]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/page_alloc.c
Merge tag 'platform-drivers-x86-v4.16-7' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
895f7b8e 49#include <xen/xen.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4
LT
75#include "internal.h"
76
c8e251fa
CS
77/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 79#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 80
72812019
LS
81#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82DEFINE_PER_CPU(int, numa_node);
83EXPORT_PER_CPU_SYMBOL(numa_node);
84#endif
85
4518085e
KW
86DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87
7aac7898
LS
88#ifdef CONFIG_HAVE_MEMORYLESS_NODES
89/*
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
94 */
95DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 97int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
98#endif
99
bd233f53
MG
100/* work_structs for global per-cpu drains */
101DEFINE_MUTEX(pcpu_drain_mutex);
102DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103
38addce8 104#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 105volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
106EXPORT_SYMBOL(latent_entropy);
107#endif
108
1da177e4 109/*
13808910 110 * Array of node states.
1da177e4 111 */
13808910
CL
112nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115#ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117#ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 119#endif
20b2f52b 120 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
121 [N_CPU] = { { [0] = 1UL } },
122#endif /* NUMA */
123};
124EXPORT_SYMBOL(node_states);
125
c3d5f5f0
JL
126/* Protect totalram_pages and zone->managed_pages */
127static DEFINE_SPINLOCK(managed_page_count_lock);
128
6c231b7b 129unsigned long totalram_pages __read_mostly;
cb45b0e9 130unsigned long totalreserve_pages __read_mostly;
e48322ab 131unsigned long totalcma_pages __read_mostly;
ab8fabd4 132
1b76b02f 133int percpu_pagelist_fraction;
dcce284a 134gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 135
bb14c2c7
VB
136/*
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
143 */
144static inline int get_pcppage_migratetype(struct page *page)
145{
146 return page->index;
147}
148
149static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150{
151 page->index = migratetype;
152}
153
452aa699
RW
154#ifdef CONFIG_PM_SLEEP
155/*
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
162 */
c9e664f1
RW
163
164static gfp_t saved_gfp_mask;
165
166void pm_restore_gfp_mask(void)
452aa699
RW
167{
168 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
452aa699
RW
173}
174
c9e664f1 175void pm_restrict_gfp_mask(void)
452aa699 176{
452aa699 177 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
d0164adc 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 181}
f90ac398
MG
182
183bool pm_suspended_storage(void)
184{
d0164adc 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
186 return false;
187 return true;
188}
452aa699
RW
189#endif /* CONFIG_PM_SLEEP */
190
d9c23400 191#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 192unsigned int pageblock_order __read_mostly;
d9c23400
MG
193#endif
194
d98c7a09 195static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 196
1da177e4
LT
197/*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
1da177e4 207 */
2f1b6248 208int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
2f1b6248 210 256,
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
2f1b6248 213 256,
fb0e7942 214#endif
e53ef38d 215#ifdef CONFIG_HIGHMEM
2a1e274a 216 32,
e53ef38d 217#endif
2a1e274a 218 32,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
2c85f51d
JB
268static unsigned long __meminitdata nr_kernel_pages;
269static unsigned long __meminitdata nr_all_pages;
a3142c8e 270static unsigned long __meminitdata dma_reserve;
1da177e4 271
0ee332c1
TH
272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275static unsigned long __initdata required_kernelcore;
276static unsigned long __initdata required_movablecore;
277static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 278static bool mirrored_kernelcore;
0ee332c1
TH
279
280/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281int movable_zone;
282EXPORT_SYMBOL(movable_zone);
283#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 284
418508c1
MS
285#if MAX_NUMNODES > 1
286int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 287int nr_online_nodes __read_mostly = 1;
418508c1 288EXPORT_SYMBOL(nr_node_ids);
62bc62a8 289EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
290#endif
291
9ef9acb0
MG
292int page_group_by_mobility_disabled __read_mostly;
293
3a80a7fa 294#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
d135e575
PT
295
296/*
3c2c6488 297 * Determine how many pages need to be initialized during early boot
d135e575
PT
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
301 */
3a80a7fa
MG
302static inline void reset_deferred_meminit(pg_data_t *pgdat)
303{
d135e575
PT
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
864b9a39
MH
307
308 /*
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
311 */
d135e575
PT
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
864b9a39
MH
314
315 /*
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
319 */
d135e575
PT
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
864b9a39 324
d135e575 325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
326 pgdat->first_deferred_pfn = ULONG_MAX;
327}
328
329/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 330static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 331{
ef70b6f4
MG
332 int nid = early_pfn_to_nid(pfn);
333
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
335 return true;
336
337 return false;
338}
339
340/*
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
343 */
344static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
347{
3c2c6488 348 /* Always populate low zones for address-constrained allocations */
3a80a7fa
MG
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
895f7b8e
JG
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
3a80a7fa 354 (*nr_initialised)++;
d135e575 355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
359 }
360
361 return true;
362}
363#else
364static inline void reset_deferred_meminit(pg_data_t *pgdat)
365{
366}
367
368static inline bool early_page_uninitialised(unsigned long pfn)
369{
370 return false;
371}
372
373static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
376{
377 return true;
378}
379#endif
380
0b423ca2
MG
381/* Return a pointer to the bitmap storing bits affecting a block of pages */
382static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
384{
385#ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387#else
388 return page_zone(page)->pageblock_flags;
389#endif /* CONFIG_SPARSEMEM */
390}
391
392static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393{
394#ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397#else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400#endif /* CONFIG_SPARSEMEM */
401}
402
403/**
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
409 *
410 * Return: pageblock_bits flags
411 */
412static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416{
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
420
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
425
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429}
430
431unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434{
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436}
437
438static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439{
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441}
442
443/**
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
450 */
451void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455{
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
459
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
466
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
472
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
479 }
480}
3a80a7fa 481
ee6f509c 482void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 483{
5d0f3f72
KM
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
486 migratetype = MIGRATE_UNMOVABLE;
487
b2a0ac88
MG
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
490}
491
13e7444b 492#ifdef CONFIG_DEBUG_VM
c6a57e19 493static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 494{
bdc8cb98
DH
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 498 unsigned long sp, start_pfn;
c6a57e19 499
bdc8cb98
DH
500 do {
501 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
108bcc96 504 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
507
b5e6a5a2 508 if (ret)
613813e8
DH
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
b5e6a5a2 512
bdc8cb98 513 return ret;
c6a57e19
DH
514}
515
516static int page_is_consistent(struct zone *zone, struct page *page)
517{
14e07298 518 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 519 return 0;
1da177e4 520 if (zone != page_zone(page))
c6a57e19
DH
521 return 0;
522
523 return 1;
524}
525/*
526 * Temporary debugging check for pages not lying within a given zone.
