]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: fix fast-path race with cpuset update or removal
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
38addce8 94#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 95volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
96EXPORT_SYMBOL(latent_entropy);
97#endif
98
1da177e4 99/*
13808910 100 * Array of node states.
1da177e4 101 */
13808910
CL
102nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105#ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107#ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
109#endif
110#ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
112#endif
113 [N_CPU] = { { [0] = 1UL } },
114#endif /* NUMA */
115};
116EXPORT_SYMBOL(node_states);
117
c3d5f5f0
JL
118/* Protect totalram_pages and zone->managed_pages */
119static DEFINE_SPINLOCK(managed_page_count_lock);
120
6c231b7b 121unsigned long totalram_pages __read_mostly;
cb45b0e9 122unsigned long totalreserve_pages __read_mostly;
e48322ab 123unsigned long totalcma_pages __read_mostly;
ab8fabd4 124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
d0164adc 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
d0164adc 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400 183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 184unsigned int pageblock_order __read_mostly;
d9c23400
MG
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
033fbae9
DW
227#ifdef CONFIG_ZONE_DEVICE
228 "Device",
229#endif
2f1b6248
CL
230};
231
60f30350
VB
232char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237#ifdef CONFIG_CMA
238 "CMA",
239#endif
240#ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242#endif
243};
244
f1e61557
KS
245compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248#ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250#endif
9a982250
KS
251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253#endif
f1e61557
KS
254};
255
1da177e4 256int min_free_kbytes = 1024;
42aa83cb 257int user_min_free_kbytes = -1;
795ae7a0 258int watermark_scale_factor = 10;
1da177e4 259
2c85f51d
JB
260static unsigned long __meminitdata nr_kernel_pages;
261static unsigned long __meminitdata nr_all_pages;
a3142c8e 262static unsigned long __meminitdata dma_reserve;
1da177e4 263
0ee332c1
TH
264#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __initdata required_kernelcore;
268static unsigned long __initdata required_movablecore;
269static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 270static bool mirrored_kernelcore;
0ee332c1
TH
271
272/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273int movable_zone;
274EXPORT_SYMBOL(movable_zone);
275#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 276
418508c1
MS
277#if MAX_NUMNODES > 1
278int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 279int nr_online_nodes __read_mostly = 1;
418508c1 280EXPORT_SYMBOL(nr_node_ids);
62bc62a8 281EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
282#endif
283
9ef9acb0
MG
284int page_group_by_mobility_disabled __read_mostly;
285
3a80a7fa
MG
286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287static inline void reset_deferred_meminit(pg_data_t *pgdat)
288{
289 pgdat->first_deferred_pfn = ULONG_MAX;
290}
291
292/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 293static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 294{
ef70b6f4
MG
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
298 return true;
299
300 return false;
301}
302
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
342static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345{
346 return true;
347}
348#endif
349
0b423ca2
MG
350/* Return a pointer to the bitmap storing bits affecting a block of pages */
351static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353{
354#ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356#else
357 return page_zone(page)->pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359}
360
361static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362{
363#ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366#else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369#endif /* CONFIG_SPARSEMEM */
370}
371
372/**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385{
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398}
399
400unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403{
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405}
406
407static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408{
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410}
411
412/**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424{
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449}
3a80a7fa 450
ee6f509c 451void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 452{
5d0f3f72
KM
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
455 migratetype = MIGRATE_UNMOVABLE;
456
b2a0ac88
MG
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459}
460
13e7444b 461#ifdef CONFIG_DEBUG_VM
c6a57e19 462static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 463{
bdc8cb98
DH
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 467 unsigned long sp, start_pfn;
c6a57e19 468
bdc8cb98
DH
469 do {
470 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
108bcc96 473 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
b5e6a5a2 477 if (ret)
613813e8
DH
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
b5e6a5a2 481
bdc8cb98 482 return ret;
c6a57e19
DH
483}
484
485static int page_is_consistent(struct zone *zone, struct page *page)
486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 488 return 0;
1da177e4 489 if (zone != page_zone(page))
c6a57e19
DH
490 return 0;
491
492 return 1;
493}
494/*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497static int bad_range(struct zone *zone, struct page *page)
498{
499 if (page_outside_zone_boundaries(zone, page))
1da177e4 500 return 1;
c6a57e19
DH
501 if (!page_is_consistent(zone, page))
502 return 1;
503
1da177e4
LT
504 return 0;
505}
13e7444b
NP
506#else
507static inline int bad_range(struct zone *zone, struct page *page)
508{
509 return 0;
510}
511#endif
512
d230dec1
KS
513static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
1da177e4 515{
d936cf9b
HD
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
ff8e8116 530 pr_alert(
1e9e6365 531 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
ff8e8116 540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 541 current->comm, page_to_pfn(page));
ff8e8116
VB
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
4e462112 547 dump_page_owner(page);
3dc14741 548
4f31888c 549 print_modules();
1da177e4 550 dump_stack();
d936cf9b 551out:
8cc3b392 552 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 553 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
555}
556
1da177e4
LT
557/*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
1d798ca3 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 561 *
1d798ca3
KS
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 564 *
1d798ca3
KS
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
1da177e4 567 *
1d798ca3 568 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 569 * This usage means that zero-order pages may not be compound.
1da177e4 570 */
d98c7a09 571
9a982250 572void free_compound_page(struct page *page)
d98c7a09 573{
d85f3385 574 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
575}
576
d00181b9 577void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
578{
579 int i;
580 int nr_pages = 1 << order;
581
f1e61557 582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
58a84aa9 587 set_page_count(p, 0);
1c290f64 588 p->mapping = TAIL_MAPPING;
1d798ca3 589 set_compound_head(p, page);
18229df5 590 }
53f9263b 591 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
592}
593
c0a32fc5
SG
594#ifdef CONFIG_DEBUG_PAGEALLOC
595unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
596bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 598EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
599bool _debug_guardpage_enabled __read_mostly;
600
031bc574
JK
601static int __init early_debug_pagealloc(char *buf)
602{
603 if (!buf)
604 return -EINVAL;
2a138dc7 605 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
606}
607early_param("debug_pagealloc", early_debug_pagealloc);
608
e30825f1
JK
609static bool need_debug_guardpage(void)
610{
031bc574
JK
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
f1c1e9f7
JK
615 if (!debug_guardpage_minorder())
616 return false;
617
e30825f1
JK
618 return true;
619}
620
621static void init_debug_guardpage(void)
622{
031bc574
JK
623 if (!debug_pagealloc_enabled())
624 return;
625
f1c1e9f7
JK
626 if (!debug_guardpage_minorder())
627 return;
628
e30825f1
JK
629 _debug_guardpage_enabled = true;
630}
631
632struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635};
c0a32fc5
SG
636
637static int __init debug_guardpage_minorder_setup(char *buf)
638{
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 642 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
1170532b 646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
647 return 0;
648}
f1c1e9f7 649early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 650
acbc15a4 651static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 652 unsigned int order, int migratetype)
c0a32fc5 653{
e30825f1
JK
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
acbc15a4
JK
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
e30825f1
JK
661
662 page_ext = lookup_page_ext(page);
f86e4271 663 if (unlikely(!page_ext))
acbc15a4 664 return false;
f86e4271 665
e30825f1
JK
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
2847cf95
JK
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
672
673 return true;
c0a32fc5
SG
674}
675
2847cf95
JK
676static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
c0a32fc5 678{
e30825f1
JK
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
f86e4271
YS
685 if (unlikely(!page_ext))
686 return;
687
e30825f1
JK
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
2847cf95
JK
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
693}
694#else
980ac167 695struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
696static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
2847cf95
JK
698static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
c0a32fc5
SG
700#endif
701
7aeb09f9 702static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 703{
4c21e2f2 704 set_page_private(page, order);
676165a8 705 __SetPageBuddy(page);
1da177e4
LT
706}
707
708static inline void rmv_page_order(struct page *page)
709{
676165a8 710 __ClearPageBuddy(page);
4c21e2f2 711 set_page_private(page, 0);
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
13e7444b 717 * (a) the buddy is not in a hole &&
676165a8 718 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
676165a8 721 *
cf6fe945
WSH
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
1da177e4 726 *
676165a8 727 * For recording page's order, we use page_private(page).
1da177e4 728 */
cb2b95e1 729static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 730 unsigned int order)
1da177e4 731{
14e07298 732 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 733 return 0;
13e7444b 734
c0a32fc5 735 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
4c5018ce
WY
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
c0a32fc5
SG
741 return 1;
742 }
743
cb2b95e1 744 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
4c5018ce
WY
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
6aa3001b 755 return 1;
676165a8 756 }
6aa3001b 757 return 0;
1da177e4
LT
758}
759
760/*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
1da177e4 776 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
1da177e4 779 * If a block is freed, and its buddy is also free, then this
5f63b720 780 * triggers coalescing into a block of larger size.
1da177e4 781 *
6d49e352 782 * -- nyc
1da177e4
LT
783 */
784
48db57f8 785static inline void __free_one_page(struct page *page,
dc4b0caf 786 unsigned long pfn,
ed0ae21d
MG
787 struct zone *zone, unsigned int order,
788 int migratetype)
1da177e4
LT
789{
790 unsigned long page_idx;
6dda9d55 791 unsigned long combined_idx;
43506fad 792 unsigned long uninitialized_var(buddy_idx);
6dda9d55 793 struct page *buddy;
d9dddbf5
VB
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 797
d29bb978 798 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 800
ed0ae21d 801 VM_BUG_ON(migratetype == -1);
d9dddbf5 802 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 804
d9dddbf5 805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 806
309381fe
SL
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 809
d9dddbf5 810continue_merging:
3c605096 811 while (order < max_order - 1) {
43506fad
KC
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
cb2b95e1 814 if (!page_is_buddy(page, buddy, order))
d9dddbf5 815 goto done_merging;
c0a32fc5
SG
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
2847cf95 821 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
43506fad 827 combined_idx = buddy_idx & page_idx;
1da177e4
LT
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
d9dddbf5
VB
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857done_merging:
1da177e4 858 set_page_order(page, order);
6dda9d55
CZ
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
b7f50cfa 868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 869 struct page *higher_page, *higher_buddy;
43506fad
KC
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 873 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882out:
1da177e4
LT
883 zone->free_area[order].nr_free++;
884}
885
7bfec6f4
MG
886/*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893{
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899#ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901#endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906}
907
bb552ac6 908static void free_pages_check_bad(struct page *page)
1da177e4 909{
7bfec6f4
MG
910 const char *bad_reason;
911 unsigned long bad_flags;
912
7bfec6f4
MG
913 bad_reason = NULL;
914 bad_flags = 0;
f0b791a3 915
53f9263b 916 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
fe896d18 920 if (unlikely(page_ref_count(page) != 0))
0139aa7b 921 bad_reason = "nonzero _refcount";
f0b791a3
DH
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
9edad6ea
JW
926#ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929#endif
7bfec6f4 930 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
931}
932
933static inline int free_pages_check(struct page *page)
934{
da838d4f 935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 936 return 0;
bb552ac6
MG
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
7bfec6f4 940 return 1;
1da177e4
LT
941}
942
4db7548c
MG
943static int free_tail_pages_check(struct page *head_page, struct page *page)
944{
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991}
992
e2769dbd
MG
993static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
4db7548c 995{
e2769dbd 996 int bad = 0;
4db7548c 997
4db7548c
MG
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
e2769dbd
MG
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1012
9a73f61b
KS
1013 if (compound)
1014 ClearPageDoubleMap(page);
e2769dbd
MG
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
bda807d4 1025 if (PageMappingFlags(page))
4db7548c 1026 page->mapping = NULL;
c4159a75 1027 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1028 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
4db7548c 1033
e2769dbd
MG
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
4db7548c
MG
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 debug_check_no_obj_freed(page_address(page),
e2769dbd 1042 PAGE_SIZE << order);
4db7548c 1043 }
e2769dbd
MG
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
29b52de1 1047 kasan_free_pages(page, order);
4db7548c 1048
4db7548c
MG
1049 return true;
1050}
1051
e2769dbd
MG
1052#ifdef CONFIG_DEBUG_VM
1053static inline bool free_pcp_prepare(struct page *page)
1054{
1055 return free_pages_prepare(page, 0, true);
1056}
1057
1058static inline bool bulkfree_pcp_prepare(struct page *page)
1059{
1060 return false;
1061}
1062#else
1063static bool free_pcp_prepare(struct page *page)
1064{
1065 return free_pages_prepare(page, 0, false);
1066}
1067
4db7548c
MG
1068static bool bulkfree_pcp_prepare(struct page *page)
1069{
1070 return free_pages_check(page);
1071}
1072#endif /* CONFIG_DEBUG_VM */
1073
1da177e4 1074/*
5f8dcc21 1075 * Frees a number of pages from the PCP lists
1da177e4 1076 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1077 * count is the number of pages to free.
1da177e4
LT
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
5f8dcc21
MG
1085static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1da177e4 1087{
5f8dcc21 1088 int migratetype = 0;
a6f9edd6 1089 int batch_free = 0;
0d5d823a 1090 unsigned long nr_scanned;
3777999d 1091 bool isolated_pageblocks;
5f8dcc21 1092
c54ad30c 1093 spin_lock(&zone->lock);
3777999d 1094 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1096 if (nr_scanned)
599d0c95 1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1098
e5b31ac2 1099 while (count) {
48db57f8 1100 struct page *page;
5f8dcc21
MG
1101 struct list_head *list;
1102
1103 /*
a6f9edd6
MG
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
5f8dcc21
MG
1109 */
1110 do {
a6f9edd6 1111 batch_free++;
5f8dcc21
MG
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
48db57f8 1116
1d16871d
NK
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1119 batch_free = count;
1d16871d 1120
a6f9edd6 1121 do {
770c8aaa
BZ
1122 int mt; /* migratetype of the to-be-freed page */
1123
a16601c5 1124 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
aa016d14 1127
bb14c2c7 1128 mt = get_pcppage_migratetype(page);
aa016d14
VB
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
3777999d 1132 if (unlikely(isolated_pageblocks))
51bb1a40 1133 mt = get_pageblock_migratetype(page);
51bb1a40 1134
4db7548c
MG
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
dc4b0caf 1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1139 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1140 } while (--count && --batch_free && !list_empty(list));
1da177e4 1141 }
c54ad30c 1142 spin_unlock(&zone->lock);
1da177e4
LT
1143}
1144
dc4b0caf
MG
1145static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
7aeb09f9 1147 unsigned int order,
ed0ae21d 1148 int migratetype)
1da177e4 1149{
0d5d823a 1150 unsigned long nr_scanned;
006d22d9 1151 spin_lock(&zone->lock);
599d0c95 1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1153 if (nr_scanned)
599d0c95 1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1155
ad53f92e
JK
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1159 }
dc4b0caf 1160 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1161 spin_unlock(&zone->lock);
48db57f8
NP
1162}
1163
1e8ce83c
RH
1164static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166{
1e8ce83c 1167 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1e8ce83c 1171
1e8ce83c
RH
1172 INIT_LIST_HEAD(&page->lru);
1173#ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177#endif
1178}
1179
1180static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182{
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184}
1185
7e18adb4
MG
1186#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187static void init_reserved_page(unsigned long pfn)
1188{
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205}
1206#else
1207static inline void init_reserved_page(unsigned long pfn)
1208{
1209}
1210#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
92923ca3
NZ
1212/*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
4b50bcc7 1218void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1219{
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
7e18adb4
MG
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1d798ca3
KS
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
7e18adb4
MG
1232 SetPageReserved(page);
1233 }
1234 }
92923ca3
NZ
1235}
1236
ec95f53a
KM
1237static void __free_pages_ok(struct page *page, unsigned int order)
1238{
1239 unsigned long flags;
95e34412 1240 int migratetype;
dc4b0caf 1241 unsigned long pfn = page_to_pfn(page);
ec95f53a 1242
e2769dbd 1243 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1244 return;
1245
cfc47a28 1246 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1247 local_irq_save(flags);
f8891e5e 1248 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1250 local_irq_restore(flags);
1da177e4
LT
1251}
1252
949698a3 1253static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1254{
c3993076 1255 unsigned int nr_pages = 1 << order;
e2d0bd2b 1256 struct page *p = page;
c3993076 1257 unsigned int loop;
a226f6c8 1258
e2d0bd2b
YL
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
c3993076
JW
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
a226f6c8 1264 }
e2d0bd2b
YL
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
c3993076 1267
e2d0bd2b 1268 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
a226f6c8
DH
1271}
1272
75a592a4
MG
1273#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1275
75a592a4
MG
1276static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278int __meminit early_pfn_to_nid(unsigned long pfn)
1279{
7ace9917 1280 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1281 int nid;
1282
7ace9917 1283 spin_lock(&early_pfn_lock);
75a592a4 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1285 if (nid < 0)
e4568d38 1286 nid = first_online_node;
7ace9917
MG
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
75a592a4
MG
1290}
1291#endif
1292
1293#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296{
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303}
1304
1305/* Only safe to use early in boot when initialisation is single-threaded */
1306static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307{
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309}
1310
1311#else
1312
1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314{
1315 return true;
1316}
1317static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319{
1320 return true;
1321}
1322#endif
1323
1324
0e1cc95b 1325void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1326 unsigned int order)
1327{
1328 if (early_page_uninitialised(pfn))
1329 return;
949698a3 1330 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1331}
1332
7cf91a98
JK
1333/*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352{
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374}
1375
1376void set_zone_contiguous(struct zone *zone)
1377{
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395}
1396
1397void clear_zone_contiguous(struct zone *zone)
1398{
1399 zone->contiguous = false;
1400}
1401
7e18adb4 1402#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1403static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1404 unsigned long pfn, int nr_pages)
1405{
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1415 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1416 return;
1417 }
1418
e780149b
XQ
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1422 __free_pages_boot_core(page, 0);
e780149b 1423 }
a4de83dd
MG
1424}
1425
d3cd131d
NS
1426/* Completion tracking for deferred_init_memmap() threads */
1427static atomic_t pgdat_init_n_undone __initdata;
1428static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430static inline void __init pgdat_init_report_one_done(void)
1431{
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434}
0e1cc95b 1435
7e18adb4 1436/* Initialise remaining memory on a node */
0e1cc95b 1437static int __init deferred_init_memmap(void *data)
7e18adb4 1438{
0e1cc95b
MG
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
7e18adb4
MG
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
7e18adb4 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1449
0e1cc95b 1450 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1451 pgdat_init_report_one_done();
0e1cc95b
MG
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
54608c3f 1473 struct page *page = NULL;
a4de83dd
MG
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
7e18adb4
MG
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
54608c3f 1486 if (!pfn_valid_within(pfn))
a4de83dd 1487 goto free_range;
7e18adb4 1488
54608c3f
MG
1489 /*
1490 * Ensure pfn_valid is checked every
e780149b 1491 * pageblock_nr_pages for memory holes
54608c3f 1492 */
e780149b 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
a4de83dd 1502 goto free_range;
54608c3f
MG
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
e780149b 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1507 page++;
1508 } else {
a4de83dd
MG
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
54608c3f
MG
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
7e18adb4
MG
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1521 goto free_range;
7e18adb4
MG
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
7e18adb4 1541 }
e780149b
XQ
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1545
7e18adb4
MG
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
0e1cc95b 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1553 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1554
1555 pgdat_init_report_one_done();
0e1cc95b
MG
1556 return 0;
1557}
7cf91a98 1558#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1559
1560void __init page_alloc_init_late(void)
1561{
7cf91a98
JK
1562 struct zone *zone;
1563
1564#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1565 int nid;
1566
d3cd131d
NS
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1569 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
d3cd131d 1574 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
7cf91a98
JK
1578#endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
7e18adb4 1582}
7e18adb4 1583
47118af0 1584#ifdef CONFIG_CMA
9cf510a5 1585/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1586void __init init_cma_reserved_pageblock(struct page *page)
1587{
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
47118af0 1596 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
3dcc0571 1611 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1612}
1613#endif
1da177e4
LT
1614
1615/*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
6d49e352 1627 * -- nyc
1da177e4 1628 */
085cc7d5 1629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1da177e4
LT
1632{
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
309381fe 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1640
acbc15a4
JK
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1648 continue;
acbc15a4 1649
b2a0ac88 1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1da177e4
LT
1654}
1655
4e611801 1656static void check_new_page_bad(struct page *page)
1da177e4 1657{
4e611801
VB
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
7bfec6f4 1660
53f9263b 1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
fe896d18 1665 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1666 bad_reason = "nonzero _count";
f4c18e6f
NH
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
e570f56c
NH
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
f4c18e6f 1673 }
f0b791a3
DH
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
9edad6ea
JW
1678#ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681#endif
4e611801
VB
1682 bad_page(page, bad_reason, bad_flags);
1683}
1684
1685/*
1686 * This page is about to be returned from the page allocator
1687 */
1688static inline int check_new_page(struct page *page)
1689{
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
2a7684a2
WF
1696}
1697
1414c7f4
LA
1698static inline bool free_pages_prezeroed(bool poisoned)
1699{
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702}
1703
479f854a
MG
1704#ifdef CONFIG_DEBUG_VM
1705static bool check_pcp_refill(struct page *page)
1706{
1707 return false;
1708}
1709
1710static bool check_new_pcp(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714#else
1715static bool check_pcp_refill(struct page *page)
1716{
1717 return check_new_page(page);
1718}
1719static bool check_new_pcp(struct page *page)
1720{
1721 return false;
1722}
1723#endif /* CONFIG_DEBUG_VM */
1724
1725static bool check_new_pages(struct page *page, unsigned int order)
1726{
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736}
1737
46f24fd8
JK
1738inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740{
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749}
1750
479f854a 1751static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1752 unsigned int alloc_flags)
2a7684a2
WF
1753{
1754 int i;
1414c7f4 1755 bool poisoned = true;
2a7684a2
WF
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1414c7f4
LA
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
2a7684a2 1761 }
689bcebf 1762
46f24fd8 1763 post_alloc_hook(page, order, gfp_flags);
17cf4406 1764
1414c7f4 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
17cf4406
NP
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
75379191 1772 /*
2f064f34 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
2f064f34
MH
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1da177e4
LT
1782}
1783
56fd56b8
MG
1784/*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
728ec980
MG
1788static inline
1789struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1790 int migratetype)
1791{
1792 unsigned int current_order;
b8af2941 1793 struct free_area *area;
56fd56b8
MG
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
a16601c5 1799 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1800 struct page, lru);
a16601c5
GT
1801 if (!page)
1802 continue;
56fd56b8
MG
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
56fd56b8 1806 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1807 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1808 return page;
1809 }
1810
1811 return NULL;
1812}
1813
1814
b2a0ac88
MG
1815/*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
47118af0 1819static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1823#ifdef CONFIG_CMA
974a786e 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1825#endif
194159fb 1826#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1828#endif
b2a0ac88
MG
1829};
1830
dc67647b
JK
1831#ifdef CONFIG_CMA
1832static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834{
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836}
1837#else
1838static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840#endif
1841
c361be55
MG
1842/*
1843 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1844 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
435b405c 1847int move_freepages(struct zone *zone,
b69a7288
AB
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
c361be55
MG
1850{
1851 struct page *page;
d00181b9 1852 unsigned int order;
d100313f 1853 int pages_moved = 0;
c361be55
MG
1854
1855#ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1861 * grouping pages by mobility
c361be55 1862 */
97ee4ba7 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1864#endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 if (!pfn_valid_within(page_to_pfn(page))) {
1868 page++;
1869 continue;
1870 }
1871
f073bdc5
AB
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874
c361be55
MG
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
84be48d8
KS
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
c361be55 1883 page += 1 << order;
d100313f 1884 pages_moved += 1 << order;
c361be55
MG
1885 }
1886
d100313f 1887 return pages_moved;
c361be55
MG
1888}
1889
ee6f509c 1890int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1891 int migratetype)
c361be55
MG
1892{
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
d9c23400 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1898 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1901
1902 /* Do not cross zone boundaries */
108bcc96 1903 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1904 start_page = page;
108bcc96 1905 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909}
1910
2f66a68f
MG
1911static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913{
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920}
1921
fef903ef 1922/*
9c0415eb
VB
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
fef903ef 1933 */
4eb7dce6
JK
1934static bool can_steal_fallback(unsigned int order, int start_mt)
1935{
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953}
1954
1955/*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
fef903ef 1964{
d00181b9 1965 unsigned int current_order = page_order(page);
4eb7dce6 1966 int pages;
fef903ef 1967
fef903ef
SB
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
3a1086fb 1971 return;
fef903ef
SB
1972 }
1973
4eb7dce6 1974 pages = move_freepages_block(zone, page, start_type);
fef903ef 1975
4eb7dce6
JK
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980}
1981
2149cdae
JK
1982/*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1990{
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
974a786e 2000 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
fef903ef 2005
4eb7dce6
JK
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2149cdae
JK
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
fef903ef 2014 }
4eb7dce6
JK
2015
2016 return -1;
fef903ef
SB
2017}
2018
0aaa29a5
MG
2019/*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025{
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054}
2055
2056/*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
29fac03b
MK
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
0aaa29a5 2064 */
29fac03b
MK
2065static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
0aaa29a5
MG
2067{
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
04c8716f 2074 bool ret;
0aaa29a5
MG
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
29fac03b
MK
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
0aaa29a5
MG
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
a16601c5
GT
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
0aaa29a5
MG
2094 continue;
2095
0aaa29a5 2096 /*
4855e4a7
MK
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
0aaa29a5 2102 */
4855e4a7
MK
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
0aaa29a5
MG
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2127 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
0aaa29a5
MG
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
04c8716f
MK
2135
2136 return false;
0aaa29a5
MG
2137}
2138
b2a0ac88 2139/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2140static inline struct page *
7aeb09f9 2141__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2142{
b8af2941 2143 struct free_area *area;
7aeb09f9 2144 unsigned int current_order;
b2a0ac88 2145 struct page *page;
4eb7dce6
JK
2146 int fallback_mt;
2147 bool can_steal;
b2a0ac88
MG
2148
2149 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
4eb7dce6
JK
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2155 start_migratetype, false, &can_steal);
4eb7dce6
JK
2156 if (fallback_mt == -1)
2157 continue;
b2a0ac88 2158
a16601c5 2159 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2160 struct page, lru);
88ed365e
MK
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2163 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2164
4eb7dce6
JK
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
3a1086fb 2169
4eb7dce6
JK
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
bb14c2c7 2173 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2174 * migratetype depending on the decisions in
bb14c2c7
VB
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2178 */
bb14c2c7 2179 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2180
4eb7dce6
JK
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
e0fff1bd 2183
4eb7dce6 2184 return page;
b2a0ac88
MG
2185 }
2186
728ec980 2187 return NULL;
b2a0ac88
MG
2188}
2189
56fd56b8 2190/*
1da177e4
LT
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
b2a0ac88 2194static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2195 int migratetype)
1da177e4 2196{
1da177e4
LT
2197 struct page *page;
2198
56fd56b8 2199 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2200 if (unlikely(!page)) {
dc67647b
JK
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2206 }
2207
0d3d062a 2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2209 return page;
1da177e4
LT
2210}
2211
5f63b720 2212/*
1da177e4
LT
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
5f63b720 2217static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2218 unsigned long count, struct list_head *list,
b745bc85 2219 int migratetype, bool cold)
1da177e4 2220{
a6de734b 2221 int i, alloced = 0;
5f63b720 2222
c54ad30c 2223 spin_lock(&zone->lock);
1da177e4 2224 for (i = 0; i < count; ++i) {
6ac0206b 2225 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2226 if (unlikely(page == NULL))
1da177e4 2227 break;
81eabcbe 2228
479f854a
MG
2229 if (unlikely(check_pcp_refill(page)))
2230 continue;
2231
81eabcbe
MG
2232 /*
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2239 * properly.
