]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm/writeback: correct dirty page calculation for highmem
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
5f8dcc21 834
c54ad30c 835 spin_lock(&zone->lock);
0d5d823a
MG
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 839
72853e29 840 while (to_free) {
48db57f8 841 struct page *page;
5f8dcc21
MG
842 struct list_head *list;
843
844 /*
a6f9edd6
MG
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
5f8dcc21
MG
850 */
851 do {
a6f9edd6 852 batch_free++;
5f8dcc21
MG
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
48db57f8 857
1d16871d
NK
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
a6f9edd6 862 do {
770c8aaa
BZ
863 int mt; /* migratetype of the to-be-freed page */
864
a16601c5 865 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
aa016d14 868
bb14c2c7 869 mt = get_pcppage_migratetype(page);
aa016d14
VB
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
8f82b55d 873 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 874 mt = get_pageblock_migratetype(page);
51bb1a40 875
dc4b0caf 876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 877 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 878 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 879 }
c54ad30c 880 spin_unlock(&zone->lock);
1da177e4
LT
881}
882
dc4b0caf
MG
883static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
7aeb09f9 885 unsigned int order,
ed0ae21d 886 int migratetype)
1da177e4 887{
0d5d823a 888 unsigned long nr_scanned;
006d22d9 889 spin_lock(&zone->lock);
0d5d823a
MG
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 893
ad53f92e
JK
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 897 }
dc4b0caf 898 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 899 spin_unlock(&zone->lock);
48db57f8
NP
900}
901
81422f29
KS
902static int free_tail_pages_check(struct page *head_page, struct page *page)
903{
1d798ca3
KS
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
9a982250
KS
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
9a982250
KS
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
1c290f64 936 }
81422f29
KS
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
1d798ca3 939 goto out;
81422f29 940 }
1d798ca3
KS
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
81422f29 944 }
1d798ca3
KS
945 ret = 0;
946out:
1c290f64 947 page->mapping = NULL;
1d798ca3
KS
948 clear_compound_head(page);
949 return ret;
81422f29
KS
950}
951
1e8ce83c
RH
952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954{
1e8ce83c 955 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
1e8ce83c 959
1e8ce83c
RH
960 INIT_LIST_HEAD(&page->lru);
961#ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965#endif
966}
967
968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970{
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972}
973
7e18adb4
MG
974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975static void init_reserved_page(unsigned long pfn)
976{
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993}
994#else
995static inline void init_reserved_page(unsigned long pfn)
996{
997}
998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
92923ca3
NZ
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
7e18adb4 1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1007{
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
7e18adb4
MG
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1d798ca3
KS
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
7e18adb4
MG
1020 SetPageReserved(page);
1021 }
1022 }
92923ca3
NZ
1023}
1024
ec95f53a 1025static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1026{
81422f29
KS
1027 bool compound = PageCompound(page);
1028 int i, bad = 0;
1da177e4 1029
ab1f306f 1030 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1031 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1032
b413d48a 1033 trace_mm_page_free(page, order);
b1eeab67 1034 kmemcheck_free_shadow(page, order);
b8c73fc2 1035 kasan_free_pages(page, order);
b1eeab67 1036
8dd60a3a
AA
1037 if (PageAnon(page))
1038 page->mapping = NULL;
81422f29
KS
1039 bad += free_pages_check(page);
1040 for (i = 1; i < (1 << order); i++) {
1041 if (compound)
1042 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1043 bad += free_pages_check(page + i);
81422f29 1044 }
8cc3b392 1045 if (bad)
ec95f53a 1046 return false;
689bcebf 1047
48c96a36
JK
1048 reset_page_owner(page, order);
1049
3ac7fe5a 1050 if (!PageHighMem(page)) {
b8af2941
PK
1051 debug_check_no_locks_freed(page_address(page),
1052 PAGE_SIZE << order);
3ac7fe5a
TG
1053 debug_check_no_obj_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 }
dafb1367 1056 arch_free_page(page, order);
8823b1db 1057 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1058 kernel_map_pages(page, 1 << order, 0);
dafb1367 1059
ec95f53a
KM
1060 return true;
1061}
1062
1063static void __free_pages_ok(struct page *page, unsigned int order)
1064{
1065 unsigned long flags;
95e34412 1066 int migratetype;
dc4b0caf 1067 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1068
1069 if (!free_pages_prepare(page, order))
1070 return;
1071
cfc47a28 1072 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1073 local_irq_save(flags);
f8891e5e 1074 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1075 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1076 local_irq_restore(flags);
1da177e4
LT
1077}
1078
949698a3 1079static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1080{
c3993076 1081 unsigned int nr_pages = 1 << order;
e2d0bd2b 1082 struct page *p = page;
c3993076 1083 unsigned int loop;
a226f6c8 1084
e2d0bd2b
YL
1085 prefetchw(p);
1086 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1087 prefetchw(p + 1);
c3993076
JW
1088 __ClearPageReserved(p);
1089 set_page_count(p, 0);
a226f6c8 1090 }
e2d0bd2b
YL
1091 __ClearPageReserved(p);
1092 set_page_count(p, 0);
c3993076 1093
e2d0bd2b 1094 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1095 set_page_refcounted(page);
1096 __free_pages(page, order);
a226f6c8
DH
1097}
1098
75a592a4
MG
1099#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1100 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1101
75a592a4
MG
1102static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1103
1104int __meminit early_pfn_to_nid(unsigned long pfn)
1105{
7ace9917 1106 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1107 int nid;
1108
7ace9917 1109 spin_lock(&early_pfn_lock);
75a592a4 1110 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1111 if (nid < 0)
1112 nid = 0;
1113 spin_unlock(&early_pfn_lock);
1114
1115 return nid;
75a592a4
MG
1116}
1117#endif
1118
1119#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1120static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1121 struct mminit_pfnnid_cache *state)
1122{
1123 int nid;
1124
1125 nid = __early_pfn_to_nid(pfn, state);
1126 if (nid >= 0 && nid != node)
1127 return false;
1128 return true;
1129}
1130
1131/* Only safe to use early in boot when initialisation is single-threaded */
1132static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1133{
1134 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1135}
1136
1137#else
1138
1139static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1140{
1141 return true;
1142}
1143static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1144 struct mminit_pfnnid_cache *state)
1145{
1146 return true;
1147}
1148#endif
1149
1150
0e1cc95b 1151void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1152 unsigned int order)
1153{
1154 if (early_page_uninitialised(pfn))
1155 return;
949698a3 1156 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1157}
1158
7cf91a98
JK
1159/*
1160 * Check that the whole (or subset of) a pageblock given by the interval of
1161 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1162 * with the migration of free compaction scanner. The scanners then need to
1163 * use only pfn_valid_within() check for arches that allow holes within
1164 * pageblocks.
1165 *
1166 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1167 *
1168 * It's possible on some configurations to have a setup like node0 node1 node0
1169 * i.e. it's possible that all pages within a zones range of pages do not
1170 * belong to a single zone. We assume that a border between node0 and node1
1171 * can occur within a single pageblock, but not a node0 node1 node0
1172 * interleaving within a single pageblock. It is therefore sufficient to check
1173 * the first and last page of a pageblock and avoid checking each individual
1174 * page in a pageblock.
1175 */
1176struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1177 unsigned long end_pfn, struct zone *zone)
1178{
1179 struct page *start_page;
1180 struct page *end_page;
1181
1182 /* end_pfn is one past the range we are checking */
1183 end_pfn--;
1184
1185 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1186 return NULL;
1187
1188 start_page = pfn_to_page(start_pfn);
1189
1190 if (page_zone(start_page) != zone)
1191 return NULL;
1192
1193 end_page = pfn_to_page(end_pfn);
1194
1195 /* This gives a shorter code than deriving page_zone(end_page) */
1196 if (page_zone_id(start_page) != page_zone_id(end_page))
1197 return NULL;
1198
1199 return start_page;
1200}
1201
1202void set_zone_contiguous(struct zone *zone)
1203{
1204 unsigned long block_start_pfn = zone->zone_start_pfn;
1205 unsigned long block_end_pfn;
1206
1207 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1208 for (; block_start_pfn < zone_end_pfn(zone);
1209 block_start_pfn = block_end_pfn,
1210 block_end_pfn += pageblock_nr_pages) {
1211
1212 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1213
1214 if (!__pageblock_pfn_to_page(block_start_pfn,
1215 block_end_pfn, zone))
1216 return;
1217 }
1218
1219 /* We confirm that there is no hole */
1220 zone->contiguous = true;
1221}
1222
1223void clear_zone_contiguous(struct zone *zone)
1224{
1225 zone->contiguous = false;
1226}
1227
7e18adb4 1228#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1229static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1230 unsigned long pfn, int nr_pages)
1231{
1232 int i;
1233
1234 if (!page)
1235 return;
1236
1237 /* Free a large naturally-aligned chunk if possible */
1238 if (nr_pages == MAX_ORDER_NR_PAGES &&
1239 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1240 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1241 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1242 return;
1243 }
1244
949698a3
LZ
1245 for (i = 0; i < nr_pages; i++, page++)
1246 __free_pages_boot_core(page, 0);
a4de83dd
MG
1247}
1248
d3cd131d
NS
1249/* Completion tracking for deferred_init_memmap() threads */
1250static atomic_t pgdat_init_n_undone __initdata;
1251static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1252
1253static inline void __init pgdat_init_report_one_done(void)
1254{
1255 if (atomic_dec_and_test(&pgdat_init_n_undone))
1256 complete(&pgdat_init_all_done_comp);
1257}
0e1cc95b 1258
7e18adb4 1259/* Initialise remaining memory on a node */
0e1cc95b 1260static int __init deferred_init_memmap(void *data)
7e18adb4 1261{
0e1cc95b
MG
1262 pg_data_t *pgdat = data;
1263 int nid = pgdat->node_id;
7e18adb4
MG
1264 struct mminit_pfnnid_cache nid_init_state = { };
1265 unsigned long start = jiffies;
1266 unsigned long nr_pages = 0;
1267 unsigned long walk_start, walk_end;
1268 int i, zid;
1269 struct zone *zone;
7e18adb4 1270 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1271 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1272
0e1cc95b 1273 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1274 pgdat_init_report_one_done();
0e1cc95b
MG
1275 return 0;
1276 }
1277
1278 /* Bind memory initialisation thread to a local node if possible */
1279 if (!cpumask_empty(cpumask))
1280 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1281
1282 /* Sanity check boundaries */
1283 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1284 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1285 pgdat->first_deferred_pfn = ULONG_MAX;
1286
1287 /* Only the highest zone is deferred so find it */
1288 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1289 zone = pgdat->node_zones + zid;
1290 if (first_init_pfn < zone_end_pfn(zone))
1291 break;
1292 }
1293
1294 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1295 unsigned long pfn, end_pfn;
54608c3f 1296 struct page *page = NULL;
a4de83dd
MG
1297 struct page *free_base_page = NULL;
1298 unsigned long free_base_pfn = 0;
1299 int nr_to_free = 0;
7e18adb4
MG
1300
1301 end_pfn = min(walk_end, zone_end_pfn(zone));
1302 pfn = first_init_pfn;
1303 if (pfn < walk_start)
1304 pfn = walk_start;
1305 if (pfn < zone->zone_start_pfn)
1306 pfn = zone->zone_start_pfn;
1307
1308 for (; pfn < end_pfn; pfn++) {
54608c3f 1309 if (!pfn_valid_within(pfn))
a4de83dd 1310 goto free_range;
7e18adb4 1311
54608c3f
MG
1312 /*
1313 * Ensure pfn_valid is checked every
1314 * MAX_ORDER_NR_PAGES for memory holes
1315 */
1316 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1317 if (!pfn_valid(pfn)) {
1318 page = NULL;
a4de83dd 1319 goto free_range;
54608c3f
MG
1320 }
1321 }
1322
1323 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1324 page = NULL;
a4de83dd 1325 goto free_range;
54608c3f
MG
1326 }
1327
1328 /* Minimise pfn page lookups and scheduler checks */
1329 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1330 page++;
1331 } else {
a4de83dd
MG
1332 nr_pages += nr_to_free;
1333 deferred_free_range(free_base_page,
1334 free_base_pfn, nr_to_free);
1335 free_base_page = NULL;
1336 free_base_pfn = nr_to_free = 0;
1337
54608c3f
MG
1338 page = pfn_to_page(pfn);
1339 cond_resched();
1340 }
7e18adb4
MG
1341
1342 if (page->flags) {
1343 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1344 goto free_range;
7e18adb4
MG
1345 }
1346
1347 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1348 if (!free_base_page) {
1349 free_base_page = page;
1350 free_base_pfn = pfn;
1351 nr_to_free = 0;
1352 }
1353 nr_to_free++;
1354
1355 /* Where possible, batch up pages for a single free */
1356 continue;
1357free_range:
1358 /* Free the current block of pages to allocator */
1359 nr_pages += nr_to_free;
1360 deferred_free_range(free_base_page, free_base_pfn,
1361 nr_to_free);
1362 free_base_page = NULL;
1363 free_base_pfn = nr_to_free = 0;
7e18adb4 1364 }
a4de83dd 1365
7e18adb4
MG
1366 first_init_pfn = max(end_pfn, first_init_pfn);
1367 }
1368
1369 /* Sanity check that the next zone really is unpopulated */
1370 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1371
0e1cc95b 1372 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1373 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1374
1375 pgdat_init_report_one_done();
0e1cc95b
MG
1376 return 0;
1377}
7cf91a98 1378#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1379
1380void __init page_alloc_init_late(void)
1381{
7cf91a98
JK
1382 struct zone *zone;
1383
1384#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1385 int nid;
1386
d3cd131d
NS
1387 /* There will be num_node_state(N_MEMORY) threads */
1388 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1389 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1390 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1391 }
1392
1393 /* Block until all are initialised */
d3cd131d 1394 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1395
1396 /* Reinit limits that are based on free pages after the kernel is up */
1397 files_maxfiles_init();
7cf91a98
JK
1398#endif
1399
1400 for_each_populated_zone(zone)
1401 set_zone_contiguous(zone);
7e18adb4 1402}
7e18adb4 1403
47118af0 1404#ifdef CONFIG_CMA
9cf510a5 1405/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1406void __init init_cma_reserved_pageblock(struct page *page)
1407{
1408 unsigned i = pageblock_nr_pages;
1409 struct page *p = page;
1410
1411 do {
1412 __ClearPageReserved(p);
1413 set_page_count(p, 0);
1414 } while (++p, --i);
1415
47118af0 1416 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1417
1418 if (pageblock_order >= MAX_ORDER) {
1419 i = pageblock_nr_pages;
1420 p = page;
1421 do {
1422 set_page_refcounted(p);
1423 __free_pages(p, MAX_ORDER - 1);
1424 p += MAX_ORDER_NR_PAGES;
1425 } while (i -= MAX_ORDER_NR_PAGES);
1426 } else {
1427 set_page_refcounted(page);
1428 __free_pages(page, pageblock_order);
1429 }
1430
3dcc0571 1431 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1432}
1433#endif
1da177e4
LT
1434
1435/*
1436 * The order of subdivision here is critical for the IO subsystem.
1437 * Please do not alter this order without good reasons and regression
1438 * testing. Specifically, as large blocks of memory are subdivided,
1439 * the order in which smaller blocks are delivered depends on the order
1440 * they're subdivided in this function. This is the primary factor
1441 * influencing the order in which pages are delivered to the IO
1442 * subsystem according to empirical testing, and this is also justified
1443 * by considering the behavior of a buddy system containing a single
1444 * large block of memory acted on by a series of small allocations.
1445 * This behavior is a critical factor in sglist merging's success.
1446 *
6d49e352 1447 * -- nyc
1da177e4 1448 */
085cc7d5 1449static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1450 int low, int high, struct free_area *area,
1451 int migratetype)
1da177e4
LT
1452{
1453 unsigned long size = 1 << high;
1454
1455 while (high > low) {
1456 area--;
1457 high--;
1458 size >>= 1;
309381fe 1459 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1460
2847cf95 1461 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1462 debug_guardpage_enabled() &&
2847cf95 1463 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1464 /*
1465 * Mark as guard pages (or page), that will allow to
1466 * merge back to allocator when buddy will be freed.
1467 * Corresponding page table entries will not be touched,
1468 * pages will stay not present in virtual address space
1469 */
2847cf95 1470 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1471 continue;
1472 }
b2a0ac88 1473 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1474 area->nr_free++;
1475 set_page_order(&page[size], high);
1476 }
1da177e4
LT
1477}
1478
1da177e4
LT
1479/*
1480 * This page is about to be returned from the page allocator
1481 */
2a7684a2 1482static inline int check_new_page(struct page *page)
1da177e4 1483{
d230dec1 1484 const char *bad_reason = NULL;
f0b791a3
DH
1485 unsigned long bad_flags = 0;
1486
53f9263b 1487 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1488 bad_reason = "nonzero mapcount";
1489 if (unlikely(page->mapping != NULL))
1490 bad_reason = "non-NULL mapping";
fe896d18 1491 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1492 bad_reason = "nonzero _count";
f4c18e6f
NH
1493 if (unlikely(page->flags & __PG_HWPOISON)) {
1494 bad_reason = "HWPoisoned (hardware-corrupted)";
1495 bad_flags = __PG_HWPOISON;
1496 }
f0b791a3
DH
1497 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1498 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1499 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1500 }
9edad6ea
JW
1501#ifdef CONFIG_MEMCG
1502 if (unlikely(page->mem_cgroup))
1503 bad_reason = "page still charged to cgroup";
1504#endif
f0b791a3
DH
1505 if (unlikely(bad_reason)) {
1506 bad_page(page, bad_reason, bad_flags);
689bcebf 1507 return 1;
8cc3b392 1508 }
2a7684a2
WF
1509 return 0;
1510}
1511
1414c7f4
LA
1512static inline bool free_pages_prezeroed(bool poisoned)
1513{
1514 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1515 page_poisoning_enabled() && poisoned;
1516}
1517
75379191
VB
1518static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1519 int alloc_flags)
2a7684a2
WF
1520{
1521 int i;
1414c7f4 1522 bool poisoned = true;
2a7684a2
WF
1523
1524 for (i = 0; i < (1 << order); i++) {
1525 struct page *p = page + i;
1526 if (unlikely(check_new_page(p)))
1527 return 1;
1414c7f4
LA
1528 if (poisoned)
1529 poisoned &= page_is_poisoned(p);
2a7684a2 1530 }
689bcebf 1531
4c21e2f2 1532 set_page_private(page, 0);
7835e98b 1533 set_page_refcounted(page);
cc102509
NP
1534
1535 arch_alloc_page(page, order);
1da177e4 1536 kernel_map_pages(page, 1 << order, 1);
8823b1db 1537 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1538 kasan_alloc_pages(page, order);
17cf4406 1539
1414c7f4 1540 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1541 for (i = 0; i < (1 << order); i++)
1542 clear_highpage(page + i);
17cf4406
NP
1543
1544 if (order && (gfp_flags & __GFP_COMP))
1545 prep_compound_page(page, order);
1546
48c96a36
JK
1547 set_page_owner(page, order, gfp_flags);
1548
75379191 1549 /*
2f064f34 1550 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1551 * allocate the page. The expectation is that the caller is taking
1552 * steps that will free more memory. The caller should avoid the page
1553 * being used for !PFMEMALLOC purposes.
1554 */
2f064f34
MH
1555 if (alloc_flags & ALLOC_NO_WATERMARKS)
1556 set_page_pfmemalloc(page);
1557 else
1558 clear_page_pfmemalloc(page);
75379191 1559
689bcebf 1560 return 0;
1da177e4
LT
1561}
1562
56fd56b8
MG
1563/*
1564 * Go through the free lists for the given migratetype and remove
1565 * the smallest available page from the freelists
1566 */
728ec980
MG
1567static inline
1568struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1569 int migratetype)
1570{
1571 unsigned int current_order;
b8af2941 1572 struct free_area *area;
56fd56b8
MG
1573 struct page *page;
1574
1575 /* Find a page of the appropriate size in the preferred list */
1576 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1577 area = &(zone->free_area[current_order]);
a16601c5 1578 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1579 struct page, lru);
a16601c5
GT
1580 if (!page)
1581 continue;
56fd56b8
MG
1582 list_del(&page->lru);
1583 rmv_page_order(page);
1584 area->nr_free--;
56fd56b8 1585 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1586 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1587 return page;
1588 }
1589
1590 return NULL;
1591}
1592
1593
b2a0ac88
MG
1594/*
1595 * This array describes the order lists are fallen back to when
1596 * the free lists for the desirable migrate type are depleted
1597 */
47118af0 1598static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1599 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1600 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1601 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1602#ifdef CONFIG_CMA
974a786e 1603 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1604#endif
194159fb 1605#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1606 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1607#endif
b2a0ac88
MG
1608};
1609
dc67647b
JK
1610#ifdef CONFIG_CMA
1611static struct page *__rmqueue_cma_fallback(struct zone *zone,
1612 unsigned int order)
1613{
1614 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1615}
1616#else
1617static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1618 unsigned int order) { return NULL; }
1619#endif
1620
c361be55
MG
1621/*
1622 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1623 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1624 * boundary. If alignment is required, use move_freepages_block()
1625 */
435b405c 1626int move_freepages(struct zone *zone,
b69a7288
AB
1627 struct page *start_page, struct page *end_page,
1628 int migratetype)
c361be55
MG
1629{
1630 struct page *page;
d00181b9 1631 unsigned int order;
d100313f 1632 int pages_moved = 0;
c361be55
MG
1633
1634#ifndef CONFIG_HOLES_IN_ZONE
1635 /*
1636 * page_zone is not safe to call in this context when
1637 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1638 * anyway as we check zone boundaries in move_freepages_block().
1639 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1640 * grouping pages by mobility
c361be55 1641 */
97ee4ba7 1642 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1643#endif
1644
1645 for (page = start_page; page <= end_page;) {
344c790e 1646 /* Make sure we are not inadvertently changing nodes */
309381fe 1647 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1648
c361be55
MG
1649 if (!pfn_valid_within(page_to_pfn(page))) {
1650 page++;
1651 continue;
1652 }
1653
1654 if (!PageBuddy(page)) {
1655 page++;
1656 continue;
1657 }
1658
1659 order = page_order(page);
84be48d8
KS
1660 list_move(&page->lru,
1661 &zone->free_area[order].free_list[migratetype]);
c361be55 1662 page += 1 << order;
d100313f 1663 pages_moved += 1 << order;
c361be55
MG
1664 }
1665
d100313f 1666 return pages_moved;
c361be55
MG
1667}
1668
ee6f509c 1669int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1670 int migratetype)
c361be55
MG
1671{
1672 unsigned long start_pfn, end_pfn;
1673 struct page *start_page, *end_page;
1674
1675 start_pfn = page_to_pfn(page);
d9c23400 1676 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1677 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1678 end_page = start_page + pageblock_nr_pages - 1;
1679 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1680
1681 /* Do not cross zone boundaries */
108bcc96 1682 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1683 start_page = page;
108bcc96 1684 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1685 return 0;
1686
1687 return move_freepages(zone, start_page, end_page, migratetype);
1688}
1689
2f66a68f
MG
1690static void change_pageblock_range(struct page *pageblock_page,
1691 int start_order, int migratetype)
1692{
1693 int nr_pageblocks = 1 << (start_order - pageblock_order);
1694
1695 while (nr_pageblocks--) {
1696 set_pageblock_migratetype(pageblock_page, migratetype);
1697 pageblock_page += pageblock_nr_pages;
1698 }
1699}
1700
fef903ef 1701/*
9c0415eb
VB
1702 * When we are falling back to another migratetype during allocation, try to
1703 * steal extra free pages from the same pageblocks to satisfy further
1704 * allocations, instead of polluting multiple pageblocks.
1705 *
1706 * If we are stealing a relatively large buddy page, it is likely there will
1707 * be more free pages in the pageblock, so try to steal them all. For
1708 * reclaimable and unmovable allocations, we steal regardless of page size,
1709 * as fragmentation caused by those allocations polluting movable pageblocks
1710 * is worse than movable allocations stealing from unmovable and reclaimable
1711 * pageblocks.
fef903ef 1712 */
4eb7dce6
JK
1713static bool can_steal_fallback(unsigned int order, int start_mt)
1714{
1715 /*
1716 * Leaving this order check is intended, although there is
1717 * relaxed order check in next check. The reason is that
1718 * we can actually steal whole pageblock if this condition met,
1719 * but, below check doesn't guarantee it and that is just heuristic
1720 * so could be changed anytime.
1721 */
1722 if (order >= pageblock_order)
1723 return true;
1724
1725 if (order >= pageblock_order / 2 ||
1726 start_mt == MIGRATE_RECLAIMABLE ||
1727 start_mt == MIGRATE_UNMOVABLE ||
1728 page_group_by_mobility_disabled)
1729 return true;
1730
1731 return false;
1732}
1733
1734/*
1735 * This function implements actual steal behaviour. If order is large enough,
1736 * we can steal whole pageblock. If not, we first move freepages in this
1737 * pageblock and check whether half of pages are moved or not. If half of
1738 * pages are moved, we can change migratetype of pageblock and permanently
1739 * use it's pages as requested migratetype in the future.
