]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm, memcg: make mem_cgroup_out_of_memory() static
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
224abf92 601static inline int free_pages_check(struct page *page)
1da177e4 602{
92be2e33
NP
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
a3af9c38 605 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
224abf92 608 bad_page(page);
79f4b7bf 609 return 1;
8cc3b392 610 }
79f4b7bf
HD
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
1da177e4
LT
614}
615
616/*
5f8dcc21 617 * Frees a number of pages from the PCP lists
1da177e4 618 * Assumes all pages on list are in same zone, and of same order.
207f36ee 619 * count is the number of pages to free.
1da177e4
LT
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
5f8dcc21
MG
627static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
1da177e4 629{
5f8dcc21 630 int migratetype = 0;
a6f9edd6 631 int batch_free = 0;
72853e29 632 int to_free = count;
5f8dcc21 633
c54ad30c 634 spin_lock(&zone->lock);
93e4a89a 635 zone->all_unreclaimable = 0;
1da177e4 636 zone->pages_scanned = 0;
f2260e6b 637
72853e29 638 while (to_free) {
48db57f8 639 struct page *page;
5f8dcc21
MG
640 struct list_head *list;
641
642 /*
a6f9edd6
MG
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
5f8dcc21
MG
648 */
649 do {
a6f9edd6 650 batch_free++;
5f8dcc21
MG
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
48db57f8 655
1d16871d
NK
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
a6f9edd6 660 do {
770c8aaa
BZ
661 int mt; /* migratetype of the to-be-freed page */
662
a6f9edd6
MG
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
b12c4ad1 666 mt = get_freepage_migratetype(page);
a7016235 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
2139cbe6 686 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
95e34412 720 int migratetype;
ec95f53a
KM
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
f8891e5e 726 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
af370fb8 733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 734{
c3993076
JW
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
a226f6c8 737
c3993076
JW
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
a226f6c8 746 }
c3993076
JW
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
a226f6c8
DH
750}
751
47118af0
MN
752#ifdef CONFIG_CMA
753/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754void __init init_cma_reserved_pageblock(struct page *page)
755{
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768}
769#endif
1da177e4
LT
770
771/*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
085cc7d5 785static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
786 int low, int high, struct free_area *area,
787 int migratetype)
1da177e4
LT
788{
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
725d704e 795 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
796
797#ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
d1ce749a
BZ
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
c0a32fc5
SG
811 continue;
812 }
813#endif
b2a0ac88 814 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
1da177e4
LT
818}
819
1da177e4
LT
820/*
821 * This page is about to be returned from the page allocator
822 */
2a7684a2 823static inline int check_new_page(struct page *page)
1da177e4 824{
92be2e33
NP
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
a3af9c38 827 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
224abf92 830 bad_page(page);
689bcebf 831 return 1;
8cc3b392 832 }
2a7684a2
WF
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
689bcebf 845
4c21e2f2 846 set_page_private(page, 0);
7835e98b 847 set_page_refcounted(page);
cc102509
NP
848
849 arch_alloc_page(page, order);
1da177e4 850 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
689bcebf 858 return 0;
1da177e4
LT
859}
860
56fd56b8
MG
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
728ec980
MG
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
56fd56b8
MG
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
b2a0ac88
MG
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
47118af0
MN
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
6d4a4916
MN
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
907};
908
c361be55
MG
909/*
910 * Move the free pages in a range to the free lists of the requested type.
d9c23400 911 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
912 * boundary. If alignment is required, use move_freepages_block()
913 */
435b405c 914int move_freepages(struct zone *zone,
b69a7288
AB
915 struct page *start_page, struct page *end_page,
916 int migratetype)
c361be55
MG
917{
918 struct page *page;
919 unsigned long order;
d100313f 920 int pages_moved = 0;
c361be55
MG
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
ac0e5b7a 928 * grouping pages by mobility
c361be55
MG
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
344c790e
AL
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
c361be55
MG
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
84be48d8
KS
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
95e34412 950 set_freepage_migratetype(page, migratetype);
c361be55 951 page += 1 << order;
d100313f 952 pages_moved += 1 << order;
c361be55
MG
953 }
954
d100313f 955 return pages_moved;
c361be55
MG
956}
957
ee6f509c 958int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 959 int migratetype)
c361be55
MG
960{
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
963
964 start_pfn = page_to_pfn(page);
d9c23400 965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 966 start_page = pfn_to_page(start_pfn);
d9c23400
MG
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
969
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
975
976 return move_freepages(zone, start_page, end_page, migratetype);
977}
978
2f66a68f
MG
979static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
981{
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
983
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
987 }
988}
989
b2a0ac88 990/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
991static inline struct page *
992__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
993{
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
998
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
6d4a4916 1002 for (i = 0;; i++) {
b2a0ac88
MG
1003 migratetype = fallbacks[start_migratetype][i];
1004
56fd56b8
MG
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1007 break;
e010487d 1008
b2a0ac88
MG
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1012
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1016
1017 /*
c361be55 1018 * If breaking a large block of pages, move all free
46dafbca
MG
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
25985edc 1021 * aggressive about taking ownership of free pages
47118af0
MN
1022 *
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
b2a0ac88 1028 */
47118af0
MN
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
46dafbca
MG
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1036
1037 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
46dafbca
MG
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1042
b2a0ac88 1043 migratetype = start_migratetype;
c361be55 1044 }
b2a0ac88
MG
1045
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
b2a0ac88 1049
2f66a68f 1050 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
2f66a68f 1053 change_pageblock_range(page, current_order,
b2a0ac88
MG
1054 start_migratetype);
1055
47118af0
MN
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
e0fff1bd
MG
1059
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1062
b2a0ac88
MG
1063 return page;
1064 }
1065 }
1066
728ec980 1067 return NULL;
b2a0ac88
MG
1068}
1069
56fd56b8 1070/*
1da177e4
LT
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1073 */
b2a0ac88
MG
1074static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1da177e4 1076{
1da177e4
LT
1077 struct page *page;
1078
728ec980 1079retry_reserve:
56fd56b8 1080 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1081
728ec980 1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1083 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1084
728ec980
MG
1085 /*
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1089 */
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1093 }
1094 }
1095
0d3d062a 1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1097 return page;
1da177e4
LT
1098}
1099
5f63b720 1100/*
1da177e4
LT
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1104 */
5f63b720 1105static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1106 unsigned long count, struct list_head *list,
e084b2d9 1107 int migratetype, int cold)
1da177e4 1108{
47118af0 1109 int mt = migratetype, i;
5f63b720 1110
c54ad30c 1111 spin_lock(&zone->lock);
1da177e4 1112 for (i = 0; i < count; ++i) {
b2a0ac88 1113 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1114 if (unlikely(page == NULL))
1da177e4 1115 break;
81eabcbe
MG
1116
1117 /*
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1125 */
e084b2d9
MG
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
47118af0
MN
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1134 }
b12c4ad1 1135 set_freepage_migratetype(page, mt);
81eabcbe 1136 list = &page->lru;
d1ce749a
BZ
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
1da177e4 1299
ec95f53a 1300 if (!free_pages_prepare(page, 0))
689bcebf
HD
1301 return;
1302
5f8dcc21 1303 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1304 set_freepage_migratetype(page, migratetype);
1da177e4 1305 local_irq_save(flags);
f8891e5e 1306 __count_vm_event(PGFREE);
da456f14 1307
5f8dcc21
MG
1308 /*
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1314 */
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1319 }
1320 migratetype = MIGRATE_MOVABLE;
1321 }
1322
99dcc3e5 1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1324 if (cold)
5f8dcc21 1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1326 else
5f8dcc21 1327 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1328 pcp->count++;
48db57f8 1329 if (pcp->count >= pcp->high) {
5f8dcc21 1330 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1331 pcp->count -= pcp->batch;
1332 }
5f8dcc21
MG
1333
1334out:
1da177e4 1335 local_irq_restore(flags);
1da177e4
LT
1336}
1337
cc59850e
KK
1338/*
1339 * Free a list of 0-order pages
1340 */
1341void free_hot_cold_page_list(struct list_head *list, int cold)
1342{
1343 struct page *page, *next;
1344
1345 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1346 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1347 free_hot_cold_page(page, cold);
1348 }
1349}
1350
8dfcc9ba
NP
1351/*
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1355 *
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1358 */
1359void split_page(struct page *page, unsigned int order)
1360{
1361 int i;
1362
725d704e
NP
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1365
1366#ifdef CONFIG_KMEMCHECK
1367 /*
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1370 */
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373#endif
1374
7835e98b
NP
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
8dfcc9ba 1377}
8dfcc9ba 1378
748446bb 1379/*
1fb3f8ca
MG
1380 * Similar to the split_page family of functions except that the page
1381 * required at the given order and being isolated now to prevent races
1382 * with parallel allocators
748446bb 1383 */
1fb3f8ca 1384int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1385{
1386 unsigned int order;
1387 unsigned long watermark;
1388 struct zone *zone;
2139cbe6 1389 int mt;
748446bb
MG
1390
1391 BUG_ON(!PageBuddy(page));
1392
1393 zone = page_zone(page);
1394 order = page_order(page);
1395
1396 /* Obey watermarks as if the page was being allocated */
1397 watermark = low_wmark_pages(zone) + (1 << order);
1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 return 0;
1400
1401 /* Remove page from free list */
1402 list_del(&page->lru);
1403 zone->free_area[order].nr_free--;
1404 rmv_page_order(page);
2139cbe6
BZ
1405
1406 mt = get_pageblock_migratetype(page);
1407 if (unlikely(mt != MIGRATE_ISOLATE))
ef6c5be6 1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
748446bb 1409
1fb3f8ca
MG
1410 if (alloc_order != order)
1411 expand(zone, page, alloc_order, order,
1412 &zone->free_area[order], migratetype);
748446bb 1413
1fb3f8ca 1414 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1415 if (order >= pageblock_order - 1) {
1416 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1417 for (; page < endpage; page += pageblock_nr_pages) {
1418 int mt = get_pageblock_migratetype(page);
1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 set_pageblock_migratetype(page,
1421 MIGRATE_MOVABLE);
1422 }
748446bb
MG
1423 }
1424
58d00209 1425 return 1UL << alloc_order;
1fb3f8ca
MG
1426}
1427
1428/*
1429 * Similar to split_page except the page is already free. As this is only
1430 * being used for migration, the migratetype of the block also changes.
1431 * As this is called with interrupts disabled, the caller is responsible
1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * are enabled.
1434 *
1435 * Note: this is probably too low level an operation for use in drivers.
1436 * Please consult with lkml before using this in your driver.
1437 */
1438int split_free_page(struct page *page)
1439{
1440 unsigned int order;
1441 int nr_pages;
1442
1443 BUG_ON(!PageBuddy(page));
1444 order = page_order(page);
1445
1446 nr_pages = capture_free_page(page, order, 0);
1447 if (!nr_pages)
1448 return 0;
1449
1450 /* Split into individual pages */
1451 set_page_refcounted(page);
1452 split_page(page, order);
1453 return nr_pages;
748446bb
MG
1454}
1455
1da177e4
LT
1456/*
1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 * or two.
1460 */
0a15c3e9
MG
1461static inline
1462struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1463 struct zone *zone, int order, gfp_t gfp_flags,
1464 int migratetype)
1da177e4
LT
1465{
1466 unsigned long flags;
689bcebf 1467 struct page *page;
1da177e4
LT
1468 int cold = !!(gfp_flags & __GFP_COLD);
1469
689bcebf 1470again:
48db57f8 1471 if (likely(order == 0)) {
1da177e4 1472 struct per_cpu_pages *pcp;
5f8dcc21 1473 struct list_head *list;
1da177e4 1474
1da177e4 1475 local_irq_save(flags);
99dcc3e5
CL
1476 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 list = &pcp->lists[migratetype];
5f8dcc21 1478 if (list_empty(list)) {
535131e6 1479 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1480 pcp->batch, list,
e084b2d9 1481 migratetype, cold);
5f8dcc21 1482 if (unlikely(list_empty(list)))
6fb332fa 1483 goto failed;
535131e6 1484 }
b92a6edd 1485
5f8dcc21
MG
1486 if (cold)
1487 page = list_entry(list->prev, struct page, lru);
1488 else
1489 page = list_entry(list->next, struct page, lru);
1490
b92a6edd
MG
1491 list_del(&page->lru);
1492 pcp->count--;
7fb1d9fc 1493 } else {
dab48dab
AM
1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 /*
1496 * __GFP_NOFAIL is not to be used in new code.
1497 *
1498 * All __GFP_NOFAIL callers should be fixed so that they
1499 * properly detect and handle allocation failures.
1500 *
1501 * We most definitely don't want callers attempting to
4923abf9 1502 * allocate greater than order-1 page units with
dab48dab
AM
1503 * __GFP_NOFAIL.
1504 */
4923abf9 1505 WARN_ON_ONCE(order > 1);
dab48dab 1506 }
1da177e4 1507 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1508 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1509 spin_unlock(&zone->lock);
1510 if (!page)
1511 goto failed;
d1ce749a
BZ
1512 __mod_zone_freepage_state(zone, -(1 << order),
1513 get_pageblock_migratetype(page));
1da177e4
LT
1514 }
1515
f8891e5e 1516 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1517 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1518 local_irq_restore(flags);
1da177e4 1519
725d704e 1520 VM_BUG_ON(bad_range(zone, page));
17cf4406 1521 if (prep_new_page(page, order, gfp_flags))
a74609fa 1522 goto again;
1da177e4 1523 return page;
a74609fa
NP
1524
1525failed:
1526 local_irq_restore(flags);
a74609fa 1527 return NULL;
1da177e4
LT
1528}
1529
933e312e
AM
1530#ifdef CONFIG_FAIL_PAGE_ALLOC
1531
b2588c4b 1532static struct {
933e312e
AM
1533 struct fault_attr attr;
1534
1535 u32 ignore_gfp_highmem;
1536 u32 ignore_gfp_wait;
54114994 1537 u32 min_order;
933e312e
AM
1538} fail_page_alloc = {
1539 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1540 .ignore_gfp_wait = 1,
1541 .ignore_gfp_highmem = 1,
54114994 1542 .min_order = 1,
933e312e
AM
1543};
1544
1545static int __init setup_fail_page_alloc(char *str)
1546{
1547 return setup_fault_attr(&fail_page_alloc.attr, str);
1548}
1549__setup("fail_page_alloc=", setup_fail_page_alloc);
1550
deaf386e 1551static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1552{
54114994 1553 if (order < fail_page_alloc.min_order)
deaf386e 1554 return false;
933e312e 1555 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1556 return false;
933e312e 1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1558 return false;
933e312e 1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1560 return false;
933e312e
AM
1561
1562 return should_fail(&fail_page_alloc.attr, 1 << order);
1563}
1564
1565#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566
1567static int __init fail_page_alloc_debugfs(void)
1568{
f4ae40a6 1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1570 struct dentry *dir;
933e312e 1571
dd48c085
AM
1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 &fail_page_alloc.attr);
1574 if (IS_ERR(dir))
1575 return PTR_ERR(dir);
933e312e 1576
b2588c4b
AM
1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 &fail_page_alloc.ignore_gfp_wait))
1579 goto fail;
1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 &fail_page_alloc.ignore_gfp_highmem))
1582 goto fail;
1583 if (!debugfs_create_u32("min-order", mode, dir,
1584 &fail_page_alloc.min_order))
1585 goto fail;
1586
1587 return 0;
1588fail:
dd48c085 1589 debugfs_remove_recursive(dir);
933e312e 1590
b2588c4b 1591 return -ENOMEM;
933e312e
AM
1592}
1593
1594late_initcall(fail_page_alloc_debugfs);
1595
1596#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597
1598#else /* CONFIG_FAIL_PAGE_ALLOC */
1599
deaf386e 1600static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1601{
deaf386e 1602 return false;
933e312e
AM
1603}
1604
1605#endif /* CONFIG_FAIL_PAGE_ALLOC */
1606
1da177e4 1607/*
88f5acf8 1608 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1609 * of the allocation.
1610 */
88f5acf8
MG
1611static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1613{
1614 /* free_pages my go negative - that's OK */
d23ad423 1615 long min = mark;
2cfed075 1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1617 int o;
1618
df0a6daa 1619 free_pages -= (1 << order) - 1;
7fb1d9fc 1620 if (alloc_flags & ALLOC_HIGH)
1da177e4 1621 min -= min / 2;
7fb1d9fc 1622 if (alloc_flags & ALLOC_HARDER)
1da177e4 1623 min -= min / 4;
d95ea5d1
BZ
1624#ifdef CONFIG_CMA
1625 /* If allocation can't use CMA areas don't use free CMA pages */
1626 if (!(alloc_flags & ALLOC_CMA))
1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628#endif
2cfed075 1629 if (free_pages <= min + lowmem_reserve)
88f5acf8 1630 return false;
1da177e4
LT
1631 for (o = 0; o < order; o++) {
1632 /* At the next order, this order's pages become unavailable */
1633 free_pages -= z->free_area[o].nr_free << o;
1634
1635 /* Require fewer higher order pages to be free */
1636 min >>= 1;
1637
1638 if (free_pages <= min)
88f5acf8 1639 return false;
1da177e4 1640 }
88f5acf8
MG
1641 return true;
1642}
1643
702d1a6e
MK
1644#ifdef CONFIG_MEMORY_ISOLATION
1645static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646{
1647 if (unlikely(zone->nr_pageblock_isolate))
1648 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 return 0;
1650}
1651#else
1652static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653{
1654 return 0;
1655}
1656#endif
1657
88f5acf8
MG
1658bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660{
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663}
1664
1665bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667{
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
702d1a6e
MK
1673 /*
1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1676 * sleep although it could do so. But this is more desirable for memory
1677 * hotplug than sleeping which can cause a livelock in the direct
1678 * reclaim path.
1679 */
1680 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 free_pages);
1da177e4
LT
1683}
1684
9276b1bc
PJ
1685#ifdef CONFIG_NUMA
1686/*
1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1688 * skip over zones that are not allowed by the cpuset, or that have
1689 * been recently (in last second) found to be nearly full. See further
1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1691 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1692 *
1693 * If the zonelist cache is present in the passed in zonelist, then
1694 * returns a pointer to the allowed node mask (either the current
37b07e41 1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1696 *
1697 * If the zonelist cache is not available for this zonelist, does
1698 * nothing and returns NULL.
1699 *
1700 * If the fullzones BITMAP in the zonelist cache is stale (more than
1701 * a second since last zap'd) then we zap it out (clear its bits.)
1702 *
1703 * We hold off even calling zlc_setup, until after we've checked the
1704 * first zone in the zonelist, on the theory that most allocations will
1705 * be satisfied from that first zone, so best to examine that zone as
1706 * quickly as we can.
1707 */
1708static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709{
1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1711 nodemask_t *allowednodes; /* zonelist_cache approximation */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return NULL;
1716
f05111f5 1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 zlc->last_full_zap = jiffies;
1720 }
1721
1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 &cpuset_current_mems_allowed :
37b07e41 1724 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1725 return allowednodes;
1726}
1727
1728/*
1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730 * if it is worth looking at further for free memory:
1731 * 1) Check that the zone isn't thought to be full (doesn't have its
1732 * bit set in the zonelist_cache fullzones BITMAP).
1733 * 2) Check that the zones node (obtained from the zonelist_cache
1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735 * Return true (non-zero) if zone is worth looking at further, or
1736 * else return false (zero) if it is not.
1737 *
1738 * This check -ignores- the distinction between various watermarks,
1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1740 * found to be full for any variation of these watermarks, it will
1741 * be considered full for up to one second by all requests, unless
1742 * we are so low on memory on all allowed nodes that we are forced
1743 * into the second scan of the zonelist.
1744 *
1745 * In the second scan we ignore this zonelist cache and exactly
1746 * apply the watermarks to all zones, even it is slower to do so.
1747 * We are low on memory in the second scan, and should leave no stone
1748 * unturned looking for a free page.
