
c3d5f5f0
JL
6560 spin_unlock(&managed_page_count_lock);
6561}
3dcc0571 6562EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6563
11199692 6564unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6565{
11199692
JL
6566 void *pos;
6567 unsigned long pages = 0;
69afade7 6568
11199692
JL
6569 start = (void *)PAGE_ALIGN((unsigned long)start);
6570 end = (void *)((unsigned long)end & PAGE_MASK);
6571 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6572 if ((unsigned int)poison <= 0xFF)
11199692
JL
6573 memset(pos, poison, PAGE_SIZE);
6574 free_reserved_page(virt_to_page(pos));
69afade7
JL
6575 }
6576
6577 if (pages && s)
adb1fe9a
JP
6578 pr_info("Freeing %s memory: %ldK\n",
6579 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6580
6581 return pages;
6582}
11199692 6583EXPORT_SYMBOL(free_reserved_area);
69afade7 6584
cfa11e08
JL
6585#ifdef CONFIG_HIGHMEM
6586void free_highmem_page(struct page *page)
6587{
6588 __free_reserved_page(page);
6589 totalram_pages++;
7b4b2a0d 6590 page_zone(page)->managed_pages++;
cfa11e08
JL
6591 totalhigh_pages++;
6592}
6593#endif
6594
7ee3d4e8
JL
6595
6596void __init mem_init_print_info(const char *str)
6597{
6598 unsigned long physpages, codesize, datasize, rosize, bss_size;
6599 unsigned long init_code_size, init_data_size;
6600
6601 physpages = get_num_physpages();
6602 codesize = _etext - _stext;
6603 datasize = _edata - _sdata;
6604 rosize = __end_rodata - __start_rodata;
6605 bss_size = __bss_stop - __bss_start;
6606 init_data_size = __init_end - __init_begin;
6607 init_code_size = _einittext - _sinittext;
6608
6609 /*
6610 * Detect special cases and adjust section sizes accordingly:
6611 * 1) .init.* may be embedded into .data sections
6612 * 2) .init.text.* may be out of [__init_begin, __init_end],
6613 * please refer to arch/tile/kernel/vmlinux.lds.S.
6614 * 3) .rodata.* may be embedded into .text or .data sections.
6615 */
6616#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6617 do { \
6618 if (start <= pos && pos < end && size > adj) \
6619 size -= adj; \
6620 } while (0)
7ee3d4e8
JL
6621
6622 adj_init_size(__init_begin, __init_end, init_data_size,
6623 _sinittext, init_code_size);
6624 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6625 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6626 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6627 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6628
6629#undef adj_init_size
6630
756a025f 6631 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6632#ifdef CONFIG_HIGHMEM
756a025f 6633 ", %luK highmem"
7ee3d4e8 6634#endif
756a025f
JP
6635 "%s%s)\n",
6636 nr_free_pages() << (PAGE_SHIFT - 10),
6637 physpages << (PAGE_SHIFT - 10),
6638 codesize >> 10, datasize >> 10, rosize >> 10,
6639 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6640 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6641 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6642#ifdef CONFIG_HIGHMEM
756a025f 6643 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6644#endif
756a025f 6645 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6646}
6647
0e0b864e 6648/**
88ca3b94
RD
6649 * set_dma_reserve - set the specified number of pages reserved in the first zone
6650 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6651 *
013110a7 6652 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6653 * In the DMA zone, a significant percentage may be consumed by kernel image
6654 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6655 * function may optionally be used to account for unfreeable pages in the
6656 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6657 * smaller per-cpu batchsize.
0e0b864e
MG
6658 */
6659void __init set_dma_reserve(unsigned long new_dma_reserve)
6660{
6661 dma_reserve = new_dma_reserve;
6662}
6663
1da177e4
LT
6664void __init free_area_init(unsigned long *zones_size)
6665{
9109fb7b 6666 free_area_init_node(0, zones_size,
1da177e4
LT
6667 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6668}
1da177e4 6669
005fd4bb 6670static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6671{
1da177e4 6672
005fd4bb
SAS
6673 lru_add_drain_cpu(cpu);
6674 drain_pages(cpu);
9f8f2172 6675
005fd4bb
SAS
6676 /*
6677 * Spill the event counters of the dead processor
6678 * into the current processors event counters.
6679 * This artificially elevates the count of the current
6680 * processor.