527 */
d73d3c9f 528static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
529{
530 if (page_outside_zone_boundaries(zone, page))
1da177e4 531 return 1;
c6a57e19
DH
532 if (!page_is_consistent(zone, page))
533 return 1;
534
1da177e4
LT
535 return 0;
536}
13e7444b 537#else
d73d3c9f 538static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
539{
540 return 0;
541}
542#endif
543
d230dec1
KS
544static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
1da177e4 546{
d936cf9b
HD
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
550
551 /*
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
554 */
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
559 }
560 if (nr_unshown) {
ff8e8116 561 pr_alert(
1e9e6365 562 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
563 nr_unshown);
564 nr_unshown = 0;
565 }
566 nr_shown = 0;
567 }
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
570
ff8e8116 571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 572 current->comm, page_to_pfn(page));
ff8e8116
VB
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
4e462112 578 dump_page_owner(page);
3dc14741 579
4f31888c 580 print_modules();
1da177e4 581 dump_stack();
d936cf9b 582out:
8cc3b392 583 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 584 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
586}
587
1da177e4
LT
588/*
589 * Higher-order pages are called "compound pages". They are structured thusly:
590 *
1d798ca3 591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 592 *
1d798ca3
KS
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 595 *
1d798ca3
KS
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
1da177e4 598 *
1d798ca3 599 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 600 * This usage means that zero-order pages may not be compound.
1da177e4 601 */
d98c7a09 602
9a982250 603void free_compound_page(struct page *page)
d98c7a09 604{
d85f3385 605 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
606}
607
d00181b9 608void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
609{
610 int i;
611 int nr_pages = 1 << order;
612
f1e61557 613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
58a84aa9 618 set_page_count(p, 0);
1c290f64 619 p->mapping = TAIL_MAPPING;
1d798ca3 620 set_compound_head(p, page);
18229df5 621 }
53f9263b 622 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
623}
624
c0a32fc5
SG
625#ifdef CONFIG_DEBUG_PAGEALLOC
626unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
627bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 629EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
630bool _debug_guardpage_enabled __read_mostly;
631
031bc574
JK
632static int __init early_debug_pagealloc(char *buf)
633{
634 if (!buf)
635 return -EINVAL;
2a138dc7 636 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
637}
638early_param("debug_pagealloc", early_debug_pagealloc);
639
e30825f1
JK
640static bool need_debug_guardpage(void)
641{
031bc574
JK
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
645
f1c1e9f7
JK
646 if (!debug_guardpage_minorder())
647 return false;
648
e30825f1
JK
649 return true;
650}
651
652static void init_debug_guardpage(void)
653{
031bc574
JK
654 if (!debug_pagealloc_enabled())
655 return;
656
f1c1e9f7
JK
657 if (!debug_guardpage_minorder())
658 return;
659
e30825f1
JK
660 _debug_guardpage_enabled = true;
661}
662
663struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
666};
c0a32fc5
SG
667
668static int __init debug_guardpage_minorder_setup(char *buf)
669{
670 unsigned long res;
671
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 673 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
674 return 0;
675 }
676 _debug_guardpage_minorder = res;
1170532b 677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
678 return 0;
679}
f1c1e9f7 680early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 681
acbc15a4 682static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 683 unsigned int order, int migratetype)
c0a32fc5 684{
e30825f1
JK
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
acbc15a4
JK
688 return false;
689
690 if (order >= debug_guardpage_minorder())
691 return false;
e30825f1
JK
692
693 page_ext = lookup_page_ext(page);
f86e4271 694 if (unlikely(!page_ext))
acbc15a4 695 return false;
f86e4271 696
e30825f1
JK
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698
2847cf95
JK
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
703
704 return true;
c0a32fc5
SG
705}
706
2847cf95
JK
707static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
c0a32fc5 709{
e30825f1
JK
710 struct page_ext *page_ext;
711
712 if (!debug_guardpage_enabled())
713 return;
714
715 page_ext = lookup_page_ext(page);
f86e4271
YS
716 if (unlikely(!page_ext))
717 return;
718
e30825f1
JK
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
2847cf95
JK
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
724}
725#else
980ac167 726struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
727static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
2847cf95
JK
729static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
c0a32fc5
SG
731#endif
732
7aeb09f9 733static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 734{
4c21e2f2 735 set_page_private(page, order);
676165a8 736 __SetPageBuddy(page);
1da177e4
LT
737}
738
739static inline void rmv_page_order(struct page *page)
740{
676165a8 741 __ClearPageBuddy(page);
4c21e2f2 742 set_page_private(page, 0);
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
13ad59df 748 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 749 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
676165a8 752 *
cf6fe945
WSH
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
1da177e4 757 *
676165a8 758 * For recording page's order, we use page_private(page).
1da177e4 759 */
cb2b95e1 760static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 761 unsigned int order)
1da177e4 762{
c0a32fc5 763 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
c0a32fc5
SG
769 return 1;
770 }
771
cb2b95e1 772 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
4c5018ce
WY
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
6aa3001b 783 return 1;
676165a8 784 }
6aa3001b 785 return 0;
1da177e4
LT
786}
787
788/*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
1da177e4 804 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
1da177e4 807 * If a block is freed, and its buddy is also free, then this
5f63b720 808 * triggers coalescing into a block of larger size.
