]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm, oom: tighten task_will_free_mem() locking
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
7e18adb4
MG
298static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
299{
300 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
301 return true;
302
303 return false;
304}
305
3a80a7fa
MG
306/*
307 * Returns false when the remaining initialisation should be deferred until
308 * later in the boot cycle when it can be parallelised.
309 */
310static inline bool update_defer_init(pg_data_t *pgdat,
311 unsigned long pfn, unsigned long zone_end,
312 unsigned long *nr_initialised)
313{
987b3095
LZ
314 unsigned long max_initialise;
315
3a80a7fa
MG
316 /* Always populate low zones for address-contrained allocations */
317 if (zone_end < pgdat_end_pfn(pgdat))
318 return true;
987b3095
LZ
319 /*
320 * Initialise at least 2G of a node but also take into account that
321 * two large system hashes that can take up 1GB for 0.25TB/node.
322 */
323 max_initialise = max(2UL << (30 - PAGE_SHIFT),
324 (pgdat->node_spanned_pages >> 8));
3a80a7fa 325
3a80a7fa 326 (*nr_initialised)++;
987b3095 327 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
328 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
329 pgdat->first_deferred_pfn = pfn;
330 return false;
331 }
332
333 return true;
334}
335#else
336static inline void reset_deferred_meminit(pg_data_t *pgdat)
337{
338}
339
340static inline bool early_page_uninitialised(unsigned long pfn)
341{
342 return false;
343}
344
7e18adb4
MG
345static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
346{
347 return false;
348}
349
3a80a7fa
MG
350static inline bool update_defer_init(pg_data_t *pgdat,
351 unsigned long pfn, unsigned long zone_end,
352 unsigned long *nr_initialised)
353{
354 return true;
355}
356#endif
357
0b423ca2
MG
358/* Return a pointer to the bitmap storing bits affecting a block of pages */
359static inline unsigned long *get_pageblock_bitmap(struct page *page,
360 unsigned long pfn)
361{
362#ifdef CONFIG_SPARSEMEM
363 return __pfn_to_section(pfn)->pageblock_flags;
364#else
365 return page_zone(page)->pageblock_flags;
366#endif /* CONFIG_SPARSEMEM */
367}
368
369static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
370{
371#ifdef CONFIG_SPARSEMEM
372 pfn &= (PAGES_PER_SECTION-1);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#else
375 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
376 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
377#endif /* CONFIG_SPARSEMEM */
378}
379
380/**
381 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
382 * @page: The page within the block of interest
383 * @pfn: The target page frame number
384 * @end_bitidx: The last bit of interest to retrieve
385 * @mask: mask of bits that the caller is interested in
386 *
387 * Return: pageblock_bits flags
388 */
389static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
390 unsigned long pfn,
391 unsigned long end_bitidx,
392 unsigned long mask)
393{
394 unsigned long *bitmap;
395 unsigned long bitidx, word_bitidx;
396 unsigned long word;
397
398 bitmap = get_pageblock_bitmap(page, pfn);
399 bitidx = pfn_to_bitidx(page, pfn);
400 word_bitidx = bitidx / BITS_PER_LONG;
401 bitidx &= (BITS_PER_LONG-1);
402
403 word = bitmap[word_bitidx];
404 bitidx += end_bitidx;
405 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
406}
407
408unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
409 unsigned long end_bitidx,
410 unsigned long mask)
411{
412 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
413}
414
415static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
416{
417 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418}
419
420/**
421 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
422 * @page: The page within the block of interest
423 * @flags: The flags to set
424 * @pfn: The target page frame number
425 * @end_bitidx: The last bit of interest
426 * @mask: mask of bits that the caller is interested in
427 */
428void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
429 unsigned long pfn,
430 unsigned long end_bitidx,
431 unsigned long mask)
432{
433 unsigned long *bitmap;
434 unsigned long bitidx, word_bitidx;
435 unsigned long old_word, word;
436
437 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
438
439 bitmap = get_pageblock_bitmap(page, pfn);
440 bitidx = pfn_to_bitidx(page, pfn);
441 word_bitidx = bitidx / BITS_PER_LONG;
442 bitidx &= (BITS_PER_LONG-1);
443
444 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
445
446 bitidx += end_bitidx;
447 mask <<= (BITS_PER_LONG - bitidx - 1);
448 flags <<= (BITS_PER_LONG - bitidx - 1);
449
450 word = READ_ONCE(bitmap[word_bitidx]);
451 for (;;) {
452 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
453 if (word == old_word)
454 break;
455 word = old_word;
456 }
457}
3a80a7fa 458
ee6f509c 459void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 460{
5d0f3f72
KM
461 if (unlikely(page_group_by_mobility_disabled &&
462 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
463 migratetype = MIGRATE_UNMOVABLE;
464
b2a0ac88
MG
465 set_pageblock_flags_group(page, (unsigned long)migratetype,
466 PB_migrate, PB_migrate_end);
467}
468
13e7444b 469#ifdef CONFIG_DEBUG_VM
c6a57e19 470static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 471{
bdc8cb98
DH
472 int ret = 0;
473 unsigned seq;
474 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 475 unsigned long sp, start_pfn;
c6a57e19 476
bdc8cb98
DH
477 do {
478 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
479 start_pfn = zone->zone_start_pfn;
480 sp = zone->spanned_pages;
108bcc96 481 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
482 ret = 1;
483 } while (zone_span_seqretry(zone, seq));
484
b5e6a5a2 485 if (ret)
613813e8
DH
486 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
487 pfn, zone_to_nid(zone), zone->name,
488 start_pfn, start_pfn + sp);
b5e6a5a2 489
bdc8cb98 490 return ret;
c6a57e19
DH
491}
492
493static int page_is_consistent(struct zone *zone, struct page *page)
494{
14e07298 495 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 496 return 0;
1da177e4 497 if (zone != page_zone(page))
c6a57e19
DH
498 return 0;
499
500 return 1;
501}
502/*
503 * Temporary debugging check for pages not lying within a given zone.
504 */
505static int bad_range(struct zone *zone, struct page *page)
506{
507 if (page_outside_zone_boundaries(zone, page))
1da177e4 508 return 1;
c6a57e19
DH
509 if (!page_is_consistent(zone, page))
510 return 1;
511
1da177e4
LT
512 return 0;
513}
13e7444b
NP
514#else
515static inline int bad_range(struct zone *zone, struct page *page)
516{
517 return 0;
518}
519#endif
520
d230dec1
KS
521static void bad_page(struct page *page, const char *reason,
522 unsigned long bad_flags)
1da177e4 523{
d936cf9b
HD
524 static unsigned long resume;
525 static unsigned long nr_shown;
526 static unsigned long nr_unshown;
527
528 /*
529 * Allow a burst of 60 reports, then keep quiet for that minute;
530 * or allow a steady drip of one report per second.
531 */
532 if (nr_shown == 60) {
533 if (time_before(jiffies, resume)) {
534 nr_unshown++;
535 goto out;
536 }
537 if (nr_unshown) {
ff8e8116 538 pr_alert(
1e9e6365 539 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
540 nr_unshown);
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
547
ff8e8116 548 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 549 current->comm, page_to_pfn(page));
ff8e8116
VB
550 __dump_page(page, reason);
551 bad_flags &= page->flags;
552 if (bad_flags)
553 pr_alert("bad because of flags: %#lx(%pGp)\n",
554 bad_flags, &bad_flags);
4e462112 555 dump_page_owner(page);
3dc14741 556
4f31888c 557 print_modules();
1da177e4 558 dump_stack();
d936cf9b 559out:
8cc3b392 560 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 561 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 562 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
563}
564
1da177e4
LT
565/*
566 * Higher-order pages are called "compound pages". They are structured thusly:
567 *
1d798ca3 568 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 569 *
1d798ca3
KS
570 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
571 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 572 *
1d798ca3
KS
573 * The first tail page's ->compound_dtor holds the offset in array of compound
574 * page destructors. See compound_page_dtors.
1da177e4 575 *
1d798ca3 576 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 577 * This usage means that zero-order pages may not be compound.
1da177e4 578 */
d98c7a09 579
9a982250 580void free_compound_page(struct page *page)
d98c7a09 581{
d85f3385 582 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
583}
584
d00181b9 585void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
586{
587 int i;
588 int nr_pages = 1 << order;
589
f1e61557 590 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
591 set_compound_order(page, order);
592 __SetPageHead(page);
593 for (i = 1; i < nr_pages; i++) {
594 struct page *p = page + i;
58a84aa9 595 set_page_count(p, 0);
1c290f64 596 p->mapping = TAIL_MAPPING;
1d798ca3 597 set_compound_head(p, page);
18229df5 598 }
53f9263b 599 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
600}
601
c0a32fc5
SG
602#ifdef CONFIG_DEBUG_PAGEALLOC
603unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
604bool _debug_pagealloc_enabled __read_mostly
605 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 606EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
607bool _debug_guardpage_enabled __read_mostly;
608
031bc574
JK
609static int __init early_debug_pagealloc(char *buf)
610{
611 if (!buf)
612 return -EINVAL;
2a138dc7 613 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
614}
615early_param("debug_pagealloc", early_debug_pagealloc);
616
e30825f1
JK
617static bool need_debug_guardpage(void)
618{
031bc574
JK
619 /* If we don't use debug_pagealloc, we don't need guard page */
620 if (!debug_pagealloc_enabled())
621 return false;
622
e30825f1
JK
623 return true;
624}
625
626static void init_debug_guardpage(void)
627{
031bc574
JK
628 if (!debug_pagealloc_enabled())
629 return;
630
e30825f1
JK
631 _debug_guardpage_enabled = true;
632}
633
634struct page_ext_operations debug_guardpage_ops = {
635 .need = need_debug_guardpage,
636 .init = init_debug_guardpage,
637};
c0a32fc5
SG
638
639static int __init debug_guardpage_minorder_setup(char *buf)
640{
641 unsigned long res;
642
643 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 644 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
645 return 0;
646 }
647 _debug_guardpage_minorder = res;
1170532b 648 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
649 return 0;
650}
651__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
652
2847cf95
JK
653static inline void set_page_guard(struct zone *zone, struct page *page,
654 unsigned int order, int migratetype)
c0a32fc5 655{
e30825f1
JK
656 struct page_ext *page_ext;
657
658 if (!debug_guardpage_enabled())
659 return;
660
661 page_ext = lookup_page_ext(page);
f86e4271
YS
662 if (unlikely(!page_ext))
663 return;
664
e30825f1
JK
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
2847cf95
JK
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
671}
672
2847cf95
JK
673static inline void clear_page_guard(struct zone *zone, struct page *page,
674 unsigned int order, int migratetype)
c0a32fc5 675{
e30825f1
JK
676 struct page_ext *page_ext;
677
678 if (!debug_guardpage_enabled())
679 return;
680
681 page_ext = lookup_page_ext(page);
f86e4271
YS
682 if (unlikely(!page_ext))
683 return;
684
e30825f1
JK
685 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
686
2847cf95
JK
687 set_page_private(page, 0);
688 if (!is_migrate_isolate(migratetype))
689 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
690}
691#else
e30825f1 692struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
693static inline void set_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype) {}
695static inline void clear_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) {}
c0a32fc5
SG
697#endif
698
7aeb09f9 699static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 700{
4c21e2f2 701 set_page_private(page, order);
676165a8 702 __SetPageBuddy(page);
1da177e4
LT
703}
704
705static inline void rmv_page_order(struct page *page)
706{
676165a8 707 __ClearPageBuddy(page);
4c21e2f2 708 set_page_private(page, 0);
1da177e4
LT
709}
710
1da177e4
LT
711/*
712 * This function checks whether a page is free && is the buddy
713 * we can do coalesce a page and its buddy if
13e7444b 714 * (a) the buddy is not in a hole &&
676165a8 715 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
716 * (c) a page and its buddy have the same order &&
717 * (d) a page and its buddy are in the same zone.
676165a8 718 *
cf6fe945
WSH
719 * For recording whether a page is in the buddy system, we set ->_mapcount
720 * PAGE_BUDDY_MAPCOUNT_VALUE.
721 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
722 * serialized by zone->lock.
1da177e4 723 *
676165a8 724 * For recording page's order, we use page_private(page).
1da177e4 725 */
cb2b95e1 726static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 727 unsigned int order)
1da177e4 728{
14e07298 729 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 730 return 0;
13e7444b 731
c0a32fc5 732 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
733 if (page_zone_id(page) != page_zone_id(buddy))
734 return 0;
735
4c5018ce
WY
736 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
737
c0a32fc5
SG
738 return 1;
739 }
740
cb2b95e1 741 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
742 /*
743 * zone check is done late to avoid uselessly
744 * calculating zone/node ids for pages that could
745 * never merge.
746 */
747 if (page_zone_id(page) != page_zone_id(buddy))
748 return 0;
749
4c5018ce
WY
750 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
751
6aa3001b 752 return 1;
676165a8 753 }
6aa3001b 754 return 0;
1da177e4
LT
755}
756
757/*
758 * Freeing function for a buddy system allocator.
759 *
760 * The concept of a buddy system is to maintain direct-mapped table
761 * (containing bit values) for memory blocks of various "orders".
762 * The bottom level table contains the map for the smallest allocatable
763 * units of memory (here, pages), and each level above it describes
764 * pairs of units from the levels below, hence, "buddies".
765 * At a high level, all that happens here is marking the table entry
766 * at the bottom level available, and propagating the changes upward
767 * as necessary, plus some accounting needed to play nicely with other
768 * parts of the VM system.
769 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
770 * free pages of length of (1 << order) and marked with _mapcount
771 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
772 * field.
1da177e4 773 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
774 * other. That is, if we allocate a small block, and both were
775 * free, the remainder of the region must be split into blocks.
1da177e4 776 * If a block is freed, and its buddy is also free, then this
5f63b720 777 * triggers coalescing into a block of larger size.
1da177e4 778 *
6d49e352 779 * -- nyc
1da177e4
LT
780 */
781
48db57f8 782static inline void __free_one_page(struct page *page,
dc4b0caf 783 unsigned long pfn,
ed0ae21d
MG
784 struct zone *zone, unsigned int order,
785 int migratetype)
1da177e4
LT
786{
787 unsigned long page_idx;
6dda9d55 788 unsigned long combined_idx;
43506fad 789 unsigned long uninitialized_var(buddy_idx);
6dda9d55 790 struct page *buddy;
d9dddbf5
VB
791 unsigned int max_order;
792
793 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 794
d29bb978 795 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 796 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 797
ed0ae21d 798 VM_BUG_ON(migratetype == -1);
d9dddbf5 799 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 800 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 801
d9dddbf5 802 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 803
309381fe
SL
804 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
805 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 806
d9dddbf5 807continue_merging:
3c605096 808 while (order < max_order - 1) {
43506fad
KC
809 buddy_idx = __find_buddy_index(page_idx, order);
810 buddy = page + (buddy_idx - page_idx);
cb2b95e1 811 if (!page_is_buddy(page, buddy, order))
d9dddbf5 812 goto done_merging;
c0a32fc5
SG
813 /*
814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 * merge with it and move up one order.
816 */
817 if (page_is_guard(buddy)) {
2847cf95 818 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
819 } else {
820 list_del(&buddy->lru);
821 zone->free_area[order].nr_free--;
822 rmv_page_order(buddy);
823 }
43506fad 824 combined_idx = buddy_idx & page_idx;
1da177e4
LT
825 page = page + (combined_idx - page_idx);
826 page_idx = combined_idx;
827 order++;
828 }
d9dddbf5
VB
829 if (max_order < MAX_ORDER) {
830 /* If we are here, it means order is >= pageblock_order.
831 * We want to prevent merge between freepages on isolate
832 * pageblock and normal pageblock. Without this, pageblock
833 * isolation could cause incorrect freepage or CMA accounting.
834 *
835 * We don't want to hit this code for the more frequent
836 * low-order merging.
837 */
838 if (unlikely(has_isolate_pageblock(zone))) {
839 int buddy_mt;
840
841 buddy_idx = __find_buddy_index(page_idx, order);
842 buddy = page + (buddy_idx - page_idx);
843 buddy_mt = get_pageblock_migratetype(buddy);
844
845 if (migratetype != buddy_mt
846 && (is_migrate_isolate(migratetype) ||
847 is_migrate_isolate(buddy_mt)))
848 goto done_merging;
849 }
850 max_order++;
851 goto continue_merging;
852 }
853
854done_merging:
1da177e4 855 set_page_order(page, order);
6dda9d55
CZ
856
857 /*
858 * If this is not the largest possible page, check if the buddy
859 * of the next-highest order is free. If it is, it's possible
860 * that pages are being freed that will coalesce soon. In case,
861 * that is happening, add the free page to the tail of the list
862 * so it's less likely to be used soon and more likely to be merged
863 * as a higher order page
864 */
b7f50cfa 865 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 866 struct page *higher_page, *higher_buddy;
43506fad
KC
867 combined_idx = buddy_idx & page_idx;
868 higher_page = page + (combined_idx - page_idx);
869 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 870 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
871 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
872 list_add_tail(&page->lru,
873 &zone->free_area[order].free_list[migratetype]);
874 goto out;
875 }
876 }
877
878 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
879out:
1da177e4
LT
880 zone->free_area[order].nr_free++;
881}
882
7bfec6f4
MG
883/*
884 * A bad page could be due to a number of fields. Instead of multiple branches,
885 * try and check multiple fields with one check. The caller must do a detailed
886 * check if necessary.
887 */
888static inline bool page_expected_state(struct page *page,
889 unsigned long check_flags)
890{
891 if (unlikely(atomic_read(&page->_mapcount) != -1))
892 return false;
893
894 if (unlikely((unsigned long)page->mapping |
895 page_ref_count(page) |
896#ifdef CONFIG_MEMCG
897 (unsigned long)page->mem_cgroup |
898#endif
899 (page->flags & check_flags)))
900 return false;
901
902 return true;
903}
904
bb552ac6 905static void free_pages_check_bad(struct page *page)
1da177e4 906{
7bfec6f4
MG
907 const char *bad_reason;
908 unsigned long bad_flags;
909
7bfec6f4
MG
910 bad_reason = NULL;
911 bad_flags = 0;
f0b791a3 912
53f9263b 913 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
914 bad_reason = "nonzero mapcount";
915 if (unlikely(page->mapping != NULL))
916 bad_reason = "non-NULL mapping";
fe896d18 917 if (unlikely(page_ref_count(page) != 0))
0139aa7b 918 bad_reason = "nonzero _refcount";
f0b791a3
DH
919 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
920 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
921 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
922 }
9edad6ea
JW
923#ifdef CONFIG_MEMCG
924 if (unlikely(page->mem_cgroup))
925 bad_reason = "page still charged to cgroup";
926#endif
7bfec6f4 927 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
928}
929
930static inline int free_pages_check(struct page *page)
931{
da838d4f 932 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 933 return 0;
bb552ac6
MG
934
935 /* Something has gone sideways, find it */
936 free_pages_check_bad(page);
7bfec6f4 937 return 1;
1da177e4
LT
938}
939
4db7548c
MG
940static int free_tail_pages_check(struct page *head_page, struct page *page)
941{
942 int ret = 1;
943
944 /*
945 * We rely page->lru.next never has bit 0 set, unless the page
946 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
947 */
948 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
949
950 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
951 ret = 0;
952 goto out;
953 }
954 switch (page - head_page) {
955 case 1:
956 /* the first tail page: ->mapping is compound_mapcount() */
957 if (unlikely(compound_mapcount(page))) {
958 bad_page(page, "nonzero compound_mapcount", 0);
959 goto out;
960 }
961 break;
962 case 2:
963 /*
964 * the second tail page: ->mapping is
965 * page_deferred_list().next -- ignore value.
966 */
967 break;
968 default:
969 if (page->mapping != TAIL_MAPPING) {
970 bad_page(page, "corrupted mapping in tail page", 0);
971 goto out;
972 }
973 break;
974 }
975 if (unlikely(!PageTail(page))) {
976 bad_page(page, "PageTail not set", 0);
977 goto out;
978 }
979 if (unlikely(compound_head(page) != head_page)) {
980 bad_page(page, "compound_head not consistent", 0);
981 goto out;
982 }
983 ret = 0;
984out:
985 page->mapping = NULL;
986 clear_compound_head(page);
987 return ret;
988}
989
e2769dbd
MG
990static __always_inline bool free_pages_prepare(struct page *page,
991 unsigned int order, bool check_free)
4db7548c 992{
e2769dbd 993 int bad = 0;
4db7548c 994
4db7548c
MG
995 VM_BUG_ON_PAGE(PageTail(page), page);
996
e2769dbd
MG
997 trace_mm_page_free(page, order);
998 kmemcheck_free_shadow(page, order);
e2769dbd
MG
999
1000 /*
1001 * Check tail pages before head page information is cleared to
1002 * avoid checking PageCompound for order-0 pages.
1003 */
1004 if (unlikely(order)) {
1005 bool compound = PageCompound(page);
1006 int i;
1007
1008 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1009
9a73f61b
KS
1010 if (compound)
1011 ClearPageDoubleMap(page);
e2769dbd
MG
1012 for (i = 1; i < (1 << order); i++) {
1013 if (compound)
1014 bad += free_tail_pages_check(page, page + i);
1015 if (unlikely(free_pages_check(page + i))) {
1016 bad++;
1017 continue;
1018 }
1019 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 }
1021 }
bda807d4 1022 if (PageMappingFlags(page))
4db7548c 1023 page->mapping = NULL;
4949148a
VD
1024 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1025 memcg_kmem_uncharge(page, order);
1026 __ClearPageKmemcg(page);
1027 }
e2769dbd
MG
1028 if (check_free)
1029 bad += free_pages_check(page);
1030 if (bad)
1031 return false;
4db7548c 1032
e2769dbd
MG
1033 page_cpupid_reset_last(page);
1034 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1035 reset_page_owner(page, order);
4db7548c
MG
1036
1037 if (!PageHighMem(page)) {
1038 debug_check_no_locks_freed(page_address(page),
e2769dbd 1039 PAGE_SIZE << order);
4db7548c 1040 debug_check_no_obj_freed(page_address(page),
e2769dbd 1041 PAGE_SIZE << order);
4db7548c 1042 }
e2769dbd
MG
1043 arch_free_page(page, order);
1044 kernel_poison_pages(page, 1 << order, 0);
1045 kernel_map_pages(page, 1 << order, 0);
29b52de1 1046 kasan_free_pages(page, order);
4db7548c 1047
4db7548c
MG
1048 return true;
1049}
1050
e2769dbd
MG
1051#ifdef CONFIG_DEBUG_VM
1052static inline bool free_pcp_prepare(struct page *page)
1053{
1054 return free_pages_prepare(page, 0, true);
1055}
1056
1057static inline bool bulkfree_pcp_prepare(struct page *page)
1058{
1059 return false;
1060}
1061#else
1062static bool free_pcp_prepare(struct page *page)
1063{
1064 return free_pages_prepare(page, 0, false);
1065}
1066
4db7548c
MG
1067static bool bulkfree_pcp_prepare(struct page *page)
1068{
1069 return free_pages_check(page);
1070}
1071#endif /* CONFIG_DEBUG_VM */
1072
1da177e4 1073/*
5f8dcc21 1074 * Frees a number of pages from the PCP lists
1da177e4 1075 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1076 * count is the number of pages to free.
1da177e4
LT
1077 *
1078 * If the zone was previously in an "all pages pinned" state then look to
1079 * see if this freeing clears that state.
1080 *
1081 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1082 * pinned" detection logic.
1083 */
5f8dcc21
MG
1084static void free_pcppages_bulk(struct zone *zone, int count,
1085 struct per_cpu_pages *pcp)
1da177e4 1086{
5f8dcc21 1087 int migratetype = 0;
a6f9edd6 1088 int batch_free = 0;
0d5d823a 1089 unsigned long nr_scanned;
3777999d 1090 bool isolated_pageblocks;
5f8dcc21 1091
c54ad30c 1092 spin_lock(&zone->lock);
3777999d 1093 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1094 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1095 if (nr_scanned)
1096 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1097
e5b31ac2 1098 while (count) {
48db57f8 1099 struct page *page;
5f8dcc21
MG
1100 struct list_head *list;
1101
1102 /*
a6f9edd6
MG
1103 * Remove pages from lists in a round-robin fashion. A
1104 * batch_free count is maintained that is incremented when an
1105 * empty list is encountered. This is so more pages are freed
1106 * off fuller lists instead of spinning excessively around empty
1107 * lists
5f8dcc21
MG
1108 */
1109 do {
a6f9edd6 1110 batch_free++;
5f8dcc21
MG
1111 if (++migratetype == MIGRATE_PCPTYPES)
1112 migratetype = 0;
1113 list = &pcp->lists[migratetype];
1114 } while (list_empty(list));
48db57f8 1115
1d16871d
NK
1116 /* This is the only non-empty list. Free them all. */
1117 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1118 batch_free = count;
1d16871d 1119
a6f9edd6 1120 do {
770c8aaa
BZ
1121 int mt; /* migratetype of the to-be-freed page */
1122
a16601c5 1123 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1124 /* must delete as __free_one_page list manipulates */
1125 list_del(&page->lru);
aa016d14 1126
bb14c2c7 1127 mt = get_pcppage_migratetype(page);
aa016d14
VB
1128 /* MIGRATE_ISOLATE page should not go to pcplists */
1129 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1130 /* Pageblock could have been isolated meanwhile */
3777999d 1131 if (unlikely(isolated_pageblocks))
51bb1a40 1132 mt = get_pageblock_migratetype(page);
51bb1a40 1133
4db7548c
MG
1134 if (bulkfree_pcp_prepare(page))
1135 continue;
1136
dc4b0caf 1137 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1138 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1139 } while (--count && --batch_free && !list_empty(list));
1da177e4 1140 }
c54ad30c 1141 spin_unlock(&zone->lock);
1da177e4
LT
1142}
1143
dc4b0caf
MG
1144static void free_one_page(struct zone *zone,
1145 struct page *page, unsigned long pfn,
7aeb09f9 1146 unsigned int order,
ed0ae21d 1147 int migratetype)
1da177e4 1148{
0d5d823a 1149 unsigned long nr_scanned;
006d22d9 1150 spin_lock(&zone->lock);
0d5d823a
MG
1151 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1152 if (nr_scanned)
1153 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1154
ad53f92e
JK
1155 if (unlikely(has_isolate_pageblock(zone) ||
1156 is_migrate_isolate(migratetype))) {
1157 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1158 }
dc4b0caf 1159 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1160 spin_unlock(&zone->lock);
48db57f8
NP
1161}
1162
1e8ce83c
RH
1163static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1164 unsigned long zone, int nid)
1165{
1e8ce83c 1166 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1167 init_page_count(page);
1168 page_mapcount_reset(page);
1169 page_cpupid_reset_last(page);
1e8ce83c 1170
1e8ce83c
RH
1171 INIT_LIST_HEAD(&page->lru);
1172#ifdef WANT_PAGE_VIRTUAL
1173 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1174 if (!is_highmem_idx(zone))
1175 set_page_address(page, __va(pfn << PAGE_SHIFT));
1176#endif
1177}
1178
1179static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1180 int nid)
1181{
1182 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1183}
1184
7e18adb4
MG
1185#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1186static void init_reserved_page(unsigned long pfn)
1187{
1188 pg_data_t *pgdat;
1189 int nid, zid;
1190
1191 if (!early_page_uninitialised(pfn))
1192 return;
1193
1194 nid = early_pfn_to_nid(pfn);
1195 pgdat = NODE_DATA(nid);
1196
1197 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1198 struct zone *zone = &pgdat->node_zones[zid];
1199
1200 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1201 break;
1202 }
1203 __init_single_pfn(pfn, zid, nid);
1204}
1205#else
1206static inline void init_reserved_page(unsigned long pfn)
1207{
1208}
1209#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1210
92923ca3
NZ
1211/*
1212 * Initialised pages do not have PageReserved set. This function is
1213 * called for each range allocated by the bootmem allocator and
1214 * marks the pages PageReserved. The remaining valid pages are later
1215 * sent to the buddy page allocator.