6681 */
6682 vm_events_fold_cpu(cpu);
9f8f2172 6683
005fd4bb
SAS
6684 /*
6685 * Zero the differential counters of the dead processor
6686 * so that the vm statistics are consistent.
6687 *
6688 * This is only okay since the processor is dead and cannot
6689 * race with what we are doing.
6690 */
6691 cpu_vm_stats_fold(cpu);
6692 return 0;
1da177e4 6693}
1da177e4
LT
6694
6695void __init page_alloc_init(void)
6696{
005fd4bb
SAS
6697 int ret;
6698
6699 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6700 "mm/page_alloc:dead", NULL,
6701 page_alloc_cpu_dead);
6702 WARN_ON(ret < 0);
1da177e4
LT
6703}
6704
cb45b0e9 6705/*
34b10060 6706 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6707 * or min_free_kbytes changes.
6708 */
6709static void calculate_totalreserve_pages(void)
6710{
6711 struct pglist_data *pgdat;
6712 unsigned long reserve_pages = 0;
2f6726e5 6713 enum zone_type i, j;
cb45b0e9
HA
6714
6715 for_each_online_pgdat(pgdat) {
281e3726
MG
6716
6717 pgdat->totalreserve_pages = 0;
6718
cb45b0e9
HA
6719 for (i = 0; i < MAX_NR_ZONES; i++) {
6720 struct zone *zone = pgdat->node_zones + i;
3484b2de 6721 long max = 0;
cb45b0e9
HA
6722
6723 /* Find valid and maximum lowmem_reserve in the zone */
6724 for (j = i; j < MAX_NR_ZONES; j++) {
6725 if (zone->lowmem_reserve[j] > max)
6726 max = zone->lowmem_reserve[j];
6727 }
6728
41858966
MG
6729 /* we treat the high watermark as reserved pages. */
6730 max += high_wmark_pages(zone);
cb45b0e9 6731
b40da049
JL
6732 if (max > zone->managed_pages)
6733 max = zone->managed_pages;
a8d01437 6734
281e3726 6735 pgdat->totalreserve_pages += max;
a8d01437 6736
cb45b0e9
HA
6737 reserve_pages += max;
6738 }
6739 }
6740 totalreserve_pages = reserve_pages;
6741}
6742
1da177e4
LT
6743/*
6744 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6745 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6746 * has a correct pages reserved value, so an adequate number of
6747 * pages are left in the zone after a successful __alloc_pages().
6748 */
6749static void setup_per_zone_lowmem_reserve(void)
6750{
6751 struct pglist_data *pgdat;
2f6726e5 6752 enum zone_type j, idx;
1da177e4 6753
ec936fc5 6754 for_each_online_pgdat(pgdat) {
1da177e4
LT
6755 for (j = 0; j < MAX_NR_ZONES; j++) {
6756 struct zone *zone = pgdat->node_zones + j;
b40da049 6757 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6758
6759 zone->lowmem_reserve[j] = 0;
6760
2f6726e5
CL
6761 idx = j;
6762 while (idx) {
1da177e4
LT
6763 struct zone *lower_zone;
6764
2f6726e5
CL
6765 idx--;
6766
1da177e4
LT
6767 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6768 sysctl_lowmem_reserve_ratio[idx] = 1;
6769
6770 lower_zone = pgdat->node_zones + idx;
b40da049 6771 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6772 sysctl_lowmem_reserve_ratio[idx];
b40da049 6773 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6774 }
6775 }
6776 }
cb45b0e9
HA
6777
6778 /* update totalreserve_pages */
6779 calculate_totalreserve_pages();
1da177e4
LT
6780}
6781
cfd3da1e 6782static void __setup_per_zone_wmarks(void)
1da177e4
LT
6783{
6784 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6785 unsigned long lowmem_pages = 0;
6786 struct zone *zone;
6787 unsigned long flags;
6788
6789 /* Calculate total number of !ZONE_HIGHMEM pages */
6790 for_each_zone(zone) {
6791 if (!is_highmem(zone))
b40da049 6792 lowmem_pages += zone->managed_pages;
1da177e4
LT
6793 }
6794
6795 for_each_zone(zone) {
ac924c60
AM
6796 u64 tmp;
6797
1125b4e3 6798 spin_lock_irqsave(&zone->lock, flags);
b40da049 6799 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6800 do_div(tmp, lowmem_pages);
1da177e4
LT
6801 if (is_highmem(zone)) {
6802 /*
669ed175
NP
6803 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6804 * need highmem pages, so cap pages_min to a small
6805 * value here.