1749 */
dd1a239f 1750static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1751 nodemask_t *allowednodes)
1752{
1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1754 int i; /* index of *z in zonelist zones */
1755 int n; /* node that zone *z is on */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return 1;
1760
dd1a239f 1761 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1762 n = zlc->z_to_n[i];
1763
1764 /* This zone is worth trying if it is allowed but not full */
1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766}
1767
1768/*
1769 * Given 'z' scanning a zonelist, set the corresponding bit in
1770 * zlc->fullzones, so that subsequent attempts to allocate a page
1771 * from that zone don't waste time re-examining it.
1772 */
dd1a239f 1773static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1774{
1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1776 int i; /* index of *z in zonelist zones */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
dd1a239f 1782 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1783
1784 set_bit(i, zlc->fullzones);
1785}
1786
76d3fbf8
MG
1787/*
1788 * clear all zones full, called after direct reclaim makes progress so that
1789 * a zone that was recently full is not skipped over for up to a second
1790 */
1791static void zlc_clear_zones_full(struct zonelist *zonelist)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800}
1801
957f822a
DR
1802static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1803{
1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1805}
1806
1807static void __paginginit init_zone_allows_reclaim(int nid)
1808{
1809 int i;
1810
1811 for_each_online_node(i)
6b187d02 1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1813 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1814 else
957f822a 1815 zone_reclaim_mode = 1;
957f822a
DR
1816}
1817
9276b1bc
PJ
1818#else /* CONFIG_NUMA */
1819
1820static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821{
1822 return NULL;
1823}
1824
dd1a239f 1825static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1826 nodemask_t *allowednodes)
1827{
1828 return 1;
1829}
1830
dd1a239f 1831static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1832{
1833}
76d3fbf8
MG
1834
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837}
957f822a
DR
1838
1839static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1840{
1841 return true;
1842}
1843
1844static inline void init_zone_allows_reclaim(int nid)
1845{
1846}
9276b1bc
PJ
1847#endif /* CONFIG_NUMA */
1848
7fb1d9fc 1849/*
0798e519 1850 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1851 * a page.
1852 */
1853static struct page *
19770b32 1854get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1856 struct zone *preferred_zone, int migratetype)
753ee728 1857{
dd1a239f 1858 struct zoneref *z;
7fb1d9fc 1859 struct page *page = NULL;
54a6eb5c 1860 int classzone_idx;
5117f45d 1861 struct zone *zone;
9276b1bc
PJ
1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1863 int zlc_active = 0; /* set if using zonelist_cache */
1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1865
19770b32 1866 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1867zonelist_scan:
7fb1d9fc 1868 /*
9276b1bc 1869 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1871 */
19770b32
MG
1872 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 high_zoneidx, nodemask) {
9276b1bc
PJ
1874 if (NUMA_BUILD && zlc_active &&
1875 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1876 continue;
7fb1d9fc 1877 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1878 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1879 continue;
a756cf59
JW
1880 /*
1881 * When allocating a page cache page for writing, we
1882 * want to get it from a zone that is within its dirty
1883 * limit, such that no single zone holds more than its
1884 * proportional share of globally allowed dirty pages.
1885 * The dirty limits take into account the zone's
1886 * lowmem reserves and high watermark so that kswapd
1887 * should be able to balance it without having to
1888 * write pages from its LRU list.
1889 *
1890 * This may look like it could increase pressure on
1891 * lower zones by failing allocations in higher zones
1892 * before they are full. But the pages that do spill
1893 * over are limited as the lower zones are protected
1894 * by this very same mechanism. It should not become
1895 * a practical burden to them.
1896 *
1897 * XXX: For now, allow allocations to potentially
1898 * exceed the per-zone dirty limit in the slowpath
1899 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1900 * which is important when on a NUMA setup the allowed
1901 * zones are together not big enough to reach the
1902 * global limit. The proper fix for these situations
1903 * will require awareness of zones in the
1904 * dirty-throttling and the flusher threads.
1905 */
1906 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1908 goto this_zone_full;
7fb1d9fc 1909
41858966 1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1912 unsigned long mark;
fa5e084e
MG
1913 int ret;
1914
41858966 1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1916 if (zone_watermark_ok(zone, order, mark,
1917 classzone_idx, alloc_flags))
1918 goto try_this_zone;
1919
cd38b115
MG
1920 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1921 /*
1922 * we do zlc_setup if there are multiple nodes
1923 * and before considering the first zone allowed
1924 * by the cpuset.
1925 */
1926 allowednodes = zlc_setup(zonelist, alloc_flags);
1927 zlc_active = 1;
1928 did_zlc_setup = 1;
1929 }
1930
957f822a
DR
1931 if (zone_reclaim_mode == 0 ||
1932 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1933 goto this_zone_full;
1934
cd38b115
MG
1935 /*
1936 * As we may have just activated ZLC, check if the first
1937 * eligible zone has failed zone_reclaim recently.
1938 */
1939 if (NUMA_BUILD && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942
fa5e084e
MG
1943 ret = zone_reclaim(zone, gfp_mask, order);
1944 switch (ret) {
1945 case ZONE_RECLAIM_NOSCAN:
1946 /* did not scan */
cd38b115 1947 continue;
fa5e084e
MG
1948 case ZONE_RECLAIM_FULL:
1949 /* scanned but unreclaimable */
cd38b115 1950 continue;
fa5e084e
MG
1951 default:
1952 /* did we reclaim enough */
1953 if (!zone_watermark_ok(zone, order, mark,
1954 classzone_idx, alloc_flags))
9276b1bc 1955 goto this_zone_full;
0798e519 1956 }
7fb1d9fc
RS
1957 }
1958
fa5e084e 1959try_this_zone:
3dd28266
MG
1960 page = buffered_rmqueue(preferred_zone, zone, order,
1961 gfp_mask, migratetype);
0798e519 1962 if (page)
7fb1d9fc 1963 break;
9276b1bc
PJ
1964this_zone_full:
1965 if (NUMA_BUILD)
1966 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1967 }
9276b1bc
PJ
1968
1969 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1970 /* Disable zlc cache for second zonelist scan */
1971 zlc_active = 0;
1972 goto zonelist_scan;
1973 }
b121186a
AS
1974
1975 if (page)
1976 /*
1977 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1978 * necessary to allocate the page. The expectation is
1979 * that the caller is taking steps that will free more
1980 * memory. The caller should avoid the page being used
1981 * for !PFMEMALLOC purposes.
1982 */
1983 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1984
7fb1d9fc 1985 return page;
753ee728
MH
1986}
1987
29423e77
DR
1988/*
1989 * Large machines with many possible nodes should not always dump per-node
1990 * meminfo in irq context.
1991 */
1992static inline bool should_suppress_show_mem(void)
1993{
1994 bool ret = false;
1995
1996#if NODES_SHIFT > 8
1997 ret = in_interrupt();
1998#endif
1999 return ret;
2000}
2001
a238ab5b
DH
2002static DEFINE_RATELIMIT_STATE(nopage_rs,
2003 DEFAULT_RATELIMIT_INTERVAL,
2004 DEFAULT_RATELIMIT_BURST);
2005
2006void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2007{
a238ab5b
DH
2008 unsigned int filter = SHOW_MEM_FILTER_NODES;
2009
c0a32fc5
SG
2010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2011 debug_guardpage_minorder() > 0)
a238ab5b
DH
2012 return;
2013
2014 /*
2015 * This documents exceptions given to allocations in certain
2016 * contexts that are allowed to allocate outside current's set
2017 * of allowed nodes.
2018 */
2019 if (!(gfp_mask & __GFP_NOMEMALLOC))
2020 if (test_thread_flag(TIF_MEMDIE) ||
2021 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2022 filter &= ~SHOW_MEM_FILTER_NODES;
2023 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2024 filter &= ~SHOW_MEM_FILTER_NODES;
2025
2026 if (fmt) {
3ee9a4f0
JP
2027 struct va_format vaf;
2028 va_list args;
2029
a238ab5b 2030 va_start(args, fmt);
3ee9a4f0
JP
2031
2032 vaf.fmt = fmt;
2033 vaf.va = &args;
2034
2035 pr_warn("%pV", &vaf);
2036
a238ab5b
DH
2037 va_end(args);
2038 }
2039
3ee9a4f0
JP
2040 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2041 current->comm, order, gfp_mask);
a238ab5b
DH
2042
2043 dump_stack();
2044 if (!should_suppress_show_mem())
2045 show_mem(filter);
2046}
2047
11e33f6a
MG
2048static inline int
2049should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2050 unsigned long did_some_progress,
11e33f6a 2051 unsigned long pages_reclaimed)
1da177e4 2052{
11e33f6a
MG
2053 /* Do not loop if specifically requested */
2054 if (gfp_mask & __GFP_NORETRY)
2055 return 0;
1da177e4 2056
f90ac398
MG
2057 /* Always retry if specifically requested */
2058 if (gfp_mask & __GFP_NOFAIL)
2059 return 1;
2060
2061 /*
2062 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2063 * making forward progress without invoking OOM. Suspend also disables
2064 * storage devices so kswapd will not help. Bail if we are suspending.
2065 */
2066 if (!did_some_progress && pm_suspended_storage())
2067 return 0;
2068
11e33f6a
MG
2069 /*
2070 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2071 * means __GFP_NOFAIL, but that may not be true in other
2072 * implementations.
2073 */
2074 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2075 return 1;
2076
2077 /*
2078 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2079 * specified, then we retry until we no longer reclaim any pages
2080 * (above), or we've reclaimed an order of pages at least as
2081 * large as the allocation's order. In both cases, if the
2082 * allocation still fails, we stop retrying.
2083 */
2084 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2085 return 1;
cf40bd16 2086
11e33f6a
MG
2087 return 0;
2088}
933e312e 2089
11e33f6a
MG
2090static inline struct page *
2091__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2092 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2093 nodemask_t *nodemask, struct zone *preferred_zone,
2094 int migratetype)
11e33f6a
MG
2095{
2096 struct page *page;
2097
2098 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2099 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2100 schedule_timeout_uninterruptible(1);
1da177e4
LT
2101 return NULL;
2102 }
6b1de916 2103
11e33f6a
MG
2104 /*
2105 * Go through the zonelist yet one more time, keep very high watermark
2106 * here, this is only to catch a parallel oom killing, we must fail if
2107 * we're still under heavy pressure.
2108 */
2109 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2110 order, zonelist, high_zoneidx,
5117f45d 2111 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2112 preferred_zone, migratetype);
7fb1d9fc 2113 if (page)
11e33f6a
MG
2114 goto out;
2115
4365a567
KH
2116 if (!(gfp_mask & __GFP_NOFAIL)) {
2117 /* The OOM killer will not help higher order allocs */
2118 if (order > PAGE_ALLOC_COSTLY_ORDER)
2119 goto out;
03668b3c
DR
2120 /* The OOM killer does not needlessly kill tasks for lowmem */
2121 if (high_zoneidx < ZONE_NORMAL)
2122 goto out;
4365a567
KH
2123 /*
2124 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2125 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2126 * The caller should handle page allocation failure by itself if
2127 * it specifies __GFP_THISNODE.
2128 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2129 */
2130 if (gfp_mask & __GFP_THISNODE)
2131 goto out;
2132 }
11e33f6a 2133 /* Exhausted what can be done so it's blamo time */
08ab9b10 2134 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2135
2136out:
2137 clear_zonelist_oom(zonelist, gfp_mask);
2138 return page;
2139}
2140
56de7263
MG
2141#ifdef CONFIG_COMPACTION
2142/* Try memory compaction for high-order allocations before reclaim */
2143static struct page *
2144__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2145 struct zonelist *zonelist, enum zone_type high_zoneidx,
2146 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2147 int migratetype, bool sync_migration,
c67fe375 2148 bool *contended_compaction, bool *deferred_compaction,
66199712 2149 unsigned long *did_some_progress)
56de7263 2150{
1fb3f8ca 2151 struct page *page = NULL;
56de7263 2152
66199712 2153 if (!order)
56de7263
MG
2154 return NULL;
2155
aff62249 2156 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2157 *deferred_compaction = true;
2158 return NULL;
2159 }
2160
c06b1fca 2161 current->flags |= PF_MEMALLOC;
56de7263 2162 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2163 nodemask, sync_migration,
1fb3f8ca 2164 contended_compaction, &page);
c06b1fca 2165 current->flags &= ~PF_MEMALLOC;
56de7263 2166
1fb3f8ca
MG
2167 /* If compaction captured a page, prep and use it */
2168 if (page) {
2169 prep_new_page(page, order, gfp_mask);
2170 goto got_page;
2171 }
2172
2173 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2174 /* Page migration frees to the PCP lists but we want merging */
2175 drain_pages(get_cpu());
2176 put_cpu();
2177
2178 page = get_page_from_freelist(gfp_mask, nodemask,
2179 order, zonelist, high_zoneidx,
cfd19c5a
MG
2180 alloc_flags & ~ALLOC_NO_WATERMARKS,
2181 preferred_zone, migratetype);
56de7263 2182 if (page) {
1fb3f8ca 2183got_page:
62997027 2184 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2185 preferred_zone->compact_considered = 0;
2186 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2187 if (order >= preferred_zone->compact_order_failed)
2188 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2189 count_vm_event(COMPACTSUCCESS);
2190 return page;
2191 }
2192
2193 /*
2194 * It's bad if compaction run occurs and fails.
2195 * The most likely reason is that pages exist,
2196 * but not enough to satisfy watermarks.
2197 */
2198 count_vm_event(COMPACTFAIL);
66199712
MG
2199
2200 /*
2201 * As async compaction considers a subset of pageblocks, only
2202 * defer if the failure was a sync compaction failure.
2203 */
2204 if (sync_migration)
aff62249 2205 defer_compaction(preferred_zone, order);
56de7263
MG
2206
2207 cond_resched();
2208 }
2209
2210 return NULL;
2211}
2212#else
2213static inline struct page *
2214__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2215 struct zonelist *zonelist, enum zone_type high_zoneidx,
2216 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2217 int migratetype, bool sync_migration,
c67fe375 2218 bool *contended_compaction, bool *deferred_compaction,
66199712 2219 unsigned long *did_some_progress)
56de7263
MG
2220{
2221 return NULL;
2222}
2223#endif /* CONFIG_COMPACTION */
2224
bba90710
MS
2225/* Perform direct synchronous page reclaim */
2226static int
2227__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2228 nodemask_t *nodemask)
11e33f6a 2229{
11e33f6a 2230 struct reclaim_state reclaim_state;
bba90710 2231 int progress;
11e33f6a
MG
2232
2233 cond_resched();
2234
2235 /* We now go into synchronous reclaim */
2236 cpuset_memory_pressure_bump();
c06b1fca 2237 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2238 lockdep_set_current_reclaim_state(gfp_mask);
2239 reclaim_state.reclaimed_slab = 0;
c06b1fca 2240 current->reclaim_state = &reclaim_state;
11e33f6a 2241
bba90710 2242 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2243
c06b1fca 2244 current->reclaim_state = NULL;
11e33f6a 2245 lockdep_clear_current_reclaim_state();
c06b1fca 2246 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2247
2248 cond_resched();
2249
bba90710
MS
2250 return progress;
2251}
2252
2253/* The really slow allocator path where we enter direct reclaim */
2254static inline struct page *
2255__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2256 struct zonelist *zonelist, enum zone_type high_zoneidx,
2257 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2258 int migratetype, unsigned long *did_some_progress)
2259{
2260 struct page *page = NULL;
2261 bool drained = false;
2262
2263 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2264 nodemask);
9ee493ce
MG
2265 if (unlikely(!(*did_some_progress)))
2266 return NULL;
11e33f6a 2267
76d3fbf8
MG
2268 /* After successful reclaim, reconsider all zones for allocation */
2269 if (NUMA_BUILD)
2270 zlc_clear_zones_full(zonelist);
2271
9ee493ce
MG
2272retry:
2273 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2274 zonelist, high_zoneidx,
cfd19c5a
MG
2275 alloc_flags & ~ALLOC_NO_WATERMARKS,
2276 preferred_zone, migratetype);
9ee493ce
MG
2277
2278 /*
2279 * If an allocation failed after direct reclaim, it could be because
2280 * pages are pinned on the per-cpu lists. Drain them and try again
2281 */
2282 if (!page && !drained) {
2283 drain_all_pages();
2284 drained = true;
2285 goto retry;
2286 }
2287
11e33f6a
MG
2288 return page;
2289}
2290
1da177e4 2291/*
11e33f6a
MG
2292 * This is called in the allocator slow-path if the allocation request is of
2293 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2294 */
11e33f6a
MG
2295static inline struct page *
2296__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2298 nodemask_t *nodemask, struct zone *preferred_zone,
2299 int migratetype)
11e33f6a
MG
2300{
2301 struct page *page;
2302
2303 do {
2304 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2305 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2306 preferred_zone, migratetype);
11e33f6a
MG
2307
2308 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2309 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2310 } while (!page && (gfp_mask & __GFP_NOFAIL));
2311
2312 return page;
2313}
2314
2315static inline
2316void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2317 enum zone_type high_zoneidx,
2318 enum zone_type classzone_idx)
1da177e4 2319{
dd1a239f
MG
2320 struct zoneref *z;
2321 struct zone *zone;
1da177e4 2322
11e33f6a 2323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2324 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2325}
cf40bd16 2326
341ce06f
PZ
2327static inline int
2328gfp_to_alloc_flags(gfp_t gfp_mask)
2329{
341ce06f
PZ
2330 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2331 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2332
a56f57ff 2333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2335
341ce06f
PZ
2336 /*
2337 * The caller may dip into page reserves a bit more if the caller
2338 * cannot run direct reclaim, or if the caller has realtime scheduling
2339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2340 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2341 */
e6223a3b 2342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2343
341ce06f 2344 if (!wait) {
5c3240d9
AA
2345 /*
2346 * Not worth trying to allocate harder for
2347 * __GFP_NOMEMALLOC even if it can't schedule.
2348 */
2349 if (!(gfp_mask & __GFP_NOMEMALLOC))
2350 alloc_flags |= ALLOC_HARDER;
523b9458 2351 /*
341ce06f
PZ
2352 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2353 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2354 */
341ce06f 2355 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2356 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2357 alloc_flags |= ALLOC_HARDER;
2358
b37f1dd0
MG
2359 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2360 if (gfp_mask & __GFP_MEMALLOC)
2361 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2362 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2363 alloc_flags |= ALLOC_NO_WATERMARKS;
2364 else if (!in_interrupt() &&
2365 ((current->flags & PF_MEMALLOC) ||
2366 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2367 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2368 }
d95ea5d1
BZ
2369#ifdef CONFIG_CMA
2370 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2371 alloc_flags |= ALLOC_CMA;
2372#endif
341ce06f
PZ
2373 return alloc_flags;
2374}
2375
072bb0aa
MG
2376bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2377{
b37f1dd0 2378 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2379}
2380
11e33f6a
MG
2381static inline struct page *
2382__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2383 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2384 nodemask_t *nodemask, struct zone *preferred_zone,
2385 int migratetype)
11e33f6a
MG
2386{
2387 const gfp_t wait = gfp_mask & __GFP_WAIT;
2388 struct page *page = NULL;
2389 int alloc_flags;
2390 unsigned long pages_reclaimed = 0;
2391 unsigned long did_some_progress;
77f1fe6b 2392 bool sync_migration = false;
66199712 2393 bool deferred_compaction = false;
c67fe375 2394 bool contended_compaction = false;
1da177e4 2395
72807a74
MG
2396 /*
2397 * In the slowpath, we sanity check order to avoid ever trying to
2398 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2399 * be using allocators in order of preference for an area that is
2400 * too large.
2401 */
1fc28b70
MG
2402 if (order >= MAX_ORDER) {
2403 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2404 return NULL;
1fc28b70 2405 }
1da177e4 2406
952f3b51
CL
2407 /*
2408 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2409 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2410 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2411 * using a larger set of nodes after it has established that the
2412 * allowed per node queues are empty and that nodes are
2413 * over allocated.
2414 */
2415 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2416 goto nopage;
2417
cc4a6851 2418restart:
caf49191
LT
2419 if (!(gfp_mask & __GFP_NO_KSWAPD))
2420 wake_all_kswapd(order, zonelist, high_zoneidx,
2421 zone_idx(preferred_zone));
1da177e4 2422
9bf2229f 2423 /*
7fb1d9fc
RS
2424 * OK, we're below the kswapd watermark and have kicked background
2425 * reclaim. Now things get more complex, so set up alloc_flags according
2426 * to how we want to proceed.