1216 */
4b50bcc7 1217void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1218{
1219 unsigned long start_pfn = PFN_DOWN(start);
1220 unsigned long end_pfn = PFN_UP(end);
1221
7e18adb4
MG
1222 for (; start_pfn < end_pfn; start_pfn++) {
1223 if (pfn_valid(start_pfn)) {
1224 struct page *page = pfn_to_page(start_pfn);
1225
1226 init_reserved_page(start_pfn);
1d798ca3
KS
1227
1228 /* Avoid false-positive PageTail() */
1229 INIT_LIST_HEAD(&page->lru);
1230
7e18adb4
MG
1231 SetPageReserved(page);
1232 }
1233 }
92923ca3
NZ
1234}
1235
ec95f53a
KM
1236static void __free_pages_ok(struct page *page, unsigned int order)
1237{
1238 unsigned long flags;
95e34412 1239 int migratetype;
dc4b0caf 1240 unsigned long pfn = page_to_pfn(page);
ec95f53a 1241
e2769dbd 1242 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1243 return;
1244
cfc47a28 1245 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1246 local_irq_save(flags);
f8891e5e 1247 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1248 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1249 local_irq_restore(flags);
1da177e4
LT
1250}
1251
949698a3 1252static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1253{
c3993076 1254 unsigned int nr_pages = 1 << order;
e2d0bd2b 1255 struct page *p = page;
c3993076 1256 unsigned int loop;
a226f6c8 1257
e2d0bd2b
YL
1258 prefetchw(p);
1259 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1260 prefetchw(p + 1);
c3993076
JW
1261 __ClearPageReserved(p);
1262 set_page_count(p, 0);
a226f6c8 1263 }
e2d0bd2b
YL
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
c3993076 1266
e2d0bd2b 1267 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1268 set_page_refcounted(page);
1269 __free_pages(page, order);
a226f6c8
DH
1270}
1271
75a592a4
MG
1272#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1273 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1274
75a592a4
MG
1275static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1276
1277int __meminit early_pfn_to_nid(unsigned long pfn)
1278{
7ace9917 1279 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1280 int nid;
1281
7ace9917 1282 spin_lock(&early_pfn_lock);
75a592a4 1283 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1284 if (nid < 0)
e4568d38 1285 nid = first_online_node;
7ace9917
MG
1286 spin_unlock(&early_pfn_lock);
1287
1288 return nid;
75a592a4
MG
1289}
1290#endif
1291
1292#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1293static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1294 struct mminit_pfnnid_cache *state)
1295{
1296 int nid;
1297
1298 nid = __early_pfn_to_nid(pfn, state);
1299 if (nid >= 0 && nid != node)
1300 return false;
1301 return true;
1302}
1303
1304/* Only safe to use early in boot when initialisation is single-threaded */
1305static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306{
1307 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1308}
1309
1310#else
1311
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314 return true;
1315}
1316static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
1318{
1319 return true;
1320}
1321#endif
1322
1323
0e1cc95b 1324void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1325 unsigned int order)
1326{
1327 if (early_page_uninitialised(pfn))
1328 return;
949698a3 1329 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1330}
1331
7cf91a98
JK
1332/*
1333 * Check that the whole (or subset of) a pageblock given by the interval of
1334 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1335 * with the migration of free compaction scanner. The scanners then need to
1336 * use only pfn_valid_within() check for arches that allow holes within
1337 * pageblocks.
1338 *
1339 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1340 *
1341 * It's possible on some configurations to have a setup like node0 node1 node0
1342 * i.e. it's possible that all pages within a zones range of pages do not
1343 * belong to a single zone. We assume that a border between node0 and node1
1344 * can occur within a single pageblock, but not a node0 node1 node0
1345 * interleaving within a single pageblock. It is therefore sufficient to check
1346 * the first and last page of a pageblock and avoid checking each individual
1347 * page in a pageblock.
1348 */
1349struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1350 unsigned long end_pfn, struct zone *zone)
1351{
1352 struct page *start_page;
1353 struct page *end_page;
1354
1355 /* end_pfn is one past the range we are checking */
1356 end_pfn--;
1357
1358 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1359 return NULL;
1360
1361 start_page = pfn_to_page(start_pfn);
1362
1363 if (page_zone(start_page) != zone)
1364 return NULL;
1365
1366 end_page = pfn_to_page(end_pfn);
1367
1368 /* This gives a shorter code than deriving page_zone(end_page) */
1369 if (page_zone_id(start_page) != page_zone_id(end_page))
1370 return NULL;
1371
1372 return start_page;
1373}
1374
1375void set_zone_contiguous(struct zone *zone)
1376{
1377 unsigned long block_start_pfn = zone->zone_start_pfn;
1378 unsigned long block_end_pfn;
1379
1380 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1381 for (; block_start_pfn < zone_end_pfn(zone);
1382 block_start_pfn = block_end_pfn,
1383 block_end_pfn += pageblock_nr_pages) {
1384
1385 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1386
1387 if (!__pageblock_pfn_to_page(block_start_pfn,
1388 block_end_pfn, zone))
1389 return;
1390 }
1391
1392 /* We confirm that there is no hole */
1393 zone->contiguous = true;
1394}
1395
1396void clear_zone_contiguous(struct zone *zone)
1397{
1398 zone->contiguous = false;
1399}
1400
7e18adb4 1401#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1402static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1403 unsigned long pfn, int nr_pages)
1404{
1405 int i;
1406
1407 if (!page)
1408 return;
1409
1410 /* Free a large naturally-aligned chunk if possible */
1411 if (nr_pages == MAX_ORDER_NR_PAGES &&
1412 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1413 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1414 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1415 return;
1416 }
1417
949698a3
LZ
1418 for (i = 0; i < nr_pages; i++, page++)
1419 __free_pages_boot_core(page, 0);
a4de83dd
MG
1420}
1421
d3cd131d
NS
1422/* Completion tracking for deferred_init_memmap() threads */
1423static atomic_t pgdat_init_n_undone __initdata;
1424static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1425
1426static inline void __init pgdat_init_report_one_done(void)
1427{
1428 if (atomic_dec_and_test(&pgdat_init_n_undone))
1429 complete(&pgdat_init_all_done_comp);
1430}
0e1cc95b 1431
7e18adb4 1432/* Initialise remaining memory on a node */
0e1cc95b 1433static int __init deferred_init_memmap(void *data)
7e18adb4 1434{
0e1cc95b
MG
1435 pg_data_t *pgdat = data;
1436 int nid = pgdat->node_id;
7e18adb4
MG
1437 struct mminit_pfnnid_cache nid_init_state = { };
1438 unsigned long start = jiffies;
1439 unsigned long nr_pages = 0;
1440 unsigned long walk_start, walk_end;
1441 int i, zid;
1442 struct zone *zone;
7e18adb4 1443 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1444 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1445
0e1cc95b 1446 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1447 pgdat_init_report_one_done();
0e1cc95b
MG
1448 return 0;
1449 }
1450
1451 /* Bind memory initialisation thread to a local node if possible */
1452 if (!cpumask_empty(cpumask))
1453 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1454
1455 /* Sanity check boundaries */
1456 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1457 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1458 pgdat->first_deferred_pfn = ULONG_MAX;
1459
1460 /* Only the highest zone is deferred so find it */
1461 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1462 zone = pgdat->node_zones + zid;
1463 if (first_init_pfn < zone_end_pfn(zone))
1464 break;
1465 }
1466
1467 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1468 unsigned long pfn, end_pfn;
54608c3f 1469 struct page *page = NULL;
a4de83dd
MG
1470 struct page *free_base_page = NULL;
1471 unsigned long free_base_pfn = 0;
1472 int nr_to_free = 0;
7e18adb4
MG
1473
1474 end_pfn = min(walk_end, zone_end_pfn(zone));
1475 pfn = first_init_pfn;
1476 if (pfn < walk_start)
1477 pfn = walk_start;
1478 if (pfn < zone->zone_start_pfn)
1479 pfn = zone->zone_start_pfn;
1480
1481 for (; pfn < end_pfn; pfn++) {
54608c3f 1482 if (!pfn_valid_within(pfn))
a4de83dd 1483 goto free_range;
7e18adb4 1484
54608c3f
MG
1485 /*
1486 * Ensure pfn_valid is checked every
1487 * MAX_ORDER_NR_PAGES for memory holes
1488 */
1489 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1490 if (!pfn_valid(pfn)) {
1491 page = NULL;
a4de83dd 1492 goto free_range;
54608c3f
MG
1493 }
1494 }
1495
1496 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1497 page = NULL;
a4de83dd 1498 goto free_range;
54608c3f
MG
1499 }
1500
1501 /* Minimise pfn page lookups and scheduler checks */
1502 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1503 page++;
1504 } else {
a4de83dd
MG
1505 nr_pages += nr_to_free;
1506 deferred_free_range(free_base_page,
1507 free_base_pfn, nr_to_free);
1508 free_base_page = NULL;
1509 free_base_pfn = nr_to_free = 0;
1510
54608c3f
MG
1511 page = pfn_to_page(pfn);
1512 cond_resched();
1513 }
7e18adb4
MG
1514
1515 if (page->flags) {
1516 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1517 goto free_range;
7e18adb4
MG
1518 }
1519
1520 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1521 if (!free_base_page) {
1522 free_base_page = page;
1523 free_base_pfn = pfn;
1524 nr_to_free = 0;
1525 }
1526 nr_to_free++;
1527
1528 /* Where possible, batch up pages for a single free */
1529 continue;
1530free_range:
1531 /* Free the current block of pages to allocator */
1532 nr_pages += nr_to_free;
1533 deferred_free_range(free_base_page, free_base_pfn,
1534 nr_to_free);
1535 free_base_page = NULL;
1536 free_base_pfn = nr_to_free = 0;
7e18adb4 1537 }
a4de83dd 1538
7e18adb4
MG
1539 first_init_pfn = max(end_pfn, first_init_pfn);
1540 }
1541
1542 /* Sanity check that the next zone really is unpopulated */
1543 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1544
0e1cc95b 1545 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1546 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1547
1548 pgdat_init_report_one_done();
0e1cc95b
MG
1549 return 0;
1550}
7cf91a98 1551#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1552
1553void __init page_alloc_init_late(void)
1554{
7cf91a98
JK
1555 struct zone *zone;
1556
1557#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1558 int nid;
1559
d3cd131d
NS
1560 /* There will be num_node_state(N_MEMORY) threads */
1561 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1562 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1563 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1564 }
1565
1566 /* Block until all are initialised */
d3cd131d 1567 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1568
1569 /* Reinit limits that are based on free pages after the kernel is up */
1570 files_maxfiles_init();
7cf91a98
JK
1571#endif
1572
1573 for_each_populated_zone(zone)
1574 set_zone_contiguous(zone);
7e18adb4 1575}
7e18adb4 1576
47118af0 1577#ifdef CONFIG_CMA
9cf510a5 1578/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1579void __init init_cma_reserved_pageblock(struct page *page)
1580{
1581 unsigned i = pageblock_nr_pages;
1582 struct page *p = page;
1583
1584 do {
1585 __ClearPageReserved(p);
1586 set_page_count(p, 0);
1587 } while (++p, --i);
1588
47118af0 1589 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1590
1591 if (pageblock_order >= MAX_ORDER) {
1592 i = pageblock_nr_pages;
1593 p = page;
1594 do {
1595 set_page_refcounted(p);
1596 __free_pages(p, MAX_ORDER - 1);
1597 p += MAX_ORDER_NR_PAGES;
1598 } while (i -= MAX_ORDER_NR_PAGES);
1599 } else {
1600 set_page_refcounted(page);
1601 __free_pages(page, pageblock_order);
1602 }
1603
3dcc0571 1604 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1605}
1606#endif
1da177e4
LT
1607
1608/*
1609 * The order of subdivision here is critical for the IO subsystem.
1610 * Please do not alter this order without good reasons and regression
1611 * testing. Specifically, as large blocks of memory are subdivided,
1612 * the order in which smaller blocks are delivered depends on the order
1613 * they're subdivided in this function. This is the primary factor
1614 * influencing the order in which pages are delivered to the IO
1615 * subsystem according to empirical testing, and this is also justified
1616 * by considering the behavior of a buddy system containing a single
1617 * large block of memory acted on by a series of small allocations.
1618 * This behavior is a critical factor in sglist merging's success.
1619 *
6d49e352 1620 * -- nyc
1da177e4 1621 */
085cc7d5 1622static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1623 int low, int high, struct free_area *area,
1624 int migratetype)
1da177e4
LT
1625{
1626 unsigned long size = 1 << high;
1627
1628 while (high > low) {
1629 area--;
1630 high--;
1631 size >>= 1;
309381fe 1632 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1633
2847cf95 1634 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1635 debug_guardpage_enabled() &&
2847cf95 1636 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1637 /*
1638 * Mark as guard pages (or page), that will allow to
1639 * merge back to allocator when buddy will be freed.
1640 * Corresponding page table entries will not be touched,
1641 * pages will stay not present in virtual address space
1642 */
2847cf95 1643 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1644 continue;
1645 }
b2a0ac88 1646 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1647 area->nr_free++;
1648 set_page_order(&page[size], high);
1649 }
1da177e4
LT
1650}
1651
4e611801 1652static void check_new_page_bad(struct page *page)
1da177e4 1653{
4e611801
VB
1654 const char *bad_reason = NULL;
1655 unsigned long bad_flags = 0;
7bfec6f4 1656
53f9263b 1657 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1658 bad_reason = "nonzero mapcount";
1659 if (unlikely(page->mapping != NULL))
1660 bad_reason = "non-NULL mapping";
fe896d18 1661 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1662 bad_reason = "nonzero _count";
f4c18e6f
NH
1663 if (unlikely(page->flags & __PG_HWPOISON)) {
1664 bad_reason = "HWPoisoned (hardware-corrupted)";
1665 bad_flags = __PG_HWPOISON;
e570f56c
NH
1666 /* Don't complain about hwpoisoned pages */
1667 page_mapcount_reset(page); /* remove PageBuddy */
1668 return;
f4c18e6f 1669 }
f0b791a3
DH
1670 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1671 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1672 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1673 }
9edad6ea
JW
1674#ifdef CONFIG_MEMCG
1675 if (unlikely(page->mem_cgroup))
1676 bad_reason = "page still charged to cgroup";
1677#endif
4e611801
VB
1678 bad_page(page, bad_reason, bad_flags);
1679}
1680
1681/*
1682 * This page is about to be returned from the page allocator
1683 */
1684static inline int check_new_page(struct page *page)
1685{
1686 if (likely(page_expected_state(page,
1687 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1688 return 0;
1689
1690 check_new_page_bad(page);
1691 return 1;
2a7684a2
WF
1692}
1693
1414c7f4
LA
1694static inline bool free_pages_prezeroed(bool poisoned)
1695{
1696 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1697 page_poisoning_enabled() && poisoned;
1698}
1699
479f854a
MG
1700#ifdef CONFIG_DEBUG_VM
1701static bool check_pcp_refill(struct page *page)
1702{
1703 return false;
1704}
1705
1706static bool check_new_pcp(struct page *page)
1707{
1708 return check_new_page(page);
1709}
1710#else
1711static bool check_pcp_refill(struct page *page)
1712{
1713 return check_new_page(page);
1714}
1715static bool check_new_pcp(struct page *page)
1716{
1717 return false;
1718}
1719#endif /* CONFIG_DEBUG_VM */
1720
1721static bool check_new_pages(struct page *page, unsigned int order)
1722{
1723 int i;
1724 for (i = 0; i < (1 << order); i++) {
1725 struct page *p = page + i;
1726
1727 if (unlikely(check_new_page(p)))
1728 return true;
1729 }
1730
1731 return false;
1732}
1733
46f24fd8
JK
1734inline void post_alloc_hook(struct page *page, unsigned int order,
1735 gfp_t gfp_flags)
1736{
1737 set_page_private(page, 0);
1738 set_page_refcounted(page);
1739
1740 arch_alloc_page(page, order);
1741 kernel_map_pages(page, 1 << order, 1);
1742 kernel_poison_pages(page, 1 << order, 1);
1743 kasan_alloc_pages(page, order);
1744 set_page_owner(page, order, gfp_flags);
1745}
1746
479f854a 1747static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1748 unsigned int alloc_flags)
2a7684a2
WF
1749{
1750 int i;
1414c7f4 1751 bool poisoned = true;
2a7684a2
WF
1752
1753 for (i = 0; i < (1 << order); i++) {
1754 struct page *p = page + i;
1414c7f4
LA
1755 if (poisoned)
1756 poisoned &= page_is_poisoned(p);
2a7684a2 1757 }
689bcebf 1758
46f24fd8 1759 post_alloc_hook(page, order, gfp_flags);
17cf4406 1760
1414c7f4 1761 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1762 for (i = 0; i < (1 << order); i++)
1763 clear_highpage(page + i);
17cf4406
NP
1764
1765 if (order && (gfp_flags & __GFP_COMP))
1766 prep_compound_page(page, order);
1767
75379191 1768 /*
2f064f34 1769 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1770 * allocate the page. The expectation is that the caller is taking
1771 * steps that will free more memory. The caller should avoid the page
1772 * being used for !PFMEMALLOC purposes.
1773 */
2f064f34
MH
1774 if (alloc_flags & ALLOC_NO_WATERMARKS)
1775 set_page_pfmemalloc(page);
1776 else
1777 clear_page_pfmemalloc(page);
1da177e4
LT
1778}
1779
56fd56b8
MG
1780/*
1781 * Go through the free lists for the given migratetype and remove
1782 * the smallest available page from the freelists
1783 */
728ec980
MG
1784static inline
1785struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1786 int migratetype)
1787{
1788 unsigned int current_order;
b8af2941 1789 struct free_area *area;
56fd56b8
MG
1790 struct page *page;
1791
1792 /* Find a page of the appropriate size in the preferred list */
1793 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1794 area = &(zone->free_area[current_order]);
a16601c5 1795 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1796 struct page, lru);
a16601c5
GT
1797 if (!page)
1798 continue;
56fd56b8
MG
1799 list_del(&page->lru);
1800 rmv_page_order(page);
1801 area->nr_free--;
56fd56b8 1802 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1803 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1804 return page;
1805 }
1806
1807 return NULL;
1808}
1809
1810
b2a0ac88
MG
1811/*
1812 * This array describes the order lists are fallen back to when
1813 * the free lists for the desirable migrate type are depleted
1814 */
47118af0 1815static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1816 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1817 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1818 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1819#ifdef CONFIG_CMA
974a786e 1820 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1821#endif
194159fb 1822#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1823 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1824#endif
b2a0ac88
MG
1825};
1826
dc67647b
JK
1827#ifdef CONFIG_CMA
1828static struct page *__rmqueue_cma_fallback(struct zone *zone,
1829 unsigned int order)
1830{
1831 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1832}
1833#else
1834static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1835 unsigned int order) { return NULL; }
1836#endif
1837
c361be55
MG
1838/*
1839 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1840 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1841 * boundary. If alignment is required, use move_freepages_block()
1842 */
435b405c 1843int move_freepages(struct zone *zone,
b69a7288
AB
1844 struct page *start_page, struct page *end_page,
1845 int migratetype)
c361be55
MG
1846{
1847 struct page *page;
d00181b9 1848 unsigned int order;
d100313f 1849 int pages_moved = 0;
c361be55
MG
1850
1851#ifndef CONFIG_HOLES_IN_ZONE
1852 /*
1853 * page_zone is not safe to call in this context when
1854 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1855 * anyway as we check zone boundaries in move_freepages_block().
1856 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1857 * grouping pages by mobility
c361be55 1858 */
97ee4ba7 1859 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1860#endif
1861
1862 for (page = start_page; page <= end_page;) {
344c790e 1863 /* Make sure we are not inadvertently changing nodes */
309381fe 1864 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1865
c361be55
MG
1866 if (!pfn_valid_within(page_to_pfn(page))) {
1867 page++;
1868 continue;
1869 }
1870
1871 if (!PageBuddy(page)) {
1872 page++;
1873 continue;
1874 }
1875
1876 order = page_order(page);
84be48d8
KS
1877 list_move(&page->lru,
1878 &zone->free_area[order].free_list[migratetype]);
c361be55 1879 page += 1 << order;
d100313f 1880 pages_moved += 1 << order;
c361be55
MG
1881 }
1882
d100313f 1883 return pages_moved;
c361be55
MG
1884}
1885
ee6f509c 1886int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1887 int migratetype)
c361be55
MG
1888{
1889 unsigned long start_pfn, end_pfn;
1890 struct page *start_page, *end_page;
1891
1892 start_pfn = page_to_pfn(page);
d9c23400 1893 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1894 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1895 end_page = start_page + pageblock_nr_pages - 1;
1896 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1897
1898 /* Do not cross zone boundaries */
108bcc96 1899 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1900 start_page = page;
108bcc96 1901 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1902 return 0;
1903
1904 return move_freepages(zone, start_page, end_page, migratetype);
1905}
1906
2f66a68f
MG
1907static void change_pageblock_range(struct page *pageblock_page,
1908 int start_order, int migratetype)
1909{
1910 int nr_pageblocks = 1 << (start_order - pageblock_order);
1911
1912 while (nr_pageblocks--) {
1913 set_pageblock_migratetype(pageblock_page, migratetype);
1914 pageblock_page += pageblock_nr_pages;
1915 }
1916}
1917
fef903ef 1918/*
9c0415eb
VB
1919 * When we are falling back to another migratetype during allocation, try to
1920 * steal extra free pages from the same pageblocks to satisfy further
1921 * allocations, instead of polluting multiple pageblocks.
1922 *
1923 * If we are stealing a relatively large buddy page, it is likely there will
1924 * be more free pages in the pageblock, so try to steal them all. For
1925 * reclaimable and unmovable allocations, we steal regardless of page size,
1926 * as fragmentation caused by those allocations polluting movable pageblocks
1927 * is worse than movable allocations stealing from unmovable and reclaimable
1928 * pageblocks.
fef903ef 1929 */
4eb7dce6
JK
1930static bool can_steal_fallback(unsigned int order, int start_mt)
1931{
1932 /*
1933 * Leaving this order check is intended, although there is
1934 * relaxed order check in next check. The reason is that
1935 * we can actually steal whole pageblock if this condition met,
1936 * but, below check doesn't guarantee it and that is just heuristic
1937 * so could be changed anytime.
1938 */
1939 if (order >= pageblock_order)
1940 return true;
1941
1942 if (order >= pageblock_order / 2 ||
1943 start_mt == MIGRATE_RECLAIMABLE ||
1944 start_mt == MIGRATE_UNMOVABLE ||
1945 page_group_by_mobility_disabled)
1946 return true;
1947
1948 return false;
1949}
1950
1951/*
1952 * This function implements actual steal behaviour. If order is large enough,
1953 * we can steal whole pageblock. If not, we first move freepages in this
1954 * pageblock and check whether half of pages are moved or not. If half of
1955 * pages are moved, we can change migratetype of pageblock and permanently
1956 * use it's pages as requested migratetype in the future.
1957 */
1958static void steal_suitable_fallback(struct zone *zone, struct page *page,
1959 int start_type)
fef903ef 1960{
d00181b9 1961 unsigned int current_order = page_order(page);
4eb7dce6 1962 int pages;
fef903ef 1963
fef903ef
SB
1964 /* Take ownership for orders >= pageblock_order */
1965 if (current_order >= pageblock_order) {
1966 change_pageblock_range(page, current_order, start_type);
3a1086fb 1967 return;
fef903ef
SB
1968 }
1969
4eb7dce6 1970 pages = move_freepages_block(zone, page, start_type);
fef903ef 1971
4eb7dce6
JK
1972 /* Claim the whole block if over half of it is free */
1973 if (pages >= (1 << (pageblock_order-1)) ||
1974 page_group_by_mobility_disabled)
1975 set_pageblock_migratetype(page, start_type);
1976}
1977
2149cdae
JK
1978/*
1979 * Check whether there is a suitable fallback freepage with requested order.
1980 * If only_stealable is true, this function returns fallback_mt only if
1981 * we can steal other freepages all together. This would help to reduce
1982 * fragmentation due to mixed migratetype pages in one pageblock.
1983 */
1984int find_suitable_fallback(struct free_area *area, unsigned int order,
1985 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1986{
1987 int i;
1988 int fallback_mt;
1989
1990 if (area->nr_free == 0)
1991 return -1;
1992
1993 *can_steal = false;
1994 for (i = 0;; i++) {
1995 fallback_mt = fallbacks[migratetype][i];
974a786e 1996 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1997 break;
1998
1999 if (list_empty(&area->free_list[fallback_mt]))
2000 continue;
fef903ef 2001
4eb7dce6
JK
2002 if (can_steal_fallback(order, migratetype))
2003 *can_steal = true;
2004
2149cdae
JK
2005 if (!only_stealable)
2006 return fallback_mt;
2007
2008 if (*can_steal)
2009 return fallback_mt;
fef903ef 2010 }
4eb7dce6
JK
2011
2012 return -1;
fef903ef
SB
2013}
2014
0aaa29a5
MG
2015/*
2016 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2017 * there are no empty page blocks that contain a page with a suitable order
2018 */
2019static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2020 unsigned int alloc_order)
2021{
2022 int mt;
2023 unsigned long max_managed, flags;
2024
2025 /*
2026 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2027 * Check is race-prone but harmless.
2028 */
2029 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2030 if (zone->nr_reserved_highatomic >= max_managed)
2031 return;
2032
2033 spin_lock_irqsave(&zone->lock, flags);
2034
2035 /* Recheck the nr_reserved_highatomic limit under the lock */
2036 if (zone->nr_reserved_highatomic >= max_managed)
2037 goto out_unlock;
2038
2039 /* Yoink! */
2040 mt = get_pageblock_migratetype(page);
2041 if (mt != MIGRATE_HIGHATOMIC &&
2042 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2043 zone->nr_reserved_highatomic += pageblock_nr_pages;
2044 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2045 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2046 }
2047
2048out_unlock:
2049 spin_unlock_irqrestore(&zone->lock, flags);
2050}
2051
2052/*
2053 * Used when an allocation is about to fail under memory pressure. This
2054 * potentially hurts the reliability of high-order allocations when under
2055 * intense memory pressure but failed atomic allocations should be easier
2056 * to recover from than an OOM.
2057 */
2058static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2059{
2060 struct zonelist *zonelist = ac->zonelist;
2061 unsigned long flags;
2062 struct zoneref *z;
2063 struct zone *zone;
2064 struct page *page;
2065 int order;
2066
2067 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2068 ac->nodemask) {
2069 /* Preserve at least one pageblock */
2070 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2071 continue;
2072
2073 spin_lock_irqsave(&zone->lock, flags);
2074 for (order = 0; order < MAX_ORDER; order++) {
2075 struct free_area *area = &(zone->free_area[order]);
2076
a16601c5
GT
2077 page = list_first_entry_or_null(
2078 &area->free_list[MIGRATE_HIGHATOMIC],
2079 struct page, lru);
2080 if (!page)
0aaa29a5
MG
2081 continue;
2082
0aaa29a5
MG
2083 /*
2084 * It should never happen but changes to locking could
2085 * inadvertently allow a per-cpu drain to add pages
2086 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2087 * and watch for underflows.
2088 */
2089 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2090 zone->nr_reserved_highatomic);
2091
2092 /*
2093 * Convert to ac->migratetype and avoid the normal
2094 * pageblock stealing heuristics. Minimally, the caller
2095 * is doing the work and needs the pages. More
2096 * importantly, if the block was always converted to
2097 * MIGRATE_UNMOVABLE or another type then the number
2098 * of pageblocks that cannot be completely freed
2099 * may increase.
2100 */
2101 set_pageblock_migratetype(page, ac->migratetype);
2102 move_freepages_block(zone, page, ac->migratetype);
2103 spin_unlock_irqrestore(&zone->lock, flags);
2104 return;
2105 }
2106 spin_unlock_irqrestore(&zone->lock, flags);
2107 }
2108}
2109
b2a0ac88 2110/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2111static inline struct page *
7aeb09f9 2112__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2113{
b8af2941 2114 struct free_area *area;
7aeb09f9 2115 unsigned int current_order;
b2a0ac88 2116 struct page *page;
4eb7dce6
JK
2117 int fallback_mt;
2118 bool can_steal;
b2a0ac88
MG
2119
2120 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2121 for (current_order = MAX_ORDER-1;
2122 current_order >= order && current_order <= MAX_ORDER-1;
2123 --current_order) {
4eb7dce6
JK
2124 area = &(zone->free_area[current_order]);
2125 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2126 start_migratetype, false, &can_steal);
4eb7dce6
JK
2127 if (fallback_mt == -1)
2128 continue;
b2a0ac88 2129
a16601c5 2130 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2131 struct page, lru);
2132 if (can_steal)
2133 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2134
4eb7dce6
JK
2135 /* Remove the page from the freelists */
2136 area->nr_free--;
2137 list_del(&page->lru);
2138 rmv_page_order(page);
3a1086fb 2139
4eb7dce6
JK
2140 expand(zone, page, order, current_order, area,
2141 start_migratetype);
2142 /*
bb14c2c7 2143 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2144 * migratetype depending on the decisions in
bb14c2c7
VB
2145 * find_suitable_fallback(). This is OK as long as it does not
2146 * differ for MIGRATE_CMA pageblocks. Those can be used as
2147 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2148 */
bb14c2c7 2149 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2150
4eb7dce6
JK
2151 trace_mm_page_alloc_extfrag(page, order, current_order,
2152 start_migratetype, fallback_mt);
e0fff1bd 2153
4eb7dce6 2154 return page;
b2a0ac88
MG
2155 }
2156
728ec980 2157 return NULL;
b2a0ac88
MG
2158}
2159
56fd56b8 2160/*
1da177e4
LT
2161 * Do the hard work of removing an element from the buddy allocator.
2162 * Call me with the zone->lock already held.