1740 */
1741static void steal_suitable_fallback(struct zone *zone, struct page *page,
1742 int start_type)
fef903ef 1743{
d00181b9 1744 unsigned int current_order = page_order(page);
4eb7dce6 1745 int pages;
fef903ef 1746
fef903ef
SB
1747 /* Take ownership for orders >= pageblock_order */
1748 if (current_order >= pageblock_order) {
1749 change_pageblock_range(page, current_order, start_type);
3a1086fb 1750 return;
fef903ef
SB
1751 }
1752
4eb7dce6 1753 pages = move_freepages_block(zone, page, start_type);
fef903ef 1754
4eb7dce6
JK
1755 /* Claim the whole block if over half of it is free */
1756 if (pages >= (1 << (pageblock_order-1)) ||
1757 page_group_by_mobility_disabled)
1758 set_pageblock_migratetype(page, start_type);
1759}
1760
2149cdae
JK
1761/*
1762 * Check whether there is a suitable fallback freepage with requested order.
1763 * If only_stealable is true, this function returns fallback_mt only if
1764 * we can steal other freepages all together. This would help to reduce
1765 * fragmentation due to mixed migratetype pages in one pageblock.
1766 */
1767int find_suitable_fallback(struct free_area *area, unsigned int order,
1768 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1769{
1770 int i;
1771 int fallback_mt;
1772
1773 if (area->nr_free == 0)
1774 return -1;
1775
1776 *can_steal = false;
1777 for (i = 0;; i++) {
1778 fallback_mt = fallbacks[migratetype][i];
974a786e 1779 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1780 break;
1781
1782 if (list_empty(&area->free_list[fallback_mt]))
1783 continue;
fef903ef 1784
4eb7dce6
JK
1785 if (can_steal_fallback(order, migratetype))
1786 *can_steal = true;
1787
2149cdae
JK
1788 if (!only_stealable)
1789 return fallback_mt;
1790
1791 if (*can_steal)
1792 return fallback_mt;
fef903ef 1793 }
4eb7dce6
JK
1794
1795 return -1;
fef903ef
SB
1796}
1797
0aaa29a5
MG
1798/*
1799 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1800 * there are no empty page blocks that contain a page with a suitable order
1801 */
1802static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1803 unsigned int alloc_order)
1804{
1805 int mt;
1806 unsigned long max_managed, flags;
1807
1808 /*
1809 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1810 * Check is race-prone but harmless.
1811 */
1812 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1813 if (zone->nr_reserved_highatomic >= max_managed)
1814 return;
1815
1816 spin_lock_irqsave(&zone->lock, flags);
1817
1818 /* Recheck the nr_reserved_highatomic limit under the lock */
1819 if (zone->nr_reserved_highatomic >= max_managed)
1820 goto out_unlock;
1821
1822 /* Yoink! */
1823 mt = get_pageblock_migratetype(page);
1824 if (mt != MIGRATE_HIGHATOMIC &&
1825 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1826 zone->nr_reserved_highatomic += pageblock_nr_pages;
1827 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1828 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1829 }
1830
1831out_unlock:
1832 spin_unlock_irqrestore(&zone->lock, flags);
1833}
1834
1835/*
1836 * Used when an allocation is about to fail under memory pressure. This
1837 * potentially hurts the reliability of high-order allocations when under
1838 * intense memory pressure but failed atomic allocations should be easier
1839 * to recover from than an OOM.
1840 */
1841static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1842{
1843 struct zonelist *zonelist = ac->zonelist;
1844 unsigned long flags;
1845 struct zoneref *z;
1846 struct zone *zone;
1847 struct page *page;
1848 int order;
1849
1850 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1851 ac->nodemask) {
1852 /* Preserve at least one pageblock */
1853 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1854 continue;
1855
1856 spin_lock_irqsave(&zone->lock, flags);
1857 for (order = 0; order < MAX_ORDER; order++) {
1858 struct free_area *area = &(zone->free_area[order]);
1859
a16601c5
GT
1860 page = list_first_entry_or_null(
1861 &area->free_list[MIGRATE_HIGHATOMIC],
1862 struct page, lru);
1863 if (!page)
0aaa29a5
MG
1864 continue;
1865
0aaa29a5
MG
1866 /*
1867 * It should never happen but changes to locking could
1868 * inadvertently allow a per-cpu drain to add pages
1869 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1870 * and watch for underflows.
1871 */
1872 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1873 zone->nr_reserved_highatomic);
1874
1875 /*
1876 * Convert to ac->migratetype and avoid the normal
1877 * pageblock stealing heuristics. Minimally, the caller
1878 * is doing the work and needs the pages. More
1879 * importantly, if the block was always converted to
1880 * MIGRATE_UNMOVABLE or another type then the number
1881 * of pageblocks that cannot be completely freed
1882 * may increase.
1883 */
1884 set_pageblock_migratetype(page, ac->migratetype);
1885 move_freepages_block(zone, page, ac->migratetype);
1886 spin_unlock_irqrestore(&zone->lock, flags);
1887 return;
1888 }
1889 spin_unlock_irqrestore(&zone->lock, flags);
1890 }
1891}
1892
b2a0ac88 1893/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1894static inline struct page *
7aeb09f9 1895__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1896{
b8af2941 1897 struct free_area *area;
7aeb09f9 1898 unsigned int current_order;
b2a0ac88 1899 struct page *page;
4eb7dce6
JK
1900 int fallback_mt;
1901 bool can_steal;
b2a0ac88
MG
1902
1903 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1904 for (current_order = MAX_ORDER-1;
1905 current_order >= order && current_order <= MAX_ORDER-1;
1906 --current_order) {
4eb7dce6
JK
1907 area = &(zone->free_area[current_order]);
1908 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1909 start_migratetype, false, &can_steal);
4eb7dce6
JK
1910 if (fallback_mt == -1)
1911 continue;
b2a0ac88 1912
a16601c5 1913 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1914 struct page, lru);
1915 if (can_steal)
1916 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1917
4eb7dce6
JK
1918 /* Remove the page from the freelists */
1919 area->nr_free--;
1920 list_del(&page->lru);
1921 rmv_page_order(page);
3a1086fb 1922
4eb7dce6
JK
1923 expand(zone, page, order, current_order, area,
1924 start_migratetype);
1925 /*
bb14c2c7 1926 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1927 * migratetype depending on the decisions in
bb14c2c7
VB
1928 * find_suitable_fallback(). This is OK as long as it does not
1929 * differ for MIGRATE_CMA pageblocks. Those can be used as
1930 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1931 */
bb14c2c7 1932 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1933
4eb7dce6
JK
1934 trace_mm_page_alloc_extfrag(page, order, current_order,
1935 start_migratetype, fallback_mt);
e0fff1bd 1936
4eb7dce6 1937 return page;
b2a0ac88
MG
1938 }
1939
728ec980 1940 return NULL;
b2a0ac88
MG
1941}
1942
56fd56b8 1943/*
1da177e4
LT
1944 * Do the hard work of removing an element from the buddy allocator.
1945 * Call me with the zone->lock already held.
1946 */
b2a0ac88 1947static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1948 int migratetype)
1da177e4 1949{
1da177e4
LT
1950 struct page *page;
1951
56fd56b8 1952 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1953 if (unlikely(!page)) {
dc67647b
JK
1954 if (migratetype == MIGRATE_MOVABLE)
1955 page = __rmqueue_cma_fallback(zone, order);
1956
1957 if (!page)
1958 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1959 }
1960
0d3d062a 1961 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1962 return page;
1da177e4
LT
1963}
1964
5f63b720 1965/*
1da177e4
LT
1966 * Obtain a specified number of elements from the buddy allocator, all under
1967 * a single hold of the lock, for efficiency. Add them to the supplied list.
1968 * Returns the number of new pages which were placed at *list.
1969 */
5f63b720 1970static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1971 unsigned long count, struct list_head *list,
b745bc85 1972 int migratetype, bool cold)
1da177e4 1973{
5bcc9f86 1974 int i;
5f63b720 1975
c54ad30c 1976 spin_lock(&zone->lock);
1da177e4 1977 for (i = 0; i < count; ++i) {
6ac0206b 1978 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1979 if (unlikely(page == NULL))
1da177e4 1980 break;
81eabcbe
MG
1981
1982 /*
1983 * Split buddy pages returned by expand() are received here
1984 * in physical page order. The page is added to the callers and
1985 * list and the list head then moves forward. From the callers
1986 * perspective, the linked list is ordered by page number in
1987 * some conditions. This is useful for IO devices that can
1988 * merge IO requests if the physical pages are ordered
1989 * properly.
1990 */
b745bc85 1991 if (likely(!cold))
e084b2d9
MG
1992 list_add(&page->lru, list);
1993 else
1994 list_add_tail(&page->lru, list);
81eabcbe 1995 list = &page->lru;
bb14c2c7 1996 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1997 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1998 -(1 << order));
1da177e4 1999 }
f2260e6b 2000 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2001 spin_unlock(&zone->lock);
085cc7d5 2002 return i;
1da177e4
LT
2003}
2004
4ae7c039 2005#ifdef CONFIG_NUMA
8fce4d8e 2006/*
4037d452
CL
2007 * Called from the vmstat counter updater to drain pagesets of this
2008 * currently executing processor on remote nodes after they have
2009 * expired.
2010 *
879336c3
CL
2011 * Note that this function must be called with the thread pinned to
2012 * a single processor.
8fce4d8e 2013 */
4037d452 2014void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2015{
4ae7c039 2016 unsigned long flags;
7be12fc9 2017 int to_drain, batch;
4ae7c039 2018
4037d452 2019 local_irq_save(flags);
4db0c3c2 2020 batch = READ_ONCE(pcp->batch);
7be12fc9 2021 to_drain = min(pcp->count, batch);
2a13515c
KM
2022 if (to_drain > 0) {
2023 free_pcppages_bulk(zone, to_drain, pcp);
2024 pcp->count -= to_drain;
2025 }
4037d452 2026 local_irq_restore(flags);
4ae7c039
CL
2027}
2028#endif
2029
9f8f2172 2030/*
93481ff0 2031 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2032 *
2033 * The processor must either be the current processor and the
2034 * thread pinned to the current processor or a processor that
2035 * is not online.
2036 */
93481ff0 2037static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2038{
c54ad30c 2039 unsigned long flags;
93481ff0
VB
2040 struct per_cpu_pageset *pset;
2041 struct per_cpu_pages *pcp;
1da177e4 2042
93481ff0
VB
2043 local_irq_save(flags);
2044 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2045
93481ff0
VB
2046 pcp = &pset->pcp;
2047 if (pcp->count) {
2048 free_pcppages_bulk(zone, pcp->count, pcp);
2049 pcp->count = 0;
2050 }
2051 local_irq_restore(flags);
2052}
3dfa5721 2053
93481ff0
VB
2054/*
2055 * Drain pcplists of all zones on the indicated processor.
2056 *
2057 * The processor must either be the current processor and the
2058 * thread pinned to the current processor or a processor that
2059 * is not online.
2060 */
2061static void drain_pages(unsigned int cpu)
2062{
2063 struct zone *zone;
2064
2065 for_each_populated_zone(zone) {
2066 drain_pages_zone(cpu, zone);
1da177e4
LT
2067 }
2068}
1da177e4 2069
9f8f2172
CL
2070/*
2071 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2072 *
2073 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2074 * the single zone's pages.
9f8f2172 2075 */
93481ff0 2076void drain_local_pages(struct zone *zone)
9f8f2172 2077{
93481ff0
VB
2078 int cpu = smp_processor_id();
2079
2080 if (zone)
2081 drain_pages_zone(cpu, zone);
2082 else
2083 drain_pages(cpu);
9f8f2172
CL
2084}
2085
2086/*
74046494
GBY
2087 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2088 *
93481ff0
VB
2089 * When zone parameter is non-NULL, spill just the single zone's pages.
2090 *
74046494
GBY
2091 * Note that this code is protected against sending an IPI to an offline
2092 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2093 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2094 * nothing keeps CPUs from showing up after we populated the cpumask and
2095 * before the call to on_each_cpu_mask().
9f8f2172 2096 */
93481ff0 2097void drain_all_pages(struct zone *zone)
9f8f2172 2098{
74046494 2099 int cpu;
74046494
GBY
2100
2101 /*
2102 * Allocate in the BSS so we wont require allocation in
2103 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2104 */
2105 static cpumask_t cpus_with_pcps;
2106
2107 /*
2108 * We don't care about racing with CPU hotplug event
2109 * as offline notification will cause the notified
2110 * cpu to drain that CPU pcps and on_each_cpu_mask
2111 * disables preemption as part of its processing
2112 */
2113 for_each_online_cpu(cpu) {
93481ff0
VB
2114 struct per_cpu_pageset *pcp;
2115 struct zone *z;
74046494 2116 bool has_pcps = false;
93481ff0
VB
2117
2118 if (zone) {
74046494 2119 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2120 if (pcp->pcp.count)
74046494 2121 has_pcps = true;
93481ff0
VB
2122 } else {
2123 for_each_populated_zone(z) {
2124 pcp = per_cpu_ptr(z->pageset, cpu);
2125 if (pcp->pcp.count) {
2126 has_pcps = true;
2127 break;
2128 }
74046494
GBY
2129 }
2130 }
93481ff0 2131
74046494
GBY
2132 if (has_pcps)
2133 cpumask_set_cpu(cpu, &cpus_with_pcps);
2134 else
2135 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2136 }
93481ff0
VB
2137 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2138 zone, 1);
9f8f2172
CL
2139}
2140
296699de 2141#ifdef CONFIG_HIBERNATION
1da177e4
LT
2142
2143void mark_free_pages(struct zone *zone)
2144{
f623f0db
RW
2145 unsigned long pfn, max_zone_pfn;
2146 unsigned long flags;
7aeb09f9 2147 unsigned int order, t;
86760a2c 2148 struct page *page;
1da177e4 2149
8080fc03 2150 if (zone_is_empty(zone))
1da177e4
LT
2151 return;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2154
108bcc96 2155 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2156 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2157 if (pfn_valid(pfn)) {
86760a2c 2158 page = pfn_to_page(pfn);
ba6b0979
JK
2159
2160 if (page_zone(page) != zone)
2161 continue;
2162
7be98234
RW
2163 if (!swsusp_page_is_forbidden(page))
2164 swsusp_unset_page_free(page);
f623f0db 2165 }
1da177e4 2166
b2a0ac88 2167 for_each_migratetype_order(order, t) {
86760a2c
GT
2168 list_for_each_entry(page,
2169 &zone->free_area[order].free_list[t], lru) {
f623f0db 2170 unsigned long i;
1da177e4 2171
86760a2c 2172 pfn = page_to_pfn(page);
f623f0db 2173 for (i = 0; i < (1UL << order); i++)
7be98234 2174 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2175 }
b2a0ac88 2176 }
1da177e4
LT
2177 spin_unlock_irqrestore(&zone->lock, flags);
2178}
e2c55dc8 2179#endif /* CONFIG_PM */
1da177e4 2180
1da177e4
LT
2181/*
2182 * Free a 0-order page
b745bc85 2183 * cold == true ? free a cold page : free a hot page
1da177e4 2184 */
b745bc85 2185void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2186{
2187 struct zone *zone = page_zone(page);
2188 struct per_cpu_pages *pcp;
2189 unsigned long flags;
dc4b0caf 2190 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2191 int migratetype;
1da177e4 2192
ec95f53a 2193 if (!free_pages_prepare(page, 0))
689bcebf
HD
2194 return;
2195
dc4b0caf 2196 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2197 set_pcppage_migratetype(page, migratetype);
1da177e4 2198 local_irq_save(flags);
f8891e5e 2199 __count_vm_event(PGFREE);
da456f14 2200
5f8dcc21
MG
2201 /*
2202 * We only track unmovable, reclaimable and movable on pcp lists.
2203 * Free ISOLATE pages back to the allocator because they are being
2204 * offlined but treat RESERVE as movable pages so we can get those
2205 * areas back if necessary. Otherwise, we may have to free
2206 * excessively into the page allocator
2207 */
2208 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2209 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2210 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2211 goto out;
2212 }
2213 migratetype = MIGRATE_MOVABLE;
2214 }
2215
99dcc3e5 2216 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2217 if (!cold)
5f8dcc21 2218 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2219 else
2220 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2221 pcp->count++;
48db57f8 2222 if (pcp->count >= pcp->high) {
4db0c3c2 2223 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2224 free_pcppages_bulk(zone, batch, pcp);
2225 pcp->count -= batch;
48db57f8 2226 }
5f8dcc21
MG
2227
2228out:
1da177e4 2229 local_irq_restore(flags);
1da177e4
LT
2230}
2231
cc59850e
KK
2232/*
2233 * Free a list of 0-order pages
2234 */
b745bc85 2235void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2236{
2237 struct page *page, *next;
2238
2239 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2240 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2241 free_hot_cold_page(page, cold);
2242 }
2243}
2244
8dfcc9ba
NP
2245/*
2246 * split_page takes a non-compound higher-order page, and splits it into
2247 * n (1<<order) sub-pages: page[0..n]
2248 * Each sub-page must be freed individually.
2249 *
2250 * Note: this is probably too low level an operation for use in drivers.
2251 * Please consult with lkml before using this in your driver.
2252 */
2253void split_page(struct page *page, unsigned int order)
2254{
2255 int i;
e2cfc911 2256 gfp_t gfp_mask;
8dfcc9ba 2257
309381fe
SL
2258 VM_BUG_ON_PAGE(PageCompound(page), page);
2259 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2260
2261#ifdef CONFIG_KMEMCHECK
2262 /*
2263 * Split shadow pages too, because free(page[0]) would
2264 * otherwise free the whole shadow.
2265 */
2266 if (kmemcheck_page_is_tracked(page))
2267 split_page(virt_to_page(page[0].shadow), order);
2268#endif
2269
e2cfc911
JK
2270 gfp_mask = get_page_owner_gfp(page);
2271 set_page_owner(page, 0, gfp_mask);
48c96a36 2272 for (i = 1; i < (1 << order); i++) {
7835e98b 2273 set_page_refcounted(page + i);
e2cfc911 2274 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2275 }
8dfcc9ba 2276}
5853ff23 2277EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2278
3c605096 2279int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2280{
748446bb
MG
2281 unsigned long watermark;
2282 struct zone *zone;
2139cbe6 2283 int mt;
748446bb
MG
2284
2285 BUG_ON(!PageBuddy(page));
2286
2287 zone = page_zone(page);
2e30abd1 2288 mt = get_pageblock_migratetype(page);
748446bb 2289
194159fb 2290 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2291 /* Obey watermarks as if the page was being allocated */
2292 watermark = low_wmark_pages(zone) + (1 << order);
2293 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2294 return 0;
2295
8fb74b9f 2296 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2297 }
748446bb
MG
2298
2299 /* Remove page from free list */
2300 list_del(&page->lru);
2301 zone->free_area[order].nr_free--;
2302 rmv_page_order(page);
2139cbe6 2303
e2cfc911 2304 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2305
8fb74b9f 2306 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2307 if (order >= pageblock_order - 1) {
2308 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2309 for (; page < endpage; page += pageblock_nr_pages) {
2310 int mt = get_pageblock_migratetype(page);
194159fb 2311 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2312 set_pageblock_migratetype(page,
2313 MIGRATE_MOVABLE);
2314 }
748446bb
MG
2315 }
2316
f3a14ced 2317
8fb74b9f 2318 return 1UL << order;
1fb3f8ca
MG
2319}
2320
2321/*
2322 * Similar to split_page except the page is already free. As this is only
2323 * being used for migration, the migratetype of the block also changes.
2324 * As this is called with interrupts disabled, the caller is responsible
2325 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2326 * are enabled.
2327 *
2328 * Note: this is probably too low level an operation for use in drivers.
2329 * Please consult with lkml before using this in your driver.
2330 */
2331int split_free_page(struct page *page)
2332{
2333 unsigned int order;
2334 int nr_pages;
2335
1fb3f8ca
MG
2336 order = page_order(page);
2337
8fb74b9f 2338 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2339 if (!nr_pages)
2340 return 0;
2341
2342 /* Split into individual pages */
2343 set_page_refcounted(page);
2344 split_page(page, order);
2345 return nr_pages;
748446bb
MG
2346}
2347
1da177e4 2348/*
75379191 2349 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2350 */
0a15c3e9
MG
2351static inline
2352struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2353 struct zone *zone, unsigned int order,
0aaa29a5 2354 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2355{
2356 unsigned long flags;
689bcebf 2357 struct page *page;
b745bc85 2358 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2359
48db57f8 2360 if (likely(order == 0)) {
1da177e4 2361 struct per_cpu_pages *pcp;
5f8dcc21 2362 struct list_head *list;
1da177e4 2363
1da177e4 2364 local_irq_save(flags);
99dcc3e5
CL
2365 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2366 list = &pcp->lists[migratetype];
5f8dcc21 2367 if (list_empty(list)) {
535131e6 2368 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2369 pcp->batch, list,
e084b2d9 2370 migratetype, cold);
5f8dcc21 2371 if (unlikely(list_empty(list)))
6fb332fa 2372 goto failed;
535131e6 2373 }
b92a6edd 2374
5f8dcc21 2375 if (cold)
a16601c5 2376 page = list_last_entry(list, struct page, lru);
5f8dcc21 2377 else
a16601c5 2378 page = list_first_entry(list, struct page, lru);
5f8dcc21 2379
b92a6edd
MG
2380 list_del(&page->lru);
2381 pcp->count--;
7fb1d9fc 2382 } else {
0f352e53
MH
2383 /*
2384 * We most definitely don't want callers attempting to
2385 * allocate greater than order-1 page units with __GFP_NOFAIL.
2386 */
2387 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2388 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2389
2390 page = NULL;
2391 if (alloc_flags & ALLOC_HARDER) {
2392 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2393 if (page)
2394 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2395 }
2396 if (!page)
6ac0206b 2397 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2398 spin_unlock(&zone->lock);
2399 if (!page)
2400 goto failed;
d1ce749a 2401 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2402 get_pcppage_migratetype(page));
1da177e4
LT
2403 }
2404
3a025760 2405 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2406 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2407 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2408 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2409
f8891e5e 2410 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2411 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2412 local_irq_restore(flags);
1da177e4 2413
309381fe 2414 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2415 return page;
a74609fa
NP
2416
2417failed:
2418 local_irq_restore(flags);
a74609fa 2419 return NULL;
1da177e4
LT
2420}
2421
933e312e
AM
2422#ifdef CONFIG_FAIL_PAGE_ALLOC
2423
b2588c4b 2424static struct {
933e312e
AM
2425 struct fault_attr attr;
2426
621a5f7a 2427 bool ignore_gfp_highmem;
71baba4b 2428 bool ignore_gfp_reclaim;
54114994 2429 u32 min_order;
933e312e
AM
2430} fail_page_alloc = {
2431 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2432 .ignore_gfp_reclaim = true,
621a5f7a 2433 .ignore_gfp_highmem = true,
54114994 2434 .min_order = 1,
933e312e
AM
2435};
2436
2437static int __init setup_fail_page_alloc(char *str)
2438{
2439 return setup_fault_attr(&fail_page_alloc.attr, str);
2440}
2441__setup("fail_page_alloc=", setup_fail_page_alloc);
2442
deaf386e 2443static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2444{
54114994 2445 if (order < fail_page_alloc.min_order)
deaf386e 2446 return false;
933e312e 2447 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2448 return false;
933e312e 2449 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2450 return false;
71baba4b
MG
2451 if (fail_page_alloc.ignore_gfp_reclaim &&
2452 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2453 return false;
933e312e
AM
2454
2455 return should_fail(&fail_page_alloc.attr, 1 << order);
2456}
2457
2458#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2459
2460static int __init fail_page_alloc_debugfs(void)
2461{
f4ae40a6 2462 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2463 struct dentry *dir;
933e312e 2464
dd48c085
AM
2465 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2466 &fail_page_alloc.attr);
2467 if (IS_ERR(dir))
2468 return PTR_ERR(dir);
933e312e 2469
b2588c4b 2470 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2471 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2472 goto fail;
2473 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2474 &fail_page_alloc.ignore_gfp_highmem))
2475 goto fail;
2476 if (!debugfs_create_u32("min-order", mode, dir,
2477 &fail_page_alloc.min_order))
2478 goto fail;
2479
2480 return 0;
2481fail:
dd48c085 2482 debugfs_remove_recursive(dir);
933e312e 2483
b2588c4b 2484 return -ENOMEM;
933e312e
AM
2485}
2486
2487late_initcall(fail_page_alloc_debugfs);
2488
2489#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2490
2491#else /* CONFIG_FAIL_PAGE_ALLOC */
2492
deaf386e 2493static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2494{
deaf386e 2495 return false;
933e312e
AM
2496}
2497
2498#endif /* CONFIG_FAIL_PAGE_ALLOC */
2499
1da177e4 2500/*
97a16fc8
MG
2501 * Return true if free base pages are above 'mark'. For high-order checks it
2502 * will return true of the order-0 watermark is reached and there is at least
2503 * one free page of a suitable size. Checking now avoids taking the zone lock
2504 * to check in the allocation paths if no pages are free.
1da177e4 2505 */
7aeb09f9
MG
2506static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2507 unsigned long mark, int classzone_idx, int alloc_flags,
2508 long free_pages)
1da177e4 2509{
d23ad423 2510 long min = mark;
1da177e4 2511 int o;
97a16fc8 2512 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2513
0aaa29a5 2514 /* free_pages may go negative - that's OK */
df0a6daa 2515 free_pages -= (1 << order) - 1;
0aaa29a5 2516
7fb1d9fc 2517 if (alloc_flags & ALLOC_HIGH)
1da177e4 2518 min -= min / 2;
0aaa29a5
MG
2519
2520 /*
2521 * If the caller does not have rights to ALLOC_HARDER then subtract
2522 * the high-atomic reserves. This will over-estimate the size of the
2523 * atomic reserve but it avoids a search.