9bf2229f 2427 */
341ce06f 2428 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2429
f33261d7
DR
2430 /*
2431 * Find the true preferred zone if the allocation is unconstrained by
2432 * cpusets.
2433 */
2434 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2435 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2436 &preferred_zone);
2437
cfa54a0f 2438rebalance:
341ce06f 2439 /* This is the last chance, in general, before the goto nopage. */
19770b32 2440 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2441 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2442 preferred_zone, migratetype);
7fb1d9fc
RS
2443 if (page)
2444 goto got_pg;
1da177e4 2445
11e33f6a 2446 /* Allocate without watermarks if the context allows */
341ce06f 2447 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2448 /*
2449 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2450 * the allocation is high priority and these type of
2451 * allocations are system rather than user orientated
2452 */
2453 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2454
341ce06f
PZ
2455 page = __alloc_pages_high_priority(gfp_mask, order,
2456 zonelist, high_zoneidx, nodemask,
2457 preferred_zone, migratetype);
cfd19c5a 2458 if (page) {
341ce06f 2459 goto got_pg;
cfd19c5a 2460 }
1da177e4
LT
2461 }
2462
2463 /* Atomic allocations - we can't balance anything */
2464 if (!wait)
2465 goto nopage;
2466
341ce06f 2467 /* Avoid recursion of direct reclaim */
c06b1fca 2468 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2469 goto nopage;
2470
6583bb64
DR
2471 /* Avoid allocations with no watermarks from looping endlessly */
2472 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2473 goto nopage;
2474
77f1fe6b
MG
2475 /*
2476 * Try direct compaction. The first pass is asynchronous. Subsequent
2477 * attempts after direct reclaim are synchronous
2478 */
56de7263
MG
2479 page = __alloc_pages_direct_compact(gfp_mask, order,
2480 zonelist, high_zoneidx,
2481 nodemask,
2482 alloc_flags, preferred_zone,
66199712 2483 migratetype, sync_migration,
c67fe375 2484 &contended_compaction,
66199712
MG
2485 &deferred_compaction,
2486 &did_some_progress);
56de7263
MG
2487 if (page)
2488 goto got_pg;
c6a140bf 2489 sync_migration = true;
56de7263 2490
31f8d42d
LT
2491 /*
2492 * If compaction is deferred for high-order allocations, it is because
2493 * sync compaction recently failed. In this is the case and the caller
2494 * requested a movable allocation that does not heavily disrupt the
2495 * system then fail the allocation instead of entering direct reclaim.
2496 */
2497 if ((deferred_compaction || contended_compaction) &&
caf49191 2498 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2499 goto nopage;
66199712 2500
11e33f6a
MG
2501 /* Try direct reclaim and then allocating */
2502 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2503 zonelist, high_zoneidx,
2504 nodemask,
5117f45d 2505 alloc_flags, preferred_zone,
3dd28266 2506 migratetype, &did_some_progress);
11e33f6a
MG
2507 if (page)
2508 goto got_pg;
1da177e4 2509
e33c3b5e 2510 /*
11e33f6a
MG
2511 * If we failed to make any progress reclaiming, then we are
2512 * running out of options and have to consider going OOM
e33c3b5e 2513 */
11e33f6a
MG
2514 if (!did_some_progress) {
2515 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2516 if (oom_killer_disabled)
2517 goto nopage;
29fd66d2
DR
2518 /* Coredumps can quickly deplete all memory reserves */
2519 if ((current->flags & PF_DUMPCORE) &&
2520 !(gfp_mask & __GFP_NOFAIL))
2521 goto nopage;
11e33f6a
MG
2522 page = __alloc_pages_may_oom(gfp_mask, order,
2523 zonelist, high_zoneidx,
3dd28266
MG
2524 nodemask, preferred_zone,
2525 migratetype);
11e33f6a
MG
2526 if (page)
2527 goto got_pg;
1da177e4 2528
03668b3c
DR
2529 if (!(gfp_mask & __GFP_NOFAIL)) {
2530 /*
2531 * The oom killer is not called for high-order
2532 * allocations that may fail, so if no progress
2533 * is being made, there are no other options and
2534 * retrying is unlikely to help.
2535 */
2536 if (order > PAGE_ALLOC_COSTLY_ORDER)
2537 goto nopage;
2538 /*
2539 * The oom killer is not called for lowmem
2540 * allocations to prevent needlessly killing
2541 * innocent tasks.
2542 */
2543 if (high_zoneidx < ZONE_NORMAL)
2544 goto nopage;
2545 }
e2c55dc8 2546
ff0ceb9d
DR
2547 goto restart;
2548 }
1da177e4
LT
2549 }
2550
11e33f6a 2551 /* Check if we should retry the allocation */
a41f24ea 2552 pages_reclaimed += did_some_progress;
f90ac398
MG
2553 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2554 pages_reclaimed)) {
11e33f6a 2555 /* Wait for some write requests to complete then retry */
0e093d99 2556 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2557 goto rebalance;
3e7d3449
MG
2558 } else {
2559 /*
2560 * High-order allocations do not necessarily loop after
2561 * direct reclaim and reclaim/compaction depends on compaction
2562 * being called after reclaim so call directly if necessary
2563 */
2564 page = __alloc_pages_direct_compact(gfp_mask, order,
2565 zonelist, high_zoneidx,
2566 nodemask,
2567 alloc_flags, preferred_zone,
66199712 2568 migratetype, sync_migration,
c67fe375 2569 &contended_compaction,
66199712
MG
2570 &deferred_compaction,
2571 &did_some_progress);
3e7d3449
MG
2572 if (page)
2573 goto got_pg;
1da177e4
LT
2574 }
2575
2576nopage:
a238ab5b 2577 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2578 return page;
1da177e4 2579got_pg:
b1eeab67
VN
2580 if (kmemcheck_enabled)
2581 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2582
072bb0aa 2583 return page;
1da177e4 2584}
11e33f6a
MG
2585
2586/*
2587 * This is the 'heart' of the zoned buddy allocator.
2588 */
2589struct page *
2590__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2591 struct zonelist *zonelist, nodemask_t *nodemask)
2592{
2593 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2594 struct zone *preferred_zone;
cc9a6c87 2595 struct page *page = NULL;
3dd28266 2596 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2597 unsigned int cpuset_mems_cookie;
d95ea5d1 2598 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2599
dcce284a
BH
2600 gfp_mask &= gfp_allowed_mask;
2601
11e33f6a
MG
2602 lockdep_trace_alloc(gfp_mask);
2603
2604 might_sleep_if(gfp_mask & __GFP_WAIT);
2605
2606 if (should_fail_alloc_page(gfp_mask, order))
2607 return NULL;
2608
2609 /*
2610 * Check the zones suitable for the gfp_mask contain at least one
2611 * valid zone. It's possible to have an empty zonelist as a result
2612 * of GFP_THISNODE and a memoryless node
2613 */
2614 if (unlikely(!zonelist->_zonerefs->zone))
2615 return NULL;
2616
cc9a6c87
MG
2617retry_cpuset:
2618 cpuset_mems_cookie = get_mems_allowed();
2619
5117f45d 2620 /* The preferred zone is used for statistics later */
f33261d7
DR
2621 first_zones_zonelist(zonelist, high_zoneidx,
2622 nodemask ? : &cpuset_current_mems_allowed,
2623 &preferred_zone);
cc9a6c87
MG
2624 if (!preferred_zone)
2625 goto out;
5117f45d 2626
d95ea5d1
BZ
2627#ifdef CONFIG_CMA
2628 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2629 alloc_flags |= ALLOC_CMA;
2630#endif
5117f45d 2631 /* First allocation attempt */
11e33f6a 2632 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2633 zonelist, high_zoneidx, alloc_flags,
3dd28266 2634 preferred_zone, migratetype);
11e33f6a
MG
2635 if (unlikely(!page))
2636 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2637 zonelist, high_zoneidx, nodemask,
3dd28266 2638 preferred_zone, migratetype);
11e33f6a 2639
4b4f278c 2640 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2641
2642out:
2643 /*
2644 * When updating a task's mems_allowed, it is possible to race with
2645 * parallel threads in such a way that an allocation can fail while
2646 * the mask is being updated. If a page allocation is about to fail,
2647 * check if the cpuset changed during allocation and if so, retry.
2648 */
2649 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2650 goto retry_cpuset;
2651
11e33f6a 2652 return page;
1da177e4 2653}
d239171e 2654EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2655
2656/*
2657 * Common helper functions.
2658 */
920c7a5d 2659unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2660{
945a1113
AM
2661 struct page *page;
2662
2663 /*
2664 * __get_free_pages() returns a 32-bit address, which cannot represent
2665 * a highmem page
2666 */
2667 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2668
1da177e4
LT
2669 page = alloc_pages(gfp_mask, order);
2670 if (!page)
2671 return 0;
2672 return (unsigned long) page_address(page);
2673}
1da177e4
LT
2674EXPORT_SYMBOL(__get_free_pages);
2675
920c7a5d 2676unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2677{
945a1113 2678 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2679}
1da177e4
LT
2680EXPORT_SYMBOL(get_zeroed_page);
2681
920c7a5d 2682void __free_pages(struct page *page, unsigned int order)
1da177e4 2683{
b5810039 2684 if (put_page_testzero(page)) {
1da177e4 2685 if (order == 0)
fc91668e 2686 free_hot_cold_page(page, 0);
1da177e4
LT
2687 else
2688 __free_pages_ok(page, order);
2689 }
2690}
2691
2692EXPORT_SYMBOL(__free_pages);
2693
920c7a5d 2694void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2695{
2696 if (addr != 0) {
725d704e 2697 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2698 __free_pages(virt_to_page((void *)addr), order);
2699 }
2700}
2701
2702EXPORT_SYMBOL(free_pages);
2703
ee85c2e1
AK
2704static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2705{
2706 if (addr) {
2707 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2708 unsigned long used = addr + PAGE_ALIGN(size);
2709
2710 split_page(virt_to_page((void *)addr), order);
2711 while (used < alloc_end) {
2712 free_page(used);
2713 used += PAGE_SIZE;
2714 }
2715 }
2716 return (void *)addr;
2717}
2718
2be0ffe2
TT
2719/**
2720 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2721 * @size: the number of bytes to allocate
2722 * @gfp_mask: GFP flags for the allocation
2723 *
2724 * This function is similar to alloc_pages(), except that it allocates the
2725 * minimum number of pages to satisfy the request. alloc_pages() can only
2726 * allocate memory in power-of-two pages.
2727 *
2728 * This function is also limited by MAX_ORDER.
2729 *
2730 * Memory allocated by this function must be released by free_pages_exact().
2731 */
2732void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2733{
2734 unsigned int order = get_order(size);
2735 unsigned long addr;
2736
2737 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2738 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2739}
2740EXPORT_SYMBOL(alloc_pages_exact);
2741
ee85c2e1
AK
2742/**
2743 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2744 * pages on a node.
b5e6ab58 2745 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2746 * @size: the number of bytes to allocate
2747 * @gfp_mask: GFP flags for the allocation
2748 *
2749 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2750 * back.
2751 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2752 * but is not exact.
2753 */
2754void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2755{
2756 unsigned order = get_order(size);
2757 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2758 if (!p)
2759 return NULL;
2760 return make_alloc_exact((unsigned long)page_address(p), order, size);
2761}
2762EXPORT_SYMBOL(alloc_pages_exact_nid);
2763
2be0ffe2
TT
2764/**
2765 * free_pages_exact - release memory allocated via alloc_pages_exact()
2766 * @virt: the value returned by alloc_pages_exact.
2767 * @size: size of allocation, same value as passed to alloc_pages_exact().
2768 *
2769 * Release the memory allocated by a previous call to alloc_pages_exact.
2770 */
2771void free_pages_exact(void *virt, size_t size)
2772{
2773 unsigned long addr = (unsigned long)virt;
2774 unsigned long end = addr + PAGE_ALIGN(size);
2775
2776 while (addr < end) {
2777 free_page(addr);
2778 addr += PAGE_SIZE;
2779 }
2780}
2781EXPORT_SYMBOL(free_pages_exact);
2782
1da177e4
LT
2783static unsigned int nr_free_zone_pages(int offset)
2784{
dd1a239f 2785 struct zoneref *z;
54a6eb5c
MG
2786 struct zone *zone;
2787
e310fd43 2788 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2789 unsigned int sum = 0;
2790
0e88460d 2791 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2792
54a6eb5c 2793 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2794 unsigned long size = zone->present_pages;
41858966 2795 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2796 if (size > high)
2797 sum += size - high;
1da177e4
LT
2798 }
2799
2800 return sum;
2801}
2802
2803/*
2804 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2805 */
2806unsigned int nr_free_buffer_pages(void)
2807{
af4ca457 2808 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2809}
c2f1a551 2810EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2811
2812/*
2813 * Amount of free RAM allocatable within all zones
2814 */
2815unsigned int nr_free_pagecache_pages(void)
2816{
2a1e274a 2817 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2818}
08e0f6a9
CL
2819
2820static inline void show_node(struct zone *zone)
1da177e4 2821{
08e0f6a9 2822 if (NUMA_BUILD)
25ba77c1 2823 printk("Node %d ", zone_to_nid(zone));
1da177e4 2824}
1da177e4 2825
1da177e4
LT
2826void si_meminfo(struct sysinfo *val)
2827{
2828 val->totalram = totalram_pages;
2829 val->sharedram = 0;
d23ad423 2830 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2831 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2832 val->totalhigh = totalhigh_pages;
2833 val->freehigh = nr_free_highpages();
1da177e4
LT
2834 val->mem_unit = PAGE_SIZE;
2835}
2836
2837EXPORT_SYMBOL(si_meminfo);
2838
2839#ifdef CONFIG_NUMA
2840void si_meminfo_node(struct sysinfo *val, int nid)
2841{
2842 pg_data_t *pgdat = NODE_DATA(nid);
2843
2844 val->totalram = pgdat->node_present_pages;
d23ad423 2845 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2846#ifdef CONFIG_HIGHMEM
1da177e4 2847 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2848 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2849 NR_FREE_PAGES);
98d2b0eb
CL
2850#else
2851 val->totalhigh = 0;
2852 val->freehigh = 0;
2853#endif
1da177e4
LT
2854 val->mem_unit = PAGE_SIZE;
2855}
2856#endif
2857
ddd588b5 2858/*
7bf02ea2
DR
2859 * Determine whether the node should be displayed or not, depending on whether
2860 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2861 */
7bf02ea2 2862bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2863{
2864 bool ret = false;
cc9a6c87 2865 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2866
2867 if (!(flags & SHOW_MEM_FILTER_NODES))
2868 goto out;
2869
cc9a6c87
MG
2870 do {
2871 cpuset_mems_cookie = get_mems_allowed();
2872 ret = !node_isset(nid, cpuset_current_mems_allowed);
2873 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2874out:
2875 return ret;
2876}
2877
1da177e4
LT
2878#define K(x) ((x) << (PAGE_SHIFT-10))
2879
377e4f16
RV
2880static void show_migration_types(unsigned char type)
2881{
2882 static const char types[MIGRATE_TYPES] = {
2883 [MIGRATE_UNMOVABLE] = 'U',
2884 [MIGRATE_RECLAIMABLE] = 'E',
2885 [MIGRATE_MOVABLE] = 'M',
2886 [MIGRATE_RESERVE] = 'R',
2887#ifdef CONFIG_CMA
2888 [MIGRATE_CMA] = 'C',
2889#endif
2890 [MIGRATE_ISOLATE] = 'I',
2891 };
2892 char tmp[MIGRATE_TYPES + 1];
2893 char *p = tmp;
2894 int i;
2895
2896 for (i = 0; i < MIGRATE_TYPES; i++) {
2897 if (type & (1 << i))
2898 *p++ = types[i];
2899 }
2900
2901 *p = '\0';
2902 printk("(%s) ", tmp);
2903}
2904
1da177e4
LT
2905/*
2906 * Show free area list (used inside shift_scroll-lock stuff)
2907 * We also calculate the percentage fragmentation. We do this by counting the
2908 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2909 * Suppresses nodes that are not allowed by current's cpuset if
2910 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2911 */
7bf02ea2 2912void show_free_areas(unsigned int filter)
1da177e4 2913{
c7241913 2914 int cpu;
1da177e4
LT
2915 struct zone *zone;
2916
ee99c71c 2917 for_each_populated_zone(zone) {
7bf02ea2 2918 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2919 continue;
c7241913
JS
2920 show_node(zone);
2921 printk("%s per-cpu:\n", zone->name);
1da177e4 2922
6b482c67 2923 for_each_online_cpu(cpu) {
1da177e4
LT
2924 struct per_cpu_pageset *pageset;
2925
99dcc3e5 2926 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2927
3dfa5721
CL
2928 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2929 cpu, pageset->pcp.high,
2930 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2931 }
2932 }
2933
a731286d
KM
2934 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2935 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2936 " unevictable:%lu"
b76146ed 2937 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2938 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2939 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2940 " free_cma:%lu\n",
4f98a2fe 2941 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2942 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2943 global_page_state(NR_ISOLATED_ANON),
2944 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2945 global_page_state(NR_INACTIVE_FILE),
a731286d 2946 global_page_state(NR_ISOLATED_FILE),
7b854121 2947 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2948 global_page_state(NR_FILE_DIRTY),
ce866b34 2949 global_page_state(NR_WRITEBACK),
fd39fc85 2950 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2951 global_page_state(NR_FREE_PAGES),
3701b033
KM
2952 global_page_state(NR_SLAB_RECLAIMABLE),
2953 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2954 global_page_state(NR_FILE_MAPPED),
4b02108a 2955 global_page_state(NR_SHMEM),
a25700a5 2956 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2957 global_page_state(NR_BOUNCE),
2958 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2959
ee99c71c 2960 for_each_populated_zone(zone) {
1da177e4
LT
2961 int i;
2962
7bf02ea2 2963 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2964 continue;
1da177e4
LT
2965 show_node(zone);
2966 printk("%s"
2967 " free:%lukB"
2968 " min:%lukB"
2969 " low:%lukB"
2970 " high:%lukB"
4f98a2fe
RR
2971 " active_anon:%lukB"
2972 " inactive_anon:%lukB"
2973 " active_file:%lukB"
2974 " inactive_file:%lukB"
7b854121 2975 " unevictable:%lukB"
a731286d
KM
2976 " isolated(anon):%lukB"
2977 " isolated(file):%lukB"
1da177e4 2978 " present:%lukB"
4a0aa73f
KM
2979 " mlocked:%lukB"
2980 " dirty:%lukB"
2981 " writeback:%lukB"
2982 " mapped:%lukB"
4b02108a 2983 " shmem:%lukB"
4a0aa73f
KM
2984 " slab_reclaimable:%lukB"
2985 " slab_unreclaimable:%lukB"
c6a7f572 2986 " kernel_stack:%lukB"
4a0aa73f
KM
2987 " pagetables:%lukB"
2988 " unstable:%lukB"
2989 " bounce:%lukB"
d1ce749a 2990 " free_cma:%lukB"
4a0aa73f 2991 " writeback_tmp:%lukB"
1da177e4
LT
2992 " pages_scanned:%lu"
2993 " all_unreclaimable? %s"
2994 "\n",
2995 zone->name,
88f5acf8 2996 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2997 K(min_wmark_pages(zone)),
2998 K(low_wmark_pages(zone)),
2999 K(high_wmark_pages(zone)),
4f98a2fe
RR
3000 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3001 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3002 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3003 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3004 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3005 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3006 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3007 K(zone->present_pages),
4a0aa73f
KM
3008 K(zone_page_state(zone, NR_MLOCK)),
3009 K(zone_page_state(zone, NR_FILE_DIRTY)),
3010 K(zone_page_state(zone, NR_WRITEBACK)),
3011 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3012 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3013 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3014 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3015 zone_page_state(zone, NR_KERNEL_STACK) *
3016 THREAD_SIZE / 1024,
4a0aa73f
KM
3017 K(zone_page_state(zone, NR_PAGETABLE)),
3018 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3019 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3020 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3021 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3022 zone->pages_scanned,
93e4a89a 3023 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3024 );
3025 printk("lowmem_reserve[]:");
3026 for (i = 0; i < MAX_NR_ZONES; i++)
3027 printk(" %lu", zone->lowmem_reserve[i]);
3028 printk("\n");
3029 }
3030
ee99c71c 3031 for_each_populated_zone(zone) {
8f9de51a 3032 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3033 unsigned char types[MAX_ORDER];
1da177e4 3034
7bf02ea2 3035 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3036 continue;
1da177e4
LT
3037 show_node(zone);
3038 printk("%s: ", zone->name);
1da177e4
LT
3039
3040 spin_lock_irqsave(&zone->lock, flags);
3041 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3042 struct free_area *area = &zone->free_area[order];
3043 int type;
3044
3045 nr[order] = area->nr_free;
8f9de51a 3046 total += nr[order] << order;
377e4f16
RV
3047
3048 types[order] = 0;
3049 for (type = 0; type < MIGRATE_TYPES; type++) {
3050 if (!list_empty(&area->free_list[type]))
3051 types[order] |= 1 << type;
3052 }
1da177e4
LT
3053 }
3054 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3055 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3056 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3057 if (nr[order])
3058 show_migration_types(types[order]);
3059 }
1da177e4
LT
3060 printk("= %lukB\n", K(total));
3061 }
3062
e6f3602d
LW
3063 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3064
1da177e4
LT
3065 show_swap_cache_info();
3066}
3067
19770b32
MG
3068static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3069{
3070 zoneref->zone = zone;
3071 zoneref->zone_idx = zone_idx(zone);
3072}
3073
1da177e4
LT
3074/*
3075 * Builds allocation fallback zone lists.