2240 */
b745bc85 2241 if (likely(!cold))
e084b2d9
MG
2242 list_add(&page->lru, list);
2243 else
2244 list_add_tail(&page->lru, list);
81eabcbe 2245 list = &page->lru;
a6de734b 2246 alloced++;
bb14c2c7 2247 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2248 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 -(1 << order));
1da177e4 2250 }
a6de734b
MG
2251
2252 /*
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2257 */
f2260e6b 2258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2259 spin_unlock(&zone->lock);
a6de734b 2260 return alloced;
1da177e4
LT
2261}
2262
4ae7c039 2263#ifdef CONFIG_NUMA
8fce4d8e 2264/*
4037d452
CL
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2267 * expired.
2268 *
879336c3
CL
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
8fce4d8e 2271 */
4037d452 2272void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2273{
4ae7c039 2274 unsigned long flags;
7be12fc9 2275 int to_drain, batch;
4ae7c039 2276
4037d452 2277 local_irq_save(flags);
4db0c3c2 2278 batch = READ_ONCE(pcp->batch);
7be12fc9 2279 to_drain = min(pcp->count, batch);
2a13515c
KM
2280 if (to_drain > 0) {
2281 free_pcppages_bulk(zone, to_drain, pcp);
2282 pcp->count -= to_drain;
2283 }
4037d452 2284 local_irq_restore(flags);
4ae7c039
CL
2285}
2286#endif
2287
9f8f2172 2288/*
93481ff0 2289 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2290 *
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2293 * is not online.
2294 */
93481ff0 2295static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2296{
c54ad30c 2297 unsigned long flags;
93481ff0
VB
2298 struct per_cpu_pageset *pset;
2299 struct per_cpu_pages *pcp;
1da177e4 2300
93481ff0
VB
2301 local_irq_save(flags);
2302 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2303
93481ff0
VB
2304 pcp = &pset->pcp;
2305 if (pcp->count) {
2306 free_pcppages_bulk(zone, pcp->count, pcp);
2307 pcp->count = 0;
2308 }
2309 local_irq_restore(flags);
2310}
3dfa5721 2311
93481ff0
VB
2312/*
2313 * Drain pcplists of all zones on the indicated processor.
2314 *
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2317 * is not online.
2318 */
2319static void drain_pages(unsigned int cpu)
2320{
2321 struct zone *zone;
2322
2323 for_each_populated_zone(zone) {
2324 drain_pages_zone(cpu, zone);
1da177e4
LT
2325 }
2326}
1da177e4 2327
9f8f2172
CL
2328/*
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2330 *
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
9f8f2172 2333 */
93481ff0 2334void drain_local_pages(struct zone *zone)
9f8f2172 2335{
93481ff0
VB
2336 int cpu = smp_processor_id();
2337
2338 if (zone)
2339 drain_pages_zone(cpu, zone);
2340 else
2341 drain_pages(cpu);
9f8f2172
CL
2342}
2343
2344/*
74046494
GBY
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346 *
93481ff0
VB
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2348 *
74046494
GBY
2349 * Note that this code is protected against sending an IPI to an offline
2350 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352 * nothing keeps CPUs from showing up after we populated the cpumask and
2353 * before the call to on_each_cpu_mask().
9f8f2172 2354 */
93481ff0 2355void drain_all_pages(struct zone *zone)
9f8f2172 2356{
74046494 2357 int cpu;
74046494
GBY
2358
2359 /*
2360 * Allocate in the BSS so we wont require allocation in
2361 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 */
2363 static cpumask_t cpus_with_pcps;
2364
2365 /*
2366 * We don't care about racing with CPU hotplug event
2367 * as offline notification will cause the notified
2368 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 * disables preemption as part of its processing
2370 */
2371 for_each_online_cpu(cpu) {
93481ff0
VB
2372 struct per_cpu_pageset *pcp;
2373 struct zone *z;
74046494 2374 bool has_pcps = false;
93481ff0
VB
2375
2376 if (zone) {
74046494 2377 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2378 if (pcp->pcp.count)
74046494 2379 has_pcps = true;
93481ff0
VB
2380 } else {
2381 for_each_populated_zone(z) {
2382 pcp = per_cpu_ptr(z->pageset, cpu);
2383 if (pcp->pcp.count) {
2384 has_pcps = true;
2385 break;
2386 }
74046494
GBY
2387 }
2388 }
93481ff0 2389
74046494
GBY
2390 if (has_pcps)
2391 cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 else
2393 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 }
93481ff0
VB
2395 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 zone, 1);
9f8f2172
CL
2397}
2398
296699de 2399#ifdef CONFIG_HIBERNATION
1da177e4
LT
2400
2401void mark_free_pages(struct zone *zone)
2402{
f623f0db
RW
2403 unsigned long pfn, max_zone_pfn;
2404 unsigned long flags;
7aeb09f9 2405 unsigned int order, t;
86760a2c 2406 struct page *page;
1da177e4 2407
8080fc03 2408 if (zone_is_empty(zone))
1da177e4
LT
2409 return;
2410
2411 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2412
108bcc96 2413 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2414 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 if (pfn_valid(pfn)) {
86760a2c 2416 page = pfn_to_page(pfn);
ba6b0979
JK
2417
2418 if (page_zone(page) != zone)
2419 continue;
2420
7be98234
RW
2421 if (!swsusp_page_is_forbidden(page))
2422 swsusp_unset_page_free(page);
f623f0db 2423 }
1da177e4 2424
b2a0ac88 2425 for_each_migratetype_order(order, t) {
86760a2c
GT
2426 list_for_each_entry(page,
2427 &zone->free_area[order].free_list[t], lru) {
f623f0db 2428 unsigned long i;
1da177e4 2429
86760a2c 2430 pfn = page_to_pfn(page);
f623f0db 2431 for (i = 0; i < (1UL << order); i++)
7be98234 2432 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2433 }
b2a0ac88 2434 }
1da177e4
LT
2435 spin_unlock_irqrestore(&zone->lock, flags);
2436}
e2c55dc8 2437#endif /* CONFIG_PM */
1da177e4 2438
1da177e4
LT
2439/*
2440 * Free a 0-order page
b745bc85 2441 * cold == true ? free a cold page : free a hot page
1da177e4 2442 */
b745bc85 2443void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2444{
2445 struct zone *zone = page_zone(page);
2446 struct per_cpu_pages *pcp;
2447 unsigned long flags;
dc4b0caf 2448 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2449 int migratetype;
1da177e4 2450
4db7548c 2451 if (!free_pcp_prepare(page))
689bcebf
HD
2452 return;
2453
dc4b0caf 2454 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2455 set_pcppage_migratetype(page, migratetype);
1da177e4 2456 local_irq_save(flags);
f8891e5e 2457 __count_vm_event(PGFREE);
da456f14 2458
5f8dcc21
MG
2459 /*
2460 * We only track unmovable, reclaimable and movable on pcp lists.
2461 * Free ISOLATE pages back to the allocator because they are being
2462 * offlined but treat RESERVE as movable pages so we can get those
2463 * areas back if necessary. Otherwise, we may have to free
2464 * excessively into the page allocator
2465 */
2466 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2467 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2468 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2469 goto out;
2470 }
2471 migratetype = MIGRATE_MOVABLE;
2472 }
2473
99dcc3e5 2474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2475 if (!cold)
5f8dcc21 2476 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2477 else
2478 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2479 pcp->count++;
48db57f8 2480 if (pcp->count >= pcp->high) {
4db0c3c2 2481 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2482 free_pcppages_bulk(zone, batch, pcp);
2483 pcp->count -= batch;
48db57f8 2484 }
5f8dcc21
MG
2485
2486out:
1da177e4 2487 local_irq_restore(flags);
1da177e4
LT
2488}
2489
cc59850e
KK
2490/*
2491 * Free a list of 0-order pages
2492 */
b745bc85 2493void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2494{
2495 struct page *page, *next;
2496
2497 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2498 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2499 free_hot_cold_page(page, cold);
2500 }
2501}
2502
8dfcc9ba
NP
2503/*
2504 * split_page takes a non-compound higher-order page, and splits it into
2505 * n (1<<order) sub-pages: page[0..n]
2506 * Each sub-page must be freed individually.
2507 *
2508 * Note: this is probably too low level an operation for use in drivers.
2509 * Please consult with lkml before using this in your driver.
2510 */
2511void split_page(struct page *page, unsigned int order)
2512{
2513 int i;
2514
309381fe
SL
2515 VM_BUG_ON_PAGE(PageCompound(page), page);
2516 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2517
2518#ifdef CONFIG_KMEMCHECK
2519 /*
2520 * Split shadow pages too, because free(page[0]) would
2521 * otherwise free the whole shadow.
2522 */
2523 if (kmemcheck_page_is_tracked(page))
2524 split_page(virt_to_page(page[0].shadow), order);
2525#endif
2526
a9627bc5 2527 for (i = 1; i < (1 << order); i++)
7835e98b 2528 set_page_refcounted(page + i);
a9627bc5 2529 split_page_owner(page, order);
8dfcc9ba 2530}
5853ff23 2531EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2532
3c605096 2533int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2534{
748446bb
MG
2535 unsigned long watermark;
2536 struct zone *zone;
2139cbe6 2537 int mt;
748446bb
MG
2538
2539 BUG_ON(!PageBuddy(page));
2540
2541 zone = page_zone(page);
2e30abd1 2542 mt = get_pageblock_migratetype(page);
748446bb 2543
194159fb 2544 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2545 /*
2546 * Obey watermarks as if the page was being allocated. We can
2547 * emulate a high-order watermark check with a raised order-0
2548 * watermark, because we already know our high-order page
2549 * exists.
2550 */
2551 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2552 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2553 return 0;
2554
8fb74b9f 2555 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2556 }
748446bb
MG
2557
2558 /* Remove page from free list */
2559 list_del(&page->lru);
2560 zone->free_area[order].nr_free--;
2561 rmv_page_order(page);
2139cbe6 2562
400bc7fd 2563 /*
2564 * Set the pageblock if the isolated page is at least half of a
2565 * pageblock
2566 */
748446bb
MG
2567 if (order >= pageblock_order - 1) {
2568 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2569 for (; page < endpage; page += pageblock_nr_pages) {
2570 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2571 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2573 set_pageblock_migratetype(page,
2574 MIGRATE_MOVABLE);
2575 }
748446bb
MG
2576 }
2577
f3a14ced 2578
8fb74b9f 2579 return 1UL << order;
1fb3f8ca
MG
2580}
2581
060e7417
MG
2582/*
2583 * Update NUMA hit/miss statistics
2584 *
2585 * Must be called with interrupts disabled.
060e7417 2586 */
41b6167e 2587static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2588{
2589#ifdef CONFIG_NUMA
060e7417
MG
2590 enum zone_stat_item local_stat = NUMA_LOCAL;
2591
2df26639 2592 if (z->node != numa_node_id())
060e7417 2593 local_stat = NUMA_OTHER;
060e7417 2594
2df26639 2595 if (z->node == preferred_zone->node)
060e7417 2596 __inc_zone_state(z, NUMA_HIT);
2df26639 2597 else {
060e7417
MG
2598 __inc_zone_state(z, NUMA_MISS);
2599 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2600 }
2df26639 2601 __inc_zone_state(z, local_stat);
060e7417
MG
2602#endif
2603}
2604
1da177e4 2605/*
75379191 2606 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2607 */
0a15c3e9
MG
2608static inline
2609struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2610 struct zone *zone, unsigned int order,
c603844b
MG
2611 gfp_t gfp_flags, unsigned int alloc_flags,
2612 int migratetype)
1da177e4
LT
2613{
2614 unsigned long flags;
689bcebf 2615 struct page *page;
b745bc85 2616 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2617
48db57f8 2618 if (likely(order == 0)) {
1da177e4 2619 struct per_cpu_pages *pcp;
5f8dcc21 2620 struct list_head *list;
1da177e4 2621
1da177e4 2622 local_irq_save(flags);
479f854a
MG
2623 do {
2624 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2625 list = &pcp->lists[migratetype];
2626 if (list_empty(list)) {
2627 pcp->count += rmqueue_bulk(zone, 0,
2628 pcp->batch, list,
2629 migratetype, cold);
2630 if (unlikely(list_empty(list)))
2631 goto failed;
2632 }
b92a6edd 2633
479f854a
MG
2634 if (cold)
2635 page = list_last_entry(list, struct page, lru);
2636 else
2637 page = list_first_entry(list, struct page, lru);
5f8dcc21 2638
83b9355b
VB
2639 list_del(&page->lru);
2640 pcp->count--;
2641
2642 } while (check_new_pcp(page));
7fb1d9fc 2643 } else {
0f352e53
MH
2644 /*
2645 * We most definitely don't want callers attempting to
2646 * allocate greater than order-1 page units with __GFP_NOFAIL.
2647 */
2648 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2649 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2650
479f854a
MG
2651 do {
2652 page = NULL;
2653 if (alloc_flags & ALLOC_HARDER) {
2654 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2655 if (page)
2656 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2657 }
2658 if (!page)
2659 page = __rmqueue(zone, order, migratetype);
2660 } while (page && check_new_pages(page, order));
a74609fa
NP
2661 spin_unlock(&zone->lock);
2662 if (!page)
2663 goto failed;
d1ce749a 2664 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2665 get_pcppage_migratetype(page));
1da177e4
LT
2666 }
2667
16709d1d 2668 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2669 zone_statistics(preferred_zone, zone);
a74609fa 2670 local_irq_restore(flags);
1da177e4 2671
309381fe 2672 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2673 return page;
a74609fa
NP
2674
2675failed:
2676 local_irq_restore(flags);
a74609fa 2677 return NULL;
1da177e4
LT
2678}
2679
933e312e
AM
2680#ifdef CONFIG_FAIL_PAGE_ALLOC
2681
b2588c4b 2682static struct {
933e312e
AM
2683 struct fault_attr attr;
2684
621a5f7a 2685 bool ignore_gfp_highmem;
71baba4b 2686 bool ignore_gfp_reclaim;
54114994 2687 u32 min_order;
933e312e
AM
2688} fail_page_alloc = {
2689 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2690 .ignore_gfp_reclaim = true,
621a5f7a 2691 .ignore_gfp_highmem = true,
54114994 2692 .min_order = 1,
933e312e
AM
2693};
2694
2695static int __init setup_fail_page_alloc(char *str)
2696{
2697 return setup_fault_attr(&fail_page_alloc.attr, str);
2698}
2699__setup("fail_page_alloc=", setup_fail_page_alloc);
2700
deaf386e 2701static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2702{
54114994 2703 if (order < fail_page_alloc.min_order)
deaf386e 2704 return false;
933e312e 2705 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2706 return false;
933e312e 2707 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2708 return false;
71baba4b
MG
2709 if (fail_page_alloc.ignore_gfp_reclaim &&
2710 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2711 return false;
933e312e
AM
2712
2713 return should_fail(&fail_page_alloc.attr, 1 << order);
2714}
2715
2716#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2717
2718static int __init fail_page_alloc_debugfs(void)
2719{
f4ae40a6 2720 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2721 struct dentry *dir;
933e312e 2722
dd48c085
AM
2723 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2724 &fail_page_alloc.attr);
2725 if (IS_ERR(dir))
2726 return PTR_ERR(dir);
933e312e 2727
b2588c4b 2728 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2729 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2730 goto fail;
2731 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2732 &fail_page_alloc.ignore_gfp_highmem))
2733 goto fail;
2734 if (!debugfs_create_u32("min-order", mode, dir,
2735 &fail_page_alloc.min_order))
2736 goto fail;
2737
2738 return 0;
2739fail:
dd48c085 2740 debugfs_remove_recursive(dir);
933e312e 2741
b2588c4b 2742 return -ENOMEM;
933e312e
AM
2743}
2744
2745late_initcall(fail_page_alloc_debugfs);
2746
2747#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2748
2749#else /* CONFIG_FAIL_PAGE_ALLOC */
2750
deaf386e 2751static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2752{
deaf386e 2753 return false;
933e312e
AM
2754}
2755
2756#endif /* CONFIG_FAIL_PAGE_ALLOC */
2757
1da177e4 2758/*
97a16fc8
MG
2759 * Return true if free base pages are above 'mark'. For high-order checks it
2760 * will return true of the order-0 watermark is reached and there is at least
2761 * one free page of a suitable size. Checking now avoids taking the zone lock
2762 * to check in the allocation paths if no pages are free.
1da177e4 2763 */
86a294a8
MH
2764bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2765 int classzone_idx, unsigned int alloc_flags,
2766 long free_pages)
1da177e4 2767{
d23ad423 2768 long min = mark;
1da177e4 2769 int o;
c603844b 2770 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2771
0aaa29a5 2772 /* free_pages may go negative - that's OK */
df0a6daa 2773 free_pages -= (1 << order) - 1;
0aaa29a5 2774
7fb1d9fc 2775 if (alloc_flags & ALLOC_HIGH)
1da177e4 2776 min -= min / 2;
0aaa29a5
MG
2777
2778 /*
2779 * If the caller does not have rights to ALLOC_HARDER then subtract
2780 * the high-atomic reserves. This will over-estimate the size of the
2781 * atomic reserve but it avoids a search.
2782 */
97a16fc8 2783 if (likely(!alloc_harder))
0aaa29a5
MG
2784 free_pages -= z->nr_reserved_highatomic;
2785 else
1da177e4 2786 min -= min / 4;
e2b19197 2787
d95ea5d1
BZ
2788#ifdef CONFIG_CMA
2789 /* If allocation can't use CMA areas don't use free CMA pages */
2790 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2791 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2792#endif
026b0814 2793
97a16fc8
MG
2794 /*
2795 * Check watermarks for an order-0 allocation request. If these
2796 * are not met, then a high-order request also cannot go ahead
2797 * even if a suitable page happened to be free.
2798 */
2799 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2800 return false;
1da177e4 2801
97a16fc8
MG
2802 /* If this is an order-0 request then the watermark is fine */
2803 if (!order)
2804 return true;
2805
2806 /* For a high-order request, check at least one suitable page is free */
2807 for (o = order; o < MAX_ORDER; o++) {
2808 struct free_area *area = &z->free_area[o];
2809 int mt;
2810
2811 if (!area->nr_free)
2812 continue;
2813
2814 if (alloc_harder)
2815 return true;
1da177e4 2816
97a16fc8
MG
2817 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2818 if (!list_empty(&area->free_list[mt]))
2819 return true;
2820 }
2821
2822#ifdef CONFIG_CMA
2823 if ((alloc_flags & ALLOC_CMA) &&
2824 !list_empty(&area->free_list[MIGRATE_CMA])) {
2825 return true;
2826 }
2827#endif
1da177e4 2828 }
97a16fc8 2829 return false;
88f5acf8
MG
2830}
2831
7aeb09f9 2832bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2833 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2834{
2835 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2836 zone_page_state(z, NR_FREE_PAGES));
2837}
2838
48ee5f36
MG
2839static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2840 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2841{
2842 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2843 long cma_pages = 0;
2844
2845#ifdef CONFIG_CMA
2846 /* If allocation can't use CMA areas don't use free CMA pages */
2847 if (!(alloc_flags & ALLOC_CMA))
2848 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2849#endif
2850
2851 /*
2852 * Fast check for order-0 only. If this fails then the reserves
2853 * need to be calculated. There is a corner case where the check
2854 * passes but only the high-order atomic reserve are free. If
2855 * the caller is !atomic then it'll uselessly search the free
2856 * list. That corner case is then slower but it is harmless.
2857 */
2858 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2859 return true;
2860
2861 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2862 free_pages);
2863}
2864
7aeb09f9 2865bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2866 unsigned long mark, int classzone_idx)
88f5acf8
MG
2867{
2868 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2869
2870 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2871 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2872
e2b19197 2873 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2874 free_pages);
1da177e4
LT
2875}
2876
9276b1bc 2877#ifdef CONFIG_NUMA
957f822a
DR
2878static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2879{
5f7a75ac
MG
2880 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2881 RECLAIM_DISTANCE;
957f822a 2882}
9276b1bc 2883#else /* CONFIG_NUMA */
957f822a
DR
2884static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885{
2886 return true;
2887}
9276b1bc
PJ
2888#endif /* CONFIG_NUMA */
2889
7fb1d9fc 2890/*
0798e519 2891 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2892 * a page.
2893 */
2894static struct page *
a9263751
VB
2895get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2896 const struct alloc_context *ac)
753ee728 2897{
c33d6c06 2898 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2899 struct zone *zone;
3b8c0be4
MG
2900 struct pglist_data *last_pgdat_dirty_limit = NULL;
2901
7fb1d9fc 2902 /*
9276b1bc 2903 * Scan zonelist, looking for a zone with enough free.
344736f2 2904 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2905 */
c33d6c06 2906 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2907 ac->nodemask) {
be06af00 2908 struct page *page;
e085dbc5
JW
2909 unsigned long mark;
2910
664eedde
MG
2911 if (cpusets_enabled() &&
2912 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2913 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2914 continue;
a756cf59
JW
2915 /*
2916 * When allocating a page cache page for writing, we
281e3726
MG
2917 * want to get it from a node that is within its dirty
2918 * limit, such that no single node holds more than its
a756cf59 2919 * proportional share of globally allowed dirty pages.
281e3726 2920 * The dirty limits take into account the node's
a756cf59
JW
2921 * lowmem reserves and high watermark so that kswapd
2922 * should be able to balance it without having to
2923 * write pages from its LRU list.
2924 *
a756cf59 2925 * XXX: For now, allow allocations to potentially
281e3726 2926 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2927 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2928 * which is important when on a NUMA setup the allowed
281e3726 2929 * nodes are together not big enough to reach the
a756cf59 2930 * global limit. The proper fix for these situations
281e3726 2931 * will require awareness of nodes in the
a756cf59
JW
2932 * dirty-throttling and the flusher threads.