2163 */
b2a0ac88 2164static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2165 int migratetype)
1da177e4 2166{
1da177e4
LT
2167 struct page *page;
2168
56fd56b8 2169 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2170 if (unlikely(!page)) {
dc67647b
JK
2171 if (migratetype == MIGRATE_MOVABLE)
2172 page = __rmqueue_cma_fallback(zone, order);
2173
2174 if (!page)
2175 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2176 }
2177
0d3d062a 2178 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2179 return page;
1da177e4
LT
2180}
2181
5f63b720 2182/*
1da177e4
LT
2183 * Obtain a specified number of elements from the buddy allocator, all under
2184 * a single hold of the lock, for efficiency. Add them to the supplied list.
2185 * Returns the number of new pages which were placed at *list.
2186 */
5f63b720 2187static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2188 unsigned long count, struct list_head *list,
b745bc85 2189 int migratetype, bool cold)
1da177e4 2190{
5bcc9f86 2191 int i;
5f63b720 2192
c54ad30c 2193 spin_lock(&zone->lock);
1da177e4 2194 for (i = 0; i < count; ++i) {
6ac0206b 2195 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2196 if (unlikely(page == NULL))
1da177e4 2197 break;
81eabcbe 2198
479f854a
MG
2199 if (unlikely(check_pcp_refill(page)))
2200 continue;
2201
81eabcbe
MG
2202 /*
2203 * Split buddy pages returned by expand() are received here
2204 * in physical page order. The page is added to the callers and
2205 * list and the list head then moves forward. From the callers
2206 * perspective, the linked list is ordered by page number in
2207 * some conditions. This is useful for IO devices that can
2208 * merge IO requests if the physical pages are ordered
2209 * properly.
2210 */
b745bc85 2211 if (likely(!cold))
e084b2d9
MG
2212 list_add(&page->lru, list);
2213 else
2214 list_add_tail(&page->lru, list);
81eabcbe 2215 list = &page->lru;
bb14c2c7 2216 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2217 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2218 -(1 << order));
1da177e4 2219 }
f2260e6b 2220 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2221 spin_unlock(&zone->lock);
085cc7d5 2222 return i;
1da177e4
LT
2223}
2224
4ae7c039 2225#ifdef CONFIG_NUMA
8fce4d8e 2226/*
4037d452
CL
2227 * Called from the vmstat counter updater to drain pagesets of this
2228 * currently executing processor on remote nodes after they have
2229 * expired.
2230 *
879336c3
CL
2231 * Note that this function must be called with the thread pinned to
2232 * a single processor.
8fce4d8e 2233 */
4037d452 2234void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2235{
4ae7c039 2236 unsigned long flags;
7be12fc9 2237 int to_drain, batch;
4ae7c039 2238
4037d452 2239 local_irq_save(flags);
4db0c3c2 2240 batch = READ_ONCE(pcp->batch);
7be12fc9 2241 to_drain = min(pcp->count, batch);
2a13515c
KM
2242 if (to_drain > 0) {
2243 free_pcppages_bulk(zone, to_drain, pcp);
2244 pcp->count -= to_drain;
2245 }
4037d452 2246 local_irq_restore(flags);
4ae7c039
CL
2247}
2248#endif
2249
9f8f2172 2250/*
93481ff0 2251 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2252 *
2253 * The processor must either be the current processor and the
2254 * thread pinned to the current processor or a processor that
2255 * is not online.
2256 */
93481ff0 2257static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2258{
c54ad30c 2259 unsigned long flags;
93481ff0
VB
2260 struct per_cpu_pageset *pset;
2261 struct per_cpu_pages *pcp;
1da177e4 2262
93481ff0
VB
2263 local_irq_save(flags);
2264 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2265
93481ff0
VB
2266 pcp = &pset->pcp;
2267 if (pcp->count) {
2268 free_pcppages_bulk(zone, pcp->count, pcp);
2269 pcp->count = 0;
2270 }
2271 local_irq_restore(flags);
2272}
3dfa5721 2273
93481ff0
VB
2274/*
2275 * Drain pcplists of all zones on the indicated processor.
2276 *
2277 * The processor must either be the current processor and the
2278 * thread pinned to the current processor or a processor that
2279 * is not online.
2280 */
2281static void drain_pages(unsigned int cpu)
2282{
2283 struct zone *zone;
2284
2285 for_each_populated_zone(zone) {
2286 drain_pages_zone(cpu, zone);
1da177e4
LT
2287 }
2288}
1da177e4 2289
9f8f2172
CL
2290/*
2291 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2292 *
2293 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2294 * the single zone's pages.
9f8f2172 2295 */
93481ff0 2296void drain_local_pages(struct zone *zone)
9f8f2172 2297{
93481ff0
VB
2298 int cpu = smp_processor_id();
2299
2300 if (zone)
2301 drain_pages_zone(cpu, zone);
2302 else
2303 drain_pages(cpu);
9f8f2172
CL
2304}
2305
2306/*
74046494
GBY
2307 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2308 *
93481ff0
VB
2309 * When zone parameter is non-NULL, spill just the single zone's pages.
2310 *
74046494
GBY
2311 * Note that this code is protected against sending an IPI to an offline
2312 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2313 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2314 * nothing keeps CPUs from showing up after we populated the cpumask and
2315 * before the call to on_each_cpu_mask().
9f8f2172 2316 */
93481ff0 2317void drain_all_pages(struct zone *zone)
9f8f2172 2318{
74046494 2319 int cpu;
74046494
GBY
2320
2321 /*
2322 * Allocate in the BSS so we wont require allocation in
2323 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2324 */
2325 static cpumask_t cpus_with_pcps;
2326
2327 /*
2328 * We don't care about racing with CPU hotplug event
2329 * as offline notification will cause the notified
2330 * cpu to drain that CPU pcps and on_each_cpu_mask
2331 * disables preemption as part of its processing
2332 */
2333 for_each_online_cpu(cpu) {
93481ff0
VB
2334 struct per_cpu_pageset *pcp;
2335 struct zone *z;
74046494 2336 bool has_pcps = false;
93481ff0
VB
2337
2338 if (zone) {
74046494 2339 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2340 if (pcp->pcp.count)
74046494 2341 has_pcps = true;
93481ff0
VB
2342 } else {
2343 for_each_populated_zone(z) {
2344 pcp = per_cpu_ptr(z->pageset, cpu);
2345 if (pcp->pcp.count) {
2346 has_pcps = true;
2347 break;
2348 }
74046494
GBY
2349 }
2350 }
93481ff0 2351
74046494
GBY
2352 if (has_pcps)
2353 cpumask_set_cpu(cpu, &cpus_with_pcps);
2354 else
2355 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2356 }
93481ff0
VB
2357 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2358 zone, 1);
9f8f2172
CL
2359}
2360
296699de 2361#ifdef CONFIG_HIBERNATION
1da177e4
LT
2362
2363void mark_free_pages(struct zone *zone)
2364{
f623f0db
RW
2365 unsigned long pfn, max_zone_pfn;
2366 unsigned long flags;
7aeb09f9 2367 unsigned int order, t;
86760a2c 2368 struct page *page;
1da177e4 2369
8080fc03 2370 if (zone_is_empty(zone))
1da177e4
LT
2371 return;
2372
2373 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2374
108bcc96 2375 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2376 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2377 if (pfn_valid(pfn)) {
86760a2c 2378 page = pfn_to_page(pfn);
ba6b0979
JK
2379
2380 if (page_zone(page) != zone)
2381 continue;
2382
7be98234
RW
2383 if (!swsusp_page_is_forbidden(page))
2384 swsusp_unset_page_free(page);
f623f0db 2385 }
1da177e4 2386
b2a0ac88 2387 for_each_migratetype_order(order, t) {
86760a2c
GT
2388 list_for_each_entry(page,
2389 &zone->free_area[order].free_list[t], lru) {
f623f0db 2390 unsigned long i;
1da177e4 2391
86760a2c 2392 pfn = page_to_pfn(page);
f623f0db 2393 for (i = 0; i < (1UL << order); i++)
7be98234 2394 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2395 }
b2a0ac88 2396 }
1da177e4
LT
2397 spin_unlock_irqrestore(&zone->lock, flags);
2398}
e2c55dc8 2399#endif /* CONFIG_PM */
1da177e4 2400
1da177e4
LT
2401/*
2402 * Free a 0-order page
b745bc85 2403 * cold == true ? free a cold page : free a hot page
1da177e4 2404 */
b745bc85 2405void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2406{
2407 struct zone *zone = page_zone(page);
2408 struct per_cpu_pages *pcp;
2409 unsigned long flags;
dc4b0caf 2410 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2411 int migratetype;
1da177e4 2412
4db7548c 2413 if (!free_pcp_prepare(page))
689bcebf
HD
2414 return;
2415
dc4b0caf 2416 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2417 set_pcppage_migratetype(page, migratetype);
1da177e4 2418 local_irq_save(flags);
f8891e5e 2419 __count_vm_event(PGFREE);
da456f14 2420
5f8dcc21
MG
2421 /*
2422 * We only track unmovable, reclaimable and movable on pcp lists.
2423 * Free ISOLATE pages back to the allocator because they are being
2424 * offlined but treat RESERVE as movable pages so we can get those
2425 * areas back if necessary. Otherwise, we may have to free
2426 * excessively into the page allocator
2427 */
2428 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2429 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2430 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2431 goto out;
2432 }
2433 migratetype = MIGRATE_MOVABLE;
2434 }
2435
99dcc3e5 2436 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2437 if (!cold)
5f8dcc21 2438 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2439 else
2440 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2441 pcp->count++;
48db57f8 2442 if (pcp->count >= pcp->high) {
4db0c3c2 2443 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2444 free_pcppages_bulk(zone, batch, pcp);
2445 pcp->count -= batch;
48db57f8 2446 }
5f8dcc21
MG
2447
2448out:
1da177e4 2449 local_irq_restore(flags);
1da177e4
LT
2450}
2451
cc59850e
KK
2452/*
2453 * Free a list of 0-order pages
2454 */
b745bc85 2455void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2456{
2457 struct page *page, *next;
2458
2459 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2460 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2461 free_hot_cold_page(page, cold);
2462 }
2463}
2464
8dfcc9ba
NP
2465/*
2466 * split_page takes a non-compound higher-order page, and splits it into
2467 * n (1<<order) sub-pages: page[0..n]
2468 * Each sub-page must be freed individually.
2469 *
2470 * Note: this is probably too low level an operation for use in drivers.
2471 * Please consult with lkml before using this in your driver.
2472 */
2473void split_page(struct page *page, unsigned int order)
2474{
2475 int i;
2476
309381fe
SL
2477 VM_BUG_ON_PAGE(PageCompound(page), page);
2478 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2479
2480#ifdef CONFIG_KMEMCHECK
2481 /*
2482 * Split shadow pages too, because free(page[0]) would
2483 * otherwise free the whole shadow.
2484 */
2485 if (kmemcheck_page_is_tracked(page))
2486 split_page(virt_to_page(page[0].shadow), order);
2487#endif
2488
a9627bc5 2489 for (i = 1; i < (1 << order); i++)
7835e98b 2490 set_page_refcounted(page + i);
a9627bc5 2491 split_page_owner(page, order);
8dfcc9ba 2492}
5853ff23 2493EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2494
3c605096 2495int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2496{
748446bb
MG
2497 unsigned long watermark;
2498 struct zone *zone;
2139cbe6 2499 int mt;
748446bb
MG
2500
2501 BUG_ON(!PageBuddy(page));
2502
2503 zone = page_zone(page);
2e30abd1 2504 mt = get_pageblock_migratetype(page);
748446bb 2505
194159fb 2506 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2507 /* Obey watermarks as if the page was being allocated */
2508 watermark = low_wmark_pages(zone) + (1 << order);
2509 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2510 return 0;
2511
8fb74b9f 2512 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2513 }
748446bb
MG
2514
2515 /* Remove page from free list */
2516 list_del(&page->lru);
2517 zone->free_area[order].nr_free--;
2518 rmv_page_order(page);
2139cbe6 2519
8fb74b9f 2520 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2521 if (order >= pageblock_order - 1) {
2522 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2523 for (; page < endpage; page += pageblock_nr_pages) {
2524 int mt = get_pageblock_migratetype(page);
194159fb 2525 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2526 set_pageblock_migratetype(page,
2527 MIGRATE_MOVABLE);
2528 }
748446bb
MG
2529 }
2530
f3a14ced 2531
8fb74b9f 2532 return 1UL << order;
1fb3f8ca
MG
2533}
2534
060e7417
MG
2535/*
2536 * Update NUMA hit/miss statistics
2537 *
2538 * Must be called with interrupts disabled.
2539 *
2540 * When __GFP_OTHER_NODE is set assume the node of the preferred
2541 * zone is the local node. This is useful for daemons who allocate
2542 * memory on behalf of other processes.
2543 */
2544static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2545 gfp_t flags)
2546{
2547#ifdef CONFIG_NUMA
2548 int local_nid = numa_node_id();
2549 enum zone_stat_item local_stat = NUMA_LOCAL;
2550
2551 if (unlikely(flags & __GFP_OTHER_NODE)) {
2552 local_stat = NUMA_OTHER;
2553 local_nid = preferred_zone->node;
2554 }
2555
2556 if (z->node == local_nid) {
2557 __inc_zone_state(z, NUMA_HIT);
2558 __inc_zone_state(z, local_stat);
2559 } else {
2560 __inc_zone_state(z, NUMA_MISS);
2561 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2562 }
2563#endif
2564}
2565
1da177e4 2566/*
75379191 2567 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2568 */
0a15c3e9
MG
2569static inline
2570struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2571 struct zone *zone, unsigned int order,
c603844b
MG
2572 gfp_t gfp_flags, unsigned int alloc_flags,
2573 int migratetype)
1da177e4
LT
2574{
2575 unsigned long flags;
689bcebf 2576 struct page *page;
b745bc85 2577 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2578
48db57f8 2579 if (likely(order == 0)) {
1da177e4 2580 struct per_cpu_pages *pcp;
5f8dcc21 2581 struct list_head *list;
1da177e4 2582
1da177e4 2583 local_irq_save(flags);
479f854a
MG
2584 do {
2585 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2586 list = &pcp->lists[migratetype];
2587 if (list_empty(list)) {
2588 pcp->count += rmqueue_bulk(zone, 0,
2589 pcp->batch, list,
2590 migratetype, cold);
2591 if (unlikely(list_empty(list)))
2592 goto failed;
2593 }
b92a6edd 2594
479f854a
MG
2595 if (cold)
2596 page = list_last_entry(list, struct page, lru);
2597 else
2598 page = list_first_entry(list, struct page, lru);
5f8dcc21 2599
83b9355b
VB
2600 __dec_zone_state(zone, NR_ALLOC_BATCH);
2601 list_del(&page->lru);
2602 pcp->count--;
2603
2604 } while (check_new_pcp(page));
7fb1d9fc 2605 } else {
0f352e53
MH
2606 /*
2607 * We most definitely don't want callers attempting to
2608 * allocate greater than order-1 page units with __GFP_NOFAIL.
2609 */
2610 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2611 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2612
479f854a
MG
2613 do {
2614 page = NULL;
2615 if (alloc_flags & ALLOC_HARDER) {
2616 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2617 if (page)
2618 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2619 }
2620 if (!page)
2621 page = __rmqueue(zone, order, migratetype);
2622 } while (page && check_new_pages(page, order));
a74609fa
NP
2623 spin_unlock(&zone->lock);
2624 if (!page)
2625 goto failed;
754078eb 2626 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2627 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2628 get_pcppage_migratetype(page));
1da177e4
LT
2629 }
2630
abe5f972 2631 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2632 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2633 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2634
f8891e5e 2635 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2636 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2637 local_irq_restore(flags);
1da177e4 2638
309381fe 2639 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2640 return page;
a74609fa
NP
2641
2642failed:
2643 local_irq_restore(flags);
a74609fa 2644 return NULL;
1da177e4
LT
2645}
2646
933e312e
AM
2647#ifdef CONFIG_FAIL_PAGE_ALLOC
2648
b2588c4b 2649static struct {
933e312e
AM
2650 struct fault_attr attr;
2651
621a5f7a 2652 bool ignore_gfp_highmem;
71baba4b 2653 bool ignore_gfp_reclaim;
54114994 2654 u32 min_order;
933e312e
AM
2655} fail_page_alloc = {
2656 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2657 .ignore_gfp_reclaim = true,
621a5f7a 2658 .ignore_gfp_highmem = true,
54114994 2659 .min_order = 1,
933e312e
AM
2660};
2661
2662static int __init setup_fail_page_alloc(char *str)
2663{
2664 return setup_fault_attr(&fail_page_alloc.attr, str);
2665}
2666__setup("fail_page_alloc=", setup_fail_page_alloc);
2667
deaf386e 2668static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2669{
54114994 2670 if (order < fail_page_alloc.min_order)
deaf386e 2671 return false;
933e312e 2672 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2673 return false;
933e312e 2674 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2675 return false;
71baba4b
MG
2676 if (fail_page_alloc.ignore_gfp_reclaim &&
2677 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2678 return false;
933e312e
AM
2679
2680 return should_fail(&fail_page_alloc.attr, 1 << order);
2681}
2682
2683#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2684
2685static int __init fail_page_alloc_debugfs(void)
2686{
f4ae40a6 2687 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2688 struct dentry *dir;
933e312e 2689
dd48c085
AM
2690 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2691 &fail_page_alloc.attr);
2692 if (IS_ERR(dir))
2693 return PTR_ERR(dir);
933e312e 2694
b2588c4b 2695 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2696 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2697 goto fail;
2698 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2699 &fail_page_alloc.ignore_gfp_highmem))
2700 goto fail;
2701 if (!debugfs_create_u32("min-order", mode, dir,
2702 &fail_page_alloc.min_order))
2703 goto fail;
2704
2705 return 0;
2706fail:
dd48c085 2707 debugfs_remove_recursive(dir);
933e312e 2708
b2588c4b 2709 return -ENOMEM;
933e312e
AM
2710}
2711
2712late_initcall(fail_page_alloc_debugfs);
2713
2714#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2715
2716#else /* CONFIG_FAIL_PAGE_ALLOC */
2717
deaf386e 2718static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2719{
deaf386e 2720 return false;
933e312e
AM
2721}
2722
2723#endif /* CONFIG_FAIL_PAGE_ALLOC */
2724
1da177e4 2725/*
97a16fc8
MG
2726 * Return true if free base pages are above 'mark'. For high-order checks it
2727 * will return true of the order-0 watermark is reached and there is at least
2728 * one free page of a suitable size. Checking now avoids taking the zone lock
2729 * to check in the allocation paths if no pages are free.
1da177e4 2730 */
86a294a8
MH
2731bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2732 int classzone_idx, unsigned int alloc_flags,
2733 long free_pages)
1da177e4 2734{
d23ad423 2735 long min = mark;
1da177e4 2736 int o;
c603844b 2737 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2738
0aaa29a5 2739 /* free_pages may go negative - that's OK */
df0a6daa 2740 free_pages -= (1 << order) - 1;
0aaa29a5 2741
7fb1d9fc 2742 if (alloc_flags & ALLOC_HIGH)
1da177e4 2743 min -= min / 2;
0aaa29a5
MG
2744
2745 /*
2746 * If the caller does not have rights to ALLOC_HARDER then subtract
2747 * the high-atomic reserves. This will over-estimate the size of the
2748 * atomic reserve but it avoids a search.
2749 */
97a16fc8 2750 if (likely(!alloc_harder))
0aaa29a5
MG
2751 free_pages -= z->nr_reserved_highatomic;
2752 else
1da177e4 2753 min -= min / 4;
e2b19197 2754
d95ea5d1
BZ
2755#ifdef CONFIG_CMA
2756 /* If allocation can't use CMA areas don't use free CMA pages */
2757 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2758 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2759#endif
026b0814 2760
97a16fc8
MG
2761 /*
2762 * Check watermarks for an order-0 allocation request. If these
2763 * are not met, then a high-order request also cannot go ahead
2764 * even if a suitable page happened to be free.
2765 */
2766 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2767 return false;
1da177e4 2768
97a16fc8
MG
2769 /* If this is an order-0 request then the watermark is fine */
2770 if (!order)
2771 return true;
2772
2773 /* For a high-order request, check at least one suitable page is free */
2774 for (o = order; o < MAX_ORDER; o++) {
2775 struct free_area *area = &z->free_area[o];
2776 int mt;
2777
2778 if (!area->nr_free)
2779 continue;
2780
2781 if (alloc_harder)
2782 return true;
1da177e4 2783
97a16fc8
MG
2784 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2785 if (!list_empty(&area->free_list[mt]))
2786 return true;
2787 }
2788
2789#ifdef CONFIG_CMA
2790 if ((alloc_flags & ALLOC_CMA) &&
2791 !list_empty(&area->free_list[MIGRATE_CMA])) {
2792 return true;
2793 }
2794#endif
1da177e4 2795 }
97a16fc8 2796 return false;
88f5acf8
MG
2797}
2798
7aeb09f9 2799bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2800 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2801{
2802 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2803 zone_page_state(z, NR_FREE_PAGES));
2804}
2805
48ee5f36
MG
2806static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2807 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2808{
2809 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2810 long cma_pages = 0;
2811
2812#ifdef CONFIG_CMA
2813 /* If allocation can't use CMA areas don't use free CMA pages */
2814 if (!(alloc_flags & ALLOC_CMA))
2815 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2816#endif
2817
2818 /*
2819 * Fast check for order-0 only. If this fails then the reserves
2820 * need to be calculated. There is a corner case where the check
2821 * passes but only the high-order atomic reserve are free. If
2822 * the caller is !atomic then it'll uselessly search the free
2823 * list. That corner case is then slower but it is harmless.
2824 */
2825 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2826 return true;
2827
2828 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2829 free_pages);
2830}
2831
7aeb09f9 2832bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2833 unsigned long mark, int classzone_idx)
88f5acf8
MG
2834{
2835 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2836
2837 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2838 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2839
e2b19197 2840 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2841 free_pages);
1da177e4
LT
2842}
2843
9276b1bc 2844#ifdef CONFIG_NUMA
81c0a2bb
JW
2845static bool zone_local(struct zone *local_zone, struct zone *zone)
2846{
fff4068c 2847 return local_zone->node == zone->node;
81c0a2bb
JW
2848}
2849
957f822a
DR
2850static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2851{
5f7a75ac
MG
2852 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2853 RECLAIM_DISTANCE;
957f822a 2854}
9276b1bc 2855#else /* CONFIG_NUMA */
81c0a2bb
JW
2856static bool zone_local(struct zone *local_zone, struct zone *zone)
2857{
2858 return true;
2859}
2860
957f822a
DR
2861static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2862{
2863 return true;
2864}
9276b1bc
PJ
2865#endif /* CONFIG_NUMA */
2866
4ffeaf35
MG
2867static void reset_alloc_batches(struct zone *preferred_zone)
2868{
2869 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2870
2871 do {
2872 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2873 high_wmark_pages(zone) - low_wmark_pages(zone) -
2874 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2875 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2876 } while (zone++ != preferred_zone);
2877}
2878
7fb1d9fc 2879/*
0798e519 2880 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2881 * a page.
2882 */
2883static struct page *
a9263751
VB
2884get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2885 const struct alloc_context *ac)
753ee728 2886{
c33d6c06 2887 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2888 struct zone *zone;
30534755
MG
2889 bool fair_skipped = false;
2890 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2891
9276b1bc 2892zonelist_scan:
7fb1d9fc 2893 /*
9276b1bc 2894 * Scan zonelist, looking for a zone with enough free.
344736f2 2895 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2896 */
c33d6c06 2897 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2898 ac->nodemask) {
be06af00 2899 struct page *page;
e085dbc5
JW
2900 unsigned long mark;
2901
664eedde
MG
2902 if (cpusets_enabled() &&
2903 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2904 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2905 continue;
81c0a2bb
JW
2906 /*
2907 * Distribute pages in proportion to the individual
2908 * zone size to ensure fair page aging. The zone a
2909 * page was allocated in should have no effect on the
2910 * time the page has in memory before being reclaimed.
81c0a2bb 2911 */
30534755 2912 if (apply_fair) {
57054651 2913 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2914 fair_skipped = true;
3a025760 2915 continue;
4ffeaf35 2916 }
c33d6c06 2917 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2918 if (fair_skipped)
2919 goto reset_fair;
2920 apply_fair = false;
2921 }
81c0a2bb 2922 }
a756cf59
JW
2923 /*
2924 * When allocating a page cache page for writing, we
2925 * want to get it from a zone that is within its dirty
2926 * limit, such that no single zone holds more than its
2927 * proportional share of globally allowed dirty pages.
2928 * The dirty limits take into account the zone's
2929 * lowmem reserves and high watermark so that kswapd
2930 * should be able to balance it without having to
2931 * write pages from its LRU list.
2932 *
2933 * This may look like it could increase pressure on
2934 * lower zones by failing allocations in higher zones
2935 * before they are full. But the pages that do spill
2936 * over are limited as the lower zones are protected
2937 * by this very same mechanism. It should not become
2938 * a practical burden to them.
2939 *
2940 * XXX: For now, allow allocations to potentially
2941 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2942 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2943 * which is important when on a NUMA setup the allowed
2944 * zones are together not big enough to reach the
2945 * global limit. The proper fix for these situations
2946 * will require awareness of zones in the
2947 * dirty-throttling and the flusher threads.
2948 */
c9ab0c4f 2949 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2950 continue;
7fb1d9fc 2951
e085dbc5 2952 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2953 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2954 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2955 int ret;
2956
5dab2911
MG
2957 /* Checked here to keep the fast path fast */
2958 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2959 if (alloc_flags & ALLOC_NO_WATERMARKS)
2960 goto try_this_zone;
2961
957f822a 2962 if (zone_reclaim_mode == 0 ||
c33d6c06 2963 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2964 continue;
2965
fa5e084e
MG
2966 ret = zone_reclaim(zone, gfp_mask, order);
2967 switch (ret) {
2968 case ZONE_RECLAIM_NOSCAN:
2969 /* did not scan */
cd38b115 2970 continue;
fa5e084e
MG
2971 case ZONE_RECLAIM_FULL:
2972 /* scanned but unreclaimable */
cd38b115 2973 continue;
fa5e084e
MG
2974 default:
2975 /* did we reclaim enough */
fed2719e 2976 if (zone_watermark_ok(zone, order, mark,
93ea9964 2977 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2978 goto try_this_zone;
2979
fed2719e 2980 continue;
0798e519 2981 }
7fb1d9fc
RS
2982 }
2983
fa5e084e 2984try_this_zone:
c33d6c06 2985 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2986 gfp_mask, alloc_flags, ac->migratetype);
75379191 2987 if (page) {
479f854a 2988 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2989
2990 /*
2991 * If this is a high-order atomic allocation then check
2992 * if the pageblock should be reserved for the future
2993 */
2994 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2995 reserve_highatomic_pageblock(page, zone, order);
2996
75379191
VB
2997 return page;
2998 }
54a6eb5c 2999 }
9276b1bc 3000
4ffeaf35
MG
3001 /*
3002 * The first pass makes sure allocations are spread fairly within the
3003 * local node. However, the local node might have free pages left
3004 * after the fairness batches are exhausted, and remote zones haven't
3005 * even been considered yet. Try once more without fairness, and
3006 * include remote zones now, before entering the slowpath and waking
3007 * kswapd: prefer spilling to a remote zone over swapping locally.
3008 */
30534755
MG
3009 if (fair_skipped) {
3010reset_fair:
3011 apply_fair = false;
3012 fair_skipped = false;
c33d6c06 3013 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3014 z = ac->preferred_zoneref;
4ffeaf35 3015 goto zonelist_scan;
30534755 3016 }
4ffeaf35
MG
3017
3018 return NULL;
753ee728
MH
3019}
3020
29423e77
DR
3021/*
3022 * Large machines with many possible nodes should not always dump per-node
3023 * meminfo in irq context.
3024 */
3025static inline bool should_suppress_show_mem(void)
3026{
3027 bool ret = false;
3028
3029#if NODES_SHIFT > 8
3030 ret = in_interrupt();
3031#endif
3032 return ret;
3033}
3034
a238ab5b
DH
3035static DEFINE_RATELIMIT_STATE(nopage_rs,
3036 DEFAULT_RATELIMIT_INTERVAL,
3037 DEFAULT_RATELIMIT_BURST);
3038
d00181b9 3039void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3040{
a238ab5b
DH
3041 unsigned int filter = SHOW_MEM_FILTER_NODES;
3042
c0a32fc5
SG
3043 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3044 debug_guardpage_minorder() > 0)
a238ab5b
DH
3045 return;
3046
3047 /*
3048 * This documents exceptions given to allocations in certain
3049 * contexts that are allowed to allocate outside current's set
3050 * of allowed nodes.