2524 */
97a16fc8 2525 if (likely(!alloc_harder))
0aaa29a5
MG
2526 free_pages -= z->nr_reserved_highatomic;
2527 else
1da177e4 2528 min -= min / 4;
e2b19197 2529
d95ea5d1
BZ
2530#ifdef CONFIG_CMA
2531 /* If allocation can't use CMA areas don't use free CMA pages */
2532 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2533 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2534#endif
026b0814 2535
97a16fc8
MG
2536 /*
2537 * Check watermarks for an order-0 allocation request. If these
2538 * are not met, then a high-order request also cannot go ahead
2539 * even if a suitable page happened to be free.
2540 */
2541 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2542 return false;
1da177e4 2543
97a16fc8
MG
2544 /* If this is an order-0 request then the watermark is fine */
2545 if (!order)
2546 return true;
2547
2548 /* For a high-order request, check at least one suitable page is free */
2549 for (o = order; o < MAX_ORDER; o++) {
2550 struct free_area *area = &z->free_area[o];
2551 int mt;
2552
2553 if (!area->nr_free)
2554 continue;
2555
2556 if (alloc_harder)
2557 return true;
1da177e4 2558
97a16fc8
MG
2559 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2560 if (!list_empty(&area->free_list[mt]))
2561 return true;
2562 }
2563
2564#ifdef CONFIG_CMA
2565 if ((alloc_flags & ALLOC_CMA) &&
2566 !list_empty(&area->free_list[MIGRATE_CMA])) {
2567 return true;
2568 }
2569#endif
1da177e4 2570 }
97a16fc8 2571 return false;
88f5acf8
MG
2572}
2573
7aeb09f9 2574bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2575 int classzone_idx, int alloc_flags)
2576{
2577 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2578 zone_page_state(z, NR_FREE_PAGES));
2579}
2580
7aeb09f9 2581bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2582 unsigned long mark, int classzone_idx)
88f5acf8
MG
2583{
2584 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2585
2586 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2587 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2588
e2b19197 2589 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2590 free_pages);
1da177e4
LT
2591}
2592
9276b1bc 2593#ifdef CONFIG_NUMA
81c0a2bb
JW
2594static bool zone_local(struct zone *local_zone, struct zone *zone)
2595{
fff4068c 2596 return local_zone->node == zone->node;
81c0a2bb
JW
2597}
2598
957f822a
DR
2599static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2600{
5f7a75ac
MG
2601 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2602 RECLAIM_DISTANCE;
957f822a 2603}
9276b1bc 2604#else /* CONFIG_NUMA */
81c0a2bb
JW
2605static bool zone_local(struct zone *local_zone, struct zone *zone)
2606{
2607 return true;
2608}
2609
957f822a
DR
2610static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2611{
2612 return true;
2613}
9276b1bc
PJ
2614#endif /* CONFIG_NUMA */
2615
4ffeaf35
MG
2616static void reset_alloc_batches(struct zone *preferred_zone)
2617{
2618 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2619
2620 do {
2621 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2622 high_wmark_pages(zone) - low_wmark_pages(zone) -
2623 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2624 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2625 } while (zone++ != preferred_zone);
2626}
2627
7fb1d9fc 2628/*
0798e519 2629 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2630 * a page.
2631 */
2632static struct page *
a9263751
VB
2633get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2634 const struct alloc_context *ac)
753ee728 2635{
a9263751 2636 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2637 struct zoneref *z;
7fb1d9fc 2638 struct page *page = NULL;
5117f45d 2639 struct zone *zone;
4ffeaf35
MG
2640 int nr_fair_skipped = 0;
2641 bool zonelist_rescan;
54a6eb5c 2642
9276b1bc 2643zonelist_scan:
4ffeaf35
MG
2644 zonelist_rescan = false;
2645
7fb1d9fc 2646 /*
9276b1bc 2647 * Scan zonelist, looking for a zone with enough free.
344736f2 2648 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2649 */
a9263751
VB
2650 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2651 ac->nodemask) {
e085dbc5
JW
2652 unsigned long mark;
2653
664eedde
MG
2654 if (cpusets_enabled() &&
2655 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2656 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2657 continue;
81c0a2bb
JW
2658 /*
2659 * Distribute pages in proportion to the individual
2660 * zone size to ensure fair page aging. The zone a
2661 * page was allocated in should have no effect on the
2662 * time the page has in memory before being reclaimed.
81c0a2bb 2663 */
3a025760 2664 if (alloc_flags & ALLOC_FAIR) {
a9263751 2665 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2666 break;
57054651 2667 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2668 nr_fair_skipped++;
3a025760 2669 continue;
4ffeaf35 2670 }
81c0a2bb 2671 }
a756cf59
JW
2672 /*
2673 * When allocating a page cache page for writing, we
2674 * want to get it from a zone that is within its dirty
2675 * limit, such that no single zone holds more than its
2676 * proportional share of globally allowed dirty pages.
2677 * The dirty limits take into account the zone's
2678 * lowmem reserves and high watermark so that kswapd
2679 * should be able to balance it without having to
2680 * write pages from its LRU list.
2681 *
2682 * This may look like it could increase pressure on
2683 * lower zones by failing allocations in higher zones
2684 * before they are full. But the pages that do spill
2685 * over are limited as the lower zones are protected
2686 * by this very same mechanism. It should not become
2687 * a practical burden to them.
2688 *
2689 * XXX: For now, allow allocations to potentially
2690 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2691 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2692 * which is important when on a NUMA setup the allowed
2693 * zones are together not big enough to reach the
2694 * global limit. The proper fix for these situations
2695 * will require awareness of zones in the
2696 * dirty-throttling and the flusher threads.
2697 */
c9ab0c4f 2698 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2699 continue;
7fb1d9fc 2700
e085dbc5
JW
2701 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2702 if (!zone_watermark_ok(zone, order, mark,
a9263751 2703 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2704 int ret;
2705
5dab2911
MG
2706 /* Checked here to keep the fast path fast */
2707 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2708 if (alloc_flags & ALLOC_NO_WATERMARKS)
2709 goto try_this_zone;
2710
957f822a 2711 if (zone_reclaim_mode == 0 ||
a9263751 2712 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2713 continue;
2714
fa5e084e
MG
2715 ret = zone_reclaim(zone, gfp_mask, order);
2716 switch (ret) {
2717 case ZONE_RECLAIM_NOSCAN:
2718 /* did not scan */
cd38b115 2719 continue;
fa5e084e
MG
2720 case ZONE_RECLAIM_FULL:
2721 /* scanned but unreclaimable */
cd38b115 2722 continue;
fa5e084e
MG
2723 default:
2724 /* did we reclaim enough */
fed2719e 2725 if (zone_watermark_ok(zone, order, mark,
a9263751 2726 ac->classzone_idx, alloc_flags))
fed2719e
MG
2727 goto try_this_zone;
2728
fed2719e 2729 continue;
0798e519 2730 }
7fb1d9fc
RS
2731 }
2732
fa5e084e 2733try_this_zone:
a9263751 2734 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2735 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2736 if (page) {
2737 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2738 goto try_this_zone;
0aaa29a5
MG
2739
2740 /*
2741 * If this is a high-order atomic allocation then check
2742 * if the pageblock should be reserved for the future
2743 */
2744 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2745 reserve_highatomic_pageblock(page, zone, order);
2746
75379191
VB
2747 return page;
2748 }
54a6eb5c 2749 }
9276b1bc 2750
4ffeaf35
MG
2751 /*
2752 * The first pass makes sure allocations are spread fairly within the
2753 * local node. However, the local node might have free pages left
2754 * after the fairness batches are exhausted, and remote zones haven't
2755 * even been considered yet. Try once more without fairness, and
2756 * include remote zones now, before entering the slowpath and waking
2757 * kswapd: prefer spilling to a remote zone over swapping locally.
2758 */
2759 if (alloc_flags & ALLOC_FAIR) {
2760 alloc_flags &= ~ALLOC_FAIR;
2761 if (nr_fair_skipped) {
2762 zonelist_rescan = true;
a9263751 2763 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2764 }
2765 if (nr_online_nodes > 1)
2766 zonelist_rescan = true;
2767 }
2768
4ffeaf35
MG
2769 if (zonelist_rescan)
2770 goto zonelist_scan;
2771
2772 return NULL;
753ee728
MH
2773}
2774
29423e77
DR
2775/*
2776 * Large machines with many possible nodes should not always dump per-node
2777 * meminfo in irq context.
2778 */
2779static inline bool should_suppress_show_mem(void)
2780{
2781 bool ret = false;
2782
2783#if NODES_SHIFT > 8
2784 ret = in_interrupt();
2785#endif
2786 return ret;
2787}
2788
a238ab5b
DH
2789static DEFINE_RATELIMIT_STATE(nopage_rs,
2790 DEFAULT_RATELIMIT_INTERVAL,
2791 DEFAULT_RATELIMIT_BURST);
2792
d00181b9 2793void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2794{
a238ab5b
DH
2795 unsigned int filter = SHOW_MEM_FILTER_NODES;
2796
c0a32fc5
SG
2797 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2798 debug_guardpage_minorder() > 0)
a238ab5b
DH
2799 return;
2800
2801 /*
2802 * This documents exceptions given to allocations in certain
2803 * contexts that are allowed to allocate outside current's set
2804 * of allowed nodes.
2805 */
2806 if (!(gfp_mask & __GFP_NOMEMALLOC))
2807 if (test_thread_flag(TIF_MEMDIE) ||
2808 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2809 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2810 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2811 filter &= ~SHOW_MEM_FILTER_NODES;
2812
2813 if (fmt) {
3ee9a4f0
JP
2814 struct va_format vaf;
2815 va_list args;
2816
a238ab5b 2817 va_start(args, fmt);
3ee9a4f0
JP
2818
2819 vaf.fmt = fmt;
2820 vaf.va = &args;
2821
2822 pr_warn("%pV", &vaf);
2823
a238ab5b
DH
2824 va_end(args);
2825 }
2826
c5c990e8
VB
2827 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2828 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2829 dump_stack();
2830 if (!should_suppress_show_mem())
2831 show_mem(filter);
2832}
2833
11e33f6a
MG
2834static inline struct page *
2835__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2836 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2837{
6e0fc46d
DR
2838 struct oom_control oc = {
2839 .zonelist = ac->zonelist,
2840 .nodemask = ac->nodemask,
2841 .gfp_mask = gfp_mask,
2842 .order = order,
6e0fc46d 2843 };
11e33f6a
MG
2844 struct page *page;
2845
9879de73
JW
2846 *did_some_progress = 0;
2847
9879de73 2848 /*
dc56401f
JW
2849 * Acquire the oom lock. If that fails, somebody else is
2850 * making progress for us.
9879de73 2851 */
dc56401f 2852 if (!mutex_trylock(&oom_lock)) {
9879de73 2853 *did_some_progress = 1;
11e33f6a 2854 schedule_timeout_uninterruptible(1);
1da177e4
LT
2855 return NULL;
2856 }
6b1de916 2857
11e33f6a
MG
2858 /*
2859 * Go through the zonelist yet one more time, keep very high watermark
2860 * here, this is only to catch a parallel oom killing, we must fail if
2861 * we're still under heavy pressure.
2862 */
a9263751
VB
2863 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2864 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2865 if (page)
11e33f6a
MG
2866 goto out;
2867
4365a567 2868 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2869 /* Coredumps can quickly deplete all memory reserves */
2870 if (current->flags & PF_DUMPCORE)
2871 goto out;
4365a567
KH
2872 /* The OOM killer will not help higher order allocs */
2873 if (order > PAGE_ALLOC_COSTLY_ORDER)
2874 goto out;
03668b3c 2875 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2876 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2877 goto out;
9083905a 2878 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2879 if (!(gfp_mask & __GFP_FS)) {
2880 /*
2881 * XXX: Page reclaim didn't yield anything,
2882 * and the OOM killer can't be invoked, but
9083905a 2883 * keep looping as per tradition.
0a687aac
TH
2884 *
2885 * But do not keep looping if oom_killer_disable()
2886 * was already called, for the system is trying to
2887 * enter a quiescent state during suspend.
cc873177 2888 */
0a687aac 2889 *did_some_progress = !oom_killer_disabled;
9879de73 2890 goto out;
cc873177 2891 }
9083905a
JW
2892 if (pm_suspended_storage())
2893 goto out;
4167e9b2 2894 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2895 if (gfp_mask & __GFP_THISNODE)
2896 goto out;
2897 }
11e33f6a 2898 /* Exhausted what can be done so it's blamo time */
5020e285 2899 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2900 *did_some_progress = 1;
5020e285
MH
2901
2902 if (gfp_mask & __GFP_NOFAIL) {
2903 page = get_page_from_freelist(gfp_mask, order,
2904 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2905 /*
2906 * fallback to ignore cpuset restriction if our nodes
2907 * are depleted
2908 */
2909 if (!page)
2910 page = get_page_from_freelist(gfp_mask, order,
2911 ALLOC_NO_WATERMARKS, ac);
2912 }
2913 }
11e33f6a 2914out:
dc56401f 2915 mutex_unlock(&oom_lock);
11e33f6a
MG
2916 return page;
2917}
2918
56de7263
MG
2919#ifdef CONFIG_COMPACTION
2920/* Try memory compaction for high-order allocations before reclaim */
2921static struct page *
2922__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2923 int alloc_flags, const struct alloc_context *ac,
2924 enum migrate_mode mode, int *contended_compaction,
2925 bool *deferred_compaction)
56de7263 2926{
53853e2d 2927 unsigned long compact_result;
98dd3b48 2928 struct page *page;
53853e2d
VB
2929
2930 if (!order)
66199712 2931 return NULL;
66199712 2932
c06b1fca 2933 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2934 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2935 mode, contended_compaction);
c06b1fca 2936 current->flags &= ~PF_MEMALLOC;
56de7263 2937
98dd3b48
VB
2938 switch (compact_result) {
2939 case COMPACT_DEFERRED:
53853e2d 2940 *deferred_compaction = true;
98dd3b48
VB
2941 /* fall-through */
2942 case COMPACT_SKIPPED:
2943 return NULL;
2944 default:
2945 break;
2946 }
53853e2d 2947
98dd3b48
VB
2948 /*
2949 * At least in one zone compaction wasn't deferred or skipped, so let's
2950 * count a compaction stall
2951 */
2952 count_vm_event(COMPACTSTALL);
8fb74b9f 2953
a9263751
VB
2954 page = get_page_from_freelist(gfp_mask, order,
2955 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2956
98dd3b48
VB
2957 if (page) {
2958 struct zone *zone = page_zone(page);
53853e2d 2959
98dd3b48
VB
2960 zone->compact_blockskip_flush = false;
2961 compaction_defer_reset(zone, order, true);
2962 count_vm_event(COMPACTSUCCESS);
2963 return page;
2964 }
56de7263 2965
98dd3b48
VB
2966 /*
2967 * It's bad if compaction run occurs and fails. The most likely reason
2968 * is that pages exist, but not enough to satisfy watermarks.
2969 */
2970 count_vm_event(COMPACTFAIL);
66199712 2971
98dd3b48 2972 cond_resched();
56de7263
MG
2973
2974 return NULL;
2975}
2976#else
2977static inline struct page *
2978__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2979 int alloc_flags, const struct alloc_context *ac,
2980 enum migrate_mode mode, int *contended_compaction,
2981 bool *deferred_compaction)
56de7263
MG
2982{
2983 return NULL;
2984}
2985#endif /* CONFIG_COMPACTION */
2986
bba90710
MS
2987/* Perform direct synchronous page reclaim */
2988static int
a9263751
VB
2989__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2990 const struct alloc_context *ac)
11e33f6a 2991{
11e33f6a 2992 struct reclaim_state reclaim_state;
bba90710 2993 int progress;
11e33f6a
MG
2994
2995 cond_resched();
2996
2997 /* We now go into synchronous reclaim */
2998 cpuset_memory_pressure_bump();
c06b1fca 2999 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3000 lockdep_set_current_reclaim_state(gfp_mask);
3001 reclaim_state.reclaimed_slab = 0;
c06b1fca 3002 current->reclaim_state = &reclaim_state;
11e33f6a 3003
a9263751
VB
3004 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3005 ac->nodemask);
11e33f6a 3006
c06b1fca 3007 current->reclaim_state = NULL;
11e33f6a 3008 lockdep_clear_current_reclaim_state();
c06b1fca 3009 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3010
3011 cond_resched();
3012
bba90710
MS
3013 return progress;
3014}
3015
3016/* The really slow allocator path where we enter direct reclaim */
3017static inline struct page *
3018__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
3019 int alloc_flags, const struct alloc_context *ac,
3020 unsigned long *did_some_progress)
bba90710
MS
3021{
3022 struct page *page = NULL;
3023 bool drained = false;
3024
a9263751 3025 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3026 if (unlikely(!(*did_some_progress)))
3027 return NULL;
11e33f6a 3028
9ee493ce 3029retry:
a9263751
VB
3030 page = get_page_from_freelist(gfp_mask, order,
3031 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3032
3033 /*
3034 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3035 * pages are pinned on the per-cpu lists or in high alloc reserves.
3036 * Shrink them them and try again
9ee493ce
MG
3037 */
3038 if (!page && !drained) {
0aaa29a5 3039 unreserve_highatomic_pageblock(ac);
93481ff0 3040 drain_all_pages(NULL);
9ee493ce
MG
3041 drained = true;
3042 goto retry;
3043 }
3044
11e33f6a
MG
3045 return page;
3046}
3047
a9263751 3048static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3049{
3050 struct zoneref *z;
3051 struct zone *zone;
3052
a9263751
VB
3053 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3054 ac->high_zoneidx, ac->nodemask)
3055 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3056}
3057
341ce06f
PZ
3058static inline int
3059gfp_to_alloc_flags(gfp_t gfp_mask)
3060{
341ce06f 3061 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3062
a56f57ff 3063 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3064 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3065
341ce06f
PZ
3066 /*
3067 * The caller may dip into page reserves a bit more if the caller
3068 * cannot run direct reclaim, or if the caller has realtime scheduling
3069 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3070 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3071 */
e6223a3b 3072 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3073
d0164adc 3074 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3075 /*
b104a35d
DR
3076 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3077 * if it can't schedule.
5c3240d9 3078 */
b104a35d 3079 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3080 alloc_flags |= ALLOC_HARDER;
523b9458 3081 /*
b104a35d 3082 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3083 * comment for __cpuset_node_allowed().
523b9458 3084 */
341ce06f 3085 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3086 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3087 alloc_flags |= ALLOC_HARDER;
3088
b37f1dd0
MG
3089 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3090 if (gfp_mask & __GFP_MEMALLOC)
3091 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3092 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3093 alloc_flags |= ALLOC_NO_WATERMARKS;
3094 else if (!in_interrupt() &&
3095 ((current->flags & PF_MEMALLOC) ||
3096 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3097 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3098 }
d95ea5d1 3099#ifdef CONFIG_CMA
43e7a34d 3100 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3101 alloc_flags |= ALLOC_CMA;
3102#endif
341ce06f
PZ
3103 return alloc_flags;
3104}
3105
072bb0aa
MG
3106bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3107{
b37f1dd0 3108 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3109}
3110
d0164adc
MG
3111static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3112{
3113 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3114}
3115
11e33f6a
MG
3116static inline struct page *
3117__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3118 struct alloc_context *ac)
11e33f6a 3119{
d0164adc 3120 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3121 struct page *page = NULL;
3122 int alloc_flags;
3123 unsigned long pages_reclaimed = 0;
3124 unsigned long did_some_progress;
e0b9daeb 3125 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3126 bool deferred_compaction = false;
1f9efdef 3127 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3128
72807a74
MG
3129 /*
3130 * In the slowpath, we sanity check order to avoid ever trying to
3131 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3132 * be using allocators in order of preference for an area that is
3133 * too large.
3134 */
1fc28b70
MG
3135 if (order >= MAX_ORDER) {
3136 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3137 return NULL;
1fc28b70 3138 }
1da177e4 3139
d0164adc
MG
3140 /*
3141 * We also sanity check to catch abuse of atomic reserves being used by
3142 * callers that are not in atomic context.
3143 */
3144 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3145 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3146 gfp_mask &= ~__GFP_ATOMIC;
3147
9879de73 3148retry:
d0164adc 3149 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3150 wake_all_kswapds(order, ac);
1da177e4 3151
9bf2229f 3152 /*
7fb1d9fc
RS
3153 * OK, we're below the kswapd watermark and have kicked background
3154 * reclaim. Now things get more complex, so set up alloc_flags according
3155 * to how we want to proceed.
9bf2229f 3156 */
341ce06f 3157 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3158
f33261d7
DR
3159 /*
3160 * Find the true preferred zone if the allocation is unconstrained by
3161 * cpusets.
3162 */
a9263751 3163 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3164 struct zoneref *preferred_zoneref;
a9263751
VB
3165 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3166 ac->high_zoneidx, NULL, &ac->preferred_zone);
3167 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3168 }
f33261d7 3169
341ce06f 3170 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3171 page = get_page_from_freelist(gfp_mask, order,
3172 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3173 if (page)
3174 goto got_pg;
1da177e4 3175
11e33f6a 3176 /* Allocate without watermarks if the context allows */
341ce06f 3177 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3178 /*
3179 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3180 * the allocation is high priority and these type of
3181 * allocations are system rather than user orientated
3182 */
a9263751 3183 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3184 page = get_page_from_freelist(gfp_mask, order,
3185 ALLOC_NO_WATERMARKS, ac);
3186 if (page)
3187 goto got_pg;
1da177e4
LT
3188 }
3189
d0164adc
MG
3190 /* Caller is not willing to reclaim, we can't balance anything */
3191 if (!can_direct_reclaim) {
aed0a0e3 3192 /*
33d53103
MH
3193 * All existing users of the __GFP_NOFAIL are blockable, so warn
3194 * of any new users that actually allow this type of allocation
3195 * to fail.
aed0a0e3
DR
3196 */
3197 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3198 goto nopage;
aed0a0e3 3199 }
1da177e4 3200
341ce06f 3201 /* Avoid recursion of direct reclaim */
33d53103
MH
3202 if (current->flags & PF_MEMALLOC) {
3203 /*
3204 * __GFP_NOFAIL request from this context is rather bizarre
3205 * because we cannot reclaim anything and only can loop waiting
3206 * for somebody to do a work for us.
3207 */
3208 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3209 cond_resched();
3210 goto retry;
3211 }
341ce06f 3212 goto nopage;
33d53103 3213 }
341ce06f 3214
6583bb64
DR
3215 /* Avoid allocations with no watermarks from looping endlessly */
3216 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3217 goto nopage;
3218
77f1fe6b
MG
3219 /*
3220 * Try direct compaction. The first pass is asynchronous. Subsequent
3221 * attempts after direct reclaim are synchronous
3222 */
a9263751
VB
3223 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3224 migration_mode,
3225 &contended_compaction,
53853e2d 3226 &deferred_compaction);
56de7263
MG
3227 if (page)
3228 goto got_pg;
75f30861 3229
1f9efdef 3230 /* Checks for THP-specific high-order allocations */
d0164adc 3231 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3232 /*
3233 * If compaction is deferred for high-order allocations, it is
3234 * because sync compaction recently failed. If this is the case
3235 * and the caller requested a THP allocation, we do not want
3236 * to heavily disrupt the system, so we fail the allocation
3237 * instead of entering direct reclaim.
3238 */
3239 if (deferred_compaction)
3240 goto nopage;
3241
3242 /*
3243 * In all zones where compaction was attempted (and not
3244 * deferred or skipped), lock contention has been detected.
3245 * For THP allocation we do not want to disrupt the others
3246 * so we fallback to base pages instead.
3247 */
3248 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3249 goto nopage;
3250
3251 /*
3252 * If compaction was aborted due to need_resched(), we do not
3253 * want to further increase allocation latency, unless it is
3254 * khugepaged trying to collapse.
3255 */
3256 if (contended_compaction == COMPACT_CONTENDED_SCHED
3257 && !(current->flags & PF_KTHREAD))
3258 goto nopage;
3259 }
66199712 3260
8fe78048
DR
3261 /*
3262 * It can become very expensive to allocate transparent hugepages at
3263 * fault, so use asynchronous memory compaction for THP unless it is
3264 * khugepaged trying to collapse.
3265 */
d0164adc 3266 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3267 migration_mode = MIGRATE_SYNC_LIGHT;
3268
11e33f6a 3269 /* Try direct reclaim and then allocating */
a9263751
VB
3270 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3271 &did_some_progress);
11e33f6a
MG
3272 if (page)
3273 goto got_pg;
1da177e4 3274
9083905a
JW
3275 /* Do not loop if specifically requested */
3276 if (gfp_mask & __GFP_NORETRY)
3277 goto noretry;
3278
3279 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3280 pages_reclaimed += did_some_progress;
9083905a
JW
3281 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3282 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3283 /* Wait for some write requests to complete then retry */
a9263751 3284 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3285 goto retry;
1da177e4
LT
3286 }
3287
9083905a
JW
3288 /* Reclaim has failed us, start killing things */
3289 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3290 if (page)
3291 goto got_pg;
3292
3293 /* Retry as long as the OOM killer is making progress */
3294 if (did_some_progress)
3295 goto retry;
3296
3297noretry:
3298 /*
3299 * High-order allocations do not necessarily loop after
3300 * direct reclaim and reclaim/compaction depends on compaction
3301 * being called after reclaim so call directly if necessary
3302 */
3303 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3304 ac, migration_mode,
3305 &contended_compaction,
3306 &deferred_compaction);
3307 if (page)
3308 goto got_pg;
1da177e4 3309nopage:
a238ab5b 3310 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3311got_pg:
072bb0aa 3312 return page;
1da177e4 3313}
11e33f6a
MG
3314
3315/*
3316 * This is the 'heart' of the zoned buddy allocator.