2933 */
3b8c0be4
MG
2934 if (ac->spread_dirty_pages) {
2935 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2936 continue;
2937
2938 if (!node_dirty_ok(zone->zone_pgdat)) {
2939 last_pgdat_dirty_limit = zone->zone_pgdat;
2940 continue;
2941 }
2942 }
7fb1d9fc 2943
e085dbc5 2944 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2945 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2946 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2947 int ret;
2948
5dab2911
MG
2949 /* Checked here to keep the fast path fast */
2950 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2951 if (alloc_flags & ALLOC_NO_WATERMARKS)
2952 goto try_this_zone;
2953
a5f5f91d 2954 if (node_reclaim_mode == 0 ||
c33d6c06 2955 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2956 continue;
2957
a5f5f91d 2958 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2959 switch (ret) {
a5f5f91d 2960 case NODE_RECLAIM_NOSCAN:
fa5e084e 2961 /* did not scan */
cd38b115 2962 continue;
a5f5f91d 2963 case NODE_RECLAIM_FULL:
fa5e084e 2964 /* scanned but unreclaimable */
cd38b115 2965 continue;
fa5e084e
MG
2966 default:
2967 /* did we reclaim enough */
fed2719e 2968 if (zone_watermark_ok(zone, order, mark,
93ea9964 2969 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2970 goto try_this_zone;
2971
fed2719e 2972 continue;
0798e519 2973 }
7fb1d9fc
RS
2974 }
2975
fa5e084e 2976try_this_zone:
c33d6c06 2977 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2978 gfp_mask, alloc_flags, ac->migratetype);
75379191 2979 if (page) {
479f854a 2980 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2981
2982 /*
2983 * If this is a high-order atomic allocation then check
2984 * if the pageblock should be reserved for the future
2985 */
2986 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2987 reserve_highatomic_pageblock(page, zone, order);
2988
75379191
VB
2989 return page;
2990 }
54a6eb5c 2991 }
9276b1bc 2992
4ffeaf35 2993 return NULL;
753ee728
MH
2994}
2995
29423e77
DR
2996/*
2997 * Large machines with many possible nodes should not always dump per-node
2998 * meminfo in irq context.
2999 */
3000static inline bool should_suppress_show_mem(void)
3001{
3002 bool ret = false;
3003
3004#if NODES_SHIFT > 8
3005 ret = in_interrupt();
3006#endif
3007 return ret;
3008}
3009
a238ab5b
DH
3010static DEFINE_RATELIMIT_STATE(nopage_rs,
3011 DEFAULT_RATELIMIT_INTERVAL,
3012 DEFAULT_RATELIMIT_BURST);
3013
7877cdcc 3014void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
a238ab5b 3015{
a238ab5b 3016 unsigned int filter = SHOW_MEM_FILTER_NODES;
7877cdcc
MH
3017 struct va_format vaf;
3018 va_list args;
a238ab5b 3019
c0a32fc5
SG
3020 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3021 debug_guardpage_minorder() > 0)
a238ab5b
DH
3022 return;
3023
3024 /*
3025 * This documents exceptions given to allocations in certain
3026 * contexts that are allowed to allocate outside current's set
3027 * of allowed nodes.
3028 */
3029 if (!(gfp_mask & __GFP_NOMEMALLOC))
3030 if (test_thread_flag(TIF_MEMDIE) ||
3031 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3032 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3033 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3034 filter &= ~SHOW_MEM_FILTER_NODES;
3035
7877cdcc 3036 pr_warn("%s: ", current->comm);
3ee9a4f0 3037
7877cdcc
MH
3038 va_start(args, fmt);
3039 vaf.fmt = fmt;
3040 vaf.va = &args;
3041 pr_cont("%pV", &vaf);
3042 va_end(args);
3ee9a4f0 3043
7877cdcc 3044 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3ee9a4f0 3045
a238ab5b
DH
3046 dump_stack();
3047 if (!should_suppress_show_mem())
3048 show_mem(filter);
3049}
3050
11e33f6a
MG
3051static inline struct page *
3052__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3053 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3054{
6e0fc46d
DR
3055 struct oom_control oc = {
3056 .zonelist = ac->zonelist,
3057 .nodemask = ac->nodemask,
2a966b77 3058 .memcg = NULL,
6e0fc46d
DR
3059 .gfp_mask = gfp_mask,
3060 .order = order,
6e0fc46d 3061 };
11e33f6a
MG
3062 struct page *page;
3063
9879de73
JW
3064 *did_some_progress = 0;
3065
9879de73 3066 /*
dc56401f
JW
3067 * Acquire the oom lock. If that fails, somebody else is
3068 * making progress for us.
9879de73 3069 */
dc56401f 3070 if (!mutex_trylock(&oom_lock)) {
9879de73 3071 *did_some_progress = 1;
11e33f6a 3072 schedule_timeout_uninterruptible(1);
1da177e4
LT
3073 return NULL;
3074 }
6b1de916 3075
11e33f6a
MG
3076 /*
3077 * Go through the zonelist yet one more time, keep very high watermark
3078 * here, this is only to catch a parallel oom killing, we must fail if
3079 * we're still under heavy pressure.
3080 */
a9263751
VB
3081 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3082 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3083 if (page)
11e33f6a
MG
3084 goto out;
3085
4365a567 3086 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3087 /* Coredumps can quickly deplete all memory reserves */
3088 if (current->flags & PF_DUMPCORE)
3089 goto out;
4365a567
KH
3090 /* The OOM killer will not help higher order allocs */
3091 if (order > PAGE_ALLOC_COSTLY_ORDER)
3092 goto out;
03668b3c 3093 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3094 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3095 goto out;
9083905a
JW
3096 if (pm_suspended_storage())
3097 goto out;
3da88fb3
MH
3098 /*
3099 * XXX: GFP_NOFS allocations should rather fail than rely on
3100 * other request to make a forward progress.
3101 * We are in an unfortunate situation where out_of_memory cannot
3102 * do much for this context but let's try it to at least get
3103 * access to memory reserved if the current task is killed (see
3104 * out_of_memory). Once filesystems are ready to handle allocation
3105 * failures more gracefully we should just bail out here.
3106 */
3107
4167e9b2 3108 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3109 if (gfp_mask & __GFP_THISNODE)
3110 goto out;
3111 }
11e33f6a 3112 /* Exhausted what can be done so it's blamo time */
5020e285 3113 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3114 *did_some_progress = 1;
5020e285
MH
3115
3116 if (gfp_mask & __GFP_NOFAIL) {
3117 page = get_page_from_freelist(gfp_mask, order,
3118 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3119 /*
3120 * fallback to ignore cpuset restriction if our nodes
3121 * are depleted
3122 */
3123 if (!page)
3124 page = get_page_from_freelist(gfp_mask, order,
3125 ALLOC_NO_WATERMARKS, ac);
3126 }
3127 }
11e33f6a 3128out:
dc56401f 3129 mutex_unlock(&oom_lock);
11e33f6a
MG
3130 return page;
3131}
3132
33c2d214
MH
3133/*
3134 * Maximum number of compaction retries wit a progress before OOM
3135 * killer is consider as the only way to move forward.
3136 */
3137#define MAX_COMPACT_RETRIES 16
3138
56de7263
MG
3139#ifdef CONFIG_COMPACTION
3140/* Try memory compaction for high-order allocations before reclaim */
3141static struct page *
3142__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3143 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3144 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3145{
98dd3b48 3146 struct page *page;
53853e2d
VB
3147
3148 if (!order)
66199712 3149 return NULL;
66199712 3150
c06b1fca 3151 current->flags |= PF_MEMALLOC;
c5d01d0d 3152 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3153 prio);
c06b1fca 3154 current->flags &= ~PF_MEMALLOC;
56de7263 3155
c5d01d0d 3156 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3157 return NULL;
53853e2d 3158
98dd3b48
VB
3159 /*
3160 * At least in one zone compaction wasn't deferred or skipped, so let's
3161 * count a compaction stall
3162 */
3163 count_vm_event(COMPACTSTALL);
8fb74b9f 3164
31a6c190 3165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3166
98dd3b48
VB
3167 if (page) {
3168 struct zone *zone = page_zone(page);
53853e2d 3169
98dd3b48
VB
3170 zone->compact_blockskip_flush = false;
3171 compaction_defer_reset(zone, order, true);
3172 count_vm_event(COMPACTSUCCESS);
3173 return page;
3174 }
56de7263 3175
98dd3b48
VB
3176 /*
3177 * It's bad if compaction run occurs and fails. The most likely reason
3178 * is that pages exist, but not enough to satisfy watermarks.
3179 */
3180 count_vm_event(COMPACTFAIL);
66199712 3181
98dd3b48 3182 cond_resched();
56de7263
MG
3183
3184 return NULL;
3185}
33c2d214 3186
3250845d
VB
3187static inline bool
3188should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3189 enum compact_result compact_result,
3190 enum compact_priority *compact_priority,
d9436498 3191 int *compaction_retries)
3250845d
VB
3192{
3193 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3194 int min_priority;
3250845d
VB
3195
3196 if (!order)
3197 return false;
3198
d9436498
VB
3199 if (compaction_made_progress(compact_result))
3200 (*compaction_retries)++;
3201
3250845d
VB
3202 /*
3203 * compaction considers all the zone as desperately out of memory
3204 * so it doesn't really make much sense to retry except when the
3205 * failure could be caused by insufficient priority
3206 */
d9436498
VB
3207 if (compaction_failed(compact_result))
3208 goto check_priority;
3250845d
VB
3209
3210 /*
3211 * make sure the compaction wasn't deferred or didn't bail out early
3212 * due to locks contention before we declare that we should give up.
3213 * But do not retry if the given zonelist is not suitable for
3214 * compaction.
3215 */
3216 if (compaction_withdrawn(compact_result))
3217 return compaction_zonelist_suitable(ac, order, alloc_flags);
3218
3219 /*
3220 * !costly requests are much more important than __GFP_REPEAT
3221 * costly ones because they are de facto nofail and invoke OOM
3222 * killer to move on while costly can fail and users are ready
3223 * to cope with that. 1/4 retries is rather arbitrary but we
3224 * would need much more detailed feedback from compaction to
3225 * make a better decision.
3226 */
3227 if (order > PAGE_ALLOC_COSTLY_ORDER)
3228 max_retries /= 4;
d9436498 3229 if (*compaction_retries <= max_retries)
3250845d
VB
3230 return true;
3231
d9436498
VB
3232 /*
3233 * Make sure there are attempts at the highest priority if we exhausted
3234 * all retries or failed at the lower priorities.
3235 */
3236check_priority:
c2033b00
VB
3237 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3238 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3239 if (*compact_priority > min_priority) {
d9436498
VB
3240 (*compact_priority)--;
3241 *compaction_retries = 0;
3242 return true;
3243 }
3250845d
VB
3244 return false;
3245}
56de7263
MG
3246#else
3247static inline struct page *
3248__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3249 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3250 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3251{
33c2d214 3252 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3253 return NULL;
3254}
33c2d214
MH
3255
3256static inline bool
86a294a8
MH
3257should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3258 enum compact_result compact_result,
a5508cd8 3259 enum compact_priority *compact_priority,
d9436498 3260 int *compaction_retries)
33c2d214 3261{
31e49bfd
MH
3262 struct zone *zone;
3263 struct zoneref *z;
3264
3265 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3266 return false;
3267
3268 /*
3269 * There are setups with compaction disabled which would prefer to loop
3270 * inside the allocator rather than hit the oom killer prematurely.
3271 * Let's give them a good hope and keep retrying while the order-0
3272 * watermarks are OK.
3273 */
3274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3275 ac->nodemask) {
3276 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3277 ac_classzone_idx(ac), alloc_flags))
3278 return true;
3279 }
33c2d214
MH
3280 return false;
3281}
3250845d 3282#endif /* CONFIG_COMPACTION */
56de7263 3283
bba90710
MS
3284/* Perform direct synchronous page reclaim */
3285static int
a9263751
VB
3286__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3287 const struct alloc_context *ac)
11e33f6a 3288{
11e33f6a 3289 struct reclaim_state reclaim_state;
bba90710 3290 int progress;
11e33f6a
MG
3291
3292 cond_resched();
3293
3294 /* We now go into synchronous reclaim */
3295 cpuset_memory_pressure_bump();
c06b1fca 3296 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3297 lockdep_set_current_reclaim_state(gfp_mask);
3298 reclaim_state.reclaimed_slab = 0;
c06b1fca 3299 current->reclaim_state = &reclaim_state;
11e33f6a 3300
a9263751
VB
3301 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3302 ac->nodemask);
11e33f6a 3303
c06b1fca 3304 current->reclaim_state = NULL;
11e33f6a 3305 lockdep_clear_current_reclaim_state();
c06b1fca 3306 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3307
3308 cond_resched();
3309
bba90710
MS
3310 return progress;
3311}
3312
3313/* The really slow allocator path where we enter direct reclaim */
3314static inline struct page *
3315__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3316 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3317 unsigned long *did_some_progress)
bba90710
MS
3318{
3319 struct page *page = NULL;
3320 bool drained = false;
3321
a9263751 3322 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3323 if (unlikely(!(*did_some_progress)))
3324 return NULL;
11e33f6a 3325
9ee493ce 3326retry:
31a6c190 3327 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3328
3329 /*
3330 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3331 * pages are pinned on the per-cpu lists or in high alloc reserves.
3332 * Shrink them them and try again
9ee493ce
MG
3333 */
3334 if (!page && !drained) {
29fac03b 3335 unreserve_highatomic_pageblock(ac, false);
93481ff0 3336 drain_all_pages(NULL);
9ee493ce
MG
3337 drained = true;
3338 goto retry;
3339 }
3340
11e33f6a
MG
3341 return page;
3342}
3343
a9263751 3344static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3345{
3346 struct zoneref *z;
3347 struct zone *zone;
e1a55637 3348 pg_data_t *last_pgdat = NULL;
3a025760 3349
a9263751 3350 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3351 ac->high_zoneidx, ac->nodemask) {
3352 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3353 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3354 last_pgdat = zone->zone_pgdat;
3355 }
3a025760
JW
3356}
3357
c603844b 3358static inline unsigned int
341ce06f
PZ
3359gfp_to_alloc_flags(gfp_t gfp_mask)
3360{
c603844b 3361 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3362
a56f57ff 3363 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3364 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3365
341ce06f
PZ
3366 /*
3367 * The caller may dip into page reserves a bit more if the caller
3368 * cannot run direct reclaim, or if the caller has realtime scheduling
3369 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3370 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3371 */
e6223a3b 3372 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3373
d0164adc 3374 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3375 /*
b104a35d
DR
3376 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3377 * if it can't schedule.
5c3240d9 3378 */
b104a35d 3379 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3380 alloc_flags |= ALLOC_HARDER;
523b9458 3381 /*
b104a35d 3382 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3383 * comment for __cpuset_node_allowed().
523b9458 3384 */
341ce06f 3385 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3386 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3387 alloc_flags |= ALLOC_HARDER;
3388
d95ea5d1 3389#ifdef CONFIG_CMA
43e7a34d 3390 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3391 alloc_flags |= ALLOC_CMA;
3392#endif
341ce06f
PZ
3393 return alloc_flags;
3394}
3395
072bb0aa
MG
3396bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3397{
31a6c190
VB
3398 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3399 return false;
3400
3401 if (gfp_mask & __GFP_MEMALLOC)
3402 return true;
3403 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3404 return true;
3405 if (!in_interrupt() &&
3406 ((current->flags & PF_MEMALLOC) ||
3407 unlikely(test_thread_flag(TIF_MEMDIE))))
3408 return true;
3409
3410 return false;
072bb0aa
MG
3411}
3412
0a0337e0
MH
3413/*
3414 * Maximum number of reclaim retries without any progress before OOM killer
3415 * is consider as the only way to move forward.
3416 */
3417#define MAX_RECLAIM_RETRIES 16
3418
3419/*
3420 * Checks whether it makes sense to retry the reclaim to make a forward progress
3421 * for the given allocation request.
3422 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3423 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3424 * any progress in a row) is considered as well as the reclaimable pages on the
3425 * applicable zone list (with a backoff mechanism which is a function of
3426 * no_progress_loops).
0a0337e0
MH
3427 *
3428 * Returns true if a retry is viable or false to enter the oom path.
3429 */
3430static inline bool
3431should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3432 struct alloc_context *ac, int alloc_flags,
423b452e 3433 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3434{
3435 struct zone *zone;
3436 struct zoneref *z;
3437
423b452e
VB
3438 /*
3439 * Costly allocations might have made a progress but this doesn't mean
3440 * their order will become available due to high fragmentation so
3441 * always increment the no progress counter for them
3442 */
3443 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3444 *no_progress_loops = 0;
3445 else
3446 (*no_progress_loops)++;
3447
0a0337e0
MH
3448 /*
3449 * Make sure we converge to OOM if we cannot make any progress
3450 * several times in the row.
3451 */
04c8716f
MK
3452 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3453 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3454 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3455 }
0a0337e0 3456
bca67592
MG
3457 /*
3458 * Keep reclaiming pages while there is a chance this will lead
3459 * somewhere. If none of the target zones can satisfy our allocation
3460 * request even if all reclaimable pages are considered then we are
3461 * screwed and have to go OOM.
0a0337e0
MH
3462 */
3463 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3464 ac->nodemask) {
3465 unsigned long available;
ede37713 3466 unsigned long reclaimable;
0a0337e0 3467
5a1c84b4 3468 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3469 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3470 MAX_RECLAIM_RETRIES);
5a1c84b4 3471 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3472
3473 /*
3474 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3475 * available?
0a0337e0 3476 */
5a1c84b4
MG
3477 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3478 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3479 /*
3480 * If we didn't make any progress and have a lot of
3481 * dirty + writeback pages then we should wait for
3482 * an IO to complete to slow down the reclaim and
3483 * prevent from pre mature OOM
3484 */
3485 if (!did_some_progress) {
11fb9989 3486 unsigned long write_pending;
ede37713 3487
5a1c84b4
MG
3488 write_pending = zone_page_state_snapshot(zone,
3489 NR_ZONE_WRITE_PENDING);
ede37713 3490
11fb9989 3491 if (2 * write_pending > reclaimable) {
ede37713
MH
3492 congestion_wait(BLK_RW_ASYNC, HZ/10);
3493 return true;
3494 }
3495 }
5a1c84b4 3496
ede37713
MH
3497 /*
3498 * Memory allocation/reclaim might be called from a WQ
3499 * context and the current implementation of the WQ
3500 * concurrency control doesn't recognize that
3501 * a particular WQ is congested if the worker thread is
3502 * looping without ever sleeping. Therefore we have to
3503 * do a short sleep here rather than calling
3504 * cond_resched().
3505 */
3506 if (current->flags & PF_WQ_WORKER)
3507 schedule_timeout_uninterruptible(1);
3508 else
3509 cond_resched();
3510
0a0337e0
MH
3511 return true;
3512 }
3513 }
3514
3515 return false;
3516}
3517
11e33f6a
MG
3518static inline struct page *
3519__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3520 struct alloc_context *ac)
11e33f6a 3521{
d0164adc 3522 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3523 struct page *page = NULL;
c603844b 3524 unsigned int alloc_flags;
11e33f6a 3525 unsigned long did_some_progress;
a5508cd8 3526 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3527 enum compact_result compact_result;
33c2d214 3528 int compaction_retries = 0;
0a0337e0 3529 int no_progress_loops = 0;
63f53dea
MH
3530 unsigned long alloc_start = jiffies;
3531 unsigned int stall_timeout = 10 * HZ;
1da177e4 3532
72807a74
MG
3533 /*
3534 * In the slowpath, we sanity check order to avoid ever trying to
3535 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3536 * be using allocators in order of preference for an area that is
3537 * too large.
3538 */
1fc28b70
MG
3539 if (order >= MAX_ORDER) {
3540 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3541 return NULL;
1fc28b70 3542 }
1da177e4 3543
d0164adc
MG
3544 /*
3545 * We also sanity check to catch abuse of atomic reserves being used by
3546 * callers that are not in atomic context.
3547 */
3548 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3549 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3550 gfp_mask &= ~__GFP_ATOMIC;
3551
9bf2229f 3552 /*
31a6c190
VB
3553 * The fast path uses conservative alloc_flags to succeed only until
3554 * kswapd needs to be woken up, and to avoid the cost of setting up
3555 * alloc_flags precisely. So we do that now.
9bf2229f 3556 */
341ce06f 3557 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3558
23771235
VB
3559 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3560 wake_all_kswapds(order, ac);
3561
3562 /*
3563 * The adjusted alloc_flags might result in immediate success, so try
3564 * that first
3565 */
3566 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3567 if (page)
3568 goto got_pg;
3569
a8161d1e
VB
3570 /*
3571 * For costly allocations, try direct compaction first, as it's likely
3572 * that we have enough base pages and don't need to reclaim. Don't try
3573 * that for allocations that are allowed to ignore watermarks, as the
3574 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3575 */
3576 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3577 !gfp_pfmemalloc_allowed(gfp_mask)) {
3578 page = __alloc_pages_direct_compact(gfp_mask, order,
3579 alloc_flags, ac,
a5508cd8 3580 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3581 &compact_result);
3582 if (page)
3583 goto got_pg;
3584
3eb2771b
VB
3585 /*
3586 * Checks for costly allocations with __GFP_NORETRY, which
3587 * includes THP page fault allocations
3588 */
3589 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3590 /*
3591 * If compaction is deferred for high-order allocations,
3592 * it is because sync compaction recently failed. If
3593 * this is the case and the caller requested a THP
3594 * allocation, we do not want to heavily disrupt the
3595 * system, so we fail the allocation instead of entering
3596 * direct reclaim.
3597 */
3598 if (compact_result == COMPACT_DEFERRED)
3599 goto nopage;
3600
a8161d1e 3601 /*
3eb2771b
VB
3602 * Looks like reclaim/compaction is worth trying, but
3603 * sync compaction could be very expensive, so keep
25160354 3604 * using async compaction.
a8161d1e 3605 */
a5508cd8 3606 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3607 }
3608 }
23771235 3609
31a6c190 3610retry:
23771235 3611 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3612 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3613 wake_all_kswapds(order, ac);
3614
23771235
VB
3615 if (gfp_pfmemalloc_allowed(gfp_mask))
3616 alloc_flags = ALLOC_NO_WATERMARKS;
3617
e46e7b77
MG
3618 /*
3619 * Reset the zonelist iterators if memory policies can be ignored.
3620 * These allocations are high priority and system rather than user
3621 * orientated.
3622 */
23771235 3623 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3624 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3625 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3626 ac->high_zoneidx, ac->nodemask);
3627 }
3628
23771235 3629 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3630 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3631 if (page)
3632 goto got_pg;
1da177e4 3633
d0164adc
MG
3634 /* Caller is not willing to reclaim, we can't balance anything */
3635 if (!can_direct_reclaim) {
aed0a0e3 3636 /*
33d53103
MH
3637 * All existing users of the __GFP_NOFAIL are blockable, so warn
3638 * of any new users that actually allow this type of allocation
3639 * to fail.
aed0a0e3
DR
3640 */
3641 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3642 goto nopage;
aed0a0e3 3643 }
1da177e4 3644
341ce06f 3645 /* Avoid recursion of direct reclaim */
33d53103
MH
3646 if (current->flags & PF_MEMALLOC) {
3647 /*
3648 * __GFP_NOFAIL request from this context is rather bizarre
3649 * because we cannot reclaim anything and only can loop waiting
3650 * for somebody to do a work for us.