3051 */
3052 if (!(gfp_mask & __GFP_NOMEMALLOC))
3053 if (test_thread_flag(TIF_MEMDIE) ||
3054 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3055 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3056 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3057 filter &= ~SHOW_MEM_FILTER_NODES;
3058
3059 if (fmt) {
3ee9a4f0
JP
3060 struct va_format vaf;
3061 va_list args;
3062
a238ab5b 3063 va_start(args, fmt);
3ee9a4f0
JP
3064
3065 vaf.fmt = fmt;
3066 vaf.va = &args;
3067
3068 pr_warn("%pV", &vaf);
3069
a238ab5b
DH
3070 va_end(args);
3071 }
3072
c5c990e8
VB
3073 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3074 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3075 dump_stack();
3076 if (!should_suppress_show_mem())
3077 show_mem(filter);
3078}
3079
11e33f6a
MG
3080static inline struct page *
3081__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3082 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3083{
6e0fc46d
DR
3084 struct oom_control oc = {
3085 .zonelist = ac->zonelist,
3086 .nodemask = ac->nodemask,
2a966b77 3087 .memcg = NULL,
6e0fc46d
DR
3088 .gfp_mask = gfp_mask,
3089 .order = order,
6e0fc46d 3090 };
11e33f6a
MG
3091 struct page *page;
3092
9879de73
JW
3093 *did_some_progress = 0;
3094
9879de73 3095 /*
dc56401f
JW
3096 * Acquire the oom lock. If that fails, somebody else is
3097 * making progress for us.
9879de73 3098 */
dc56401f 3099 if (!mutex_trylock(&oom_lock)) {
9879de73 3100 *did_some_progress = 1;
11e33f6a 3101 schedule_timeout_uninterruptible(1);
1da177e4
LT
3102 return NULL;
3103 }
6b1de916 3104
11e33f6a
MG
3105 /*
3106 * Go through the zonelist yet one more time, keep very high watermark
3107 * here, this is only to catch a parallel oom killing, we must fail if
3108 * we're still under heavy pressure.
3109 */
a9263751
VB
3110 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3111 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3112 if (page)
11e33f6a
MG
3113 goto out;
3114
4365a567 3115 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3116 /* Coredumps can quickly deplete all memory reserves */
3117 if (current->flags & PF_DUMPCORE)
3118 goto out;
4365a567
KH
3119 /* The OOM killer will not help higher order allocs */
3120 if (order > PAGE_ALLOC_COSTLY_ORDER)
3121 goto out;
03668b3c 3122 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3123 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3124 goto out;
9083905a
JW
3125 if (pm_suspended_storage())
3126 goto out;
3da88fb3
MH
3127 /*
3128 * XXX: GFP_NOFS allocations should rather fail than rely on
3129 * other request to make a forward progress.
3130 * We are in an unfortunate situation where out_of_memory cannot
3131 * do much for this context but let's try it to at least get
3132 * access to memory reserved if the current task is killed (see
3133 * out_of_memory). Once filesystems are ready to handle allocation
3134 * failures more gracefully we should just bail out here.
3135 */
3136
4167e9b2 3137 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3138 if (gfp_mask & __GFP_THISNODE)
3139 goto out;
3140 }
11e33f6a 3141 /* Exhausted what can be done so it's blamo time */
5020e285 3142 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3143 *did_some_progress = 1;
5020e285
MH
3144
3145 if (gfp_mask & __GFP_NOFAIL) {
3146 page = get_page_from_freelist(gfp_mask, order,
3147 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3148 /*
3149 * fallback to ignore cpuset restriction if our nodes
3150 * are depleted
3151 */
3152 if (!page)
3153 page = get_page_from_freelist(gfp_mask, order,
3154 ALLOC_NO_WATERMARKS, ac);
3155 }
3156 }
11e33f6a 3157out:
dc56401f 3158 mutex_unlock(&oom_lock);
11e33f6a
MG
3159 return page;
3160}
3161
33c2d214
MH
3162
3163/*
3164 * Maximum number of compaction retries wit a progress before OOM
3165 * killer is consider as the only way to move forward.
3166 */
3167#define MAX_COMPACT_RETRIES 16
3168
56de7263
MG
3169#ifdef CONFIG_COMPACTION
3170/* Try memory compaction for high-order allocations before reclaim */
3171static struct page *
3172__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3173 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3174 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3175{
98dd3b48 3176 struct page *page;
c5d01d0d 3177 int contended_compaction;
53853e2d
VB
3178
3179 if (!order)
66199712 3180 return NULL;
66199712 3181
c06b1fca 3182 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3183 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3184 mode, &contended_compaction);
c06b1fca 3185 current->flags &= ~PF_MEMALLOC;
56de7263 3186
c5d01d0d 3187 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3188 return NULL;
53853e2d 3189
98dd3b48
VB
3190 /*
3191 * At least in one zone compaction wasn't deferred or skipped, so let's
3192 * count a compaction stall
3193 */
3194 count_vm_event(COMPACTSTALL);
8fb74b9f 3195
a9263751
VB
3196 page = get_page_from_freelist(gfp_mask, order,
3197 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3198
98dd3b48
VB
3199 if (page) {
3200 struct zone *zone = page_zone(page);
53853e2d 3201
98dd3b48
VB
3202 zone->compact_blockskip_flush = false;
3203 compaction_defer_reset(zone, order, true);
3204 count_vm_event(COMPACTSUCCESS);
3205 return page;
3206 }
56de7263 3207
98dd3b48
VB
3208 /*
3209 * It's bad if compaction run occurs and fails. The most likely reason
3210 * is that pages exist, but not enough to satisfy watermarks.
3211 */
3212 count_vm_event(COMPACTFAIL);
66199712 3213
c5d01d0d
MH
3214 /*
3215 * In all zones where compaction was attempted (and not
3216 * deferred or skipped), lock contention has been detected.
3217 * For THP allocation we do not want to disrupt the others
3218 * so we fallback to base pages instead.
3219 */
3220 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3221 *compact_result = COMPACT_CONTENDED;
3222
3223 /*
3224 * If compaction was aborted due to need_resched(), we do not
3225 * want to further increase allocation latency, unless it is
3226 * khugepaged trying to collapse.
3227 */
3228 if (contended_compaction == COMPACT_CONTENDED_SCHED
3229 && !(current->flags & PF_KTHREAD))
3230 *compact_result = COMPACT_CONTENDED;
3231
98dd3b48 3232 cond_resched();
56de7263
MG
3233
3234 return NULL;
3235}
33c2d214
MH
3236
3237static inline bool
86a294a8
MH
3238should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3239 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3240 int compaction_retries)
3241{
7854ea6c
MH
3242 int max_retries = MAX_COMPACT_RETRIES;
3243
33c2d214
MH
3244 if (!order)
3245 return false;
3246
3247 /*
3248 * compaction considers all the zone as desperately out of memory
3249 * so it doesn't really make much sense to retry except when the
3250 * failure could be caused by weak migration mode.
3251 */
3252 if (compaction_failed(compact_result)) {
3253 if (*migrate_mode == MIGRATE_ASYNC) {
3254 *migrate_mode = MIGRATE_SYNC_LIGHT;
3255 return true;
3256 }
3257 return false;
3258 }
3259
3260 /*
7854ea6c
MH
3261 * make sure the compaction wasn't deferred or didn't bail out early
3262 * due to locks contention before we declare that we should give up.
86a294a8
MH
3263 * But do not retry if the given zonelist is not suitable for
3264 * compaction.
33c2d214 3265 */
7854ea6c 3266 if (compaction_withdrawn(compact_result))
86a294a8 3267 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3268
3269 /*
3270 * !costly requests are much more important than __GFP_REPEAT
3271 * costly ones because they are de facto nofail and invoke OOM
3272 * killer to move on while costly can fail and users are ready
3273 * to cope with that. 1/4 retries is rather arbitrary but we
3274 * would need much more detailed feedback from compaction to
3275 * make a better decision.
3276 */
3277 if (order > PAGE_ALLOC_COSTLY_ORDER)
3278 max_retries /= 4;
3279 if (compaction_retries <= max_retries)
3280 return true;
33c2d214
MH
3281
3282 return false;
3283}
56de7263
MG
3284#else
3285static inline struct page *
3286__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3287 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3288 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3289{
33c2d214 3290 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3291 return NULL;
3292}
33c2d214
MH
3293
3294static inline bool
86a294a8
MH
3295should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3296 enum compact_result compact_result,
33c2d214
MH
3297 enum migrate_mode *migrate_mode,
3298 int compaction_retries)
3299{
31e49bfd
MH
3300 struct zone *zone;
3301 struct zoneref *z;
3302
3303 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3304 return false;
3305
3306 /*
3307 * There are setups with compaction disabled which would prefer to loop
3308 * inside the allocator rather than hit the oom killer prematurely.
3309 * Let's give them a good hope and keep retrying while the order-0
3310 * watermarks are OK.
3311 */
3312 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3313 ac->nodemask) {
3314 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3315 ac_classzone_idx(ac), alloc_flags))
3316 return true;
3317 }
33c2d214
MH
3318 return false;
3319}
56de7263
MG
3320#endif /* CONFIG_COMPACTION */
3321
bba90710
MS
3322/* Perform direct synchronous page reclaim */
3323static int
a9263751
VB
3324__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3325 const struct alloc_context *ac)
11e33f6a 3326{
11e33f6a 3327 struct reclaim_state reclaim_state;
bba90710 3328 int progress;
11e33f6a
MG
3329
3330 cond_resched();
3331
3332 /* We now go into synchronous reclaim */
3333 cpuset_memory_pressure_bump();
c06b1fca 3334 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3335 lockdep_set_current_reclaim_state(gfp_mask);
3336 reclaim_state.reclaimed_slab = 0;
c06b1fca 3337 current->reclaim_state = &reclaim_state;
11e33f6a 3338
a9263751
VB
3339 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3340 ac->nodemask);
11e33f6a 3341
c06b1fca 3342 current->reclaim_state = NULL;
11e33f6a 3343 lockdep_clear_current_reclaim_state();
c06b1fca 3344 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3345
3346 cond_resched();
3347
bba90710
MS
3348 return progress;
3349}
3350
3351/* The really slow allocator path where we enter direct reclaim */
3352static inline struct page *
3353__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3354 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3355 unsigned long *did_some_progress)
bba90710
MS
3356{
3357 struct page *page = NULL;
3358 bool drained = false;
3359
a9263751 3360 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3361 if (unlikely(!(*did_some_progress)))
3362 return NULL;
11e33f6a 3363
9ee493ce 3364retry:
a9263751
VB
3365 page = get_page_from_freelist(gfp_mask, order,
3366 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3367
3368 /*
3369 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3370 * pages are pinned on the per-cpu lists or in high alloc reserves.
3371 * Shrink them them and try again
9ee493ce
MG
3372 */
3373 if (!page && !drained) {
0aaa29a5 3374 unreserve_highatomic_pageblock(ac);
93481ff0 3375 drain_all_pages(NULL);
9ee493ce
MG
3376 drained = true;
3377 goto retry;
3378 }
3379
11e33f6a
MG
3380 return page;
3381}
3382
a9263751 3383static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3384{
3385 struct zoneref *z;
3386 struct zone *zone;
3387
a9263751
VB
3388 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3389 ac->high_zoneidx, ac->nodemask)
93ea9964 3390 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3391}
3392
c603844b 3393static inline unsigned int
341ce06f
PZ
3394gfp_to_alloc_flags(gfp_t gfp_mask)
3395{
c603844b 3396 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3397
a56f57ff 3398 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3399 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3400
341ce06f
PZ
3401 /*
3402 * The caller may dip into page reserves a bit more if the caller
3403 * cannot run direct reclaim, or if the caller has realtime scheduling
3404 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3405 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3406 */
e6223a3b 3407 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3408
d0164adc 3409 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3410 /*
b104a35d
DR
3411 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3412 * if it can't schedule.
5c3240d9 3413 */
b104a35d 3414 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3415 alloc_flags |= ALLOC_HARDER;
523b9458 3416 /*
b104a35d 3417 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3418 * comment for __cpuset_node_allowed().
523b9458 3419 */
341ce06f 3420 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3421 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3422 alloc_flags |= ALLOC_HARDER;
3423
b37f1dd0
MG
3424 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3425 if (gfp_mask & __GFP_MEMALLOC)
3426 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3427 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3428 alloc_flags |= ALLOC_NO_WATERMARKS;
3429 else if (!in_interrupt() &&
3430 ((current->flags & PF_MEMALLOC) ||
3431 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3432 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3433 }
d95ea5d1 3434#ifdef CONFIG_CMA
43e7a34d 3435 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3436 alloc_flags |= ALLOC_CMA;
3437#endif
341ce06f
PZ
3438 return alloc_flags;
3439}
3440
072bb0aa
MG
3441bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3442{
b37f1dd0 3443 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3444}
3445
d0164adc
MG
3446static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3447{
3448 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3449}
3450
0a0337e0
MH
3451/*
3452 * Maximum number of reclaim retries without any progress before OOM killer
3453 * is consider as the only way to move forward.
3454 */
3455#define MAX_RECLAIM_RETRIES 16
3456
3457/*
3458 * Checks whether it makes sense to retry the reclaim to make a forward progress
3459 * for the given allocation request.
3460 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3461 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3462 * any progress in a row) is considered as well as the reclaimable pages on the
3463 * applicable zone list (with a backoff mechanism which is a function of
3464 * no_progress_loops).
0a0337e0
MH
3465 *
3466 * Returns true if a retry is viable or false to enter the oom path.
3467 */
3468static inline bool
3469should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3470 struct alloc_context *ac, int alloc_flags,
7854ea6c 3471 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3472{
3473 struct zone *zone;
3474 struct zoneref *z;
3475
3476 /*
3477 * Make sure we converge to OOM if we cannot make any progress
3478 * several times in the row.
3479 */
3480 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3481 return false;
3482
0a0337e0
MH
3483 /*
3484 * Keep reclaiming pages while there is a chance this will lead somewhere.
3485 * If none of the target zones can satisfy our allocation request even
3486 * if all reclaimable pages are considered then we are screwed and have
3487 * to go OOM.
3488 */
3489 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3490 ac->nodemask) {
3491 unsigned long available;
ede37713 3492 unsigned long reclaimable;
0a0337e0 3493
ede37713 3494 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3495 available -= DIV_ROUND_UP(no_progress_loops * available,
3496 MAX_RECLAIM_RETRIES);
3497 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3498
3499 /*
3500 * Would the allocation succeed if we reclaimed the whole
3501 * available?
3502 */
3503 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3504 ac_classzone_idx(ac), alloc_flags, available)) {
3505 /*
3506 * If we didn't make any progress and have a lot of
3507 * dirty + writeback pages then we should wait for
3508 * an IO to complete to slow down the reclaim and
3509 * prevent from pre mature OOM
3510 */
3511 if (!did_some_progress) {
3512 unsigned long writeback;
3513 unsigned long dirty;
3514
3515 writeback = zone_page_state_snapshot(zone,
3516 NR_WRITEBACK);
3517 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3518
3519 if (2*(writeback + dirty) > reclaimable) {
3520 congestion_wait(BLK_RW_ASYNC, HZ/10);
3521 return true;
3522 }
3523 }
3524
3525 /*
3526 * Memory allocation/reclaim might be called from a WQ
3527 * context and the current implementation of the WQ
3528 * concurrency control doesn't recognize that
3529 * a particular WQ is congested if the worker thread is
3530 * looping without ever sleeping. Therefore we have to
3531 * do a short sleep here rather than calling
3532 * cond_resched().
3533 */
3534 if (current->flags & PF_WQ_WORKER)
3535 schedule_timeout_uninterruptible(1);
3536 else
3537 cond_resched();
3538
0a0337e0
MH
3539 return true;
3540 }
3541 }
3542
3543 return false;
3544}
3545
11e33f6a
MG
3546static inline struct page *
3547__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3548 struct alloc_context *ac)
11e33f6a 3549{
d0164adc 3550 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3551 struct page *page = NULL;
c603844b 3552 unsigned int alloc_flags;
11e33f6a 3553 unsigned long did_some_progress;
e0b9daeb 3554 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3555 enum compact_result compact_result;
33c2d214 3556 int compaction_retries = 0;
0a0337e0 3557 int no_progress_loops = 0;
1da177e4 3558
72807a74
MG
3559 /*
3560 * In the slowpath, we sanity check order to avoid ever trying to
3561 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3562 * be using allocators in order of preference for an area that is
3563 * too large.
3564 */
1fc28b70
MG
3565 if (order >= MAX_ORDER) {
3566 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3567 return NULL;
1fc28b70 3568 }
1da177e4 3569
d0164adc
MG
3570 /*
3571 * We also sanity check to catch abuse of atomic reserves being used by
3572 * callers that are not in atomic context.
3573 */
3574 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3575 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3576 gfp_mask &= ~__GFP_ATOMIC;
3577
9879de73 3578retry:
d0164adc 3579 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3580 wake_all_kswapds(order, ac);
1da177e4 3581
9bf2229f 3582 /*
7fb1d9fc
RS
3583 * OK, we're below the kswapd watermark and have kicked background
3584 * reclaim. Now things get more complex, so set up alloc_flags according
3585 * to how we want to proceed.
9bf2229f 3586 */
341ce06f 3587 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3588
e46e7b77
MG
3589 /*
3590 * Reset the zonelist iterators if memory policies can be ignored.
3591 * These allocations are high priority and system rather than user
3592 * orientated.
3593 */
3594 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3595 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3596 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3597 ac->high_zoneidx, ac->nodemask);
3598 }
3599
341ce06f 3600 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3601 page = get_page_from_freelist(gfp_mask, order,
3602 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3603 if (page)
3604 goto got_pg;
1da177e4 3605
11e33f6a 3606 /* Allocate without watermarks if the context allows */
341ce06f 3607 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3608 page = get_page_from_freelist(gfp_mask, order,
3609 ALLOC_NO_WATERMARKS, ac);
3610 if (page)
3611 goto got_pg;
1da177e4
LT
3612 }
3613
d0164adc
MG
3614 /* Caller is not willing to reclaim, we can't balance anything */
3615 if (!can_direct_reclaim) {
aed0a0e3 3616 /*
33d53103
MH
3617 * All existing users of the __GFP_NOFAIL are blockable, so warn
3618 * of any new users that actually allow this type of allocation
3619 * to fail.
aed0a0e3
DR
3620 */
3621 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3622 goto nopage;
aed0a0e3 3623 }
1da177e4 3624
341ce06f 3625 /* Avoid recursion of direct reclaim */
33d53103
MH
3626 if (current->flags & PF_MEMALLOC) {
3627 /*
3628 * __GFP_NOFAIL request from this context is rather bizarre
3629 * because we cannot reclaim anything and only can loop waiting
3630 * for somebody to do a work for us.
3631 */
3632 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3633 cond_resched();
3634 goto retry;
3635 }
341ce06f 3636 goto nopage;
33d53103 3637 }
341ce06f 3638
6583bb64
DR
3639 /* Avoid allocations with no watermarks from looping endlessly */
3640 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3641 goto nopage;
3642
77f1fe6b
MG
3643 /*
3644 * Try direct compaction. The first pass is asynchronous. Subsequent
3645 * attempts after direct reclaim are synchronous
3646 */
a9263751
VB
3647 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3648 migration_mode,
c5d01d0d 3649 &compact_result);
56de7263
MG
3650 if (page)
3651 goto got_pg;
75f30861 3652
1f9efdef 3653 /* Checks for THP-specific high-order allocations */
d0164adc 3654 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3655 /*
3656 * If compaction is deferred for high-order allocations, it is
3657 * because sync compaction recently failed. If this is the case
3658 * and the caller requested a THP allocation, we do not want
3659 * to heavily disrupt the system, so we fail the allocation
3660 * instead of entering direct reclaim.
3661 */
c5d01d0d 3662 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3663 goto nopage;
3664
3665 /*
c5d01d0d
MH
3666 * Compaction is contended so rather back off than cause
3667 * excessive stalls.
1f9efdef 3668 */
c5d01d0d 3669 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3670 goto nopage;
3671 }
66199712 3672
33c2d214
MH
3673 if (order && compaction_made_progress(compact_result))
3674 compaction_retries++;
8fe78048 3675
11e33f6a 3676 /* Try direct reclaim and then allocating */
a9263751
VB
3677 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3678 &did_some_progress);
11e33f6a
MG
3679 if (page)
3680 goto got_pg;
1da177e4 3681
9083905a
JW
3682 /* Do not loop if specifically requested */
3683 if (gfp_mask & __GFP_NORETRY)
3684 goto noretry;
3685
0a0337e0
MH
3686 /*
3687 * Do not retry costly high order allocations unless they are
3688 * __GFP_REPEAT
3689 */
3690 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3691 goto noretry;
3692
7854ea6c
MH
3693 /*
3694 * Costly allocations might have made a progress but this doesn't mean
3695 * their order will become available due to high fragmentation so
3696 * always increment the no progress counter for them
3697 */
3698 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3699 no_progress_loops = 0;
7854ea6c 3700 else
0a0337e0 3701 no_progress_loops++;
1da177e4 3702
0a0337e0 3703 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3704 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3705 goto retry;
3706
33c2d214
MH
3707 /*
3708 * It doesn't make any sense to retry for the compaction if the order-0
3709 * reclaim is not able to make any progress because the current
3710 * implementation of the compaction depends on the sufficient amount
3711 * of free memory (see __compaction_suitable)
3712 */
3713 if (did_some_progress > 0 &&
86a294a8
MH
3714 should_compact_retry(ac, order, alloc_flags,
3715 compact_result, &migration_mode,
3716 compaction_retries))
33c2d214
MH
3717 goto retry;
3718
9083905a
JW
3719 /* Reclaim has failed us, start killing things */
3720 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3721 if (page)
3722 goto got_pg;
3723
3724 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3725 if (did_some_progress) {
3726 no_progress_loops = 0;
9083905a 3727 goto retry;
0a0337e0 3728 }
9083905a
JW
3729
3730noretry:
3731 /*
33c2d214
MH
3732 * High-order allocations do not necessarily loop after direct reclaim
3733 * and reclaim/compaction depends on compaction being called after
3734 * reclaim so call directly if necessary.
3735 * It can become very expensive to allocate transparent hugepages at
3736 * fault, so use asynchronous memory compaction for THP unless it is
3737 * khugepaged trying to collapse. All other requests should tolerate
3738 * at least light sync migration.
9083905a 3739 */
33c2d214
MH
3740 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3741 migration_mode = MIGRATE_ASYNC;
3742 else
3743 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3744 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3745 ac, migration_mode,
c5d01d0d 3746 &compact_result);
9083905a
JW
3747 if (page)
3748 goto got_pg;
1da177e4 3749nopage:
a238ab5b 3750 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3751got_pg:
072bb0aa 3752 return page;
1da177e4 3753}
11e33f6a
MG
3754
3755/*
3756 * This is the 'heart' of the zoned buddy allocator.
3757 */
3758struct page *
3759__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3760 struct zonelist *zonelist, nodemask_t *nodemask)
3761{
5bb1b169 3762 struct page *page;
cc9a6c87 3763 unsigned int cpuset_mems_cookie;
c603844b 3764 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3765 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3766 struct alloc_context ac = {
3767 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3768 .zonelist = zonelist,
a9263751
VB
3769 .nodemask = nodemask,
3770 .migratetype = gfpflags_to_migratetype(gfp_mask),
3771 };
11e33f6a 3772
682a3385 3773 if (cpusets_enabled()) {
83d4ca81 3774 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3775 alloc_flags |= ALLOC_CPUSET;
3776 if (!ac.nodemask)
3777 ac.nodemask = &cpuset_current_mems_allowed;
3778 }
3779
dcce284a
BH
3780 gfp_mask &= gfp_allowed_mask;
3781
11e33f6a
MG
3782 lockdep_trace_alloc(gfp_mask);
3783
d0164adc 3784 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3785
3786 if (should_fail_alloc_page(gfp_mask, order))
3787 return NULL;
3788
3789 /*
3790 * Check the zones suitable for the gfp_mask contain at least one
3791 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3792 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3793 */
3794 if (unlikely(!zonelist->_zonerefs->zone))
3795 return NULL;
3796
a9263751 3797 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3798 alloc_flags |= ALLOC_CMA;
3799
cc9a6c87 3800retry_cpuset:
d26914d1 3801 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3802
c9ab0c4f
MG
3803 /* Dirty zone balancing only done in the fast path */
3804 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3805
e46e7b77
MG
3806 /*
3807 * The preferred zone is used for statistics but crucially it is
3808 * also used as the starting point for the zonelist iterator. It
3809 * may get reset for allocations that ignore memory policies.
3810 */
c33d6c06
MG
3811 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3812 ac.high_zoneidx, ac.nodemask);
3813 if (!ac.preferred_zoneref) {
5bb1b169 3814 page = NULL;
4fcb0971 3815 goto no_zone;
5bb1b169
MG
3816 }
3817
5117f45d 3818 /* First allocation attempt */
a9263751 3819 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3820 if (likely(page))
3821 goto out;
11e33f6a 3822
4fcb0971
MG
3823 /*
3824 * Runtime PM, block IO and its error handling path can deadlock
3825 * because I/O on the device might not complete.
3826 */
3827 alloc_mask = memalloc_noio_flags(gfp_mask);
3828 ac.spread_dirty_pages = false;
23f086f9 3829
4741526b
MG
3830 /*
3831 * Restore the original nodemask if it was potentially replaced with
3832 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3833 */
3834 if (cpusets_enabled())
3835 ac.nodemask = nodemask;
4fcb0971 3836 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3837
4fcb0971 3838no_zone:
cc9a6c87
MG
3839 /*
3840 * When updating a task's mems_allowed, it is possible to race with
3841 * parallel threads in such a way that an allocation can fail while
3842 * the mask is being updated. If a page allocation is about to fail,
3843 * check if the cpuset changed during allocation and if so, retry.
3844 */
83d4ca81
MG
3845 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3846 alloc_mask = gfp_mask;
cc9a6c87 3847 goto retry_cpuset;
83d4ca81 3848 }
cc9a6c87 3849
4fcb0971 3850out:
4949148a
VD
3851 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3852 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3853 __free_pages(page, order);
3854 page = NULL;
3855 } else
3856 __SetPageKmemcg(page);
3857 }
3858
4fcb0971
MG
3859 if (kmemcheck_enabled && page)
3860 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3861
3862 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3863
11e33f6a 3864 return page;
1da177e4 3865}
d239171e 3866EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3867
3868/*
3869 * Common helper functions.
3870 */
920c7a5d 3871unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3872{
945a1113
AM
3873 struct page *page;
3874
3875 /*
3876 * __get_free_pages() returns a 32-bit address, which cannot represent
3877 * a highmem page
3878 */
3879 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3880
1da177e4
LT
3881 page = alloc_pages(gfp_mask, order);
3882 if (!page)
3883 return 0;
3884 return (unsigned long) page_address(page);
3885}
1da177e4
LT
3886EXPORT_SYMBOL(__get_free_pages);
3887
920c7a5d 3888unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3889{
945a1113 3890 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3891}
1da177e4
LT
3892EXPORT_SYMBOL(get_zeroed_page);
3893
920c7a5d 3894void __free_pages(struct page *page, unsigned int order)
1da177e4 3895{
b5810039 3896 if (put_page_testzero(page)) {
1da177e4 3897 if (order == 0)
b745bc85 3898 free_hot_cold_page(page, false);
1da177e4
LT
3899 else
3900 __free_pages_ok(page, order);
3901 }
3902}
3903
3904EXPORT_SYMBOL(__free_pages);
3905
920c7a5d 3906void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3907{
3908 if (addr != 0) {
725d704e 3909 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3910 __free_pages(virt_to_page((void *)addr), order);
3911 }
3912}
3913
3914EXPORT_SYMBOL(free_pages);
3915
b63ae8ca
AD
3916/*
3917 * Page Fragment:
3918 * An arbitrary-length arbitrary-offset area of memory which resides
3919 * within a 0 or higher order page. Multiple fragments within that page
3920 * are individually refcounted, in the page's reference counter.
3921 *
3922 * The page_frag functions below provide a simple allocation framework for
3923 * page fragments. This is used by the network stack and network device
3924 * drivers to provide a backing region of memory for use as either an
3925 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3926 */
3927static struct page *__page_frag_refill(struct page_frag_cache *nc,
3928 gfp_t gfp_mask)
3929{
3930 struct page *page = NULL;
3931 gfp_t gfp = gfp_mask;
3932
3933#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3934 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3935 __GFP_NOMEMALLOC;
3936 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3937 PAGE_FRAG_CACHE_MAX_ORDER);
3938 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3939#endif
3940 if (unlikely(!page))
3941 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3942
3943 nc->va = page ? page_address(page) : NULL;
3944
3945 return page;
3946}
3947
3948void *__alloc_page_frag(struct page_frag_cache *nc,
3949 unsigned int fragsz, gfp_t gfp_mask)
3950{
3951 unsigned int size = PAGE_SIZE;
3952 struct page *page;
3953 int offset;
3954
3955 if (unlikely(!nc->va)) {
3956refill:
3957 page = __page_frag_refill(nc, gfp_mask);
3958 if (!page)
3959 return NULL;
3960
3961#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3962 /* if size can vary use size else just use PAGE_SIZE */
3963 size = nc->size;
3964#endif
3965 /* Even if we own the page, we do not use atomic_set().
3966 * This would break get_page_unless_zero() users.