3317 */
3318struct page *
3319__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3320 struct zonelist *zonelist, nodemask_t *nodemask)
3321{
d8846374 3322 struct zoneref *preferred_zoneref;
cc9a6c87 3323 struct page *page = NULL;
cc9a6c87 3324 unsigned int cpuset_mems_cookie;
3a025760 3325 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3326 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3327 struct alloc_context ac = {
3328 .high_zoneidx = gfp_zone(gfp_mask),
3329 .nodemask = nodemask,
3330 .migratetype = gfpflags_to_migratetype(gfp_mask),
3331 };
11e33f6a 3332
dcce284a
BH
3333 gfp_mask &= gfp_allowed_mask;
3334
11e33f6a
MG
3335 lockdep_trace_alloc(gfp_mask);
3336
d0164adc 3337 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3338
3339 if (should_fail_alloc_page(gfp_mask, order))
3340 return NULL;
3341
3342 /*
3343 * Check the zones suitable for the gfp_mask contain at least one
3344 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3345 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3346 */
3347 if (unlikely(!zonelist->_zonerefs->zone))
3348 return NULL;
3349
a9263751 3350 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3351 alloc_flags |= ALLOC_CMA;
3352
cc9a6c87 3353retry_cpuset:
d26914d1 3354 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3355
a9263751
VB
3356 /* We set it here, as __alloc_pages_slowpath might have changed it */
3357 ac.zonelist = zonelist;
c9ab0c4f
MG
3358
3359 /* Dirty zone balancing only done in the fast path */
3360 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3361
5117f45d 3362 /* The preferred zone is used for statistics later */
a9263751
VB
3363 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3364 ac.nodemask ? : &cpuset_current_mems_allowed,
3365 &ac.preferred_zone);
3366 if (!ac.preferred_zone)
cc9a6c87 3367 goto out;
a9263751 3368 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3369
3370 /* First allocation attempt */
91fbdc0f 3371 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3372 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3373 if (unlikely(!page)) {
3374 /*
3375 * Runtime PM, block IO and its error handling path
3376 * can deadlock because I/O on the device might not
3377 * complete.
3378 */
91fbdc0f 3379 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3380 ac.spread_dirty_pages = false;
91fbdc0f 3381
a9263751 3382 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3383 }
11e33f6a 3384
23f086f9
XQ
3385 if (kmemcheck_enabled && page)
3386 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3387
a9263751 3388 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3389
3390out:
3391 /*
3392 * When updating a task's mems_allowed, it is possible to race with
3393 * parallel threads in such a way that an allocation can fail while
3394 * the mask is being updated. If a page allocation is about to fail,
3395 * check if the cpuset changed during allocation and if so, retry.
3396 */
d26914d1 3397 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3398 goto retry_cpuset;
3399
11e33f6a 3400 return page;
1da177e4 3401}
d239171e 3402EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3403
3404/*
3405 * Common helper functions.
3406 */
920c7a5d 3407unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3408{
945a1113
AM
3409 struct page *page;
3410
3411 /*
3412 * __get_free_pages() returns a 32-bit address, which cannot represent
3413 * a highmem page
3414 */
3415 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3416
1da177e4
LT
3417 page = alloc_pages(gfp_mask, order);
3418 if (!page)
3419 return 0;
3420 return (unsigned long) page_address(page);
3421}
1da177e4
LT
3422EXPORT_SYMBOL(__get_free_pages);
3423
920c7a5d 3424unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3425{
945a1113 3426 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3427}
1da177e4
LT
3428EXPORT_SYMBOL(get_zeroed_page);
3429
920c7a5d 3430void __free_pages(struct page *page, unsigned int order)
1da177e4 3431{
b5810039 3432 if (put_page_testzero(page)) {
1da177e4 3433 if (order == 0)
b745bc85 3434 free_hot_cold_page(page, false);
1da177e4
LT
3435 else
3436 __free_pages_ok(page, order);
3437 }
3438}
3439
3440EXPORT_SYMBOL(__free_pages);
3441
920c7a5d 3442void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3443{
3444 if (addr != 0) {
725d704e 3445 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3446 __free_pages(virt_to_page((void *)addr), order);
3447 }
3448}
3449
3450EXPORT_SYMBOL(free_pages);
3451
b63ae8ca
AD
3452/*
3453 * Page Fragment:
3454 * An arbitrary-length arbitrary-offset area of memory which resides
3455 * within a 0 or higher order page. Multiple fragments within that page
3456 * are individually refcounted, in the page's reference counter.
3457 *
3458 * The page_frag functions below provide a simple allocation framework for
3459 * page fragments. This is used by the network stack and network device
3460 * drivers to provide a backing region of memory for use as either an
3461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3462 */
3463static struct page *__page_frag_refill(struct page_frag_cache *nc,
3464 gfp_t gfp_mask)
3465{
3466 struct page *page = NULL;
3467 gfp_t gfp = gfp_mask;
3468
3469#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3471 __GFP_NOMEMALLOC;
3472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3473 PAGE_FRAG_CACHE_MAX_ORDER);
3474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3475#endif
3476 if (unlikely(!page))
3477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3478
3479 nc->va = page ? page_address(page) : NULL;
3480
3481 return page;
3482}
3483
3484void *__alloc_page_frag(struct page_frag_cache *nc,
3485 unsigned int fragsz, gfp_t gfp_mask)
3486{
3487 unsigned int size = PAGE_SIZE;
3488 struct page *page;
3489 int offset;
3490
3491 if (unlikely(!nc->va)) {
3492refill:
3493 page = __page_frag_refill(nc, gfp_mask);
3494 if (!page)
3495 return NULL;
3496
3497#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3498 /* if size can vary use size else just use PAGE_SIZE */
3499 size = nc->size;
3500#endif
3501 /* Even if we own the page, we do not use atomic_set().
3502 * This would break get_page_unless_zero() users.
3503 */
fe896d18 3504 page_ref_add(page, size - 1);
b63ae8ca
AD
3505
3506 /* reset page count bias and offset to start of new frag */
2f064f34 3507 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3508 nc->pagecnt_bias = size;
3509 nc->offset = size;
3510 }
3511
3512 offset = nc->offset - fragsz;
3513 if (unlikely(offset < 0)) {
3514 page = virt_to_page(nc->va);
3515
fe896d18 3516 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3517 goto refill;
3518
3519#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3520 /* if size can vary use size else just use PAGE_SIZE */
3521 size = nc->size;
3522#endif
3523 /* OK, page count is 0, we can safely set it */
fe896d18 3524 set_page_count(page, size);
b63ae8ca
AD
3525
3526 /* reset page count bias and offset to start of new frag */
3527 nc->pagecnt_bias = size;
3528 offset = size - fragsz;
3529 }
3530
3531 nc->pagecnt_bias--;
3532 nc->offset = offset;
3533
3534 return nc->va + offset;
3535}
3536EXPORT_SYMBOL(__alloc_page_frag);
3537
3538/*
3539 * Frees a page fragment allocated out of either a compound or order 0 page.
3540 */
3541void __free_page_frag(void *addr)
3542{
3543 struct page *page = virt_to_head_page(addr);
3544
3545 if (unlikely(put_page_testzero(page)))
3546 __free_pages_ok(page, compound_order(page));
3547}
3548EXPORT_SYMBOL(__free_page_frag);
3549
6a1a0d3b 3550/*
52383431 3551 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3552 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3553 * equivalent to alloc_pages.
6a1a0d3b 3554 *
52383431
VD
3555 * It should be used when the caller would like to use kmalloc, but since the
3556 * allocation is large, it has to fall back to the page allocator.
3557 */
3558struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3559{
3560 struct page *page;
52383431 3561
52383431 3562 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3563 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3564 __free_pages(page, order);
3565 page = NULL;
3566 }
52383431
VD
3567 return page;
3568}
3569
3570struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3571{
3572 struct page *page;
52383431 3573
52383431 3574 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3575 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3576 __free_pages(page, order);
3577 page = NULL;
3578 }
52383431
VD
3579 return page;
3580}
3581
3582/*
3583 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3584 * alloc_kmem_pages.
6a1a0d3b 3585 */
52383431 3586void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3587{
d05e83a6 3588 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3589 __free_pages(page, order);
3590}
3591
52383431 3592void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3593{
3594 if (addr != 0) {
3595 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3596 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3597 }
3598}
3599
d00181b9
KS
3600static void *make_alloc_exact(unsigned long addr, unsigned int order,
3601 size_t size)
ee85c2e1
AK
3602{
3603 if (addr) {
3604 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3605 unsigned long used = addr + PAGE_ALIGN(size);
3606
3607 split_page(virt_to_page((void *)addr), order);
3608 while (used < alloc_end) {
3609 free_page(used);
3610 used += PAGE_SIZE;
3611 }
3612 }
3613 return (void *)addr;
3614}
3615
2be0ffe2
TT
3616/**
3617 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3618 * @size: the number of bytes to allocate
3619 * @gfp_mask: GFP flags for the allocation
3620 *
3621 * This function is similar to alloc_pages(), except that it allocates the
3622 * minimum number of pages to satisfy the request. alloc_pages() can only
3623 * allocate memory in power-of-two pages.
3624 *
3625 * This function is also limited by MAX_ORDER.
3626 *
3627 * Memory allocated by this function must be released by free_pages_exact().
3628 */
3629void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3630{
3631 unsigned int order = get_order(size);
3632 unsigned long addr;
3633
3634 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3635 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3636}
3637EXPORT_SYMBOL(alloc_pages_exact);
3638
ee85c2e1
AK
3639/**
3640 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3641 * pages on a node.
b5e6ab58 3642 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3643 * @size: the number of bytes to allocate
3644 * @gfp_mask: GFP flags for the allocation
3645 *
3646 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3647 * back.
ee85c2e1 3648 */
e1931811 3649void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3650{
d00181b9 3651 unsigned int order = get_order(size);
ee85c2e1
AK
3652 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3653 if (!p)
3654 return NULL;
3655 return make_alloc_exact((unsigned long)page_address(p), order, size);
3656}
ee85c2e1 3657
2be0ffe2
TT
3658/**
3659 * free_pages_exact - release memory allocated via alloc_pages_exact()
3660 * @virt: the value returned by alloc_pages_exact.
3661 * @size: size of allocation, same value as passed to alloc_pages_exact().
3662 *
3663 * Release the memory allocated by a previous call to alloc_pages_exact.
3664 */
3665void free_pages_exact(void *virt, size_t size)
3666{
3667 unsigned long addr = (unsigned long)virt;
3668 unsigned long end = addr + PAGE_ALIGN(size);
3669
3670 while (addr < end) {
3671 free_page(addr);
3672 addr += PAGE_SIZE;
3673 }
3674}
3675EXPORT_SYMBOL(free_pages_exact);
3676
e0fb5815
ZY
3677/**
3678 * nr_free_zone_pages - count number of pages beyond high watermark
3679 * @offset: The zone index of the highest zone
3680 *
3681 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3682 * high watermark within all zones at or below a given zone index. For each
3683 * zone, the number of pages is calculated as:
834405c3 3684 * managed_pages - high_pages
e0fb5815 3685 */
ebec3862 3686static unsigned long nr_free_zone_pages(int offset)
1da177e4 3687{
dd1a239f 3688 struct zoneref *z;
54a6eb5c
MG
3689 struct zone *zone;
3690
e310fd43 3691 /* Just pick one node, since fallback list is circular */
ebec3862 3692 unsigned long sum = 0;
1da177e4 3693
0e88460d 3694 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3695
54a6eb5c 3696 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3697 unsigned long size = zone->managed_pages;
41858966 3698 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3699 if (size > high)
3700 sum += size - high;
1da177e4
LT
3701 }
3702
3703 return sum;
3704}
3705
e0fb5815
ZY
3706/**
3707 * nr_free_buffer_pages - count number of pages beyond high watermark
3708 *
3709 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3710 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3711 */
ebec3862 3712unsigned long nr_free_buffer_pages(void)
1da177e4 3713{
af4ca457 3714 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3715}
c2f1a551 3716EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3717
e0fb5815
ZY
3718/**
3719 * nr_free_pagecache_pages - count number of pages beyond high watermark
3720 *
3721 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3722 * high watermark within all zones.
1da177e4 3723 */
ebec3862 3724unsigned long nr_free_pagecache_pages(void)
1da177e4 3725{
2a1e274a 3726 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3727}
08e0f6a9
CL
3728
3729static inline void show_node(struct zone *zone)
1da177e4 3730{
e5adfffc 3731 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3732 printk("Node %d ", zone_to_nid(zone));
1da177e4 3733}
1da177e4 3734
d02bd27b
IR
3735long si_mem_available(void)
3736{
3737 long available;
3738 unsigned long pagecache;
3739 unsigned long wmark_low = 0;
3740 unsigned long pages[NR_LRU_LISTS];
3741 struct zone *zone;
3742 int lru;
3743
3744 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3745 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3746
3747 for_each_zone(zone)
3748 wmark_low += zone->watermark[WMARK_LOW];
3749
3750 /*
3751 * Estimate the amount of memory available for userspace allocations,
3752 * without causing swapping.
3753 */
3754 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3755
3756 /*
3757 * Not all the page cache can be freed, otherwise the system will
3758 * start swapping. Assume at least half of the page cache, or the
3759 * low watermark worth of cache, needs to stay.
3760 */
3761 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3762 pagecache -= min(pagecache / 2, wmark_low);
3763 available += pagecache;
3764
3765 /*
3766 * Part of the reclaimable slab consists of items that are in use,
3767 * and cannot be freed. Cap this estimate at the low watermark.
3768 */
3769 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3770 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3771
3772 if (available < 0)
3773 available = 0;
3774 return available;
3775}
3776EXPORT_SYMBOL_GPL(si_mem_available);
3777
1da177e4
LT
3778void si_meminfo(struct sysinfo *val)
3779{
3780 val->totalram = totalram_pages;
cc7452b6 3781 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3782 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3783 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3784 val->totalhigh = totalhigh_pages;
3785 val->freehigh = nr_free_highpages();
1da177e4
LT
3786 val->mem_unit = PAGE_SIZE;
3787}
3788
3789EXPORT_SYMBOL(si_meminfo);
3790
3791#ifdef CONFIG_NUMA
3792void si_meminfo_node(struct sysinfo *val, int nid)
3793{
cdd91a77
JL
3794 int zone_type; /* needs to be signed */
3795 unsigned long managed_pages = 0;
1da177e4
LT
3796 pg_data_t *pgdat = NODE_DATA(nid);
3797
cdd91a77
JL
3798 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3799 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3800 val->totalram = managed_pages;
cc7452b6 3801 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3802 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3803#ifdef CONFIG_HIGHMEM
b40da049 3804 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3805 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3806 NR_FREE_PAGES);
98d2b0eb
CL
3807#else
3808 val->totalhigh = 0;
3809 val->freehigh = 0;
3810#endif
1da177e4
LT
3811 val->mem_unit = PAGE_SIZE;
3812}
3813#endif
3814
ddd588b5 3815/*
7bf02ea2
DR
3816 * Determine whether the node should be displayed or not, depending on whether
3817 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3818 */
7bf02ea2 3819bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3820{
3821 bool ret = false;
cc9a6c87 3822 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3823
3824 if (!(flags & SHOW_MEM_FILTER_NODES))
3825 goto out;
3826
cc9a6c87 3827 do {
d26914d1 3828 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3829 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3830 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3831out:
3832 return ret;
3833}
3834
1da177e4
LT
3835#define K(x) ((x) << (PAGE_SHIFT-10))
3836
377e4f16
RV
3837static void show_migration_types(unsigned char type)
3838{
3839 static const char types[MIGRATE_TYPES] = {
3840 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3841 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3842 [MIGRATE_RECLAIMABLE] = 'E',
3843 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3844#ifdef CONFIG_CMA
3845 [MIGRATE_CMA] = 'C',
3846#endif
194159fb 3847#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3848 [MIGRATE_ISOLATE] = 'I',
194159fb 3849#endif
377e4f16
RV
3850 };
3851 char tmp[MIGRATE_TYPES + 1];
3852 char *p = tmp;
3853 int i;
3854
3855 for (i = 0; i < MIGRATE_TYPES; i++) {
3856 if (type & (1 << i))
3857 *p++ = types[i];
3858 }
3859
3860 *p = '\0';
3861 printk("(%s) ", tmp);
3862}
3863
1da177e4
LT
3864/*
3865 * Show free area list (used inside shift_scroll-lock stuff)
3866 * We also calculate the percentage fragmentation. We do this by counting the
3867 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3868 *
3869 * Bits in @filter:
3870 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3871 * cpuset.
1da177e4 3872 */
7bf02ea2 3873void show_free_areas(unsigned int filter)
1da177e4 3874{
d1bfcdb8 3875 unsigned long free_pcp = 0;
c7241913 3876 int cpu;
1da177e4
LT
3877 struct zone *zone;
3878
ee99c71c 3879 for_each_populated_zone(zone) {
7bf02ea2 3880 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3881 continue;
d1bfcdb8 3882
761b0677
KK
3883 for_each_online_cpu(cpu)
3884 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3885 }
3886
a731286d
KM
3887 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3888 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3889 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3890 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3891 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3892 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3893 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3894 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3895 global_page_state(NR_ISOLATED_ANON),
3896 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3897 global_page_state(NR_INACTIVE_FILE),
a731286d 3898 global_page_state(NR_ISOLATED_FILE),
7b854121 3899 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3900 global_page_state(NR_FILE_DIRTY),
ce866b34 3901 global_page_state(NR_WRITEBACK),
fd39fc85 3902 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3903 global_page_state(NR_SLAB_RECLAIMABLE),
3904 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3905 global_page_state(NR_FILE_MAPPED),
4b02108a 3906 global_page_state(NR_SHMEM),
a25700a5 3907 global_page_state(NR_PAGETABLE),
d1ce749a 3908 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3909 global_page_state(NR_FREE_PAGES),
3910 free_pcp,
d1ce749a 3911 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3912
ee99c71c 3913 for_each_populated_zone(zone) {
1da177e4
LT
3914 int i;
3915
7bf02ea2 3916 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3917 continue;
d1bfcdb8
KK
3918
3919 free_pcp = 0;
3920 for_each_online_cpu(cpu)
3921 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3922
1da177e4
LT
3923 show_node(zone);
3924 printk("%s"
3925 " free:%lukB"
3926 " min:%lukB"
3927 " low:%lukB"
3928 " high:%lukB"
4f98a2fe
RR
3929 " active_anon:%lukB"
3930 " inactive_anon:%lukB"
3931 " active_file:%lukB"
3932 " inactive_file:%lukB"
7b854121 3933 " unevictable:%lukB"
a731286d
KM
3934 " isolated(anon):%lukB"
3935 " isolated(file):%lukB"
1da177e4 3936 " present:%lukB"
9feedc9d 3937 " managed:%lukB"
4a0aa73f
KM
3938 " mlocked:%lukB"
3939 " dirty:%lukB"
3940 " writeback:%lukB"
3941 " mapped:%lukB"
4b02108a 3942 " shmem:%lukB"
4a0aa73f
KM
3943 " slab_reclaimable:%lukB"
3944 " slab_unreclaimable:%lukB"
c6a7f572 3945 " kernel_stack:%lukB"
4a0aa73f
KM
3946 " pagetables:%lukB"
3947 " unstable:%lukB"
3948 " bounce:%lukB"
d1bfcdb8
KK
3949 " free_pcp:%lukB"
3950 " local_pcp:%ukB"
d1ce749a 3951 " free_cma:%lukB"
4a0aa73f 3952 " writeback_tmp:%lukB"
1da177e4
LT
3953 " pages_scanned:%lu"
3954 " all_unreclaimable? %s"
3955 "\n",
3956 zone->name,
88f5acf8 3957 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3958 K(min_wmark_pages(zone)),
3959 K(low_wmark_pages(zone)),
3960 K(high_wmark_pages(zone)),
4f98a2fe
RR
3961 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3962 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3963 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3964 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3965 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3966 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3967 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3968 K(zone->present_pages),
9feedc9d 3969 K(zone->managed_pages),
4a0aa73f
KM
3970 K(zone_page_state(zone, NR_MLOCK)),
3971 K(zone_page_state(zone, NR_FILE_DIRTY)),
3972 K(zone_page_state(zone, NR_WRITEBACK)),
3973 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3974 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3975 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3976 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3977 zone_page_state(zone, NR_KERNEL_STACK) *
3978 THREAD_SIZE / 1024,
4a0aa73f
KM
3979 K(zone_page_state(zone, NR_PAGETABLE)),
3980 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3981 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3982 K(free_pcp),
3983 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3984 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3985 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3986 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3987 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3988 );
3989 printk("lowmem_reserve[]:");
3990 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3991 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3992 printk("\n");
3993 }
3994
ee99c71c 3995 for_each_populated_zone(zone) {
d00181b9
KS
3996 unsigned int order;
3997 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3998 unsigned char types[MAX_ORDER];
1da177e4 3999
7bf02ea2 4000 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4001 continue;
1da177e4
LT
4002 show_node(zone);
4003 printk("%s: ", zone->name);
1da177e4
LT
4004
4005 spin_lock_irqsave(&zone->lock, flags);
4006 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4007 struct free_area *area = &zone->free_area[order];
4008 int type;
4009
4010 nr[order] = area->nr_free;
8f9de51a 4011 total += nr[order] << order;
377e4f16
RV
4012
4013 types[order] = 0;
4014 for (type = 0; type < MIGRATE_TYPES; type++) {
4015 if (!list_empty(&area->free_list[type]))
4016 types[order] |= 1 << type;
4017 }
1da177e4
LT
4018 }
4019 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4020 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4021 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4022 if (nr[order])
4023 show_migration_types(types[order]);
4024 }
1da177e4
LT
4025 printk("= %lukB\n", K(total));
4026 }
4027
949f7ec5
DR
4028 hugetlb_show_meminfo();
4029
e6f3602d
LW
4030 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4031
1da177e4
LT
4032 show_swap_cache_info();
4033}
4034
19770b32
MG
4035static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4036{
4037 zoneref->zone = zone;
4038 zoneref->zone_idx = zone_idx(zone);
4039}
4040
1da177e4
LT
4041/*
4042 * Builds allocation fallback zone lists.
1a93205b
CL
4043 *
4044 * Add all populated zones of a node to the zonelist.
1da177e4 4045 */
f0c0b2b8 4046static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4047 int nr_zones)
1da177e4 4048{
1a93205b 4049 struct zone *zone;
bc732f1d 4050 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4051
4052 do {
2f6726e5 4053 zone_type--;
070f8032 4054 zone = pgdat->node_zones + zone_type;
1a93205b 4055 if (populated_zone(zone)) {
dd1a239f
MG
4056 zoneref_set_zone(zone,
4057 &zonelist->_zonerefs[nr_zones++]);
070f8032 4058 check_highest_zone(zone_type);
1da177e4 4059 }
2f6726e5 4060 } while (zone_type);
bc732f1d 4061
070f8032 4062 return nr_zones;
1da177e4
LT
4063}
4064
f0c0b2b8
KH
4065
4066/*
4067 * zonelist_order:
4068 * 0 = automatic detection of better ordering.
4069 * 1 = order by ([node] distance, -zonetype)
4070 * 2 = order by (-zonetype, [node] distance)
4071 *
4072 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4073 * the same zonelist. So only NUMA can configure this param.
4074 */
4075#define ZONELIST_ORDER_DEFAULT 0
4076#define ZONELIST_ORDER_NODE 1
4077#define ZONELIST_ORDER_ZONE 2
4078
4079/* zonelist order in the kernel.
4080 * set_zonelist_order() will set this to NODE or ZONE.
4081 */
4082static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4083static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4084
4085
1da177e4 4086#ifdef CONFIG_NUMA
f0c0b2b8
KH
4087/* The value user specified ....changed by config */
4088static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4089/* string for sysctl */
4090#define NUMA_ZONELIST_ORDER_LEN 16
4091char numa_zonelist_order[16] = "default";
4092
4093/*
4094 * interface for configure zonelist ordering.
4095 * command line option "numa_zonelist_order"
4096 * = "[dD]efault - default, automatic configuration.