3651 */
3652 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3653 cond_resched();
3654 goto retry;
3655 }
341ce06f 3656 goto nopage;
33d53103 3657 }
341ce06f 3658
6583bb64
DR
3659 /* Avoid allocations with no watermarks from looping endlessly */
3660 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3661 goto nopage;
3662
a8161d1e
VB
3663
3664 /* Try direct reclaim and then allocating */
3665 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3666 &did_some_progress);
3667 if (page)
3668 goto got_pg;
3669
3670 /* Try direct compaction and then allocating */
a9263751 3671 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3672 compact_priority, &compact_result);
56de7263
MG
3673 if (page)
3674 goto got_pg;
75f30861 3675
9083905a
JW
3676 /* Do not loop if specifically requested */
3677 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3678 goto nopage;
9083905a 3679
0a0337e0
MH
3680 /*
3681 * Do not retry costly high order allocations unless they are
3682 * __GFP_REPEAT
3683 */
3684 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3685 goto nopage;
0a0337e0 3686
63f53dea
MH
3687 /* Make sure we know about allocations which stall for too long */
3688 if (time_after(jiffies, alloc_start + stall_timeout)) {
3689 warn_alloc(gfp_mask,
9e80c719 3690 "page allocation stalls for %ums, order:%u",
63f53dea
MH
3691 jiffies_to_msecs(jiffies-alloc_start), order);
3692 stall_timeout += 10 * HZ;
3693 }
3694
0a0337e0 3695 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3696 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3697 goto retry;
3698
33c2d214
MH
3699 /*
3700 * It doesn't make any sense to retry for the compaction if the order-0
3701 * reclaim is not able to make any progress because the current
3702 * implementation of the compaction depends on the sufficient amount
3703 * of free memory (see __compaction_suitable)
3704 */
3705 if (did_some_progress > 0 &&
86a294a8 3706 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3707 compact_result, &compact_priority,
d9436498 3708 &compaction_retries))
33c2d214
MH
3709 goto retry;
3710
9083905a
JW
3711 /* Reclaim has failed us, start killing things */
3712 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3713 if (page)
3714 goto got_pg;
3715
3716 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3717 if (did_some_progress) {
3718 no_progress_loops = 0;
9083905a 3719 goto retry;
0a0337e0 3720 }
9083905a 3721
1da177e4 3722nopage:
7877cdcc
MH
3723 warn_alloc(gfp_mask,
3724 "page allocation failure: order:%u", order);
1da177e4 3725got_pg:
072bb0aa 3726 return page;
1da177e4 3727}
11e33f6a
MG
3728
3729/*
3730 * This is the 'heart' of the zoned buddy allocator.
3731 */
3732struct page *
3733__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3734 struct zonelist *zonelist, nodemask_t *nodemask)
3735{
5bb1b169 3736 struct page *page;
cc9a6c87 3737 unsigned int cpuset_mems_cookie;
e6cbd7f2 3738 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3739 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3740 struct alloc_context ac = {
3741 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3742 .zonelist = zonelist,
a9263751
VB
3743 .nodemask = nodemask,
3744 .migratetype = gfpflags_to_migratetype(gfp_mask),
3745 };
11e33f6a 3746
682a3385 3747 if (cpusets_enabled()) {
83d4ca81 3748 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3749 alloc_flags |= ALLOC_CPUSET;
3750 if (!ac.nodemask)
3751 ac.nodemask = &cpuset_current_mems_allowed;
3752 }
3753
dcce284a
BH
3754 gfp_mask &= gfp_allowed_mask;
3755
11e33f6a
MG
3756 lockdep_trace_alloc(gfp_mask);
3757
d0164adc 3758 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3759
3760 if (should_fail_alloc_page(gfp_mask, order))
3761 return NULL;
3762
3763 /*
3764 * Check the zones suitable for the gfp_mask contain at least one
3765 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3766 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3767 */
3768 if (unlikely(!zonelist->_zonerefs->zone))
3769 return NULL;
3770
a9263751 3771 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3772 alloc_flags |= ALLOC_CMA;
3773
cc9a6c87 3774retry_cpuset:
d26914d1 3775 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3776
c9ab0c4f
MG
3777 /* Dirty zone balancing only done in the fast path */
3778 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3779
e46e7b77
MG
3780 /*
3781 * The preferred zone is used for statistics but crucially it is
3782 * also used as the starting point for the zonelist iterator. It
3783 * may get reset for allocations that ignore memory policies.
3784 */
c33d6c06
MG
3785 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3786 ac.high_zoneidx, ac.nodemask);
ea57485a 3787 if (!ac.preferred_zoneref->zone) {
5bb1b169 3788 page = NULL;
4fcb0971 3789 goto no_zone;
5bb1b169
MG
3790 }
3791
5117f45d 3792 /* First allocation attempt */
a9263751 3793 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3794 if (likely(page))
3795 goto out;
11e33f6a 3796
4fcb0971
MG
3797 /*
3798 * Runtime PM, block IO and its error handling path can deadlock
3799 * because I/O on the device might not complete.
3800 */
3801 alloc_mask = memalloc_noio_flags(gfp_mask);
3802 ac.spread_dirty_pages = false;
23f086f9 3803
4741526b
MG
3804 /*
3805 * Restore the original nodemask if it was potentially replaced with
3806 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
16096c25
VB
3807 * Also recalculate the starting point for the zonelist iterator or
3808 * we could end up iterating over non-eligible zones endlessly.
4741526b 3809 */
16096c25 3810 if (unlikely(ac.nodemask != nodemask)) {
4741526b 3811 ac.nodemask = nodemask;
16096c25
VB
3812 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3813 ac.high_zoneidx, ac.nodemask);
3814 if (!ac.preferred_zoneref->zone)
3815 goto no_zone;
3816 }
3817
4fcb0971 3818 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3819
4fcb0971 3820no_zone:
cc9a6c87
MG
3821 /*
3822 * When updating a task's mems_allowed, it is possible to race with
3823 * parallel threads in such a way that an allocation can fail while
3824 * the mask is being updated. If a page allocation is about to fail,
3825 * check if the cpuset changed during allocation and if so, retry.
3826 */
83d4ca81
MG
3827 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3828 alloc_mask = gfp_mask;
cc9a6c87 3829 goto retry_cpuset;
83d4ca81 3830 }
cc9a6c87 3831
4fcb0971 3832out:
c4159a75
VD
3833 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3834 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3835 __free_pages(page, order);
3836 page = NULL;
4949148a
VD
3837 }
3838
4fcb0971
MG
3839 if (kmemcheck_enabled && page)
3840 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3841
3842 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3843
11e33f6a 3844 return page;
1da177e4 3845}
d239171e 3846EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3847
3848/*
3849 * Common helper functions.
3850 */
920c7a5d 3851unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3852{
945a1113
AM
3853 struct page *page;
3854
3855 /*
3856 * __get_free_pages() returns a 32-bit address, which cannot represent
3857 * a highmem page
3858 */
3859 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3860
1da177e4
LT
3861 page = alloc_pages(gfp_mask, order);
3862 if (!page)
3863 return 0;
3864 return (unsigned long) page_address(page);
3865}
1da177e4
LT
3866EXPORT_SYMBOL(__get_free_pages);
3867
920c7a5d 3868unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3869{
945a1113 3870 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3871}
1da177e4
LT
3872EXPORT_SYMBOL(get_zeroed_page);
3873
920c7a5d 3874void __free_pages(struct page *page, unsigned int order)
1da177e4 3875{
b5810039 3876 if (put_page_testzero(page)) {
1da177e4 3877 if (order == 0)
b745bc85 3878 free_hot_cold_page(page, false);
1da177e4
LT
3879 else
3880 __free_pages_ok(page, order);
3881 }
3882}
3883
3884EXPORT_SYMBOL(__free_pages);
3885
920c7a5d 3886void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3887{
3888 if (addr != 0) {
725d704e 3889 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3890 __free_pages(virt_to_page((void *)addr), order);
3891 }
3892}
3893
3894EXPORT_SYMBOL(free_pages);
3895
b63ae8ca
AD
3896/*
3897 * Page Fragment:
3898 * An arbitrary-length arbitrary-offset area of memory which resides
3899 * within a 0 or higher order page. Multiple fragments within that page
3900 * are individually refcounted, in the page's reference counter.
3901 *
3902 * The page_frag functions below provide a simple allocation framework for
3903 * page fragments. This is used by the network stack and network device
3904 * drivers to provide a backing region of memory for use as either an
3905 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3906 */
2976db80
AD
3907static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
3908 gfp_t gfp_mask)
b63ae8ca
AD
3909{
3910 struct page *page = NULL;
3911 gfp_t gfp = gfp_mask;
3912
3913#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3914 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3915 __GFP_NOMEMALLOC;
3916 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3917 PAGE_FRAG_CACHE_MAX_ORDER);
3918 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3919#endif
3920 if (unlikely(!page))
3921 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3922
3923 nc->va = page ? page_address(page) : NULL;
3924
3925 return page;
3926}
3927
2976db80 3928void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
3929{
3930 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3931
3932 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
3933 unsigned int order = compound_order(page);
3934
44fdffd7
AD
3935 if (order == 0)
3936 free_hot_cold_page(page, false);
3937 else
3938 __free_pages_ok(page, order);
3939 }
3940}
2976db80 3941EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 3942
8c2dd3e4
AD
3943void *page_frag_alloc(struct page_frag_cache *nc,
3944 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
3945{
3946 unsigned int size = PAGE_SIZE;
3947 struct page *page;
3948 int offset;
3949
3950 if (unlikely(!nc->va)) {
3951refill:
2976db80 3952 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
3953 if (!page)
3954 return NULL;
3955
3956#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3957 /* if size can vary use size else just use PAGE_SIZE */
3958 size = nc->size;
3959#endif
3960 /* Even if we own the page, we do not use atomic_set().
3961 * This would break get_page_unless_zero() users.
3962 */
fe896d18 3963 page_ref_add(page, size - 1);
b63ae8ca
AD
3964
3965 /* reset page count bias and offset to start of new frag */
2f064f34 3966 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3967 nc->pagecnt_bias = size;
3968 nc->offset = size;
3969 }
3970
3971 offset = nc->offset - fragsz;
3972 if (unlikely(offset < 0)) {
3973 page = virt_to_page(nc->va);
3974
fe896d18 3975 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3976 goto refill;
3977
3978#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3979 /* if size can vary use size else just use PAGE_SIZE */
3980 size = nc->size;
3981#endif
3982 /* OK, page count is 0, we can safely set it */
fe896d18 3983 set_page_count(page, size);
b63ae8ca
AD
3984
3985 /* reset page count bias and offset to start of new frag */
3986 nc->pagecnt_bias = size;
3987 offset = size - fragsz;
3988 }
3989
3990 nc->pagecnt_bias--;
3991 nc->offset = offset;
3992
3993 return nc->va + offset;
3994}
8c2dd3e4 3995EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
3996
3997/*
3998 * Frees a page fragment allocated out of either a compound or order 0 page.
3999 */
8c2dd3e4 4000void page_frag_free(void *addr)
b63ae8ca
AD
4001{
4002 struct page *page = virt_to_head_page(addr);
4003
4004 if (unlikely(put_page_testzero(page)))
4005 __free_pages_ok(page, compound_order(page));
4006}
8c2dd3e4 4007EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4008
d00181b9
KS
4009static void *make_alloc_exact(unsigned long addr, unsigned int order,
4010 size_t size)
ee85c2e1
AK
4011{
4012 if (addr) {
4013 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4014 unsigned long used = addr + PAGE_ALIGN(size);
4015
4016 split_page(virt_to_page((void *)addr), order);
4017 while (used < alloc_end) {
4018 free_page(used);
4019 used += PAGE_SIZE;
4020 }
4021 }
4022 return (void *)addr;
4023}
4024
2be0ffe2
TT
4025/**
4026 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4027 * @size: the number of bytes to allocate
4028 * @gfp_mask: GFP flags for the allocation
4029 *
4030 * This function is similar to alloc_pages(), except that it allocates the
4031 * minimum number of pages to satisfy the request. alloc_pages() can only
4032 * allocate memory in power-of-two pages.
4033 *
4034 * This function is also limited by MAX_ORDER.
4035 *
4036 * Memory allocated by this function must be released by free_pages_exact().
4037 */
4038void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4039{
4040 unsigned int order = get_order(size);
4041 unsigned long addr;
4042
4043 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4044 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4045}
4046EXPORT_SYMBOL(alloc_pages_exact);
4047
ee85c2e1
AK
4048/**
4049 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4050 * pages on a node.
b5e6ab58 4051 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4052 * @size: the number of bytes to allocate
4053 * @gfp_mask: GFP flags for the allocation
4054 *
4055 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4056 * back.
ee85c2e1 4057 */
e1931811 4058void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4059{
d00181b9 4060 unsigned int order = get_order(size);
ee85c2e1
AK
4061 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4062 if (!p)
4063 return NULL;
4064 return make_alloc_exact((unsigned long)page_address(p), order, size);
4065}
ee85c2e1 4066
2be0ffe2
TT
4067/**
4068 * free_pages_exact - release memory allocated via alloc_pages_exact()
4069 * @virt: the value returned by alloc_pages_exact.
4070 * @size: size of allocation, same value as passed to alloc_pages_exact().
4071 *
4072 * Release the memory allocated by a previous call to alloc_pages_exact.
4073 */
4074void free_pages_exact(void *virt, size_t size)
4075{
4076 unsigned long addr = (unsigned long)virt;
4077 unsigned long end = addr + PAGE_ALIGN(size);
4078
4079 while (addr < end) {
4080 free_page(addr);
4081 addr += PAGE_SIZE;
4082 }
4083}
4084EXPORT_SYMBOL(free_pages_exact);
4085
e0fb5815
ZY
4086/**
4087 * nr_free_zone_pages - count number of pages beyond high watermark
4088 * @offset: The zone index of the highest zone
4089 *
4090 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4091 * high watermark within all zones at or below a given zone index. For each
4092 * zone, the number of pages is calculated as:
834405c3 4093 * managed_pages - high_pages
e0fb5815 4094 */
ebec3862 4095static unsigned long nr_free_zone_pages(int offset)
1da177e4 4096{
dd1a239f 4097 struct zoneref *z;
54a6eb5c
MG
4098 struct zone *zone;
4099
e310fd43 4100 /* Just pick one node, since fallback list is circular */
ebec3862 4101 unsigned long sum = 0;
1da177e4 4102
0e88460d 4103 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4104
54a6eb5c 4105 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4106 unsigned long size = zone->managed_pages;
41858966 4107 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4108 if (size > high)
4109 sum += size - high;
1da177e4
LT
4110 }
4111
4112 return sum;
4113}
4114
e0fb5815
ZY
4115/**
4116 * nr_free_buffer_pages - count number of pages beyond high watermark
4117 *
4118 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4119 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4120 */
ebec3862 4121unsigned long nr_free_buffer_pages(void)
1da177e4 4122{
af4ca457 4123 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4124}
c2f1a551 4125EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4126
e0fb5815
ZY
4127/**
4128 * nr_free_pagecache_pages - count number of pages beyond high watermark
4129 *
4130 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4131 * high watermark within all zones.
1da177e4 4132 */
ebec3862 4133unsigned long nr_free_pagecache_pages(void)
1da177e4 4134{
2a1e274a 4135 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4136}
08e0f6a9
CL
4137
4138static inline void show_node(struct zone *zone)
1da177e4 4139{
e5adfffc 4140 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4141 printk("Node %d ", zone_to_nid(zone));
1da177e4 4142}
1da177e4 4143
d02bd27b
IR
4144long si_mem_available(void)
4145{
4146 long available;
4147 unsigned long pagecache;
4148 unsigned long wmark_low = 0;
4149 unsigned long pages[NR_LRU_LISTS];
4150 struct zone *zone;
4151 int lru;
4152
4153 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4154 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4155
4156 for_each_zone(zone)
4157 wmark_low += zone->watermark[WMARK_LOW];
4158
4159 /*
4160 * Estimate the amount of memory available for userspace allocations,
4161 * without causing swapping.
4162 */
4163 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4164
4165 /*
4166 * Not all the page cache can be freed, otherwise the system will
4167 * start swapping. Assume at least half of the page cache, or the
4168 * low watermark worth of cache, needs to stay.
4169 */
4170 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4171 pagecache -= min(pagecache / 2, wmark_low);
4172 available += pagecache;
4173
4174 /*
4175 * Part of the reclaimable slab consists of items that are in use,
4176 * and cannot be freed. Cap this estimate at the low watermark.
4177 */
4178 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4179 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4180
4181 if (available < 0)
4182 available = 0;
4183 return available;
4184}
4185EXPORT_SYMBOL_GPL(si_mem_available);
4186
1da177e4
LT
4187void si_meminfo(struct sysinfo *val)
4188{
4189 val->totalram = totalram_pages;
11fb9989 4190 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4191 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4192 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4193 val->totalhigh = totalhigh_pages;
4194 val->freehigh = nr_free_highpages();
1da177e4
LT
4195 val->mem_unit = PAGE_SIZE;
4196}
4197
4198EXPORT_SYMBOL(si_meminfo);
4199
4200#ifdef CONFIG_NUMA
4201void si_meminfo_node(struct sysinfo *val, int nid)
4202{
cdd91a77
JL
4203 int zone_type; /* needs to be signed */
4204 unsigned long managed_pages = 0;
fc2bd799
JK
4205 unsigned long managed_highpages = 0;
4206 unsigned long free_highpages = 0;
1da177e4
LT
4207 pg_data_t *pgdat = NODE_DATA(nid);
4208
cdd91a77
JL
4209 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4210 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4211 val->totalram = managed_pages;
11fb9989 4212 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4213 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4214#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4215 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4216 struct zone *zone = &pgdat->node_zones[zone_type];
4217
4218 if (is_highmem(zone)) {
4219 managed_highpages += zone->managed_pages;
4220 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4221 }
4222 }
4223 val->totalhigh = managed_highpages;
4224 val->freehigh = free_highpages;
98d2b0eb 4225#else
fc2bd799
JK
4226 val->totalhigh = managed_highpages;
4227 val->freehigh = free_highpages;
98d2b0eb 4228#endif
1da177e4
LT
4229 val->mem_unit = PAGE_SIZE;
4230}
4231#endif
4232
ddd588b5 4233/*
7bf02ea2
DR
4234 * Determine whether the node should be displayed or not, depending on whether
4235 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4236 */
7bf02ea2 4237bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4238{
4239 bool ret = false;
cc9a6c87 4240 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4241
4242 if (!(flags & SHOW_MEM_FILTER_NODES))
4243 goto out;
4244
cc9a6c87 4245 do {
d26914d1 4246 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4247 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4248 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4249out:
4250 return ret;
4251}
4252
1da177e4
LT
4253#define K(x) ((x) << (PAGE_SHIFT-10))
4254
377e4f16
RV
4255static void show_migration_types(unsigned char type)
4256{
4257 static const char types[MIGRATE_TYPES] = {
4258 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4259 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4260 [MIGRATE_RECLAIMABLE] = 'E',
4261 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4262#ifdef CONFIG_CMA
4263 [MIGRATE_CMA] = 'C',
4264#endif
194159fb 4265#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4266 [MIGRATE_ISOLATE] = 'I',
194159fb 4267#endif
377e4f16
RV
4268 };
4269 char tmp[MIGRATE_TYPES + 1];
4270 char *p = tmp;
4271 int i;
4272
4273 for (i = 0; i < MIGRATE_TYPES; i++) {
4274 if (type & (1 << i))
4275 *p++ = types[i];
4276 }
4277
4278 *p = '\0';
1f84a18f 4279 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4280}
4281
1da177e4
LT
4282/*
4283 * Show free area list (used inside shift_scroll-lock stuff)
4284 * We also calculate the percentage fragmentation. We do this by counting the
4285 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4286 *
4287 * Bits in @filter:
4288 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4289 * cpuset.
1da177e4 4290 */
7bf02ea2 4291void show_free_areas(unsigned int filter)
1da177e4 4292{
d1bfcdb8 4293 unsigned long free_pcp = 0;
c7241913 4294 int cpu;
1da177e4 4295 struct zone *zone;
599d0c95 4296 pg_data_t *pgdat;
1da177e4 4297
ee99c71c 4298 for_each_populated_zone(zone) {
7bf02ea2 4299 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4300 continue;
d1bfcdb8 4301
761b0677
KK
4302 for_each_online_cpu(cpu)
4303 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4304 }
4305
a731286d
KM
4306 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4307 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4308 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4309 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4310 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4311 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4312 global_node_page_state(NR_ACTIVE_ANON),
4313 global_node_page_state(NR_INACTIVE_ANON),
4314 global_node_page_state(NR_ISOLATED_ANON),
4315 global_node_page_state(NR_ACTIVE_FILE),
4316 global_node_page_state(NR_INACTIVE_FILE),
4317 global_node_page_state(NR_ISOLATED_FILE),
4318 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4319 global_node_page_state(NR_FILE_DIRTY),
4320 global_node_page_state(NR_WRITEBACK),
4321 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4322 global_page_state(NR_SLAB_RECLAIMABLE),
4323 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4324 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4325 global_node_page_state(NR_SHMEM),
a25700a5 4326 global_page_state(NR_PAGETABLE),
d1ce749a 4327 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4328 global_page_state(NR_FREE_PAGES),
4329 free_pcp,
d1ce749a 4330 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4331
599d0c95
MG
4332 for_each_online_pgdat(pgdat) {
4333 printk("Node %d"
4334 " active_anon:%lukB"
4335 " inactive_anon:%lukB"
4336 " active_file:%lukB"
4337 " inactive_file:%lukB"
4338 " unevictable:%lukB"
4339 " isolated(anon):%lukB"
4340 " isolated(file):%lukB"
50658e2e 4341 " mapped:%lukB"
11fb9989
MG
4342 " dirty:%lukB"
4343 " writeback:%lukB"
4344 " shmem:%lukB"
4345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4346 " shmem_thp: %lukB"
4347 " shmem_pmdmapped: %lukB"
4348 " anon_thp: %lukB"
4349#endif
4350 " writeback_tmp:%lukB"
4351 " unstable:%lukB"
33e077bd 4352 " pages_scanned:%lu"
599d0c95
MG
4353 " all_unreclaimable? %s"
4354 "\n",
4355 pgdat->node_id,
4356 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4357 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4358 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4359 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4360 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4361 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4362 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4363 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4364 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4365 K(node_page_state(pgdat, NR_WRITEBACK)),
4366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4367 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4368 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4369 * HPAGE_PMD_NR),
4370 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4371#endif
4372 K(node_page_state(pgdat, NR_SHMEM)),
4373 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4374 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4375 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4376 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4377 }
4378
ee99c71c 4379 for_each_populated_zone(zone) {
1da177e4
LT
4380 int i;
4381
7bf02ea2 4382 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4383 continue;
d1bfcdb8
KK
4384
4385 free_pcp = 0;
4386 for_each_online_cpu(cpu)
4387 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4388
1da177e4 4389 show_node(zone);
1f84a18f
JP
4390 printk(KERN_CONT
4391 "%s"
1da177e4
LT
4392 " free:%lukB"
4393 " min:%lukB"
4394 " low:%lukB"
4395 " high:%lukB"
71c799f4
MK
4396 " active_anon:%lukB"
4397 " inactive_anon:%lukB"
4398 " active_file:%lukB"
4399 " inactive_file:%lukB"
4400 " unevictable:%lukB"
5a1c84b4 4401 " writepending:%lukB"
1da177e4 4402 " present:%lukB"
9feedc9d 4403 " managed:%lukB"
4a0aa73f 4404 " mlocked:%lukB"
4a0aa73f
KM
4405 " slab_reclaimable:%lukB"
4406 " slab_unreclaimable:%lukB"
c6a7f572 4407 " kernel_stack:%lukB"
4a0aa73f 4408 " pagetables:%lukB"
4a0aa73f 4409 " bounce:%lukB"
d1bfcdb8
KK
4410 " free_pcp:%lukB"
4411 " local_pcp:%ukB"
d1ce749a 4412 " free_cma:%lukB"
1da177e4
LT
4413 "\n",
4414 zone->name,
88f5acf8 4415 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4416 K(min_wmark_pages(zone)),
4417 K(low_wmark_pages(zone)),
4418 K(high_wmark_pages(zone)),
71c799f4
MK
4419 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4420 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4421 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4422 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4423 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4424 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4425 K(zone->present_pages),
9feedc9d 4426 K(zone->managed_pages),
4a0aa73f 4427 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4428 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4429 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4430 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4431 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4432 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4433 K(free_pcp),
4434 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4435 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4436 printk("lowmem_reserve[]:");
4437 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4438 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4439 printk(KERN_CONT "\n");
1da177e4
LT
4440 }
4441
ee99c71c 4442 for_each_populated_zone(zone) {
d00181b9
KS
4443 unsigned int order;
4444 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4445 unsigned char types[MAX_ORDER];
1da177e4 4446
7bf02ea2 4447 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4448 continue;
1da177e4 4449 show_node(zone);
1f84a18f 4450 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4451
4452 spin_lock_irqsave(&zone->lock, flags);
4453 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4454 struct free_area *area = &zone->free_area[order];
4455 int type;
4456
4457 nr[order] = area->nr_free;
8f9de51a 4458 total += nr[order] << order;
377e4f16
RV
4459
4460 types[order] = 0;
4461 for (type = 0; type < MIGRATE_TYPES; type++) {
4462 if (!list_empty(&area->free_list[type]))
4463 types[order] |= 1 << type;
4464 }
1da177e4
LT
4465 }
4466 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4467 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4468 printk(KERN_CONT "%lu*%lukB ",
4469 nr[order], K(1UL) << order);
377e4f16
RV
4470 if (nr[order])
4471 show_migration_types(types[order]);
4472 }
1f84a18f 4473 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4474 }
4475
949f7ec5
DR
4476 hugetlb_show_meminfo();
4477
11fb9989 4478 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4479
1da177e4
LT
4480 show_swap_cache_info();
4481}
4482
19770b32
MG
4483static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4484{
4485 zoneref->zone = zone;
4486 zoneref->zone_idx = zone_idx(zone);
4487}
4488
1da177e4
LT
4489/*
4490 * Builds allocation fallback zone lists.