6806 *
41858966 6807 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6808 * deltas control asynch page reclaim, and so should
669ed175 6809 * not be capped for highmem.
1da177e4 6810 */
90ae8d67 6811 unsigned long min_pages;
1da177e4 6812
b40da049 6813 min_pages = zone->managed_pages / 1024;
90ae8d67 6814 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6815 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6816 } else {
669ed175
NP
6817 /*
6818 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6819 * proportionate to the zone's size.
6820 */
41858966 6821 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6822 }
6823
795ae7a0
JW
6824 /*
6825 * Set the kswapd watermarks distance according to the
6826 * scale factor in proportion to available memory, but
6827 * ensure a minimum size on small systems.
6828 */
6829 tmp = max_t(u64, tmp >> 2,
6830 mult_frac(zone->managed_pages,
6831 watermark_scale_factor, 10000));
6832
6833 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6834 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6835
1125b4e3 6836 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6837 }
cb45b0e9
HA
6838
6839 /* update totalreserve_pages */
6840 calculate_totalreserve_pages();
1da177e4
LT
6841}
6842
cfd3da1e
MG
6843/**
6844 * setup_per_zone_wmarks - called when min_free_kbytes changes
6845 * or when memory is hot-{added|removed}
6846 *
6847 * Ensures that the watermark[min,low,high] values for each zone are set
6848 * correctly with respect to min_free_kbytes.
6849 */
6850void setup_per_zone_wmarks(void)
6851{
6852 mutex_lock(&zonelists_mutex);
6853 __setup_per_zone_wmarks();
6854 mutex_unlock(&zonelists_mutex);
6855}
6856
1da177e4
LT
6857/*
6858 * Initialise min_free_kbytes.
6859 *
6860 * For small machines we want it small (128k min). For large machines
6861 * we want it large (64MB max). But it is not linear, because network
6862 * bandwidth does not increase linearly with machine size. We use
6863 *
b8af2941 6864 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6865 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6866 *
6867 * which yields
6868 *
6869 * 16MB: 512k
6870 * 32MB: 724k
6871 * 64MB: 1024k
6872 * 128MB: 1448k
6873 * 256MB: 2048k
6874 * 512MB: 2896k
6875 * 1024MB: 4096k
6876 * 2048MB: 5792k
6877 * 4096MB: 8192k
6878 * 8192MB: 11584k
6879 * 16384MB: 16384k
6880 */
1b79acc9 6881int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6882{
6883 unsigned long lowmem_kbytes;
5f12733e 6884 int new_min_free_kbytes;
1da177e4
LT
6885
6886 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6887 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6888
6889 if (new_min_free_kbytes > user_min_free_kbytes) {
6890 min_free_kbytes = new_min_free_kbytes;
6891 if (min_free_kbytes < 128)
6892 min_free_kbytes = 128;
6893 if (min_free_kbytes > 65536)
6894 min_free_kbytes = 65536;
6895 } else {
6896 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6897 new_min_free_kbytes, user_min_free_kbytes);
6898 }
bc75d33f 6899 setup_per_zone_wmarks();
a6cccdc3 6900 refresh_zone_stat_thresholds();
1da177e4 6901 setup_per_zone_lowmem_reserve();
6423aa81
JK
6902
6903#ifdef CONFIG_NUMA
6904 setup_min_unmapped_ratio();
6905 setup_min_slab_ratio();
6906#endif
6907
1da177e4
LT
6908 return 0;
6909}
bc22af74 6910core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6911
6912/*
b8af2941 6913 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6914 * that we can call two helper functions whenever min_free_kbytes
6915 * changes.