4097 * = "[nN]ode - order by node locality, then by zone within node
4098 * = "[zZ]one - order by zone, then by locality within zone
4099 */
4100
4101static int __parse_numa_zonelist_order(char *s)
4102{
4103 if (*s == 'd' || *s == 'D') {
4104 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4105 } else if (*s == 'n' || *s == 'N') {
4106 user_zonelist_order = ZONELIST_ORDER_NODE;
4107 } else if (*s == 'z' || *s == 'Z') {
4108 user_zonelist_order = ZONELIST_ORDER_ZONE;
4109 } else {
1170532b 4110 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4111 return -EINVAL;
4112 }
4113 return 0;
4114}
4115
4116static __init int setup_numa_zonelist_order(char *s)
4117{
ecb256f8
VL
4118 int ret;
4119
4120 if (!s)
4121 return 0;
4122
4123 ret = __parse_numa_zonelist_order(s);
4124 if (ret == 0)
4125 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4126
4127 return ret;
f0c0b2b8
KH
4128}
4129early_param("numa_zonelist_order", setup_numa_zonelist_order);
4130
4131/*
4132 * sysctl handler for numa_zonelist_order
4133 */
cccad5b9 4134int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4135 void __user *buffer, size_t *length,
f0c0b2b8
KH
4136 loff_t *ppos)
4137{
4138 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4139 int ret;
443c6f14 4140 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4141
443c6f14 4142 mutex_lock(&zl_order_mutex);
dacbde09
CG
4143 if (write) {
4144 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4145 ret = -EINVAL;
4146 goto out;
4147 }
4148 strcpy(saved_string, (char *)table->data);
4149 }
8d65af78 4150 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4151 if (ret)
443c6f14 4152 goto out;
f0c0b2b8
KH
4153 if (write) {
4154 int oldval = user_zonelist_order;
dacbde09
CG
4155
4156 ret = __parse_numa_zonelist_order((char *)table->data);
4157 if (ret) {
f0c0b2b8
KH
4158 /*
4159 * bogus value. restore saved string
4160 */
dacbde09 4161 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4162 NUMA_ZONELIST_ORDER_LEN);
4163 user_zonelist_order = oldval;
4eaf3f64
HL
4164 } else if (oldval != user_zonelist_order) {
4165 mutex_lock(&zonelists_mutex);
9adb62a5 4166 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4167 mutex_unlock(&zonelists_mutex);
4168 }
f0c0b2b8 4169 }
443c6f14
AK
4170out:
4171 mutex_unlock(&zl_order_mutex);
4172 return ret;
f0c0b2b8
KH
4173}
4174
4175
62bc62a8 4176#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4177static int node_load[MAX_NUMNODES];
4178
1da177e4 4179/**
4dc3b16b 4180 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4181 * @node: node whose fallback list we're appending
4182 * @used_node_mask: nodemask_t of already used nodes
4183 *
4184 * We use a number of factors to determine which is the next node that should
4185 * appear on a given node's fallback list. The node should not have appeared
4186 * already in @node's fallback list, and it should be the next closest node
4187 * according to the distance array (which contains arbitrary distance values
4188 * from each node to each node in the system), and should also prefer nodes
4189 * with no CPUs, since presumably they'll have very little allocation pressure
4190 * on them otherwise.
4191 * It returns -1 if no node is found.
4192 */
f0c0b2b8 4193static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4194{
4cf808eb 4195 int n, val;
1da177e4 4196 int min_val = INT_MAX;
00ef2d2f 4197 int best_node = NUMA_NO_NODE;
a70f7302 4198 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4199
4cf808eb
LT
4200 /* Use the local node if we haven't already */
4201 if (!node_isset(node, *used_node_mask)) {
4202 node_set(node, *used_node_mask);
4203 return node;
4204 }
1da177e4 4205
4b0ef1fe 4206 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4207
4208 /* Don't want a node to appear more than once */
4209 if (node_isset(n, *used_node_mask))
4210 continue;
4211
1da177e4
LT
4212 /* Use the distance array to find the distance */
4213 val = node_distance(node, n);
4214
4cf808eb
LT
4215 /* Penalize nodes under us ("prefer the next node") */
4216 val += (n < node);
4217
1da177e4 4218 /* Give preference to headless and unused nodes */
a70f7302
RR
4219 tmp = cpumask_of_node(n);
4220 if (!cpumask_empty(tmp))
1da177e4
LT
4221 val += PENALTY_FOR_NODE_WITH_CPUS;
4222
4223 /* Slight preference for less loaded node */
4224 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4225 val += node_load[n];
4226
4227 if (val < min_val) {
4228 min_val = val;
4229 best_node = n;
4230 }
4231 }
4232
4233 if (best_node >= 0)
4234 node_set(best_node, *used_node_mask);
4235
4236 return best_node;
4237}
4238
f0c0b2b8
KH
4239
4240/*
4241 * Build zonelists ordered by node and zones within node.
4242 * This results in maximum locality--normal zone overflows into local
4243 * DMA zone, if any--but risks exhausting DMA zone.
4244 */
4245static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4246{
f0c0b2b8 4247 int j;
1da177e4 4248 struct zonelist *zonelist;
f0c0b2b8 4249
54a6eb5c 4250 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4251 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4252 ;
bc732f1d 4253 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4254 zonelist->_zonerefs[j].zone = NULL;
4255 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4256}
4257
523b9458
CL
4258/*
4259 * Build gfp_thisnode zonelists
4260 */
4261static void build_thisnode_zonelists(pg_data_t *pgdat)
4262{
523b9458
CL
4263 int j;
4264 struct zonelist *zonelist;
4265
54a6eb5c 4266 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4267 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4268 zonelist->_zonerefs[j].zone = NULL;
4269 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4270}
4271
f0c0b2b8
KH
4272/*
4273 * Build zonelists ordered by zone and nodes within zones.
4274 * This results in conserving DMA zone[s] until all Normal memory is
4275 * exhausted, but results in overflowing to remote node while memory
4276 * may still exist in local DMA zone.
4277 */
4278static int node_order[MAX_NUMNODES];
4279
4280static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4281{
f0c0b2b8
KH
4282 int pos, j, node;
4283 int zone_type; /* needs to be signed */
4284 struct zone *z;
4285 struct zonelist *zonelist;
4286
54a6eb5c
MG
4287 zonelist = &pgdat->node_zonelists[0];
4288 pos = 0;
4289 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4290 for (j = 0; j < nr_nodes; j++) {
4291 node = node_order[j];
4292 z = &NODE_DATA(node)->node_zones[zone_type];
4293 if (populated_zone(z)) {
dd1a239f
MG
4294 zoneref_set_zone(z,
4295 &zonelist->_zonerefs[pos++]);
54a6eb5c 4296 check_highest_zone(zone_type);
f0c0b2b8
KH
4297 }
4298 }
f0c0b2b8 4299 }
dd1a239f
MG
4300 zonelist->_zonerefs[pos].zone = NULL;
4301 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4302}
4303
3193913c
MG
4304#if defined(CONFIG_64BIT)
4305/*
4306 * Devices that require DMA32/DMA are relatively rare and do not justify a
4307 * penalty to every machine in case the specialised case applies. Default
4308 * to Node-ordering on 64-bit NUMA machines
4309 */
4310static int default_zonelist_order(void)
4311{
4312 return ZONELIST_ORDER_NODE;
4313}
4314#else
4315/*
4316 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4317 * by the kernel. If processes running on node 0 deplete the low memory zone
4318 * then reclaim will occur more frequency increasing stalls and potentially
4319 * be easier to OOM if a large percentage of the zone is under writeback or
4320 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4321 * Hence, default to zone ordering on 32-bit.
4322 */
f0c0b2b8
KH
4323static int default_zonelist_order(void)
4324{
f0c0b2b8
KH
4325 return ZONELIST_ORDER_ZONE;
4326}
3193913c 4327#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4328
4329static void set_zonelist_order(void)
4330{
4331 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4332 current_zonelist_order = default_zonelist_order();
4333 else
4334 current_zonelist_order = user_zonelist_order;
4335}
4336
4337static void build_zonelists(pg_data_t *pgdat)
4338{
c00eb15a 4339 int i, node, load;
1da177e4 4340 nodemask_t used_mask;
f0c0b2b8
KH
4341 int local_node, prev_node;
4342 struct zonelist *zonelist;
d00181b9 4343 unsigned int order = current_zonelist_order;
1da177e4
LT
4344
4345 /* initialize zonelists */
523b9458 4346 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4347 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4348 zonelist->_zonerefs[0].zone = NULL;
4349 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4350 }
4351
4352 /* NUMA-aware ordering of nodes */
4353 local_node = pgdat->node_id;
62bc62a8 4354 load = nr_online_nodes;
1da177e4
LT
4355 prev_node = local_node;
4356 nodes_clear(used_mask);
f0c0b2b8 4357
f0c0b2b8 4358 memset(node_order, 0, sizeof(node_order));
c00eb15a 4359 i = 0;
f0c0b2b8 4360
1da177e4
LT
4361 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4362 /*
4363 * We don't want to pressure a particular node.
4364 * So adding penalty to the first node in same
4365 * distance group to make it round-robin.
4366 */
957f822a
DR
4367 if (node_distance(local_node, node) !=
4368 node_distance(local_node, prev_node))
f0c0b2b8
KH
4369 node_load[node] = load;
4370
1da177e4
LT
4371 prev_node = node;
4372 load--;
f0c0b2b8
KH
4373 if (order == ZONELIST_ORDER_NODE)
4374 build_zonelists_in_node_order(pgdat, node);
4375 else
c00eb15a 4376 node_order[i++] = node; /* remember order */
f0c0b2b8 4377 }
1da177e4 4378
f0c0b2b8
KH
4379 if (order == ZONELIST_ORDER_ZONE) {
4380 /* calculate node order -- i.e., DMA last! */
c00eb15a 4381 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4382 }
523b9458
CL
4383
4384 build_thisnode_zonelists(pgdat);
1da177e4
LT
4385}
4386
7aac7898
LS
4387#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4388/*
4389 * Return node id of node used for "local" allocations.
4390 * I.e., first node id of first zone in arg node's generic zonelist.
4391 * Used for initializing percpu 'numa_mem', which is used primarily
4392 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4393 */
4394int local_memory_node(int node)
4395{
4396 struct zone *zone;
4397
4398 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4399 gfp_zone(GFP_KERNEL),
4400 NULL,
4401 &zone);
4402 return zone->node;
4403}
4404#endif
f0c0b2b8 4405
1da177e4
LT
4406#else /* CONFIG_NUMA */
4407
f0c0b2b8
KH
4408static void set_zonelist_order(void)
4409{
4410 current_zonelist_order = ZONELIST_ORDER_ZONE;
4411}
4412
4413static void build_zonelists(pg_data_t *pgdat)
1da177e4 4414{
19655d34 4415 int node, local_node;
54a6eb5c
MG
4416 enum zone_type j;
4417 struct zonelist *zonelist;
1da177e4
LT
4418
4419 local_node = pgdat->node_id;
1da177e4 4420
54a6eb5c 4421 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4422 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4423
54a6eb5c
MG
4424 /*
4425 * Now we build the zonelist so that it contains the zones
4426 * of all the other nodes.
4427 * We don't want to pressure a particular node, so when
4428 * building the zones for node N, we make sure that the
4429 * zones coming right after the local ones are those from
4430 * node N+1 (modulo N)
4431 */
4432 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4433 if (!node_online(node))
4434 continue;
bc732f1d 4435 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4436 }
54a6eb5c
MG
4437 for (node = 0; node < local_node; node++) {
4438 if (!node_online(node))
4439 continue;
bc732f1d 4440 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4441 }
4442
dd1a239f
MG
4443 zonelist->_zonerefs[j].zone = NULL;
4444 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4445}
4446
4447#endif /* CONFIG_NUMA */
4448
99dcc3e5
CL
4449/*
4450 * Boot pageset table. One per cpu which is going to be used for all
4451 * zones and all nodes. The parameters will be set in such a way
4452 * that an item put on a list will immediately be handed over to
4453 * the buddy list. This is safe since pageset manipulation is done
4454 * with interrupts disabled.
4455 *
4456 * The boot_pagesets must be kept even after bootup is complete for
4457 * unused processors and/or zones. They do play a role for bootstrapping
4458 * hotplugged processors.
4459 *
4460 * zoneinfo_show() and maybe other functions do
4461 * not check if the processor is online before following the pageset pointer.
4462 * Other parts of the kernel may not check if the zone is available.
4463 */
4464static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4465static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4466static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4467
4eaf3f64
HL
4468/*
4469 * Global mutex to protect against size modification of zonelists
4470 * as well as to serialize pageset setup for the new populated zone.
4471 */
4472DEFINE_MUTEX(zonelists_mutex);
4473
9b1a4d38 4474/* return values int ....just for stop_machine() */
4ed7e022 4475static int __build_all_zonelists(void *data)
1da177e4 4476{
6811378e 4477 int nid;
99dcc3e5 4478 int cpu;
9adb62a5 4479 pg_data_t *self = data;
9276b1bc 4480
7f9cfb31
BL
4481#ifdef CONFIG_NUMA
4482 memset(node_load, 0, sizeof(node_load));
4483#endif
9adb62a5
JL
4484
4485 if (self && !node_online(self->node_id)) {
4486 build_zonelists(self);
9adb62a5
JL
4487 }
4488
9276b1bc 4489 for_each_online_node(nid) {
7ea1530a
CL
4490 pg_data_t *pgdat = NODE_DATA(nid);
4491
4492 build_zonelists(pgdat);
9276b1bc 4493 }
99dcc3e5
CL
4494
4495 /*
4496 * Initialize the boot_pagesets that are going to be used
4497 * for bootstrapping processors. The real pagesets for
4498 * each zone will be allocated later when the per cpu
4499 * allocator is available.
4500 *
4501 * boot_pagesets are used also for bootstrapping offline
4502 * cpus if the system is already booted because the pagesets
4503 * are needed to initialize allocators on a specific cpu too.
4504 * F.e. the percpu allocator needs the page allocator which
4505 * needs the percpu allocator in order to allocate its pagesets
4506 * (a chicken-egg dilemma).
4507 */
7aac7898 4508 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4509 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4510
7aac7898
LS
4511#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4512 /*
4513 * We now know the "local memory node" for each node--
4514 * i.e., the node of the first zone in the generic zonelist.
4515 * Set up numa_mem percpu variable for on-line cpus. During
4516 * boot, only the boot cpu should be on-line; we'll init the
4517 * secondary cpus' numa_mem as they come on-line. During
4518 * node/memory hotplug, we'll fixup all on-line cpus.
4519 */
4520 if (cpu_online(cpu))
4521 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4522#endif
4523 }
4524
6811378e
YG
4525 return 0;
4526}
4527
061f67bc
RV
4528static noinline void __init
4529build_all_zonelists_init(void)
4530{
4531 __build_all_zonelists(NULL);
4532 mminit_verify_zonelist();
4533 cpuset_init_current_mems_allowed();
4534}
4535
4eaf3f64
HL
4536/*
4537 * Called with zonelists_mutex held always
4538 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4539 *
4540 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4541 * [we're only called with non-NULL zone through __meminit paths] and
4542 * (2) call of __init annotated helper build_all_zonelists_init
4543 * [protected by SYSTEM_BOOTING].
4eaf3f64 4544 */
9adb62a5 4545void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4546{
f0c0b2b8
KH
4547 set_zonelist_order();
4548
6811378e 4549 if (system_state == SYSTEM_BOOTING) {
061f67bc 4550 build_all_zonelists_init();
6811378e 4551 } else {
e9959f0f 4552#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4553 if (zone)
4554 setup_zone_pageset(zone);
e9959f0f 4555#endif
dd1895e2
CS
4556 /* we have to stop all cpus to guarantee there is no user
4557 of zonelist */
9adb62a5 4558 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4559 /* cpuset refresh routine should be here */
4560 }
bd1e22b8 4561 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4562 /*
4563 * Disable grouping by mobility if the number of pages in the
4564 * system is too low to allow the mechanism to work. It would be
4565 * more accurate, but expensive to check per-zone. This check is
4566 * made on memory-hotadd so a system can start with mobility
4567 * disabled and enable it later
4568 */
d9c23400 4569 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4570 page_group_by_mobility_disabled = 1;
4571 else
4572 page_group_by_mobility_disabled = 0;
4573
756a025f
JP
4574 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4575 nr_online_nodes,
4576 zonelist_order_name[current_zonelist_order],
4577 page_group_by_mobility_disabled ? "off" : "on",
4578 vm_total_pages);
f0c0b2b8 4579#ifdef CONFIG_NUMA
f88dfff5 4580 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4581#endif
1da177e4
LT
4582}
4583
4584/*
4585 * Helper functions to size the waitqueue hash table.
4586 * Essentially these want to choose hash table sizes sufficiently
4587 * large so that collisions trying to wait on pages are rare.
4588 * But in fact, the number of active page waitqueues on typical
4589 * systems is ridiculously low, less than 200. So this is even
4590 * conservative, even though it seems large.
4591 *
4592 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4593 * waitqueues, i.e. the size of the waitq table given the number of pages.
4594 */
4595#define PAGES_PER_WAITQUEUE 256
4596
cca448fe 4597#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4598static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4599{
4600 unsigned long size = 1;
4601
4602 pages /= PAGES_PER_WAITQUEUE;
4603
4604 while (size < pages)
4605 size <<= 1;
4606
4607 /*
4608 * Once we have dozens or even hundreds of threads sleeping
4609 * on IO we've got bigger problems than wait queue collision.
4610 * Limit the size of the wait table to a reasonable size.
4611 */
4612 size = min(size, 4096UL);
4613
4614 return max(size, 4UL);
4615}
cca448fe
YG
4616#else
4617/*
4618 * A zone's size might be changed by hot-add, so it is not possible to determine
4619 * a suitable size for its wait_table. So we use the maximum size now.
4620 *
4621 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4622 *
4623 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4624 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4625 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4626 *
4627 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4628 * or more by the traditional way. (See above). It equals:
4629 *
4630 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4631 * ia64(16K page size) : = ( 8G + 4M)byte.
4632 * powerpc (64K page size) : = (32G +16M)byte.
4633 */
4634static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4635{
4636 return 4096UL;
4637}
4638#endif
1da177e4
LT
4639
4640/*
4641 * This is an integer logarithm so that shifts can be used later
4642 * to extract the more random high bits from the multiplicative
4643 * hash function before the remainder is taken.
4644 */
4645static inline unsigned long wait_table_bits(unsigned long size)
4646{
4647 return ffz(~size);
4648}
4649
1da177e4
LT
4650/*
4651 * Initially all pages are reserved - free ones are freed
4652 * up by free_all_bootmem() once the early boot process is
4653 * done. Non-atomic initialization, single-pass.
4654 */
c09b4240 4655void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4656 unsigned long start_pfn, enum memmap_context context)
1da177e4 4657{
4b94ffdc 4658 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4659 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4660 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4661 unsigned long pfn;
3a80a7fa 4662 unsigned long nr_initialised = 0;
342332e6
TI
4663#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4664 struct memblock_region *r = NULL, *tmp;
4665#endif
1da177e4 4666
22b31eec
HD
4667 if (highest_memmap_pfn < end_pfn - 1)
4668 highest_memmap_pfn = end_pfn - 1;
4669
4b94ffdc
DW
4670 /*
4671 * Honor reservation requested by the driver for this ZONE_DEVICE
4672 * memory
4673 */
4674 if (altmap && start_pfn == altmap->base_pfn)
4675 start_pfn += altmap->reserve;
4676
cbe8dd4a 4677 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4678 /*
b72d0ffb
AM
4679 * There can be holes in boot-time mem_map[]s handed to this
4680 * function. They do not exist on hotplugged memory.
a2f3aa02 4681 */
b72d0ffb
AM
4682 if (context != MEMMAP_EARLY)
4683 goto not_early;
4684
4685 if (!early_pfn_valid(pfn))
4686 continue;
4687 if (!early_pfn_in_nid(pfn, nid))
4688 continue;
4689 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4690 break;
342332e6
TI
4691
4692#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4693 /*
4694 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4695 * from zone_movable_pfn[nid] to end of each node should be
4696 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4697 */
4698 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4699 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4700 continue;
342332e6 4701
b72d0ffb
AM
4702 /*
4703 * Check given memblock attribute by firmware which can affect
4704 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4705 * mirrored, it's an overlapped memmap init. skip it.
4706 */
4707 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4708 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4709 for_each_memblock(memory, tmp)
4710 if (pfn < memblock_region_memory_end_pfn(tmp))
4711 break;
4712 r = tmp;
4713 }
4714 if (pfn >= memblock_region_memory_base_pfn(r) &&
4715 memblock_is_mirror(r)) {
4716 /* already initialized as NORMAL */
4717 pfn = memblock_region_memory_end_pfn(r);
4718 continue;
342332e6 4719 }
a2f3aa02 4720 }
b72d0ffb 4721#endif
ac5d2539 4722
b72d0ffb 4723not_early:
ac5d2539
MG
4724 /*
4725 * Mark the block movable so that blocks are reserved for
4726 * movable at startup. This will force kernel allocations
4727 * to reserve their blocks rather than leaking throughout
4728 * the address space during boot when many long-lived
974a786e 4729 * kernel allocations are made.
ac5d2539
MG
4730 *
4731 * bitmap is created for zone's valid pfn range. but memmap
4732 * can be created for invalid pages (for alignment)
4733 * check here not to call set_pageblock_migratetype() against
4734 * pfn out of zone.
4735 */
4736 if (!(pfn & (pageblock_nr_pages - 1))) {
4737 struct page *page = pfn_to_page(pfn);
4738
4739 __init_single_page(page, pfn, zone, nid);
4740 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4741 } else {
4742 __init_single_pfn(pfn, zone, nid);
4743 }
1da177e4
LT
4744 }
4745}
4746
1e548deb 4747static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4748{
7aeb09f9 4749 unsigned int order, t;
b2a0ac88
MG
4750 for_each_migratetype_order(order, t) {
4751 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4752 zone->free_area[order].nr_free = 0;
4753 }
4754}
4755
4756#ifndef __HAVE_ARCH_MEMMAP_INIT
4757#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4758 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4759#endif
4760
7cd2b0a3 4761static int zone_batchsize(struct zone *zone)
e7c8d5c9 4762{
3a6be87f 4763#ifdef CONFIG_MMU
e7c8d5c9
CL
4764 int batch;
4765
4766 /*
4767 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4768 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4769 *
4770 * OK, so we don't know how big the cache is. So guess.
4771 */
b40da049 4772 batch = zone->managed_pages / 1024;
ba56e91c
SR
4773 if (batch * PAGE_SIZE > 512 * 1024)
4774 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4775 batch /= 4; /* We effectively *= 4 below */
4776 if (batch < 1)
4777 batch = 1;
4778
4779 /*
0ceaacc9
NP
4780 * Clamp the batch to a 2^n - 1 value. Having a power
4781 * of 2 value was found to be more likely to have
4782 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4783 *
0ceaacc9
NP
4784 * For example if 2 tasks are alternately allocating
4785 * batches of pages, one task can end up with a lot
4786 * of pages of one half of the possible page colors
4787 * and the other with pages of the other colors.
e7c8d5c9 4788 */
9155203a 4789 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4790
e7c8d5c9 4791 return batch;
3a6be87f
DH
4792
4793#else
4794 /* The deferral and batching of frees should be suppressed under NOMMU
4795 * conditions.
4796 *
4797 * The problem is that NOMMU needs to be able to allocate large chunks
4798 * of contiguous memory as there's no hardware page translation to
4799 * assemble apparent contiguous memory from discontiguous pages.
4800 *
4801 * Queueing large contiguous runs of pages for batching, however,
4802 * causes the pages to actually be freed in smaller chunks. As there
4803 * can be a significant delay between the individual batches being
4804 * recycled, this leads to the once large chunks of space being
4805 * fragmented and becoming unavailable for high-order allocations.
4806 */
4807 return 0;
4808#endif
e7c8d5c9
CL
4809}
4810
8d7a8fa9
CS
4811/*
4812 * pcp->high and pcp->batch values are related and dependent on one another:
4813 * ->batch must never be higher then ->high.
4814 * The following function updates them in a safe manner without read side
4815 * locking.
4816 *
4817 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4818 * those fields changing asynchronously (acording the the above rule).
4819 *
4820 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4821 * outside of boot time (or some other assurance that no concurrent updaters
4822 * exist).
4823 */
4824static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4825 unsigned long batch)
4826{
4827 /* start with a fail safe value for batch */
4828 pcp->batch = 1;
4829 smp_wmb();
4830
4831 /* Update high, then batch, in order */
4832 pcp->high = high;
4833 smp_wmb();
4834
4835 pcp->batch = batch;
4836}
4837
3664033c 4838/* a companion to pageset_set_high() */
4008bab7
CS
4839static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4840{
8d7a8fa9 4841 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4842}
4843
88c90dbc 4844static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4845{
4846 struct per_cpu_pages *pcp;
5f8dcc21 4847 int migratetype;
2caaad41 4848
1c6fe946
MD
4849 memset(p, 0, sizeof(*p));
4850
3dfa5721 4851 pcp = &p->pcp;
2caaad41 4852 pcp->count = 0;
5f8dcc21
MG
4853 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4854 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4855}
4856
88c90dbc
CS
4857static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4858{
4859 pageset_init(p);
4860 pageset_set_batch(p, batch);
4861}
4862
8ad4b1fb 4863/*
3664033c 4864 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4865 * to the value high for the pageset p.