3967 */
fe896d18 3968 page_ref_add(page, size - 1);
b63ae8ca
AD
3969
3970 /* reset page count bias and offset to start of new frag */
2f064f34 3971 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3972 nc->pagecnt_bias = size;
3973 nc->offset = size;
3974 }
3975
3976 offset = nc->offset - fragsz;
3977 if (unlikely(offset < 0)) {
3978 page = virt_to_page(nc->va);
3979
fe896d18 3980 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3981 goto refill;
3982
3983#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3984 /* if size can vary use size else just use PAGE_SIZE */
3985 size = nc->size;
3986#endif
3987 /* OK, page count is 0, we can safely set it */
fe896d18 3988 set_page_count(page, size);
b63ae8ca
AD
3989
3990 /* reset page count bias and offset to start of new frag */
3991 nc->pagecnt_bias = size;
3992 offset = size - fragsz;
3993 }
3994
3995 nc->pagecnt_bias--;
3996 nc->offset = offset;
3997
3998 return nc->va + offset;
3999}
4000EXPORT_SYMBOL(__alloc_page_frag);
4001
4002/*
4003 * Frees a page fragment allocated out of either a compound or order 0 page.
4004 */
4005void __free_page_frag(void *addr)
4006{
4007 struct page *page = virt_to_head_page(addr);
4008
4009 if (unlikely(put_page_testzero(page)))
4010 __free_pages_ok(page, compound_order(page));
4011}
4012EXPORT_SYMBOL(__free_page_frag);
4013
d00181b9
KS
4014static void *make_alloc_exact(unsigned long addr, unsigned int order,
4015 size_t size)
ee85c2e1
AK
4016{
4017 if (addr) {
4018 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4019 unsigned long used = addr + PAGE_ALIGN(size);
4020
4021 split_page(virt_to_page((void *)addr), order);
4022 while (used < alloc_end) {
4023 free_page(used);
4024 used += PAGE_SIZE;
4025 }
4026 }
4027 return (void *)addr;
4028}
4029
2be0ffe2
TT
4030/**
4031 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4032 * @size: the number of bytes to allocate
4033 * @gfp_mask: GFP flags for the allocation
4034 *
4035 * This function is similar to alloc_pages(), except that it allocates the
4036 * minimum number of pages to satisfy the request. alloc_pages() can only
4037 * allocate memory in power-of-two pages.
4038 *
4039 * This function is also limited by MAX_ORDER.
4040 *
4041 * Memory allocated by this function must be released by free_pages_exact().
4042 */
4043void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4044{
4045 unsigned int order = get_order(size);
4046 unsigned long addr;
4047
4048 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4049 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4050}
4051EXPORT_SYMBOL(alloc_pages_exact);
4052
ee85c2e1
AK
4053/**
4054 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4055 * pages on a node.
b5e6ab58 4056 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4057 * @size: the number of bytes to allocate
4058 * @gfp_mask: GFP flags for the allocation
4059 *
4060 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4061 * back.
ee85c2e1 4062 */
e1931811 4063void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4064{
d00181b9 4065 unsigned int order = get_order(size);
ee85c2e1
AK
4066 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4067 if (!p)
4068 return NULL;
4069 return make_alloc_exact((unsigned long)page_address(p), order, size);
4070}
ee85c2e1 4071
2be0ffe2
TT
4072/**
4073 * free_pages_exact - release memory allocated via alloc_pages_exact()
4074 * @virt: the value returned by alloc_pages_exact.
4075 * @size: size of allocation, same value as passed to alloc_pages_exact().
4076 *
4077 * Release the memory allocated by a previous call to alloc_pages_exact.
4078 */
4079void free_pages_exact(void *virt, size_t size)
4080{
4081 unsigned long addr = (unsigned long)virt;
4082 unsigned long end = addr + PAGE_ALIGN(size);
4083
4084 while (addr < end) {
4085 free_page(addr);
4086 addr += PAGE_SIZE;
4087 }
4088}
4089EXPORT_SYMBOL(free_pages_exact);
4090
e0fb5815
ZY
4091/**
4092 * nr_free_zone_pages - count number of pages beyond high watermark
4093 * @offset: The zone index of the highest zone
4094 *
4095 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4096 * high watermark within all zones at or below a given zone index. For each
4097 * zone, the number of pages is calculated as:
834405c3 4098 * managed_pages - high_pages
e0fb5815 4099 */
ebec3862 4100static unsigned long nr_free_zone_pages(int offset)
1da177e4 4101{
dd1a239f 4102 struct zoneref *z;
54a6eb5c
MG
4103 struct zone *zone;
4104
e310fd43 4105 /* Just pick one node, since fallback list is circular */
ebec3862 4106 unsigned long sum = 0;
1da177e4 4107
0e88460d 4108 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4109
54a6eb5c 4110 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4111 unsigned long size = zone->managed_pages;
41858966 4112 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4113 if (size > high)
4114 sum += size - high;
1da177e4
LT
4115 }
4116
4117 return sum;
4118}
4119
e0fb5815
ZY
4120/**
4121 * nr_free_buffer_pages - count number of pages beyond high watermark
4122 *
4123 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4124 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4125 */
ebec3862 4126unsigned long nr_free_buffer_pages(void)
1da177e4 4127{
af4ca457 4128 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4129}
c2f1a551 4130EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4131
e0fb5815
ZY
4132/**
4133 * nr_free_pagecache_pages - count number of pages beyond high watermark
4134 *
4135 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4136 * high watermark within all zones.
1da177e4 4137 */
ebec3862 4138unsigned long nr_free_pagecache_pages(void)
1da177e4 4139{
2a1e274a 4140 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4141}
08e0f6a9
CL
4142
4143static inline void show_node(struct zone *zone)
1da177e4 4144{
e5adfffc 4145 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4146 printk("Node %d ", zone_to_nid(zone));
1da177e4 4147}
1da177e4 4148
d02bd27b
IR
4149long si_mem_available(void)
4150{
4151 long available;
4152 unsigned long pagecache;
4153 unsigned long wmark_low = 0;
4154 unsigned long pages[NR_LRU_LISTS];
4155 struct zone *zone;
4156 int lru;
4157
4158 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4159 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4160
4161 for_each_zone(zone)
4162 wmark_low += zone->watermark[WMARK_LOW];
4163
4164 /*
4165 * Estimate the amount of memory available for userspace allocations,
4166 * without causing swapping.
4167 */
4168 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4169
4170 /*
4171 * Not all the page cache can be freed, otherwise the system will
4172 * start swapping. Assume at least half of the page cache, or the
4173 * low watermark worth of cache, needs to stay.
4174 */
4175 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4176 pagecache -= min(pagecache / 2, wmark_low);
4177 available += pagecache;
4178
4179 /*
4180 * Part of the reclaimable slab consists of items that are in use,
4181 * and cannot be freed. Cap this estimate at the low watermark.
4182 */
4183 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4184 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4185
4186 if (available < 0)
4187 available = 0;
4188 return available;
4189}
4190EXPORT_SYMBOL_GPL(si_mem_available);
4191
1da177e4
LT
4192void si_meminfo(struct sysinfo *val)
4193{
4194 val->totalram = totalram_pages;
cc7452b6 4195 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4196 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4197 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4198 val->totalhigh = totalhigh_pages;
4199 val->freehigh = nr_free_highpages();
1da177e4
LT
4200 val->mem_unit = PAGE_SIZE;
4201}
4202
4203EXPORT_SYMBOL(si_meminfo);
4204
4205#ifdef CONFIG_NUMA
4206void si_meminfo_node(struct sysinfo *val, int nid)
4207{
cdd91a77
JL
4208 int zone_type; /* needs to be signed */
4209 unsigned long managed_pages = 0;
fc2bd799
JK
4210 unsigned long managed_highpages = 0;
4211 unsigned long free_highpages = 0;
1da177e4
LT
4212 pg_data_t *pgdat = NODE_DATA(nid);
4213
cdd91a77
JL
4214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4215 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4216 val->totalram = managed_pages;
cc7452b6 4217 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4218 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4219#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4221 struct zone *zone = &pgdat->node_zones[zone_type];
4222
4223 if (is_highmem(zone)) {
4224 managed_highpages += zone->managed_pages;
4225 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4226 }
4227 }
4228 val->totalhigh = managed_highpages;
4229 val->freehigh = free_highpages;
98d2b0eb 4230#else
fc2bd799
JK
4231 val->totalhigh = managed_highpages;
4232 val->freehigh = free_highpages;
98d2b0eb 4233#endif
1da177e4
LT
4234 val->mem_unit = PAGE_SIZE;
4235}
4236#endif
4237
ddd588b5 4238/*
7bf02ea2
DR
4239 * Determine whether the node should be displayed or not, depending on whether
4240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4241 */
7bf02ea2 4242bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4243{
4244 bool ret = false;
cc9a6c87 4245 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4246
4247 if (!(flags & SHOW_MEM_FILTER_NODES))
4248 goto out;
4249
cc9a6c87 4250 do {
d26914d1 4251 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4252 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4253 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4254out:
4255 return ret;
4256}
4257
1da177e4
LT
4258#define K(x) ((x) << (PAGE_SHIFT-10))
4259
377e4f16
RV
4260static void show_migration_types(unsigned char type)
4261{
4262 static const char types[MIGRATE_TYPES] = {
4263 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4264 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4265 [MIGRATE_RECLAIMABLE] = 'E',
4266 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4267#ifdef CONFIG_CMA
4268 [MIGRATE_CMA] = 'C',
4269#endif
194159fb 4270#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4271 [MIGRATE_ISOLATE] = 'I',
194159fb 4272#endif
377e4f16
RV
4273 };
4274 char tmp[MIGRATE_TYPES + 1];
4275 char *p = tmp;
4276 int i;
4277
4278 for (i = 0; i < MIGRATE_TYPES; i++) {
4279 if (type & (1 << i))
4280 *p++ = types[i];
4281 }
4282
4283 *p = '\0';
4284 printk("(%s) ", tmp);
4285}
4286
1da177e4
LT
4287/*
4288 * Show free area list (used inside shift_scroll-lock stuff)
4289 * We also calculate the percentage fragmentation. We do this by counting the
4290 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4291 *
4292 * Bits in @filter:
4293 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4294 * cpuset.
1da177e4 4295 */
7bf02ea2 4296void show_free_areas(unsigned int filter)
1da177e4 4297{
d1bfcdb8 4298 unsigned long free_pcp = 0;
c7241913 4299 int cpu;
1da177e4
LT
4300 struct zone *zone;
4301
ee99c71c 4302 for_each_populated_zone(zone) {
7bf02ea2 4303 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4304 continue;
d1bfcdb8 4305
761b0677
KK
4306 for_each_online_cpu(cpu)
4307 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4308 }
4309
a731286d
KM
4310 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4311 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4312 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4313 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4314 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
65c45377
KS
4315#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4316 " anon_thp: %lu shmem_thp: %lu shmem_pmdmapped: %lu\n"
4317#endif
d1bfcdb8 4318 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4319 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4320 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4321 global_page_state(NR_ISOLATED_ANON),
4322 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4323 global_page_state(NR_INACTIVE_FILE),
a731286d 4324 global_page_state(NR_ISOLATED_FILE),
7b854121 4325 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4326 global_page_state(NR_FILE_DIRTY),
ce866b34 4327 global_page_state(NR_WRITEBACK),
fd39fc85 4328 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4329 global_page_state(NR_SLAB_RECLAIMABLE),
4330 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4331 global_page_state(NR_FILE_MAPPED),
4b02108a 4332 global_page_state(NR_SHMEM),
a25700a5 4333 global_page_state(NR_PAGETABLE),
d1ce749a 4334 global_page_state(NR_BOUNCE),
65c45377
KS
4335#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4336 global_page_state(NR_ANON_THPS) * HPAGE_PMD_NR,
4337 global_page_state(NR_SHMEM_THPS) * HPAGE_PMD_NR,
4338 global_page_state(NR_SHMEM_PMDMAPPED) * HPAGE_PMD_NR,
4339#endif
d1bfcdb8
KK
4340 global_page_state(NR_FREE_PAGES),
4341 free_pcp,
d1ce749a 4342 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4343
ee99c71c 4344 for_each_populated_zone(zone) {
1da177e4
LT
4345 int i;
4346
7bf02ea2 4347 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4348 continue;
d1bfcdb8
KK
4349
4350 free_pcp = 0;
4351 for_each_online_cpu(cpu)
4352 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4353
1da177e4
LT
4354 show_node(zone);
4355 printk("%s"
4356 " free:%lukB"
4357 " min:%lukB"
4358 " low:%lukB"
4359 " high:%lukB"
4f98a2fe
RR
4360 " active_anon:%lukB"
4361 " inactive_anon:%lukB"
4362 " active_file:%lukB"
4363 " inactive_file:%lukB"
7b854121 4364 " unevictable:%lukB"
a731286d
KM
4365 " isolated(anon):%lukB"
4366 " isolated(file):%lukB"
1da177e4 4367 " present:%lukB"
9feedc9d 4368 " managed:%lukB"
4a0aa73f
KM
4369 " mlocked:%lukB"
4370 " dirty:%lukB"
4371 " writeback:%lukB"
4372 " mapped:%lukB"
4b02108a 4373 " shmem:%lukB"
65c45377
KS
4374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4375 " shmem_thp: %lukB"
4376 " shmem_pmdmapped: %lukB"
4377 " anon_thp: %lukB"
4378#endif
4a0aa73f
KM
4379 " slab_reclaimable:%lukB"
4380 " slab_unreclaimable:%lukB"
c6a7f572 4381 " kernel_stack:%lukB"
4a0aa73f
KM
4382 " pagetables:%lukB"
4383 " unstable:%lukB"
4384 " bounce:%lukB"
d1bfcdb8
KK
4385 " free_pcp:%lukB"
4386 " local_pcp:%ukB"
d1ce749a 4387 " free_cma:%lukB"
4a0aa73f 4388 " writeback_tmp:%lukB"
1da177e4
LT
4389 " pages_scanned:%lu"
4390 " all_unreclaimable? %s"
4391 "\n",
4392 zone->name,
88f5acf8 4393 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4394 K(min_wmark_pages(zone)),
4395 K(low_wmark_pages(zone)),
4396 K(high_wmark_pages(zone)),
4f98a2fe
RR
4397 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4398 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4399 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4400 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4401 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4402 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4403 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4404 K(zone->present_pages),
9feedc9d 4405 K(zone->managed_pages),
4a0aa73f
KM
4406 K(zone_page_state(zone, NR_MLOCK)),
4407 K(zone_page_state(zone, NR_FILE_DIRTY)),
4408 K(zone_page_state(zone, NR_WRITEBACK)),
4409 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4410 K(zone_page_state(zone, NR_SHMEM)),
65c45377
KS
4411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4412 K(zone_page_state(zone, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4413 K(zone_page_state(zone, NR_SHMEM_PMDMAPPED)
4414 * HPAGE_PMD_NR),
4415 K(zone_page_state(zone, NR_ANON_THPS) * HPAGE_PMD_NR),
4416#endif
4a0aa73f
KM
4417 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4418 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4419 zone_page_state(zone, NR_KERNEL_STACK) *
4420 THREAD_SIZE / 1024,
4a0aa73f
KM
4421 K(zone_page_state(zone, NR_PAGETABLE)),
4422 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4423 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4424 K(free_pcp),
4425 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4426 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4427 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4428 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4429 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4430 );
4431 printk("lowmem_reserve[]:");
4432 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4433 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4434 printk("\n");
4435 }
4436
ee99c71c 4437 for_each_populated_zone(zone) {
d00181b9
KS
4438 unsigned int order;
4439 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4440 unsigned char types[MAX_ORDER];
1da177e4 4441
7bf02ea2 4442 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4443 continue;
1da177e4
LT
4444 show_node(zone);
4445 printk("%s: ", zone->name);
1da177e4
LT
4446
4447 spin_lock_irqsave(&zone->lock, flags);
4448 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4449 struct free_area *area = &zone->free_area[order];
4450 int type;
4451
4452 nr[order] = area->nr_free;
8f9de51a 4453 total += nr[order] << order;
377e4f16
RV
4454
4455 types[order] = 0;
4456 for (type = 0; type < MIGRATE_TYPES; type++) {
4457 if (!list_empty(&area->free_list[type]))
4458 types[order] |= 1 << type;
4459 }
1da177e4
LT
4460 }
4461 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4462 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4463 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4464 if (nr[order])
4465 show_migration_types(types[order]);
4466 }
1da177e4
LT
4467 printk("= %lukB\n", K(total));
4468 }
4469
949f7ec5
DR
4470 hugetlb_show_meminfo();
4471
e6f3602d
LW
4472 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4473
1da177e4
LT
4474 show_swap_cache_info();
4475}
4476
19770b32
MG
4477static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4478{
4479 zoneref->zone = zone;
4480 zoneref->zone_idx = zone_idx(zone);
4481}
4482
1da177e4
LT
4483/*
4484 * Builds allocation fallback zone lists.
1a93205b
CL
4485 *
4486 * Add all populated zones of a node to the zonelist.
1da177e4 4487 */
f0c0b2b8 4488static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4489 int nr_zones)
1da177e4 4490{
1a93205b 4491 struct zone *zone;
bc732f1d 4492 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4493
4494 do {
2f6726e5 4495 zone_type--;
070f8032 4496 zone = pgdat->node_zones + zone_type;
1a93205b 4497 if (populated_zone(zone)) {
dd1a239f
MG
4498 zoneref_set_zone(zone,
4499 &zonelist->_zonerefs[nr_zones++]);
070f8032 4500 check_highest_zone(zone_type);
1da177e4 4501 }
2f6726e5 4502 } while (zone_type);
bc732f1d 4503
070f8032 4504 return nr_zones;
1da177e4
LT
4505}
4506
f0c0b2b8
KH
4507
4508/*
4509 * zonelist_order:
4510 * 0 = automatic detection of better ordering.
4511 * 1 = order by ([node] distance, -zonetype)
4512 * 2 = order by (-zonetype, [node] distance)
4513 *
4514 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4515 * the same zonelist. So only NUMA can configure this param.
4516 */
4517#define ZONELIST_ORDER_DEFAULT 0
4518#define ZONELIST_ORDER_NODE 1
4519#define ZONELIST_ORDER_ZONE 2
4520
4521/* zonelist order in the kernel.
4522 * set_zonelist_order() will set this to NODE or ZONE.
4523 */
4524static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4525static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4526
4527
1da177e4 4528#ifdef CONFIG_NUMA
f0c0b2b8
KH
4529/* The value user specified ....changed by config */
4530static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4531/* string for sysctl */
4532#define NUMA_ZONELIST_ORDER_LEN 16
4533char numa_zonelist_order[16] = "default";
4534
4535/*
4536 * interface for configure zonelist ordering.
4537 * command line option "numa_zonelist_order"
4538 * = "[dD]efault - default, automatic configuration.
4539 * = "[nN]ode - order by node locality, then by zone within node
4540 * = "[zZ]one - order by zone, then by locality within zone
4541 */
4542
4543static int __parse_numa_zonelist_order(char *s)
4544{
4545 if (*s == 'd' || *s == 'D') {
4546 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4547 } else if (*s == 'n' || *s == 'N') {
4548 user_zonelist_order = ZONELIST_ORDER_NODE;
4549 } else if (*s == 'z' || *s == 'Z') {
4550 user_zonelist_order = ZONELIST_ORDER_ZONE;
4551 } else {
1170532b 4552 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4553 return -EINVAL;
4554 }
4555 return 0;
4556}
4557
4558static __init int setup_numa_zonelist_order(char *s)
4559{
ecb256f8
VL
4560 int ret;
4561
4562 if (!s)
4563 return 0;
4564
4565 ret = __parse_numa_zonelist_order(s);
4566 if (ret == 0)
4567 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4568
4569 return ret;
f0c0b2b8
KH
4570}
4571early_param("numa_zonelist_order", setup_numa_zonelist_order);
4572
4573/*
4574 * sysctl handler for numa_zonelist_order
4575 */
cccad5b9 4576int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4577 void __user *buffer, size_t *length,
f0c0b2b8
KH
4578 loff_t *ppos)
4579{
4580 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4581 int ret;
443c6f14 4582 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4583
443c6f14 4584 mutex_lock(&zl_order_mutex);
dacbde09
CG
4585 if (write) {
4586 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4587 ret = -EINVAL;
4588 goto out;
4589 }
4590 strcpy(saved_string, (char *)table->data);
4591 }
8d65af78 4592 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4593 if (ret)
443c6f14 4594 goto out;
f0c0b2b8
KH
4595 if (write) {
4596 int oldval = user_zonelist_order;
dacbde09
CG
4597
4598 ret = __parse_numa_zonelist_order((char *)table->data);
4599 if (ret) {
f0c0b2b8
KH
4600 /*
4601 * bogus value. restore saved string
4602 */
dacbde09 4603 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4604 NUMA_ZONELIST_ORDER_LEN);
4605 user_zonelist_order = oldval;
4eaf3f64
HL
4606 } else if (oldval != user_zonelist_order) {
4607 mutex_lock(&zonelists_mutex);
9adb62a5 4608 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4609 mutex_unlock(&zonelists_mutex);
4610 }
f0c0b2b8 4611 }
443c6f14
AK
4612out:
4613 mutex_unlock(&zl_order_mutex);
4614 return ret;
f0c0b2b8
KH
4615}
4616
4617
62bc62a8 4618#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4619static int node_load[MAX_NUMNODES];
4620
1da177e4 4621/**
4dc3b16b 4622 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4623 * @node: node whose fallback list we're appending
4624 * @used_node_mask: nodemask_t of already used nodes
4625 *
4626 * We use a number of factors to determine which is the next node that should
4627 * appear on a given node's fallback list. The node should not have appeared
4628 * already in @node's fallback list, and it should be the next closest node
4629 * according to the distance array (which contains arbitrary distance values
4630 * from each node to each node in the system), and should also prefer nodes
4631 * with no CPUs, since presumably they'll have very little allocation pressure
4632 * on them otherwise.
4633 * It returns -1 if no node is found.
4634 */
f0c0b2b8 4635static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4636{
4cf808eb 4637 int n, val;
1da177e4 4638 int min_val = INT_MAX;
00ef2d2f 4639 int best_node = NUMA_NO_NODE;
a70f7302 4640 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4641
4cf808eb
LT
4642 /* Use the local node if we haven't already */
4643 if (!node_isset(node, *used_node_mask)) {
4644 node_set(node, *used_node_mask);
4645 return node;
4646 }
1da177e4 4647
4b0ef1fe 4648 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4649
4650 /* Don't want a node to appear more than once */
4651 if (node_isset(n, *used_node_mask))
4652 continue;
4653
1da177e4
LT
4654 /* Use the distance array to find the distance */
4655 val = node_distance(node, n);
4656
4cf808eb
LT
4657 /* Penalize nodes under us ("prefer the next node") */
4658 val += (n < node);
4659
1da177e4 4660 /* Give preference to headless and unused nodes */
a70f7302
RR
4661 tmp = cpumask_of_node(n);
4662 if (!cpumask_empty(tmp))
1da177e4
LT
4663 val += PENALTY_FOR_NODE_WITH_CPUS;
4664
4665 /* Slight preference for less loaded node */
4666 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4667 val += node_load[n];
4668
4669 if (val < min_val) {
4670 min_val = val;
4671 best_node = n;
4672 }
4673 }
4674
4675 if (best_node >= 0)
4676 node_set(best_node, *used_node_mask);
4677
4678 return best_node;
4679}
4680
f0c0b2b8
KH
4681
4682/*
4683 * Build zonelists ordered by node and zones within node.
4684 * This results in maximum locality--normal zone overflows into local
4685 * DMA zone, if any--but risks exhausting DMA zone.
4686 */
4687static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4688{
f0c0b2b8 4689 int j;
1da177e4 4690 struct zonelist *zonelist;
f0c0b2b8 4691
54a6eb5c 4692 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4693 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4694 ;
bc732f1d 4695 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4696 zonelist->_zonerefs[j].zone = NULL;
4697 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4698}
4699
523b9458
CL
4700/*
4701 * Build gfp_thisnode zonelists
4702 */
4703static void build_thisnode_zonelists(pg_data_t *pgdat)
4704{
523b9458
CL
4705 int j;
4706 struct zonelist *zonelist;
4707
54a6eb5c 4708 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4709 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4710 zonelist->_zonerefs[j].zone = NULL;
4711 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4712}
4713
f0c0b2b8
KH
4714/*
4715 * Build zonelists ordered by zone and nodes within zones.
4716 * This results in conserving DMA zone[s] until all Normal memory is
4717 * exhausted, but results in overflowing to remote node while memory
4718 * may still exist in local DMA zone.
4719 */
4720static int node_order[MAX_NUMNODES];
4721
4722static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4723{
f0c0b2b8
KH
4724 int pos, j, node;
4725 int zone_type; /* needs to be signed */
4726 struct zone *z;
4727 struct zonelist *zonelist;
4728
54a6eb5c
MG
4729 zonelist = &pgdat->node_zonelists[0];
4730 pos = 0;
4731 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4732 for (j = 0; j < nr_nodes; j++) {
4733 node = node_order[j];
4734 z = &NODE_DATA(node)->node_zones[zone_type];
4735 if (populated_zone(z)) {
dd1a239f
MG
4736 zoneref_set_zone(z,
4737 &zonelist->_zonerefs[pos++]);
54a6eb5c 4738 check_highest_zone(zone_type);
f0c0b2b8
KH
4739 }
4740 }
f0c0b2b8 4741 }
dd1a239f
MG
4742 zonelist->_zonerefs[pos].zone = NULL;
4743 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4744}
4745
3193913c
MG
4746#if defined(CONFIG_64BIT)
4747/*
4748 * Devices that require DMA32/DMA are relatively rare and do not justify a
4749 * penalty to every machine in case the specialised case applies. Default
4750 * to Node-ordering on 64-bit NUMA machines
4751 */
4752static int default_zonelist_order(void)
4753{
4754 return ZONELIST_ORDER_NODE;
4755}
4756#else
4757/*
4758 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4759 * by the kernel. If processes running on node 0 deplete the low memory zone
4760 * then reclaim will occur more frequency increasing stalls and potentially
4761 * be easier to OOM if a large percentage of the zone is under writeback or
4762 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4763 * Hence, default to zone ordering on 32-bit.
4764 */
f0c0b2b8
KH
4765static int default_zonelist_order(void)
4766{
f0c0b2b8
KH
4767 return ZONELIST_ORDER_ZONE;
4768}
3193913c 4769#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4770
4771static void set_zonelist_order(void)
4772{
4773 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4774 current_zonelist_order = default_zonelist_order();
4775 else
4776 current_zonelist_order = user_zonelist_order;
4777}
4778
4779static void build_zonelists(pg_data_t *pgdat)
4780{
c00eb15a 4781 int i, node, load;
1da177e4 4782 nodemask_t used_mask;
f0c0b2b8
KH
4783 int local_node, prev_node;
4784 struct zonelist *zonelist;
d00181b9 4785 unsigned int order = current_zonelist_order;
1da177e4
LT
4786
4787 /* initialize zonelists */
523b9458 4788 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4789 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4790 zonelist->_zonerefs[0].zone = NULL;
4791 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4792 }
4793
4794 /* NUMA-aware ordering of nodes */
4795 local_node = pgdat->node_id;
62bc62a8 4796 load = nr_online_nodes;
1da177e4
LT
4797 prev_node = local_node;
4798 nodes_clear(used_mask);
f0c0b2b8 4799
f0c0b2b8 4800 memset(node_order, 0, sizeof(node_order));
c00eb15a 4801 i = 0;
f0c0b2b8 4802
1da177e4
LT
4803 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4804 /*
4805 * We don't want to pressure a particular node.
4806 * So adding penalty to the first node in same
4807 * distance group to make it round-robin.
4808 */
957f822a
DR
4809 if (node_distance(local_node, node) !=
4810 node_distance(local_node, prev_node))
f0c0b2b8
KH
4811 node_load[node] = load;
4812
1da177e4
LT
4813 prev_node = node;
4814 load--;
f0c0b2b8
KH
4815 if (order == ZONELIST_ORDER_NODE)
4816 build_zonelists_in_node_order(pgdat, node);
4817 else
c00eb15a 4818 node_order[i++] = node; /* remember order */
f0c0b2b8 4819 }
1da177e4 4820
f0c0b2b8
KH
4821 if (order == ZONELIST_ORDER_ZONE) {
4822 /* calculate node order -- i.e., DMA last! */
c00eb15a 4823 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4824 }
523b9458
CL
4825
4826 build_thisnode_zonelists(pgdat);
1da177e4
LT
4827}
4828
7aac7898
LS
4829#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4830/*
4831 * Return node id of node used for "local" allocations.
4832 * I.e., first node id of first zone in arg node's generic zonelist.
4833 * Used for initializing percpu 'numa_mem', which is used primarily
4834 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4835 */
4836int local_memory_node(int node)
4837{
c33d6c06 4838 struct zoneref *z;
7aac7898 4839
c33d6c06 4840 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4841 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4842 NULL);
4843 return z->zone->node;
7aac7898
LS
4844}
4845#endif
f0c0b2b8 4846
1da177e4
LT
4847#else /* CONFIG_NUMA */
4848
f0c0b2b8
KH
4849static void set_zonelist_order(void)
4850{
4851 current_zonelist_order = ZONELIST_ORDER_ZONE;
4852}
4853
4854static void build_zonelists(pg_data_t *pgdat)
1da177e4 4855{
19655d34 4856 int node, local_node;
54a6eb5c
MG
4857 enum zone_type j;
4858 struct zonelist *zonelist;
1da177e4
LT
4859
4860 local_node = pgdat->node_id;
1da177e4 4861
54a6eb5c 4862 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4863 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4864
54a6eb5c
MG
4865 /*
4866 * Now we build the zonelist so that it contains the zones
4867 * of all the other nodes.