6916 */
cccad5b9 6917int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6918 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6919{
da8c757b
HP
6920 int rc;
6921
6922 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6923 if (rc)
6924 return rc;
6925
5f12733e
MH
6926 if (write) {
6927 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6928 setup_per_zone_wmarks();
5f12733e 6929 }
1da177e4
LT
6930 return 0;
6931}
6932
795ae7a0
JW
6933int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6934 void __user *buffer, size_t *length, loff_t *ppos)
6935{
6936 int rc;
6937
6938 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6939 if (rc)
6940 return rc;
6941
6942 if (write)
6943 setup_per_zone_wmarks();
6944
6945 return 0;
6946}
6947
9614634f 6948#ifdef CONFIG_NUMA
6423aa81 6949static void setup_min_unmapped_ratio(void)
9614634f 6950{
6423aa81 6951 pg_data_t *pgdat;
9614634f 6952 struct zone *zone;
9614634f 6953
a5f5f91d 6954 for_each_online_pgdat(pgdat)
81cbcbc2 6955 pgdat->min_unmapped_pages = 0;
a5f5f91d 6956
9614634f 6957 for_each_zone(zone)
a5f5f91d 6958 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6959 sysctl_min_unmapped_ratio) / 100;
9614634f 6960}
0ff38490 6961
6423aa81
JK
6962
6963int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6964 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6965{
0ff38490
CL
6966 int rc;
6967
8d65af78 6968 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6969 if (rc)
6970 return rc;
6971
6423aa81
JK
6972 setup_min_unmapped_ratio();
6973
6974 return 0;
6975}
6976
6977static void setup_min_slab_ratio(void)
6978{
6979 pg_data_t *pgdat;
6980 struct zone *zone;
6981
a5f5f91d
MG
6982 for_each_online_pgdat(pgdat)
6983 pgdat->min_slab_pages = 0;
6984
0ff38490 6985 for_each_zone(zone)
a5f5f91d 6986 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6987 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6988}
6989
6990int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6991 void __user *buffer, size_t *length, loff_t *ppos)
6992{
6993 int rc;
6994
6995 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6996 if (rc)
6997 return rc;
6998
6999 setup_min_slab_ratio();
7000
0ff38490
CL
7001 return 0;
7002}
9614634f
CL
7003#endif
7004
1da177e4
LT
7005/*
7006 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7007 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7008 * whenever sysctl_lowmem_reserve_ratio changes.
7009 *
7010 * The reserve ratio obviously has absolutely no relation with the
41858966 7011 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7012 * if in function of the boot time zone sizes.
7013 */
cccad5b9 7014int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7015 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7016{
8d65af78 7017 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7018 setup_per_zone_lowmem_reserve();
7019 return 0;
7020}
7021
8ad4b1fb
RS
7022/*
7023 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7024 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7025 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7026 */
cccad5b9 7027int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7028 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7029{
7030 struct zone *zone;
7cd2b0a3 7031 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7032 int ret;
7033
7cd2b0a3
DR
7034 mutex_lock(&pcp_batch_high_lock);
7035 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7036
8d65af78 7037 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7038 if (!write || ret < 0)
7039 goto out;
7040
7041 /* Sanity checking to avoid pcp imbalance */
7042 if (percpu_pagelist_fraction &&
7043 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7044 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7045 ret = -EINVAL;
7046 goto out;
7047 }
7048
7049 /* No change? */
7050 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7051 goto out;
c8e251fa 7052
364df0eb 7053 for_each_populated_zone(zone) {
7cd2b0a3
DR
7054 unsigned int cpu;
7055
22a7f12b 7056 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7057 pageset_set_high_and_batch(zone,
7058 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7059 }
7cd2b0a3 7060out:
c8e251fa 7061 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7062 return ret;
8ad4b1fb
RS
7063}
7064
a9919c79 7065#ifdef CONFIG_NUMA
f034b5d4 7066int hashdist = HASHDIST_DEFAULT;
1da177e4 7067
1da177e4
LT
7068static int __init set_hashdist(char *str)
7069{
7070 if (!str)
7071 return 0;
7072 hashdist = simple_strtoul(str, &str, 0);
7073 return 1;
7074}
7075__setup("hashdist=", set_hashdist);
7076#endif
7077
f6f34b43
SD
7078#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7079/*
7080 * Returns the number of pages that arch has reserved but
7081 * is not known to alloc_large_system_hash().