4866 */
3664033c 4867static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4868 unsigned long high)
4869{
8d7a8fa9
CS
4870 unsigned long batch = max(1UL, high / 4);
4871 if ((high / 4) > (PAGE_SHIFT * 8))
4872 batch = PAGE_SHIFT * 8;
8ad4b1fb 4873
8d7a8fa9 4874 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4875}
4876
7cd2b0a3
DR
4877static void pageset_set_high_and_batch(struct zone *zone,
4878 struct per_cpu_pageset *pcp)
56cef2b8 4879{
56cef2b8 4880 if (percpu_pagelist_fraction)
3664033c 4881 pageset_set_high(pcp,
56cef2b8
CS
4882 (zone->managed_pages /
4883 percpu_pagelist_fraction));
4884 else
4885 pageset_set_batch(pcp, zone_batchsize(zone));
4886}
4887
169f6c19
CS
4888static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4889{
4890 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4891
4892 pageset_init(pcp);
4893 pageset_set_high_and_batch(zone, pcp);
4894}
4895
4ed7e022 4896static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4897{
4898 int cpu;
319774e2 4899 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4900 for_each_possible_cpu(cpu)
4901 zone_pageset_init(zone, cpu);
319774e2
WF
4902}
4903
2caaad41 4904/*
99dcc3e5
CL
4905 * Allocate per cpu pagesets and initialize them.
4906 * Before this call only boot pagesets were available.
e7c8d5c9 4907 */
99dcc3e5 4908void __init setup_per_cpu_pageset(void)
e7c8d5c9 4909{
99dcc3e5 4910 struct zone *zone;
e7c8d5c9 4911
319774e2
WF
4912 for_each_populated_zone(zone)
4913 setup_zone_pageset(zone);
e7c8d5c9
CL
4914}
4915
577a32f6 4916static noinline __init_refok
cca448fe 4917int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4918{
4919 int i;
cca448fe 4920 size_t alloc_size;
ed8ece2e
DH
4921
4922 /*
4923 * The per-page waitqueue mechanism uses hashed waitqueues
4924 * per zone.
4925 */
02b694de
YG
4926 zone->wait_table_hash_nr_entries =
4927 wait_table_hash_nr_entries(zone_size_pages);
4928 zone->wait_table_bits =
4929 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4930 alloc_size = zone->wait_table_hash_nr_entries
4931 * sizeof(wait_queue_head_t);
4932
cd94b9db 4933 if (!slab_is_available()) {
cca448fe 4934 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4935 memblock_virt_alloc_node_nopanic(
4936 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4937 } else {
4938 /*
4939 * This case means that a zone whose size was 0 gets new memory
4940 * via memory hot-add.
4941 * But it may be the case that a new node was hot-added. In
4942 * this case vmalloc() will not be able to use this new node's
4943 * memory - this wait_table must be initialized to use this new
4944 * node itself as well.
4945 * To use this new node's memory, further consideration will be
4946 * necessary.
4947 */
8691f3a7 4948 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4949 }
4950 if (!zone->wait_table)
4951 return -ENOMEM;
ed8ece2e 4952
b8af2941 4953 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4954 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4955
4956 return 0;
ed8ece2e
DH
4957}
4958
c09b4240 4959static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4960{
99dcc3e5
CL
4961 /*
4962 * per cpu subsystem is not up at this point. The following code
4963 * relies on the ability of the linker to provide the
4964 * offset of a (static) per cpu variable into the per cpu area.
4965 */
4966 zone->pageset = &boot_pageset;
ed8ece2e 4967
b38a8725 4968 if (populated_zone(zone))
99dcc3e5
CL
4969 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4970 zone->name, zone->present_pages,
4971 zone_batchsize(zone));
ed8ece2e
DH
4972}
4973
4ed7e022 4974int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4975 unsigned long zone_start_pfn,
b171e409 4976 unsigned long size)
ed8ece2e
DH
4977{
4978 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4979 int ret;
4980 ret = zone_wait_table_init(zone, size);
4981 if (ret)
4982 return ret;
ed8ece2e
DH
4983 pgdat->nr_zones = zone_idx(zone) + 1;
4984
ed8ece2e
DH
4985 zone->zone_start_pfn = zone_start_pfn;
4986
708614e6
MG
4987 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4988 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4989 pgdat->node_id,
4990 (unsigned long)zone_idx(zone),
4991 zone_start_pfn, (zone_start_pfn + size));
4992
1e548deb 4993 zone_init_free_lists(zone);
718127cc
YG
4994
4995 return 0;
ed8ece2e
DH
4996}
4997
0ee332c1 4998#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4999#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5000
c713216d
MG
5001/*
5002 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5003 */
8a942fde
MG
5004int __meminit __early_pfn_to_nid(unsigned long pfn,
5005 struct mminit_pfnnid_cache *state)
c713216d 5006{
c13291a5 5007 unsigned long start_pfn, end_pfn;
e76b63f8 5008 int nid;
7c243c71 5009
8a942fde
MG
5010 if (state->last_start <= pfn && pfn < state->last_end)
5011 return state->last_nid;
c713216d 5012
e76b63f8
YL
5013 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5014 if (nid != -1) {
8a942fde
MG
5015 state->last_start = start_pfn;
5016 state->last_end = end_pfn;
5017 state->last_nid = nid;
e76b63f8
YL
5018 }
5019
5020 return nid;
c713216d
MG
5021}
5022#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5023
c713216d 5024/**
6782832e 5025 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5026 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5027 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5028 *
7d018176
ZZ
5029 * If an architecture guarantees that all ranges registered contain no holes
5030 * and may be freed, this this function may be used instead of calling
5031 * memblock_free_early_nid() manually.
c713216d 5032 */
c13291a5 5033void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5034{
c13291a5
TH
5035 unsigned long start_pfn, end_pfn;
5036 int i, this_nid;
edbe7d23 5037
c13291a5
TH
5038 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5039 start_pfn = min(start_pfn, max_low_pfn);
5040 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5041
c13291a5 5042 if (start_pfn < end_pfn)
6782832e
SS
5043 memblock_free_early_nid(PFN_PHYS(start_pfn),
5044 (end_pfn - start_pfn) << PAGE_SHIFT,
5045 this_nid);
edbe7d23 5046 }
edbe7d23 5047}
edbe7d23 5048
c713216d
MG
5049/**
5050 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5051 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5052 *
7d018176
ZZ
5053 * If an architecture guarantees that all ranges registered contain no holes and may
5054 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5055 */
5056void __init sparse_memory_present_with_active_regions(int nid)
5057{
c13291a5
TH
5058 unsigned long start_pfn, end_pfn;
5059 int i, this_nid;
c713216d 5060
c13291a5
TH
5061 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5062 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5063}
5064
5065/**
5066 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5067 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5068 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5069 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5070 *
5071 * It returns the start and end page frame of a node based on information
7d018176 5072 * provided by memblock_set_node(). If called for a node
c713216d 5073 * with no available memory, a warning is printed and the start and end
88ca3b94 5074 * PFNs will be 0.
c713216d 5075 */
a3142c8e 5076void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5077 unsigned long *start_pfn, unsigned long *end_pfn)
5078{
c13291a5 5079 unsigned long this_start_pfn, this_end_pfn;
c713216d 5080 int i;
c13291a5 5081
c713216d
MG
5082 *start_pfn = -1UL;
5083 *end_pfn = 0;
5084
c13291a5
TH
5085 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5086 *start_pfn = min(*start_pfn, this_start_pfn);
5087 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5088 }
5089
633c0666 5090 if (*start_pfn == -1UL)
c713216d 5091 *start_pfn = 0;
c713216d
MG
5092}
5093
2a1e274a
MG
5094/*
5095 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5096 * assumption is made that zones within a node are ordered in monotonic
5097 * increasing memory addresses so that the "highest" populated zone is used
5098 */
b69a7288 5099static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5100{
5101 int zone_index;
5102 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5103 if (zone_index == ZONE_MOVABLE)
5104 continue;
5105
5106 if (arch_zone_highest_possible_pfn[zone_index] >
5107 arch_zone_lowest_possible_pfn[zone_index])
5108 break;
5109 }
5110
5111 VM_BUG_ON(zone_index == -1);
5112 movable_zone = zone_index;
5113}
5114
5115/*
5116 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5117 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5118 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5119 * in each node depending on the size of each node and how evenly kernelcore
5120 * is distributed. This helper function adjusts the zone ranges
5121 * provided by the architecture for a given node by using the end of the
5122 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5123 * zones within a node are in order of monotonic increases memory addresses
5124 */
b69a7288 5125static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5126 unsigned long zone_type,
5127 unsigned long node_start_pfn,
5128 unsigned long node_end_pfn,
5129 unsigned long *zone_start_pfn,
5130 unsigned long *zone_end_pfn)
5131{
5132 /* Only adjust if ZONE_MOVABLE is on this node */
5133 if (zone_movable_pfn[nid]) {
5134 /* Size ZONE_MOVABLE */
5135 if (zone_type == ZONE_MOVABLE) {
5136 *zone_start_pfn = zone_movable_pfn[nid];
5137 *zone_end_pfn = min(node_end_pfn,
5138 arch_zone_highest_possible_pfn[movable_zone]);
5139
2a1e274a
MG
5140 /* Check if this whole range is within ZONE_MOVABLE */
5141 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5142 *zone_start_pfn = *zone_end_pfn;
5143 }
5144}
5145
c713216d
MG
5146/*
5147 * Return the number of pages a zone spans in a node, including holes
5148 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5149 */
6ea6e688 5150static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5151 unsigned long zone_type,
7960aedd
ZY
5152 unsigned long node_start_pfn,
5153 unsigned long node_end_pfn,
d91749c1
TI
5154 unsigned long *zone_start_pfn,
5155 unsigned long *zone_end_pfn,
c713216d
MG
5156 unsigned long *ignored)
5157{
b5685e92 5158 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5159 if (!node_start_pfn && !node_end_pfn)
5160 return 0;
5161
7960aedd 5162 /* Get the start and end of the zone */
d91749c1
TI
5163 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5164 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5165 adjust_zone_range_for_zone_movable(nid, zone_type,
5166 node_start_pfn, node_end_pfn,
d91749c1 5167 zone_start_pfn, zone_end_pfn);
c713216d
MG
5168
5169 /* Check that this node has pages within the zone's required range */
d91749c1 5170 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5171 return 0;
5172
5173 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5174 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5175 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5176
5177 /* Return the spanned pages */
d91749c1 5178 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5179}
5180
5181/*
5182 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5183 * then all holes in the requested range will be accounted for.
c713216d 5184 */
32996250 5185unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5186 unsigned long range_start_pfn,
5187 unsigned long range_end_pfn)
5188{
96e907d1
TH
5189 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5190 unsigned long start_pfn, end_pfn;
5191 int i;
c713216d 5192
96e907d1
TH
5193 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5194 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5195 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5196 nr_absent -= end_pfn - start_pfn;
c713216d 5197 }
96e907d1 5198 return nr_absent;
c713216d
MG
5199}
5200
5201/**
5202 * absent_pages_in_range - Return number of page frames in holes within a range
5203 * @start_pfn: The start PFN to start searching for holes
5204 * @end_pfn: The end PFN to stop searching for holes
5205 *
88ca3b94 5206 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5207 */
5208unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5209 unsigned long end_pfn)
5210{
5211 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5212}
5213
5214/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5215static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5216 unsigned long zone_type,
7960aedd
ZY
5217 unsigned long node_start_pfn,
5218 unsigned long node_end_pfn,
c713216d
MG
5219 unsigned long *ignored)
5220{
96e907d1
TH
5221 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5222 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5223 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5224 unsigned long nr_absent;
9c7cd687 5225
b5685e92 5226 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5227 if (!node_start_pfn && !node_end_pfn)
5228 return 0;
5229
96e907d1
TH
5230 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5231 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5232
2a1e274a
MG
5233 adjust_zone_range_for_zone_movable(nid, zone_type,
5234 node_start_pfn, node_end_pfn,
5235 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5236 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5237
5238 /*
5239 * ZONE_MOVABLE handling.
5240 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5241 * and vice versa.
5242 */
5243 if (zone_movable_pfn[nid]) {
5244 if (mirrored_kernelcore) {
5245 unsigned long start_pfn, end_pfn;
5246 struct memblock_region *r;
5247
5248 for_each_memblock(memory, r) {
5249 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5250 zone_start_pfn, zone_end_pfn);
5251 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5252 zone_start_pfn, zone_end_pfn);
5253
5254 if (zone_type == ZONE_MOVABLE &&
5255 memblock_is_mirror(r))
5256 nr_absent += end_pfn - start_pfn;
5257
5258 if (zone_type == ZONE_NORMAL &&
5259 !memblock_is_mirror(r))
5260 nr_absent += end_pfn - start_pfn;
5261 }
5262 } else {
5263 if (zone_type == ZONE_NORMAL)
5264 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5265 }
5266 }
5267
5268 return nr_absent;
c713216d 5269}
0e0b864e 5270
0ee332c1 5271#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5272static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5273 unsigned long zone_type,
7960aedd
ZY
5274 unsigned long node_start_pfn,
5275 unsigned long node_end_pfn,
d91749c1
TI
5276 unsigned long *zone_start_pfn,
5277 unsigned long *zone_end_pfn,
c713216d
MG
5278 unsigned long *zones_size)
5279{
d91749c1
TI
5280 unsigned int zone;
5281
5282 *zone_start_pfn = node_start_pfn;
5283 for (zone = 0; zone < zone_type; zone++)
5284 *zone_start_pfn += zones_size[zone];
5285
5286 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5287
c713216d
MG
5288 return zones_size[zone_type];
5289}
5290
6ea6e688 5291static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5292 unsigned long zone_type,
7960aedd
ZY
5293 unsigned long node_start_pfn,
5294 unsigned long node_end_pfn,
c713216d
MG
5295 unsigned long *zholes_size)
5296{
5297 if (!zholes_size)
5298 return 0;
5299
5300 return zholes_size[zone_type];
5301}
20e6926d 5302
0ee332c1 5303#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5304
a3142c8e 5305static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5306 unsigned long node_start_pfn,
5307 unsigned long node_end_pfn,
5308 unsigned long *zones_size,
5309 unsigned long *zholes_size)
c713216d 5310{
febd5949 5311 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5312 enum zone_type i;
5313
febd5949
GZ
5314 for (i = 0; i < MAX_NR_ZONES; i++) {
5315 struct zone *zone = pgdat->node_zones + i;
d91749c1 5316 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5317 unsigned long size, real_size;
c713216d 5318
febd5949
GZ
5319 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5320 node_start_pfn,
5321 node_end_pfn,
d91749c1
TI
5322 &zone_start_pfn,
5323 &zone_end_pfn,
febd5949
GZ
5324 zones_size);
5325 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5326 node_start_pfn, node_end_pfn,
5327 zholes_size);
d91749c1
TI
5328 if (size)
5329 zone->zone_start_pfn = zone_start_pfn;
5330 else
5331 zone->zone_start_pfn = 0;
febd5949
GZ
5332 zone->spanned_pages = size;
5333 zone->present_pages = real_size;
5334
5335 totalpages += size;
5336 realtotalpages += real_size;
5337 }
5338
5339 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5340 pgdat->node_present_pages = realtotalpages;
5341 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5342 realtotalpages);
5343}
5344
835c134e
MG
5345#ifndef CONFIG_SPARSEMEM
5346/*
5347 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5348 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5349 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5350 * round what is now in bits to nearest long in bits, then return it in
5351 * bytes.
5352 */
7c45512d 5353static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5354{
5355 unsigned long usemapsize;
5356
7c45512d 5357 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5358 usemapsize = roundup(zonesize, pageblock_nr_pages);
5359 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5360 usemapsize *= NR_PAGEBLOCK_BITS;
5361 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5362
5363 return usemapsize / 8;
5364}
5365
5366static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5367 struct zone *zone,
5368 unsigned long zone_start_pfn,
5369 unsigned long zonesize)
835c134e 5370{
7c45512d 5371 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5372 zone->pageblock_flags = NULL;
58a01a45 5373 if (usemapsize)
6782832e
SS
5374 zone->pageblock_flags =
5375 memblock_virt_alloc_node_nopanic(usemapsize,
5376 pgdat->node_id);
835c134e
MG
5377}
5378#else
7c45512d
LT
5379static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5380 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5381#endif /* CONFIG_SPARSEMEM */
5382
d9c23400 5383#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5384
d9c23400 5385/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5386void __paginginit set_pageblock_order(void)
d9c23400 5387{
955c1cd7
AM
5388 unsigned int order;
5389
d9c23400
MG
5390 /* Check that pageblock_nr_pages has not already been setup */
5391 if (pageblock_order)
5392 return;
5393
955c1cd7
AM
5394 if (HPAGE_SHIFT > PAGE_SHIFT)
5395 order = HUGETLB_PAGE_ORDER;
5396 else
5397 order = MAX_ORDER - 1;
5398
d9c23400
MG
5399 /*
5400 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5401 * This value may be variable depending on boot parameters on IA64 and
5402 * powerpc.
d9c23400
MG
5403 */
5404 pageblock_order = order;
5405}
5406#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5407
ba72cb8c
MG
5408/*
5409 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5410 * is unused as pageblock_order is set at compile-time. See
5411 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5412 * the kernel config
ba72cb8c 5413 */
15ca220e 5414void __paginginit set_pageblock_order(void)
ba72cb8c 5415{
ba72cb8c 5416}
d9c23400
MG
5417
5418#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5419
01cefaef
JL
5420static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5421 unsigned long present_pages)
5422{
5423 unsigned long pages = spanned_pages;
5424
5425 /*
5426 * Provide a more accurate estimation if there are holes within
5427 * the zone and SPARSEMEM is in use. If there are holes within the
5428 * zone, each populated memory region may cost us one or two extra
5429 * memmap pages due to alignment because memmap pages for each
5430 * populated regions may not naturally algined on page boundary.
5431 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5432 */
5433 if (spanned_pages > present_pages + (present_pages >> 4) &&
5434 IS_ENABLED(CONFIG_SPARSEMEM))
5435 pages = present_pages;
5436
5437 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5438}
5439
1da177e4
LT
5440/*
5441 * Set up the zone data structures:
5442 * - mark all pages reserved
5443 * - mark all memory queues empty
5444 * - clear the memory bitmaps
6527af5d
MK
5445 *
5446 * NOTE: pgdat should get zeroed by caller.
1da177e4 5447 */
7f3eb55b 5448static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5449{
2f1b6248 5450 enum zone_type j;
ed8ece2e 5451 int nid = pgdat->node_id;
718127cc 5452 int ret;
1da177e4 5453
208d54e5 5454 pgdat_resize_init(pgdat);
8177a420
AA
5455#ifdef CONFIG_NUMA_BALANCING
5456 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5457 pgdat->numabalancing_migrate_nr_pages = 0;
5458 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5459#endif
5460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5461 spin_lock_init(&pgdat->split_queue_lock);
5462 INIT_LIST_HEAD(&pgdat->split_queue);
5463 pgdat->split_queue_len = 0;
8177a420 5464#endif
1da177e4 5465 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5466 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5467#ifdef CONFIG_COMPACTION
5468 init_waitqueue_head(&pgdat->kcompactd_wait);
5469#endif
eefa864b 5470 pgdat_page_ext_init(pgdat);
5f63b720 5471
1da177e4
LT
5472 for (j = 0; j < MAX_NR_ZONES; j++) {
5473 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5474 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5475 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5476
febd5949
GZ
5477 size = zone->spanned_pages;
5478 realsize = freesize = zone->present_pages;
1da177e4 5479
0e0b864e 5480 /*
9feedc9d 5481 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5482 * is used by this zone for memmap. This affects the watermark
5483 * and per-cpu initialisations
5484 */
01cefaef 5485 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5486 if (!is_highmem_idx(j)) {
5487 if (freesize >= memmap_pages) {
5488 freesize -= memmap_pages;
5489 if (memmap_pages)
5490 printk(KERN_DEBUG
5491 " %s zone: %lu pages used for memmap\n",
5492 zone_names[j], memmap_pages);
5493 } else
1170532b 5494 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5495 zone_names[j], memmap_pages, freesize);
5496 }
0e0b864e 5497
6267276f 5498 /* Account for reserved pages */
9feedc9d
JL
5499 if (j == 0 && freesize > dma_reserve) {
5500 freesize -= dma_reserve;
d903ef9f 5501 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5502 zone_names[0], dma_reserve);
0e0b864e
MG
5503 }
5504
98d2b0eb 5505 if (!is_highmem_idx(j))
9feedc9d 5506 nr_kernel_pages += freesize;
01cefaef
JL
5507 /* Charge for highmem memmap if there are enough kernel pages */
5508 else if (nr_kernel_pages > memmap_pages * 2)
5509 nr_kernel_pages -= memmap_pages;
9feedc9d 5510 nr_all_pages += freesize;
1da177e4 5511
9feedc9d
JL
5512 /*
5513 * Set an approximate value for lowmem here, it will be adjusted
5514 * when the bootmem allocator frees pages into the buddy system.
5515 * And all highmem pages will be managed by the buddy system.
5516 */
5517 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5518#ifdef CONFIG_NUMA
d5f541ed 5519 zone->node = nid;
9feedc9d 5520 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5521 / 100;
9feedc9d 5522 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5523#endif
1da177e4
LT
5524 zone->name = zone_names[j];
5525 spin_lock_init(&zone->lock);
5526 spin_lock_init(&zone->lru_lock);
bdc8cb98 5527 zone_seqlock_init(zone);
1da177e4 5528 zone->zone_pgdat = pgdat;
ed8ece2e 5529 zone_pcp_init(zone);
81c0a2bb
JW
5530
5531 /* For bootup, initialized properly in watermark setup */
5532 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5533
bea8c150 5534 lruvec_init(&zone->lruvec);
1da177e4
LT
5535 if (!size)
5536 continue;
5537
955c1cd7 5538 set_pageblock_order();
7c45512d 5539 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5540 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5541 BUG_ON(ret);
76cdd58e 5542 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5543 }
5544}
5545
577a32f6 5546static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5547{
b0aeba74 5548 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5549 unsigned long __maybe_unused offset = 0;
5550
1da177e4
LT
5551 /* Skip empty nodes */
5552 if (!pgdat->node_spanned_pages)
5553 return;
5554
d41dee36 5555#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5556 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5557 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5558 /* ia64 gets its own node_mem_map, before this, without bootmem */
5559 if (!pgdat->node_mem_map) {
b0aeba74 5560 unsigned long size, end;
d41dee36
AW
5561 struct page *map;
5562
e984bb43
BP
5563 /*
5564 * The zone's endpoints aren't required to be MAX_ORDER
5565 * aligned but the node_mem_map endpoints must be in order
5566 * for the buddy allocator to function correctly.
5567 */
108bcc96 5568 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5569 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5570 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5571 map = alloc_remap(pgdat->node_id, size);
5572 if (!map)
6782832e
SS
5573 map = memblock_virt_alloc_node_nopanic(size,
5574 pgdat->node_id);
a1c34a3b 5575 pgdat->node_mem_map = map + offset;
1da177e4 5576 }
12d810c1 5577#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5578 /*
5579 * With no DISCONTIG, the global mem_map is just set as node 0's
5580 */
c713216d 5581 if (pgdat == NODE_DATA(0)) {
1da177e4 5582 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5583#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5584 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5585 mem_map -= offset;
0ee332c1 5586#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5587 }
1da177e4 5588#endif
d41dee36 5589#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5590}
5591
9109fb7b
JW
5592void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5593 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5594{
9109fb7b 5595 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5596 unsigned long start_pfn = 0;
5597 unsigned long end_pfn = 0;
9109fb7b 5598
88fdf75d 5599 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5600 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5601
3a80a7fa 5602 reset_deferred_meminit(pgdat);
1da177e4
LT
5603 pgdat->node_id = nid;
5604 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5605#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5606 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5607 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5608 (u64)start_pfn << PAGE_SHIFT,
5609 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5610#else
5611 start_pfn = node_start_pfn;
7960aedd
ZY
5612#endif
5613 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5614 zones_size, zholes_size);
1da177e4
LT
5615
5616 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5617#ifdef CONFIG_FLAT_NODE_MEM_MAP
5618 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5619 nid, (unsigned long)pgdat,
5620 (unsigned long)pgdat->node_mem_map);
5621#endif
1da177e4 5622
7f3eb55b 5623 free_area_init_core(pgdat);
1da177e4
LT
5624}
5625
0ee332c1 5626#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5627
5628#if MAX_NUMNODES > 1
5629/*
5630 * Figure out the number of possible node ids.
5631 */
f9872caf 5632void __init setup_nr_node_ids(void)
418508c1 5633{
904a9553 5634 unsigned int highest;
418508c1 5635
904a9553 5636 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5637 nr_node_ids = highest + 1;
5638}
418508c1
MS
5639#endif
5640
1e01979c
TH
5641/**
5642 * node_map_pfn_alignment - determine the maximum internode alignment
5643 *
5644 * This function should be called after node map is populated and sorted.
5645 * It calculates the maximum power of two alignment which can distinguish
5646 * all the nodes.
5647 *
5648 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5649 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5650 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5651 * shifted, 1GiB is enough and this function will indicate so.
5652 *
5653 * This is used to test whether pfn -> nid mapping of the chosen memory
5654 * model has fine enough granularity to avoid incorrect mapping for the
5655 * populated node map.
5656 *
5657 * Returns the determined alignment in pfn's. 0 if there is no alignment
5658 * requirement (single node).
5659 */
5660unsigned long __init node_map_pfn_alignment(void)
5661{
5662 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5663 unsigned long start, end, mask;
1e01979c 5664 int last_nid = -1;
c13291a5 5665 int i, nid;
1e01979c 5666
c13291a5 5667 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5668 if (!start || last_nid < 0 || last_nid == nid) {
5669 last_nid = nid;
5670 last_end = end;
5671 continue;
5672 }
5673
5674 /*
5675 * Start with a mask granular enough to pin-point to the
5676 * start pfn and tick off bits one-by-one until it becomes
5677 * too coarse to separate the current node from the last.