1da177e4 809 *
6d49e352 810 * -- nyc
1da177e4
LT
811 */
812
48db57f8 813static inline void __free_one_page(struct page *page,
dc4b0caf 814 unsigned long pfn,
ed0ae21d
MG
815 struct zone *zone, unsigned int order,
816 int migratetype)
1da177e4 817{
76741e77
VB
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 820 struct page *buddy;
d9dddbf5
VB
821 unsigned int max_order;
822
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 824
d29bb978 825 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 827
ed0ae21d 828 VM_BUG_ON(migratetype == -1);
d9dddbf5 829 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 831
76741e77 832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 834
d9dddbf5 835continue_merging:
3c605096 836 while (order < max_order - 1) {
76741e77
VB
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
839
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
cb2b95e1 842 if (!page_is_buddy(page, buddy, order))
d9dddbf5 843 goto done_merging;
c0a32fc5
SG
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy)) {
2847cf95 849 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
854 }
76741e77
VB
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
1da177e4
LT
858 order++;
859 }
d9dddbf5
VB
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
865 *
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
868 */
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
871
76741e77
VB
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
874 buddy_mt = get_pageblock_migratetype(buddy);
875
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
880 }
881 max_order++;
882 goto continue_merging;
883 }
884
885done_merging:
1da177e4 886 set_page_order(page, order);
6dda9d55
CZ
887
888 /*
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
895 */
13ad59df 896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 897 struct page *higher_page, *higher_buddy;
76741e77
VB
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
907 }
908 }
909
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911out:
1da177e4
LT
912 zone->free_area[order].nr_free++;
913}
914
7bfec6f4
MG
915/*
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
919 */
920static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
922{
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
925
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928#ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930#endif
931 (page->flags & check_flags)))
932 return false;
933
934 return true;
935}
936
bb552ac6 937static void free_pages_check_bad(struct page *page)
1da177e4 938{
7bfec6f4
MG
939 const char *bad_reason;
940 unsigned long bad_flags;
941
7bfec6f4
MG
942 bad_reason = NULL;
943 bad_flags = 0;
f0b791a3 944
53f9263b 945 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
fe896d18 949 if (unlikely(page_ref_count(page) != 0))
0139aa7b 950 bad_reason = "nonzero _refcount";
f0b791a3
DH
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 }
9edad6ea
JW
955#ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958#endif
7bfec6f4 959 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
960}
961
962static inline int free_pages_check(struct page *page)
963{
da838d4f 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 965 return 0;
bb552ac6
MG
966
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
7bfec6f4 969 return 1;
1da177e4
LT
970}
971
4db7548c
MG
972static int free_tail_pages_check(struct page *head_page, struct page *page)
973{
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
992 }
993 break;
994 case 2:
995 /*
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
998 */
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1004 }
1005 break;
1006 }
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1010 }
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1014 }
1015 ret = 0;
1016out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1020}
1021
e2769dbd
MG
1022static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
4db7548c 1024{
e2769dbd 1025 int bad = 0;
4db7548c 1026
4db7548c
MG
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1028
e2769dbd 1029 trace_mm_page_free(page, order);
e2769dbd
MG
1030
1031 /*
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1034 */
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1038
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1040
9a73f61b
KS
1041 if (compound)
1042 ClearPageDoubleMap(page);
e2769dbd
MG
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1049 }
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 }
1052 }
bda807d4 1053 if (PageMappingFlags(page))
4db7548c 1054 page->mapping = NULL;
c4159a75 1055 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1056 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
4db7548c 1061
e2769dbd
MG
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
4db7548c
MG
1065
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
e2769dbd 1068 PAGE_SIZE << order);
4db7548c 1069 debug_check_no_obj_freed(page_address(page),
e2769dbd 1070 PAGE_SIZE << order);
4db7548c 1071 }
e2769dbd
MG
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
29b52de1 1075 kasan_free_pages(page, order);
4db7548c 1076
4db7548c
MG
1077 return true;
1078}
1079
e2769dbd
MG
1080#ifdef CONFIG_DEBUG_VM
1081static inline bool free_pcp_prepare(struct page *page)
1082{
1083 return free_pages_prepare(page, 0, true);
1084}
1085
1086static inline bool bulkfree_pcp_prepare(struct page *page)
1087{
1088 return false;
1089}
1090#else
1091static bool free_pcp_prepare(struct page *page)
1092{
1093 return free_pages_prepare(page, 0, false);
1094}
1095
4db7548c
MG
1096static bool bulkfree_pcp_prepare(struct page *page)
1097{
1098 return free_pages_check(page);
1099}
1100#endif /* CONFIG_DEBUG_VM */
1101
1da177e4 1102/*
5f8dcc21 1103 * Frees a number of pages from the PCP lists
1da177e4 1104 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1105 * count is the number of pages to free.
1da177e4
LT
1106 *
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1109 *
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1112 */
5f8dcc21
MG
1113static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1da177e4 1115{
5f8dcc21 1116 int migratetype = 0;
a6f9edd6 1117 int batch_free = 0;
3777999d 1118 bool isolated_pageblocks;
5f8dcc21 1119
d34b0733 1120 spin_lock(&zone->lock);
3777999d 1121 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1122
e5b31ac2 1123 while (count) {
48db57f8 1124 struct page *page;
5f8dcc21
MG
1125 struct list_head *list;
1126
1127 /*
a6f9edd6
MG
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
5f8dcc21
MG
1133 */
1134 do {
a6f9edd6 1135 batch_free++;
5f8dcc21
MG
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
48db57f8 1140
1d16871d
NK
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1143 batch_free = count;
1d16871d 1144
a6f9edd6 1145 do {
770c8aaa
BZ
1146 int mt; /* migratetype of the to-be-freed page */
1147
a16601c5 1148 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
aa016d14 1151
bb14c2c7 1152 mt = get_pcppage_migratetype(page);
aa016d14
VB
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
3777999d 1156 if (unlikely(isolated_pageblocks))
51bb1a40 1157 mt = get_pageblock_migratetype(page);
51bb1a40 1158
4db7548c
MG
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1161
dc4b0caf 1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1163 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1164 } while (--count && --batch_free && !list_empty(list));
1da177e4 1165 }
d34b0733 1166 spin_unlock(&zone->lock);
1da177e4
LT
1167}
1168
dc4b0caf
MG
1169static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
7aeb09f9 1171 unsigned int order,
ed0ae21d 1172 int migratetype)
1da177e4 1173{
d34b0733 1174 spin_lock(&zone->lock);
ad53f92e
JK
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1178 }
dc4b0caf 1179 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1180 spin_unlock(&zone->lock);
48db57f8
NP
1181}
1182
1e8ce83c 1183static void __meminit __init_single_page(struct page *page, unsigned long pfn,