1a93205b
CL
4491 *
4492 * Add all populated zones of a node to the zonelist.
1da177e4 4493 */
f0c0b2b8 4494static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4495 int nr_zones)
1da177e4 4496{
1a93205b 4497 struct zone *zone;
bc732f1d 4498 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4499
4500 do {
2f6726e5 4501 zone_type--;
070f8032 4502 zone = pgdat->node_zones + zone_type;
6aa303de 4503 if (managed_zone(zone)) {
dd1a239f
MG
4504 zoneref_set_zone(zone,
4505 &zonelist->_zonerefs[nr_zones++]);
070f8032 4506 check_highest_zone(zone_type);
1da177e4 4507 }
2f6726e5 4508 } while (zone_type);
bc732f1d 4509
070f8032 4510 return nr_zones;
1da177e4
LT
4511}
4512
f0c0b2b8
KH
4513
4514/*
4515 * zonelist_order:
4516 * 0 = automatic detection of better ordering.
4517 * 1 = order by ([node] distance, -zonetype)
4518 * 2 = order by (-zonetype, [node] distance)
4519 *
4520 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4521 * the same zonelist. So only NUMA can configure this param.
4522 */
4523#define ZONELIST_ORDER_DEFAULT 0
4524#define ZONELIST_ORDER_NODE 1
4525#define ZONELIST_ORDER_ZONE 2
4526
4527/* zonelist order in the kernel.
4528 * set_zonelist_order() will set this to NODE or ZONE.
4529 */
4530static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4531static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4532
4533
1da177e4 4534#ifdef CONFIG_NUMA
f0c0b2b8
KH
4535/* The value user specified ....changed by config */
4536static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4537/* string for sysctl */
4538#define NUMA_ZONELIST_ORDER_LEN 16
4539char numa_zonelist_order[16] = "default";
4540
4541/*
4542 * interface for configure zonelist ordering.
4543 * command line option "numa_zonelist_order"
4544 * = "[dD]efault - default, automatic configuration.
4545 * = "[nN]ode - order by node locality, then by zone within node
4546 * = "[zZ]one - order by zone, then by locality within zone
4547 */
4548
4549static int __parse_numa_zonelist_order(char *s)
4550{
4551 if (*s == 'd' || *s == 'D') {
4552 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4553 } else if (*s == 'n' || *s == 'N') {
4554 user_zonelist_order = ZONELIST_ORDER_NODE;
4555 } else if (*s == 'z' || *s == 'Z') {
4556 user_zonelist_order = ZONELIST_ORDER_ZONE;
4557 } else {
1170532b 4558 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4559 return -EINVAL;
4560 }
4561 return 0;
4562}
4563
4564static __init int setup_numa_zonelist_order(char *s)
4565{
ecb256f8
VL
4566 int ret;
4567
4568 if (!s)
4569 return 0;
4570
4571 ret = __parse_numa_zonelist_order(s);
4572 if (ret == 0)
4573 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4574
4575 return ret;
f0c0b2b8
KH
4576}
4577early_param("numa_zonelist_order", setup_numa_zonelist_order);
4578
4579/*
4580 * sysctl handler for numa_zonelist_order
4581 */
cccad5b9 4582int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4583 void __user *buffer, size_t *length,
f0c0b2b8
KH
4584 loff_t *ppos)
4585{
4586 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4587 int ret;
443c6f14 4588 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4589
443c6f14 4590 mutex_lock(&zl_order_mutex);
dacbde09
CG
4591 if (write) {
4592 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4593 ret = -EINVAL;
4594 goto out;
4595 }
4596 strcpy(saved_string, (char *)table->data);
4597 }
8d65af78 4598 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4599 if (ret)
443c6f14 4600 goto out;
f0c0b2b8
KH
4601 if (write) {
4602 int oldval = user_zonelist_order;
dacbde09
CG
4603
4604 ret = __parse_numa_zonelist_order((char *)table->data);
4605 if (ret) {
f0c0b2b8
KH
4606 /*
4607 * bogus value. restore saved string
4608 */
dacbde09 4609 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4610 NUMA_ZONELIST_ORDER_LEN);
4611 user_zonelist_order = oldval;
4eaf3f64
HL
4612 } else if (oldval != user_zonelist_order) {
4613 mutex_lock(&zonelists_mutex);
9adb62a5 4614 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4615 mutex_unlock(&zonelists_mutex);
4616 }
f0c0b2b8 4617 }
443c6f14
AK
4618out:
4619 mutex_unlock(&zl_order_mutex);
4620 return ret;
f0c0b2b8
KH
4621}
4622
4623
62bc62a8 4624#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4625static int node_load[MAX_NUMNODES];
4626
1da177e4 4627/**
4dc3b16b 4628 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4629 * @node: node whose fallback list we're appending
4630 * @used_node_mask: nodemask_t of already used nodes
4631 *
4632 * We use a number of factors to determine which is the next node that should
4633 * appear on a given node's fallback list. The node should not have appeared
4634 * already in @node's fallback list, and it should be the next closest node
4635 * according to the distance array (which contains arbitrary distance values
4636 * from each node to each node in the system), and should also prefer nodes
4637 * with no CPUs, since presumably they'll have very little allocation pressure
4638 * on them otherwise.
4639 * It returns -1 if no node is found.
4640 */
f0c0b2b8 4641static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4642{
4cf808eb 4643 int n, val;
1da177e4 4644 int min_val = INT_MAX;
00ef2d2f 4645 int best_node = NUMA_NO_NODE;
a70f7302 4646 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4647
4cf808eb
LT
4648 /* Use the local node if we haven't already */
4649 if (!node_isset(node, *used_node_mask)) {
4650 node_set(node, *used_node_mask);
4651 return node;
4652 }
1da177e4 4653
4b0ef1fe 4654 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4655
4656 /* Don't want a node to appear more than once */
4657 if (node_isset(n, *used_node_mask))
4658 continue;
4659
1da177e4
LT
4660 /* Use the distance array to find the distance */
4661 val = node_distance(node, n);
4662
4cf808eb
LT
4663 /* Penalize nodes under us ("prefer the next node") */
4664 val += (n < node);
4665
1da177e4 4666 /* Give preference to headless and unused nodes */
a70f7302
RR
4667 tmp = cpumask_of_node(n);
4668 if (!cpumask_empty(tmp))
1da177e4
LT
4669 val += PENALTY_FOR_NODE_WITH_CPUS;
4670
4671 /* Slight preference for less loaded node */
4672 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4673 val += node_load[n];
4674
4675 if (val < min_val) {
4676 min_val = val;
4677 best_node = n;
4678 }
4679 }
4680
4681 if (best_node >= 0)
4682 node_set(best_node, *used_node_mask);
4683
4684 return best_node;
4685}
4686
f0c0b2b8
KH
4687
4688/*
4689 * Build zonelists ordered by node and zones within node.
4690 * This results in maximum locality--normal zone overflows into local
4691 * DMA zone, if any--but risks exhausting DMA zone.
4692 */
4693static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4694{
f0c0b2b8 4695 int j;
1da177e4 4696 struct zonelist *zonelist;
f0c0b2b8 4697
c9634cf0 4698 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4699 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4700 ;
bc732f1d 4701 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4702 zonelist->_zonerefs[j].zone = NULL;
4703 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4704}
4705
523b9458
CL
4706/*
4707 * Build gfp_thisnode zonelists
4708 */
4709static void build_thisnode_zonelists(pg_data_t *pgdat)
4710{
523b9458
CL
4711 int j;
4712 struct zonelist *zonelist;
4713
c9634cf0 4714 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4715 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4716 zonelist->_zonerefs[j].zone = NULL;
4717 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4718}
4719
f0c0b2b8
KH
4720/*
4721 * Build zonelists ordered by zone and nodes within zones.
4722 * This results in conserving DMA zone[s] until all Normal memory is
4723 * exhausted, but results in overflowing to remote node while memory
4724 * may still exist in local DMA zone.
4725 */
4726static int node_order[MAX_NUMNODES];
4727
4728static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4729{
f0c0b2b8
KH
4730 int pos, j, node;
4731 int zone_type; /* needs to be signed */
4732 struct zone *z;
4733 struct zonelist *zonelist;
4734
c9634cf0 4735 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4736 pos = 0;
4737 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4738 for (j = 0; j < nr_nodes; j++) {
4739 node = node_order[j];
4740 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4741 if (managed_zone(z)) {
dd1a239f
MG
4742 zoneref_set_zone(z,
4743 &zonelist->_zonerefs[pos++]);
54a6eb5c 4744 check_highest_zone(zone_type);
f0c0b2b8
KH
4745 }
4746 }
f0c0b2b8 4747 }
dd1a239f
MG
4748 zonelist->_zonerefs[pos].zone = NULL;
4749 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4750}
4751
3193913c
MG
4752#if defined(CONFIG_64BIT)
4753/*
4754 * Devices that require DMA32/DMA are relatively rare and do not justify a
4755 * penalty to every machine in case the specialised case applies. Default
4756 * to Node-ordering on 64-bit NUMA machines
4757 */
4758static int default_zonelist_order(void)
4759{
4760 return ZONELIST_ORDER_NODE;
4761}
4762#else
4763/*
4764 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4765 * by the kernel. If processes running on node 0 deplete the low memory zone
4766 * then reclaim will occur more frequency increasing stalls and potentially
4767 * be easier to OOM if a large percentage of the zone is under writeback or
4768 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4769 * Hence, default to zone ordering on 32-bit.
4770 */
f0c0b2b8
KH
4771static int default_zonelist_order(void)
4772{
f0c0b2b8
KH
4773 return ZONELIST_ORDER_ZONE;
4774}
3193913c 4775#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4776
4777static void set_zonelist_order(void)
4778{
4779 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4780 current_zonelist_order = default_zonelist_order();
4781 else
4782 current_zonelist_order = user_zonelist_order;
4783}
4784
4785static void build_zonelists(pg_data_t *pgdat)
4786{
c00eb15a 4787 int i, node, load;
1da177e4 4788 nodemask_t used_mask;
f0c0b2b8
KH
4789 int local_node, prev_node;
4790 struct zonelist *zonelist;
d00181b9 4791 unsigned int order = current_zonelist_order;
1da177e4
LT
4792
4793 /* initialize zonelists */
523b9458 4794 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4795 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4796 zonelist->_zonerefs[0].zone = NULL;
4797 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4798 }
4799
4800 /* NUMA-aware ordering of nodes */
4801 local_node = pgdat->node_id;
62bc62a8 4802 load = nr_online_nodes;
1da177e4
LT
4803 prev_node = local_node;
4804 nodes_clear(used_mask);
f0c0b2b8 4805
f0c0b2b8 4806 memset(node_order, 0, sizeof(node_order));
c00eb15a 4807 i = 0;
f0c0b2b8 4808
1da177e4
LT
4809 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4810 /*
4811 * We don't want to pressure a particular node.
4812 * So adding penalty to the first node in same
4813 * distance group to make it round-robin.
4814 */
957f822a
DR
4815 if (node_distance(local_node, node) !=
4816 node_distance(local_node, prev_node))
f0c0b2b8
KH
4817 node_load[node] = load;
4818
1da177e4
LT
4819 prev_node = node;
4820 load--;
f0c0b2b8
KH
4821 if (order == ZONELIST_ORDER_NODE)
4822 build_zonelists_in_node_order(pgdat, node);
4823 else
c00eb15a 4824 node_order[i++] = node; /* remember order */
f0c0b2b8 4825 }
1da177e4 4826
f0c0b2b8
KH
4827 if (order == ZONELIST_ORDER_ZONE) {
4828 /* calculate node order -- i.e., DMA last! */
c00eb15a 4829 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4830 }
523b9458
CL
4831
4832 build_thisnode_zonelists(pgdat);
1da177e4
LT
4833}
4834
7aac7898
LS
4835#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4836/*
4837 * Return node id of node used for "local" allocations.
4838 * I.e., first node id of first zone in arg node's generic zonelist.
4839 * Used for initializing percpu 'numa_mem', which is used primarily
4840 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4841 */
4842int local_memory_node(int node)
4843{
c33d6c06 4844 struct zoneref *z;
7aac7898 4845
c33d6c06 4846 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4847 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4848 NULL);
4849 return z->zone->node;
7aac7898
LS
4850}
4851#endif
f0c0b2b8 4852
6423aa81
JK
4853static void setup_min_unmapped_ratio(void);
4854static void setup_min_slab_ratio(void);
1da177e4
LT
4855#else /* CONFIG_NUMA */
4856
f0c0b2b8
KH
4857static void set_zonelist_order(void)
4858{
4859 current_zonelist_order = ZONELIST_ORDER_ZONE;
4860}
4861
4862static void build_zonelists(pg_data_t *pgdat)
1da177e4 4863{
19655d34 4864 int node, local_node;
54a6eb5c
MG
4865 enum zone_type j;
4866 struct zonelist *zonelist;
1da177e4
LT
4867
4868 local_node = pgdat->node_id;
1da177e4 4869
c9634cf0 4870 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4871 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4872
54a6eb5c
MG
4873 /*
4874 * Now we build the zonelist so that it contains the zones
4875 * of all the other nodes.
4876 * We don't want to pressure a particular node, so when
4877 * building the zones for node N, we make sure that the
4878 * zones coming right after the local ones are those from
4879 * node N+1 (modulo N)
4880 */
4881 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4882 if (!node_online(node))
4883 continue;
bc732f1d 4884 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4885 }
54a6eb5c
MG
4886 for (node = 0; node < local_node; node++) {
4887 if (!node_online(node))
4888 continue;
bc732f1d 4889 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4890 }
4891
dd1a239f
MG
4892 zonelist->_zonerefs[j].zone = NULL;
4893 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4894}
4895
4896#endif /* CONFIG_NUMA */
4897
99dcc3e5
CL
4898/*
4899 * Boot pageset table. One per cpu which is going to be used for all
4900 * zones and all nodes. The parameters will be set in such a way
4901 * that an item put on a list will immediately be handed over to
4902 * the buddy list. This is safe since pageset manipulation is done
4903 * with interrupts disabled.
4904 *
4905 * The boot_pagesets must be kept even after bootup is complete for
4906 * unused processors and/or zones. They do play a role for bootstrapping
4907 * hotplugged processors.
4908 *
4909 * zoneinfo_show() and maybe other functions do
4910 * not check if the processor is online before following the pageset pointer.
4911 * Other parts of the kernel may not check if the zone is available.
4912 */
4913static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4914static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4915static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4916
4eaf3f64
HL
4917/*
4918 * Global mutex to protect against size modification of zonelists
4919 * as well as to serialize pageset setup for the new populated zone.
4920 */
4921DEFINE_MUTEX(zonelists_mutex);
4922
9b1a4d38 4923/* return values int ....just for stop_machine() */
4ed7e022 4924static int __build_all_zonelists(void *data)
1da177e4 4925{
6811378e 4926 int nid;
99dcc3e5 4927 int cpu;
9adb62a5 4928 pg_data_t *self = data;
9276b1bc 4929
7f9cfb31
BL
4930#ifdef CONFIG_NUMA
4931 memset(node_load, 0, sizeof(node_load));
4932#endif
9adb62a5
JL
4933
4934 if (self && !node_online(self->node_id)) {
4935 build_zonelists(self);
9adb62a5
JL
4936 }
4937
9276b1bc 4938 for_each_online_node(nid) {
7ea1530a
CL
4939 pg_data_t *pgdat = NODE_DATA(nid);
4940
4941 build_zonelists(pgdat);
9276b1bc 4942 }
99dcc3e5
CL
4943
4944 /*
4945 * Initialize the boot_pagesets that are going to be used
4946 * for bootstrapping processors. The real pagesets for
4947 * each zone will be allocated later when the per cpu
4948 * allocator is available.
4949 *
4950 * boot_pagesets are used also for bootstrapping offline
4951 * cpus if the system is already booted because the pagesets
4952 * are needed to initialize allocators on a specific cpu too.
4953 * F.e. the percpu allocator needs the page allocator which
4954 * needs the percpu allocator in order to allocate its pagesets
4955 * (a chicken-egg dilemma).
4956 */
7aac7898 4957 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4958 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4959
7aac7898
LS
4960#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4961 /*
4962 * We now know the "local memory node" for each node--
4963 * i.e., the node of the first zone in the generic zonelist.
4964 * Set up numa_mem percpu variable for on-line cpus. During
4965 * boot, only the boot cpu should be on-line; we'll init the
4966 * secondary cpus' numa_mem as they come on-line. During
4967 * node/memory hotplug, we'll fixup all on-line cpus.
4968 */
4969 if (cpu_online(cpu))
4970 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4971#endif
4972 }
4973
6811378e
YG
4974 return 0;
4975}
4976
061f67bc
RV
4977static noinline void __init
4978build_all_zonelists_init(void)
4979{
4980 __build_all_zonelists(NULL);
4981 mminit_verify_zonelist();
4982 cpuset_init_current_mems_allowed();
4983}
4984
4eaf3f64
HL
4985/*
4986 * Called with zonelists_mutex held always
4987 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4988 *
4989 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4990 * [we're only called with non-NULL zone through __meminit paths] and
4991 * (2) call of __init annotated helper build_all_zonelists_init
4992 * [protected by SYSTEM_BOOTING].
4eaf3f64 4993 */
9adb62a5 4994void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4995{
f0c0b2b8
KH
4996 set_zonelist_order();
4997
6811378e 4998 if (system_state == SYSTEM_BOOTING) {
061f67bc 4999 build_all_zonelists_init();
6811378e 5000 } else {
e9959f0f 5001#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5002 if (zone)
5003 setup_zone_pageset(zone);
e9959f0f 5004#endif
dd1895e2
CS
5005 /* we have to stop all cpus to guarantee there is no user
5006 of zonelist */
9adb62a5 5007 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5008 /* cpuset refresh routine should be here */
5009 }
bd1e22b8 5010 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5011 /*
5012 * Disable grouping by mobility if the number of pages in the
5013 * system is too low to allow the mechanism to work. It would be
5014 * more accurate, but expensive to check per-zone. This check is
5015 * made on memory-hotadd so a system can start with mobility
5016 * disabled and enable it later
5017 */
d9c23400 5018 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5019 page_group_by_mobility_disabled = 1;
5020 else
5021 page_group_by_mobility_disabled = 0;
5022
756a025f
JP
5023 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5024 nr_online_nodes,
5025 zonelist_order_name[current_zonelist_order],
5026 page_group_by_mobility_disabled ? "off" : "on",
5027 vm_total_pages);
f0c0b2b8 5028#ifdef CONFIG_NUMA
f88dfff5 5029 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5030#endif
1da177e4
LT
5031}
5032
1da177e4
LT
5033/*
5034 * Initially all pages are reserved - free ones are freed
5035 * up by free_all_bootmem() once the early boot process is
5036 * done. Non-atomic initialization, single-pass.
5037 */
c09b4240 5038void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5039 unsigned long start_pfn, enum memmap_context context)
1da177e4 5040{
4b94ffdc 5041 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5042 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5043 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5044 unsigned long pfn;
3a80a7fa 5045 unsigned long nr_initialised = 0;
342332e6
TI
5046#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5047 struct memblock_region *r = NULL, *tmp;
5048#endif
1da177e4 5049
22b31eec
HD
5050 if (highest_memmap_pfn < end_pfn - 1)
5051 highest_memmap_pfn = end_pfn - 1;
5052
4b94ffdc
DW
5053 /*
5054 * Honor reservation requested by the driver for this ZONE_DEVICE
5055 * memory
5056 */
5057 if (altmap && start_pfn == altmap->base_pfn)
5058 start_pfn += altmap->reserve;
5059
cbe8dd4a 5060 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5061 /*
b72d0ffb
AM
5062 * There can be holes in boot-time mem_map[]s handed to this
5063 * function. They do not exist on hotplugged memory.
a2f3aa02 5064 */
b72d0ffb
AM
5065 if (context != MEMMAP_EARLY)
5066 goto not_early;
5067
5068 if (!early_pfn_valid(pfn))
5069 continue;
5070 if (!early_pfn_in_nid(pfn, nid))
5071 continue;
5072 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5073 break;
342332e6
TI
5074
5075#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5076 /*
5077 * Check given memblock attribute by firmware which can affect
5078 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5079 * mirrored, it's an overlapped memmap init. skip it.
5080 */
5081 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5082 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5083 for_each_memblock(memory, tmp)
5084 if (pfn < memblock_region_memory_end_pfn(tmp))
5085 break;
5086 r = tmp;
5087 }
5088 if (pfn >= memblock_region_memory_base_pfn(r) &&
5089 memblock_is_mirror(r)) {
5090 /* already initialized as NORMAL */
5091 pfn = memblock_region_memory_end_pfn(r);
5092 continue;
342332e6 5093 }
a2f3aa02 5094 }
b72d0ffb 5095#endif
ac5d2539 5096
b72d0ffb 5097not_early:
ac5d2539
MG
5098 /*
5099 * Mark the block movable so that blocks are reserved for
5100 * movable at startup. This will force kernel allocations
5101 * to reserve their blocks rather than leaking throughout
5102 * the address space during boot when many long-lived
974a786e 5103 * kernel allocations are made.
ac5d2539
MG
5104 *
5105 * bitmap is created for zone's valid pfn range. but memmap
5106 * can be created for invalid pages (for alignment)
5107 * check here not to call set_pageblock_migratetype() against
5108 * pfn out of zone.
5109 */
5110 if (!(pfn & (pageblock_nr_pages - 1))) {
5111 struct page *page = pfn_to_page(pfn);
5112
5113 __init_single_page(page, pfn, zone, nid);
5114 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5115 } else {
5116 __init_single_pfn(pfn, zone, nid);
5117 }
1da177e4
LT
5118 }
5119}
5120
1e548deb 5121static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5122{
7aeb09f9 5123 unsigned int order, t;
b2a0ac88
MG
5124 for_each_migratetype_order(order, t) {
5125 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5126 zone->free_area[order].nr_free = 0;
5127 }
5128}
5129
5130#ifndef __HAVE_ARCH_MEMMAP_INIT
5131#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5132 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5133#endif
5134
7cd2b0a3 5135static int zone_batchsize(struct zone *zone)
e7c8d5c9 5136{
3a6be87f 5137#ifdef CONFIG_MMU
e7c8d5c9
CL
5138 int batch;
5139
5140 /*
5141 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5142 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5143 *
5144 * OK, so we don't know how big the cache is. So guess.
5145 */
b40da049 5146 batch = zone->managed_pages / 1024;
ba56e91c
SR
5147 if (batch * PAGE_SIZE > 512 * 1024)
5148 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5149 batch /= 4; /* We effectively *= 4 below */
5150 if (batch < 1)
5151 batch = 1;
5152
5153 /*
0ceaacc9
NP
5154 * Clamp the batch to a 2^n - 1 value. Having a power
5155 * of 2 value was found to be more likely to have
5156 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5157 *
0ceaacc9
NP
5158 * For example if 2 tasks are alternately allocating
5159 * batches of pages, one task can end up with a lot
5160 * of pages of one half of the possible page colors
5161 * and the other with pages of the other colors.
e7c8d5c9 5162 */
9155203a 5163 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5164
e7c8d5c9 5165 return batch;
3a6be87f
DH
5166
5167#else
5168 /* The deferral and batching of frees should be suppressed under NOMMU
5169 * conditions.
5170 *
5171 * The problem is that NOMMU needs to be able to allocate large chunks
5172 * of contiguous memory as there's no hardware page translation to
5173 * assemble apparent contiguous memory from discontiguous pages.
5174 *
5175 * Queueing large contiguous runs of pages for batching, however,
5176 * causes the pages to actually be freed in smaller chunks. As there
5177 * can be a significant delay between the individual batches being
5178 * recycled, this leads to the once large chunks of space being
5179 * fragmented and becoming unavailable for high-order allocations.
5180 */
5181 return 0;
5182#endif
e7c8d5c9
CL
5183}
5184
8d7a8fa9
CS
5185/*
5186 * pcp->high and pcp->batch values are related and dependent on one another:
5187 * ->batch must never be higher then ->high.
5188 * The following function updates them in a safe manner without read side
5189 * locking.