7082 */
7083static unsigned long __init arch_reserved_kernel_pages(void)
7084{
7085 return 0;
7086}
7087#endif
7088
1da177e4
LT
7089/*
7090 * allocate a large system hash table from bootmem
7091 * - it is assumed that the hash table must contain an exact power-of-2
7092 * quantity of entries
7093 * - limit is the number of hash buckets, not the total allocation size
7094 */
7095void *__init alloc_large_system_hash(const char *tablename,
7096 unsigned long bucketsize,
7097 unsigned long numentries,
7098 int scale,
7099 int flags,
7100 unsigned int *_hash_shift,
7101 unsigned int *_hash_mask,
31fe62b9
TB
7102 unsigned long low_limit,
7103 unsigned long high_limit)
1da177e4 7104{
31fe62b9 7105 unsigned long long max = high_limit;
1da177e4
LT
7106 unsigned long log2qty, size;
7107 void *table = NULL;
7108
7109 /* allow the kernel cmdline to have a say */
7110 if (!numentries) {
7111 /* round applicable memory size up to nearest megabyte */
04903664 7112 numentries = nr_kernel_pages;
f6f34b43 7113 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7114
7115 /* It isn't necessary when PAGE_SIZE >= 1MB */
7116 if (PAGE_SHIFT < 20)
7117 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7118
7119 /* limit to 1 bucket per 2^scale bytes of low memory */
7120 if (scale > PAGE_SHIFT)
7121 numentries >>= (scale - PAGE_SHIFT);
7122 else
7123 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7124
7125 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7126 if (unlikely(flags & HASH_SMALL)) {
7127 /* Makes no sense without HASH_EARLY */
7128 WARN_ON(!(flags & HASH_EARLY));
7129 if (!(numentries >> *_hash_shift)) {
7130 numentries = 1UL << *_hash_shift;
7131 BUG_ON(!numentries);
7132 }
7133 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7134 numentries = PAGE_SIZE / bucketsize;
1da177e4 7135 }
6e692ed3 7136 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7137
7138 /* limit allocation size to 1/16 total memory by default */
7139 if (max == 0) {
7140 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7141 do_div(max, bucketsize);
7142 }
074b8517 7143 max = min(max, 0x80000000ULL);
1da177e4 7144
31fe62b9
TB
7145 if (numentries < low_limit)
7146 numentries = low_limit;
1da177e4
LT
7147 if (numentries > max)
7148 numentries = max;
7149
f0d1b0b3 7150 log2qty = ilog2(numentries);
1da177e4
LT
7151
7152 do {
7153 size = bucketsize << log2qty;
7154 if (flags & HASH_EARLY)
6782832e 7155 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7156 else if (hashdist)
7157 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7158 else {
1037b83b
ED
7159 /*
7160 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7161 * some pages at the end of hash table which
7162 * alloc_pages_exact() automatically does
1037b83b 7163 */
264ef8a9 7164 if (get_order(size) < MAX_ORDER) {
a1dd268c 7165 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7166 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7167 }
1da177e4
LT
7168 }
7169 } while (!table && size > PAGE_SIZE && --log2qty);
7170
7171 if (!table)
7172 panic("Failed to allocate %s hash table\n", tablename);
7173
1170532b
JP
7174 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7175 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7176
7177 if (_hash_shift)
7178 *_hash_shift = log2qty;
7179 if (_hash_mask)
7180 *_hash_mask = (1 << log2qty) - 1;
7181
7182 return table;
7183}
a117e66e 7184
a5d76b54 7185/*
80934513
MK
7186 * This function checks whether pageblock includes unmovable pages or not.
7187 * If @count is not zero, it is okay to include less @count unmovable pages
7188 *
b8af2941 7189 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7190 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7191 * expect this function should be exact.
a5d76b54 7192 */
b023f468
WC
7193bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7194 bool skip_hwpoisoned_pages)
49ac8255
KH
7195{
7196 unsigned long pfn, iter, found;
47118af0
MN
7197 int mt;
7198
49ac8255
KH
7199 /*
7200 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7201 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7202 */
7203 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7204 return false;
47118af0
MN
7205 mt = get_pageblock_migratetype(page);
7206 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7207 return false;
49ac8255
KH
7208
7209 pfn = page_to_pfn(page);
7210 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7211 unsigned long check = pfn + iter;
7212
29723fcc 7213 if (!pfn_valid_within(check))
49ac8255 7214 continue;
29723fcc 7215
49ac8255 7216 page = pfn_to_page(check);
c8721bbb
NH
7217
7218 /*
7219 * Hugepages are not in LRU lists, but they're movable.
7220 * We need not scan over tail pages bacause we don't
7221 * handle each tail page individually in migration.
7222 */
7223 if (PageHuge(page)) {
7224 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7225 continue;
7226 }
7227
97d255c8
MK
7228 /*
7229 * We can't use page_count without pin a page
7230 * because another CPU can free compound page.
7231 * This check already skips compound tails of THP
0139aa7b 7232 * because their page->_refcount is zero at all time.