9bb5a391 1184 unsigned long zone, int nid, bool zero)
1e8ce83c 1185{
9bb5a391
MH
1186 if (zero)
1187 mm_zero_struct_page(page);
1e8ce83c 1188 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1e8ce83c 1192
1e8ce83c
RH
1193 INIT_LIST_HEAD(&page->lru);
1194#ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198#endif
1199}
1200
1201static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
9bb5a391 1202 int nid, bool zero)
1e8ce83c 1203{
9bb5a391 1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1e8ce83c
RH
1205}
1206
7e18adb4 1207#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1208static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1209{
1210 pg_data_t *pgdat;
1211 int nid, zid;
1212
1213 if (!early_page_uninitialised(pfn))
1214 return;
1215
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1218
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1221
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1224 }
9bb5a391 1225 __init_single_pfn(pfn, zid, nid, true);
7e18adb4
MG
1226}
1227#else
1228static inline void init_reserved_page(unsigned long pfn)
1229{
1230}
1231#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
92923ca3
NZ
1233/*
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1238 */
4b50bcc7 1239void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1240{
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1243
7e18adb4
MG
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1247
1248 init_reserved_page(start_pfn);
1d798ca3
KS
1249
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1252
7e18adb4
MG
1253 SetPageReserved(page);
1254 }
1255 }
92923ca3
NZ
1256}
1257
ec95f53a
KM
1258static void __free_pages_ok(struct page *page, unsigned int order)
1259{
d34b0733 1260 unsigned long flags;
95e34412 1261 int migratetype;
dc4b0caf 1262 unsigned long pfn = page_to_pfn(page);
ec95f53a 1263
e2769dbd 1264 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1265 return;
1266
cfc47a28 1267 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1271 local_irq_restore(flags);
1da177e4
LT
1272}
1273
949698a3 1274static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1275{
c3993076 1276 unsigned int nr_pages = 1 << order;
e2d0bd2b 1277 struct page *p = page;
c3993076 1278 unsigned int loop;
a226f6c8 1279
e2d0bd2b
YL
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
c3993076
JW
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
a226f6c8 1285 }
e2d0bd2b
YL
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
c3993076 1288
e2d0bd2b 1289 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
a226f6c8
DH
1292}
1293
75a592a4
MG
1294#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1296
75a592a4
MG
1297static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299int __meminit early_pfn_to_nid(unsigned long pfn)
1300{
7ace9917 1301 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1302 int nid;
1303
7ace9917 1304 spin_lock(&early_pfn_lock);
75a592a4 1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1306 if (nid < 0)
e4568d38 1307 nid = first_online_node;
7ace9917
MG
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
75a592a4
MG
1311}
1312#endif
1313
1314#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1315static inline bool __meminit __maybe_unused
1316meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
75a592a4
MG
1318{
1319 int nid;
1320
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1325}
1326
1327/* Only safe to use early in boot when initialisation is single-threaded */
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331}
1332
1333#else
1334
1335static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336{
1337 return true;
1338}
d73d3c9f
MK
1339static inline bool __meminit __maybe_unused
1340meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
75a592a4
MG
1342{
1343 return true;
1344}
1345#endif
1346
1347
0e1cc95b 1348void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1349 unsigned int order)
1350{
1351 if (early_page_uninitialised(pfn))
1352 return;
949698a3 1353 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1354}
1355
7cf91a98
JK
1356/*
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1362 *
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364 *
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1372 */
1373struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375{
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1384
2d070eab
MH
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
7cf91a98
JK
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399}
1400
1401void set_zone_contiguous(struct zone *zone)
1402{
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1405
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1410
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1416 }
1417
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1420}
1421
1422void clear_zone_contiguous(struct zone *zone)
1423{
1424 zone->contiguous = false;
1425}
1426
7e18adb4 1427#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1428static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
a4de83dd 1430{
2f47a91f
PT
1431 struct page *page;
1432 unsigned long i;
a4de83dd 1433
2f47a91f 1434 if (!nr_pages)
a4de83dd
MG
1435 return;
1436
2f47a91f
PT
1437 page = pfn_to_page(pfn);
1438
a4de83dd 1439 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1443 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1444 return;
1445 }
1446
e780149b
XQ
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1450 __free_pages_boot_core(page, 0);
e780149b 1451 }
a4de83dd
MG
1452}
1453
d3cd131d
NS
1454/* Completion tracking for deferred_init_memmap() threads */
1455static atomic_t pgdat_init_n_undone __initdata;
1456static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457
1458static inline void __init pgdat_init_report_one_done(void)
1459{
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1462}
0e1cc95b 1463
2f47a91f 1464/*
80b1f41c
PT
1465 * Returns true if page needs to be initialized or freed to buddy allocator.
1466 *
1467 * First we check if pfn is valid on architectures where it is possible to have
1468 * holes within pageblock_nr_pages. On systems where it is not possible, this
1469 * function is optimized out.
1470 *
1471 * Then, we check if a current large page is valid by only checking the validity
1472 * of the head pfn.
1473 *
1474 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1475 * within a node: a pfn is between start and end of a node, but does not belong
1476 * to this memory node.
2f47a91f 1477 */
80b1f41c
PT
1478static inline bool __init
1479deferred_pfn_valid(int nid, unsigned long pfn,
1480 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1481{
80b1f41c
PT
1482 if (!pfn_valid_within(pfn))
1483 return false;
1484 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1485 return false;
1486 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1487 return false;
1488 return true;
1489}
2f47a91f 1490
80b1f41c
PT
1491/*
1492 * Free pages to buddy allocator. Try to free aligned pages in
1493 * pageblock_nr_pages sizes.
1494 */
1495static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1496 unsigned long end_pfn)
1497{
1498 struct mminit_pfnnid_cache nid_init_state = { };
1499 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1500 unsigned long nr_free = 0;
2f47a91f 1501
80b1f41c
PT
1502 for (; pfn < end_pfn; pfn++) {
1503 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1504 deferred_free_range(pfn - nr_free, nr_free);
1505 nr_free = 0;
1506 } else if (!(pfn & nr_pgmask)) {
1507 deferred_free_range(pfn - nr_free, nr_free);
1508 nr_free = 1;
1509 cond_resched();
1510 } else {
1511 nr_free++;
1512 }
1513 }
1514 /* Free the last block of pages to allocator */
1515 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1516}
1517
80b1f41c
PT
1518/*
1519 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1520 * by performing it only once every pageblock_nr_pages.
1521 * Return number of pages initialized.