4868 * We don't want to pressure a particular node, so when
4869 * building the zones for node N, we make sure that the
4870 * zones coming right after the local ones are those from
4871 * node N+1 (modulo N)
4872 */
4873 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4874 if (!node_online(node))
4875 continue;
bc732f1d 4876 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4877 }
54a6eb5c
MG
4878 for (node = 0; node < local_node; node++) {
4879 if (!node_online(node))
4880 continue;
bc732f1d 4881 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4882 }
4883
dd1a239f
MG
4884 zonelist->_zonerefs[j].zone = NULL;
4885 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4886}
4887
4888#endif /* CONFIG_NUMA */
4889
99dcc3e5
CL
4890/*
4891 * Boot pageset table. One per cpu which is going to be used for all
4892 * zones and all nodes. The parameters will be set in such a way
4893 * that an item put on a list will immediately be handed over to
4894 * the buddy list. This is safe since pageset manipulation is done
4895 * with interrupts disabled.
4896 *
4897 * The boot_pagesets must be kept even after bootup is complete for
4898 * unused processors and/or zones. They do play a role for bootstrapping
4899 * hotplugged processors.
4900 *
4901 * zoneinfo_show() and maybe other functions do
4902 * not check if the processor is online before following the pageset pointer.
4903 * Other parts of the kernel may not check if the zone is available.
4904 */
4905static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4906static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4907static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4908
4eaf3f64
HL
4909/*
4910 * Global mutex to protect against size modification of zonelists
4911 * as well as to serialize pageset setup for the new populated zone.
4912 */
4913DEFINE_MUTEX(zonelists_mutex);
4914
9b1a4d38 4915/* return values int ....just for stop_machine() */
4ed7e022 4916static int __build_all_zonelists(void *data)
1da177e4 4917{
6811378e 4918 int nid;
99dcc3e5 4919 int cpu;
9adb62a5 4920 pg_data_t *self = data;
9276b1bc 4921
7f9cfb31
BL
4922#ifdef CONFIG_NUMA
4923 memset(node_load, 0, sizeof(node_load));
4924#endif
9adb62a5
JL
4925
4926 if (self && !node_online(self->node_id)) {
4927 build_zonelists(self);
9adb62a5
JL
4928 }
4929
9276b1bc 4930 for_each_online_node(nid) {
7ea1530a
CL
4931 pg_data_t *pgdat = NODE_DATA(nid);
4932
4933 build_zonelists(pgdat);
9276b1bc 4934 }
99dcc3e5
CL
4935
4936 /*
4937 * Initialize the boot_pagesets that are going to be used
4938 * for bootstrapping processors. The real pagesets for
4939 * each zone will be allocated later when the per cpu
4940 * allocator is available.
4941 *
4942 * boot_pagesets are used also for bootstrapping offline
4943 * cpus if the system is already booted because the pagesets
4944 * are needed to initialize allocators on a specific cpu too.
4945 * F.e. the percpu allocator needs the page allocator which
4946 * needs the percpu allocator in order to allocate its pagesets
4947 * (a chicken-egg dilemma).
4948 */
7aac7898 4949 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4950 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4951
7aac7898
LS
4952#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4953 /*
4954 * We now know the "local memory node" for each node--
4955 * i.e., the node of the first zone in the generic zonelist.
4956 * Set up numa_mem percpu variable for on-line cpus. During
4957 * boot, only the boot cpu should be on-line; we'll init the
4958 * secondary cpus' numa_mem as they come on-line. During
4959 * node/memory hotplug, we'll fixup all on-line cpus.
4960 */
4961 if (cpu_online(cpu))
4962 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4963#endif
4964 }
4965
6811378e
YG
4966 return 0;
4967}
4968
061f67bc
RV
4969static noinline void __init
4970build_all_zonelists_init(void)
4971{
4972 __build_all_zonelists(NULL);
4973 mminit_verify_zonelist();
4974 cpuset_init_current_mems_allowed();
4975}
4976
4eaf3f64
HL
4977/*
4978 * Called with zonelists_mutex held always
4979 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4980 *
4981 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4982 * [we're only called with non-NULL zone through __meminit paths] and
4983 * (2) call of __init annotated helper build_all_zonelists_init
4984 * [protected by SYSTEM_BOOTING].
4eaf3f64 4985 */
9adb62a5 4986void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4987{
f0c0b2b8
KH
4988 set_zonelist_order();
4989
6811378e 4990 if (system_state == SYSTEM_BOOTING) {
061f67bc 4991 build_all_zonelists_init();
6811378e 4992 } else {
e9959f0f 4993#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4994 if (zone)
4995 setup_zone_pageset(zone);
e9959f0f 4996#endif
dd1895e2
CS
4997 /* we have to stop all cpus to guarantee there is no user
4998 of zonelist */
9adb62a5 4999 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5000 /* cpuset refresh routine should be here */
5001 }
bd1e22b8 5002 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5003 /*
5004 * Disable grouping by mobility if the number of pages in the
5005 * system is too low to allow the mechanism to work. It would be
5006 * more accurate, but expensive to check per-zone. This check is
5007 * made on memory-hotadd so a system can start with mobility
5008 * disabled and enable it later
5009 */
d9c23400 5010 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5011 page_group_by_mobility_disabled = 1;
5012 else
5013 page_group_by_mobility_disabled = 0;
5014
756a025f
JP
5015 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5016 nr_online_nodes,
5017 zonelist_order_name[current_zonelist_order],
5018 page_group_by_mobility_disabled ? "off" : "on",
5019 vm_total_pages);
f0c0b2b8 5020#ifdef CONFIG_NUMA
f88dfff5 5021 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5022#endif
1da177e4
LT
5023}
5024
5025/*
5026 * Helper functions to size the waitqueue hash table.
5027 * Essentially these want to choose hash table sizes sufficiently
5028 * large so that collisions trying to wait on pages are rare.
5029 * But in fact, the number of active page waitqueues on typical
5030 * systems is ridiculously low, less than 200. So this is even
5031 * conservative, even though it seems large.
5032 *
5033 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5034 * waitqueues, i.e. the size of the waitq table given the number of pages.
5035 */
5036#define PAGES_PER_WAITQUEUE 256
5037
cca448fe 5038#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5039static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5040{
5041 unsigned long size = 1;
5042
5043 pages /= PAGES_PER_WAITQUEUE;
5044
5045 while (size < pages)
5046 size <<= 1;
5047
5048 /*
5049 * Once we have dozens or even hundreds of threads sleeping
5050 * on IO we've got bigger problems than wait queue collision.
5051 * Limit the size of the wait table to a reasonable size.
5052 */
5053 size = min(size, 4096UL);
5054
5055 return max(size, 4UL);
5056}
cca448fe
YG
5057#else
5058/*
5059 * A zone's size might be changed by hot-add, so it is not possible to determine
5060 * a suitable size for its wait_table. So we use the maximum size now.
5061 *
5062 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5063 *
5064 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5065 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5066 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5067 *
5068 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5069 * or more by the traditional way. (See above). It equals:
5070 *
5071 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5072 * ia64(16K page size) : = ( 8G + 4M)byte.
5073 * powerpc (64K page size) : = (32G +16M)byte.
5074 */
5075static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5076{
5077 return 4096UL;
5078}
5079#endif
1da177e4
LT
5080
5081/*
5082 * This is an integer logarithm so that shifts can be used later
5083 * to extract the more random high bits from the multiplicative
5084 * hash function before the remainder is taken.
5085 */
5086static inline unsigned long wait_table_bits(unsigned long size)
5087{
5088 return ffz(~size);
5089}
5090
1da177e4
LT
5091/*
5092 * Initially all pages are reserved - free ones are freed
5093 * up by free_all_bootmem() once the early boot process is
5094 * done. Non-atomic initialization, single-pass.
5095 */
c09b4240 5096void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5097 unsigned long start_pfn, enum memmap_context context)
1da177e4 5098{
4b94ffdc 5099 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5100 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5101 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5102 unsigned long pfn;
3a80a7fa 5103 unsigned long nr_initialised = 0;
342332e6
TI
5104#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5105 struct memblock_region *r = NULL, *tmp;
5106#endif
1da177e4 5107
22b31eec
HD
5108 if (highest_memmap_pfn < end_pfn - 1)
5109 highest_memmap_pfn = end_pfn - 1;
5110
4b94ffdc
DW
5111 /*
5112 * Honor reservation requested by the driver for this ZONE_DEVICE
5113 * memory
5114 */
5115 if (altmap && start_pfn == altmap->base_pfn)
5116 start_pfn += altmap->reserve;
5117
cbe8dd4a 5118 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5119 /*
b72d0ffb
AM
5120 * There can be holes in boot-time mem_map[]s handed to this
5121 * function. They do not exist on hotplugged memory.
a2f3aa02 5122 */
b72d0ffb
AM
5123 if (context != MEMMAP_EARLY)
5124 goto not_early;
5125
5126 if (!early_pfn_valid(pfn))
5127 continue;
5128 if (!early_pfn_in_nid(pfn, nid))
5129 continue;
5130 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5131 break;
342332e6
TI
5132
5133#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5134 /*
5135 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5136 * from zone_movable_pfn[nid] to end of each node should be
5137 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5138 */
5139 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5140 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5141 continue;
342332e6 5142
b72d0ffb
AM
5143 /*
5144 * Check given memblock attribute by firmware which can affect
5145 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5146 * mirrored, it's an overlapped memmap init. skip it.
5147 */
5148 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5149 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5150 for_each_memblock(memory, tmp)
5151 if (pfn < memblock_region_memory_end_pfn(tmp))
5152 break;
5153 r = tmp;
5154 }
5155 if (pfn >= memblock_region_memory_base_pfn(r) &&
5156 memblock_is_mirror(r)) {
5157 /* already initialized as NORMAL */
5158 pfn = memblock_region_memory_end_pfn(r);
5159 continue;
342332e6 5160 }
a2f3aa02 5161 }
b72d0ffb 5162#endif
ac5d2539 5163
b72d0ffb 5164not_early:
ac5d2539
MG
5165 /*
5166 * Mark the block movable so that blocks are reserved for
5167 * movable at startup. This will force kernel allocations
5168 * to reserve their blocks rather than leaking throughout
5169 * the address space during boot when many long-lived
974a786e 5170 * kernel allocations are made.
ac5d2539
MG
5171 *
5172 * bitmap is created for zone's valid pfn range. but memmap
5173 * can be created for invalid pages (for alignment)
5174 * check here not to call set_pageblock_migratetype() against
5175 * pfn out of zone.
5176 */
5177 if (!(pfn & (pageblock_nr_pages - 1))) {
5178 struct page *page = pfn_to_page(pfn);
5179
5180 __init_single_page(page, pfn, zone, nid);
5181 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5182 } else {
5183 __init_single_pfn(pfn, zone, nid);
5184 }
1da177e4
LT
5185 }
5186}
5187
1e548deb 5188static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5189{
7aeb09f9 5190 unsigned int order, t;
b2a0ac88
MG
5191 for_each_migratetype_order(order, t) {
5192 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5193 zone->free_area[order].nr_free = 0;
5194 }
5195}
5196
5197#ifndef __HAVE_ARCH_MEMMAP_INIT
5198#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5199 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5200#endif
5201
7cd2b0a3 5202static int zone_batchsize(struct zone *zone)
e7c8d5c9 5203{
3a6be87f 5204#ifdef CONFIG_MMU
e7c8d5c9
CL
5205 int batch;
5206
5207 /*
5208 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5209 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5210 *
5211 * OK, so we don't know how big the cache is. So guess.
5212 */
b40da049 5213 batch = zone->managed_pages / 1024;
ba56e91c
SR
5214 if (batch * PAGE_SIZE > 512 * 1024)
5215 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5216 batch /= 4; /* We effectively *= 4 below */
5217 if (batch < 1)
5218 batch = 1;
5219
5220 /*
0ceaacc9
NP
5221 * Clamp the batch to a 2^n - 1 value. Having a power
5222 * of 2 value was found to be more likely to have
5223 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5224 *
0ceaacc9
NP
5225 * For example if 2 tasks are alternately allocating
5226 * batches of pages, one task can end up with a lot
5227 * of pages of one half of the possible page colors
5228 * and the other with pages of the other colors.
e7c8d5c9 5229 */
9155203a 5230 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5231
e7c8d5c9 5232 return batch;
3a6be87f
DH
5233
5234#else
5235 /* The deferral and batching of frees should be suppressed under NOMMU
5236 * conditions.
5237 *
5238 * The problem is that NOMMU needs to be able to allocate large chunks
5239 * of contiguous memory as there's no hardware page translation to
5240 * assemble apparent contiguous memory from discontiguous pages.
5241 *
5242 * Queueing large contiguous runs of pages for batching, however,
5243 * causes the pages to actually be freed in smaller chunks. As there
5244 * can be a significant delay between the individual batches being
5245 * recycled, this leads to the once large chunks of space being
5246 * fragmented and becoming unavailable for high-order allocations.
5247 */
5248 return 0;
5249#endif
e7c8d5c9
CL
5250}
5251
8d7a8fa9
CS
5252/*
5253 * pcp->high and pcp->batch values are related and dependent on one another:
5254 * ->batch must never be higher then ->high.
5255 * The following function updates them in a safe manner without read side
5256 * locking.
5257 *
5258 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5259 * those fields changing asynchronously (acording the the above rule).
5260 *
5261 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5262 * outside of boot time (or some other assurance that no concurrent updaters
5263 * exist).
5264 */
5265static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5266 unsigned long batch)
5267{
5268 /* start with a fail safe value for batch */
5269 pcp->batch = 1;
5270 smp_wmb();
5271
5272 /* Update high, then batch, in order */
5273 pcp->high = high;
5274 smp_wmb();
5275
5276 pcp->batch = batch;
5277}
5278
3664033c 5279/* a companion to pageset_set_high() */
4008bab7
CS
5280static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5281{
8d7a8fa9 5282 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5283}
5284
88c90dbc 5285static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5286{
5287 struct per_cpu_pages *pcp;
5f8dcc21 5288 int migratetype;
2caaad41 5289
1c6fe946
MD
5290 memset(p, 0, sizeof(*p));
5291
3dfa5721 5292 pcp = &p->pcp;
2caaad41 5293 pcp->count = 0;
5f8dcc21
MG
5294 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5295 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5296}
5297
88c90dbc
CS
5298static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5299{
5300 pageset_init(p);
5301 pageset_set_batch(p, batch);
5302}
5303
8ad4b1fb 5304/*
3664033c 5305 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5306 * to the value high for the pageset p.
5307 */
3664033c 5308static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5309 unsigned long high)
5310{
8d7a8fa9
CS
5311 unsigned long batch = max(1UL, high / 4);
5312 if ((high / 4) > (PAGE_SHIFT * 8))
5313 batch = PAGE_SHIFT * 8;
8ad4b1fb 5314
8d7a8fa9 5315 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5316}
5317
7cd2b0a3
DR
5318static void pageset_set_high_and_batch(struct zone *zone,
5319 struct per_cpu_pageset *pcp)
56cef2b8 5320{
56cef2b8 5321 if (percpu_pagelist_fraction)
3664033c 5322 pageset_set_high(pcp,
56cef2b8
CS
5323 (zone->managed_pages /
5324 percpu_pagelist_fraction));
5325 else
5326 pageset_set_batch(pcp, zone_batchsize(zone));
5327}
5328
169f6c19
CS
5329static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5330{
5331 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5332
5333 pageset_init(pcp);
5334 pageset_set_high_and_batch(zone, pcp);
5335}
5336
4ed7e022 5337static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5338{
5339 int cpu;
319774e2 5340 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5341 for_each_possible_cpu(cpu)
5342 zone_pageset_init(zone, cpu);
319774e2
WF
5343}
5344
2caaad41 5345/*
99dcc3e5
CL
5346 * Allocate per cpu pagesets and initialize them.
5347 * Before this call only boot pagesets were available.
e7c8d5c9 5348 */
99dcc3e5 5349void __init setup_per_cpu_pageset(void)
e7c8d5c9 5350{
99dcc3e5 5351 struct zone *zone;
e7c8d5c9 5352
319774e2
WF
5353 for_each_populated_zone(zone)
5354 setup_zone_pageset(zone);
e7c8d5c9
CL
5355}
5356
577a32f6 5357static noinline __init_refok
cca448fe 5358int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5359{
5360 int i;
cca448fe 5361 size_t alloc_size;
ed8ece2e
DH
5362
5363 /*
5364 * The per-page waitqueue mechanism uses hashed waitqueues
5365 * per zone.
5366 */
02b694de
YG
5367 zone->wait_table_hash_nr_entries =
5368 wait_table_hash_nr_entries(zone_size_pages);
5369 zone->wait_table_bits =
5370 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5371 alloc_size = zone->wait_table_hash_nr_entries
5372 * sizeof(wait_queue_head_t);
5373
cd94b9db 5374 if (!slab_is_available()) {
cca448fe 5375 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5376 memblock_virt_alloc_node_nopanic(
5377 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5378 } else {
5379 /*
5380 * This case means that a zone whose size was 0 gets new memory
5381 * via memory hot-add.
5382 * But it may be the case that a new node was hot-added. In
5383 * this case vmalloc() will not be able to use this new node's
5384 * memory - this wait_table must be initialized to use this new
5385 * node itself as well.
5386 * To use this new node's memory, further consideration will be
5387 * necessary.
5388 */
8691f3a7 5389 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5390 }
5391 if (!zone->wait_table)
5392 return -ENOMEM;
ed8ece2e 5393
b8af2941 5394 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5395 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5396
5397 return 0;
ed8ece2e
DH
5398}
5399
c09b4240 5400static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5401{
99dcc3e5
CL
5402 /*
5403 * per cpu subsystem is not up at this point. The following code
5404 * relies on the ability of the linker to provide the
5405 * offset of a (static) per cpu variable into the per cpu area.
5406 */
5407 zone->pageset = &boot_pageset;
ed8ece2e 5408
b38a8725 5409 if (populated_zone(zone))
99dcc3e5
CL
5410 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5411 zone->name, zone->present_pages,
5412 zone_batchsize(zone));
ed8ece2e
DH
5413}
5414
4ed7e022 5415int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5416 unsigned long zone_start_pfn,
b171e409 5417 unsigned long size)
ed8ece2e
DH
5418{
5419 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5420 int ret;
5421 ret = zone_wait_table_init(zone, size);
5422 if (ret)
5423 return ret;
ed8ece2e
DH
5424 pgdat->nr_zones = zone_idx(zone) + 1;
5425
ed8ece2e
DH
5426 zone->zone_start_pfn = zone_start_pfn;
5427
708614e6
MG
5428 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5429 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5430 pgdat->node_id,
5431 (unsigned long)zone_idx(zone),
5432 zone_start_pfn, (zone_start_pfn + size));
5433
1e548deb 5434 zone_init_free_lists(zone);
718127cc
YG
5435
5436 return 0;
ed8ece2e
DH
5437}
5438
0ee332c1 5439#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5440#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5441
c713216d
MG
5442/*
5443 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5444 */
8a942fde
MG
5445int __meminit __early_pfn_to_nid(unsigned long pfn,
5446 struct mminit_pfnnid_cache *state)
c713216d 5447{
c13291a5 5448 unsigned long start_pfn, end_pfn;
e76b63f8 5449 int nid;
7c243c71 5450
8a942fde
MG
5451 if (state->last_start <= pfn && pfn < state->last_end)
5452 return state->last_nid;
c713216d 5453
e76b63f8
YL
5454 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5455 if (nid != -1) {
8a942fde
MG
5456 state->last_start = start_pfn;
5457 state->last_end = end_pfn;
5458 state->last_nid = nid;
e76b63f8
YL
5459 }
5460
5461 return nid;
c713216d
MG
5462}
5463#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5464
c713216d 5465/**
6782832e 5466 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5467 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5468 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5469 *
7d018176
ZZ
5470 * If an architecture guarantees that all ranges registered contain no holes
5471 * and may be freed, this this function may be used instead of calling
5472 * memblock_free_early_nid() manually.
c713216d 5473 */
c13291a5 5474void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5475{
c13291a5
TH
5476 unsigned long start_pfn, end_pfn;
5477 int i, this_nid;
edbe7d23 5478
c13291a5
TH
5479 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5480 start_pfn = min(start_pfn, max_low_pfn);
5481 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5482
c13291a5 5483 if (start_pfn < end_pfn)
6782832e
SS
5484 memblock_free_early_nid(PFN_PHYS(start_pfn),
5485 (end_pfn - start_pfn) << PAGE_SHIFT,
5486 this_nid);
edbe7d23 5487 }
edbe7d23 5488}
edbe7d23 5489
c713216d
MG
5490/**
5491 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5492 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5493 *
7d018176
ZZ
5494 * If an architecture guarantees that all ranges registered contain no holes and may
5495 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5496 */
5497void __init sparse_memory_present_with_active_regions(int nid)
5498{
c13291a5
TH
5499 unsigned long start_pfn, end_pfn;
5500 int i, this_nid;
c713216d 5501
c13291a5
TH
5502 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5503 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5504}
5505
5506/**
5507 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5508 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5509 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5510 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5511 *
5512 * It returns the start and end page frame of a node based on information
7d018176 5513 * provided by memblock_set_node(). If called for a node
c713216d 5514 * with no available memory, a warning is printed and the start and end
88ca3b94 5515 * PFNs will be 0.
c713216d 5516 */
a3142c8e 5517void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5518 unsigned long *start_pfn, unsigned long *end_pfn)
5519{
c13291a5 5520 unsigned long this_start_pfn, this_end_pfn;
c713216d 5521 int i;
c13291a5 5522
c713216d
MG
5523 *start_pfn = -1UL;
5524 *end_pfn = 0;
5525
c13291a5
TH
5526 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5527 *start_pfn = min(*start_pfn, this_start_pfn);
5528 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5529 }
5530
633c0666 5531 if (*start_pfn == -1UL)
c713216d 5532 *start_pfn = 0;
c713216d
MG
5533}
5534
2a1e274a
MG
5535/*
5536 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5537 * assumption is made that zones within a node are ordered in monotonic
5538 * increasing memory addresses so that the "highest" populated zone is used
5539 */
b69a7288 5540static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5541{
5542 int zone_index;
5543 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5544 if (zone_index == ZONE_MOVABLE)
5545 continue;
5546
5547 if (arch_zone_highest_possible_pfn[zone_index] >
5548 arch_zone_lowest_possible_pfn[zone_index])
5549 break;
5550 }
5551
5552 VM_BUG_ON(zone_index == -1);
5553 movable_zone = zone_index;
5554}
5555
5556/*
5557 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5558 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5559 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5560 * in each node depending on the size of each node and how evenly kernelcore
5561 * is distributed. This helper function adjusts the zone ranges
5562 * provided by the architecture for a given node by using the end of the
5563 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5564 * zones within a node are in order of monotonic increases memory addresses
5565 */
b69a7288 5566static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5567 unsigned long zone_type,
5568 unsigned long node_start_pfn,
5569 unsigned long node_end_pfn,
5570 unsigned long *zone_start_pfn,
5571 unsigned long *zone_end_pfn)
5572{
5573 /* Only adjust if ZONE_MOVABLE is on this node */
5574 if (zone_movable_pfn[nid]) {
5575 /* Size ZONE_MOVABLE */
5576 if (zone_type == ZONE_MOVABLE) {
5577 *zone_start_pfn = zone_movable_pfn[nid];
5578 *zone_end_pfn = min(node_end_pfn,
5579 arch_zone_highest_possible_pfn[movable_zone]);
5580
2a1e274a
MG
5581 /* Check if this whole range is within ZONE_MOVABLE */
5582 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5583 *zone_start_pfn = *zone_end_pfn;
5584 }
5585}
5586
c713216d
MG
5587/*
5588 * Return the number of pages a zone spans in a node, including holes
5589 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5590 */
6ea6e688 5591static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5592 unsigned long zone_type,
7960aedd
ZY
5593 unsigned long node_start_pfn,
5594 unsigned long node_end_pfn,
d91749c1
TI
5595 unsigned long *zone_start_pfn,
5596 unsigned long *zone_end_pfn,
c713216d
MG
5597 unsigned long *ignored)
5598{
b5685e92 5599 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5600 if (!node_start_pfn && !node_end_pfn)
5601 return 0;
5602
7960aedd 5603 /* Get the start and end of the zone */
d91749c1
TI
5604 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5605 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5606 adjust_zone_range_for_zone_movable(nid, zone_type,
5607 node_start_pfn, node_end_pfn,
d91749c1 5608 zone_start_pfn, zone_end_pfn);
c713216d
MG
5609
5610 /* Check that this node has pages within the zone's required range */
d91749c1 5611 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5612 return 0;
5613
5614 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5615 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5616 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5617
5618 /* Return the spanned pages */
d91749c1 5619 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5620}
5621
5622/*
5623 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5624 * then all holes in the requested range will be accounted for.
c713216d 5625 */
32996250 5626unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5627 unsigned long range_start_pfn,
5628 unsigned long range_end_pfn)
5629{
96e907d1
TH
5630 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5631 unsigned long start_pfn, end_pfn;
5632 int i;
c713216d 5633
96e907d1
TH
5634 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5635 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5636 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5637 nr_absent -= end_pfn - start_pfn;
c713216d 5638 }
96e907d1 5639 return nr_absent;
c713216d
MG
5640}
5641
5642/**
5643 * absent_pages_in_range - Return number of page frames in holes within a range
5644 * @start_pfn: The start PFN to start searching for holes
5645 * @end_pfn: The end PFN to stop searching for holes
5646 *
88ca3b94 5647 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5648 */
5649unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5650 unsigned long end_pfn)
5651{
5652 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5653}
5654
5655/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5656static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5657 unsigned long zone_type,
7960aedd
ZY
5658 unsigned long node_start_pfn,
5659 unsigned long node_end_pfn,
c713216d
MG
5660 unsigned long *ignored)
5661{
96e907d1
TH
5662 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5663 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5664 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5665 unsigned long nr_absent;
9c7cd687 5666
b5685e92 5667 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5668 if (!node_start_pfn && !node_end_pfn)
5669 return 0;
5670
96e907d1
TH
5671 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5672 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5673
2a1e274a
MG
5674 adjust_zone_range_for_zone_movable(nid, zone_type,
5675 node_start_pfn, node_end_pfn,
5676 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5677 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5678
5679 /*
5680 * ZONE_MOVABLE handling.
5681 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5682 * and vice versa.
5683 */
5684 if (zone_movable_pfn[nid]) {
5685 if (mirrored_kernelcore) {
5686 unsigned long start_pfn, end_pfn;
5687 struct memblock_region *r;
5688
5689 for_each_memblock(memory, r) {
5690 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5691 zone_start_pfn, zone_end_pfn);
5692 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5693 zone_start_pfn, zone_end_pfn);
5694
5695 if (zone_type == ZONE_MOVABLE &&
5696 memblock_is_mirror(r))
5697 nr_absent += end_pfn - start_pfn;
5698
5699 if (zone_type == ZONE_NORMAL &&
5700 !memblock_is_mirror(r))
5701 nr_absent += end_pfn - start_pfn;
5702 }
5703 } else {
5704 if (zone_type == ZONE_NORMAL)
5705 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5706 }
5707 }
5708
5709 return nr_absent;
c713216d 5710}
0e0b864e 5711
0ee332c1 5712#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5713static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5714 unsigned long zone_type,
7960aedd
ZY
5715 unsigned long node_start_pfn,
5716 unsigned long node_end_pfn,
d91749c1
TI
5717 unsigned long *zone_start_pfn,
5718 unsigned long *zone_end_pfn,
c713216d
MG
5719 unsigned long *zones_size)
5720{
d91749c1
TI
5721 unsigned int zone;
5722
5723 *zone_start_pfn = node_start_pfn;
5724 for (zone = 0; zone < zone_type; zone++)
5725 *zone_start_pfn += zones_size[zone];
5726
5727 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5728
c713216d
MG
5729 return zones_size[zone_type];
5730}
5731
6ea6e688 5732static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5733 unsigned long zone_type,
7960aedd
ZY
5734 unsigned long node_start_pfn,
5735 unsigned long node_end_pfn,
c713216d
MG
5736 unsigned long *zholes_size)
5737{
5738 if (!zholes_size)
5739 return 0;
5740
5741 return zholes_size[zone_type];
5742}
20e6926d 5743
0ee332c1 5744#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5745
a3142c8e 5746static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5747 unsigned long node_start_pfn,
5748 unsigned long node_end_pfn,
5749 unsigned long *zones_size,
5750 unsigned long *zholes_size)
c713216d 5751{
febd5949 5752 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5753 enum zone_type i;
5754
febd5949
GZ
5755 for (i = 0; i < MAX_NR_ZONES; i++) {
5756 struct zone *zone = pgdat->node_zones + i;
d91749c1 5757 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5758 unsigned long size, real_size;
c713216d 5759
febd5949
GZ
5760 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5761 node_start_pfn,
5762 node_end_pfn,
d91749c1
TI
5763 &zone_start_pfn,
5764 &zone_end_pfn,
febd5949
GZ
5765 zones_size);
5766 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5767 node_start_pfn, node_end_pfn,
5768 zholes_size);
d91749c1
TI
5769 if (size)
5770 zone->zone_start_pfn = zone_start_pfn;
5771 else
5772 zone->zone_start_pfn = 0;
febd5949
GZ
5773 zone->spanned_pages = size;
5774 zone->present_pages = real_size;
5775
5776 totalpages += size;
5777 realtotalpages += real_size;
5778 }
5779
5780 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5781 pgdat->node_present_pages = realtotalpages;
5782 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5783 realtotalpages);
5784}
5785
835c134e
MG
5786#ifndef CONFIG_SPARSEMEM
5787/*
5788 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5789 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5790 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5791 * round what is now in bits to nearest long in bits, then return it in
5792 * bytes.