1a93205b
CL
3076 *
3077 * Add all populated zones of a node to the zonelist.
1da177e4 3078 */
f0c0b2b8
KH
3079static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3080 int nr_zones, enum zone_type zone_type)
1da177e4 3081{
1a93205b
CL
3082 struct zone *zone;
3083
98d2b0eb 3084 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3085 zone_type++;
02a68a5e
CL
3086
3087 do {
2f6726e5 3088 zone_type--;
070f8032 3089 zone = pgdat->node_zones + zone_type;
1a93205b 3090 if (populated_zone(zone)) {
dd1a239f
MG
3091 zoneref_set_zone(zone,
3092 &zonelist->_zonerefs[nr_zones++]);
070f8032 3093 check_highest_zone(zone_type);
1da177e4 3094 }
02a68a5e 3095
2f6726e5 3096 } while (zone_type);
070f8032 3097 return nr_zones;
1da177e4
LT
3098}
3099
f0c0b2b8
KH
3100
3101/*
3102 * zonelist_order:
3103 * 0 = automatic detection of better ordering.
3104 * 1 = order by ([node] distance, -zonetype)
3105 * 2 = order by (-zonetype, [node] distance)
3106 *
3107 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3108 * the same zonelist. So only NUMA can configure this param.
3109 */
3110#define ZONELIST_ORDER_DEFAULT 0
3111#define ZONELIST_ORDER_NODE 1
3112#define ZONELIST_ORDER_ZONE 2
3113
3114/* zonelist order in the kernel.
3115 * set_zonelist_order() will set this to NODE or ZONE.
3116 */
3117static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3118static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3119
3120
1da177e4 3121#ifdef CONFIG_NUMA
f0c0b2b8
KH
3122/* The value user specified ....changed by config */
3123static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3124/* string for sysctl */
3125#define NUMA_ZONELIST_ORDER_LEN 16
3126char numa_zonelist_order[16] = "default";
3127
3128/*
3129 * interface for configure zonelist ordering.
3130 * command line option "numa_zonelist_order"
3131 * = "[dD]efault - default, automatic configuration.
3132 * = "[nN]ode - order by node locality, then by zone within node
3133 * = "[zZ]one - order by zone, then by locality within zone
3134 */
3135
3136static int __parse_numa_zonelist_order(char *s)
3137{
3138 if (*s == 'd' || *s == 'D') {
3139 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3140 } else if (*s == 'n' || *s == 'N') {
3141 user_zonelist_order = ZONELIST_ORDER_NODE;
3142 } else if (*s == 'z' || *s == 'Z') {
3143 user_zonelist_order = ZONELIST_ORDER_ZONE;
3144 } else {
3145 printk(KERN_WARNING
3146 "Ignoring invalid numa_zonelist_order value: "
3147 "%s\n", s);
3148 return -EINVAL;
3149 }
3150 return 0;
3151}
3152
3153static __init int setup_numa_zonelist_order(char *s)
3154{
ecb256f8
VL
3155 int ret;
3156
3157 if (!s)
3158 return 0;
3159
3160 ret = __parse_numa_zonelist_order(s);
3161 if (ret == 0)
3162 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3163
3164 return ret;
f0c0b2b8
KH
3165}
3166early_param("numa_zonelist_order", setup_numa_zonelist_order);
3167
3168/*
3169 * sysctl handler for numa_zonelist_order
3170 */
3171int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3172 void __user *buffer, size_t *length,
f0c0b2b8
KH
3173 loff_t *ppos)
3174{
3175 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3176 int ret;
443c6f14 3177 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3178
443c6f14 3179 mutex_lock(&zl_order_mutex);
f0c0b2b8 3180 if (write)
443c6f14 3181 strcpy(saved_string, (char*)table->data);
8d65af78 3182 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3183 if (ret)
443c6f14 3184 goto out;
f0c0b2b8
KH
3185 if (write) {
3186 int oldval = user_zonelist_order;
3187 if (__parse_numa_zonelist_order((char*)table->data)) {
3188 /*
3189 * bogus value. restore saved string
3190 */
3191 strncpy((char*)table->data, saved_string,
3192 NUMA_ZONELIST_ORDER_LEN);
3193 user_zonelist_order = oldval;
4eaf3f64
HL
3194 } else if (oldval != user_zonelist_order) {
3195 mutex_lock(&zonelists_mutex);
9adb62a5 3196 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3197 mutex_unlock(&zonelists_mutex);
3198 }
f0c0b2b8 3199 }
443c6f14
AK
3200out:
3201 mutex_unlock(&zl_order_mutex);
3202 return ret;
f0c0b2b8
KH
3203}
3204
3205
62bc62a8 3206#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3207static int node_load[MAX_NUMNODES];
3208
1da177e4 3209/**
4dc3b16b 3210 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3211 * @node: node whose fallback list we're appending
3212 * @used_node_mask: nodemask_t of already used nodes
3213 *
3214 * We use a number of factors to determine which is the next node that should
3215 * appear on a given node's fallback list. The node should not have appeared
3216 * already in @node's fallback list, and it should be the next closest node
3217 * according to the distance array (which contains arbitrary distance values
3218 * from each node to each node in the system), and should also prefer nodes
3219 * with no CPUs, since presumably they'll have very little allocation pressure
3220 * on them otherwise.
3221 * It returns -1 if no node is found.
3222 */
f0c0b2b8 3223static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3224{
4cf808eb 3225 int n, val;
1da177e4
LT
3226 int min_val = INT_MAX;
3227 int best_node = -1;
a70f7302 3228 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3229
4cf808eb
LT
3230 /* Use the local node if we haven't already */
3231 if (!node_isset(node, *used_node_mask)) {
3232 node_set(node, *used_node_mask);
3233 return node;
3234 }
1da177e4 3235
37b07e41 3236 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3237
3238 /* Don't want a node to appear more than once */
3239 if (node_isset(n, *used_node_mask))
3240 continue;
3241
1da177e4
LT
3242 /* Use the distance array to find the distance */
3243 val = node_distance(node, n);
3244
4cf808eb
LT
3245 /* Penalize nodes under us ("prefer the next node") */
3246 val += (n < node);
3247
1da177e4 3248 /* Give preference to headless and unused nodes */
a70f7302
RR
3249 tmp = cpumask_of_node(n);
3250 if (!cpumask_empty(tmp))
1da177e4
LT
3251 val += PENALTY_FOR_NODE_WITH_CPUS;
3252
3253 /* Slight preference for less loaded node */
3254 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3255 val += node_load[n];
3256
3257 if (val < min_val) {
3258 min_val = val;
3259 best_node = n;
3260 }
3261 }
3262
3263 if (best_node >= 0)
3264 node_set(best_node, *used_node_mask);
3265
3266 return best_node;
3267}
3268
f0c0b2b8
KH
3269
3270/*
3271 * Build zonelists ordered by node and zones within node.
3272 * This results in maximum locality--normal zone overflows into local
3273 * DMA zone, if any--but risks exhausting DMA zone.
3274 */
3275static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3276{
f0c0b2b8 3277 int j;
1da177e4 3278 struct zonelist *zonelist;
f0c0b2b8 3279
54a6eb5c 3280 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3281 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3282 ;
3283 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3284 MAX_NR_ZONES - 1);
dd1a239f
MG
3285 zonelist->_zonerefs[j].zone = NULL;
3286 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3287}
3288
523b9458
CL
3289/*
3290 * Build gfp_thisnode zonelists
3291 */
3292static void build_thisnode_zonelists(pg_data_t *pgdat)
3293{
523b9458
CL
3294 int j;
3295 struct zonelist *zonelist;
3296
54a6eb5c
MG
3297 zonelist = &pgdat->node_zonelists[1];
3298 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3299 zonelist->_zonerefs[j].zone = NULL;
3300 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3301}
3302
f0c0b2b8
KH
3303/*
3304 * Build zonelists ordered by zone and nodes within zones.
3305 * This results in conserving DMA zone[s] until all Normal memory is
3306 * exhausted, but results in overflowing to remote node while memory
3307 * may still exist in local DMA zone.
3308 */
3309static int node_order[MAX_NUMNODES];
3310
3311static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3312{
f0c0b2b8
KH
3313 int pos, j, node;
3314 int zone_type; /* needs to be signed */
3315 struct zone *z;
3316 struct zonelist *zonelist;
3317
54a6eb5c
MG
3318 zonelist = &pgdat->node_zonelists[0];
3319 pos = 0;
3320 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3321 for (j = 0; j < nr_nodes; j++) {
3322 node = node_order[j];
3323 z = &NODE_DATA(node)->node_zones[zone_type];
3324 if (populated_zone(z)) {
dd1a239f
MG
3325 zoneref_set_zone(z,
3326 &zonelist->_zonerefs[pos++]);
54a6eb5c 3327 check_highest_zone(zone_type);
f0c0b2b8
KH
3328 }
3329 }
f0c0b2b8 3330 }
dd1a239f
MG
3331 zonelist->_zonerefs[pos].zone = NULL;
3332 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3333}
3334
3335static int default_zonelist_order(void)
3336{
3337 int nid, zone_type;
3338 unsigned long low_kmem_size,total_size;
3339 struct zone *z;
3340 int average_size;
3341 /*
88393161 3342 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3343 * If they are really small and used heavily, the system can fall
3344 * into OOM very easily.
e325c90f 3345 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3346 */
3347 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3348 low_kmem_size = 0;
3349 total_size = 0;
3350 for_each_online_node(nid) {
3351 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3352 z = &NODE_DATA(nid)->node_zones[zone_type];
3353 if (populated_zone(z)) {
3354 if (zone_type < ZONE_NORMAL)
3355 low_kmem_size += z->present_pages;
3356 total_size += z->present_pages;
e325c90f
DR
3357 } else if (zone_type == ZONE_NORMAL) {
3358 /*
3359 * If any node has only lowmem, then node order
3360 * is preferred to allow kernel allocations
3361 * locally; otherwise, they can easily infringe
3362 * on other nodes when there is an abundance of
3363 * lowmem available to allocate from.
3364 */
3365 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3366 }
3367 }
3368 }
3369 if (!low_kmem_size || /* there are no DMA area. */
3370 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3371 return ZONELIST_ORDER_NODE;
3372 /*
3373 * look into each node's config.
3374 * If there is a node whose DMA/DMA32 memory is very big area on
3375 * local memory, NODE_ORDER may be suitable.
3376 */
37b07e41
LS
3377 average_size = total_size /
3378 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3379 for_each_online_node(nid) {
3380 low_kmem_size = 0;
3381 total_size = 0;
3382 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3383 z = &NODE_DATA(nid)->node_zones[zone_type];
3384 if (populated_zone(z)) {
3385 if (zone_type < ZONE_NORMAL)
3386 low_kmem_size += z->present_pages;
3387 total_size += z->present_pages;
3388 }
3389 }
3390 if (low_kmem_size &&
3391 total_size > average_size && /* ignore small node */
3392 low_kmem_size > total_size * 70/100)
3393 return ZONELIST_ORDER_NODE;
3394 }
3395 return ZONELIST_ORDER_ZONE;
3396}
3397
3398static void set_zonelist_order(void)
3399{
3400 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3401 current_zonelist_order = default_zonelist_order();
3402 else
3403 current_zonelist_order = user_zonelist_order;
3404}
3405
3406static void build_zonelists(pg_data_t *pgdat)
3407{
3408 int j, node, load;
3409 enum zone_type i;
1da177e4 3410 nodemask_t used_mask;
f0c0b2b8
KH
3411 int local_node, prev_node;
3412 struct zonelist *zonelist;
3413 int order = current_zonelist_order;
1da177e4
LT
3414
3415 /* initialize zonelists */
523b9458 3416 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3417 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3418 zonelist->_zonerefs[0].zone = NULL;
3419 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3420 }
3421
3422 /* NUMA-aware ordering of nodes */
3423 local_node = pgdat->node_id;
62bc62a8 3424 load = nr_online_nodes;
1da177e4
LT
3425 prev_node = local_node;
3426 nodes_clear(used_mask);
f0c0b2b8 3427
f0c0b2b8
KH
3428 memset(node_order, 0, sizeof(node_order));
3429 j = 0;
3430
1da177e4
LT
3431 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3432 /*
3433 * We don't want to pressure a particular node.
3434 * So adding penalty to the first node in same
3435 * distance group to make it round-robin.
3436 */
957f822a
DR
3437 if (node_distance(local_node, node) !=
3438 node_distance(local_node, prev_node))
f0c0b2b8
KH
3439 node_load[node] = load;
3440
1da177e4
LT
3441 prev_node = node;
3442 load--;
f0c0b2b8
KH
3443 if (order == ZONELIST_ORDER_NODE)
3444 build_zonelists_in_node_order(pgdat, node);
3445 else
3446 node_order[j++] = node; /* remember order */
3447 }
1da177e4 3448
f0c0b2b8
KH
3449 if (order == ZONELIST_ORDER_ZONE) {
3450 /* calculate node order -- i.e., DMA last! */
3451 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3452 }
523b9458
CL
3453
3454 build_thisnode_zonelists(pgdat);
1da177e4
LT
3455}
3456
9276b1bc 3457/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3458static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3459{
54a6eb5c
MG
3460 struct zonelist *zonelist;
3461 struct zonelist_cache *zlc;
dd1a239f 3462 struct zoneref *z;
9276b1bc 3463
54a6eb5c
MG
3464 zonelist = &pgdat->node_zonelists[0];
3465 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3466 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3467 for (z = zonelist->_zonerefs; z->zone; z++)
3468 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3469}
3470
7aac7898
LS
3471#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3472/*
3473 * Return node id of node used for "local" allocations.
3474 * I.e., first node id of first zone in arg node's generic zonelist.
3475 * Used for initializing percpu 'numa_mem', which is used primarily
3476 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3477 */
3478int local_memory_node(int node)
3479{
3480 struct zone *zone;
3481
3482 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3483 gfp_zone(GFP_KERNEL),
3484 NULL,
3485 &zone);
3486 return zone->node;
3487}
3488#endif
f0c0b2b8 3489
1da177e4
LT
3490#else /* CONFIG_NUMA */
3491
f0c0b2b8
KH
3492static void set_zonelist_order(void)
3493{
3494 current_zonelist_order = ZONELIST_ORDER_ZONE;
3495}
3496
3497static void build_zonelists(pg_data_t *pgdat)
1da177e4 3498{
19655d34 3499 int node, local_node;
54a6eb5c
MG
3500 enum zone_type j;
3501 struct zonelist *zonelist;
1da177e4
LT
3502
3503 local_node = pgdat->node_id;
1da177e4 3504
54a6eb5c
MG
3505 zonelist = &pgdat->node_zonelists[0];
3506 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3507
54a6eb5c
MG
3508 /*
3509 * Now we build the zonelist so that it contains the zones
3510 * of all the other nodes.
3511 * We don't want to pressure a particular node, so when
3512 * building the zones for node N, we make sure that the
3513 * zones coming right after the local ones are those from
3514 * node N+1 (modulo N)
3515 */
3516 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3517 if (!node_online(node))
3518 continue;
3519 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3520 MAX_NR_ZONES - 1);
1da177e4 3521 }
54a6eb5c
MG
3522 for (node = 0; node < local_node; node++) {
3523 if (!node_online(node))
3524 continue;
3525 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3526 MAX_NR_ZONES - 1);
3527 }
3528
dd1a239f
MG
3529 zonelist->_zonerefs[j].zone = NULL;
3530 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3531}
3532
9276b1bc 3533/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3534static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3535{
54a6eb5c 3536 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3537}
3538
1da177e4
LT
3539#endif /* CONFIG_NUMA */
3540
99dcc3e5
CL
3541/*
3542 * Boot pageset table. One per cpu which is going to be used for all
3543 * zones and all nodes. The parameters will be set in such a way
3544 * that an item put on a list will immediately be handed over to
3545 * the buddy list. This is safe since pageset manipulation is done
3546 * with interrupts disabled.
3547 *
3548 * The boot_pagesets must be kept even after bootup is complete for
3549 * unused processors and/or zones. They do play a role for bootstrapping
3550 * hotplugged processors.
3551 *
3552 * zoneinfo_show() and maybe other functions do
3553 * not check if the processor is online before following the pageset pointer.
3554 * Other parts of the kernel may not check if the zone is available.
3555 */
3556static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3557static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3558static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3559
4eaf3f64
HL
3560/*
3561 * Global mutex to protect against size modification of zonelists
3562 * as well as to serialize pageset setup for the new populated zone.
3563 */
3564DEFINE_MUTEX(zonelists_mutex);
3565
9b1a4d38 3566/* return values int ....just for stop_machine() */
4ed7e022 3567static int __build_all_zonelists(void *data)
1da177e4 3568{
6811378e 3569 int nid;
99dcc3e5 3570 int cpu;
9adb62a5 3571 pg_data_t *self = data;
9276b1bc 3572
7f9cfb31
BL
3573#ifdef CONFIG_NUMA
3574 memset(node_load, 0, sizeof(node_load));
3575#endif
9adb62a5
JL
3576
3577 if (self && !node_online(self->node_id)) {
3578 build_zonelists(self);
3579 build_zonelist_cache(self);
3580 }
3581
9276b1bc 3582 for_each_online_node(nid) {
7ea1530a
CL
3583 pg_data_t *pgdat = NODE_DATA(nid);
3584
3585 build_zonelists(pgdat);
3586 build_zonelist_cache(pgdat);
9276b1bc 3587 }
99dcc3e5
CL
3588
3589 /*
3590 * Initialize the boot_pagesets that are going to be used
3591 * for bootstrapping processors. The real pagesets for
3592 * each zone will be allocated later when the per cpu
3593 * allocator is available.
3594 *
3595 * boot_pagesets are used also for bootstrapping offline
3596 * cpus if the system is already booted because the pagesets
3597 * are needed to initialize allocators on a specific cpu too.
3598 * F.e. the percpu allocator needs the page allocator which
3599 * needs the percpu allocator in order to allocate its pagesets
3600 * (a chicken-egg dilemma).
3601 */
7aac7898 3602 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3603 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3604
7aac7898
LS
3605#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3606 /*
3607 * We now know the "local memory node" for each node--
3608 * i.e., the node of the first zone in the generic zonelist.