5678 */
5679 mask = ~((1 << __ffs(start)) - 1);
5680 while (mask && last_end <= (start & (mask << 1)))
5681 mask <<= 1;
5682
5683 /* accumulate all internode masks */
5684 accl_mask |= mask;
5685 }
5686
5687 /* convert mask to number of pages */
5688 return ~accl_mask + 1;
5689}
5690
a6af2bc3 5691/* Find the lowest pfn for a node */
b69a7288 5692static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5693{
a6af2bc3 5694 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5695 unsigned long start_pfn;
5696 int i;
1abbfb41 5697
c13291a5
TH
5698 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5699 min_pfn = min(min_pfn, start_pfn);
c713216d 5700
a6af2bc3 5701 if (min_pfn == ULONG_MAX) {
1170532b 5702 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5703 return 0;
5704 }
5705
5706 return min_pfn;
c713216d
MG
5707}
5708
5709/**
5710 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5711 *
5712 * It returns the minimum PFN based on information provided via
7d018176 5713 * memblock_set_node().
c713216d
MG
5714 */
5715unsigned long __init find_min_pfn_with_active_regions(void)
5716{
5717 return find_min_pfn_for_node(MAX_NUMNODES);
5718}
5719
37b07e41
LS
5720/*
5721 * early_calculate_totalpages()
5722 * Sum pages in active regions for movable zone.
4b0ef1fe 5723 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5724 */
484f51f8 5725static unsigned long __init early_calculate_totalpages(void)
7e63efef 5726{
7e63efef 5727 unsigned long totalpages = 0;
c13291a5
TH
5728 unsigned long start_pfn, end_pfn;
5729 int i, nid;
5730
5731 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5732 unsigned long pages = end_pfn - start_pfn;
7e63efef 5733
37b07e41
LS
5734 totalpages += pages;
5735 if (pages)
4b0ef1fe 5736 node_set_state(nid, N_MEMORY);
37b07e41 5737 }
b8af2941 5738 return totalpages;
7e63efef
MG
5739}
5740
2a1e274a
MG
5741/*
5742 * Find the PFN the Movable zone begins in each node. Kernel memory
5743 * is spread evenly between nodes as long as the nodes have enough
5744 * memory. When they don't, some nodes will have more kernelcore than
5745 * others
5746 */
b224ef85 5747static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5748{
5749 int i, nid;
5750 unsigned long usable_startpfn;
5751 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5752 /* save the state before borrow the nodemask */
4b0ef1fe 5753 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5754 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5755 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5756 struct memblock_region *r;
b2f3eebe
TC
5757
5758 /* Need to find movable_zone earlier when movable_node is specified. */
5759 find_usable_zone_for_movable();
5760
5761 /*
5762 * If movable_node is specified, ignore kernelcore and movablecore
5763 * options.
5764 */
5765 if (movable_node_is_enabled()) {
136199f0
EM
5766 for_each_memblock(memory, r) {
5767 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5768 continue;
5769
136199f0 5770 nid = r->nid;
b2f3eebe 5771
136199f0 5772 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5773 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5774 min(usable_startpfn, zone_movable_pfn[nid]) :
5775 usable_startpfn;
5776 }
5777
5778 goto out2;
5779 }
2a1e274a 5780
342332e6
TI
5781 /*
5782 * If kernelcore=mirror is specified, ignore movablecore option
5783 */
5784 if (mirrored_kernelcore) {
5785 bool mem_below_4gb_not_mirrored = false;
5786
5787 for_each_memblock(memory, r) {
5788 if (memblock_is_mirror(r))
5789 continue;
5790
5791 nid = r->nid;
5792
5793 usable_startpfn = memblock_region_memory_base_pfn(r);
5794
5795 if (usable_startpfn < 0x100000) {
5796 mem_below_4gb_not_mirrored = true;
5797 continue;
5798 }
5799
5800 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5801 min(usable_startpfn, zone_movable_pfn[nid]) :
5802 usable_startpfn;
5803 }
5804
5805 if (mem_below_4gb_not_mirrored)
5806 pr_warn("This configuration results in unmirrored kernel memory.");
5807
5808 goto out2;
5809 }
5810
7e63efef 5811 /*
b2f3eebe 5812 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5813 * kernelcore that corresponds so that memory usable for
5814 * any allocation type is evenly spread. If both kernelcore
5815 * and movablecore are specified, then the value of kernelcore
5816 * will be used for required_kernelcore if it's greater than
5817 * what movablecore would have allowed.
5818 */
5819 if (required_movablecore) {
7e63efef
MG
5820 unsigned long corepages;
5821
5822 /*
5823 * Round-up so that ZONE_MOVABLE is at least as large as what
5824 * was requested by the user
5825 */
5826 required_movablecore =
5827 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5828 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5829 corepages = totalpages - required_movablecore;
5830
5831 required_kernelcore = max(required_kernelcore, corepages);
5832 }
5833
bde304bd
XQ
5834 /*
5835 * If kernelcore was not specified or kernelcore size is larger
5836 * than totalpages, there is no ZONE_MOVABLE.
5837 */
5838 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5839 goto out;
2a1e274a
MG
5840
5841 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5842 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5843
5844restart:
5845 /* Spread kernelcore memory as evenly as possible throughout nodes */
5846 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5847 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5848 unsigned long start_pfn, end_pfn;
5849
2a1e274a
MG
5850 /*
5851 * Recalculate kernelcore_node if the division per node
5852 * now exceeds what is necessary to satisfy the requested
5853 * amount of memory for the kernel
5854 */
5855 if (required_kernelcore < kernelcore_node)
5856 kernelcore_node = required_kernelcore / usable_nodes;
5857
5858 /*
5859 * As the map is walked, we track how much memory is usable
5860 * by the kernel using kernelcore_remaining. When it is
5861 * 0, the rest of the node is usable by ZONE_MOVABLE
5862 */
5863 kernelcore_remaining = kernelcore_node;
5864
5865 /* Go through each range of PFNs within this node */
c13291a5 5866 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5867 unsigned long size_pages;
5868
c13291a5 5869 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5870 if (start_pfn >= end_pfn)
5871 continue;
5872
5873 /* Account for what is only usable for kernelcore */
5874 if (start_pfn < usable_startpfn) {
5875 unsigned long kernel_pages;
5876 kernel_pages = min(end_pfn, usable_startpfn)
5877 - start_pfn;
5878
5879 kernelcore_remaining -= min(kernel_pages,
5880 kernelcore_remaining);
5881 required_kernelcore -= min(kernel_pages,
5882 required_kernelcore);
5883
5884 /* Continue if range is now fully accounted */
5885 if (end_pfn <= usable_startpfn) {
5886
5887 /*
5888 * Push zone_movable_pfn to the end so
5889 * that if we have to rebalance
5890 * kernelcore across nodes, we will
5891 * not double account here
5892 */
5893 zone_movable_pfn[nid] = end_pfn;
5894 continue;
5895 }
5896 start_pfn = usable_startpfn;
5897 }
5898
5899 /*
5900 * The usable PFN range for ZONE_MOVABLE is from
5901 * start_pfn->end_pfn. Calculate size_pages as the
5902 * number of pages used as kernelcore
5903 */
5904 size_pages = end_pfn - start_pfn;
5905 if (size_pages > kernelcore_remaining)
5906 size_pages = kernelcore_remaining;
5907 zone_movable_pfn[nid] = start_pfn + size_pages;
5908
5909 /*
5910 * Some kernelcore has been met, update counts and
5911 * break if the kernelcore for this node has been
b8af2941 5912 * satisfied
2a1e274a
MG
5913 */
5914 required_kernelcore -= min(required_kernelcore,
5915 size_pages);
5916 kernelcore_remaining -= size_pages;
5917 if (!kernelcore_remaining)
5918 break;
5919 }
5920 }
5921
5922 /*
5923 * If there is still required_kernelcore, we do another pass with one
5924 * less node in the count. This will push zone_movable_pfn[nid] further
5925 * along on the nodes that still have memory until kernelcore is
b8af2941 5926 * satisfied
2a1e274a
MG
5927 */
5928 usable_nodes--;
5929 if (usable_nodes && required_kernelcore > usable_nodes)
5930 goto restart;
5931
b2f3eebe 5932out2:
2a1e274a
MG
5933 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5934 for (nid = 0; nid < MAX_NUMNODES; nid++)
5935 zone_movable_pfn[nid] =
5936 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5937
20e6926d 5938out:
66918dcd 5939 /* restore the node_state */
4b0ef1fe 5940 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5941}
5942
4b0ef1fe
LJ
5943/* Any regular or high memory on that node ? */
5944static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5945{
37b07e41
LS
5946 enum zone_type zone_type;
5947
4b0ef1fe
LJ
5948 if (N_MEMORY == N_NORMAL_MEMORY)
5949 return;
5950
5951 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5952 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5953 if (populated_zone(zone)) {
4b0ef1fe
LJ
5954 node_set_state(nid, N_HIGH_MEMORY);
5955 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5956 zone_type <= ZONE_NORMAL)
5957 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5958 break;
5959 }
37b07e41 5960 }
37b07e41
LS
5961}
5962
c713216d
MG
5963/**
5964 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5965 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5966 *
5967 * This will call free_area_init_node() for each active node in the system.
7d018176 5968 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5969 * zone in each node and their holes is calculated. If the maximum PFN
5970 * between two adjacent zones match, it is assumed that the zone is empty.
5971 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5972 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5973 * starts where the previous one ended. For example, ZONE_DMA32 starts
5974 * at arch_max_dma_pfn.
5975 */
5976void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5977{
c13291a5
TH
5978 unsigned long start_pfn, end_pfn;
5979 int i, nid;
a6af2bc3 5980
c713216d
MG
5981 /* Record where the zone boundaries are */
5982 memset(arch_zone_lowest_possible_pfn, 0,
5983 sizeof(arch_zone_lowest_possible_pfn));
5984 memset(arch_zone_highest_possible_pfn, 0,
5985 sizeof(arch_zone_highest_possible_pfn));
5986 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5987 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5988 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5989 if (i == ZONE_MOVABLE)
5990 continue;
c713216d
MG
5991 arch_zone_lowest_possible_pfn[i] =
5992 arch_zone_highest_possible_pfn[i-1];
5993 arch_zone_highest_possible_pfn[i] =
5994 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5995 }
2a1e274a
MG
5996 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5997 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5998
5999 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6000 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6001 find_zone_movable_pfns_for_nodes();
c713216d 6002
c713216d 6003 /* Print out the zone ranges */
f88dfff5 6004 pr_info("Zone ranges:\n");
2a1e274a
MG
6005 for (i = 0; i < MAX_NR_ZONES; i++) {
6006 if (i == ZONE_MOVABLE)
6007 continue;
f88dfff5 6008 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6009 if (arch_zone_lowest_possible_pfn[i] ==
6010 arch_zone_highest_possible_pfn[i])
f88dfff5 6011 pr_cont("empty\n");
72f0ba02 6012 else
8d29e18a
JG
6013 pr_cont("[mem %#018Lx-%#018Lx]\n",
6014 (u64)arch_zone_lowest_possible_pfn[i]
6015 << PAGE_SHIFT,
6016 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6017 << PAGE_SHIFT) - 1);
2a1e274a
MG
6018 }
6019
6020 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6021 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6022 for (i = 0; i < MAX_NUMNODES; i++) {
6023 if (zone_movable_pfn[i])
8d29e18a
JG
6024 pr_info(" Node %d: %#018Lx\n", i,
6025 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6026 }
c713216d 6027
f2d52fe5 6028 /* Print out the early node map */
f88dfff5 6029 pr_info("Early memory node ranges\n");
c13291a5 6030 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6031 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6032 (u64)start_pfn << PAGE_SHIFT,
6033 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6034
6035 /* Initialise every node */
708614e6 6036 mminit_verify_pageflags_layout();
8ef82866 6037 setup_nr_node_ids();
c713216d
MG
6038 for_each_online_node(nid) {
6039 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6040 free_area_init_node(nid, NULL,
c713216d 6041 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6042
6043 /* Any memory on that node */
6044 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6045 node_set_state(nid, N_MEMORY);
6046 check_for_memory(pgdat, nid);
c713216d
MG
6047 }
6048}
2a1e274a 6049
7e63efef 6050static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6051{
6052 unsigned long long coremem;
6053 if (!p)
6054 return -EINVAL;
6055
6056 coremem = memparse(p, &p);
7e63efef 6057 *core = coremem >> PAGE_SHIFT;
2a1e274a 6058
7e63efef 6059 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6060 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6061
6062 return 0;
6063}
ed7ed365 6064
7e63efef
MG
6065/*
6066 * kernelcore=size sets the amount of memory for use for allocations that
6067 * cannot be reclaimed or migrated.
6068 */
6069static int __init cmdline_parse_kernelcore(char *p)
6070{
342332e6
TI
6071 /* parse kernelcore=mirror */
6072 if (parse_option_str(p, "mirror")) {
6073 mirrored_kernelcore = true;
6074 return 0;
6075 }
6076
7e63efef
MG
6077 return cmdline_parse_core(p, &required_kernelcore);
6078}
6079
6080/*
6081 * movablecore=size sets the amount of memory for use for allocations that
6082 * can be reclaimed or migrated.
6083 */
6084static int __init cmdline_parse_movablecore(char *p)
6085{
6086 return cmdline_parse_core(p, &required_movablecore);
6087}
6088
ed7ed365 6089early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6090early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6091
0ee332c1 6092#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6093
c3d5f5f0
JL
6094void adjust_managed_page_count(struct page *page, long count)
6095{
6096 spin_lock(&managed_page_count_lock);
6097 page_zone(page)->managed_pages += count;
6098 totalram_pages += count;
3dcc0571
JL
6099#ifdef CONFIG_HIGHMEM
6100 if (PageHighMem(page))
6101 totalhigh_pages += count;
6102#endif
c3d5f5f0
JL
6103 spin_unlock(&managed_page_count_lock);
6104}
3dcc0571 6105EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6106
11199692 6107unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6108{
11199692
JL
6109 void *pos;
6110 unsigned long pages = 0;
69afade7 6111
11199692
JL
6112 start = (void *)PAGE_ALIGN((unsigned long)start);
6113 end = (void *)((unsigned long)end & PAGE_MASK);
6114 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6115 if ((unsigned int)poison <= 0xFF)
11199692
JL
6116 memset(pos, poison, PAGE_SIZE);
6117 free_reserved_page(virt_to_page(pos));
69afade7
JL
6118 }
6119
6120 if (pages && s)
11199692 6121 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6122 s, pages << (PAGE_SHIFT - 10), start, end);
6123
6124 return pages;
6125}
11199692 6126EXPORT_SYMBOL(free_reserved_area);
69afade7 6127
cfa11e08
JL
6128#ifdef CONFIG_HIGHMEM
6129void free_highmem_page(struct page *page)
6130{
6131 __free_reserved_page(page);
6132 totalram_pages++;
7b4b2a0d 6133 page_zone(page)->managed_pages++;
cfa11e08
JL
6134 totalhigh_pages++;
6135}
6136#endif
6137
7ee3d4e8
JL
6138
6139void __init mem_init_print_info(const char *str)
6140{
6141 unsigned long physpages, codesize, datasize, rosize, bss_size;
6142 unsigned long init_code_size, init_data_size;
6143
6144 physpages = get_num_physpages();
6145 codesize = _etext - _stext;
6146 datasize = _edata - _sdata;
6147 rosize = __end_rodata - __start_rodata;
6148 bss_size = __bss_stop - __bss_start;
6149 init_data_size = __init_end - __init_begin;
6150 init_code_size = _einittext - _sinittext;
6151
6152 /*
6153 * Detect special cases and adjust section sizes accordingly:
6154 * 1) .init.* may be embedded into .data sections
6155 * 2) .init.text.* may be out of [__init_begin, __init_end],
6156 * please refer to arch/tile/kernel/vmlinux.lds.S.
6157 * 3) .rodata.* may be embedded into .text or .data sections.
6158 */
6159#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6160 do { \
6161 if (start <= pos && pos < end && size > adj) \
6162 size -= adj; \
6163 } while (0)
7ee3d4e8
JL
6164
6165 adj_init_size(__init_begin, __init_end, init_data_size,
6166 _sinittext, init_code_size);
6167 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6168 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6169 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6170 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6171
6172#undef adj_init_size
6173
756a025f 6174 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6175#ifdef CONFIG_HIGHMEM
756a025f 6176 ", %luK highmem"
7ee3d4e8 6177#endif
756a025f
JP
6178 "%s%s)\n",
6179 nr_free_pages() << (PAGE_SHIFT - 10),
6180 physpages << (PAGE_SHIFT - 10),
6181 codesize >> 10, datasize >> 10, rosize >> 10,
6182 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6183 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6184 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6185#ifdef CONFIG_HIGHMEM
756a025f 6186 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6187#endif
756a025f 6188 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6189}
6190
0e0b864e 6191/**
88ca3b94
RD
6192 * set_dma_reserve - set the specified number of pages reserved in the first zone
6193 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6194 *
013110a7 6195 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6196 * In the DMA zone, a significant percentage may be consumed by kernel image
6197 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6198 * function may optionally be used to account for unfreeable pages in the
6199 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6200 * smaller per-cpu batchsize.
0e0b864e
MG
6201 */
6202void __init set_dma_reserve(unsigned long new_dma_reserve)
6203{
6204 dma_reserve = new_dma_reserve;
6205}
6206
1da177e4
LT
6207void __init free_area_init(unsigned long *zones_size)
6208{
9109fb7b 6209 free_area_init_node(0, zones_size,
1da177e4
LT
6210 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6211}
1da177e4 6212
1da177e4
LT
6213static int page_alloc_cpu_notify(struct notifier_block *self,
6214 unsigned long action, void *hcpu)
6215{
6216 int cpu = (unsigned long)hcpu;
1da177e4 6217
8bb78442 6218 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6219 lru_add_drain_cpu(cpu);
9f8f2172
CL
6220 drain_pages(cpu);
6221
6222 /*
6223 * Spill the event counters of the dead processor
6224 * into the current processors event counters.
6225 * This artificially elevates the count of the current
6226 * processor.
6227 */
f8891e5e 6228 vm_events_fold_cpu(cpu);
9f8f2172
CL
6229
6230 /*
6231 * Zero the differential counters of the dead processor
6232 * so that the vm statistics are consistent.
6233 *
6234 * This is only okay since the processor is dead and cannot
6235 * race with what we are doing.
6236 */
2bb921e5 6237 cpu_vm_stats_fold(cpu);
1da177e4
LT
6238 }
6239 return NOTIFY_OK;
6240}
1da177e4
LT
6241
6242void __init page_alloc_init(void)
6243{
6244 hotcpu_notifier(page_alloc_cpu_notify, 0);
6245}
6246
cb45b0e9 6247/*
34b10060 6248 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6249 * or min_free_kbytes changes.
6250 */
6251static void calculate_totalreserve_pages(void)
6252{
6253 struct pglist_data *pgdat;
6254 unsigned long reserve_pages = 0;
2f6726e5 6255 enum zone_type i, j;
cb45b0e9
HA
6256
6257 for_each_online_pgdat(pgdat) {
6258 for (i = 0; i < MAX_NR_ZONES; i++) {
6259 struct zone *zone = pgdat->node_zones + i;
3484b2de 6260 long max = 0;
cb45b0e9
HA
6261
6262 /* Find valid and maximum lowmem_reserve in the zone */
6263 for (j = i; j < MAX_NR_ZONES; j++) {
6264 if (zone->lowmem_reserve[j] > max)
6265 max = zone->lowmem_reserve[j];
6266 }
6267
41858966
MG
6268 /* we treat the high watermark as reserved pages. */
6269 max += high_wmark_pages(zone);
cb45b0e9 6270
b40da049
JL
6271 if (max > zone->managed_pages)
6272 max = zone->managed_pages;
a8d01437
JW
6273
6274 zone->totalreserve_pages = max;
6275
cb45b0e9
HA
6276 reserve_pages += max;
6277 }
6278 }
6279 totalreserve_pages = reserve_pages;
6280}
6281
1da177e4
LT
6282/*
6283 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6284 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6285 * has a correct pages reserved value, so an adequate number of
6286 * pages are left in the zone after a successful __alloc_pages().
6287 */
6288static void setup_per_zone_lowmem_reserve(void)
6289{
6290 struct pglist_data *pgdat;
2f6726e5 6291 enum zone_type j, idx;
1da177e4 6292
ec936fc5 6293 for_each_online_pgdat(pgdat) {
1da177e4
LT
6294 for (j = 0; j < MAX_NR_ZONES; j++) {
6295 struct zone *zone = pgdat->node_zones + j;
b40da049 6296 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6297
6298 zone->lowmem_reserve[j] = 0;
6299
2f6726e5
CL
6300 idx = j;
6301 while (idx) {
1da177e4
LT
6302 struct zone *lower_zone;
6303
2f6726e5
CL
6304 idx--;
6305
1da177e4
LT
6306 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6307 sysctl_lowmem_reserve_ratio[idx] = 1;
6308
6309 lower_zone = pgdat->node_zones + idx;
b40da049 6310 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6311 sysctl_lowmem_reserve_ratio[idx];
b40da049 6312 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6313 }
6314 }
6315 }
cb45b0e9
HA
6316
6317 /* update totalreserve_pages */
6318 calculate_totalreserve_pages();
1da177e4
LT
6319}
6320
cfd3da1e 6321static void __setup_per_zone_wmarks(void)
1da177e4
LT
6322{
6323 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6324 unsigned long lowmem_pages = 0;
6325 struct zone *zone;
6326 unsigned long flags;
6327
6328 /* Calculate total number of !ZONE_HIGHMEM pages */
6329 for_each_zone(zone) {
6330 if (!is_highmem(zone))
b40da049 6331 lowmem_pages += zone->managed_pages;
1da177e4
LT
6332 }
6333
6334 for_each_zone(zone) {
ac924c60
AM
6335 u64 tmp;
6336
1125b4e3 6337 spin_lock_irqsave(&zone->lock, flags);
b40da049 6338 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6339 do_div(tmp, lowmem_pages);
1da177e4
LT
6340 if (is_highmem(zone)) {
6341 /*
669ed175
NP
6342 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6343 * need highmem pages, so cap pages_min to a small
6344 * value here.
6345 *
41858966 6346 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6347 * deltas control asynch page reclaim, and so should
669ed175 6348 * not be capped for highmem.
1da177e4 6349 */
90ae8d67 6350 unsigned long min_pages;
1da177e4 6351
b40da049 6352 min_pages = zone->managed_pages / 1024;
90ae8d67 6353 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6354 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6355 } else {
669ed175
NP
6356 /*
6357 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6358 * proportionate to the zone's size.
6359 */
41858966 6360 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6361 }
6362
795ae7a0
JW
6363 /*
6364 * Set the kswapd watermarks distance according to the
6365 * scale factor in proportion to available memory, but
6366 * ensure a minimum size on small systems.
6367 */
6368 tmp = max_t(u64, tmp >> 2,
6369 mult_frac(zone->managed_pages,
6370 watermark_scale_factor, 10000));
6371
6372 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6373 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6374
81c0a2bb 6375 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6376 high_wmark_pages(zone) - low_wmark_pages(zone) -
6377 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6378
1125b4e3 6379 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6380 }
cb45b0e9
HA
6381
6382 /* update totalreserve_pages */
6383 calculate_totalreserve_pages();
1da177e4
LT
6384}
6385
cfd3da1e
MG
6386/**
6387 * setup_per_zone_wmarks - called when min_free_kbytes changes
6388 * or when memory is hot-{added|removed}
6389 *
6390 * Ensures that the watermark[min,low,high] values for each zone are set
6391 * correctly with respect to min_free_kbytes.
6392 */
6393void setup_per_zone_wmarks(void)
6394{
6395 mutex_lock(&zonelists_mutex);
6396 __setup_per_zone_wmarks();
6397 mutex_unlock(&zonelists_mutex);
6398}
6399
55a4462a 6400/*
556adecb
RR
6401 * The inactive anon list should be small enough that the VM never has to
6402 * do too much work, but large enough that each inactive page has a chance
6403 * to be referenced again before it is swapped out.
6404 *
6405 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6406 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6407 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6408 * the anonymous pages are kept on the inactive list.
6409 *
6410 * total target max
6411 * memory ratio inactive anon
6412 * -------------------------------------
6413 * 10MB 1 5MB
6414 * 100MB 1 50MB
6415 * 1GB 3 250MB
6416 * 10GB 10 0.9GB
6417 * 100GB 31 3GB
6418 * 1TB 101 10GB
6419 * 10TB 320 32GB
6420 */
1b79acc9 6421static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6422{
96cb4df5 6423 unsigned int gb, ratio;
556adecb 6424
96cb4df5 6425 /* Zone size in gigabytes */
b40da049 6426 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6427 if (gb)
556adecb 6428 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6429 else
6430 ratio = 1;
556adecb 6431
96cb4df5
MK
6432 zone->inactive_ratio = ratio;
6433}
556adecb 6434
839a4fcc 6435static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6436{
6437 struct zone *zone;
6438
6439 for_each_zone(zone)
6440 calculate_zone_inactive_ratio(zone);
556adecb
RR
6441}
6442
1da177e4
LT
6443/*
6444 * Initialise min_free_kbytes.