1522 */
1523static unsigned long __init deferred_init_pages(int nid, int zid,
1524 unsigned long pfn,
1525 unsigned long end_pfn)
2f47a91f
PT
1526{
1527 struct mminit_pfnnid_cache nid_init_state = { };
1528 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1529 unsigned long nr_pages = 0;
2f47a91f 1530 struct page *page = NULL;
2f47a91f 1531
80b1f41c
PT
1532 for (; pfn < end_pfn; pfn++) {
1533 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1534 page = NULL;
2f47a91f 1535 continue;
80b1f41c 1536 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1537 page = pfn_to_page(pfn);
2f47a91f 1538 cond_resched();
80b1f41c
PT
1539 } else {
1540 page++;
2f47a91f 1541 }
9bb5a391 1542 __init_single_page(page, pfn, zid, nid, true);
80b1f41c 1543 nr_pages++;
2f47a91f 1544 }
80b1f41c 1545 return (nr_pages);
2f47a91f
PT
1546}
1547
7e18adb4 1548/* Initialise remaining memory on a node */
0e1cc95b 1549static int __init deferred_init_memmap(void *data)
7e18adb4 1550{
0e1cc95b
MG
1551 pg_data_t *pgdat = data;
1552 int nid = pgdat->node_id;
7e18adb4
MG
1553 unsigned long start = jiffies;
1554 unsigned long nr_pages = 0;
2f47a91f
PT
1555 unsigned long spfn, epfn;
1556 phys_addr_t spa, epa;
1557 int zid;
7e18adb4 1558 struct zone *zone;
7e18adb4 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1561 u64 i;
7e18adb4 1562
0e1cc95b 1563 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1564 pgdat_init_report_one_done();
0e1cc95b
MG
1565 return 0;
1566 }
1567
1568 /* Bind memory initialisation thread to a local node if possible */
1569 if (!cpumask_empty(cpumask))
1570 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1571
1572 /* Sanity check boundaries */
1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 pgdat->first_deferred_pfn = ULONG_MAX;
1576
1577 /* Only the highest zone is deferred so find it */
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 zone = pgdat->node_zones + zid;
1580 if (first_init_pfn < zone_end_pfn(zone))
1581 break;
1582 }
2f47a91f 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1584
80b1f41c
PT
1585 /*
1586 * Initialize and free pages. We do it in two loops: first we initialize
1587 * struct page, than free to buddy allocator, because while we are
1588 * freeing pages we can access pages that are ahead (computing buddy
1589 * page in __free_one_page()).
1590 */
1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1595 }
2f47a91f
PT
1596 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1597 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1598 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1599 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4
MG
1600 }
1601
1602 /* Sanity check that the next zone really is unpopulated */
1603 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1604
0e1cc95b 1605 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1606 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1607
1608 pgdat_init_report_one_done();
0e1cc95b
MG
1609 return 0;
1610}
7cf91a98 1611#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1612
1613void __init page_alloc_init_late(void)
1614{
7cf91a98
JK
1615 struct zone *zone;
1616
1617#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1618 int nid;
1619
d3cd131d
NS
1620 /* There will be num_node_state(N_MEMORY) threads */
1621 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1622 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1623 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1624 }
1625
1626 /* Block until all are initialised */
d3cd131d 1627 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1628
1629 /* Reinit limits that are based on free pages after the kernel is up */
1630 files_maxfiles_init();
7cf91a98 1631#endif
3010f876
PT
1632#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1633 /* Discard memblock private memory */
1634 memblock_discard();
1635#endif
7cf91a98
JK
1636
1637 for_each_populated_zone(zone)
1638 set_zone_contiguous(zone);
7e18adb4 1639}
7e18adb4 1640
47118af0 1641#ifdef CONFIG_CMA
9cf510a5 1642/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1643void __init init_cma_reserved_pageblock(struct page *page)
1644{
1645 unsigned i = pageblock_nr_pages;
1646 struct page *p = page;
1647
1648 do {
1649 __ClearPageReserved(p);
1650 set_page_count(p, 0);
1651 } while (++p, --i);
1652
47118af0 1653 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1654
1655 if (pageblock_order >= MAX_ORDER) {
1656 i = pageblock_nr_pages;
1657 p = page;
1658 do {
1659 set_page_refcounted(p);
1660 __free_pages(p, MAX_ORDER - 1);
1661 p += MAX_ORDER_NR_PAGES;
1662 } while (i -= MAX_ORDER_NR_PAGES);
1663 } else {
1664 set_page_refcounted(page);
1665 __free_pages(page, pageblock_order);
1666 }
1667
3dcc0571 1668 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1669}
1670#endif
1da177e4
LT
1671
1672/*
1673 * The order of subdivision here is critical for the IO subsystem.
1674 * Please do not alter this order without good reasons and regression
1675 * testing. Specifically, as large blocks of memory are subdivided,
1676 * the order in which smaller blocks are delivered depends on the order
1677 * they're subdivided in this function. This is the primary factor
1678 * influencing the order in which pages are delivered to the IO
1679 * subsystem according to empirical testing, and this is also justified
1680 * by considering the behavior of a buddy system containing a single
1681 * large block of memory acted on by a series of small allocations.
1682 * This behavior is a critical factor in sglist merging's success.
1683 *
6d49e352 1684 * -- nyc
1da177e4 1685 */
085cc7d5 1686static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1687 int low, int high, struct free_area *area,
1688 int migratetype)
1da177e4
LT
1689{
1690 unsigned long size = 1 << high;
1691
1692 while (high > low) {
1693 area--;
1694 high--;
1695 size >>= 1;
309381fe 1696 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1697
acbc15a4
JK
1698 /*
1699 * Mark as guard pages (or page), that will allow to
1700 * merge back to allocator when buddy will be freed.