97d255c8 7233 */
fe896d18 7234 if (!page_ref_count(page)) {
49ac8255
KH
7235 if (PageBuddy(page))
7236 iter += (1 << page_order(page)) - 1;
7237 continue;
7238 }
97d255c8 7239
b023f468
WC
7240 /*
7241 * The HWPoisoned page may be not in buddy system, and
7242 * page_count() is not 0.
7243 */
7244 if (skip_hwpoisoned_pages && PageHWPoison(page))
7245 continue;
7246
49ac8255
KH
7247 if (!PageLRU(page))
7248 found++;
7249 /*
6b4f7799
JW
7250 * If there are RECLAIMABLE pages, we need to check
7251 * it. But now, memory offline itself doesn't call
7252 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7253 */
7254 /*
7255 * If the page is not RAM, page_count()should be 0.
7256 * we don't need more check. This is an _used_ not-movable page.
7257 *
7258 * The problematic thing here is PG_reserved pages. PG_reserved
7259 * is set to both of a memory hole page and a _used_ kernel
7260 * page at boot.
7261 */
7262 if (found > count)
80934513 7263 return true;
49ac8255 7264 }
80934513 7265 return false;
49ac8255
KH
7266}
7267
7268bool is_pageblock_removable_nolock(struct page *page)
7269{
656a0706
MH
7270 struct zone *zone;
7271 unsigned long pfn;
687875fb
MH
7272
7273 /*
7274 * We have to be careful here because we are iterating over memory
7275 * sections which are not zone aware so we might end up outside of
7276 * the zone but still within the section.
656a0706
MH
7277 * We have to take care about the node as well. If the node is offline
7278 * its NODE_DATA will be NULL - see page_zone.
687875fb 7279 */
656a0706
MH
7280 if (!node_online(page_to_nid(page)))
7281 return false;
7282
7283 zone = page_zone(page);
7284 pfn = page_to_pfn(page);
108bcc96 7285 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7286 return false;
7287
b023f468 7288 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7289}
0c0e6195 7290
080fe206 7291#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7292
7293static unsigned long pfn_max_align_down(unsigned long pfn)
7294{
7295 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7296 pageblock_nr_pages) - 1);
7297}
7298
7299static unsigned long pfn_max_align_up(unsigned long pfn)
7300{
7301 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7302 pageblock_nr_pages));
7303}
7304
041d3a8c 7305/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7306static int __alloc_contig_migrate_range(struct compact_control *cc,
7307 unsigned long start, unsigned long end)
041d3a8c
MN
7308{
7309 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7310 unsigned long nr_reclaimed;
041d3a8c
MN
7311 unsigned long pfn = start;
7312 unsigned int tries = 0;
7313 int ret = 0;
7314
be49a6e1 7315 migrate_prep();
041d3a8c 7316
bb13ffeb 7317 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7318 if (fatal_signal_pending(current)) {
7319 ret = -EINTR;
7320 break;
7321 }
7322
bb13ffeb
MG
7323 if (list_empty(&cc->migratepages)) {
7324 cc->nr_migratepages = 0;
edc2ca61 7325 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7326 if (!pfn) {
7327 ret = -EINTR;
7328 break;
7329 }
7330 tries = 0;
7331 } else if (++tries == 5) {
7332 ret = ret < 0 ? ret : -EBUSY;
7333 break;
7334 }
7335
beb51eaa
MK
7336 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7337 &cc->migratepages);
7338 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7339
9c620e2b 7340 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7341 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7342 }
2a6f5124
SP
7343 if (ret < 0) {
7344 putback_movable_pages(&cc->migratepages);
7345 return ret;
7346 }
7347 return 0;
041d3a8c
MN
7348}
7349
7350/**
7351 * alloc_contig_range() -- tries to allocate given range of pages
7352 * @start: start PFN to allocate
7353 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7354 * @migratetype: migratetype of the underlaying pageblocks (either
7355 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7356 * in range must have the same migratetype and it must
7357 * be either of the two.
041d3a8c
MN
7358 *
7359 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7360 * aligned, however it's the caller's responsibility to guarantee that
7361 * we are the only thread that changes migrate type of pageblocks the
7362 * pages fall in.
7363 *
7364 * The PFN range must belong to a single zone.
7365 *
7366 * Returns zero on success or negative error code. On success all
7367 * pages which PFN is in [start, end) are allocated for the caller and
7368 * need to be freed with free_contig_range().