5793 */
7c45512d 5794static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5795{
5796 unsigned long usemapsize;
5797
7c45512d 5798 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5799 usemapsize = roundup(zonesize, pageblock_nr_pages);
5800 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5801 usemapsize *= NR_PAGEBLOCK_BITS;
5802 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5803
5804 return usemapsize / 8;
5805}
5806
5807static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5808 struct zone *zone,
5809 unsigned long zone_start_pfn,
5810 unsigned long zonesize)
835c134e 5811{
7c45512d 5812 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5813 zone->pageblock_flags = NULL;
58a01a45 5814 if (usemapsize)
6782832e
SS
5815 zone->pageblock_flags =
5816 memblock_virt_alloc_node_nopanic(usemapsize,
5817 pgdat->node_id);
835c134e
MG
5818}
5819#else
7c45512d
LT
5820static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5821 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5822#endif /* CONFIG_SPARSEMEM */
5823
d9c23400 5824#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5825
d9c23400 5826/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5827void __paginginit set_pageblock_order(void)
d9c23400 5828{
955c1cd7
AM
5829 unsigned int order;
5830
d9c23400
MG
5831 /* Check that pageblock_nr_pages has not already been setup */
5832 if (pageblock_order)
5833 return;
5834
955c1cd7
AM
5835 if (HPAGE_SHIFT > PAGE_SHIFT)
5836 order = HUGETLB_PAGE_ORDER;
5837 else
5838 order = MAX_ORDER - 1;
5839
d9c23400
MG
5840 /*
5841 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5842 * This value may be variable depending on boot parameters on IA64 and
5843 * powerpc.
d9c23400
MG
5844 */
5845 pageblock_order = order;
5846}
5847#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5848
ba72cb8c
MG
5849/*
5850 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5851 * is unused as pageblock_order is set at compile-time. See
5852 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5853 * the kernel config
ba72cb8c 5854 */
15ca220e 5855void __paginginit set_pageblock_order(void)
ba72cb8c 5856{
ba72cb8c 5857}
d9c23400
MG
5858
5859#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5860
01cefaef
JL
5861static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5862 unsigned long present_pages)
5863{
5864 unsigned long pages = spanned_pages;
5865
5866 /*
5867 * Provide a more accurate estimation if there are holes within
5868 * the zone and SPARSEMEM is in use. If there are holes within the
5869 * zone, each populated memory region may cost us one or two extra
5870 * memmap pages due to alignment because memmap pages for each
5871 * populated regions may not naturally algined on page boundary.
5872 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5873 */
5874 if (spanned_pages > present_pages + (present_pages >> 4) &&
5875 IS_ENABLED(CONFIG_SPARSEMEM))
5876 pages = present_pages;
5877
5878 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5879}
5880
1da177e4
LT
5881/*
5882 * Set up the zone data structures:
5883 * - mark all pages reserved
5884 * - mark all memory queues empty
5885 * - clear the memory bitmaps
6527af5d
MK
5886 *
5887 * NOTE: pgdat should get zeroed by caller.
1da177e4 5888 */
7f3eb55b 5889static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5890{
2f1b6248 5891 enum zone_type j;
ed8ece2e 5892 int nid = pgdat->node_id;
718127cc 5893 int ret;
1da177e4 5894
208d54e5 5895 pgdat_resize_init(pgdat);
8177a420
AA
5896#ifdef CONFIG_NUMA_BALANCING
5897 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5898 pgdat->numabalancing_migrate_nr_pages = 0;
5899 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5900#endif
5901#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5902 spin_lock_init(&pgdat->split_queue_lock);
5903 INIT_LIST_HEAD(&pgdat->split_queue);
5904 pgdat->split_queue_len = 0;
8177a420 5905#endif
1da177e4 5906 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5907 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5908#ifdef CONFIG_COMPACTION
5909 init_waitqueue_head(&pgdat->kcompactd_wait);
5910#endif
eefa864b 5911 pgdat_page_ext_init(pgdat);
5f63b720 5912
1da177e4
LT
5913 for (j = 0; j < MAX_NR_ZONES; j++) {
5914 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5915 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5916 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5917
febd5949
GZ
5918 size = zone->spanned_pages;
5919 realsize = freesize = zone->present_pages;
1da177e4 5920
0e0b864e 5921 /*
9feedc9d 5922 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5923 * is used by this zone for memmap. This affects the watermark
5924 * and per-cpu initialisations
5925 */
01cefaef 5926 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5927 if (!is_highmem_idx(j)) {
5928 if (freesize >= memmap_pages) {
5929 freesize -= memmap_pages;
5930 if (memmap_pages)
5931 printk(KERN_DEBUG
5932 " %s zone: %lu pages used for memmap\n",
5933 zone_names[j], memmap_pages);
5934 } else
1170532b 5935 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5936 zone_names[j], memmap_pages, freesize);
5937 }
0e0b864e 5938
6267276f 5939 /* Account for reserved pages */
9feedc9d
JL
5940 if (j == 0 && freesize > dma_reserve) {
5941 freesize -= dma_reserve;
d903ef9f 5942 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5943 zone_names[0], dma_reserve);
0e0b864e
MG
5944 }
5945
98d2b0eb 5946 if (!is_highmem_idx(j))
9feedc9d 5947 nr_kernel_pages += freesize;
01cefaef
JL
5948 /* Charge for highmem memmap if there are enough kernel pages */
5949 else if (nr_kernel_pages > memmap_pages * 2)
5950 nr_kernel_pages -= memmap_pages;
9feedc9d 5951 nr_all_pages += freesize;
1da177e4 5952
9feedc9d
JL
5953 /*
5954 * Set an approximate value for lowmem here, it will be adjusted
5955 * when the bootmem allocator frees pages into the buddy system.
5956 * And all highmem pages will be managed by the buddy system.
5957 */
5958 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5959#ifdef CONFIG_NUMA
d5f541ed 5960 zone->node = nid;
9feedc9d 5961 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5962 / 100;
9feedc9d 5963 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5964#endif
1da177e4
LT
5965 zone->name = zone_names[j];
5966 spin_lock_init(&zone->lock);
5967 spin_lock_init(&zone->lru_lock);
bdc8cb98 5968 zone_seqlock_init(zone);
1da177e4 5969 zone->zone_pgdat = pgdat;
ed8ece2e 5970 zone_pcp_init(zone);
81c0a2bb
JW
5971
5972 /* For bootup, initialized properly in watermark setup */
5973 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5974
bea8c150 5975 lruvec_init(&zone->lruvec);
1da177e4
LT
5976 if (!size)
5977 continue;
5978
955c1cd7 5979 set_pageblock_order();
7c45512d 5980 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5981 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5982 BUG_ON(ret);
76cdd58e 5983 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5984 }
5985}
5986
577a32f6 5987static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5988{
b0aeba74 5989 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5990 unsigned long __maybe_unused offset = 0;
5991
1da177e4
LT
5992 /* Skip empty nodes */
5993 if (!pgdat->node_spanned_pages)
5994 return;
5995
d41dee36 5996#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5997 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5998 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5999 /* ia64 gets its own node_mem_map, before this, without bootmem */
6000 if (!pgdat->node_mem_map) {
b0aeba74 6001 unsigned long size, end;
d41dee36
AW
6002 struct page *map;
6003
e984bb43
BP
6004 /*
6005 * The zone's endpoints aren't required to be MAX_ORDER
6006 * aligned but the node_mem_map endpoints must be in order
6007 * for the buddy allocator to function correctly.
6008 */
108bcc96 6009 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6010 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6011 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6012 map = alloc_remap(pgdat->node_id, size);
6013 if (!map)
6782832e
SS
6014 map = memblock_virt_alloc_node_nopanic(size,
6015 pgdat->node_id);
a1c34a3b 6016 pgdat->node_mem_map = map + offset;
1da177e4 6017 }
12d810c1 6018#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6019 /*
6020 * With no DISCONTIG, the global mem_map is just set as node 0's
6021 */
c713216d 6022 if (pgdat == NODE_DATA(0)) {
1da177e4 6023 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6024#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6025 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6026 mem_map -= offset;
0ee332c1 6027#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6028 }
1da177e4 6029#endif
d41dee36 6030#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6031}
6032
9109fb7b
JW
6033void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6034 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6035{
9109fb7b 6036 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6037 unsigned long start_pfn = 0;
6038 unsigned long end_pfn = 0;
9109fb7b 6039
88fdf75d 6040 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6041 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6042
3a80a7fa 6043 reset_deferred_meminit(pgdat);
1da177e4
LT
6044 pgdat->node_id = nid;
6045 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6046#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6047 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6048 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6049 (u64)start_pfn << PAGE_SHIFT,
6050 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6051#else
6052 start_pfn = node_start_pfn;
7960aedd
ZY
6053#endif
6054 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6055 zones_size, zholes_size);
1da177e4
LT
6056
6057 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6058#ifdef CONFIG_FLAT_NODE_MEM_MAP
6059 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6060 nid, (unsigned long)pgdat,
6061 (unsigned long)pgdat->node_mem_map);
6062#endif
1da177e4 6063
7f3eb55b 6064 free_area_init_core(pgdat);
1da177e4
LT
6065}
6066
0ee332c1 6067#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6068
6069#if MAX_NUMNODES > 1
6070/*
6071 * Figure out the number of possible node ids.
6072 */
f9872caf 6073void __init setup_nr_node_ids(void)
418508c1 6074{
904a9553 6075 unsigned int highest;
418508c1 6076
904a9553 6077 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6078 nr_node_ids = highest + 1;
6079}
418508c1
MS
6080#endif
6081
1e01979c
TH
6082/**
6083 * node_map_pfn_alignment - determine the maximum internode alignment
6084 *
6085 * This function should be called after node map is populated and sorted.
6086 * It calculates the maximum power of two alignment which can distinguish
6087 * all the nodes.
6088 *
6089 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6090 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6091 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6092 * shifted, 1GiB is enough and this function will indicate so.
6093 *
6094 * This is used to test whether pfn -> nid mapping of the chosen memory
6095 * model has fine enough granularity to avoid incorrect mapping for the
6096 * populated node map.
6097 *
6098 * Returns the determined alignment in pfn's. 0 if there is no alignment
6099 * requirement (single node).
6100 */
6101unsigned long __init node_map_pfn_alignment(void)
6102{
6103 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6104 unsigned long start, end, mask;
1e01979c 6105 int last_nid = -1;
c13291a5 6106 int i, nid;
1e01979c 6107
c13291a5 6108 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6109 if (!start || last_nid < 0 || last_nid == nid) {
6110 last_nid = nid;
6111 last_end = end;
6112 continue;
6113 }
6114
6115 /*
6116 * Start with a mask granular enough to pin-point to the
6117 * start pfn and tick off bits one-by-one until it becomes
6118 * too coarse to separate the current node from the last.
6119 */
6120 mask = ~((1 << __ffs(start)) - 1);
6121 while (mask && last_end <= (start & (mask << 1)))
6122 mask <<= 1;
6123
6124 /* accumulate all internode masks */
6125 accl_mask |= mask;
6126 }
6127
6128 /* convert mask to number of pages */
6129 return ~accl_mask + 1;
6130}
6131
a6af2bc3 6132/* Find the lowest pfn for a node */
b69a7288 6133static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6134{
a6af2bc3 6135 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6136 unsigned long start_pfn;
6137 int i;
1abbfb41 6138
c13291a5
TH
6139 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6140 min_pfn = min(min_pfn, start_pfn);
c713216d 6141
a6af2bc3 6142 if (min_pfn == ULONG_MAX) {
1170532b 6143 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6144 return 0;
6145 }
6146
6147 return min_pfn;
c713216d
MG
6148}
6149
6150/**
6151 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6152 *
6153 * It returns the minimum PFN based on information provided via
7d018176 6154 * memblock_set_node().
c713216d
MG
6155 */
6156unsigned long __init find_min_pfn_with_active_regions(void)
6157{
6158 return find_min_pfn_for_node(MAX_NUMNODES);
6159}
6160
37b07e41
LS
6161/*
6162 * early_calculate_totalpages()
6163 * Sum pages in active regions for movable zone.
4b0ef1fe 6164 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6165 */
484f51f8 6166static unsigned long __init early_calculate_totalpages(void)
7e63efef 6167{
7e63efef 6168 unsigned long totalpages = 0;
c13291a5
TH
6169 unsigned long start_pfn, end_pfn;
6170 int i, nid;
6171
6172 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6173 unsigned long pages = end_pfn - start_pfn;
7e63efef 6174
37b07e41
LS
6175 totalpages += pages;
6176 if (pages)
4b0ef1fe 6177 node_set_state(nid, N_MEMORY);
37b07e41 6178 }
b8af2941 6179 return totalpages;
7e63efef
MG
6180}
6181
2a1e274a
MG
6182/*
6183 * Find the PFN the Movable zone begins in each node. Kernel memory
6184 * is spread evenly between nodes as long as the nodes have enough
6185 * memory. When they don't, some nodes will have more kernelcore than
6186 * others
6187 */
b224ef85 6188static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6189{
6190 int i, nid;
6191 unsigned long usable_startpfn;
6192 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6193 /* save the state before borrow the nodemask */
4b0ef1fe 6194 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6195 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6196 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6197 struct memblock_region *r;
b2f3eebe
TC
6198
6199 /* Need to find movable_zone earlier when movable_node is specified. */
6200 find_usable_zone_for_movable();
6201
6202 /*
6203 * If movable_node is specified, ignore kernelcore and movablecore
6204 * options.
6205 */
6206 if (movable_node_is_enabled()) {
136199f0
EM
6207 for_each_memblock(memory, r) {
6208 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6209 continue;
6210
136199f0 6211 nid = r->nid;
b2f3eebe 6212
136199f0 6213 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6214 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6215 min(usable_startpfn, zone_movable_pfn[nid]) :
6216 usable_startpfn;
6217 }
6218
6219 goto out2;
6220 }
2a1e274a 6221
342332e6
TI
6222 /*
6223 * If kernelcore=mirror is specified, ignore movablecore option
6224 */
6225 if (mirrored_kernelcore) {
6226 bool mem_below_4gb_not_mirrored = false;
6227
6228 for_each_memblock(memory, r) {
6229 if (memblock_is_mirror(r))
6230 continue;
6231
6232 nid = r->nid;
6233
6234 usable_startpfn = memblock_region_memory_base_pfn(r);
6235
6236 if (usable_startpfn < 0x100000) {
6237 mem_below_4gb_not_mirrored = true;
6238 continue;
6239 }
6240
6241 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6242 min(usable_startpfn, zone_movable_pfn[nid]) :
6243 usable_startpfn;
6244 }
6245
6246 if (mem_below_4gb_not_mirrored)
6247 pr_warn("This configuration results in unmirrored kernel memory.");
6248
6249 goto out2;
6250 }
6251
7e63efef 6252 /*
b2f3eebe 6253 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6254 * kernelcore that corresponds so that memory usable for
6255 * any allocation type is evenly spread. If both kernelcore
6256 * and movablecore are specified, then the value of kernelcore
6257 * will be used for required_kernelcore if it's greater than
6258 * what movablecore would have allowed.
6259 */
6260 if (required_movablecore) {
7e63efef
MG
6261 unsigned long corepages;
6262
6263 /*
6264 * Round-up so that ZONE_MOVABLE is at least as large as what
6265 * was requested by the user
6266 */
6267 required_movablecore =
6268 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6269 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6270 corepages = totalpages - required_movablecore;
6271
6272 required_kernelcore = max(required_kernelcore, corepages);
6273 }
6274
bde304bd
XQ
6275 /*
6276 * If kernelcore was not specified or kernelcore size is larger
6277 * than totalpages, there is no ZONE_MOVABLE.
6278 */
6279 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6280 goto out;
2a1e274a
MG
6281
6282 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6283 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6284
6285restart:
6286 /* Spread kernelcore memory as evenly as possible throughout nodes */
6287 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6288 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6289 unsigned long start_pfn, end_pfn;
6290
2a1e274a
MG
6291 /*
6292 * Recalculate kernelcore_node if the division per node
6293 * now exceeds what is necessary to satisfy the requested
6294 * amount of memory for the kernel
6295 */
6296 if (required_kernelcore < kernelcore_node)
6297 kernelcore_node = required_kernelcore / usable_nodes;
6298
6299 /*
6300 * As the map is walked, we track how much memory is usable
6301 * by the kernel using kernelcore_remaining. When it is
6302 * 0, the rest of the node is usable by ZONE_MOVABLE
6303 */
6304 kernelcore_remaining = kernelcore_node;
6305
6306 /* Go through each range of PFNs within this node */
c13291a5 6307 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6308 unsigned long size_pages;
6309
c13291a5 6310 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6311 if (start_pfn >= end_pfn)
6312 continue;
6313
6314 /* Account for what is only usable for kernelcore */
6315 if (start_pfn < usable_startpfn) {
6316 unsigned long kernel_pages;
6317 kernel_pages = min(end_pfn, usable_startpfn)
6318 - start_pfn;
6319
6320 kernelcore_remaining -= min(kernel_pages,
6321 kernelcore_remaining);
6322 required_kernelcore -= min(kernel_pages,
6323 required_kernelcore);
6324
6325 /* Continue if range is now fully accounted */
6326 if (end_pfn <= usable_startpfn) {
6327
6328 /*
6329 * Push zone_movable_pfn to the end so
6330 * that if we have to rebalance
6331 * kernelcore across nodes, we will
6332 * not double account here
6333 */
6334 zone_movable_pfn[nid] = end_pfn;
6335 continue;
6336 }
6337 start_pfn = usable_startpfn;
6338 }
6339
6340 /*
6341 * The usable PFN range for ZONE_MOVABLE is from
6342 * start_pfn->end_pfn. Calculate size_pages as the
6343 * number of pages used as kernelcore
6344 */
6345 size_pages = end_pfn - start_pfn;
6346 if (size_pages > kernelcore_remaining)
6347 size_pages = kernelcore_remaining;
6348 zone_movable_pfn[nid] = start_pfn + size_pages;
6349
6350 /*
6351 * Some kernelcore has been met, update counts and
6352 * break if the kernelcore for this node has been
b8af2941 6353 * satisfied
2a1e274a
MG
6354 */
6355 required_kernelcore -= min(required_kernelcore,
6356 size_pages);
6357 kernelcore_remaining -= size_pages;
6358 if (!kernelcore_remaining)
6359 break;
6360 }
6361 }
6362
6363 /*
6364 * If there is still required_kernelcore, we do another pass with one
6365 * less node in the count. This will push zone_movable_pfn[nid] further
6366 * along on the nodes that still have memory until kernelcore is
b8af2941 6367 * satisfied
2a1e274a
MG
6368 */
6369 usable_nodes--;
6370 if (usable_nodes && required_kernelcore > usable_nodes)
6371 goto restart;
6372
b2f3eebe 6373out2:
2a1e274a
MG
6374 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6375 for (nid = 0; nid < MAX_NUMNODES; nid++)
6376 zone_movable_pfn[nid] =
6377 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6378
20e6926d 6379out:
66918dcd 6380 /* restore the node_state */
4b0ef1fe 6381 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6382}
6383
4b0ef1fe
LJ
6384/* Any regular or high memory on that node ? */
6385static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6386{
37b07e41
LS
6387 enum zone_type zone_type;
6388
4b0ef1fe
LJ
6389 if (N_MEMORY == N_NORMAL_MEMORY)
6390 return;
6391
6392 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6393 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6394 if (populated_zone(zone)) {
4b0ef1fe
LJ
6395 node_set_state(nid, N_HIGH_MEMORY);
6396 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6397 zone_type <= ZONE_NORMAL)
6398 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6399 break;
6400 }
37b07e41 6401 }
37b07e41
LS
6402}
6403
c713216d
MG
6404/**
6405 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6406 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6407 *
6408 * This will call free_area_init_node() for each active node in the system.
7d018176 6409 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6410 * zone in each node and their holes is calculated. If the maximum PFN
6411 * between two adjacent zones match, it is assumed that the zone is empty.
6412 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6413 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6414 * starts where the previous one ended. For example, ZONE_DMA32 starts
6415 * at arch_max_dma_pfn.
6416 */
6417void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6418{
c13291a5
TH
6419 unsigned long start_pfn, end_pfn;
6420 int i, nid;
a6af2bc3 6421
c713216d
MG
6422 /* Record where the zone boundaries are */
6423 memset(arch_zone_lowest_possible_pfn, 0,
6424 sizeof(arch_zone_lowest_possible_pfn));
6425 memset(arch_zone_highest_possible_pfn, 0,
6426 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6427
6428 start_pfn = find_min_pfn_with_active_regions();
6429
6430 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6431 if (i == ZONE_MOVABLE)
6432 continue;
90cae1fe
OH
6433
6434 end_pfn = max(max_zone_pfn[i], start_pfn);
6435 arch_zone_lowest_possible_pfn[i] = start_pfn;
6436 arch_zone_highest_possible_pfn[i] = end_pfn;
6437
6438 start_pfn = end_pfn;
c713216d 6439 }
2a1e274a
MG
6440 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6441 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6442
6443 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6444 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6445 find_zone_movable_pfns_for_nodes();
c713216d 6446
c713216d 6447 /* Print out the zone ranges */
f88dfff5 6448 pr_info("Zone ranges:\n");
2a1e274a
MG
6449 for (i = 0; i < MAX_NR_ZONES; i++) {
6450 if (i == ZONE_MOVABLE)
6451 continue;
f88dfff5 6452 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6453 if (arch_zone_lowest_possible_pfn[i] ==
6454 arch_zone_highest_possible_pfn[i])
f88dfff5 6455 pr_cont("empty\n");
72f0ba02 6456 else
8d29e18a
JG
6457 pr_cont("[mem %#018Lx-%#018Lx]\n",
6458 (u64)arch_zone_lowest_possible_pfn[i]
6459 << PAGE_SHIFT,
6460 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6461 << PAGE_SHIFT) - 1);
2a1e274a
MG
6462 }
6463
6464 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6465 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6466 for (i = 0; i < MAX_NUMNODES; i++) {
6467 if (zone_movable_pfn[i])
8d29e18a
JG
6468 pr_info(" Node %d: %#018Lx\n", i,
6469 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6470 }
c713216d 6471
f2d52fe5 6472 /* Print out the early node map */
f88dfff5 6473 pr_info("Early memory node ranges\n");
c13291a5 6474 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6475 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6476 (u64)start_pfn << PAGE_SHIFT,
6477 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6478
6479 /* Initialise every node */
708614e6 6480 mminit_verify_pageflags_layout();
8ef82866 6481 setup_nr_node_ids();
c713216d
MG
6482 for_each_online_node(nid) {
6483 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6484 free_area_init_node(nid, NULL,
c713216d 6485 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6486
6487 /* Any memory on that node */
6488 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6489 node_set_state(nid, N_MEMORY);
6490 check_for_memory(pgdat, nid);
c713216d
MG
6491 }
6492}
2a1e274a 6493
7e63efef 6494static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6495{
6496 unsigned long long coremem;
6497 if (!p)
6498 return -EINVAL;
6499
6500 coremem = memparse(p, &p);
7e63efef 6501 *core = coremem >> PAGE_SHIFT;
2a1e274a 6502
7e63efef 6503 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6504 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6505
6506 return 0;
6507}
ed7ed365 6508
7e63efef
MG
6509/*
6510 * kernelcore=size sets the amount of memory for use for allocations that
6511 * cannot be reclaimed or migrated.
6512 */
6513static int __init cmdline_parse_kernelcore(char *p)
6514{
342332e6
TI
6515 /* parse kernelcore=mirror */
6516 if (parse_option_str(p, "mirror")) {
6517 mirrored_kernelcore = true;
6518 return 0;
6519 }
6520
7e63efef
MG
6521 return cmdline_parse_core(p, &required_kernelcore);
6522}
6523
6524/*
6525 * movablecore=size sets the amount of memory for use for allocations that
6526 * can be reclaimed or migrated.
6527 */
6528static int __init cmdline_parse_movablecore(char *p)
6529{
6530 return cmdline_parse_core(p, &required_movablecore);
6531}
6532
ed7ed365 6533early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6534early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6535
0ee332c1 6536#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6537
c3d5f5f0
JL
6538void adjust_managed_page_count(struct page *page, long count)
6539{
6540 spin_lock(&managed_page_count_lock);
6541 page_zone(page)->managed_pages += count;
6542 totalram_pages += count;
3dcc0571
JL
6543#ifdef CONFIG_HIGHMEM
6544 if (PageHighMem(page))
6545 totalhigh_pages += count;
6546#endif
c3d5f5f0
JL
6547 spin_unlock(&managed_page_count_lock);
6548}
3dcc0571 6549EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6550
11199692 6551unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6552{
11199692
JL
6553 void *pos;
6554 unsigned long pages = 0;
69afade7 6555
11199692
JL
6556 start = (void *)PAGE_ALIGN((unsigned long)start);
6557 end = (void *)((unsigned long)end & PAGE_MASK);
6558 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6559 if ((unsigned int)poison <= 0xFF)
11199692
JL
6560 memset(pos, poison, PAGE_SIZE);
6561 free_reserved_page(virt_to_page(pos));
69afade7
JL
6562 }
6563
6564 if (pages && s)
11199692 6565 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6566 s, pages << (PAGE_SHIFT - 10), start, end);
6567
6568 return pages;
6569}
11199692 6570EXPORT_SYMBOL(free_reserved_area);
69afade7 6571
cfa11e08
JL
6572#ifdef CONFIG_HIGHMEM
6573void free_highmem_page(struct page *page)
6574{
6575 __free_reserved_page(page);
6576 totalram_pages++;
7b4b2a0d 6577 page_zone(page)->managed_pages++;
cfa11e08
JL
6578 totalhigh_pages++;
6579}
6580#endif
6581
7ee3d4e8
JL
6582
6583void __init mem_init_print_info(const char *str)
6584{
6585 unsigned long physpages, codesize, datasize, rosize, bss_size;
6586 unsigned long init_code_size, init_data_size;
6587
6588 physpages = get_num_physpages();
6589 codesize = _etext - _stext;
6590 datasize = _edata - _sdata;
6591 rosize = __end_rodata - __start_rodata;
6592 bss_size = __bss_stop - __bss_start;
6593 init_data_size = __init_end - __init_begin;
6594 init_code_size = _einittext - _sinittext;
6595
6596 /*
6597 * Detect special cases and adjust section sizes accordingly:
6598 * 1) .init.* may be embedded into .data sections
6599 * 2) .init.text.* may be out of [__init_begin, __init_end],
6600 * please refer to arch/tile/kernel/vmlinux.lds.S.
6601 * 3) .rodata.* may be embedded into .text or .data sections.
6602 */
6603#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6604 do { \
6605 if (start <= pos && pos < end && size > adj) \
6606 size -= adj; \
6607 } while (0)
7ee3d4e8
JL
6608
6609 adj_init_size(__init_begin, __init_end, init_data_size,
6610 _sinittext, init_code_size);
6611 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6612 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6613 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6614 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6615
6616#undef adj_init_size
6617
756a025f 6618 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6619#ifdef CONFIG_HIGHMEM
756a025f 6620 ", %luK highmem"
7ee3d4e8 6621#endif
756a025f
JP
6622 "%s%s)\n",
6623 nr_free_pages() << (PAGE_SHIFT - 10),
6624 physpages << (PAGE_SHIFT - 10),
6625 codesize >> 10, datasize >> 10, rosize >> 10,
6626 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6627 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6628 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6629#ifdef CONFIG_HIGHMEM
756a025f 6630 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6631#endif
756a025f 6632 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6633}
6634
0e0b864e 6635/**
88ca3b94
RD
6636 * set_dma_reserve - set the specified number of pages reserved in the first zone
6637 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6638 *
013110a7 6639 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6640 * In the DMA zone, a significant percentage may be consumed by kernel image
6641 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6642 * function may optionally be used to account for unfreeable pages in the
6643 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6644 * smaller per-cpu batchsize.