1701 * Corresponding page table entries will not be touched,
1702 * pages will stay not present in virtual address space
1703 */
1704 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1705 continue;
acbc15a4 1706
b2a0ac88 1707 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1708 area->nr_free++;
1709 set_page_order(&page[size], high);
1710 }
1da177e4
LT
1711}
1712
4e611801 1713static void check_new_page_bad(struct page *page)
1da177e4 1714{
4e611801
VB
1715 const char *bad_reason = NULL;
1716 unsigned long bad_flags = 0;
7bfec6f4 1717
53f9263b 1718 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1719 bad_reason = "nonzero mapcount";
1720 if (unlikely(page->mapping != NULL))
1721 bad_reason = "non-NULL mapping";
fe896d18 1722 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1723 bad_reason = "nonzero _count";
f4c18e6f
NH
1724 if (unlikely(page->flags & __PG_HWPOISON)) {
1725 bad_reason = "HWPoisoned (hardware-corrupted)";
1726 bad_flags = __PG_HWPOISON;
e570f56c
NH
1727 /* Don't complain about hwpoisoned pages */
1728 page_mapcount_reset(page); /* remove PageBuddy */
1729 return;
f4c18e6f 1730 }
f0b791a3
DH
1731 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1732 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1733 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1734 }
9edad6ea
JW
1735#ifdef CONFIG_MEMCG
1736 if (unlikely(page->mem_cgroup))
1737 bad_reason = "page still charged to cgroup";
1738#endif
4e611801
VB
1739 bad_page(page, bad_reason, bad_flags);
1740}
1741
1742/*
1743 * This page is about to be returned from the page allocator
1744 */
1745static inline int check_new_page(struct page *page)
1746{
1747 if (likely(page_expected_state(page,
1748 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1749 return 0;
1750
1751 check_new_page_bad(page);
1752 return 1;
2a7684a2
WF
1753}
1754
bd33ef36 1755static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1756{
1757 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1758 page_poisoning_enabled();
1414c7f4
LA
1759}
1760
479f854a
MG
1761#ifdef CONFIG_DEBUG_VM
1762static bool check_pcp_refill(struct page *page)
1763{
1764 return false;
1765}
1766
1767static bool check_new_pcp(struct page *page)
1768{
1769 return check_new_page(page);
1770}
1771#else
1772static bool check_pcp_refill(struct page *page)
1773{
1774 return check_new_page(page);
1775}
1776static bool check_new_pcp(struct page *page)
1777{
1778 return false;
1779}
1780#endif /* CONFIG_DEBUG_VM */
1781
1782static bool check_new_pages(struct page *page, unsigned int order)
1783{
1784 int i;
1785 for (i = 0; i < (1 << order); i++) {
1786 struct page *p = page + i;
1787
1788 if (unlikely(check_new_page(p)))
1789 return true;
1790 }
1791
1792 return false;
1793}
1794
46f24fd8
JK
1795inline void post_alloc_hook(struct page *page, unsigned int order,
1796 gfp_t gfp_flags)
1797{
1798 set_page_private(page, 0);
1799 set_page_refcounted(page);
1800
1801 arch_alloc_page(page, order);
1802 kernel_map_pages(page, 1 << order, 1);
1803 kernel_poison_pages(page, 1 << order, 1);
1804 kasan_alloc_pages(page, order);
1805 set_page_owner(page, order, gfp_flags);
1806}
1807
479f854a 1808static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1809 unsigned int alloc_flags)
2a7684a2
WF
1810{
1811 int i;
689bcebf 1812
46f24fd8 1813 post_alloc_hook(page, order, gfp_flags);
17cf4406 1814
bd33ef36 1815 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1816 for (i = 0; i < (1 << order); i++)
1817 clear_highpage(page + i);
17cf4406
NP
1818
1819 if (order && (gfp_flags & __GFP_COMP))
1820 prep_compound_page(page, order);
1821
75379191 1822 /*
2f064f34 1823 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1824 * allocate the page. The expectation is that the caller is taking
1825 * steps that will free more memory. The caller should avoid the page
1826 * being used for !PFMEMALLOC purposes.
1827 */
2f064f34
MH
1828 if (alloc_flags & ALLOC_NO_WATERMARKS)
1829 set_page_pfmemalloc(page);
1830 else
1831 clear_page_pfmemalloc(page);
1da177e4
LT
1832}
1833
56fd56b8
MG
1834/*
1835 * Go through the free lists for the given migratetype and remove
1836 * the smallest available page from the freelists
1837 */
85ccc8fa 1838static __always_inline
728ec980 1839struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1840 int migratetype)
1841{
1842 unsigned int current_order;
b8af2941 1843 struct free_area *area;
56fd56b8
MG
1844 struct page *page;
1845
1846 /* Find a page of the appropriate size in the preferred list */
1847 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1848 area = &(zone->free_area[current_order]);
a16601c5 1849 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1850 struct page, lru);
a16601c5
GT
1851 if (!page)
1852 continue;
56fd56b8
MG
1853 list_del(&page->lru);
1854 rmv_page_order(page);
1855 area->nr_free--;
56fd56b8 1856 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1857 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1858 return page;
1859 }
1860
1861 return NULL;
1862}
1863
1864
b2a0ac88
MG
1865/*
1866 * This array describes the order lists are fallen back to when
1867 * the free lists for the desirable migrate type are depleted
1868 */
47118af0 1869static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1870 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1871 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1872 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1873#ifdef CONFIG_CMA
974a786e 1874 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1875#endif
194159fb 1876#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1877 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1878#endif
b2a0ac88
MG
1879};
1880
dc67647b 1881#ifdef CONFIG_CMA
85ccc8fa 1882static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1883 unsigned int order)
1884{
1885 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1886}
1887#else
1888static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1889 unsigned int order) { return NULL; }
1890#endif
1891
c361be55
MG
1892/*
1893 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1894 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1895 * boundary. If alignment is required, use move_freepages_block()
1896 */
02aa0cdd 1897static int move_freepages(struct zone *zone,
b69a7288 1898 struct page *start_page, struct page *end_page,
02aa0cdd 1899 int migratetype, int *num_movable)
c361be55
MG
1900{
1901 struct page *page;
d00181b9 1902 unsigned int order;
d100313f 1903 int pages_moved = 0;
c361be55
MG
1904
1905#ifndef CONFIG_HOLES_IN_ZONE
1906 /*
1907 * page_zone is not safe to call in this context when
1908 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1909 * anyway as we check zone boundaries in move_freepages_block().
1910 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1911 * grouping pages by mobility
c361be55 1912 */
97ee4ba7 1913 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1914#endif
1915
02aa0cdd
VB
1916 if (num_movable)
1917 *num_movable = 0;
1918
c361be55
MG
1919 for (page = start_page; page <= end_page;) {
1920 if (!pfn_valid_within(page_to_pfn(page))) {
1921 page++;
1922 continue;
1923 }
1924
f073bdc5
AB
1925 /* Make sure we are not inadvertently changing nodes */
1926 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1927
c361be55 1928 if (!PageBuddy(page)) {
02aa0cdd
VB
1929 /*
1930 * We assume that pages that could be isolated for
1931 * migration are movable. But we don't actually try
1932 * isolating, as that would be expensive.