7369 */
0815f3d8
MN
7370int alloc_contig_range(unsigned long start, unsigned long end,
7371 unsigned migratetype)
041d3a8c 7372{
041d3a8c 7373 unsigned long outer_start, outer_end;
d00181b9
KS
7374 unsigned int order;
7375 int ret = 0;
041d3a8c 7376
bb13ffeb
MG
7377 struct compact_control cc = {
7378 .nr_migratepages = 0,
7379 .order = -1,
7380 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7381 .mode = MIGRATE_SYNC,
bb13ffeb 7382 .ignore_skip_hint = true,
424f6c48 7383 .gfp_mask = GFP_KERNEL,
bb13ffeb
MG
7384 };
7385 INIT_LIST_HEAD(&cc.migratepages);
7386
041d3a8c
MN
7387 /*
7388 * What we do here is we mark all pageblocks in range as
7389 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7390 * have different sizes, and due to the way page allocator
7391 * work, we align the range to biggest of the two pages so
7392 * that page allocator won't try to merge buddies from
7393 * different pageblocks and change MIGRATE_ISOLATE to some
7394 * other migration type.
7395 *
7396 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7397 * migrate the pages from an unaligned range (ie. pages that
7398 * we are interested in). This will put all the pages in
7399 * range back to page allocator as MIGRATE_ISOLATE.
7400 *
7401 * When this is done, we take the pages in range from page
7402 * allocator removing them from the buddy system. This way
7403 * page allocator will never consider using them.
7404 *
7405 * This lets us mark the pageblocks back as
7406 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7407 * aligned range but not in the unaligned, original range are
7408 * put back to page allocator so that buddy can use them.
7409 */
7410
7411 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7412 pfn_max_align_up(end), migratetype,
7413 false);
041d3a8c 7414 if (ret)
86a595f9 7415 return ret;
041d3a8c 7416
8ef5849f
JK
7417 /*
7418 * In case of -EBUSY, we'd like to know which page causes problem.
7419 * So, just fall through. We will check it in test_pages_isolated().
7420 */
bb13ffeb 7421 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7422 if (ret && ret != -EBUSY)
041d3a8c
MN
7423 goto done;
7424
7425 /*
7426 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7427 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7428 * more, all pages in [start, end) are free in page allocator.
7429 * What we are going to do is to allocate all pages from
7430 * [start, end) (that is remove them from page allocator).
7431 *
7432 * The only problem is that pages at the beginning and at the
7433 * end of interesting range may be not aligned with pages that
7434 * page allocator holds, ie. they can be part of higher order
7435 * pages. Because of this, we reserve the bigger range and
7436 * once this is done free the pages we are not interested in.
7437 *
7438 * We don't have to hold zone->lock here because the pages are
7439 * isolated thus they won't get removed from buddy.
7440 */
7441
7442 lru_add_drain_all();
510f5507 7443 drain_all_pages(cc.zone);
041d3a8c
MN
7444
7445 order = 0;
7446 outer_start = start;
7447 while (!PageBuddy(pfn_to_page(outer_start))) {
7448 if (++order >= MAX_ORDER) {
8ef5849f
JK
7449 outer_start = start;
7450 break;
041d3a8c
MN
7451 }
7452 outer_start &= ~0UL << order;
7453 }
7454
8ef5849f
JK
7455 if (outer_start != start) {
7456 order = page_order(pfn_to_page(outer_start));
7457
7458 /*
7459 * outer_start page could be small order buddy page and
7460 * it doesn't include start page. Adjust outer_start
7461 * in this case to report failed page properly
7462 * on tracepoint in test_pages_isolated()
7463 */
7464 if (outer_start + (1UL << order) <= start)
7465 outer_start = start;
7466 }
7467
041d3a8c 7468 /* Make sure the range is really isolated. */
b023f468 7469 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7470 pr_info("%s: [%lx, %lx) PFNs busy\n",
7471 __func__, outer_start, end);
041d3a8c
MN
7472 ret = -EBUSY;
7473 goto done;
7474 }
7475
49f223a9 7476 /* Grab isolated pages from freelists. */
bb13ffeb 7477 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7478 if (!outer_end) {
7479 ret = -EBUSY;
7480 goto done;
7481 }
7482
7483 /* Free head and tail (if any) */
7484 if (start != outer_start)
7485 free_contig_range(outer_start, start - outer_start);
7486 if (end != outer_end)
7487 free_contig_range(end, outer_end - end);
7488
7489done:
7490 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7491 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7492 return ret;
7493}
7494
7495void free_contig_range(unsigned long pfn, unsigned nr_pages)
7496{
bcc2b02f
MS
7497 unsigned int count = 0;
7498
7499 for (; nr_pages--; pfn++) {
7500 struct page *page = pfn_to_page(pfn);
7501
7502 count += page_count(page) != 1;
7503 __free_page(page);
7504 }
7505 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7506}
7507#endif
7508
4ed7e022 7509#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7510/*
7511 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7512 * page high values need to be recalulated.