0e0b864e
MG
6645 */
6646void __init set_dma_reserve(unsigned long new_dma_reserve)
6647{
6648 dma_reserve = new_dma_reserve;
6649}
6650
1da177e4
LT
6651void __init free_area_init(unsigned long *zones_size)
6652{
9109fb7b 6653 free_area_init_node(0, zones_size,
1da177e4
LT
6654 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6655}
1da177e4 6656
1da177e4
LT
6657static int page_alloc_cpu_notify(struct notifier_block *self,
6658 unsigned long action, void *hcpu)
6659{
6660 int cpu = (unsigned long)hcpu;
1da177e4 6661
8bb78442 6662 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6663 lru_add_drain_cpu(cpu);
9f8f2172
CL
6664 drain_pages(cpu);
6665
6666 /*
6667 * Spill the event counters of the dead processor
6668 * into the current processors event counters.
6669 * This artificially elevates the count of the current
6670 * processor.
6671 */
f8891e5e 6672 vm_events_fold_cpu(cpu);
9f8f2172
CL
6673
6674 /*
6675 * Zero the differential counters of the dead processor
6676 * so that the vm statistics are consistent.
6677 *
6678 * This is only okay since the processor is dead and cannot
6679 * race with what we are doing.
6680 */
2bb921e5 6681 cpu_vm_stats_fold(cpu);
1da177e4
LT
6682 }
6683 return NOTIFY_OK;
6684}
1da177e4
LT
6685
6686void __init page_alloc_init(void)
6687{
6688 hotcpu_notifier(page_alloc_cpu_notify, 0);
6689}
6690
cb45b0e9 6691/*
34b10060 6692 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6693 * or min_free_kbytes changes.
6694 */
6695static void calculate_totalreserve_pages(void)
6696{
6697 struct pglist_data *pgdat;
6698 unsigned long reserve_pages = 0;
2f6726e5 6699 enum zone_type i, j;
cb45b0e9
HA
6700
6701 for_each_online_pgdat(pgdat) {
6702 for (i = 0; i < MAX_NR_ZONES; i++) {
6703 struct zone *zone = pgdat->node_zones + i;
3484b2de 6704 long max = 0;
cb45b0e9
HA
6705
6706 /* Find valid and maximum lowmem_reserve in the zone */
6707 for (j = i; j < MAX_NR_ZONES; j++) {
6708 if (zone->lowmem_reserve[j] > max)
6709 max = zone->lowmem_reserve[j];
6710 }
6711
41858966
MG
6712 /* we treat the high watermark as reserved pages. */
6713 max += high_wmark_pages(zone);
cb45b0e9 6714
b40da049
JL
6715 if (max > zone->managed_pages)
6716 max = zone->managed_pages;
a8d01437
JW
6717
6718 zone->totalreserve_pages = max;
6719
cb45b0e9
HA
6720 reserve_pages += max;
6721 }
6722 }
6723 totalreserve_pages = reserve_pages;
6724}
6725
1da177e4
LT
6726/*
6727 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6728 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6729 * has a correct pages reserved value, so an adequate number of
6730 * pages are left in the zone after a successful __alloc_pages().
6731 */
6732static void setup_per_zone_lowmem_reserve(void)
6733{
6734 struct pglist_data *pgdat;
2f6726e5 6735 enum zone_type j, idx;
1da177e4 6736
ec936fc5 6737 for_each_online_pgdat(pgdat) {
1da177e4
LT
6738 for (j = 0; j < MAX_NR_ZONES; j++) {
6739 struct zone *zone = pgdat->node_zones + j;
b40da049 6740 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6741
6742 zone->lowmem_reserve[j] = 0;
6743
2f6726e5
CL
6744 idx = j;
6745 while (idx) {
1da177e4
LT
6746 struct zone *lower_zone;
6747
2f6726e5
CL
6748 idx--;
6749
1da177e4
LT
6750 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6751 sysctl_lowmem_reserve_ratio[idx] = 1;
6752
6753 lower_zone = pgdat->node_zones + idx;
b40da049 6754 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6755 sysctl_lowmem_reserve_ratio[idx];
b40da049 6756 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6757 }
6758 }
6759 }
cb45b0e9
HA
6760
6761 /* update totalreserve_pages */
6762 calculate_totalreserve_pages();
1da177e4
LT
6763}
6764
cfd3da1e 6765static void __setup_per_zone_wmarks(void)
1da177e4
LT
6766{
6767 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6768 unsigned long lowmem_pages = 0;
6769 struct zone *zone;
6770 unsigned long flags;
6771
6772 /* Calculate total number of !ZONE_HIGHMEM pages */
6773 for_each_zone(zone) {
6774 if (!is_highmem(zone))
b40da049 6775 lowmem_pages += zone->managed_pages;
1da177e4
LT
6776 }
6777
6778 for_each_zone(zone) {
ac924c60
AM
6779 u64 tmp;
6780
1125b4e3 6781 spin_lock_irqsave(&zone->lock, flags);
b40da049 6782 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6783 do_div(tmp, lowmem_pages);
1da177e4
LT
6784 if (is_highmem(zone)) {
6785 /*
669ed175
NP
6786 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6787 * need highmem pages, so cap pages_min to a small
6788 * value here.
6789 *
41858966 6790 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6791 * deltas control asynch page reclaim, and so should
669ed175 6792 * not be capped for highmem.
1da177e4 6793 */
90ae8d67 6794 unsigned long min_pages;
1da177e4 6795
b40da049 6796 min_pages = zone->managed_pages / 1024;
90ae8d67 6797 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6798 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6799 } else {
669ed175
NP
6800 /*
6801 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6802 * proportionate to the zone's size.
6803 */
41858966 6804 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6805 }
6806
795ae7a0
JW
6807 /*
6808 * Set the kswapd watermarks distance according to the
6809 * scale factor in proportion to available memory, but
6810 * ensure a minimum size on small systems.
6811 */
6812 tmp = max_t(u64, tmp >> 2,
6813 mult_frac(zone->managed_pages,
6814 watermark_scale_factor, 10000));
6815
6816 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6817 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6818
81c0a2bb 6819 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6820 high_wmark_pages(zone) - low_wmark_pages(zone) -
6821 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6822
1125b4e3 6823 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6824 }
cb45b0e9
HA
6825
6826 /* update totalreserve_pages */
6827 calculate_totalreserve_pages();
1da177e4
LT
6828}
6829
cfd3da1e
MG
6830/**
6831 * setup_per_zone_wmarks - called when min_free_kbytes changes
6832 * or when memory is hot-{added|removed}
6833 *
6834 * Ensures that the watermark[min,low,high] values for each zone are set
6835 * correctly with respect to min_free_kbytes.
6836 */
6837void setup_per_zone_wmarks(void)
6838{
6839 mutex_lock(&zonelists_mutex);
6840 __setup_per_zone_wmarks();
6841 mutex_unlock(&zonelists_mutex);
6842}
6843
1da177e4
LT
6844/*
6845 * Initialise min_free_kbytes.
6846 *
6847 * For small machines we want it small (128k min). For large machines
6848 * we want it large (64MB max). But it is not linear, because network
6849 * bandwidth does not increase linearly with machine size. We use
6850 *
b8af2941 6851 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6852 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6853 *
6854 * which yields
6855 *
6856 * 16MB: 512k
6857 * 32MB: 724k
6858 * 64MB: 1024k
6859 * 128MB: 1448k
6860 * 256MB: 2048k
6861 * 512MB: 2896k
6862 * 1024MB: 4096k
6863 * 2048MB: 5792k
6864 * 4096MB: 8192k
6865 * 8192MB: 11584k
6866 * 16384MB: 16384k
6867 */
1b79acc9 6868int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6869{
6870 unsigned long lowmem_kbytes;
5f12733e 6871 int new_min_free_kbytes;
1da177e4
LT
6872
6873 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6874 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6875
6876 if (new_min_free_kbytes > user_min_free_kbytes) {
6877 min_free_kbytes = new_min_free_kbytes;
6878 if (min_free_kbytes < 128)
6879 min_free_kbytes = 128;
6880 if (min_free_kbytes > 65536)
6881 min_free_kbytes = 65536;
6882 } else {
6883 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6884 new_min_free_kbytes, user_min_free_kbytes);
6885 }
bc75d33f 6886 setup_per_zone_wmarks();
a6cccdc3 6887 refresh_zone_stat_thresholds();
1da177e4
LT
6888 setup_per_zone_lowmem_reserve();
6889 return 0;
6890}
bc22af74 6891core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6892
6893/*
b8af2941 6894 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6895 * that we can call two helper functions whenever min_free_kbytes
6896 * changes.
6897 */
cccad5b9 6898int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6899 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6900{
da8c757b
HP
6901 int rc;
6902
6903 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6904 if (rc)
6905 return rc;
6906
5f12733e
MH
6907 if (write) {
6908 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6909 setup_per_zone_wmarks();
5f12733e 6910 }
1da177e4
LT
6911 return 0;
6912}
6913
795ae7a0
JW
6914int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6915 void __user *buffer, size_t *length, loff_t *ppos)
6916{
6917 int rc;
6918
6919 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6920 if (rc)
6921 return rc;
6922
6923 if (write)
6924 setup_per_zone_wmarks();
6925
6926 return 0;
6927}
6928
9614634f 6929#ifdef CONFIG_NUMA
cccad5b9 6930int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6931 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6932{
6933 struct zone *zone;
6934 int rc;
6935
8d65af78 6936 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6937 if (rc)
6938 return rc;
6939
6940 for_each_zone(zone)
b40da049 6941 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6942 sysctl_min_unmapped_ratio) / 100;
6943 return 0;
6944}
0ff38490 6945
cccad5b9 6946int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6947 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6948{
6949 struct zone *zone;
6950 int rc;
6951
8d65af78 6952 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6953 if (rc)
6954 return rc;
6955
6956 for_each_zone(zone)
b40da049 6957 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6958 sysctl_min_slab_ratio) / 100;
6959 return 0;
6960}
9614634f
CL
6961#endif
6962
1da177e4
LT
6963/*
6964 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6965 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6966 * whenever sysctl_lowmem_reserve_ratio changes.
6967 *
6968 * The reserve ratio obviously has absolutely no relation with the
41858966 6969 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6970 * if in function of the boot time zone sizes.
6971 */
cccad5b9 6972int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6973 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6974{
8d65af78 6975 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6976 setup_per_zone_lowmem_reserve();
6977 return 0;
6978}
6979
8ad4b1fb
RS
6980/*
6981 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6982 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6983 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6984 */
cccad5b9 6985int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6986 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6987{
6988 struct zone *zone;
7cd2b0a3 6989 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6990 int ret;
6991
7cd2b0a3
DR
6992 mutex_lock(&pcp_batch_high_lock);
6993 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6994
8d65af78 6995 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6996 if (!write || ret < 0)
6997 goto out;
6998
6999 /* Sanity checking to avoid pcp imbalance */
7000 if (percpu_pagelist_fraction &&
7001 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7002 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7003 ret = -EINVAL;
7004 goto out;
7005 }
7006
7007 /* No change? */
7008 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7009 goto out;
c8e251fa 7010
364df0eb 7011 for_each_populated_zone(zone) {
7cd2b0a3
DR
7012 unsigned int cpu;
7013
22a7f12b 7014 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7015 pageset_set_high_and_batch(zone,
7016 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7017 }
7cd2b0a3 7018out:
c8e251fa 7019 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7020 return ret;
8ad4b1fb
RS
7021}
7022
a9919c79 7023#ifdef CONFIG_NUMA
f034b5d4 7024int hashdist = HASHDIST_DEFAULT;
1da177e4 7025
1da177e4
LT
7026static int __init set_hashdist(char *str)
7027{
7028 if (!str)
7029 return 0;
7030 hashdist = simple_strtoul(str, &str, 0);
7031 return 1;
7032}
7033__setup("hashdist=", set_hashdist);
7034#endif
7035
7036/*
7037 * allocate a large system hash table from bootmem
7038 * - it is assumed that the hash table must contain an exact power-of-2
7039 * quantity of entries
7040 * - limit is the number of hash buckets, not the total allocation size
7041 */
7042void *__init alloc_large_system_hash(const char *tablename,
7043 unsigned long bucketsize,
7044 unsigned long numentries,
7045 int scale,
7046 int flags,
7047 unsigned int *_hash_shift,
7048 unsigned int *_hash_mask,
31fe62b9
TB
7049 unsigned long low_limit,
7050 unsigned long high_limit)
1da177e4 7051{
31fe62b9 7052 unsigned long long max = high_limit;
1da177e4
LT
7053 unsigned long log2qty, size;
7054 void *table = NULL;
7055
7056 /* allow the kernel cmdline to have a say */
7057 if (!numentries) {
7058 /* round applicable memory size up to nearest megabyte */
04903664 7059 numentries = nr_kernel_pages;
a7e83318
JZ
7060
7061 /* It isn't necessary when PAGE_SIZE >= 1MB */
7062 if (PAGE_SHIFT < 20)
7063 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7064
7065 /* limit to 1 bucket per 2^scale bytes of low memory */
7066 if (scale > PAGE_SHIFT)
7067 numentries >>= (scale - PAGE_SHIFT);
7068 else
7069 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7070
7071 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7072 if (unlikely(flags & HASH_SMALL)) {
7073 /* Makes no sense without HASH_EARLY */
7074 WARN_ON(!(flags & HASH_EARLY));
7075 if (!(numentries >> *_hash_shift)) {
7076 numentries = 1UL << *_hash_shift;
7077 BUG_ON(!numentries);
7078 }
7079 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7080 numentries = PAGE_SIZE / bucketsize;
1da177e4 7081 }
6e692ed3 7082 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7083
7084 /* limit allocation size to 1/16 total memory by default */
7085 if (max == 0) {
7086 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7087 do_div(max, bucketsize);
7088 }
074b8517 7089 max = min(max, 0x80000000ULL);
1da177e4 7090
31fe62b9
TB
7091 if (numentries < low_limit)
7092 numentries = low_limit;
1da177e4
LT
7093 if (numentries > max)
7094 numentries = max;
7095
f0d1b0b3 7096 log2qty = ilog2(numentries);
1da177e4
LT
7097
7098 do {
7099 size = bucketsize << log2qty;
7100 if (flags & HASH_EARLY)
6782832e 7101 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7102 else if (hashdist)
7103 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7104 else {
1037b83b
ED
7105 /*
7106 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7107 * some pages at the end of hash table which
7108 * alloc_pages_exact() automatically does
1037b83b 7109 */
264ef8a9 7110 if (get_order(size) < MAX_ORDER) {
a1dd268c 7111 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7112 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7113 }
1da177e4
LT
7114 }
7115 } while (!table && size > PAGE_SIZE && --log2qty);
7116
7117 if (!table)
7118 panic("Failed to allocate %s hash table\n", tablename);
7119
1170532b
JP
7120 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7121 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7122
7123 if (_hash_shift)
7124 *_hash_shift = log2qty;
7125 if (_hash_mask)
7126 *_hash_mask = (1 << log2qty) - 1;
7127
7128 return table;
7129}
a117e66e 7130
a5d76b54 7131/*
80934513
MK
7132 * This function checks whether pageblock includes unmovable pages or not.
7133 * If @count is not zero, it is okay to include less @count unmovable pages
7134 *
b8af2941 7135 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7136 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7137 * expect this function should be exact.
a5d76b54 7138 */
b023f468
WC
7139bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7140 bool skip_hwpoisoned_pages)
49ac8255
KH
7141{
7142 unsigned long pfn, iter, found;
47118af0
MN
7143 int mt;
7144
49ac8255
KH
7145 /*
7146 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7147 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7148 */
7149 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7150 return false;
47118af0
MN
7151 mt = get_pageblock_migratetype(page);
7152 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7153 return false;
49ac8255
KH
7154
7155 pfn = page_to_pfn(page);
7156 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7157 unsigned long check = pfn + iter;
7158
29723fcc 7159 if (!pfn_valid_within(check))
49ac8255 7160 continue;
29723fcc 7161
49ac8255 7162 page = pfn_to_page(check);
c8721bbb
NH
7163
7164 /*
7165 * Hugepages are not in LRU lists, but they're movable.
7166 * We need not scan over tail pages bacause we don't
7167 * handle each tail page individually in migration.
7168 */
7169 if (PageHuge(page)) {
7170 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7171 continue;
7172 }
7173
97d255c8
MK
7174 /*
7175 * We can't use page_count without pin a page
7176 * because another CPU can free compound page.
7177 * This check already skips compound tails of THP
0139aa7b 7178 * because their page->_refcount is zero at all time.
97d255c8 7179 */
fe896d18 7180 if (!page_ref_count(page)) {
49ac8255
KH
7181 if (PageBuddy(page))
7182 iter += (1 << page_order(page)) - 1;
7183 continue;
7184 }
97d255c8 7185
b023f468
WC
7186 /*
7187 * The HWPoisoned page may be not in buddy system, and
7188 * page_count() is not 0.
7189 */
7190 if (skip_hwpoisoned_pages && PageHWPoison(page))
7191 continue;
7192
49ac8255
KH
7193 if (!PageLRU(page))
7194 found++;
7195 /*
6b4f7799
JW
7196 * If there are RECLAIMABLE pages, we need to check
7197 * it. But now, memory offline itself doesn't call
7198 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7199 */
7200 /*
7201 * If the page is not RAM, page_count()should be 0.
7202 * we don't need more check. This is an _used_ not-movable page.
7203 *
7204 * The problematic thing here is PG_reserved pages. PG_reserved
7205 * is set to both of a memory hole page and a _used_ kernel
7206 * page at boot.
7207 */
7208 if (found > count)
80934513 7209 return true;
49ac8255 7210 }
80934513 7211 return false;
49ac8255
KH
7212}
7213
7214bool is_pageblock_removable_nolock(struct page *page)
7215{
656a0706
MH
7216 struct zone *zone;
7217 unsigned long pfn;
687875fb
MH
7218
7219 /*
7220 * We have to be careful here because we are iterating over memory
7221 * sections which are not zone aware so we might end up outside of
7222 * the zone but still within the section.
656a0706
MH
7223 * We have to take care about the node as well. If the node is offline
7224 * its NODE_DATA will be NULL - see page_zone.
687875fb 7225 */
656a0706
MH
7226 if (!node_online(page_to_nid(page)))
7227 return false;
7228
7229 zone = page_zone(page);
7230 pfn = page_to_pfn(page);
108bcc96 7231 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7232 return false;
7233
b023f468 7234 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7235}
0c0e6195 7236
080fe206 7237#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7238
7239static unsigned long pfn_max_align_down(unsigned long pfn)
7240{
7241 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7242 pageblock_nr_pages) - 1);
7243}
7244
7245static unsigned long pfn_max_align_up(unsigned long pfn)
7246{
7247 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7248 pageblock_nr_pages));
7249}
7250
041d3a8c 7251/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7252static int __alloc_contig_migrate_range(struct compact_control *cc,
7253 unsigned long start, unsigned long end)
041d3a8c
MN
7254{
7255 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7256 unsigned long nr_reclaimed;
041d3a8c
MN
7257 unsigned long pfn = start;
7258 unsigned int tries = 0;
7259 int ret = 0;
7260
be49a6e1 7261 migrate_prep();
041d3a8c 7262
bb13ffeb 7263 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7264 if (fatal_signal_pending(current)) {
7265 ret = -EINTR;
7266 break;
7267 }
7268
bb13ffeb
MG
7269 if (list_empty(&cc->migratepages)) {
7270 cc->nr_migratepages = 0;
edc2ca61 7271 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7272 if (!pfn) {
7273 ret = -EINTR;
7274 break;
7275 }
7276 tries = 0;
7277 } else if (++tries == 5) {
7278 ret = ret < 0 ? ret : -EBUSY;
7279 break;
7280 }
7281
beb51eaa
MK
7282 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7283 &cc->migratepages);
7284 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7285
9c620e2b 7286 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7287 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7288 }
2a6f5124
SP
7289 if (ret < 0) {
7290 putback_movable_pages(&cc->migratepages);
7291 return ret;
7292 }
7293 return 0;
041d3a8c
MN
7294}
7295
7296/**
7297 * alloc_contig_range() -- tries to allocate given range of pages
7298 * @start: start PFN to allocate
7299 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7300 * @migratetype: migratetype of the underlaying pageblocks (either
7301 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7302 * in range must have the same migratetype and it must
7303 * be either of the two.
041d3a8c
MN
7304 *
7305 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7306 * aligned, however it's the caller's responsibility to guarantee that
7307 * we are the only thread that changes migrate type of pageblocks the
7308 * pages fall in.
7309 *
7310 * The PFN range must belong to a single zone.
7311 *
7312 * Returns zero on success or negative error code. On success all
7313 * pages which PFN is in [start, end) are allocated for the caller and
7314 * need to be freed with free_contig_range().
7315 */
0815f3d8
MN
7316int alloc_contig_range(unsigned long start, unsigned long end,
7317 unsigned migratetype)
041d3a8c 7318{
041d3a8c 7319 unsigned long outer_start, outer_end;
d00181b9
KS
7320 unsigned int order;
7321 int ret = 0;
041d3a8c 7322
bb13ffeb
MG
7323 struct compact_control cc = {
7324 .nr_migratepages = 0,
7325 .order = -1,
7326 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7327 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7328 .ignore_skip_hint = true,
7329 };
7330 INIT_LIST_HEAD(&cc.migratepages);
7331
041d3a8c
MN
7332 /*
7333 * What we do here is we mark all pageblocks in range as
7334 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7335 * have different sizes, and due to the way page allocator
7336 * work, we align the range to biggest of the two pages so
7337 * that page allocator won't try to merge buddies from
7338 * different pageblocks and change MIGRATE_ISOLATE to some
7339 * other migration type.
7340 *
7341 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7342 * migrate the pages from an unaligned range (ie. pages that
7343 * we are interested in). This will put all the pages in
7344 * range back to page allocator as MIGRATE_ISOLATE.
7345 *
7346 * When this is done, we take the pages in range from page
7347 * allocator removing them from the buddy system. This way
7348 * page allocator will never consider using them.
7349 *
7350 * This lets us mark the pageblocks back as
7351 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7352 * aligned range but not in the unaligned, original range are
7353 * put back to page allocator so that buddy can use them.
7354 */
7355
7356 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7357 pfn_max_align_up(end), migratetype,
7358 false);
041d3a8c 7359 if (ret)
86a595f9 7360 return ret;
041d3a8c 7361
8ef5849f
JK
7362 /*
7363 * In case of -EBUSY, we'd like to know which page causes problem.
7364 * So, just fall through. We will check it in test_pages_isolated().
7365 */
bb13ffeb 7366 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7367 if (ret && ret != -EBUSY)
041d3a8c
MN
7368 goto done;
7369
7370 /*
7371 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7372 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7373 * more, all pages in [start, end) are free in page allocator.
7374 * What we are going to do is to allocate all pages from
7375 * [start, end) (that is remove them from page allocator).
7376 *
7377 * The only problem is that pages at the beginning and at the
7378 * end of interesting range may be not aligned with pages that
7379 * page allocator holds, ie. they can be part of higher order
7380 * pages. Because of this, we reserve the bigger range and
7381 * once this is done free the pages we are not interested in.
7382 *
7383 * We don't have to hold zone->lock here because the pages are
7384 * isolated thus they won't get removed from buddy.
7385 */
7386
7387 lru_add_drain_all();
510f5507 7388 drain_all_pages(cc.zone);
041d3a8c
MN
7389
7390 order = 0;
7391 outer_start = start;
7392 while (!PageBuddy(pfn_to_page(outer_start))) {
7393 if (++order >= MAX_ORDER) {
8ef5849f
JK
7394 outer_start = start;
7395 break;
041d3a8c
MN
7396 }
7397 outer_start &= ~0UL << order;
7398 }
7399
8ef5849f
JK
7400 if (outer_start != start) {
7401 order = page_order(pfn_to_page(outer_start));
7402
7403 /*
7404 * outer_start page could be small order buddy page and
7405 * it doesn't include start page. Adjust outer_start
7406 * in this case to report failed page properly
7407 * on tracepoint in test_pages_isolated()
7408 */
7409 if (outer_start + (1UL << order) <= start)
7410 outer_start = start;
7411 }
7412
041d3a8c 7413 /* Make sure the range is really isolated. */
b023f468 7414 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7415 pr_info("%s: [%lx, %lx) PFNs busy\n",
7416 __func__, outer_start, end);
041d3a8c
MN
7417 ret = -EBUSY;
7418 goto done;
7419 }
7420
49f223a9 7421 /* Grab isolated pages from freelists. */
bb13ffeb 7422 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7423 if (!outer_end) {
7424 ret = -EBUSY;
7425 goto done;
7426 }
7427
7428 /* Free head and tail (if any) */
7429 if (start != outer_start)
7430 free_contig_range(outer_start, start - outer_start);
7431 if (end != outer_end)
7432 free_contig_range(end, outer_end - end);
7433
7434done:
7435 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7436 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7437 return ret;
7438}
7439
7440void free_contig_range(unsigned long pfn, unsigned nr_pages)
7441{
bcc2b02f
MS
7442 unsigned int count = 0;
7443
7444 for (; nr_pages--; pfn++) {
7445 struct page *page = pfn_to_page(pfn);
7446
7447 count += page_count(page) != 1;
7448 __free_page(page);
7449 }
7450 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7451}
7452#endif
7453
4ed7e022 7454#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7455/*
7456 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7457 * page high values need to be recalulated.
7458 */
4ed7e022
JL
7459void __meminit zone_pcp_update(struct zone *zone)
7460{
0a647f38 7461 unsigned cpu;
c8e251fa 7462 mutex_lock(&pcp_batch_high_lock);
0a647f38 7463 for_each_possible_cpu(cpu)
169f6c19
CS
7464 pageset_set_high_and_batch(zone,
7465 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7466 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7467}
7468#endif
7469
340175b7
JL
7470void zone_pcp_reset(struct zone *zone)
7471{
7472 unsigned long flags;
5a883813
MK
7473 int cpu;
7474 struct per_cpu_pageset *pset;
340175b7
JL
7475
7476 /* avoid races with drain_pages() */
7477 local_irq_save(flags);
7478 if (zone->pageset != &boot_pageset) {
5a883813
MK
7479 for_each_online_cpu(cpu) {
7480 pset = per_cpu_ptr(zone->pageset, cpu);
7481 drain_zonestat(zone, pset);
7482 }
340175b7
JL
7483 free_percpu(zone->pageset);
7484 zone->pageset = &boot_pageset;
7485 }
7486 local_irq_restore(flags);
7487}
7488
6dcd73d7 7489#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7490/*
b9eb6319
JK
7491 * All pages in the range must be in a single zone and isolated
7492 * before calling this.
0c0e6195
KH
7493 */
7494void
7495__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7496{
7497 struct page *page;
7498 struct zone *zone;
7aeb09f9 7499 unsigned int order, i;
0c0e6195
KH
7500 unsigned long pfn;
7501 unsigned long flags;
7502 /* find the first valid pfn */
7503 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7504 if (pfn_valid(pfn))
7505 break;
7506 if (pfn == end_pfn)
7507 return;
7508 zone = page_zone(pfn_to_page(pfn));
7509 spin_lock_irqsave(&zone->lock, flags);
7510 pfn = start_pfn;
7511 while (pfn < end_pfn) {
7512 if (!pfn_valid(pfn)) {
7513 pfn++;
7514 continue;
7515 }
7516 page = pfn_to_page(pfn);
b023f468
WC
7517 /*
7518 * The HWPoisoned page may be not in buddy system, and
7519 * page_count() is not 0.
7520 */
7521 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7522 pfn++;
7523 SetPageReserved(page);
7524 continue;
7525 }
7526
0c0e6195
KH
7527 BUG_ON(page_count(page));
7528 BUG_ON(!PageBuddy(page));
7529 order = page_order(page);
7530#ifdef CONFIG_DEBUG_VM
1170532b
JP
7531 pr_info("remove from free list %lx %d %lx\n",
7532 pfn, 1 << order, end_pfn);
0c0e6195
KH
7533#endif
7534 list_del(&page->lru);
7535 rmv_page_order(page);
7536 zone->free_area[order].nr_free--;
0c0e6195
KH
7537 for (i = 0; i < (1 << order); i++)
7538 SetPageReserved((page+i));
7539 pfn += (1 << order);
7540 }
7541 spin_unlock_irqrestore(&zone->lock, flags);
7542}
7543#endif
8d22ba1b 7544
8d22ba1b
WF
7545bool is_free_buddy_page(struct page *page)
7546{
7547 struct zone *zone = page_zone(page);
7548 unsigned long pfn = page_to_pfn(page);
7549 unsigned long flags;
7aeb09f9 7550 unsigned int order;
8d22ba1b
WF
7551
7552 spin_lock_irqsave(&zone->lock, flags);
7553 for (order = 0; order < MAX_ORDER; order++) {
7554 struct page *page_head = page - (pfn & ((1 << order) - 1));
7555
7556 if (PageBuddy(page_head) && page_order(page_head) >= order)
7557 break;
7558 }
7559 spin_unlock_irqrestore(&zone->lock, flags);
7560
7561 return order < MAX_ORDER;
7562}