1933 */
1934 if (num_movable &&
1935 (PageLRU(page) || __PageMovable(page)))
1936 (*num_movable)++;
1937
c361be55
MG
1938 page++;
1939 continue;
1940 }
1941
1942 order = page_order(page);
84be48d8
KS
1943 list_move(&page->lru,
1944 &zone->free_area[order].free_list[migratetype]);
c361be55 1945 page += 1 << order;
d100313f 1946 pages_moved += 1 << order;
c361be55
MG
1947 }
1948
d100313f 1949 return pages_moved;
c361be55
MG
1950}
1951
ee6f509c 1952int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1953 int migratetype, int *num_movable)
c361be55
MG
1954{
1955 unsigned long start_pfn, end_pfn;
1956 struct page *start_page, *end_page;
1957
1958 start_pfn = page_to_pfn(page);
d9c23400 1959 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1960 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1961 end_page = start_page + pageblock_nr_pages - 1;
1962 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1963
1964 /* Do not cross zone boundaries */
108bcc96 1965 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1966 start_page = page;
108bcc96 1967 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1968 return 0;
1969
02aa0cdd
VB
1970 return move_freepages(zone, start_page, end_page, migratetype,
1971 num_movable);
c361be55
MG
1972}
1973
2f66a68f
MG
1974static void change_pageblock_range(struct page *pageblock_page,
1975 int start_order, int migratetype)
1976{
1977 int nr_pageblocks = 1 << (start_order - pageblock_order);
1978
1979 while (nr_pageblocks--) {
1980 set_pageblock_migratetype(pageblock_page, migratetype);
1981 pageblock_page += pageblock_nr_pages;
1982 }
1983}
1984
fef903ef 1985/*
9c0415eb
VB
1986 * When we are falling back to another migratetype during allocation, try to
1987 * steal extra free pages from the same pageblocks to satisfy further
1988 * allocations, instead of polluting multiple pageblocks.
1989 *
1990 * If we are stealing a relatively large buddy page, it is likely there will
1991 * be more free pages in the pageblock, so try to steal them all. For
1992 * reclaimable and unmovable allocations, we steal regardless of page size,
1993 * as fragmentation caused by those allocations polluting movable pageblocks
1994 * is worse than movable allocations stealing from unmovable and reclaimable
1995 * pageblocks.
fef903ef 1996 */
4eb7dce6
JK
1997static bool can_steal_fallback(unsigned int order, int start_mt)
1998{
1999 /*
2000 * Leaving this order check is intended, although there is
2001 * relaxed order check in next check. The reason is that
2002 * we can actually steal whole pageblock if this condition met,
2003 * but, below check doesn't guarantee it and that is just heuristic
2004 * so could be changed anytime.
2005 */
2006 if (order >= pageblock_order)
2007 return true;
2008
2009 if (order >= pageblock_order / 2 ||
2010 start_mt == MIGRATE_RECLAIMABLE ||
2011 start_mt == MIGRATE_UNMOVABLE ||
2012 page_group_by_mobility_disabled)
2013 return true;
2014
2015 return false;
2016}
2017
2018/*
2019 * This function implements actual steal behaviour. If order is large enough,
2020 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2021 * pageblock to our migratetype and determine how many already-allocated pages
2022 * are there in the pageblock with a compatible migratetype. If at least half
2023 * of pages are free or compatible, we can change migratetype of the pageblock
2024 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2025 */
2026static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2027 int start_type, bool whole_block)
fef903ef 2028{
d00181b9 2029 unsigned int current_order = page_order(page);
3bc48f96 2030 struct free_area *area;
02aa0cdd
VB
2031 int free_pages, movable_pages, alike_pages;
2032 int old_block_type;
2033
2034 old_block_type = get_pageblock_migratetype(page);
fef903ef 2035
3bc48f96
VB
2036 /*
2037 * This can happen due to races and we want to prevent broken
2038 * highatomic accounting.
2039 */
02aa0cdd 2040 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2041 goto single_page;
2042
fef903ef
SB
2043 /* Take ownership for orders >= pageblock_order */
2044 if (current_order >= pageblock_order) {
2045 change_pageblock_range(page, current_order, start_type);
3bc48f96 2046 goto single_page;
fef903ef
SB
2047 }
2048
3bc48f96
VB
2049 /* We are not allowed to try stealing from the whole block */
2050 if (!whole_block)
2051 goto single_page;
2052
02aa0cdd
VB
2053 free_pages = move_freepages_block(zone, page, start_type,
2054 &movable_pages);
2055 /*
2056 * Determine how many pages are compatible with our allocation.
2057 * For movable allocation, it's the number of movable pages which
2058 * we just obtained. For other types it's a bit more tricky.
2059 */
2060 if (start_type == MIGRATE_MOVABLE) {
2061 alike_pages = movable_pages;
2062 } else {
2063 /*
2064 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2065 * to MOVABLE pageblock, consider all non-movable pages as
2066 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2067 * vice versa, be conservative since we can't distinguish the
2068 * exact migratetype of non-movable pages.
2069 */
2070 if (old_block_type == MIGRATE_MOVABLE)
2071 alike_pages = pageblock_nr_pages
2072 - (free_pages + movable_pages);
2073 else
2074 alike_pages = 0;
2075 }
2076
3bc48f96 2077 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2078 if (!free_pages)
3bc48f96 2079 goto single_page;
fef903ef 2080
02aa0cdd
VB
2081 /*
2082 * If a sufficient number of pages in the block are either free or of
2083 * comparable migratability as our allocation, claim the whole block.
2084 */
2085 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2086 page_group_by_mobility_disabled)
2087 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2088
2089 return;
2090
2091single_page:
2092 area = &zone->free_area[current_order];
2093 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2094}
2095
2149cdae
JK
2096/*
2097 * Check whether there is a suitable fallback freepage with requested order.
2098 * If only_stealable is true, this function returns fallback_mt only if
2099 * we can steal other freepages all together. This would help to reduce
2100 * fragmentation due to mixed migratetype pages in one pageblock.