6445 *
6446 * For small machines we want it small (128k min). For large machines
6447 * we want it large (64MB max). But it is not linear, because network
6448 * bandwidth does not increase linearly with machine size. We use
6449 *
b8af2941 6450 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6451 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6452 *
6453 * which yields
6454 *
6455 * 16MB: 512k
6456 * 32MB: 724k
6457 * 64MB: 1024k
6458 * 128MB: 1448k
6459 * 256MB: 2048k
6460 * 512MB: 2896k
6461 * 1024MB: 4096k
6462 * 2048MB: 5792k
6463 * 4096MB: 8192k
6464 * 8192MB: 11584k
6465 * 16384MB: 16384k
6466 */
1b79acc9 6467int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6468{
6469 unsigned long lowmem_kbytes;
5f12733e 6470 int new_min_free_kbytes;
1da177e4
LT
6471
6472 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6473 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6474
6475 if (new_min_free_kbytes > user_min_free_kbytes) {
6476 min_free_kbytes = new_min_free_kbytes;
6477 if (min_free_kbytes < 128)
6478 min_free_kbytes = 128;
6479 if (min_free_kbytes > 65536)
6480 min_free_kbytes = 65536;
6481 } else {
6482 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6483 new_min_free_kbytes, user_min_free_kbytes);
6484 }
bc75d33f 6485 setup_per_zone_wmarks();
a6cccdc3 6486 refresh_zone_stat_thresholds();
1da177e4 6487 setup_per_zone_lowmem_reserve();
556adecb 6488 setup_per_zone_inactive_ratio();
1da177e4
LT
6489 return 0;
6490}
bc22af74 6491core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6492
6493/*
b8af2941 6494 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6495 * that we can call two helper functions whenever min_free_kbytes
6496 * changes.
6497 */
cccad5b9 6498int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6499 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6500{
da8c757b
HP
6501 int rc;
6502
6503 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6504 if (rc)
6505 return rc;
6506
5f12733e
MH
6507 if (write) {
6508 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6509 setup_per_zone_wmarks();
5f12733e 6510 }
1da177e4
LT
6511 return 0;
6512}
6513
795ae7a0
JW
6514int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6515 void __user *buffer, size_t *length, loff_t *ppos)
6516{
6517 int rc;
6518
6519 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6520 if (rc)
6521 return rc;
6522
6523 if (write)
6524 setup_per_zone_wmarks();
6525
6526 return 0;
6527}
6528
9614634f 6529#ifdef CONFIG_NUMA
cccad5b9 6530int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6531 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6532{
6533 struct zone *zone;
6534 int rc;
6535
8d65af78 6536 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6537 if (rc)
6538 return rc;
6539
6540 for_each_zone(zone)
b40da049 6541 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6542 sysctl_min_unmapped_ratio) / 100;
6543 return 0;
6544}
0ff38490 6545
cccad5b9 6546int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6547 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6548{
6549 struct zone *zone;
6550 int rc;
6551
8d65af78 6552 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6553 if (rc)
6554 return rc;
6555
6556 for_each_zone(zone)
b40da049 6557 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6558 sysctl_min_slab_ratio) / 100;
6559 return 0;
6560}
9614634f
CL
6561#endif
6562
1da177e4
LT
6563/*
6564 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6565 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6566 * whenever sysctl_lowmem_reserve_ratio changes.
6567 *
6568 * The reserve ratio obviously has absolutely no relation with the
41858966 6569 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6570 * if in function of the boot time zone sizes.
6571 */
cccad5b9 6572int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6573 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6574{
8d65af78 6575 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6576 setup_per_zone_lowmem_reserve();
6577 return 0;
6578}
6579
8ad4b1fb
RS
6580/*
6581 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6582 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6583 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6584 */
cccad5b9 6585int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6586 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6587{
6588 struct zone *zone;
7cd2b0a3 6589 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6590 int ret;
6591
7cd2b0a3
DR
6592 mutex_lock(&pcp_batch_high_lock);
6593 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6594
8d65af78 6595 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6596 if (!write || ret < 0)
6597 goto out;
6598
6599 /* Sanity checking to avoid pcp imbalance */
6600 if (percpu_pagelist_fraction &&
6601 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6602 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6603 ret = -EINVAL;
6604 goto out;
6605 }
6606
6607 /* No change? */
6608 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6609 goto out;
c8e251fa 6610
364df0eb 6611 for_each_populated_zone(zone) {
7cd2b0a3
DR
6612 unsigned int cpu;
6613
22a7f12b 6614 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6615 pageset_set_high_and_batch(zone,
6616 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6617 }
7cd2b0a3 6618out:
c8e251fa 6619 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6620 return ret;
8ad4b1fb
RS
6621}
6622
a9919c79 6623#ifdef CONFIG_NUMA
f034b5d4 6624int hashdist = HASHDIST_DEFAULT;
1da177e4 6625
1da177e4
LT
6626static int __init set_hashdist(char *str)
6627{
6628 if (!str)
6629 return 0;
6630 hashdist = simple_strtoul(str, &str, 0);
6631 return 1;
6632}
6633__setup("hashdist=", set_hashdist);
6634#endif
6635
6636/*
6637 * allocate a large system hash table from bootmem
6638 * - it is assumed that the hash table must contain an exact power-of-2
6639 * quantity of entries
6640 * - limit is the number of hash buckets, not the total allocation size
6641 */
6642void *__init alloc_large_system_hash(const char *tablename,
6643 unsigned long bucketsize,
6644 unsigned long numentries,
6645 int scale,
6646 int flags,
6647 unsigned int *_hash_shift,
6648 unsigned int *_hash_mask,
31fe62b9
TB
6649 unsigned long low_limit,
6650 unsigned long high_limit)
1da177e4 6651{
31fe62b9 6652 unsigned long long max = high_limit;
1da177e4
LT
6653 unsigned long log2qty, size;
6654 void *table = NULL;
6655
6656 /* allow the kernel cmdline to have a say */
6657 if (!numentries) {
6658 /* round applicable memory size up to nearest megabyte */
04903664 6659 numentries = nr_kernel_pages;
a7e83318
JZ
6660
6661 /* It isn't necessary when PAGE_SIZE >= 1MB */
6662 if (PAGE_SHIFT < 20)
6663 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6664
6665 /* limit to 1 bucket per 2^scale bytes of low memory */
6666 if (scale > PAGE_SHIFT)
6667 numentries >>= (scale - PAGE_SHIFT);
6668 else
6669 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6670
6671 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6672 if (unlikely(flags & HASH_SMALL)) {
6673 /* Makes no sense without HASH_EARLY */
6674 WARN_ON(!(flags & HASH_EARLY));
6675 if (!(numentries >> *_hash_shift)) {
6676 numentries = 1UL << *_hash_shift;
6677 BUG_ON(!numentries);
6678 }
6679 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6680 numentries = PAGE_SIZE / bucketsize;
1da177e4 6681 }
6e692ed3 6682 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6683
6684 /* limit allocation size to 1/16 total memory by default */
6685 if (max == 0) {
6686 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6687 do_div(max, bucketsize);
6688 }
074b8517 6689 max = min(max, 0x80000000ULL);
1da177e4 6690
31fe62b9
TB
6691 if (numentries < low_limit)
6692 numentries = low_limit;
1da177e4
LT
6693 if (numentries > max)
6694 numentries = max;
6695
f0d1b0b3 6696 log2qty = ilog2(numentries);
1da177e4
LT
6697
6698 do {
6699 size = bucketsize << log2qty;
6700 if (flags & HASH_EARLY)
6782832e 6701 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6702 else if (hashdist)
6703 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6704 else {
1037b83b
ED
6705 /*
6706 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6707 * some pages at the end of hash table which
6708 * alloc_pages_exact() automatically does
1037b83b 6709 */
264ef8a9 6710 if (get_order(size) < MAX_ORDER) {
a1dd268c 6711 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6712 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6713 }
1da177e4
LT
6714 }
6715 } while (!table && size > PAGE_SIZE && --log2qty);
6716
6717 if (!table)
6718 panic("Failed to allocate %s hash table\n", tablename);
6719
1170532b
JP
6720 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6721 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6722
6723 if (_hash_shift)
6724 *_hash_shift = log2qty;
6725 if (_hash_mask)
6726 *_hash_mask = (1 << log2qty) - 1;
6727
6728 return table;
6729}
a117e66e 6730
835c134e
MG
6731/* Return a pointer to the bitmap storing bits affecting a block of pages */
6732static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6733 unsigned long pfn)
6734{
6735#ifdef CONFIG_SPARSEMEM
6736 return __pfn_to_section(pfn)->pageblock_flags;
6737#else
6738 return zone->pageblock_flags;
6739#endif /* CONFIG_SPARSEMEM */
6740}
6741
6742static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6743{
6744#ifdef CONFIG_SPARSEMEM
6745 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6746 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6747#else
c060f943 6748 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6749 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6750#endif /* CONFIG_SPARSEMEM */
6751}
6752
6753/**
1aab4d77 6754 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6755 * @page: The page within the block of interest
1aab4d77
RD
6756 * @pfn: The target page frame number
6757 * @end_bitidx: The last bit of interest to retrieve
6758 * @mask: mask of bits that the caller is interested in
6759 *
6760 * Return: pageblock_bits flags
835c134e 6761 */
dc4b0caf 6762unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6763 unsigned long end_bitidx,
6764 unsigned long mask)
835c134e
MG
6765{
6766 struct zone *zone;
6767 unsigned long *bitmap;
dc4b0caf 6768 unsigned long bitidx, word_bitidx;
e58469ba 6769 unsigned long word;
835c134e
MG
6770
6771 zone = page_zone(page);
835c134e
MG
6772 bitmap = get_pageblock_bitmap(zone, pfn);
6773 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6774 word_bitidx = bitidx / BITS_PER_LONG;
6775 bitidx &= (BITS_PER_LONG-1);
835c134e 6776
e58469ba
MG
6777 word = bitmap[word_bitidx];
6778 bitidx += end_bitidx;
6779 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6780}
6781
6782/**
dc4b0caf 6783 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6784 * @page: The page within the block of interest
835c134e 6785 * @flags: The flags to set
1aab4d77
RD
6786 * @pfn: The target page frame number
6787 * @end_bitidx: The last bit of interest
6788 * @mask: mask of bits that the caller is interested in
835c134e 6789 */
dc4b0caf
MG
6790void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6791 unsigned long pfn,
e58469ba
MG
6792 unsigned long end_bitidx,
6793 unsigned long mask)
835c134e
MG
6794{
6795 struct zone *zone;
6796 unsigned long *bitmap;
dc4b0caf 6797 unsigned long bitidx, word_bitidx;
e58469ba
MG
6798 unsigned long old_word, word;
6799
6800 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6801
6802 zone = page_zone(page);
835c134e
MG
6803 bitmap = get_pageblock_bitmap(zone, pfn);
6804 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6805 word_bitidx = bitidx / BITS_PER_LONG;
6806 bitidx &= (BITS_PER_LONG-1);
6807
309381fe 6808 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6809
e58469ba
MG
6810 bitidx += end_bitidx;
6811 mask <<= (BITS_PER_LONG - bitidx - 1);
6812 flags <<= (BITS_PER_LONG - bitidx - 1);
6813
4db0c3c2 6814 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6815 for (;;) {
6816 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6817 if (word == old_word)
6818 break;
6819 word = old_word;
6820 }
835c134e 6821}
a5d76b54
KH
6822
6823/*
80934513
MK
6824 * This function checks whether pageblock includes unmovable pages or not.
6825 * If @count is not zero, it is okay to include less @count unmovable pages
6826 *
b8af2941 6827 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6828 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6829 * expect this function should be exact.
a5d76b54 6830 */
b023f468
WC
6831bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6832 bool skip_hwpoisoned_pages)
49ac8255
KH
6833{
6834 unsigned long pfn, iter, found;
47118af0
MN
6835 int mt;
6836
49ac8255
KH
6837 /*
6838 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6839 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6840 */
6841 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6842 return false;
47118af0
MN
6843 mt = get_pageblock_migratetype(page);
6844 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6845 return false;
49ac8255
KH
6846
6847 pfn = page_to_pfn(page);
6848 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6849 unsigned long check = pfn + iter;
6850
29723fcc 6851 if (!pfn_valid_within(check))
49ac8255 6852 continue;
29723fcc 6853
49ac8255 6854 page = pfn_to_page(check);
c8721bbb
NH
6855
6856 /*
6857 * Hugepages are not in LRU lists, but they're movable.
6858 * We need not scan over tail pages bacause we don't
6859 * handle each tail page individually in migration.
6860 */
6861 if (PageHuge(page)) {
6862 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6863 continue;
6864 }
6865
97d255c8
MK
6866 /*
6867 * We can't use page_count without pin a page
6868 * because another CPU can free compound page.
6869 * This check already skips compound tails of THP
0139aa7b 6870 * because their page->_refcount is zero at all time.
97d255c8 6871 */
fe896d18 6872 if (!page_ref_count(page)) {
49ac8255
KH
6873 if (PageBuddy(page))
6874 iter += (1 << page_order(page)) - 1;
6875 continue;
6876 }
97d255c8 6877
b023f468
WC
6878 /*
6879 * The HWPoisoned page may be not in buddy system, and
6880 * page_count() is not 0.
6881 */
6882 if (skip_hwpoisoned_pages && PageHWPoison(page))
6883 continue;
6884
49ac8255
KH
6885 if (!PageLRU(page))
6886 found++;
6887 /*
6b4f7799
JW
6888 * If there are RECLAIMABLE pages, we need to check
6889 * it. But now, memory offline itself doesn't call
6890 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6891 */
6892 /*
6893 * If the page is not RAM, page_count()should be 0.
6894 * we don't need more check. This is an _used_ not-movable page.
6895 *
6896 * The problematic thing here is PG_reserved pages. PG_reserved
6897 * is set to both of a memory hole page and a _used_ kernel
6898 * page at boot.
6899 */
6900 if (found > count)
80934513 6901 return true;
49ac8255 6902 }
80934513 6903 return false;
49ac8255
KH
6904}
6905
6906bool is_pageblock_removable_nolock(struct page *page)
6907{
656a0706
MH
6908 struct zone *zone;
6909 unsigned long pfn;
687875fb
MH
6910
6911 /*
6912 * We have to be careful here because we are iterating over memory
6913 * sections which are not zone aware so we might end up outside of
6914 * the zone but still within the section.
656a0706
MH
6915 * We have to take care about the node as well. If the node is offline
6916 * its NODE_DATA will be NULL - see page_zone.
687875fb 6917 */
656a0706
MH
6918 if (!node_online(page_to_nid(page)))
6919 return false;
6920
6921 zone = page_zone(page);
6922 pfn = page_to_pfn(page);
108bcc96 6923 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6924 return false;
6925
b023f468 6926 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6927}
0c0e6195 6928
080fe206 6929#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6930
6931static unsigned long pfn_max_align_down(unsigned long pfn)
6932{
6933 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6934 pageblock_nr_pages) - 1);
6935}
6936
6937static unsigned long pfn_max_align_up(unsigned long pfn)
6938{
6939 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6940 pageblock_nr_pages));
6941}
6942
041d3a8c 6943/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6944static int __alloc_contig_migrate_range(struct compact_control *cc,
6945 unsigned long start, unsigned long end)
041d3a8c
MN
6946{
6947 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6948 unsigned long nr_reclaimed;
041d3a8c
MN
6949 unsigned long pfn = start;
6950 unsigned int tries = 0;
6951 int ret = 0;
6952
be49a6e1 6953 migrate_prep();
041d3a8c 6954
bb13ffeb 6955 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6956 if (fatal_signal_pending(current)) {
6957 ret = -EINTR;
6958 break;
6959 }
6960
bb13ffeb
MG
6961 if (list_empty(&cc->migratepages)) {
6962 cc->nr_migratepages = 0;
edc2ca61 6963 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6964 if (!pfn) {
6965 ret = -EINTR;
6966 break;
6967 }
6968 tries = 0;
6969 } else if (++tries == 5) {
6970 ret = ret < 0 ? ret : -EBUSY;
6971 break;
6972 }
6973
beb51eaa
MK
6974 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6975 &cc->migratepages);
6976 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6977
9c620e2b 6978 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6979 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6980 }
2a6f5124
SP
6981 if (ret < 0) {
6982 putback_movable_pages(&cc->migratepages);
6983 return ret;
6984 }
6985 return 0;
041d3a8c
MN
6986}
6987
6988/**
6989 * alloc_contig_range() -- tries to allocate given range of pages
6990 * @start: start PFN to allocate
6991 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6992 * @migratetype: migratetype of the underlaying pageblocks (either
6993 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6994 * in range must have the same migratetype and it must
6995 * be either of the two.
041d3a8c
MN
6996 *
6997 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6998 * aligned, however it's the caller's responsibility to guarantee that
6999 * we are the only thread that changes migrate type of pageblocks the
7000 * pages fall in.
7001 *
7002 * The PFN range must belong to a single zone.
7003 *
7004 * Returns zero on success or negative error code. On success all
7005 * pages which PFN is in [start, end) are allocated for the caller and
7006 * need to be freed with free_contig_range().
7007 */
0815f3d8
MN
7008int alloc_contig_range(unsigned long start, unsigned long end,
7009 unsigned migratetype)
041d3a8c 7010{
041d3a8c 7011 unsigned long outer_start, outer_end;
d00181b9
KS
7012 unsigned int order;
7013 int ret = 0;
041d3a8c 7014
bb13ffeb
MG
7015 struct compact_control cc = {
7016 .nr_migratepages = 0,
7017 .order = -1,
7018 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7019 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7020 .ignore_skip_hint = true,
7021 };
7022 INIT_LIST_HEAD(&cc.migratepages);
7023
041d3a8c
MN
7024 /*
7025 * What we do here is we mark all pageblocks in range as
7026 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7027 * have different sizes, and due to the way page allocator
7028 * work, we align the range to biggest of the two pages so
7029 * that page allocator won't try to merge buddies from
7030 * different pageblocks and change MIGRATE_ISOLATE to some
7031 * other migration type.
7032 *
7033 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7034 * migrate the pages from an unaligned range (ie. pages that
7035 * we are interested in). This will put all the pages in
7036 * range back to page allocator as MIGRATE_ISOLATE.
7037 *
7038 * When this is done, we take the pages in range from page
7039 * allocator removing them from the buddy system. This way
7040 * page allocator will never consider using them.
7041 *
7042 * This lets us mark the pageblocks back as
7043 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7044 * aligned range but not in the unaligned, original range are
7045 * put back to page allocator so that buddy can use them.
7046 */
7047
7048 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7049 pfn_max_align_up(end), migratetype,
7050 false);
041d3a8c 7051 if (ret)
86a595f9 7052 return ret;
041d3a8c 7053
8ef5849f
JK
7054 /*
7055 * In case of -EBUSY, we'd like to know which page causes problem.
7056 * So, just fall through. We will check it in test_pages_isolated().
7057 */
bb13ffeb 7058 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7059 if (ret && ret != -EBUSY)
041d3a8c
MN
7060 goto done;
7061
7062 /*
7063 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7064 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7065 * more, all pages in [start, end) are free in page allocator.
7066 * What we are going to do is to allocate all pages from
7067 * [start, end) (that is remove them from page allocator).
7068 *
7069 * The only problem is that pages at the beginning and at the
7070 * end of interesting range may be not aligned with pages that
7071 * page allocator holds, ie. they can be part of higher order
7072 * pages. Because of this, we reserve the bigger range and
7073 * once this is done free the pages we are not interested in.
7074 *
7075 * We don't have to hold zone->lock here because the pages are
7076 * isolated thus they won't get removed from buddy.
7077 */
7078
7079 lru_add_drain_all();
510f5507 7080 drain_all_pages(cc.zone);
041d3a8c
MN
7081
7082 order = 0;
7083 outer_start = start;
7084 while (!PageBuddy(pfn_to_page(outer_start))) {
7085 if (++order >= MAX_ORDER) {
8ef5849f
JK
7086 outer_start = start;
7087 break;
041d3a8c
MN
7088 }
7089 outer_start &= ~0UL << order;
7090 }
7091
8ef5849f
JK
7092 if (outer_start != start) {
7093 order = page_order(pfn_to_page(outer_start));
7094
7095 /*
7096 * outer_start page could be small order buddy page and
7097 * it doesn't include start page. Adjust outer_start
7098 * in this case to report failed page properly
7099 * on tracepoint in test_pages_isolated()
7100 */
7101 if (outer_start + (1UL << order) <= start)
7102 outer_start = start;
7103 }
7104
041d3a8c 7105 /* Make sure the range is really isolated. */
b023f468 7106 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7107 pr_info("%s: [%lx, %lx) PFNs busy\n",
7108 __func__, outer_start, end);
041d3a8c
MN
7109 ret = -EBUSY;
7110 goto done;
7111 }
7112
49f223a9 7113 /* Grab isolated pages from freelists. */
bb13ffeb 7114 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7115 if (!outer_end) {
7116 ret = -EBUSY;
7117 goto done;
7118 }
7119
7120 /* Free head and tail (if any) */
7121 if (start != outer_start)
7122 free_contig_range(outer_start, start - outer_start);
7123 if (end != outer_end)
7124 free_contig_range(end, outer_end - end);
7125
7126done:
7127 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7128 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7129 return ret;
7130}
7131
7132void free_contig_range(unsigned long pfn, unsigned nr_pages)
7133{
bcc2b02f
MS
7134 unsigned int count = 0;
7135
7136 for (; nr_pages--; pfn++) {
7137 struct page *page = pfn_to_page(pfn);
7138
7139 count += page_count(page) != 1;
7140 __free_page(page);
7141 }
7142 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7143}
7144#endif
7145
4ed7e022 7146#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7147/*
7148 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7149 * page high values need to be recalulated.
7150 */
4ed7e022
JL
7151void __meminit zone_pcp_update(struct zone *zone)
7152{
0a647f38 7153 unsigned cpu;
c8e251fa 7154 mutex_lock(&pcp_batch_high_lock);
0a647f38 7155 for_each_possible_cpu(cpu)
169f6c19
CS
7156 pageset_set_high_and_batch(zone,
7157 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7158 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7159}
7160#endif
7161
340175b7
JL
7162void zone_pcp_reset(struct zone *zone)
7163{
7164 unsigned long flags;
5a883813
MK
7165 int cpu;
7166 struct per_cpu_pageset *pset;
340175b7
JL
7167
7168 /* avoid races with drain_pages() */
7169 local_irq_save(flags);
7170 if (zone->pageset != &boot_pageset) {
5a883813
MK
7171 for_each_online_cpu(cpu) {
7172 pset = per_cpu_ptr(zone->pageset, cpu);
7173 drain_zonestat(zone, pset);
7174 }
340175b7
JL
7175 free_percpu(zone->pageset);
7176 zone->pageset = &boot_pageset;
7177 }
7178 local_irq_restore(flags);
7179}
7180
6dcd73d7 7181#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7182/*
b9eb6319
JK
7183 * All pages in the range must be in a single zone and isolated
7184 * before calling this.
0c0e6195
KH
7185 */
7186void
7187__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7188{
7189 struct page *page;
7190 struct zone *zone;
7aeb09f9 7191 unsigned int order, i;
0c0e6195
KH
7192 unsigned long pfn;
7193 unsigned long flags;
7194 /* find the first valid pfn */
7195 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7196 if (pfn_valid(pfn))
7197 break;
7198 if (pfn == end_pfn)
7199 return;
7200 zone = page_zone(pfn_to_page(pfn));
7201 spin_lock_irqsave(&zone->lock, flags);
7202 pfn = start_pfn;
7203 while (pfn < end_pfn) {
7204 if (!pfn_valid(pfn)) {
7205 pfn++;
7206 continue;
7207 }
7208 page = pfn_to_page(pfn);
b023f468
WC
7209 /*
7210 * The HWPoisoned page may be not in buddy system, and
7211 * page_count() is not 0.
7212 */
7213 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7214 pfn++;
7215 SetPageReserved(page);
7216 continue;
7217 }
7218
0c0e6195
KH
7219 BUG_ON(page_count(page));
7220 BUG_ON(!PageBuddy(page));
7221 order = page_order(page);
7222#ifdef CONFIG_DEBUG_VM
1170532b
JP
7223 pr_info("remove from free list %lx %d %lx\n",
7224 pfn, 1 << order, end_pfn);
0c0e6195
KH
7225#endif
7226 list_del(&page->lru);
7227 rmv_page_order(page);
7228 zone->free_area[order].nr_free--;
0c0e6195
KH
7229 for (i = 0; i < (1 << order); i++)
7230 SetPageReserved((page+i));
7231 pfn += (1 << order);
7232 }
7233 spin_unlock_irqrestore(&zone->lock, flags);
7234}
7235#endif
8d22ba1b 7236
8d22ba1b
WF
7237bool is_free_buddy_page(struct page *page)
7238{
7239 struct zone *zone = page_zone(page);
7240 unsigned long pfn = page_to_pfn(page);
7241 unsigned long flags;
7aeb09f9 7242 unsigned int order;
8d22ba1b
WF
7243
7244 spin_lock_irqsave(&zone->lock, flags);
7245 for (order = 0; order < MAX_ORDER; order++) {
7246 struct page *page_head = page - (pfn & ((1 << order) - 1));
7247
7248 if (PageBuddy(page_head) && page_order(page_head) >= order)
7249 break;
7250 }
7251 spin_unlock_irqrestore(&zone->lock, flags);
7252
7253 return order < MAX_ORDER;
7254}