3609 * Set up numa_mem percpu variable for on-line cpus. During
3610 * boot, only the boot cpu should be on-line; we'll init the
3611 * secondary cpus' numa_mem as they come on-line. During
3612 * node/memory hotplug, we'll fixup all on-line cpus.
3613 */
3614 if (cpu_online(cpu))
3615 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3616#endif
3617 }
3618
6811378e
YG
3619 return 0;
3620}
3621
4eaf3f64
HL
3622/*
3623 * Called with zonelists_mutex held always
3624 * unless system_state == SYSTEM_BOOTING.
3625 */
9adb62a5 3626void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3627{
f0c0b2b8
KH
3628 set_zonelist_order();
3629
6811378e 3630 if (system_state == SYSTEM_BOOTING) {
423b41d7 3631 __build_all_zonelists(NULL);
68ad8df4 3632 mminit_verify_zonelist();
6811378e
YG
3633 cpuset_init_current_mems_allowed();
3634 } else {
183ff22b 3635 /* we have to stop all cpus to guarantee there is no user
6811378e 3636 of zonelist */
e9959f0f 3637#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3638 if (zone)
3639 setup_zone_pageset(zone);
e9959f0f 3640#endif
9adb62a5 3641 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3642 /* cpuset refresh routine should be here */
3643 }
bd1e22b8 3644 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3645 /*
3646 * Disable grouping by mobility if the number of pages in the
3647 * system is too low to allow the mechanism to work. It would be
3648 * more accurate, but expensive to check per-zone. This check is
3649 * made on memory-hotadd so a system can start with mobility
3650 * disabled and enable it later
3651 */
d9c23400 3652 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3653 page_group_by_mobility_disabled = 1;
3654 else
3655 page_group_by_mobility_disabled = 0;
3656
3657 printk("Built %i zonelists in %s order, mobility grouping %s. "
3658 "Total pages: %ld\n",
62bc62a8 3659 nr_online_nodes,
f0c0b2b8 3660 zonelist_order_name[current_zonelist_order],
9ef9acb0 3661 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3662 vm_total_pages);
3663#ifdef CONFIG_NUMA
3664 printk("Policy zone: %s\n", zone_names[policy_zone]);
3665#endif
1da177e4
LT
3666}
3667
3668/*
3669 * Helper functions to size the waitqueue hash table.
3670 * Essentially these want to choose hash table sizes sufficiently
3671 * large so that collisions trying to wait on pages are rare.
3672 * But in fact, the number of active page waitqueues on typical
3673 * systems is ridiculously low, less than 200. So this is even
3674 * conservative, even though it seems large.
3675 *
3676 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3677 * waitqueues, i.e. the size of the waitq table given the number of pages.
3678 */
3679#define PAGES_PER_WAITQUEUE 256
3680
cca448fe 3681#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3682static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3683{
3684 unsigned long size = 1;
3685
3686 pages /= PAGES_PER_WAITQUEUE;
3687
3688 while (size < pages)
3689 size <<= 1;
3690
3691 /*
3692 * Once we have dozens or even hundreds of threads sleeping
3693 * on IO we've got bigger problems than wait queue collision.
3694 * Limit the size of the wait table to a reasonable size.
3695 */
3696 size = min(size, 4096UL);
3697
3698 return max(size, 4UL);
3699}
cca448fe
YG
3700#else
3701/*
3702 * A zone's size might be changed by hot-add, so it is not possible to determine
3703 * a suitable size for its wait_table. So we use the maximum size now.
3704 *
3705 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3706 *
3707 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3708 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3709 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3710 *
3711 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3712 * or more by the traditional way. (See above). It equals:
3713 *
3714 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3715 * ia64(16K page size) : = ( 8G + 4M)byte.
3716 * powerpc (64K page size) : = (32G +16M)byte.
3717 */
3718static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3719{
3720 return 4096UL;
3721}
3722#endif
1da177e4
LT
3723
3724/*
3725 * This is an integer logarithm so that shifts can be used later
3726 * to extract the more random high bits from the multiplicative
3727 * hash function before the remainder is taken.
3728 */
3729static inline unsigned long wait_table_bits(unsigned long size)
3730{
3731 return ffz(~size);
3732}
3733
3734#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3735
6d3163ce
AH
3736/*
3737 * Check if a pageblock contains reserved pages
3738 */
3739static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3740{
3741 unsigned long pfn;
3742
3743 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3744 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3745 return 1;
3746 }
3747 return 0;
3748}
3749
56fd56b8 3750/*
d9c23400 3751 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3752 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3753 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3754 * higher will lead to a bigger reserve which will get freed as contiguous
3755 * blocks as reclaim kicks in
3756 */
3757static void setup_zone_migrate_reserve(struct zone *zone)
3758{
6d3163ce 3759 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3760 struct page *page;
78986a67
MG
3761 unsigned long block_migratetype;
3762 int reserve;
56fd56b8 3763
d0215638
MH
3764 /*
3765 * Get the start pfn, end pfn and the number of blocks to reserve
3766 * We have to be careful to be aligned to pageblock_nr_pages to
3767 * make sure that we always check pfn_valid for the first page in
3768 * the block.
3769 */
56fd56b8
MG
3770 start_pfn = zone->zone_start_pfn;
3771 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3772 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3773 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3774 pageblock_order;
56fd56b8 3775
78986a67
MG
3776 /*
3777 * Reserve blocks are generally in place to help high-order atomic
3778 * allocations that are short-lived. A min_free_kbytes value that
3779 * would result in more than 2 reserve blocks for atomic allocations
3780 * is assumed to be in place to help anti-fragmentation for the
3781 * future allocation of hugepages at runtime.
3782 */
3783 reserve = min(2, reserve);
3784
d9c23400 3785 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3786 if (!pfn_valid(pfn))
3787 continue;
3788 page = pfn_to_page(pfn);
3789
344c790e
AL
3790 /* Watch out for overlapping nodes */
3791 if (page_to_nid(page) != zone_to_nid(zone))
3792 continue;
3793
56fd56b8
MG
3794 block_migratetype = get_pageblock_migratetype(page);
3795
938929f1
MG
3796 /* Only test what is necessary when the reserves are not met */
3797 if (reserve > 0) {
3798 /*
3799 * Blocks with reserved pages will never free, skip
3800 * them.
3801 */
3802 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3803 if (pageblock_is_reserved(pfn, block_end_pfn))
3804 continue;
56fd56b8 3805
938929f1
MG
3806 /* If this block is reserved, account for it */
3807 if (block_migratetype == MIGRATE_RESERVE) {
3808 reserve--;
3809 continue;
3810 }
3811
3812 /* Suitable for reserving if this block is movable */
3813 if (block_migratetype == MIGRATE_MOVABLE) {
3814 set_pageblock_migratetype(page,
3815 MIGRATE_RESERVE);
3816 move_freepages_block(zone, page,
3817 MIGRATE_RESERVE);
3818 reserve--;
3819 continue;
3820 }
56fd56b8
MG
3821 }
3822
3823 /*
3824 * If the reserve is met and this is a previous reserved block,
3825 * take it back
3826 */
3827 if (block_migratetype == MIGRATE_RESERVE) {
3828 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3829 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3830 }
3831 }
3832}
ac0e5b7a 3833
1da177e4
LT
3834/*
3835 * Initially all pages are reserved - free ones are freed
3836 * up by free_all_bootmem() once the early boot process is
3837 * done. Non-atomic initialization, single-pass.
3838 */
c09b4240 3839void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3840 unsigned long start_pfn, enum memmap_context context)
1da177e4 3841{
1da177e4 3842 struct page *page;
29751f69
AW
3843 unsigned long end_pfn = start_pfn + size;
3844 unsigned long pfn;
86051ca5 3845 struct zone *z;
1da177e4 3846
22b31eec
HD
3847 if (highest_memmap_pfn < end_pfn - 1)
3848 highest_memmap_pfn = end_pfn - 1;
3849
86051ca5 3850 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3851 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3852 /*
3853 * There can be holes in boot-time mem_map[]s
3854 * handed to this function. They do not
3855 * exist on hotplugged memory.
3856 */
3857 if (context == MEMMAP_EARLY) {
3858 if (!early_pfn_valid(pfn))
3859 continue;
3860 if (!early_pfn_in_nid(pfn, nid))
3861 continue;
3862 }
d41dee36
AW
3863 page = pfn_to_page(pfn);
3864 set_page_links(page, zone, nid, pfn);
708614e6 3865 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3866 init_page_count(page);
1da177e4
LT
3867 reset_page_mapcount(page);
3868 SetPageReserved(page);
b2a0ac88
MG
3869 /*
3870 * Mark the block movable so that blocks are reserved for
3871 * movable at startup. This will force kernel allocations
3872 * to reserve their blocks rather than leaking throughout
3873 * the address space during boot when many long-lived
56fd56b8
MG
3874 * kernel allocations are made. Later some blocks near
3875 * the start are marked MIGRATE_RESERVE by
3876 * setup_zone_migrate_reserve()
86051ca5
KH
3877 *
3878 * bitmap is created for zone's valid pfn range. but memmap
3879 * can be created for invalid pages (for alignment)
3880 * check here not to call set_pageblock_migratetype() against
3881 * pfn out of zone.
b2a0ac88 3882 */
86051ca5
KH
3883 if ((z->zone_start_pfn <= pfn)
3884 && (pfn < z->zone_start_pfn + z->spanned_pages)
3885 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3886 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3887
1da177e4
LT
3888 INIT_LIST_HEAD(&page->lru);
3889#ifdef WANT_PAGE_VIRTUAL
3890 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3891 if (!is_highmem_idx(zone))
3212c6be 3892 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3893#endif
1da177e4
LT
3894 }
3895}
3896
1e548deb 3897static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3898{
b2a0ac88
MG
3899 int order, t;
3900 for_each_migratetype_order(order, t) {
3901 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3902 zone->free_area[order].nr_free = 0;
3903 }
3904}
3905
3906#ifndef __HAVE_ARCH_MEMMAP_INIT
3907#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3908 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3909#endif
3910
4ed7e022 3911static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3912{
3a6be87f 3913#ifdef CONFIG_MMU
e7c8d5c9
CL
3914 int batch;
3915
3916 /*
3917 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3918 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3919 *
3920 * OK, so we don't know how big the cache is. So guess.
3921 */
3922 batch = zone->present_pages / 1024;
ba56e91c
SR
3923 if (batch * PAGE_SIZE > 512 * 1024)
3924 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3925 batch /= 4; /* We effectively *= 4 below */
3926 if (batch < 1)
3927 batch = 1;
3928
3929 /*
0ceaacc9
NP
3930 * Clamp the batch to a 2^n - 1 value. Having a power
3931 * of 2 value was found to be more likely to have
3932 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3933 *
0ceaacc9
NP
3934 * For example if 2 tasks are alternately allocating
3935 * batches of pages, one task can end up with a lot
3936 * of pages of one half of the possible page colors
3937 * and the other with pages of the other colors.
e7c8d5c9 3938 */
9155203a 3939 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3940
e7c8d5c9 3941 return batch;
3a6be87f
DH
3942
3943#else
3944 /* The deferral and batching of frees should be suppressed under NOMMU
3945 * conditions.
3946 *
3947 * The problem is that NOMMU needs to be able to allocate large chunks
3948 * of contiguous memory as there's no hardware page translation to
3949 * assemble apparent contiguous memory from discontiguous pages.
3950 *
3951 * Queueing large contiguous runs of pages for batching, however,
3952 * causes the pages to actually be freed in smaller chunks. As there
3953 * can be a significant delay between the individual batches being
3954 * recycled, this leads to the once large chunks of space being
3955 * fragmented and becoming unavailable for high-order allocations.
3956 */
3957 return 0;
3958#endif
e7c8d5c9
CL
3959}
3960
b69a7288 3961static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3962{
3963 struct per_cpu_pages *pcp;
5f8dcc21 3964 int migratetype;
2caaad41 3965
1c6fe946
MD
3966 memset(p, 0, sizeof(*p));
3967
3dfa5721 3968 pcp = &p->pcp;
2caaad41 3969 pcp->count = 0;
2caaad41
CL
3970 pcp->high = 6 * batch;
3971 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3972 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3973 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3974}
3975
8ad4b1fb
RS
3976/*
3977 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3978 * to the value high for the pageset p.
3979 */
3980
3981static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3982 unsigned long high)
3983{
3984 struct per_cpu_pages *pcp;
3985
3dfa5721 3986 pcp = &p->pcp;
8ad4b1fb
RS
3987 pcp->high = high;
3988 pcp->batch = max(1UL, high/4);
3989 if ((high/4) > (PAGE_SHIFT * 8))
3990 pcp->batch = PAGE_SHIFT * 8;
3991}
3992
4ed7e022 3993static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3994{
3995 int cpu;
3996
3997 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3998
3999 for_each_possible_cpu(cpu) {
4000 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4001
4002 setup_pageset(pcp, zone_batchsize(zone));
4003
4004 if (percpu_pagelist_fraction)
4005 setup_pagelist_highmark(pcp,
4006 (zone->present_pages /
4007 percpu_pagelist_fraction));
4008 }
4009}
4010
2caaad41 4011/*
99dcc3e5
CL
4012 * Allocate per cpu pagesets and initialize them.
4013 * Before this call only boot pagesets were available.
e7c8d5c9 4014 */
99dcc3e5 4015void __init setup_per_cpu_pageset(void)
e7c8d5c9 4016{
99dcc3e5 4017 struct zone *zone;
e7c8d5c9 4018
319774e2
WF
4019 for_each_populated_zone(zone)
4020 setup_zone_pageset(zone);
e7c8d5c9
CL
4021}
4022
577a32f6 4023static noinline __init_refok
cca448fe 4024int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4025{
4026 int i;
4027 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4028 size_t alloc_size;
ed8ece2e
DH
4029
4030 /*
4031 * The per-page waitqueue mechanism uses hashed waitqueues
4032 * per zone.
4033 */
02b694de
YG
4034 zone->wait_table_hash_nr_entries =
4035 wait_table_hash_nr_entries(zone_size_pages);
4036 zone->wait_table_bits =
4037 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4038 alloc_size = zone->wait_table_hash_nr_entries
4039 * sizeof(wait_queue_head_t);
4040
cd94b9db 4041 if (!slab_is_available()) {
cca448fe 4042 zone->wait_table = (wait_queue_head_t *)
8f389a99 4043 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4044 } else {
4045 /*
4046 * This case means that a zone whose size was 0 gets new memory
4047 * via memory hot-add.
4048 * But it may be the case that a new node was hot-added. In
4049 * this case vmalloc() will not be able to use this new node's
4050 * memory - this wait_table must be initialized to use this new
4051 * node itself as well.
4052 * To use this new node's memory, further consideration will be
4053 * necessary.
4054 */
8691f3a7 4055 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4056 }
4057 if (!zone->wait_table)
4058 return -ENOMEM;
ed8ece2e 4059
02b694de 4060 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4061 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4062
4063 return 0;
ed8ece2e
DH
4064}
4065
c09b4240 4066static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4067{
99dcc3e5
CL
4068 /*
4069 * per cpu subsystem is not up at this point. The following code
4070 * relies on the ability of the linker to provide the
4071 * offset of a (static) per cpu variable into the per cpu area.
4072 */
4073 zone->pageset = &boot_pageset;
ed8ece2e 4074
f5335c0f 4075 if (zone->present_pages)
99dcc3e5
CL
4076 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4077 zone->name, zone->present_pages,
4078 zone_batchsize(zone));
ed8ece2e
DH
4079}
4080
4ed7e022 4081int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4082 unsigned long zone_start_pfn,
a2f3aa02
DH
4083 unsigned long size,
4084 enum memmap_context context)
ed8ece2e
DH
4085{
4086 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4087 int ret;
4088 ret = zone_wait_table_init(zone, size);
4089 if (ret)
4090 return ret;
ed8ece2e
DH
4091 pgdat->nr_zones = zone_idx(zone) + 1;
4092
ed8ece2e
DH
4093 zone->zone_start_pfn = zone_start_pfn;
4094
708614e6
MG
4095 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4096 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4097 pgdat->node_id,
4098 (unsigned long)zone_idx(zone),
4099 zone_start_pfn, (zone_start_pfn + size));
4100
1e548deb 4101 zone_init_free_lists(zone);
718127cc
YG
4102
4103 return 0;
ed8ece2e
DH
4104}
4105
0ee332c1 4106#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4107#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4108/*
4109 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4110 * Architectures may implement their own version but if add_active_range()
4111 * was used and there are no special requirements, this is a convenient
4112 * alternative
4113 */
f2dbcfa7 4114int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4115{
c13291a5
TH
4116 unsigned long start_pfn, end_pfn;
4117 int i, nid;
c713216d 4118
c13291a5 4119 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4120 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4121 return nid;
cc2559bc
KH
4122 /* This is a memory hole */
4123 return -1;
c713216d
MG
4124}
4125#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4126
f2dbcfa7
KH
4127int __meminit early_pfn_to_nid(unsigned long pfn)
4128{
cc2559bc
KH
4129 int nid;
4130
4131 nid = __early_pfn_to_nid(pfn);
4132 if (nid >= 0)
4133 return nid;
4134 /* just returns 0 */
4135 return 0;
f2dbcfa7
KH
4136}
4137
cc2559bc
KH
4138#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4139bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4140{
4141 int nid;
4142
4143 nid = __early_pfn_to_nid(pfn);
4144 if (nid >= 0 && nid != node)
4145 return false;
4146 return true;
4147}
4148#endif
f2dbcfa7 4149
c713216d
MG
4150/**
4151 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4152 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4153 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4154 *
4155 * If an architecture guarantees that all ranges registered with
4156 * add_active_ranges() contain no holes and may be freed, this
4157 * this function may be used instead of calling free_bootmem() manually.