5190 *
5191 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5192 * those fields changing asynchronously (acording the the above rule).
5193 *
5194 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5195 * outside of boot time (or some other assurance that no concurrent updaters
5196 * exist).
5197 */
5198static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5199 unsigned long batch)
5200{
5201 /* start with a fail safe value for batch */
5202 pcp->batch = 1;
5203 smp_wmb();
5204
5205 /* Update high, then batch, in order */
5206 pcp->high = high;
5207 smp_wmb();
5208
5209 pcp->batch = batch;
5210}
5211
3664033c 5212/* a companion to pageset_set_high() */
4008bab7
CS
5213static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5214{
8d7a8fa9 5215 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5216}
5217
88c90dbc 5218static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5219{
5220 struct per_cpu_pages *pcp;
5f8dcc21 5221 int migratetype;
2caaad41 5222
1c6fe946
MD
5223 memset(p, 0, sizeof(*p));
5224
3dfa5721 5225 pcp = &p->pcp;
2caaad41 5226 pcp->count = 0;
5f8dcc21
MG
5227 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5228 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5229}
5230
88c90dbc
CS
5231static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5232{
5233 pageset_init(p);
5234 pageset_set_batch(p, batch);
5235}
5236
8ad4b1fb 5237/*
3664033c 5238 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5239 * to the value high for the pageset p.
5240 */
3664033c 5241static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5242 unsigned long high)
5243{
8d7a8fa9
CS
5244 unsigned long batch = max(1UL, high / 4);
5245 if ((high / 4) > (PAGE_SHIFT * 8))
5246 batch = PAGE_SHIFT * 8;
8ad4b1fb 5247
8d7a8fa9 5248 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5249}
5250
7cd2b0a3
DR
5251static void pageset_set_high_and_batch(struct zone *zone,
5252 struct per_cpu_pageset *pcp)
56cef2b8 5253{
56cef2b8 5254 if (percpu_pagelist_fraction)
3664033c 5255 pageset_set_high(pcp,
56cef2b8
CS
5256 (zone->managed_pages /
5257 percpu_pagelist_fraction));
5258 else
5259 pageset_set_batch(pcp, zone_batchsize(zone));
5260}
5261
169f6c19
CS
5262static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5263{
5264 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5265
5266 pageset_init(pcp);
5267 pageset_set_high_and_batch(zone, pcp);
5268}
5269
4ed7e022 5270static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5271{
5272 int cpu;
319774e2 5273 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5274 for_each_possible_cpu(cpu)
5275 zone_pageset_init(zone, cpu);
319774e2
WF
5276}
5277
2caaad41 5278/*
99dcc3e5
CL
5279 * Allocate per cpu pagesets and initialize them.
5280 * Before this call only boot pagesets were available.
e7c8d5c9 5281 */
99dcc3e5 5282void __init setup_per_cpu_pageset(void)
e7c8d5c9 5283{
b4911ea2 5284 struct pglist_data *pgdat;
99dcc3e5 5285 struct zone *zone;
e7c8d5c9 5286
319774e2
WF
5287 for_each_populated_zone(zone)
5288 setup_zone_pageset(zone);
b4911ea2
MG
5289
5290 for_each_online_pgdat(pgdat)
5291 pgdat->per_cpu_nodestats =
5292 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5293}
5294
c09b4240 5295static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5296{
99dcc3e5
CL
5297 /*
5298 * per cpu subsystem is not up at this point. The following code
5299 * relies on the ability of the linker to provide the
5300 * offset of a (static) per cpu variable into the per cpu area.
5301 */
5302 zone->pageset = &boot_pageset;
ed8ece2e 5303
b38a8725 5304 if (populated_zone(zone))
99dcc3e5
CL
5305 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5306 zone->name, zone->present_pages,
5307 zone_batchsize(zone));
ed8ece2e
DH
5308}
5309
4ed7e022 5310int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5311 unsigned long zone_start_pfn,
b171e409 5312 unsigned long size)
ed8ece2e
DH
5313{
5314 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5315
ed8ece2e
DH
5316 pgdat->nr_zones = zone_idx(zone) + 1;
5317
ed8ece2e
DH
5318 zone->zone_start_pfn = zone_start_pfn;
5319
708614e6
MG
5320 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5321 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5322 pgdat->node_id,
5323 (unsigned long)zone_idx(zone),
5324 zone_start_pfn, (zone_start_pfn + size));
5325
1e548deb 5326 zone_init_free_lists(zone);
9dcb8b68 5327 zone->initialized = 1;
718127cc
YG
5328
5329 return 0;
ed8ece2e
DH
5330}
5331
0ee332c1 5332#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5333#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5334
c713216d
MG
5335/*
5336 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5337 */
8a942fde
MG
5338int __meminit __early_pfn_to_nid(unsigned long pfn,
5339 struct mminit_pfnnid_cache *state)
c713216d 5340{
c13291a5 5341 unsigned long start_pfn, end_pfn;
e76b63f8 5342 int nid;
7c243c71 5343
8a942fde
MG
5344 if (state->last_start <= pfn && pfn < state->last_end)
5345 return state->last_nid;
c713216d 5346
e76b63f8
YL
5347 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5348 if (nid != -1) {
8a942fde
MG
5349 state->last_start = start_pfn;
5350 state->last_end = end_pfn;
5351 state->last_nid = nid;
e76b63f8
YL
5352 }
5353
5354 return nid;
c713216d
MG
5355}
5356#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5357
c713216d 5358/**
6782832e 5359 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5360 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5361 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5362 *
7d018176
ZZ
5363 * If an architecture guarantees that all ranges registered contain no holes
5364 * and may be freed, this this function may be used instead of calling
5365 * memblock_free_early_nid() manually.
c713216d 5366 */
c13291a5 5367void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5368{
c13291a5
TH
5369 unsigned long start_pfn, end_pfn;
5370 int i, this_nid;
edbe7d23 5371
c13291a5
TH
5372 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5373 start_pfn = min(start_pfn, max_low_pfn);
5374 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5375
c13291a5 5376 if (start_pfn < end_pfn)
6782832e
SS
5377 memblock_free_early_nid(PFN_PHYS(start_pfn),
5378 (end_pfn - start_pfn) << PAGE_SHIFT,
5379 this_nid);
edbe7d23 5380 }
edbe7d23 5381}
edbe7d23 5382
c713216d
MG
5383/**
5384 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5385 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5386 *
7d018176
ZZ
5387 * If an architecture guarantees that all ranges registered contain no holes and may
5388 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5389 */
5390void __init sparse_memory_present_with_active_regions(int nid)
5391{
c13291a5
TH
5392 unsigned long start_pfn, end_pfn;
5393 int i, this_nid;
c713216d 5394
c13291a5
TH
5395 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5396 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5397}
5398
5399/**
5400 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5401 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5402 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5403 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5404 *
5405 * It returns the start and end page frame of a node based on information
7d018176 5406 * provided by memblock_set_node(). If called for a node
c713216d 5407 * with no available memory, a warning is printed and the start and end
88ca3b94 5408 * PFNs will be 0.
c713216d 5409 */
a3142c8e 5410void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5411 unsigned long *start_pfn, unsigned long *end_pfn)
5412{
c13291a5 5413 unsigned long this_start_pfn, this_end_pfn;
c713216d 5414 int i;
c13291a5 5415
c713216d
MG
5416 *start_pfn = -1UL;
5417 *end_pfn = 0;
5418
c13291a5
TH
5419 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5420 *start_pfn = min(*start_pfn, this_start_pfn);
5421 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5422 }
5423
633c0666 5424 if (*start_pfn == -1UL)
c713216d 5425 *start_pfn = 0;
c713216d
MG
5426}
5427
2a1e274a
MG
5428/*
5429 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5430 * assumption is made that zones within a node are ordered in monotonic
5431 * increasing memory addresses so that the "highest" populated zone is used
5432 */
b69a7288 5433static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5434{
5435 int zone_index;
5436 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5437 if (zone_index == ZONE_MOVABLE)
5438 continue;
5439
5440 if (arch_zone_highest_possible_pfn[zone_index] >
5441 arch_zone_lowest_possible_pfn[zone_index])
5442 break;
5443 }
5444
5445 VM_BUG_ON(zone_index == -1);
5446 movable_zone = zone_index;
5447}
5448
5449/*
5450 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5451 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5452 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5453 * in each node depending on the size of each node and how evenly kernelcore
5454 * is distributed. This helper function adjusts the zone ranges
5455 * provided by the architecture for a given node by using the end of the
5456 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5457 * zones within a node are in order of monotonic increases memory addresses
5458 */
b69a7288 5459static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5460 unsigned long zone_type,
5461 unsigned long node_start_pfn,
5462 unsigned long node_end_pfn,
5463 unsigned long *zone_start_pfn,
5464 unsigned long *zone_end_pfn)
5465{
5466 /* Only adjust if ZONE_MOVABLE is on this node */
5467 if (zone_movable_pfn[nid]) {
5468 /* Size ZONE_MOVABLE */
5469 if (zone_type == ZONE_MOVABLE) {
5470 *zone_start_pfn = zone_movable_pfn[nid];
5471 *zone_end_pfn = min(node_end_pfn,
5472 arch_zone_highest_possible_pfn[movable_zone]);
5473
e506b996
XQ
5474 /* Adjust for ZONE_MOVABLE starting within this range */
5475 } else if (!mirrored_kernelcore &&
5476 *zone_start_pfn < zone_movable_pfn[nid] &&
5477 *zone_end_pfn > zone_movable_pfn[nid]) {
5478 *zone_end_pfn = zone_movable_pfn[nid];
5479
2a1e274a
MG
5480 /* Check if this whole range is within ZONE_MOVABLE */
5481 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5482 *zone_start_pfn = *zone_end_pfn;
5483 }
5484}
5485
c713216d
MG
5486/*
5487 * Return the number of pages a zone spans in a node, including holes
5488 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5489 */
6ea6e688 5490static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5491 unsigned long zone_type,
7960aedd
ZY
5492 unsigned long node_start_pfn,
5493 unsigned long node_end_pfn,
d91749c1
TI
5494 unsigned long *zone_start_pfn,
5495 unsigned long *zone_end_pfn,
c713216d
MG
5496 unsigned long *ignored)
5497{
b5685e92 5498 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5499 if (!node_start_pfn && !node_end_pfn)
5500 return 0;
5501
7960aedd 5502 /* Get the start and end of the zone */
d91749c1
TI
5503 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5504 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5505 adjust_zone_range_for_zone_movable(nid, zone_type,
5506 node_start_pfn, node_end_pfn,
d91749c1 5507 zone_start_pfn, zone_end_pfn);
c713216d
MG
5508
5509 /* Check that this node has pages within the zone's required range */
d91749c1 5510 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5511 return 0;
5512
5513 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5514 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5515 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5516
5517 /* Return the spanned pages */
d91749c1 5518 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5519}
5520
5521/*
5522 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5523 * then all holes in the requested range will be accounted for.
c713216d 5524 */
32996250 5525unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5526 unsigned long range_start_pfn,
5527 unsigned long range_end_pfn)
5528{
96e907d1
TH
5529 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5530 unsigned long start_pfn, end_pfn;
5531 int i;
c713216d 5532
96e907d1
TH
5533 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5534 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5535 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5536 nr_absent -= end_pfn - start_pfn;
c713216d 5537 }
96e907d1 5538 return nr_absent;
c713216d
MG
5539}
5540
5541/**
5542 * absent_pages_in_range - Return number of page frames in holes within a range
5543 * @start_pfn: The start PFN to start searching for holes
5544 * @end_pfn: The end PFN to stop searching for holes
5545 *
88ca3b94 5546 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5547 */
5548unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5549 unsigned long end_pfn)
5550{
5551 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5552}
5553
5554/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5555static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5556 unsigned long zone_type,
7960aedd
ZY
5557 unsigned long node_start_pfn,
5558 unsigned long node_end_pfn,
c713216d
MG
5559 unsigned long *ignored)
5560{
96e907d1
TH
5561 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5562 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5563 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5564 unsigned long nr_absent;
9c7cd687 5565
b5685e92 5566 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5567 if (!node_start_pfn && !node_end_pfn)
5568 return 0;
5569
96e907d1
TH
5570 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5571 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5572
2a1e274a
MG
5573 adjust_zone_range_for_zone_movable(nid, zone_type,
5574 node_start_pfn, node_end_pfn,
5575 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5576 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5577
5578 /*
5579 * ZONE_MOVABLE handling.
5580 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5581 * and vice versa.
5582 */
e506b996
XQ
5583 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5584 unsigned long start_pfn, end_pfn;
5585 struct memblock_region *r;
5586
5587 for_each_memblock(memory, r) {
5588 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5589 zone_start_pfn, zone_end_pfn);
5590 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5591 zone_start_pfn, zone_end_pfn);
5592
5593 if (zone_type == ZONE_MOVABLE &&
5594 memblock_is_mirror(r))
5595 nr_absent += end_pfn - start_pfn;
5596
5597 if (zone_type == ZONE_NORMAL &&
5598 !memblock_is_mirror(r))
5599 nr_absent += end_pfn - start_pfn;
342332e6
TI
5600 }
5601 }
5602
5603 return nr_absent;
c713216d 5604}
0e0b864e 5605
0ee332c1 5606#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5607static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5608 unsigned long zone_type,
7960aedd
ZY
5609 unsigned long node_start_pfn,
5610 unsigned long node_end_pfn,
d91749c1
TI
5611 unsigned long *zone_start_pfn,
5612 unsigned long *zone_end_pfn,
c713216d
MG
5613 unsigned long *zones_size)
5614{
d91749c1
TI
5615 unsigned int zone;
5616
5617 *zone_start_pfn = node_start_pfn;
5618 for (zone = 0; zone < zone_type; zone++)
5619 *zone_start_pfn += zones_size[zone];
5620
5621 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5622
c713216d
MG
5623 return zones_size[zone_type];
5624}
5625
6ea6e688 5626static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5627 unsigned long zone_type,
7960aedd
ZY
5628 unsigned long node_start_pfn,
5629 unsigned long node_end_pfn,
c713216d
MG
5630 unsigned long *zholes_size)
5631{
5632 if (!zholes_size)
5633 return 0;
5634
5635 return zholes_size[zone_type];
5636}
20e6926d 5637
0ee332c1 5638#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5639
a3142c8e 5640static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5641 unsigned long node_start_pfn,
5642 unsigned long node_end_pfn,
5643 unsigned long *zones_size,
5644 unsigned long *zholes_size)
c713216d 5645{
febd5949 5646 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5647 enum zone_type i;
5648
febd5949
GZ
5649 for (i = 0; i < MAX_NR_ZONES; i++) {
5650 struct zone *zone = pgdat->node_zones + i;
d91749c1 5651 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5652 unsigned long size, real_size;
c713216d 5653
febd5949
GZ
5654 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5655 node_start_pfn,
5656 node_end_pfn,
d91749c1
TI
5657 &zone_start_pfn,
5658 &zone_end_pfn,
febd5949
GZ
5659 zones_size);
5660 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5661 node_start_pfn, node_end_pfn,
5662 zholes_size);
d91749c1
TI
5663 if (size)
5664 zone->zone_start_pfn = zone_start_pfn;
5665 else
5666 zone->zone_start_pfn = 0;
febd5949
GZ
5667 zone->spanned_pages = size;
5668 zone->present_pages = real_size;
5669
5670 totalpages += size;
5671 realtotalpages += real_size;
5672 }
5673
5674 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5675 pgdat->node_present_pages = realtotalpages;
5676 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5677 realtotalpages);
5678}
5679
835c134e
MG
5680#ifndef CONFIG_SPARSEMEM
5681/*
5682 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5683 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5684 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5685 * round what is now in bits to nearest long in bits, then return it in
5686 * bytes.
5687 */
7c45512d 5688static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5689{
5690 unsigned long usemapsize;
5691
7c45512d 5692 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5693 usemapsize = roundup(zonesize, pageblock_nr_pages);
5694 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5695 usemapsize *= NR_PAGEBLOCK_BITS;
5696 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5697
5698 return usemapsize / 8;
5699}
5700
5701static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5702 struct zone *zone,
5703 unsigned long zone_start_pfn,
5704 unsigned long zonesize)
835c134e 5705{
7c45512d 5706 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5707 zone->pageblock_flags = NULL;
58a01a45 5708 if (usemapsize)
6782832e
SS
5709 zone->pageblock_flags =
5710 memblock_virt_alloc_node_nopanic(usemapsize,
5711 pgdat->node_id);
835c134e
MG
5712}
5713#else
7c45512d
LT
5714static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5715 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5716#endif /* CONFIG_SPARSEMEM */
5717
d9c23400 5718#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5719
d9c23400 5720/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5721void __paginginit set_pageblock_order(void)
d9c23400 5722{
955c1cd7
AM
5723 unsigned int order;
5724
d9c23400
MG
5725 /* Check that pageblock_nr_pages has not already been setup */
5726 if (pageblock_order)
5727 return;
5728
955c1cd7
AM
5729 if (HPAGE_SHIFT > PAGE_SHIFT)
5730 order = HUGETLB_PAGE_ORDER;
5731 else
5732 order = MAX_ORDER - 1;
5733
d9c23400
MG
5734 /*
5735 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5736 * This value may be variable depending on boot parameters on IA64 and
5737 * powerpc.
d9c23400
MG
5738 */
5739 pageblock_order = order;
5740}
5741#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5742
ba72cb8c
MG
5743/*
5744 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5745 * is unused as pageblock_order is set at compile-time. See
5746 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5747 * the kernel config
ba72cb8c 5748 */
15ca220e 5749void __paginginit set_pageblock_order(void)
ba72cb8c 5750{
ba72cb8c 5751}
d9c23400
MG
5752
5753#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5754
01cefaef
JL
5755static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5756 unsigned long present_pages)
5757{
5758 unsigned long pages = spanned_pages;
5759
5760 /*
5761 * Provide a more accurate estimation if there are holes within
5762 * the zone and SPARSEMEM is in use. If there are holes within the
5763 * zone, each populated memory region may cost us one or two extra
5764 * memmap pages due to alignment because memmap pages for each
5765 * populated regions may not naturally algined on page boundary.
5766 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5767 */
5768 if (spanned_pages > present_pages + (present_pages >> 4) &&
5769 IS_ENABLED(CONFIG_SPARSEMEM))
5770 pages = present_pages;
5771
5772 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5773}
5774
1da177e4
LT
5775/*
5776 * Set up the zone data structures:
5777 * - mark all pages reserved
5778 * - mark all memory queues empty
5779 * - clear the memory bitmaps
6527af5d
MK
5780 *
5781 * NOTE: pgdat should get zeroed by caller.
1da177e4 5782 */
7f3eb55b 5783static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5784{
2f1b6248 5785 enum zone_type j;
ed8ece2e 5786 int nid = pgdat->node_id;
718127cc 5787 int ret;
1da177e4 5788
208d54e5 5789 pgdat_resize_init(pgdat);
8177a420
AA
5790#ifdef CONFIG_NUMA_BALANCING
5791 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5792 pgdat->numabalancing_migrate_nr_pages = 0;
5793 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5794#endif
5795#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5796 spin_lock_init(&pgdat->split_queue_lock);
5797 INIT_LIST_HEAD(&pgdat->split_queue);
5798 pgdat->split_queue_len = 0;
8177a420 5799#endif
1da177e4 5800 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5801 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5802#ifdef CONFIG_COMPACTION
5803 init_waitqueue_head(&pgdat->kcompactd_wait);
5804#endif
eefa864b 5805 pgdat_page_ext_init(pgdat);
a52633d8 5806 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5807 lruvec_init(node_lruvec(pgdat));
5f63b720 5808
1da177e4
LT
5809 for (j = 0; j < MAX_NR_ZONES; j++) {
5810 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5811 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5812 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5813
febd5949
GZ
5814 size = zone->spanned_pages;
5815 realsize = freesize = zone->present_pages;
1da177e4 5816
0e0b864e 5817 /*
9feedc9d 5818 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5819 * is used by this zone for memmap. This affects the watermark
5820 * and per-cpu initialisations
5821 */
01cefaef 5822 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5823 if (!is_highmem_idx(j)) {
5824 if (freesize >= memmap_pages) {
5825 freesize -= memmap_pages;
5826 if (memmap_pages)
5827 printk(KERN_DEBUG
5828 " %s zone: %lu pages used for memmap\n",
5829 zone_names[j], memmap_pages);
5830 } else
1170532b 5831 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5832 zone_names[j], memmap_pages, freesize);
5833 }
0e0b864e 5834
6267276f 5835 /* Account for reserved pages */
9feedc9d
JL
5836 if (j == 0 && freesize > dma_reserve) {
5837 freesize -= dma_reserve;
d903ef9f 5838 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5839 zone_names[0], dma_reserve);
0e0b864e
MG
5840 }
5841
98d2b0eb 5842 if (!is_highmem_idx(j))
9feedc9d 5843 nr_kernel_pages += freesize;
01cefaef
JL
5844 /* Charge for highmem memmap if there are enough kernel pages */
5845 else if (nr_kernel_pages > memmap_pages * 2)
5846 nr_kernel_pages -= memmap_pages;
9feedc9d 5847 nr_all_pages += freesize;
1da177e4 5848
9feedc9d
JL
5849 /*
5850 * Set an approximate value for lowmem here, it will be adjusted
5851 * when the bootmem allocator frees pages into the buddy system.
5852 * And all highmem pages will be managed by the buddy system.
5853 */
5854 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5855#ifdef CONFIG_NUMA
d5f541ed 5856 zone->node = nid;
9614634f 5857#endif
1da177e4 5858 zone->name = zone_names[j];
a52633d8 5859 zone->zone_pgdat = pgdat;
1da177e4 5860 spin_lock_init(&zone->lock);
bdc8cb98 5861 zone_seqlock_init(zone);
ed8ece2e 5862 zone_pcp_init(zone);
81c0a2bb 5863
1da177e4
LT
5864 if (!size)
5865 continue;
5866
955c1cd7 5867 set_pageblock_order();
7c45512d 5868 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5869 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5870 BUG_ON(ret);
76cdd58e 5871 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5872 }
5873}
5874
bd721ea7 5875static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5876{
b0aeba74 5877 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5878 unsigned long __maybe_unused offset = 0;
5879
1da177e4
LT
5880 /* Skip empty nodes */
5881 if (!pgdat->node_spanned_pages)
5882 return;
5883
d41dee36 5884#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5885 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5886 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5887 /* ia64 gets its own node_mem_map, before this, without bootmem */
5888 if (!pgdat->node_mem_map) {
b0aeba74 5889 unsigned long size, end;
d41dee36
AW
5890 struct page *map;
5891
e984bb43
BP
5892 /*
5893 * The zone's endpoints aren't required to be MAX_ORDER
5894 * aligned but the node_mem_map endpoints must be in order
5895 * for the buddy allocator to function correctly.
5896 */
108bcc96 5897 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5898 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5899 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5900 map = alloc_remap(pgdat->node_id, size);
5901 if (!map)
6782832e
SS
5902 map = memblock_virt_alloc_node_nopanic(size,
5903 pgdat->node_id);
a1c34a3b 5904 pgdat->node_mem_map = map + offset;
1da177e4 5905 }
12d810c1 5906#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5907 /*
5908 * With no DISCONTIG, the global mem_map is just set as node 0's
5909 */
c713216d 5910 if (pgdat == NODE_DATA(0)) {
1da177e4 5911 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5912#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5913 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5914 mem_map -= offset;
0ee332c1 5915#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5916 }
1da177e4 5917#endif
d41dee36 5918#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5919}
5920
9109fb7b
JW
5921void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5922 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5923{
9109fb7b 5924 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5925 unsigned long start_pfn = 0;
5926 unsigned long end_pfn = 0;
9109fb7b 5927
88fdf75d 5928 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5929 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5930
3a80a7fa 5931 reset_deferred_meminit(pgdat);
1da177e4
LT
5932 pgdat->node_id = nid;
5933 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5934 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5935#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5936 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5937 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5938 (u64)start_pfn << PAGE_SHIFT,
5939 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5940#else
5941 start_pfn = node_start_pfn;
7960aedd
ZY
5942#endif
5943 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5944 zones_size, zholes_size);
1da177e4
LT
5945
5946 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5947#ifdef CONFIG_FLAT_NODE_MEM_MAP
5948 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5949 nid, (unsigned long)pgdat,
5950 (unsigned long)pgdat->node_mem_map);
5951#endif
1da177e4 5952
7f3eb55b 5953 free_area_init_core(pgdat);
1da177e4
LT
5954}
5955
0ee332c1 5956#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5957
5958#if MAX_NUMNODES > 1
5959/*
5960 * Figure out the number of possible node ids.