7513 */
4ed7e022
JL
7514void __meminit zone_pcp_update(struct zone *zone)
7515{
0a647f38 7516 unsigned cpu;
c8e251fa 7517 mutex_lock(&pcp_batch_high_lock);
0a647f38 7518 for_each_possible_cpu(cpu)
169f6c19
CS
7519 pageset_set_high_and_batch(zone,
7520 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7521 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7522}
7523#endif
7524
340175b7
JL
7525void zone_pcp_reset(struct zone *zone)
7526{
7527 unsigned long flags;
5a883813
MK
7528 int cpu;
7529 struct per_cpu_pageset *pset;
340175b7
JL
7530
7531 /* avoid races with drain_pages() */
7532 local_irq_save(flags);
7533 if (zone->pageset != &boot_pageset) {
5a883813
MK
7534 for_each_online_cpu(cpu) {
7535 pset = per_cpu_ptr(zone->pageset, cpu);
7536 drain_zonestat(zone, pset);
7537 }
340175b7
JL
7538 free_percpu(zone->pageset);
7539 zone->pageset = &boot_pageset;
7540 }
7541 local_irq_restore(flags);
7542}
7543
6dcd73d7 7544#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7545/*
b9eb6319
JK
7546 * All pages in the range must be in a single zone and isolated
7547 * before calling this.
0c0e6195
KH
7548 */
7549void
7550__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7551{
7552 struct page *page;
7553 struct zone *zone;
7aeb09f9 7554 unsigned int order, i;
0c0e6195
KH
7555 unsigned long pfn;
7556 unsigned long flags;
7557 /* find the first valid pfn */
7558 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7559 if (pfn_valid(pfn))
7560 break;
7561 if (pfn == end_pfn)
7562 return;
7563 zone = page_zone(pfn_to_page(pfn));
7564 spin_lock_irqsave(&zone->lock, flags);
7565 pfn = start_pfn;
7566 while (pfn < end_pfn) {
7567 if (!pfn_valid(pfn)) {
7568 pfn++;
7569 continue;
7570 }
7571 page = pfn_to_page(pfn);
b023f468
WC
7572 /*
7573 * The HWPoisoned page may be not in buddy system, and
7574 * page_count() is not 0.
7575 */
7576 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7577 pfn++;
7578 SetPageReserved(page);
7579 continue;
7580 }
7581
0c0e6195
KH
7582 BUG_ON(page_count(page));
7583 BUG_ON(!PageBuddy(page));
7584 order = page_order(page);
7585#ifdef CONFIG_DEBUG_VM
1170532b
JP
7586 pr_info("remove from free list %lx %d %lx\n",
7587 pfn, 1 << order, end_pfn);
0c0e6195
KH
7588#endif
7589 list_del(&page->lru);
7590 rmv_page_order(page);
7591 zone->free_area[order].nr_free--;
0c0e6195
KH
7592 for (i = 0; i < (1 << order); i++)
7593 SetPageReserved((page+i));
7594 pfn += (1 << order);
7595 }
7596 spin_unlock_irqrestore(&zone->lock, flags);
7597}
7598#endif
8d22ba1b 7599
8d22ba1b
WF
7600bool is_free_buddy_page(struct page *page)
7601{
7602 struct zone *zone = page_zone(page);
7603 unsigned long pfn = page_to_pfn(page);
7604 unsigned long flags;
7aeb09f9 7605 unsigned int order;
8d22ba1b
WF
7606
7607 spin_lock_irqsave(&zone->lock, flags);
7608 for (order = 0; order < MAX_ORDER; order++) {
7609 struct page *page_head = page - (pfn & ((1 << order) - 1));
7610
7611 if (PageBuddy(page_head) && page_order(page_head) >= order)
7612 break;
7613 }
7614 spin_unlock_irqrestore(&zone->lock, flags);
7615
7616 return order < MAX_ORDER;
7617}