4158 */
c13291a5 4159void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4160{
c13291a5
TH
4161 unsigned long start_pfn, end_pfn;
4162 int i, this_nid;
edbe7d23 4163
c13291a5
TH
4164 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4165 start_pfn = min(start_pfn, max_low_pfn);
4166 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4167
c13291a5
TH
4168 if (start_pfn < end_pfn)
4169 free_bootmem_node(NODE_DATA(this_nid),
4170 PFN_PHYS(start_pfn),
4171 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4172 }
edbe7d23 4173}
edbe7d23 4174
c713216d
MG
4175/**
4176 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4177 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4178 *
4179 * If an architecture guarantees that all ranges registered with
4180 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4181 * function may be used instead of calling memory_present() manually.
c713216d
MG
4182 */
4183void __init sparse_memory_present_with_active_regions(int nid)
4184{
c13291a5
TH
4185 unsigned long start_pfn, end_pfn;
4186 int i, this_nid;
c713216d 4187
c13291a5
TH
4188 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4189 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4190}
4191
4192/**
4193 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4194 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4195 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4196 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4197 *
4198 * It returns the start and end page frame of a node based on information
4199 * provided by an arch calling add_active_range(). If called for a node
4200 * with no available memory, a warning is printed and the start and end
88ca3b94 4201 * PFNs will be 0.
c713216d 4202 */
a3142c8e 4203void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4204 unsigned long *start_pfn, unsigned long *end_pfn)
4205{
c13291a5 4206 unsigned long this_start_pfn, this_end_pfn;
c713216d 4207 int i;
c13291a5 4208
c713216d
MG
4209 *start_pfn = -1UL;
4210 *end_pfn = 0;
4211
c13291a5
TH
4212 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4213 *start_pfn = min(*start_pfn, this_start_pfn);
4214 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4215 }
4216
633c0666 4217 if (*start_pfn == -1UL)
c713216d 4218 *start_pfn = 0;
c713216d
MG
4219}
4220
2a1e274a
MG
4221/*
4222 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4223 * assumption is made that zones within a node are ordered in monotonic
4224 * increasing memory addresses so that the "highest" populated zone is used
4225 */
b69a7288 4226static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4227{
4228 int zone_index;
4229 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4230 if (zone_index == ZONE_MOVABLE)
4231 continue;
4232
4233 if (arch_zone_highest_possible_pfn[zone_index] >
4234 arch_zone_lowest_possible_pfn[zone_index])
4235 break;
4236 }
4237
4238 VM_BUG_ON(zone_index == -1);
4239 movable_zone = zone_index;
4240}
4241
4242/*
4243 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4244 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4245 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4246 * in each node depending on the size of each node and how evenly kernelcore
4247 * is distributed. This helper function adjusts the zone ranges
4248 * provided by the architecture for a given node by using the end of the
4249 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4250 * zones within a node are in order of monotonic increases memory addresses
4251 */
b69a7288 4252static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4253 unsigned long zone_type,
4254 unsigned long node_start_pfn,
4255 unsigned long node_end_pfn,
4256 unsigned long *zone_start_pfn,
4257 unsigned long *zone_end_pfn)
4258{
4259 /* Only adjust if ZONE_MOVABLE is on this node */
4260 if (zone_movable_pfn[nid]) {
4261 /* Size ZONE_MOVABLE */
4262 if (zone_type == ZONE_MOVABLE) {
4263 *zone_start_pfn = zone_movable_pfn[nid];
4264 *zone_end_pfn = min(node_end_pfn,
4265 arch_zone_highest_possible_pfn[movable_zone]);
4266
4267 /* Adjust for ZONE_MOVABLE starting within this range */
4268 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4269 *zone_end_pfn > zone_movable_pfn[nid]) {
4270 *zone_end_pfn = zone_movable_pfn[nid];
4271
4272 /* Check if this whole range is within ZONE_MOVABLE */
4273 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4274 *zone_start_pfn = *zone_end_pfn;
4275 }
4276}
4277
c713216d
MG
4278/*
4279 * Return the number of pages a zone spans in a node, including holes
4280 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4281 */
6ea6e688 4282static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4283 unsigned long zone_type,
4284 unsigned long *ignored)
4285{
4286 unsigned long node_start_pfn, node_end_pfn;
4287 unsigned long zone_start_pfn, zone_end_pfn;
4288
4289 /* Get the start and end of the node and zone */
4290 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4291 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4292 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4293 adjust_zone_range_for_zone_movable(nid, zone_type,
4294 node_start_pfn, node_end_pfn,
4295 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4296
4297 /* Check that this node has pages within the zone's required range */
4298 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4299 return 0;
4300
4301 /* Move the zone boundaries inside the node if necessary */
4302 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4303 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4304
4305 /* Return the spanned pages */
4306 return zone_end_pfn - zone_start_pfn;
4307}
4308
4309/*
4310 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4311 * then all holes in the requested range will be accounted for.
c713216d 4312 */
32996250 4313unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4314 unsigned long range_start_pfn,
4315 unsigned long range_end_pfn)
4316{
96e907d1
TH
4317 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4318 unsigned long start_pfn, end_pfn;
4319 int i;
c713216d 4320
96e907d1
TH
4321 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4322 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4323 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4324 nr_absent -= end_pfn - start_pfn;
c713216d 4325 }
96e907d1 4326 return nr_absent;
c713216d
MG
4327}
4328
4329/**
4330 * absent_pages_in_range - Return number of page frames in holes within a range
4331 * @start_pfn: The start PFN to start searching for holes
4332 * @end_pfn: The end PFN to stop searching for holes
4333 *
88ca3b94 4334 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4335 */
4336unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4337 unsigned long end_pfn)
4338{
4339 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4340}
4341
4342/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4343static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4344 unsigned long zone_type,
4345 unsigned long *ignored)
4346{
96e907d1
TH
4347 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4348 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4349 unsigned long node_start_pfn, node_end_pfn;
4350 unsigned long zone_start_pfn, zone_end_pfn;
4351
4352 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4353 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4354 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4355
2a1e274a
MG
4356 adjust_zone_range_for_zone_movable(nid, zone_type,
4357 node_start_pfn, node_end_pfn,
4358 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4359 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4360}
0e0b864e 4361
0ee332c1 4362#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4363static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4364 unsigned long zone_type,
4365 unsigned long *zones_size)
4366{
4367 return zones_size[zone_type];
4368}
4369
6ea6e688 4370static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4371 unsigned long zone_type,
4372 unsigned long *zholes_size)
4373{
4374 if (!zholes_size)
4375 return 0;
4376
4377 return zholes_size[zone_type];
4378}
0e0b864e 4379
0ee332c1 4380#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4381
a3142c8e 4382static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4383 unsigned long *zones_size, unsigned long *zholes_size)
4384{
4385 unsigned long realtotalpages, totalpages = 0;
4386 enum zone_type i;
4387
4388 for (i = 0; i < MAX_NR_ZONES; i++)
4389 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4390 zones_size);
4391 pgdat->node_spanned_pages = totalpages;
4392
4393 realtotalpages = totalpages;
4394 for (i = 0; i < MAX_NR_ZONES; i++)
4395 realtotalpages -=
4396 zone_absent_pages_in_node(pgdat->node_id, i,
4397 zholes_size);
4398 pgdat->node_present_pages = realtotalpages;
4399 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4400 realtotalpages);
4401}
4402
835c134e
MG
4403#ifndef CONFIG_SPARSEMEM
4404/*
4405 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4406 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4407 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4408 * round what is now in bits to nearest long in bits, then return it in
4409 * bytes.
4410 */
4411static unsigned long __init usemap_size(unsigned long zonesize)
4412{
4413 unsigned long usemapsize;
4414
d9c23400
MG
4415 usemapsize = roundup(zonesize, pageblock_nr_pages);
4416 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4417 usemapsize *= NR_PAGEBLOCK_BITS;
4418 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4419
4420 return usemapsize / 8;
4421}
4422
4423static void __init setup_usemap(struct pglist_data *pgdat,
4424 struct zone *zone, unsigned long zonesize)
4425{
4426 unsigned long usemapsize = usemap_size(zonesize);
4427 zone->pageblock_flags = NULL;
58a01a45 4428 if (usemapsize)
8f389a99
YL
4429 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4430 usemapsize);
835c134e
MG
4431}
4432#else
fa9f90be 4433static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4434 struct zone *zone, unsigned long zonesize) {}
4435#endif /* CONFIG_SPARSEMEM */
4436
d9c23400 4437#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4438
d9c23400 4439/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4440void __init set_pageblock_order(void)
d9c23400 4441{
955c1cd7
AM
4442 unsigned int order;
4443
d9c23400
MG
4444 /* Check that pageblock_nr_pages has not already been setup */
4445 if (pageblock_order)
4446 return;
4447
955c1cd7
AM
4448 if (HPAGE_SHIFT > PAGE_SHIFT)
4449 order = HUGETLB_PAGE_ORDER;
4450 else
4451 order = MAX_ORDER - 1;
4452
d9c23400
MG
4453 /*
4454 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4455 * This value may be variable depending on boot parameters on IA64 and
4456 * powerpc.
d9c23400
MG
4457 */
4458 pageblock_order = order;
4459}
4460#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4461
ba72cb8c
MG
4462/*
4463 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4464 * is unused as pageblock_order is set at compile-time. See
4465 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4466 * the kernel config
ba72cb8c 4467 */
ca57df79 4468void __init set_pageblock_order(void)
ba72cb8c 4469{
ba72cb8c 4470}
d9c23400
MG
4471
4472#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4473
1da177e4
LT
4474/*
4475 * Set up the zone data structures:
4476 * - mark all pages reserved
4477 * - mark all memory queues empty
4478 * - clear the memory bitmaps
6527af5d
MK
4479 *
4480 * NOTE: pgdat should get zeroed by caller.
1da177e4 4481 */
b5a0e011 4482static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4483 unsigned long *zones_size, unsigned long *zholes_size)
4484{
2f1b6248 4485 enum zone_type j;
ed8ece2e 4486 int nid = pgdat->node_id;
1da177e4 4487 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4488 int ret;
1da177e4 4489
208d54e5 4490 pgdat_resize_init(pgdat);
1da177e4 4491 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4492 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4493 pgdat_page_cgroup_init(pgdat);
5f63b720 4494
1da177e4
LT
4495 for (j = 0; j < MAX_NR_ZONES; j++) {
4496 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4497 unsigned long size, realsize, memmap_pages;
1da177e4 4498
c713216d
MG
4499 size = zone_spanned_pages_in_node(nid, j, zones_size);
4500 realsize = size - zone_absent_pages_in_node(nid, j,
4501 zholes_size);
1da177e4 4502
0e0b864e
MG
4503 /*
4504 * Adjust realsize so that it accounts for how much memory
4505 * is used by this zone for memmap. This affects the watermark
4506 * and per-cpu initialisations
4507 */
f7232154
JW
4508 memmap_pages =
4509 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4510 if (realsize >= memmap_pages) {
4511 realsize -= memmap_pages;
5594c8c8
YL
4512 if (memmap_pages)
4513 printk(KERN_DEBUG
4514 " %s zone: %lu pages used for memmap\n",
4515 zone_names[j], memmap_pages);
0e0b864e
MG
4516 } else
4517 printk(KERN_WARNING
4518 " %s zone: %lu pages exceeds realsize %lu\n",
4519 zone_names[j], memmap_pages, realsize);
4520
6267276f
CL
4521 /* Account for reserved pages */
4522 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4523 realsize -= dma_reserve;
d903ef9f 4524 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4525 zone_names[0], dma_reserve);
0e0b864e
MG
4526 }
4527
98d2b0eb 4528 if (!is_highmem_idx(j))
1da177e4
LT
4529 nr_kernel_pages += realsize;
4530 nr_all_pages += realsize;
4531
4532 zone->spanned_pages = size;
4533 zone->present_pages = realsize;
9614634f 4534#ifdef CONFIG_NUMA
d5f541ed 4535 zone->node = nid;
8417bba4 4536 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4537 / 100;
0ff38490 4538 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4539#endif
1da177e4
LT
4540 zone->name = zone_names[j];
4541 spin_lock_init(&zone->lock);
4542 spin_lock_init(&zone->lru_lock);
bdc8cb98 4543 zone_seqlock_init(zone);
1da177e4 4544 zone->zone_pgdat = pgdat;
1da177e4 4545
ed8ece2e 4546 zone_pcp_init(zone);
bea8c150 4547 lruvec_init(&zone->lruvec);
1da177e4
LT
4548 if (!size)
4549 continue;
4550
955c1cd7 4551 set_pageblock_order();
835c134e 4552 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4553 ret = init_currently_empty_zone(zone, zone_start_pfn,
4554 size, MEMMAP_EARLY);
718127cc 4555 BUG_ON(ret);
76cdd58e 4556 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4557 zone_start_pfn += size;
1da177e4
LT
4558 }
4559}
4560
577a32f6 4561static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4562{
1da177e4
LT
4563 /* Skip empty nodes */
4564 if (!pgdat->node_spanned_pages)
4565 return;
4566
d41dee36 4567#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4568 /* ia64 gets its own node_mem_map, before this, without bootmem */
4569 if (!pgdat->node_mem_map) {
e984bb43 4570 unsigned long size, start, end;
d41dee36
AW
4571 struct page *map;
4572
e984bb43
BP
4573 /*
4574 * The zone's endpoints aren't required to be MAX_ORDER
4575 * aligned but the node_mem_map endpoints must be in order
4576 * for the buddy allocator to function correctly.
4577 */
4578 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4579 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4580 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4581 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4582 map = alloc_remap(pgdat->node_id, size);
4583 if (!map)
8f389a99 4584 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4585 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4586 }
12d810c1 4587#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4588 /*
4589 * With no DISCONTIG, the global mem_map is just set as node 0's
4590 */
c713216d 4591 if (pgdat == NODE_DATA(0)) {
1da177e4 4592 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4593#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4594 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4595 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4596#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4597 }
1da177e4 4598#endif
d41dee36 4599#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4600}
4601
9109fb7b
JW
4602void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4603 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4604{
9109fb7b
JW
4605 pg_data_t *pgdat = NODE_DATA(nid);
4606
88fdf75d 4607 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4608 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4609
1da177e4
LT
4610 pgdat->node_id = nid;
4611 pgdat->node_start_pfn = node_start_pfn;
957f822a 4612 init_zone_allows_reclaim(nid);
c713216d 4613 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4614
4615 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4616#ifdef CONFIG_FLAT_NODE_MEM_MAP
4617 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4618 nid, (unsigned long)pgdat,
4619 (unsigned long)pgdat->node_mem_map);
4620#endif
1da177e4
LT
4621
4622 free_area_init_core(pgdat, zones_size, zholes_size);
4623}
4624
0ee332c1 4625#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4626
4627#if MAX_NUMNODES > 1
4628/*
4629 * Figure out the number of possible node ids.
4630 */
4631static void __init setup_nr_node_ids(void)
4632{
4633 unsigned int node;
4634 unsigned int highest = 0;
4635
4636 for_each_node_mask(node, node_possible_map)
4637 highest = node;
4638 nr_node_ids = highest + 1;
4639}
4640#else
4641static inline void setup_nr_node_ids(void)
4642{
4643}
4644#endif
4645
1e01979c
TH
4646/**
4647 * node_map_pfn_alignment - determine the maximum internode alignment
4648 *
4649 * This function should be called after node map is populated and sorted.
4650 * It calculates the maximum power of two alignment which can distinguish
4651 * all the nodes.
4652 *
4653 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4654 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4655 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4656 * shifted, 1GiB is enough and this function will indicate so.
4657 *
4658 * This is used to test whether pfn -> nid mapping of the chosen memory
4659 * model has fine enough granularity to avoid incorrect mapping for the
4660 * populated node map.
4661 *
4662 * Returns the determined alignment in pfn's. 0 if there is no alignment
4663 * requirement (single node).
4664 */
4665unsigned long __init node_map_pfn_alignment(void)
4666{
4667 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4668 unsigned long start, end, mask;
1e01979c 4669 int last_nid = -1;
c13291a5 4670 int i, nid;
1e01979c 4671
c13291a5 4672 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4673 if (!start || last_nid < 0 || last_nid == nid) {
4674 last_nid = nid;
4675 last_end = end;
4676 continue;
4677 }
4678
4679 /*
4680 * Start with a mask granular enough to pin-point to the
4681 * start pfn and tick off bits one-by-one until it becomes
4682 * too coarse to separate the current node from the last.
4683 */
4684 mask = ~((1 << __ffs(start)) - 1);
4685 while (mask && last_end <= (start & (mask << 1)))
4686 mask <<= 1;
4687
4688 /* accumulate all internode masks */
4689 accl_mask |= mask;
4690 }
4691
4692 /* convert mask to number of pages */
4693 return ~accl_mask + 1;
4694}
4695
a6af2bc3 4696/* Find the lowest pfn for a node */
b69a7288 4697static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4698{
a6af2bc3 4699 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4700 unsigned long start_pfn;
4701 int i;
1abbfb41 4702
c13291a5
TH
4703 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4704 min_pfn = min(min_pfn, start_pfn);
c713216d 4705
a6af2bc3
MG
4706 if (min_pfn == ULONG_MAX) {
4707 printk(KERN_WARNING
2bc0d261 4708 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4709 return 0;
4710 }
4711
4712 return min_pfn;
c713216d
MG
4713}
4714
4715/**
4716 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4717 *
4718 * It returns the minimum PFN based on information provided via
88ca3b94 4719 * add_active_range().
c713216d
MG
4720 */
4721unsigned long __init find_min_pfn_with_active_regions(void)
4722{
4723 return find_min_pfn_for_node(MAX_NUMNODES);
4724}
4725
37b07e41
LS
4726/*
4727 * early_calculate_totalpages()
4728 * Sum pages in active regions for movable zone.
4729 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4730 */
484f51f8 4731static unsigned long __init early_calculate_totalpages(void)
7e63efef 4732{
7e63efef 4733 unsigned long totalpages = 0;
c13291a5
TH
4734 unsigned long start_pfn, end_pfn;
4735 int i, nid;
4736
4737 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4738 unsigned long pages = end_pfn - start_pfn;
7e63efef 4739
37b07e41
LS
4740 totalpages += pages;
4741 if (pages)
c13291a5 4742 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4743 }
4744 return totalpages;
7e63efef
MG
4745}
4746
2a1e274a
MG
4747/*
4748 * Find the PFN the Movable zone begins in each node. Kernel memory
4749 * is spread evenly between nodes as long as the nodes have enough
4750 * memory. When they don't, some nodes will have more kernelcore than
4751 * others
4752 */
b224ef85 4753static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4754{
4755 int i, nid;
4756 unsigned long usable_startpfn;
4757 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4758 /* save the state before borrow the nodemask */
4759 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4760 unsigned long totalpages = early_calculate_totalpages();
4761 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4762
7e63efef
MG
4763 /*
4764 * If movablecore was specified, calculate what size of
4765 * kernelcore that corresponds so that memory usable for
4766 * any allocation type is evenly spread. If both kernelcore
4767 * and movablecore are specified, then the value of kernelcore
4768 * will be used for required_kernelcore if it's greater than
4769 * what movablecore would have allowed.
4770 */
4771 if (required_movablecore) {
7e63efef
MG
4772 unsigned long corepages;
4773
4774 /*
4775 * Round-up so that ZONE_MOVABLE is at least as large as what
4776 * was requested by the user
4777 */
4778 required_movablecore =
4779 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4780 corepages = totalpages - required_movablecore;
4781
4782 required_kernelcore = max(required_kernelcore, corepages);
4783 }
4784
2a1e274a
MG
4785 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4786 if (!required_kernelcore)
66918dcd 4787 goto out;
2a1e274a
MG
4788
4789 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4790 find_usable_zone_for_movable();
4791 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4792
4793restart:
4794 /* Spread kernelcore memory as evenly as possible throughout nodes */
4795 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4796 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4797 unsigned long start_pfn, end_pfn;
4798
2a1e274a
MG
4799 /*
4800 * Recalculate kernelcore_node if the division per node
4801 * now exceeds what is necessary to satisfy the requested
4802 * amount of memory for the kernel
4803 */
4804 if (required_kernelcore < kernelcore_node)
4805 kernelcore_node = required_kernelcore / usable_nodes;
4806
4807 /*
4808 * As the map is walked, we track how much memory is usable
4809 * by the kernel using kernelcore_remaining. When it is
4810 * 0, the rest of the node is usable by ZONE_MOVABLE
4811 */
4812 kernelcore_remaining = kernelcore_node;
4813
4814 /* Go through each range of PFNs within this node */
c13291a5 4815 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4816 unsigned long size_pages;
4817
c13291a5 4818 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4819 if (start_pfn >= end_pfn)
4820 continue;
4821
4822 /* Account for what is only usable for kernelcore */
4823 if (start_pfn < usable_startpfn) {
4824 unsigned long kernel_pages;
4825 kernel_pages = min(end_pfn, usable_startpfn)
4826 - start_pfn;
4827
4828 kernelcore_remaining -= min(kernel_pages,
4829 kernelcore_remaining);
4830 required_kernelcore -= min(kernel_pages,
4831 required_kernelcore);
4832
4833 /* Continue if range is now fully accounted */
4834 if (end_pfn <= usable_startpfn) {
4835
4836 /*
4837 * Push zone_movable_pfn to the end so
4838 * that if we have to rebalance
4839 * kernelcore across nodes, we will
4840 * not double account here
4841 */
4842 zone_movable_pfn[nid] = end_pfn;
4843 continue;
4844 }
4845 start_pfn = usable_startpfn;
4846 }
4847
4848 /*
4849 * The usable PFN range for ZONE_MOVABLE is from
4850 * start_pfn->end_pfn. Calculate size_pages as the
4851 * number of pages used as kernelcore
4852 */
4853 size_pages = end_pfn - start_pfn;
4854 if (size_pages > kernelcore_remaining)
4855 size_pages = kernelcore_remaining;
4856 zone_movable_pfn[nid] = start_pfn + size_pages;
4857
4858 /*
4859 * Some kernelcore has been met, update counts and
4860 * break if the kernelcore for this node has been
4861 * satisified
4862 */
4863 required_kernelcore -= min(required_kernelcore,
4864 size_pages);
4865 kernelcore_remaining -= size_pages;
4866 if (!kernelcore_remaining)
4867 break;
4868 }
4869 }
4870
4871 /*
4872 * If there is still required_kernelcore, we do another pass with one
4873 * less node in the count. This will push zone_movable_pfn[nid] further
4874 * along on the nodes that still have memory until kernelcore is
4875 * satisified
4876 */
4877 usable_nodes--;
4878 if (usable_nodes && required_kernelcore > usable_nodes)
4879 goto restart;
4880
4881 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4882 for (nid = 0; nid < MAX_NUMNODES; nid++)
4883 zone_movable_pfn[nid] =
4884 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4885
4886out:
4887 /* restore the node_state */
4888 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4889}
4890
37b07e41 4891/* Any regular memory on that node ? */
4ed7e022 4892static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4893{
4894#ifdef CONFIG_HIGHMEM
4895 enum zone_type zone_type;
4896
4897 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4898 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4899 if (zone->present_pages) {
37b07e41 4900 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4901 break;
4902 }
37b07e41
LS
4903 }
4904#endif
4905}
4906
c713216d
MG
4907/**
4908 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4909 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4910 *
4911 * This will call free_area_init_node() for each active node in the system.