5961 */
f9872caf 5962void __init setup_nr_node_ids(void)
418508c1 5963{
904a9553 5964 unsigned int highest;
418508c1 5965
904a9553 5966 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5967 nr_node_ids = highest + 1;
5968}
418508c1
MS
5969#endif
5970
1e01979c
TH
5971/**
5972 * node_map_pfn_alignment - determine the maximum internode alignment
5973 *
5974 * This function should be called after node map is populated and sorted.
5975 * It calculates the maximum power of two alignment which can distinguish
5976 * all the nodes.
5977 *
5978 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5979 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5980 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5981 * shifted, 1GiB is enough and this function will indicate so.
5982 *
5983 * This is used to test whether pfn -> nid mapping of the chosen memory
5984 * model has fine enough granularity to avoid incorrect mapping for the
5985 * populated node map.
5986 *
5987 * Returns the determined alignment in pfn's. 0 if there is no alignment
5988 * requirement (single node).
5989 */
5990unsigned long __init node_map_pfn_alignment(void)
5991{
5992 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5993 unsigned long start, end, mask;
1e01979c 5994 int last_nid = -1;
c13291a5 5995 int i, nid;
1e01979c 5996
c13291a5 5997 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5998 if (!start || last_nid < 0 || last_nid == nid) {
5999 last_nid = nid;
6000 last_end = end;
6001 continue;
6002 }
6003
6004 /*
6005 * Start with a mask granular enough to pin-point to the
6006 * start pfn and tick off bits one-by-one until it becomes
6007 * too coarse to separate the current node from the last.
6008 */
6009 mask = ~((1 << __ffs(start)) - 1);
6010 while (mask && last_end <= (start & (mask << 1)))
6011 mask <<= 1;
6012
6013 /* accumulate all internode masks */
6014 accl_mask |= mask;
6015 }
6016
6017 /* convert mask to number of pages */
6018 return ~accl_mask + 1;
6019}
6020
a6af2bc3 6021/* Find the lowest pfn for a node */
b69a7288 6022static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6023{
a6af2bc3 6024 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6025 unsigned long start_pfn;
6026 int i;
1abbfb41 6027
c13291a5
TH
6028 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6029 min_pfn = min(min_pfn, start_pfn);
c713216d 6030
a6af2bc3 6031 if (min_pfn == ULONG_MAX) {
1170532b 6032 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6033 return 0;
6034 }
6035
6036 return min_pfn;
c713216d
MG
6037}
6038
6039/**
6040 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6041 *
6042 * It returns the minimum PFN based on information provided via
7d018176 6043 * memblock_set_node().
c713216d
MG
6044 */
6045unsigned long __init find_min_pfn_with_active_regions(void)
6046{
6047 return find_min_pfn_for_node(MAX_NUMNODES);
6048}
6049
37b07e41
LS
6050/*
6051 * early_calculate_totalpages()
6052 * Sum pages in active regions for movable zone.
4b0ef1fe 6053 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6054 */
484f51f8 6055static unsigned long __init early_calculate_totalpages(void)
7e63efef 6056{
7e63efef 6057 unsigned long totalpages = 0;
c13291a5
TH
6058 unsigned long start_pfn, end_pfn;
6059 int i, nid;
6060
6061 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6062 unsigned long pages = end_pfn - start_pfn;
7e63efef 6063
37b07e41
LS
6064 totalpages += pages;
6065 if (pages)
4b0ef1fe 6066 node_set_state(nid, N_MEMORY);
37b07e41 6067 }
b8af2941 6068 return totalpages;
7e63efef
MG
6069}
6070
2a1e274a
MG
6071/*
6072 * Find the PFN the Movable zone begins in each node. Kernel memory
6073 * is spread evenly between nodes as long as the nodes have enough
6074 * memory. When they don't, some nodes will have more kernelcore than
6075 * others
6076 */
b224ef85 6077static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6078{
6079 int i, nid;
6080 unsigned long usable_startpfn;
6081 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6082 /* save the state before borrow the nodemask */
4b0ef1fe 6083 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6084 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6085 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6086 struct memblock_region *r;
b2f3eebe
TC
6087
6088 /* Need to find movable_zone earlier when movable_node is specified. */
6089 find_usable_zone_for_movable();
6090
6091 /*
6092 * If movable_node is specified, ignore kernelcore and movablecore
6093 * options.
6094 */
6095 if (movable_node_is_enabled()) {
136199f0
EM
6096 for_each_memblock(memory, r) {
6097 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6098 continue;
6099
136199f0 6100 nid = r->nid;
b2f3eebe 6101
136199f0 6102 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6103 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6104 min(usable_startpfn, zone_movable_pfn[nid]) :
6105 usable_startpfn;
6106 }
6107
6108 goto out2;
6109 }
2a1e274a 6110
342332e6
TI
6111 /*
6112 * If kernelcore=mirror is specified, ignore movablecore option
6113 */
6114 if (mirrored_kernelcore) {
6115 bool mem_below_4gb_not_mirrored = false;
6116
6117 for_each_memblock(memory, r) {
6118 if (memblock_is_mirror(r))
6119 continue;
6120
6121 nid = r->nid;
6122
6123 usable_startpfn = memblock_region_memory_base_pfn(r);
6124
6125 if (usable_startpfn < 0x100000) {
6126 mem_below_4gb_not_mirrored = true;
6127 continue;
6128 }
6129
6130 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6131 min(usable_startpfn, zone_movable_pfn[nid]) :
6132 usable_startpfn;
6133 }
6134
6135 if (mem_below_4gb_not_mirrored)
6136 pr_warn("This configuration results in unmirrored kernel memory.");
6137
6138 goto out2;
6139 }
6140
7e63efef 6141 /*
b2f3eebe 6142 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6143 * kernelcore that corresponds so that memory usable for
6144 * any allocation type is evenly spread. If both kernelcore
6145 * and movablecore are specified, then the value of kernelcore
6146 * will be used for required_kernelcore if it's greater than
6147 * what movablecore would have allowed.
6148 */
6149 if (required_movablecore) {
7e63efef
MG
6150 unsigned long corepages;
6151
6152 /*
6153 * Round-up so that ZONE_MOVABLE is at least as large as what
6154 * was requested by the user
6155 */
6156 required_movablecore =
6157 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6158 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6159 corepages = totalpages - required_movablecore;
6160
6161 required_kernelcore = max(required_kernelcore, corepages);
6162 }
6163
bde304bd
XQ
6164 /*
6165 * If kernelcore was not specified or kernelcore size is larger
6166 * than totalpages, there is no ZONE_MOVABLE.
6167 */
6168 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6169 goto out;
2a1e274a
MG
6170
6171 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6172 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6173
6174restart:
6175 /* Spread kernelcore memory as evenly as possible throughout nodes */
6176 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6177 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6178 unsigned long start_pfn, end_pfn;
6179
2a1e274a
MG
6180 /*
6181 * Recalculate kernelcore_node if the division per node
6182 * now exceeds what is necessary to satisfy the requested
6183 * amount of memory for the kernel
6184 */
6185 if (required_kernelcore < kernelcore_node)
6186 kernelcore_node = required_kernelcore / usable_nodes;
6187
6188 /*
6189 * As the map is walked, we track how much memory is usable
6190 * by the kernel using kernelcore_remaining. When it is
6191 * 0, the rest of the node is usable by ZONE_MOVABLE
6192 */
6193 kernelcore_remaining = kernelcore_node;
6194
6195 /* Go through each range of PFNs within this node */
c13291a5 6196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6197 unsigned long size_pages;
6198
c13291a5 6199 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6200 if (start_pfn >= end_pfn)
6201 continue;
6202
6203 /* Account for what is only usable for kernelcore */
6204 if (start_pfn < usable_startpfn) {
6205 unsigned long kernel_pages;
6206 kernel_pages = min(end_pfn, usable_startpfn)
6207 - start_pfn;
6208
6209 kernelcore_remaining -= min(kernel_pages,
6210 kernelcore_remaining);
6211 required_kernelcore -= min(kernel_pages,
6212 required_kernelcore);
6213
6214 /* Continue if range is now fully accounted */
6215 if (end_pfn <= usable_startpfn) {
6216
6217 /*
6218 * Push zone_movable_pfn to the end so
6219 * that if we have to rebalance
6220 * kernelcore across nodes, we will
6221 * not double account here
6222 */
6223 zone_movable_pfn[nid] = end_pfn;
6224 continue;
6225 }
6226 start_pfn = usable_startpfn;
6227 }
6228
6229 /*
6230 * The usable PFN range for ZONE_MOVABLE is from
6231 * start_pfn->end_pfn. Calculate size_pages as the
6232 * number of pages used as kernelcore
6233 */
6234 size_pages = end_pfn - start_pfn;
6235 if (size_pages > kernelcore_remaining)
6236 size_pages = kernelcore_remaining;
6237 zone_movable_pfn[nid] = start_pfn + size_pages;
6238
6239 /*
6240 * Some kernelcore has been met, update counts and
6241 * break if the kernelcore for this node has been
b8af2941 6242 * satisfied
2a1e274a
MG
6243 */
6244 required_kernelcore -= min(required_kernelcore,
6245 size_pages);
6246 kernelcore_remaining -= size_pages;
6247 if (!kernelcore_remaining)
6248 break;
6249 }
6250 }
6251
6252 /*
6253 * If there is still required_kernelcore, we do another pass with one
6254 * less node in the count. This will push zone_movable_pfn[nid] further
6255 * along on the nodes that still have memory until kernelcore is
b8af2941 6256 * satisfied
2a1e274a
MG
6257 */
6258 usable_nodes--;
6259 if (usable_nodes && required_kernelcore > usable_nodes)
6260 goto restart;
6261
b2f3eebe 6262out2:
2a1e274a
MG
6263 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6264 for (nid = 0; nid < MAX_NUMNODES; nid++)
6265 zone_movable_pfn[nid] =
6266 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6267
20e6926d 6268out:
66918dcd 6269 /* restore the node_state */
4b0ef1fe 6270 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6271}
6272
4b0ef1fe
LJ
6273/* Any regular or high memory on that node ? */
6274static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6275{
37b07e41
LS
6276 enum zone_type zone_type;
6277
4b0ef1fe
LJ
6278 if (N_MEMORY == N_NORMAL_MEMORY)
6279 return;
6280
6281 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6282 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6283 if (populated_zone(zone)) {
4b0ef1fe
LJ
6284 node_set_state(nid, N_HIGH_MEMORY);
6285 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6286 zone_type <= ZONE_NORMAL)
6287 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6288 break;
6289 }
37b07e41 6290 }
37b07e41
LS
6291}
6292
c713216d
MG
6293/**
6294 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6295 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6296 *
6297 * This will call free_area_init_node() for each active node in the system.
7d018176 6298 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6299 * zone in each node and their holes is calculated. If the maximum PFN
6300 * between two adjacent zones match, it is assumed that the zone is empty.
6301 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6302 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6303 * starts where the previous one ended. For example, ZONE_DMA32 starts
6304 * at arch_max_dma_pfn.
6305 */
6306void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6307{
c13291a5
TH
6308 unsigned long start_pfn, end_pfn;
6309 int i, nid;
a6af2bc3 6310
c713216d
MG
6311 /* Record where the zone boundaries are */
6312 memset(arch_zone_lowest_possible_pfn, 0,
6313 sizeof(arch_zone_lowest_possible_pfn));
6314 memset(arch_zone_highest_possible_pfn, 0,
6315 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6316
6317 start_pfn = find_min_pfn_with_active_regions();
6318
6319 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6320 if (i == ZONE_MOVABLE)
6321 continue;
90cae1fe
OH
6322
6323 end_pfn = max(max_zone_pfn[i], start_pfn);
6324 arch_zone_lowest_possible_pfn[i] = start_pfn;
6325 arch_zone_highest_possible_pfn[i] = end_pfn;
6326
6327 start_pfn = end_pfn;
c713216d 6328 }
2a1e274a
MG
6329 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6330 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6331
6332 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6333 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6334 find_zone_movable_pfns_for_nodes();
c713216d 6335
c713216d 6336 /* Print out the zone ranges */
f88dfff5 6337 pr_info("Zone ranges:\n");
2a1e274a
MG
6338 for (i = 0; i < MAX_NR_ZONES; i++) {
6339 if (i == ZONE_MOVABLE)
6340 continue;
f88dfff5 6341 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6342 if (arch_zone_lowest_possible_pfn[i] ==
6343 arch_zone_highest_possible_pfn[i])
f88dfff5 6344 pr_cont("empty\n");
72f0ba02 6345 else
8d29e18a
JG
6346 pr_cont("[mem %#018Lx-%#018Lx]\n",
6347 (u64)arch_zone_lowest_possible_pfn[i]
6348 << PAGE_SHIFT,
6349 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6350 << PAGE_SHIFT) - 1);
2a1e274a
MG
6351 }
6352
6353 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6354 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6355 for (i = 0; i < MAX_NUMNODES; i++) {
6356 if (zone_movable_pfn[i])
8d29e18a
JG
6357 pr_info(" Node %d: %#018Lx\n", i,
6358 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6359 }
c713216d 6360
f2d52fe5 6361 /* Print out the early node map */
f88dfff5 6362 pr_info("Early memory node ranges\n");
c13291a5 6363 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6364 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6365 (u64)start_pfn << PAGE_SHIFT,
6366 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6367
6368 /* Initialise every node */
708614e6 6369 mminit_verify_pageflags_layout();
8ef82866 6370 setup_nr_node_ids();
c713216d
MG
6371 for_each_online_node(nid) {
6372 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6373 free_area_init_node(nid, NULL,
c713216d 6374 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6375
6376 /* Any memory on that node */
6377 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6378 node_set_state(nid, N_MEMORY);
6379 check_for_memory(pgdat, nid);
c713216d
MG
6380 }
6381}
2a1e274a 6382
7e63efef 6383static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6384{
6385 unsigned long long coremem;
6386 if (!p)
6387 return -EINVAL;
6388
6389 coremem = memparse(p, &p);
7e63efef 6390 *core = coremem >> PAGE_SHIFT;
2a1e274a 6391
7e63efef 6392 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6393 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6394
6395 return 0;
6396}
ed7ed365 6397
7e63efef
MG
6398/*
6399 * kernelcore=size sets the amount of memory for use for allocations that
6400 * cannot be reclaimed or migrated.
6401 */
6402static int __init cmdline_parse_kernelcore(char *p)
6403{
342332e6
TI
6404 /* parse kernelcore=mirror */
6405 if (parse_option_str(p, "mirror")) {
6406 mirrored_kernelcore = true;
6407 return 0;
6408 }
6409
7e63efef
MG
6410 return cmdline_parse_core(p, &required_kernelcore);
6411}
6412
6413/*
6414 * movablecore=size sets the amount of memory for use for allocations that
6415 * can be reclaimed or migrated.
6416 */
6417static int __init cmdline_parse_movablecore(char *p)
6418{
6419 return cmdline_parse_core(p, &required_movablecore);
6420}
6421
ed7ed365 6422early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6423early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6424
0ee332c1 6425#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6426
c3d5f5f0
JL
6427void adjust_managed_page_count(struct page *page, long count)
6428{
6429 spin_lock(&managed_page_count_lock);
6430 page_zone(page)->managed_pages += count;
6431 totalram_pages += count;
3dcc0571
JL
6432#ifdef CONFIG_HIGHMEM
6433 if (PageHighMem(page))
6434 totalhigh_pages += count;
6435#endif
c3d5f5f0
JL
6436 spin_unlock(&managed_page_count_lock);
6437}
3dcc0571 6438EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6439
11199692 6440unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6441{
11199692
JL
6442 void *pos;
6443 unsigned long pages = 0;
69afade7 6444
11199692
JL
6445 start = (void *)PAGE_ALIGN((unsigned long)start);
6446 end = (void *)((unsigned long)end & PAGE_MASK);
6447 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6448 if ((unsigned int)poison <= 0xFF)
11199692
JL
6449 memset(pos, poison, PAGE_SIZE);
6450 free_reserved_page(virt_to_page(pos));
69afade7
JL
6451 }
6452
6453 if (pages && s)
adb1fe9a
JP
6454 pr_info("Freeing %s memory: %ldK\n",
6455 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6456
6457 return pages;
6458}
11199692 6459EXPORT_SYMBOL(free_reserved_area);
69afade7 6460
cfa11e08
JL
6461#ifdef CONFIG_HIGHMEM
6462void free_highmem_page(struct page *page)
6463{
6464 __free_reserved_page(page);
6465 totalram_pages++;
7b4b2a0d 6466 page_zone(page)->managed_pages++;
cfa11e08
JL
6467 totalhigh_pages++;
6468}
6469#endif
6470
7ee3d4e8
JL
6471
6472void __init mem_init_print_info(const char *str)
6473{
6474 unsigned long physpages, codesize, datasize, rosize, bss_size;
6475 unsigned long init_code_size, init_data_size;
6476
6477 physpages = get_num_physpages();
6478 codesize = _etext - _stext;
6479 datasize = _edata - _sdata;
6480 rosize = __end_rodata - __start_rodata;
6481 bss_size = __bss_stop - __bss_start;
6482 init_data_size = __init_end - __init_begin;
6483 init_code_size = _einittext - _sinittext;
6484
6485 /*
6486 * Detect special cases and adjust section sizes accordingly:
6487 * 1) .init.* may be embedded into .data sections
6488 * 2) .init.text.* may be out of [__init_begin, __init_end],
6489 * please refer to arch/tile/kernel/vmlinux.lds.S.
6490 * 3) .rodata.* may be embedded into .text or .data sections.
6491 */
6492#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6493 do { \
6494 if (start <= pos && pos < end && size > adj) \
6495 size -= adj; \
6496 } while (0)
7ee3d4e8
JL
6497
6498 adj_init_size(__init_begin, __init_end, init_data_size,
6499 _sinittext, init_code_size);
6500 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6501 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6502 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6503 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6504
6505#undef adj_init_size
6506
756a025f 6507 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6508#ifdef CONFIG_HIGHMEM
756a025f 6509 ", %luK highmem"
7ee3d4e8 6510#endif
756a025f
JP
6511 "%s%s)\n",
6512 nr_free_pages() << (PAGE_SHIFT - 10),
6513 physpages << (PAGE_SHIFT - 10),
6514 codesize >> 10, datasize >> 10, rosize >> 10,
6515 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6516 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6517 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6518#ifdef CONFIG_HIGHMEM
756a025f 6519 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6520#endif
756a025f 6521 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6522}
6523
0e0b864e 6524/**
88ca3b94
RD
6525 * set_dma_reserve - set the specified number of pages reserved in the first zone
6526 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6527 *
013110a7 6528 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6529 * In the DMA zone, a significant percentage may be consumed by kernel image
6530 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6531 * function may optionally be used to account for unfreeable pages in the
6532 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6533 * smaller per-cpu batchsize.
0e0b864e
MG
6534 */
6535void __init set_dma_reserve(unsigned long new_dma_reserve)
6536{
6537 dma_reserve = new_dma_reserve;
6538}
6539
1da177e4
LT
6540void __init free_area_init(unsigned long *zones_size)
6541{
9109fb7b 6542 free_area_init_node(0, zones_size,
1da177e4
LT
6543 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6544}
1da177e4 6545
005fd4bb 6546static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6547{
1da177e4 6548
005fd4bb
SAS
6549 lru_add_drain_cpu(cpu);
6550 drain_pages(cpu);
9f8f2172 6551
005fd4bb
SAS
6552 /*
6553 * Spill the event counters of the dead processor
6554 * into the current processors event counters.
6555 * This artificially elevates the count of the current
6556 * processor.
6557 */
6558 vm_events_fold_cpu(cpu);
9f8f2172 6559
005fd4bb
SAS
6560 /*
6561 * Zero the differential counters of the dead processor
6562 * so that the vm statistics are consistent.
6563 *
6564 * This is only okay since the processor is dead and cannot
6565 * race with what we are doing.
6566 */
6567 cpu_vm_stats_fold(cpu);
6568 return 0;
1da177e4 6569}
1da177e4
LT
6570
6571void __init page_alloc_init(void)
6572{
005fd4bb
SAS
6573 int ret;
6574
6575 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6576 "mm/page_alloc:dead", NULL,
6577 page_alloc_cpu_dead);
6578 WARN_ON(ret < 0);
1da177e4
LT
6579}
6580
cb45b0e9 6581/*
34b10060 6582 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6583 * or min_free_kbytes changes.
6584 */
6585static void calculate_totalreserve_pages(void)
6586{
6587 struct pglist_data *pgdat;
6588 unsigned long reserve_pages = 0;
2f6726e5 6589 enum zone_type i, j;
cb45b0e9
HA
6590
6591 for_each_online_pgdat(pgdat) {
281e3726
MG
6592
6593 pgdat->totalreserve_pages = 0;
6594
cb45b0e9
HA
6595 for (i = 0; i < MAX_NR_ZONES; i++) {
6596 struct zone *zone = pgdat->node_zones + i;
3484b2de 6597 long max = 0;
cb45b0e9
HA
6598
6599 /* Find valid and maximum lowmem_reserve in the zone */
6600 for (j = i; j < MAX_NR_ZONES; j++) {
6601 if (zone->lowmem_reserve[j] > max)
6602 max = zone->lowmem_reserve[j];
6603 }
6604
41858966
MG
6605 /* we treat the high watermark as reserved pages. */
6606 max += high_wmark_pages(zone);
cb45b0e9 6607
b40da049
JL
6608 if (max > zone->managed_pages)
6609 max = zone->managed_pages;
a8d01437 6610
281e3726 6611 pgdat->totalreserve_pages += max;
a8d01437 6612
cb45b0e9
HA
6613 reserve_pages += max;
6614 }
6615 }
6616 totalreserve_pages = reserve_pages;
6617}
6618
1da177e4
LT
6619/*
6620 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6621 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6622 * has a correct pages reserved value, so an adequate number of
6623 * pages are left in the zone after a successful __alloc_pages().
6624 */
6625static void setup_per_zone_lowmem_reserve(void)
6626{
6627 struct pglist_data *pgdat;
2f6726e5 6628 enum zone_type j, idx;
1da177e4 6629
ec936fc5 6630 for_each_online_pgdat(pgdat) {
1da177e4
LT
6631 for (j = 0; j < MAX_NR_ZONES; j++) {
6632 struct zone *zone = pgdat->node_zones + j;
b40da049 6633 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6634
6635 zone->lowmem_reserve[j] = 0;
6636
2f6726e5
CL
6637 idx = j;
6638 while (idx) {
1da177e4
LT
6639 struct zone *lower_zone;
6640
2f6726e5
CL
6641 idx--;
6642
1da177e4
LT
6643 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6644 sysctl_lowmem_reserve_ratio[idx] = 1;
6645
6646 lower_zone = pgdat->node_zones + idx;
b40da049 6647 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6648 sysctl_lowmem_reserve_ratio[idx];
b40da049 6649 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6650 }
6651 }
6652 }
cb45b0e9
HA
6653
6654 /* update totalreserve_pages */
6655 calculate_totalreserve_pages();
1da177e4
LT
6656}
6657
cfd3da1e 6658static void __setup_per_zone_wmarks(void)
1da177e4
LT
6659{
6660 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6661 unsigned long lowmem_pages = 0;
6662 struct zone *zone;
6663 unsigned long flags;
6664
6665 /* Calculate total number of !ZONE_HIGHMEM pages */
6666 for_each_zone(zone) {
6667 if (!is_highmem(zone))
b40da049 6668 lowmem_pages += zone->managed_pages;
1da177e4
LT
6669 }
6670
6671 for_each_zone(zone) {
ac924c60
AM
6672 u64 tmp;
6673
1125b4e3 6674 spin_lock_irqsave(&zone->lock, flags);
b40da049 6675 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6676 do_div(tmp, lowmem_pages);
1da177e4
LT
6677 if (is_highmem(zone)) {
6678 /*
669ed175
NP
6679 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6680 * need highmem pages, so cap pages_min to a small
6681 * value here.
6682 *
41858966 6683 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6684 * deltas control asynch page reclaim, and so should
669ed175 6685 * not be capped for highmem.
1da177e4 6686 */
90ae8d67 6687 unsigned long min_pages;
1da177e4 6688
b40da049 6689 min_pages = zone->managed_pages / 1024;
90ae8d67 6690 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6691 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6692 } else {
669ed175
NP
6693 /*
6694 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6695 * proportionate to the zone's size.
6696 */
41858966 6697 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6698 }
6699
795ae7a0
JW
6700 /*
6701 * Set the kswapd watermarks distance according to the
6702 * scale factor in proportion to available memory, but
6703 * ensure a minimum size on small systems.