4912 * Using the page ranges provided by add_active_range(), the size of each
4913 * zone in each node and their holes is calculated. If the maximum PFN
4914 * between two adjacent zones match, it is assumed that the zone is empty.
4915 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4916 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4917 * starts where the previous one ended. For example, ZONE_DMA32 starts
4918 * at arch_max_dma_pfn.
4919 */
4920void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4921{
c13291a5
TH
4922 unsigned long start_pfn, end_pfn;
4923 int i, nid;
a6af2bc3 4924
c713216d
MG
4925 /* Record where the zone boundaries are */
4926 memset(arch_zone_lowest_possible_pfn, 0,
4927 sizeof(arch_zone_lowest_possible_pfn));
4928 memset(arch_zone_highest_possible_pfn, 0,
4929 sizeof(arch_zone_highest_possible_pfn));
4930 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4931 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4932 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4933 if (i == ZONE_MOVABLE)
4934 continue;
c713216d
MG
4935 arch_zone_lowest_possible_pfn[i] =
4936 arch_zone_highest_possible_pfn[i-1];
4937 arch_zone_highest_possible_pfn[i] =
4938 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4939 }
2a1e274a
MG
4940 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4941 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4942
4943 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4944 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4945 find_zone_movable_pfns_for_nodes();
c713216d 4946
c713216d 4947 /* Print out the zone ranges */
a62e2f4f 4948 printk("Zone ranges:\n");
2a1e274a
MG
4949 for (i = 0; i < MAX_NR_ZONES; i++) {
4950 if (i == ZONE_MOVABLE)
4951 continue;
155cbfc8 4952 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4953 if (arch_zone_lowest_possible_pfn[i] ==
4954 arch_zone_highest_possible_pfn[i])
155cbfc8 4955 printk(KERN_CONT "empty\n");
72f0ba02 4956 else
a62e2f4f
BH
4957 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4958 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4959 (arch_zone_highest_possible_pfn[i]
4960 << PAGE_SHIFT) - 1);
2a1e274a
MG
4961 }
4962
4963 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4964 printk("Movable zone start for each node\n");
2a1e274a
MG
4965 for (i = 0; i < MAX_NUMNODES; i++) {
4966 if (zone_movable_pfn[i])
a62e2f4f
BH
4967 printk(" Node %d: %#010lx\n", i,
4968 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4969 }
c713216d 4970
f2d52fe5 4971 /* Print out the early node map */
a62e2f4f 4972 printk("Early memory node ranges\n");
c13291a5 4973 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4974 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4975 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4976
4977 /* Initialise every node */
708614e6 4978 mminit_verify_pageflags_layout();
8ef82866 4979 setup_nr_node_ids();
c713216d
MG
4980 for_each_online_node(nid) {
4981 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4982 free_area_init_node(nid, NULL,
c713216d 4983 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4984
4985 /* Any memory on that node */
4986 if (pgdat->node_present_pages)
4987 node_set_state(nid, N_HIGH_MEMORY);
4988 check_for_regular_memory(pgdat);
c713216d
MG
4989 }
4990}
2a1e274a 4991
7e63efef 4992static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4993{
4994 unsigned long long coremem;
4995 if (!p)
4996 return -EINVAL;
4997
4998 coremem = memparse(p, &p);
7e63efef 4999 *core = coremem >> PAGE_SHIFT;
2a1e274a 5000
7e63efef 5001 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5002 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5003
5004 return 0;
5005}
ed7ed365 5006
7e63efef
MG
5007/*
5008 * kernelcore=size sets the amount of memory for use for allocations that
5009 * cannot be reclaimed or migrated.
5010 */
5011static int __init cmdline_parse_kernelcore(char *p)
5012{
5013 return cmdline_parse_core(p, &required_kernelcore);
5014}
5015
5016/*
5017 * movablecore=size sets the amount of memory for use for allocations that
5018 * can be reclaimed or migrated.
5019 */
5020static int __init cmdline_parse_movablecore(char *p)
5021{
5022 return cmdline_parse_core(p, &required_movablecore);
5023}
5024
ed7ed365 5025early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5026early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5027
0ee332c1 5028#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5029
0e0b864e 5030/**
88ca3b94
RD
5031 * set_dma_reserve - set the specified number of pages reserved in the first zone
5032 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5033 *
5034 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5035 * In the DMA zone, a significant percentage may be consumed by kernel image
5036 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5037 * function may optionally be used to account for unfreeable pages in the
5038 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5039 * smaller per-cpu batchsize.
0e0b864e
MG
5040 */
5041void __init set_dma_reserve(unsigned long new_dma_reserve)
5042{
5043 dma_reserve = new_dma_reserve;
5044}
5045
1da177e4
LT
5046void __init free_area_init(unsigned long *zones_size)
5047{
9109fb7b 5048 free_area_init_node(0, zones_size,
1da177e4
LT
5049 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5050}
1da177e4 5051
1da177e4
LT
5052static int page_alloc_cpu_notify(struct notifier_block *self,
5053 unsigned long action, void *hcpu)
5054{
5055 int cpu = (unsigned long)hcpu;
1da177e4 5056
8bb78442 5057 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5058 lru_add_drain_cpu(cpu);
9f8f2172
CL
5059 drain_pages(cpu);
5060
5061 /*
5062 * Spill the event counters of the dead processor
5063 * into the current processors event counters.
5064 * This artificially elevates the count of the current
5065 * processor.
5066 */
f8891e5e 5067 vm_events_fold_cpu(cpu);
9f8f2172
CL
5068
5069 /*
5070 * Zero the differential counters of the dead processor
5071 * so that the vm statistics are consistent.
5072 *
5073 * This is only okay since the processor is dead and cannot
5074 * race with what we are doing.
5075 */
2244b95a 5076 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5077 }
5078 return NOTIFY_OK;
5079}
1da177e4
LT
5080
5081void __init page_alloc_init(void)
5082{
5083 hotcpu_notifier(page_alloc_cpu_notify, 0);
5084}
5085
cb45b0e9
HA
5086/*
5087 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5088 * or min_free_kbytes changes.
5089 */
5090static void calculate_totalreserve_pages(void)
5091{
5092 struct pglist_data *pgdat;
5093 unsigned long reserve_pages = 0;
2f6726e5 5094 enum zone_type i, j;
cb45b0e9
HA
5095
5096 for_each_online_pgdat(pgdat) {
5097 for (i = 0; i < MAX_NR_ZONES; i++) {
5098 struct zone *zone = pgdat->node_zones + i;
5099 unsigned long max = 0;
5100
5101 /* Find valid and maximum lowmem_reserve in the zone */
5102 for (j = i; j < MAX_NR_ZONES; j++) {
5103 if (zone->lowmem_reserve[j] > max)
5104 max = zone->lowmem_reserve[j];
5105 }
5106
41858966
MG
5107 /* we treat the high watermark as reserved pages. */
5108 max += high_wmark_pages(zone);
cb45b0e9
HA
5109
5110 if (max > zone->present_pages)
5111 max = zone->present_pages;
5112 reserve_pages += max;
ab8fabd4
JW
5113 /*
5114 * Lowmem reserves are not available to
5115 * GFP_HIGHUSER page cache allocations and
5116 * kswapd tries to balance zones to their high
5117 * watermark. As a result, neither should be
5118 * regarded as dirtyable memory, to prevent a
5119 * situation where reclaim has to clean pages
5120 * in order to balance the zones.
5121 */
5122 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5123 }
5124 }
ab8fabd4 5125 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5126 totalreserve_pages = reserve_pages;
5127}
5128
1da177e4
LT
5129/*
5130 * setup_per_zone_lowmem_reserve - called whenever
5131 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5132 * has a correct pages reserved value, so an adequate number of
5133 * pages are left in the zone after a successful __alloc_pages().
5134 */
5135static void setup_per_zone_lowmem_reserve(void)
5136{
5137 struct pglist_data *pgdat;
2f6726e5 5138 enum zone_type j, idx;
1da177e4 5139
ec936fc5 5140 for_each_online_pgdat(pgdat) {
1da177e4
LT
5141 for (j = 0; j < MAX_NR_ZONES; j++) {
5142 struct zone *zone = pgdat->node_zones + j;
5143 unsigned long present_pages = zone->present_pages;
5144
5145 zone->lowmem_reserve[j] = 0;
5146
2f6726e5
CL
5147 idx = j;
5148 while (idx) {
1da177e4
LT
5149 struct zone *lower_zone;
5150
2f6726e5
CL
5151 idx--;
5152
1da177e4
LT
5153 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5154 sysctl_lowmem_reserve_ratio[idx] = 1;
5155
5156 lower_zone = pgdat->node_zones + idx;
5157 lower_zone->lowmem_reserve[j] = present_pages /
5158 sysctl_lowmem_reserve_ratio[idx];
5159 present_pages += lower_zone->present_pages;
5160 }
5161 }
5162 }
cb45b0e9
HA
5163
5164 /* update totalreserve_pages */
5165 calculate_totalreserve_pages();
1da177e4
LT
5166}
5167
cfd3da1e 5168static void __setup_per_zone_wmarks(void)
1da177e4
LT
5169{
5170 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5171 unsigned long lowmem_pages = 0;
5172 struct zone *zone;
5173 unsigned long flags;
5174
5175 /* Calculate total number of !ZONE_HIGHMEM pages */
5176 for_each_zone(zone) {
5177 if (!is_highmem(zone))
5178 lowmem_pages += zone->present_pages;
5179 }
5180
5181 for_each_zone(zone) {
ac924c60
AM
5182 u64 tmp;
5183
1125b4e3 5184 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5185 tmp = (u64)pages_min * zone->present_pages;
5186 do_div(tmp, lowmem_pages);
1da177e4
LT
5187 if (is_highmem(zone)) {
5188 /*
669ed175
NP
5189 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5190 * need highmem pages, so cap pages_min to a small
5191 * value here.
5192 *
41858966 5193 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5194 * deltas controls asynch page reclaim, and so should
5195 * not be capped for highmem.
1da177e4
LT
5196 */
5197 int min_pages;
5198
5199 min_pages = zone->present_pages / 1024;
5200 if (min_pages < SWAP_CLUSTER_MAX)
5201 min_pages = SWAP_CLUSTER_MAX;
5202 if (min_pages > 128)
5203 min_pages = 128;
41858966 5204 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5205 } else {
669ed175
NP
5206 /*
5207 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5208 * proportionate to the zone's size.
5209 */
41858966 5210 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5211 }
5212
41858966
MG
5213 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5214 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5215
5216 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5217 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5218 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5219
56fd56b8 5220 setup_zone_migrate_reserve(zone);
1125b4e3 5221 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5222 }
cb45b0e9
HA
5223
5224 /* update totalreserve_pages */
5225 calculate_totalreserve_pages();
1da177e4
LT
5226}
5227
cfd3da1e
MG
5228/**
5229 * setup_per_zone_wmarks - called when min_free_kbytes changes
5230 * or when memory is hot-{added|removed}
5231 *
5232 * Ensures that the watermark[min,low,high] values for each zone are set
5233 * correctly with respect to min_free_kbytes.
5234 */
5235void setup_per_zone_wmarks(void)
5236{
5237 mutex_lock(&zonelists_mutex);
5238 __setup_per_zone_wmarks();
5239 mutex_unlock(&zonelists_mutex);
5240}
5241
55a4462a 5242/*
556adecb
RR
5243 * The inactive anon list should be small enough that the VM never has to
5244 * do too much work, but large enough that each inactive page has a chance
5245 * to be referenced again before it is swapped out.
5246 *
5247 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5248 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5249 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5250 * the anonymous pages are kept on the inactive list.
5251 *
5252 * total target max
5253 * memory ratio inactive anon
5254 * -------------------------------------
5255 * 10MB 1 5MB
5256 * 100MB 1 50MB
5257 * 1GB 3 250MB
5258 * 10GB 10 0.9GB
5259 * 100GB 31 3GB
5260 * 1TB 101 10GB
5261 * 10TB 320 32GB
5262 */
1b79acc9 5263static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5264{
96cb4df5 5265 unsigned int gb, ratio;
556adecb 5266
96cb4df5
MK
5267 /* Zone size in gigabytes */
5268 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5269 if (gb)
556adecb 5270 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5271 else
5272 ratio = 1;
556adecb 5273
96cb4df5
MK
5274 zone->inactive_ratio = ratio;
5275}
556adecb 5276
839a4fcc 5277static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5278{
5279 struct zone *zone;
5280
5281 for_each_zone(zone)
5282 calculate_zone_inactive_ratio(zone);
556adecb
RR
5283}
5284
1da177e4
LT
5285/*
5286 * Initialise min_free_kbytes.
5287 *
5288 * For small machines we want it small (128k min). For large machines
5289 * we want it large (64MB max). But it is not linear, because network
5290 * bandwidth does not increase linearly with machine size. We use
5291 *
5292 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5293 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5294 *
5295 * which yields
5296 *
5297 * 16MB: 512k
5298 * 32MB: 724k
5299 * 64MB: 1024k
5300 * 128MB: 1448k
5301 * 256MB: 2048k
5302 * 512MB: 2896k
5303 * 1024MB: 4096k
5304 * 2048MB: 5792k
5305 * 4096MB: 8192k
5306 * 8192MB: 11584k
5307 * 16384MB: 16384k
5308 */
1b79acc9 5309int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5310{
5311 unsigned long lowmem_kbytes;
5312
5313 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5314
5315 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5316 if (min_free_kbytes < 128)
5317 min_free_kbytes = 128;
5318 if (min_free_kbytes > 65536)
5319 min_free_kbytes = 65536;
bc75d33f 5320 setup_per_zone_wmarks();
a6cccdc3 5321 refresh_zone_stat_thresholds();
1da177e4 5322 setup_per_zone_lowmem_reserve();
556adecb 5323 setup_per_zone_inactive_ratio();
1da177e4
LT
5324 return 0;
5325}
bc75d33f 5326module_init(init_per_zone_wmark_min)
1da177e4
LT
5327
5328/*
5329 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5330 * that we can call two helper functions whenever min_free_kbytes
5331 * changes.
5332 */
5333int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5334 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5335{
8d65af78 5336 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5337 if (write)
bc75d33f 5338 setup_per_zone_wmarks();
1da177e4
LT
5339 return 0;
5340}
5341
9614634f
CL
5342#ifdef CONFIG_NUMA
5343int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5344 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5345{
5346 struct zone *zone;
5347 int rc;
5348
8d65af78 5349 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5350 if (rc)
5351 return rc;
5352
5353 for_each_zone(zone)
8417bba4 5354 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5355 sysctl_min_unmapped_ratio) / 100;
5356 return 0;
5357}
0ff38490
CL
5358
5359int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5360 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5361{
5362 struct zone *zone;
5363 int rc;
5364
8d65af78 5365 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5366 if (rc)
5367 return rc;
5368
5369 for_each_zone(zone)
5370 zone->min_slab_pages = (zone->present_pages *
5371 sysctl_min_slab_ratio) / 100;
5372 return 0;
5373}
9614634f
CL
5374#endif
5375
1da177e4
LT
5376/*
5377 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5378 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5379 * whenever sysctl_lowmem_reserve_ratio changes.
5380 *
5381 * The reserve ratio obviously has absolutely no relation with the
41858966 5382 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5383 * if in function of the boot time zone sizes.
5384 */
5385int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5386 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5387{
8d65af78 5388 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5389 setup_per_zone_lowmem_reserve();
5390 return 0;
5391}
5392
8ad4b1fb
RS
5393/*
5394 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5395 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5396 * can have before it gets flushed back to buddy allocator.
5397 */
5398
5399int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5400 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5401{
5402 struct zone *zone;
5403 unsigned int cpu;
5404 int ret;
5405
8d65af78 5406 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5407 if (!write || (ret < 0))
8ad4b1fb 5408 return ret;
364df0eb 5409 for_each_populated_zone(zone) {
99dcc3e5 5410 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5411 unsigned long high;
5412 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5413 setup_pagelist_highmark(
5414 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5415 }
5416 }
5417 return 0;
5418}
5419
f034b5d4 5420int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5421
5422#ifdef CONFIG_NUMA
5423static int __init set_hashdist(char *str)
5424{
5425 if (!str)
5426 return 0;
5427 hashdist = simple_strtoul(str, &str, 0);
5428 return 1;
5429}
5430__setup("hashdist=", set_hashdist);
5431#endif
5432
5433/*
5434 * allocate a large system hash table from bootmem
5435 * - it is assumed that the hash table must contain an exact power-of-2
5436 * quantity of entries
5437 * - limit is the number of hash buckets, not the total allocation size
5438 */
5439void *__init alloc_large_system_hash(const char *tablename,
5440 unsigned long bucketsize,
5441 unsigned long numentries,
5442 int scale,
5443 int flags,
5444 unsigned int *_hash_shift,
5445 unsigned int *_hash_mask,
31fe62b9
TB
5446 unsigned long low_limit,
5447 unsigned long high_limit)
1da177e4 5448{
31fe62b9 5449 unsigned long long max = high_limit;
1da177e4
LT
5450 unsigned long log2qty, size;
5451 void *table = NULL;
5452
5453 /* allow the kernel cmdline to have a say */
5454 if (!numentries) {
5455 /* round applicable memory size up to nearest megabyte */
04903664 5456 numentries = nr_kernel_pages;
1da177e4
LT
5457 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5458 numentries >>= 20 - PAGE_SHIFT;
5459 numentries <<= 20 - PAGE_SHIFT;
5460
5461 /* limit to 1 bucket per 2^scale bytes of low memory */
5462 if (scale > PAGE_SHIFT)
5463 numentries >>= (scale - PAGE_SHIFT);
5464 else
5465 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5466
5467 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5468 if (unlikely(flags & HASH_SMALL)) {
5469 /* Makes no sense without HASH_EARLY */
5470 WARN_ON(!(flags & HASH_EARLY));
5471 if (!(numentries >> *_hash_shift)) {
5472 numentries = 1UL << *_hash_shift;
5473 BUG_ON(!numentries);
5474 }
5475 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5476 numentries = PAGE_SIZE / bucketsize;
1da177e4 5477 }
6e692ed3 5478 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5479
5480 /* limit allocation size to 1/16 total memory by default */
5481 if (max == 0) {
5482 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5483 do_div(max, bucketsize);
5484 }
074b8517 5485 max = min(max, 0x80000000ULL);
1da177e4 5486
31fe62b9
TB
5487 if (numentries < low_limit)
5488 numentries = low_limit;
1da177e4
LT
5489 if (numentries > max)
5490 numentries = max;
5491
f0d1b0b3 5492 log2qty = ilog2(numentries);
1da177e4
LT
5493
5494 do {
5495 size = bucketsize << log2qty;
5496 if (flags & HASH_EARLY)
74768ed8 5497 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5498 else if (hashdist)
5499 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5500 else {
1037b83b
ED
5501 /*
5502 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5503 * some pages at the end of hash table which
5504 * alloc_pages_exact() automatically does
1037b83b 5505 */
264ef8a9 5506 if (get_order(size) < MAX_ORDER) {
a1dd268c 5507 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5508 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5509 }
1da177e4
LT
5510 }
5511 } while (!table && size > PAGE_SIZE && --log2qty);
5512
5513 if (!table)
5514 panic("Failed to allocate %s hash table\n", tablename);
5515
f241e660 5516 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5517 tablename,
f241e660 5518 (1UL << log2qty),
f0d1b0b3 5519 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5520 size);
5521
5522 if (_hash_shift)
5523 *_hash_shift = log2qty;
5524 if (_hash_mask)
5525 *_hash_mask = (1 << log2qty) - 1;
5526
5527 return table;
5528}
a117e66e 5529
835c134e
MG
5530/* Return a pointer to the bitmap storing bits affecting a block of pages */
5531static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5532 unsigned long pfn)
5533{
5534#ifdef CONFIG_SPARSEMEM
5535 return __pfn_to_section(pfn)->pageblock_flags;
5536#else
5537 return zone->pageblock_flags;
5538#endif /* CONFIG_SPARSEMEM */
5539}
5540
5541static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5542{
5543#ifdef CONFIG_SPARSEMEM
5544 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5545 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5546#else
5547 pfn = pfn - zone->zone_start_pfn;
d9c23400 5548 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5549#endif /* CONFIG_SPARSEMEM */
5550}
5551
5552/**
d9c23400 5553 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5554 * @page: The page within the block of interest
5555 * @start_bitidx: The first bit of interest to retrieve
5556 * @end_bitidx: The last bit of interest
5557 * returns pageblock_bits flags
5558 */
5559unsigned long get_pageblock_flags_group(struct page *page,
5560 int start_bitidx, int end_bitidx)
5561{
5562 struct zone *zone;
5563 unsigned long *bitmap;
5564 unsigned long pfn, bitidx;
5565 unsigned long flags = 0;
5566 unsigned long value = 1;
5567
5568 zone = page_zone(page);
5569 pfn = page_to_pfn(page);
5570 bitmap = get_pageblock_bitmap(zone, pfn);
5571 bitidx = pfn_to_bitidx(zone, pfn);
5572
5573 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5574 if (test_bit(bitidx + start_bitidx, bitmap))
5575 flags |= value;
6220ec78 5576
835c134e
MG
5577 return flags;
5578}
5579
5580/**
d9c23400 5581 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5582 * @page: The page within the block of interest
5583 * @start_bitidx: The first bit of interest
5584 * @end_bitidx: The last bit of interest
5585 * @flags: The flags to set
5586 */
5587void set_pageblock_flags_group(struct page *page, unsigned long flags,
5588 int start_bitidx, int end_bitidx)
5589{
5590 struct zone *zone;
5591 unsigned long *bitmap;
5592 unsigned long pfn, bitidx;
5593 unsigned long value = 1;
5594
5595 zone = page_zone(page);
5596 pfn = page_to_pfn(page);
5597 bitmap = get_pageblock_bitmap(zone, pfn);
5598 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5599 VM_BUG_ON(pfn < zone->zone_start_pfn);
5600 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5601
5602 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5603 if (flags & value)
5604 __set_bit(bitidx + start_bitidx, bitmap);
5605 else
5606 __clear_bit(bitidx + start_bitidx, bitmap);
5607}
a5d76b54
KH
5608
5609/*
80934513
MK
5610 * This function checks whether pageblock includes unmovable pages or not.