6704 */
6705 tmp = max_t(u64, tmp >> 2,
6706 mult_frac(zone->managed_pages,
6707 watermark_scale_factor, 10000));
6708
6709 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6710 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6711
1125b4e3 6712 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6713 }
cb45b0e9
HA
6714
6715 /* update totalreserve_pages */
6716 calculate_totalreserve_pages();
1da177e4
LT
6717}
6718
cfd3da1e
MG
6719/**
6720 * setup_per_zone_wmarks - called when min_free_kbytes changes
6721 * or when memory is hot-{added|removed}
6722 *
6723 * Ensures that the watermark[min,low,high] values for each zone are set
6724 * correctly with respect to min_free_kbytes.
6725 */
6726void setup_per_zone_wmarks(void)
6727{
6728 mutex_lock(&zonelists_mutex);
6729 __setup_per_zone_wmarks();
6730 mutex_unlock(&zonelists_mutex);
6731}
6732
1da177e4
LT
6733/*
6734 * Initialise min_free_kbytes.
6735 *
6736 * For small machines we want it small (128k min). For large machines
6737 * we want it large (64MB max). But it is not linear, because network
6738 * bandwidth does not increase linearly with machine size. We use
6739 *
b8af2941 6740 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6741 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6742 *
6743 * which yields
6744 *
6745 * 16MB: 512k
6746 * 32MB: 724k
6747 * 64MB: 1024k
6748 * 128MB: 1448k
6749 * 256MB: 2048k
6750 * 512MB: 2896k
6751 * 1024MB: 4096k
6752 * 2048MB: 5792k
6753 * 4096MB: 8192k
6754 * 8192MB: 11584k
6755 * 16384MB: 16384k
6756 */
1b79acc9 6757int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6758{
6759 unsigned long lowmem_kbytes;
5f12733e 6760 int new_min_free_kbytes;
1da177e4
LT
6761
6762 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6763 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6764
6765 if (new_min_free_kbytes > user_min_free_kbytes) {
6766 min_free_kbytes = new_min_free_kbytes;
6767 if (min_free_kbytes < 128)
6768 min_free_kbytes = 128;
6769 if (min_free_kbytes > 65536)
6770 min_free_kbytes = 65536;
6771 } else {
6772 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6773 new_min_free_kbytes, user_min_free_kbytes);
6774 }
bc75d33f 6775 setup_per_zone_wmarks();
a6cccdc3 6776 refresh_zone_stat_thresholds();
1da177e4 6777 setup_per_zone_lowmem_reserve();
6423aa81
JK
6778
6779#ifdef CONFIG_NUMA
6780 setup_min_unmapped_ratio();
6781 setup_min_slab_ratio();
6782#endif
6783
1da177e4
LT
6784 return 0;
6785}
bc22af74 6786core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6787
6788/*
b8af2941 6789 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6790 * that we can call two helper functions whenever min_free_kbytes
6791 * changes.
6792 */
cccad5b9 6793int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6794 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6795{
da8c757b
HP
6796 int rc;
6797
6798 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6799 if (rc)
6800 return rc;
6801
5f12733e
MH
6802 if (write) {
6803 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6804 setup_per_zone_wmarks();
5f12733e 6805 }
1da177e4
LT
6806 return 0;
6807}
6808
795ae7a0
JW
6809int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6810 void __user *buffer, size_t *length, loff_t *ppos)
6811{
6812 int rc;
6813
6814 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6815 if (rc)
6816 return rc;
6817
6818 if (write)
6819 setup_per_zone_wmarks();
6820
6821 return 0;
6822}
6823
9614634f 6824#ifdef CONFIG_NUMA
6423aa81 6825static void setup_min_unmapped_ratio(void)
9614634f 6826{
6423aa81 6827 pg_data_t *pgdat;
9614634f 6828 struct zone *zone;
9614634f 6829
a5f5f91d 6830 for_each_online_pgdat(pgdat)
81cbcbc2 6831 pgdat->min_unmapped_pages = 0;
a5f5f91d 6832
9614634f 6833 for_each_zone(zone)
a5f5f91d 6834 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6835 sysctl_min_unmapped_ratio) / 100;
9614634f 6836}
0ff38490 6837
6423aa81
JK
6838
6839int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6840 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6841{
0ff38490
CL
6842 int rc;
6843
8d65af78 6844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6845 if (rc)
6846 return rc;
6847
6423aa81
JK
6848 setup_min_unmapped_ratio();
6849
6850 return 0;
6851}
6852
6853static void setup_min_slab_ratio(void)
6854{
6855 pg_data_t *pgdat;
6856 struct zone *zone;
6857
a5f5f91d
MG
6858 for_each_online_pgdat(pgdat)
6859 pgdat->min_slab_pages = 0;
6860
0ff38490 6861 for_each_zone(zone)
a5f5f91d 6862 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6863 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6864}
6865
6866int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6867 void __user *buffer, size_t *length, loff_t *ppos)
6868{
6869 int rc;
6870
6871 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6872 if (rc)
6873 return rc;
6874
6875 setup_min_slab_ratio();
6876
0ff38490
CL
6877 return 0;
6878}
9614634f
CL
6879#endif
6880
1da177e4
LT
6881/*
6882 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6883 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6884 * whenever sysctl_lowmem_reserve_ratio changes.
6885 *
6886 * The reserve ratio obviously has absolutely no relation with the
41858966 6887 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6888 * if in function of the boot time zone sizes.
6889 */
cccad5b9 6890int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6891 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6892{
8d65af78 6893 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6894 setup_per_zone_lowmem_reserve();
6895 return 0;
6896}
6897
8ad4b1fb
RS
6898/*
6899 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6900 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6901 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6902 */
cccad5b9 6903int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6904 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6905{
6906 struct zone *zone;
7cd2b0a3 6907 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6908 int ret;
6909
7cd2b0a3
DR
6910 mutex_lock(&pcp_batch_high_lock);
6911 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6912
8d65af78 6913 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6914 if (!write || ret < 0)
6915 goto out;
6916
6917 /* Sanity checking to avoid pcp imbalance */
6918 if (percpu_pagelist_fraction &&
6919 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6920 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6921 ret = -EINVAL;
6922 goto out;
6923 }
6924
6925 /* No change? */
6926 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6927 goto out;
c8e251fa 6928
364df0eb 6929 for_each_populated_zone(zone) {
7cd2b0a3
DR
6930 unsigned int cpu;
6931
22a7f12b 6932 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6933 pageset_set_high_and_batch(zone,
6934 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6935 }
7cd2b0a3 6936out:
c8e251fa 6937 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6938 return ret;
8ad4b1fb
RS
6939}
6940
a9919c79 6941#ifdef CONFIG_NUMA
f034b5d4 6942int hashdist = HASHDIST_DEFAULT;
1da177e4 6943
1da177e4
LT
6944static int __init set_hashdist(char *str)
6945{
6946 if (!str)
6947 return 0;
6948 hashdist = simple_strtoul(str, &str, 0);
6949 return 1;
6950}
6951__setup("hashdist=", set_hashdist);
6952#endif
6953
f6f34b43
SD
6954#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6955/*
6956 * Returns the number of pages that arch has reserved but
6957 * is not known to alloc_large_system_hash().
6958 */
6959static unsigned long __init arch_reserved_kernel_pages(void)
6960{
6961 return 0;
6962}
6963#endif
6964
1da177e4
LT
6965/*
6966 * allocate a large system hash table from bootmem
6967 * - it is assumed that the hash table must contain an exact power-of-2
6968 * quantity of entries
6969 * - limit is the number of hash buckets, not the total allocation size
6970 */
6971void *__init alloc_large_system_hash(const char *tablename,
6972 unsigned long bucketsize,
6973 unsigned long numentries,
6974 int scale,
6975 int flags,
6976 unsigned int *_hash_shift,
6977 unsigned int *_hash_mask,
31fe62b9
TB
6978 unsigned long low_limit,
6979 unsigned long high_limit)
1da177e4 6980{
31fe62b9 6981 unsigned long long max = high_limit;
1da177e4
LT
6982 unsigned long log2qty, size;
6983 void *table = NULL;
6984
6985 /* allow the kernel cmdline to have a say */
6986 if (!numentries) {
6987 /* round applicable memory size up to nearest megabyte */
04903664 6988 numentries = nr_kernel_pages;
f6f34b43 6989 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
6990
6991 /* It isn't necessary when PAGE_SIZE >= 1MB */
6992 if (PAGE_SHIFT < 20)
6993 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6994
6995 /* limit to 1 bucket per 2^scale bytes of low memory */
6996 if (scale > PAGE_SHIFT)
6997 numentries >>= (scale - PAGE_SHIFT);
6998 else
6999 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7000
7001 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7002 if (unlikely(flags & HASH_SMALL)) {
7003 /* Makes no sense without HASH_EARLY */
7004 WARN_ON(!(flags & HASH_EARLY));
7005 if (!(numentries >> *_hash_shift)) {
7006 numentries = 1UL << *_hash_shift;
7007 BUG_ON(!numentries);
7008 }
7009 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7010 numentries = PAGE_SIZE / bucketsize;
1da177e4 7011 }
6e692ed3 7012 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7013
7014 /* limit allocation size to 1/16 total memory by default */
7015 if (max == 0) {
7016 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7017 do_div(max, bucketsize);
7018 }
074b8517 7019 max = min(max, 0x80000000ULL);
1da177e4 7020
31fe62b9
TB
7021 if (numentries < low_limit)
7022 numentries = low_limit;
1da177e4
LT
7023 if (numentries > max)
7024 numentries = max;
7025
f0d1b0b3 7026 log2qty = ilog2(numentries);
1da177e4
LT
7027
7028 do {
7029 size = bucketsize << log2qty;
7030 if (flags & HASH_EARLY)
6782832e 7031 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7032 else if (hashdist)
7033 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7034 else {
1037b83b
ED
7035 /*
7036 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7037 * some pages at the end of hash table which
7038 * alloc_pages_exact() automatically does
1037b83b 7039 */
264ef8a9 7040 if (get_order(size) < MAX_ORDER) {
a1dd268c 7041 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7042 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7043 }
1da177e4
LT
7044 }
7045 } while (!table && size > PAGE_SIZE && --log2qty);
7046
7047 if (!table)
7048 panic("Failed to allocate %s hash table\n", tablename);
7049
1170532b
JP
7050 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7051 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7052
7053 if (_hash_shift)
7054 *_hash_shift = log2qty;
7055 if (_hash_mask)
7056 *_hash_mask = (1 << log2qty) - 1;
7057
7058 return table;
7059}
a117e66e 7060
a5d76b54 7061/*
80934513
MK
7062 * This function checks whether pageblock includes unmovable pages or not.
7063 * If @count is not zero, it is okay to include less @count unmovable pages
7064 *
b8af2941 7065 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7066 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7067 * expect this function should be exact.
a5d76b54 7068 */
b023f468
WC
7069bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7070 bool skip_hwpoisoned_pages)
49ac8255
KH
7071{
7072 unsigned long pfn, iter, found;
47118af0
MN
7073 int mt;
7074
49ac8255
KH
7075 /*
7076 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7077 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7078 */
7079 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7080 return false;
47118af0
MN
7081 mt = get_pageblock_migratetype(page);
7082 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7083 return false;
49ac8255
KH
7084
7085 pfn = page_to_pfn(page);
7086 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7087 unsigned long check = pfn + iter;
7088
29723fcc 7089 if (!pfn_valid_within(check))
49ac8255 7090 continue;
29723fcc 7091
49ac8255 7092 page = pfn_to_page(check);
c8721bbb
NH
7093
7094 /*
7095 * Hugepages are not in LRU lists, but they're movable.
7096 * We need not scan over tail pages bacause we don't
7097 * handle each tail page individually in migration.
7098 */
7099 if (PageHuge(page)) {
7100 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7101 continue;
7102 }
7103
97d255c8
MK
7104 /*
7105 * We can't use page_count without pin a page
7106 * because another CPU can free compound page.
7107 * This check already skips compound tails of THP
0139aa7b 7108 * because their page->_refcount is zero at all time.
97d255c8 7109 */
fe896d18 7110 if (!page_ref_count(page)) {
49ac8255
KH
7111 if (PageBuddy(page))
7112 iter += (1 << page_order(page)) - 1;
7113 continue;
7114 }
97d255c8 7115
b023f468
WC
7116 /*
7117 * The HWPoisoned page may be not in buddy system, and
7118 * page_count() is not 0.
7119 */
7120 if (skip_hwpoisoned_pages && PageHWPoison(page))
7121 continue;
7122
49ac8255
KH
7123 if (!PageLRU(page))
7124 found++;
7125 /*
6b4f7799
JW
7126 * If there are RECLAIMABLE pages, we need to check
7127 * it. But now, memory offline itself doesn't call
7128 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7129 */
7130 /*
7131 * If the page is not RAM, page_count()should be 0.
7132 * we don't need more check. This is an _used_ not-movable page.
7133 *
7134 * The problematic thing here is PG_reserved pages. PG_reserved
7135 * is set to both of a memory hole page and a _used_ kernel
7136 * page at boot.
7137 */
7138 if (found > count)
80934513 7139 return true;
49ac8255 7140 }
80934513 7141 return false;
49ac8255
KH
7142}
7143
7144bool is_pageblock_removable_nolock(struct page *page)
7145{
656a0706
MH
7146 struct zone *zone;
7147 unsigned long pfn;
687875fb
MH
7148
7149 /*
7150 * We have to be careful here because we are iterating over memory
7151 * sections which are not zone aware so we might end up outside of
7152 * the zone but still within the section.
656a0706
MH
7153 * We have to take care about the node as well. If the node is offline
7154 * its NODE_DATA will be NULL - see page_zone.
687875fb 7155 */
656a0706
MH
7156 if (!node_online(page_to_nid(page)))
7157 return false;
7158
7159 zone = page_zone(page);
7160 pfn = page_to_pfn(page);
108bcc96 7161 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7162 return false;
7163
b023f468 7164 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7165}
0c0e6195 7166
080fe206 7167#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7168
7169static unsigned long pfn_max_align_down(unsigned long pfn)
7170{
7171 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7172 pageblock_nr_pages) - 1);
7173}
7174
7175static unsigned long pfn_max_align_up(unsigned long pfn)
7176{
7177 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7178 pageblock_nr_pages));
7179}
7180
041d3a8c 7181/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7182static int __alloc_contig_migrate_range(struct compact_control *cc,
7183 unsigned long start, unsigned long end)
041d3a8c
MN
7184{
7185 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7186 unsigned long nr_reclaimed;
041d3a8c
MN
7187 unsigned long pfn = start;
7188 unsigned int tries = 0;
7189 int ret = 0;
7190
be49a6e1 7191 migrate_prep();
041d3a8c 7192
bb13ffeb 7193 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7194 if (fatal_signal_pending(current)) {
7195 ret = -EINTR;
7196 break;
7197 }
7198
bb13ffeb
MG
7199 if (list_empty(&cc->migratepages)) {
7200 cc->nr_migratepages = 0;
edc2ca61 7201 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7202 if (!pfn) {
7203 ret = -EINTR;
7204 break;
7205 }
7206 tries = 0;
7207 } else if (++tries == 5) {
7208 ret = ret < 0 ? ret : -EBUSY;
7209 break;
7210 }
7211
beb51eaa
MK
7212 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7213 &cc->migratepages);
7214 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7215
9c620e2b 7216 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7217 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7218 }
2a6f5124
SP
7219 if (ret < 0) {
7220 putback_movable_pages(&cc->migratepages);
7221 return ret;
7222 }
7223 return 0;
041d3a8c
MN
7224}
7225
7226/**
7227 * alloc_contig_range() -- tries to allocate given range of pages
7228 * @start: start PFN to allocate
7229 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7230 * @migratetype: migratetype of the underlaying pageblocks (either
7231 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7232 * in range must have the same migratetype and it must
7233 * be either of the two.
041d3a8c
MN
7234 *
7235 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7236 * aligned, however it's the caller's responsibility to guarantee that
7237 * we are the only thread that changes migrate type of pageblocks the
7238 * pages fall in.
7239 *
7240 * The PFN range must belong to a single zone.
7241 *
7242 * Returns zero on success or negative error code. On success all
7243 * pages which PFN is in [start, end) are allocated for the caller and
7244 * need to be freed with free_contig_range().
7245 */
0815f3d8
MN
7246int alloc_contig_range(unsigned long start, unsigned long end,
7247 unsigned migratetype)
041d3a8c 7248{
041d3a8c 7249 unsigned long outer_start, outer_end;
d00181b9
KS
7250 unsigned int order;
7251 int ret = 0;
041d3a8c 7252
bb13ffeb
MG
7253 struct compact_control cc = {
7254 .nr_migratepages = 0,
7255 .order = -1,
7256 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7257 .mode = MIGRATE_SYNC,
bb13ffeb 7258 .ignore_skip_hint = true,
424f6c48 7259 .gfp_mask = GFP_KERNEL,
bb13ffeb
MG
7260 };
7261 INIT_LIST_HEAD(&cc.migratepages);
7262
041d3a8c
MN
7263 /*
7264 * What we do here is we mark all pageblocks in range as
7265 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7266 * have different sizes, and due to the way page allocator
7267 * work, we align the range to biggest of the two pages so
7268 * that page allocator won't try to merge buddies from
7269 * different pageblocks and change MIGRATE_ISOLATE to some
7270 * other migration type.
7271 *
7272 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7273 * migrate the pages from an unaligned range (ie. pages that
7274 * we are interested in). This will put all the pages in
7275 * range back to page allocator as MIGRATE_ISOLATE.
7276 *
7277 * When this is done, we take the pages in range from page
7278 * allocator removing them from the buddy system. This way
7279 * page allocator will never consider using them.
7280 *
7281 * This lets us mark the pageblocks back as
7282 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7283 * aligned range but not in the unaligned, original range are
7284 * put back to page allocator so that buddy can use them.
7285 */
7286
7287 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7288 pfn_max_align_up(end), migratetype,
7289 false);
041d3a8c 7290 if (ret)
86a595f9 7291 return ret;
041d3a8c 7292
8ef5849f
JK
7293 /*
7294 * In case of -EBUSY, we'd like to know which page causes problem.
7295 * So, just fall through. We will check it in test_pages_isolated().
7296 */
bb13ffeb 7297 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7298 if (ret && ret != -EBUSY)
041d3a8c
MN
7299 goto done;
7300
7301 /*
7302 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7303 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7304 * more, all pages in [start, end) are free in page allocator.
7305 * What we are going to do is to allocate all pages from
7306 * [start, end) (that is remove them from page allocator).
7307 *
7308 * The only problem is that pages at the beginning and at the
7309 * end of interesting range may be not aligned with pages that
7310 * page allocator holds, ie. they can be part of higher order
7311 * pages. Because of this, we reserve the bigger range and
7312 * once this is done free the pages we are not interested in.
7313 *
7314 * We don't have to hold zone->lock here because the pages are
7315 * isolated thus they won't get removed from buddy.
7316 */
7317
7318 lru_add_drain_all();
510f5507 7319 drain_all_pages(cc.zone);
041d3a8c
MN
7320
7321 order = 0;
7322 outer_start = start;
7323 while (!PageBuddy(pfn_to_page(outer_start))) {
7324 if (++order >= MAX_ORDER) {
8ef5849f
JK
7325 outer_start = start;
7326 break;
041d3a8c
MN
7327 }
7328 outer_start &= ~0UL << order;
7329 }
7330
8ef5849f
JK
7331 if (outer_start != start) {
7332 order = page_order(pfn_to_page(outer_start));
7333
7334 /*
7335 * outer_start page could be small order buddy page and
7336 * it doesn't include start page. Adjust outer_start
7337 * in this case to report failed page properly
7338 * on tracepoint in test_pages_isolated()
7339 */
7340 if (outer_start + (1UL << order) <= start)
7341 outer_start = start;
7342 }
7343
041d3a8c 7344 /* Make sure the range is really isolated. */
b023f468 7345 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7346 pr_info("%s: [%lx, %lx) PFNs busy\n",
7347 __func__, outer_start, end);
041d3a8c
MN
7348 ret = -EBUSY;
7349 goto done;
7350 }
7351
49f223a9 7352 /* Grab isolated pages from freelists. */
bb13ffeb 7353 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7354 if (!outer_end) {
7355 ret = -EBUSY;
7356 goto done;
7357 }
7358
7359 /* Free head and tail (if any) */
7360 if (start != outer_start)
7361 free_contig_range(outer_start, start - outer_start);
7362 if (end != outer_end)
7363 free_contig_range(end, outer_end - end);
7364
7365done:
7366 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7367 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7368 return ret;
7369}
7370
7371void free_contig_range(unsigned long pfn, unsigned nr_pages)
7372{
bcc2b02f
MS
7373 unsigned int count = 0;
7374
7375 for (; nr_pages--; pfn++) {
7376 struct page *page = pfn_to_page(pfn);
7377
7378 count += page_count(page) != 1;
7379 __free_page(page);
7380 }
7381 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7382}
7383#endif
7384
4ed7e022 7385#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7386/*
7387 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7388 * page high values need to be recalulated.
7389 */
4ed7e022
JL
7390void __meminit zone_pcp_update(struct zone *zone)
7391{
0a647f38 7392 unsigned cpu;
c8e251fa 7393 mutex_lock(&pcp_batch_high_lock);
0a647f38 7394 for_each_possible_cpu(cpu)
169f6c19
CS
7395 pageset_set_high_and_batch(zone,
7396 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7397 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7398}
7399#endif
7400
340175b7
JL
7401void zone_pcp_reset(struct zone *zone)
7402{
7403 unsigned long flags;
5a883813
MK
7404 int cpu;
7405 struct per_cpu_pageset *pset;
340175b7
JL
7406
7407 /* avoid races with drain_pages() */
7408 local_irq_save(flags);
7409 if (zone->pageset != &boot_pageset) {
5a883813
MK
7410 for_each_online_cpu(cpu) {
7411 pset = per_cpu_ptr(zone->pageset, cpu);
7412 drain_zonestat(zone, pset);
7413 }
340175b7
JL
7414 free_percpu(zone->pageset);
7415 zone->pageset = &boot_pageset;
7416 }
7417 local_irq_restore(flags);
7418}
7419
6dcd73d7 7420#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7421/*
b9eb6319
JK
7422 * All pages in the range must be in a single zone and isolated
7423 * before calling this.
0c0e6195
KH
7424 */
7425void
7426__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7427{
7428 struct page *page;
7429 struct zone *zone;
7aeb09f9 7430 unsigned int order, i;
0c0e6195
KH
7431 unsigned long pfn;
7432 unsigned long flags;
7433 /* find the first valid pfn */
7434 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7435 if (pfn_valid(pfn))
7436 break;
7437 if (pfn == end_pfn)
7438 return;
7439 zone = page_zone(pfn_to_page(pfn));
7440 spin_lock_irqsave(&zone->lock, flags);
7441 pfn = start_pfn;
7442 while (pfn < end_pfn) {
7443 if (!pfn_valid(pfn)) {
7444 pfn++;
7445 continue;
7446 }
7447 page = pfn_to_page(pfn);
b023f468
WC
7448 /*
7449 * The HWPoisoned page may be not in buddy system, and
7450 * page_count() is not 0.
7451 */
7452 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7453 pfn++;
7454 SetPageReserved(page);
7455 continue;
7456 }
7457
0c0e6195
KH
7458 BUG_ON(page_count(page));
7459 BUG_ON(!PageBuddy(page));
7460 order = page_order(page);
7461#ifdef CONFIG_DEBUG_VM
1170532b
JP
7462 pr_info("remove from free list %lx %d %lx\n",
7463 pfn, 1 << order, end_pfn);
0c0e6195
KH
7464#endif
7465 list_del(&page->lru);
7466 rmv_page_order(page);
7467 zone->free_area[order].nr_free--;
0c0e6195
KH
7468 for (i = 0; i < (1 << order); i++)
7469 SetPageReserved((page+i));
7470 pfn += (1 << order);
7471 }
7472 spin_unlock_irqrestore(&zone->lock, flags);
7473}
7474#endif
8d22ba1b 7475
8d22ba1b
WF
7476bool is_free_buddy_page(struct page *page)
7477{
7478 struct zone *zone = page_zone(page);
7479 unsigned long pfn = page_to_pfn(page);
7480 unsigned long flags;
7aeb09f9 7481 unsigned int order;
8d22ba1b
WF
7482
7483 spin_lock_irqsave(&zone->lock, flags);
7484 for (order = 0; order < MAX_ORDER; order++) {
7485 struct page *page_head = page - (pfn & ((1 << order) - 1));
7486
7487 if (PageBuddy(page_head) && page_order(page_head) >= order)
7488 break;
7489 }
7490 spin_unlock_irqrestore(&zone->lock, flags);
7491
7492 return order < MAX_ORDER;
7493}