5611 * If @count is not zero, it is okay to include less @count unmovable pages
5612 *
5613 * PageLRU check wihtout isolation or lru_lock could race so that
5614 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5615 * expect this function should be exact.
a5d76b54 5616 */
ee6f509c 5617bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5618{
5619 unsigned long pfn, iter, found;
47118af0
MN
5620 int mt;
5621
49ac8255
KH
5622 /*
5623 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5624 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5625 */
5626 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5627 return false;
47118af0
MN
5628 mt = get_pageblock_migratetype(page);
5629 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5630 return false;
49ac8255
KH
5631
5632 pfn = page_to_pfn(page);
5633 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5634 unsigned long check = pfn + iter;
5635
29723fcc 5636 if (!pfn_valid_within(check))
49ac8255 5637 continue;
29723fcc 5638
49ac8255 5639 page = pfn_to_page(check);
97d255c8
MK
5640 /*
5641 * We can't use page_count without pin a page
5642 * because another CPU can free compound page.
5643 * This check already skips compound tails of THP
5644 * because their page->_count is zero at all time.
5645 */
5646 if (!atomic_read(&page->_count)) {
49ac8255
KH
5647 if (PageBuddy(page))
5648 iter += (1 << page_order(page)) - 1;
5649 continue;
5650 }
97d255c8 5651
49ac8255
KH
5652 if (!PageLRU(page))
5653 found++;
5654 /*
5655 * If there are RECLAIMABLE pages, we need to check it.
5656 * But now, memory offline itself doesn't call shrink_slab()
5657 * and it still to be fixed.
5658 */
5659 /*
5660 * If the page is not RAM, page_count()should be 0.
5661 * we don't need more check. This is an _used_ not-movable page.
5662 *
5663 * The problematic thing here is PG_reserved pages. PG_reserved
5664 * is set to both of a memory hole page and a _used_ kernel
5665 * page at boot.
5666 */
5667 if (found > count)
80934513 5668 return true;
49ac8255 5669 }
80934513 5670 return false;
49ac8255
KH
5671}
5672
5673bool is_pageblock_removable_nolock(struct page *page)
5674{
656a0706
MH
5675 struct zone *zone;
5676 unsigned long pfn;
687875fb
MH
5677
5678 /*
5679 * We have to be careful here because we are iterating over memory
5680 * sections which are not zone aware so we might end up outside of
5681 * the zone but still within the section.
656a0706
MH
5682 * We have to take care about the node as well. If the node is offline
5683 * its NODE_DATA will be NULL - see page_zone.
687875fb 5684 */
656a0706
MH
5685 if (!node_online(page_to_nid(page)))
5686 return false;
5687
5688 zone = page_zone(page);
5689 pfn = page_to_pfn(page);
5690 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5691 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5692 return false;
5693
ee6f509c 5694 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5695}
0c0e6195 5696
041d3a8c
MN
5697#ifdef CONFIG_CMA
5698
5699static unsigned long pfn_max_align_down(unsigned long pfn)
5700{
5701 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5702 pageblock_nr_pages) - 1);
5703}
5704
5705static unsigned long pfn_max_align_up(unsigned long pfn)
5706{
5707 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5708 pageblock_nr_pages));
5709}
5710
041d3a8c 5711/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5712static int __alloc_contig_migrate_range(struct compact_control *cc,
5713 unsigned long start, unsigned long end)
041d3a8c
MN
5714{
5715 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5716 unsigned long nr_reclaimed;
041d3a8c
MN
5717 unsigned long pfn = start;
5718 unsigned int tries = 0;
5719 int ret = 0;
5720
041d3a8c
MN
5721 migrate_prep_local();
5722
bb13ffeb 5723 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5724 if (fatal_signal_pending(current)) {
5725 ret = -EINTR;
5726 break;
5727 }
5728
bb13ffeb
MG
5729 if (list_empty(&cc->migratepages)) {
5730 cc->nr_migratepages = 0;
5731 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5732 pfn, end, true);
041d3a8c
MN
5733 if (!pfn) {
5734 ret = -EINTR;
5735 break;
5736 }
5737 tries = 0;
5738 } else if (++tries == 5) {
5739 ret = ret < 0 ? ret : -EBUSY;
5740 break;
5741 }
5742
beb51eaa
MK
5743 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5744 &cc->migratepages);
5745 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5746
bb13ffeb 5747 ret = migrate_pages(&cc->migratepages,
723a0644 5748 alloc_migrate_target,
58f42fd5 5749 0, false, MIGRATE_SYNC);
041d3a8c
MN
5750 }
5751
bb13ffeb 5752 putback_lru_pages(&cc->migratepages);
041d3a8c
MN
5753 return ret > 0 ? 0 : ret;
5754}
5755
49f223a9
MS
5756/*
5757 * Update zone's cma pages counter used for watermark level calculation.
5758 */
5759static inline void __update_cma_watermarks(struct zone *zone, int count)
5760{
5761 unsigned long flags;
5762 spin_lock_irqsave(&zone->lock, flags);
5763 zone->min_cma_pages += count;
5764 spin_unlock_irqrestore(&zone->lock, flags);
5765 setup_per_zone_wmarks();
5766}
5767
5768/*
5769 * Trigger memory pressure bump to reclaim some pages in order to be able to
5770 * allocate 'count' pages in single page units. Does similar work as
5771 *__alloc_pages_slowpath() function.
5772 */
5773static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5774{
5775 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5776 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5777 int did_some_progress = 0;
5778 int order = 1;
5779
5780 /*
5781 * Increase level of watermarks to force kswapd do his job
5782 * to stabilise at new watermark level.
5783 */
5784 __update_cma_watermarks(zone, count);
5785
5786 /* Obey watermarks as if the page was being allocated */
5787 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5788 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5789
5790 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5791 NULL);
5792 if (!did_some_progress) {
5793 /* Exhausted what can be done so it's blamo time */
5794 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5795 }
5796 }
5797
5798 /* Restore original watermark levels. */
5799 __update_cma_watermarks(zone, -count);
5800
5801 return count;
5802}
5803
041d3a8c
MN
5804/**
5805 * alloc_contig_range() -- tries to allocate given range of pages
5806 * @start: start PFN to allocate
5807 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5808 * @migratetype: migratetype of the underlaying pageblocks (either
5809 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5810 * in range must have the same migratetype and it must
5811 * be either of the two.
041d3a8c
MN
5812 *
5813 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5814 * aligned, however it's the caller's responsibility to guarantee that
5815 * we are the only thread that changes migrate type of pageblocks the
5816 * pages fall in.
5817 *
5818 * The PFN range must belong to a single zone.
5819 *
5820 * Returns zero on success or negative error code. On success all
5821 * pages which PFN is in [start, end) are allocated for the caller and
5822 * need to be freed with free_contig_range().
5823 */
0815f3d8
MN
5824int alloc_contig_range(unsigned long start, unsigned long end,
5825 unsigned migratetype)
041d3a8c
MN
5826{
5827 struct zone *zone = page_zone(pfn_to_page(start));
5828 unsigned long outer_start, outer_end;
5829 int ret = 0, order;
5830
bb13ffeb
MG
5831 struct compact_control cc = {
5832 .nr_migratepages = 0,
5833 .order = -1,
5834 .zone = page_zone(pfn_to_page(start)),
5835 .sync = true,
5836 .ignore_skip_hint = true,
5837 };
5838 INIT_LIST_HEAD(&cc.migratepages);
5839
041d3a8c
MN
5840 /*
5841 * What we do here is we mark all pageblocks in range as
5842 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5843 * have different sizes, and due to the way page allocator
5844 * work, we align the range to biggest of the two pages so
5845 * that page allocator won't try to merge buddies from
5846 * different pageblocks and change MIGRATE_ISOLATE to some
5847 * other migration type.
5848 *
5849 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5850 * migrate the pages from an unaligned range (ie. pages that
5851 * we are interested in). This will put all the pages in
5852 * range back to page allocator as MIGRATE_ISOLATE.
5853 *
5854 * When this is done, we take the pages in range from page
5855 * allocator removing them from the buddy system. This way
5856 * page allocator will never consider using them.
5857 *
5858 * This lets us mark the pageblocks back as
5859 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5860 * aligned range but not in the unaligned, original range are
5861 * put back to page allocator so that buddy can use them.
5862 */
5863
5864 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5865 pfn_max_align_up(end), migratetype);
041d3a8c 5866 if (ret)
86a595f9 5867 return ret;
041d3a8c 5868
bb13ffeb 5869 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5870 if (ret)
5871 goto done;
5872
5873 /*
5874 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5875 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5876 * more, all pages in [start, end) are free in page allocator.
5877 * What we are going to do is to allocate all pages from
5878 * [start, end) (that is remove them from page allocator).
5879 *
5880 * The only problem is that pages at the beginning and at the
5881 * end of interesting range may be not aligned with pages that
5882 * page allocator holds, ie. they can be part of higher order
5883 * pages. Because of this, we reserve the bigger range and
5884 * once this is done free the pages we are not interested in.
5885 *
5886 * We don't have to hold zone->lock here because the pages are
5887 * isolated thus they won't get removed from buddy.
5888 */
5889
5890 lru_add_drain_all();
5891 drain_all_pages();
5892
5893 order = 0;
5894 outer_start = start;
5895 while (!PageBuddy(pfn_to_page(outer_start))) {
5896 if (++order >= MAX_ORDER) {
5897 ret = -EBUSY;
5898 goto done;
5899 }
5900 outer_start &= ~0UL << order;
5901 }
5902
5903 /* Make sure the range is really isolated. */
5904 if (test_pages_isolated(outer_start, end)) {
5905 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5906 outer_start, end);
5907 ret = -EBUSY;
5908 goto done;
5909 }
5910
49f223a9
MS
5911 /*
5912 * Reclaim enough pages to make sure that contiguous allocation
5913 * will not starve the system.
5914 */
5915 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5916
5917 /* Grab isolated pages from freelists. */
bb13ffeb 5918 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5919 if (!outer_end) {
5920 ret = -EBUSY;
5921 goto done;
5922 }
5923
5924 /* Free head and tail (if any) */
5925 if (start != outer_start)
5926 free_contig_range(outer_start, start - outer_start);
5927 if (end != outer_end)
5928 free_contig_range(end, outer_end - end);
5929
5930done:
5931 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5932 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5933 return ret;
5934}
5935
5936void free_contig_range(unsigned long pfn, unsigned nr_pages)
5937{
5938 for (; nr_pages--; ++pfn)
5939 __free_page(pfn_to_page(pfn));
5940}
5941#endif
5942
4ed7e022
JL
5943#ifdef CONFIG_MEMORY_HOTPLUG
5944static int __meminit __zone_pcp_update(void *data)
5945{
5946 struct zone *zone = data;
5947 int cpu;
5948 unsigned long batch = zone_batchsize(zone), flags;
5949
5950 for_each_possible_cpu(cpu) {
5951 struct per_cpu_pageset *pset;
5952 struct per_cpu_pages *pcp;
5953
5954 pset = per_cpu_ptr(zone->pageset, cpu);
5955 pcp = &pset->pcp;
5956
5957 local_irq_save(flags);
5958 if (pcp->count > 0)
5959 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5960 drain_zonestat(zone, pset);
4ed7e022
JL
5961 setup_pageset(pset, batch);
5962 local_irq_restore(flags);
5963 }
5964 return 0;
5965}
5966
5967void __meminit zone_pcp_update(struct zone *zone)
5968{
5969 stop_machine(__zone_pcp_update, zone, NULL);
5970}
5971#endif
5972
0c0e6195 5973#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5974void zone_pcp_reset(struct zone *zone)
5975{
5976 unsigned long flags;
5a883813
MK
5977 int cpu;
5978 struct per_cpu_pageset *pset;
340175b7
JL
5979
5980 /* avoid races with drain_pages() */
5981 local_irq_save(flags);
5982 if (zone->pageset != &boot_pageset) {
5a883813
MK
5983 for_each_online_cpu(cpu) {
5984 pset = per_cpu_ptr(zone->pageset, cpu);
5985 drain_zonestat(zone, pset);
5986 }
340175b7
JL
5987 free_percpu(zone->pageset);
5988 zone->pageset = &boot_pageset;
5989 }
5990 local_irq_restore(flags);
5991}
5992
0c0e6195
KH
5993/*
5994 * All pages in the range must be isolated before calling this.
5995 */
5996void
5997__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5998{
5999 struct page *page;
6000 struct zone *zone;
6001 int order, i;
6002 unsigned long pfn;
6003 unsigned long flags;
6004 /* find the first valid pfn */
6005 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6006 if (pfn_valid(pfn))
6007 break;
6008 if (pfn == end_pfn)
6009 return;
6010 zone = page_zone(pfn_to_page(pfn));
6011 spin_lock_irqsave(&zone->lock, flags);
6012 pfn = start_pfn;
6013 while (pfn < end_pfn) {
6014 if (!pfn_valid(pfn)) {
6015 pfn++;
6016 continue;
6017 }
6018 page = pfn_to_page(pfn);
6019 BUG_ON(page_count(page));
6020 BUG_ON(!PageBuddy(page));
6021 order = page_order(page);
6022#ifdef CONFIG_DEBUG_VM
6023 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6024 pfn, 1 << order, end_pfn);
6025#endif
6026 list_del(&page->lru);
6027 rmv_page_order(page);
6028 zone->free_area[order].nr_free--;
6029 __mod_zone_page_state(zone, NR_FREE_PAGES,
6030 - (1UL << order));
6031 for (i = 0; i < (1 << order); i++)
6032 SetPageReserved((page+i));
6033 pfn += (1 << order);
6034 }
6035 spin_unlock_irqrestore(&zone->lock, flags);
6036}
6037#endif
8d22ba1b
WF
6038
6039#ifdef CONFIG_MEMORY_FAILURE
6040bool is_free_buddy_page(struct page *page)
6041{
6042 struct zone *zone = page_zone(page);
6043 unsigned long pfn = page_to_pfn(page);
6044 unsigned long flags;
6045 int order;
6046
6047 spin_lock_irqsave(&zone->lock, flags);
6048 for (order = 0; order < MAX_ORDER; order++) {
6049 struct page *page_head = page - (pfn & ((1 << order) - 1));
6050
6051 if (PageBuddy(page_head) && page_order(page_head) >= order)
6052 break;
6053 }
6054 spin_unlock_irqrestore(&zone->lock, flags);
6055
6056 return order < MAX_ORDER;
6057}
6058#endif
718a3821 6059
51300cef 6060static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6061 {1UL << PG_locked, "locked" },
6062 {1UL << PG_error, "error" },
6063 {1UL << PG_referenced, "referenced" },
6064 {1UL << PG_uptodate, "uptodate" },
6065 {1UL << PG_dirty, "dirty" },
6066 {1UL << PG_lru, "lru" },
6067 {1UL << PG_active, "active" },
6068 {1UL << PG_slab, "slab" },
6069 {1UL << PG_owner_priv_1, "owner_priv_1" },
6070 {1UL << PG_arch_1, "arch_1" },
6071 {1UL << PG_reserved, "reserved" },
6072 {1UL << PG_private, "private" },
6073 {1UL << PG_private_2, "private_2" },
6074 {1UL << PG_writeback, "writeback" },
6075#ifdef CONFIG_PAGEFLAGS_EXTENDED
6076 {1UL << PG_head, "head" },
6077 {1UL << PG_tail, "tail" },
6078#else
6079 {1UL << PG_compound, "compound" },
6080#endif
6081 {1UL << PG_swapcache, "swapcache" },
6082 {1UL << PG_mappedtodisk, "mappedtodisk" },
6083 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6084 {1UL << PG_swapbacked, "swapbacked" },
6085 {1UL << PG_unevictable, "unevictable" },
6086#ifdef CONFIG_MMU
6087 {1UL << PG_mlocked, "mlocked" },
6088#endif
6089#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6090 {1UL << PG_uncached, "uncached" },
6091#endif
6092#ifdef CONFIG_MEMORY_FAILURE
6093 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6094#endif
6095#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6096 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6097#endif
718a3821
WF
6098};
6099
6100static void dump_page_flags(unsigned long flags)
6101{
6102 const char *delim = "";
6103 unsigned long mask;
6104 int i;
6105
51300cef 6106 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6107
718a3821
WF
6108 printk(KERN_ALERT "page flags: %#lx(", flags);
6109
6110 /* remove zone id */
6111 flags &= (1UL << NR_PAGEFLAGS) - 1;
6112
51300cef 6113 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6114
6115 mask = pageflag_names[i].mask;
6116 if ((flags & mask) != mask)
6117 continue;
6118
6119 flags &= ~mask;
6120 printk("%s%s", delim, pageflag_names[i].name);
6121 delim = "|";
6122 }
6123
6124 /* check for left over flags */
6125 if (flags)
6126 printk("%s%#lx", delim, flags);
6127
6128 printk(")\n");
6129}
6130
6131void dump_page(struct page *page)
6132{
6133 printk(KERN_ALERT
6134 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6135 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6136 page->mapping, page->index);
6137 dump_page_flags(page->flags);
f212ad7c 6138 mem_cgroup_print_bad_page(page);
718a3821 6139}