2101 */
2102int find_suitable_fallback(struct free_area *area, unsigned int order,
2103 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2104{
2105 int i;
2106 int fallback_mt;
2107
2108 if (area->nr_free == 0)
2109 return -1;
2110
2111 *can_steal = false;
2112 for (i = 0;; i++) {
2113 fallback_mt = fallbacks[migratetype][i];
974a786e 2114 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2115 break;
2116
2117 if (list_empty(&area->free_list[fallback_mt]))
2118 continue;
fef903ef 2119
4eb7dce6
JK
2120 if (can_steal_fallback(order, migratetype))
2121 *can_steal = true;
2122
2149cdae
JK
2123 if (!only_stealable)
2124 return fallback_mt;
2125
2126 if (*can_steal)
2127 return fallback_mt;
fef903ef 2128 }
4eb7dce6
JK
2129
2130 return -1;
fef903ef
SB
2131}
2132
0aaa29a5
MG
2133/*
2134 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2135 * there are no empty page blocks that contain a page with a suitable order
2136 */
2137static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2138 unsigned int alloc_order)
2139{
2140 int mt;
2141 unsigned long max_managed, flags;
2142
2143 /*
2144 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2145 * Check is race-prone but harmless.
2146 */
2147 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2148 if (zone->nr_reserved_highatomic >= max_managed)
2149 return;
2150
2151 spin_lock_irqsave(&zone->lock, flags);
2152
2153 /* Recheck the nr_reserved_highatomic limit under the lock */
2154 if (zone->nr_reserved_highatomic >= max_managed)
2155 goto out_unlock;
2156
2157 /* Yoink! */
2158 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2159 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2160 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2161 zone->nr_reserved_highatomic += pageblock_nr_pages;
2162 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2163 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2164 }
2165
2166out_unlock:
2167 spin_unlock_irqrestore(&zone->lock, flags);
2168}
2169
2170/*
2171 * Used when an allocation is about to fail under memory pressure. This
2172 * potentially hurts the reliability of high-order allocations when under
2173 * intense memory pressure but failed atomic allocations should be easier
2174 * to recover from than an OOM.
29fac03b
MK
2175 *
2176 * If @force is true, try to unreserve a pageblock even though highatomic
2177 * pageblock is exhausted.
0aaa29a5 2178 */
29fac03b
MK
2179static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2180 bool force)
0aaa29a5
MG
2181{
2182 struct zonelist *zonelist = ac->zonelist;
2183 unsigned long flags;
2184 struct zoneref *z;
2185 struct zone *zone;
2186 struct page *page;
2187 int order;
04c8716f 2188 bool ret;
0aaa29a5
MG
2189
2190 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2191 ac->nodemask) {
29fac03b
MK
2192 /*
2193 * Preserve at least one pageblock unless memory pressure
2194 * is really high.
2195 */
2196 if (!force && zone->nr_reserved_highatomic <=
2197 pageblock_nr_pages)
0aaa29a5
MG
2198 continue;
2199
2200 spin_lock_irqsave(&zone->lock, flags);
2201 for (order = 0; order < MAX_ORDER; order++) {
2202 struct free_area *area = &(zone->free_area[order]);
2203
a16601c5
GT
2204 page = list_first_entry_or_null(
2205 &area->free_list[MIGRATE_HIGHATOMIC],
2206 struct page, lru);
2207 if (!page)
0aaa29a5
MG
2208 continue;
2209
0aaa29a5 2210 /*
4855e4a7
MK
2211 * In page freeing path, migratetype change is racy so
2212 * we can counter several free pages in a pageblock
2213 * in this loop althoug we changed the pageblock type
2214 * from highatomic to ac->migratetype. So we should
2215 * adjust the count once.
0aaa29a5 2216 */
a6ffdc07 2217 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2218 /*
2219 * It should never happen but changes to
2220 * locking could inadvertently allow a per-cpu
2221 * drain to add pages to MIGRATE_HIGHATOMIC
2222 * while unreserving so be safe and watch for
2223 * underflows.
2224 */
2225 zone->nr_reserved_highatomic -= min(
2226 pageblock_nr_pages,
2227 zone->nr_reserved_highatomic);
2228 }
0aaa29a5
MG
2229
2230 /*
2231 * Convert to ac->migratetype and avoid the normal
2232 * pageblock stealing heuristics. Minimally, the caller
2233 * is doing the work and needs the pages. More
2234 * importantly, if the block was always converted to
2235 * MIGRATE_UNMOVABLE or another type then the number
2236 * of pageblocks that cannot be completely freed
2237 * may increase.
2238 */
2239 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2240 ret = move_freepages_block(zone, page, ac->migratetype,
2241 NULL);
29fac03b
MK
2242 if (ret) {
2243 spin_unlock_irqrestore(&zone->lock, flags);
2244 return ret;
2245 }
0aaa29a5
MG
2246 }
2247 spin_unlock_irqrestore(&zone->lock, flags);
2248 }
04c8716f
MK
2249
2250 return false;
0aaa29a5
MG
2251}
2252
3bc48f96
VB
2253/*
2254 * Try finding a free buddy page on the fallback list and put it on the free
2255 * list of requested migratetype, possibly along with other pages from the same
2256 * block, depending on fragmentation avoidance heuristics. Returns true if
2257 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2258 *
2259 * The use of signed ints for order and current_order is a deliberate
2260 * deviation from the rest of this file, to make the for loop
2261 * condition simpler.
3bc48f96 2262 */
85ccc8fa 2263static __always_inline bool
b002529d 2264__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2265{
b8af2941 2266 struct free_area *area;
b002529d 2267 int current_order;
b2a0ac88 2268 struct page *page;
4eb7dce6
JK
2269 int fallback_mt;
2270 bool can_steal;
b2a0ac88 2271
7a8f58f3
VB
2272 /*
2273 * Find the largest available free page in the other list. This roughly
2274 * approximates finding the pageblock with the most free pages, which
2275 * would be too costly to do exactly.
2276 */
b002529d 2277 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2278 --current_order) {
4eb7dce6
JK
2279 area = &(zone->free_area[current_order]);
2280 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2281 start_migratetype, false, &can_steal);
4eb7dce6
JK
2282 if (fallback_mt == -1)
2283 continue;
b2a0ac88 2284
7a8f58f3
VB
2285 /*
2286 * We cannot steal all free pages from the pageblock and the
2287 * requested migratetype is movable. In that case it's better to
2288 * steal and split the smallest available page instead of the
2289 * largest available page, because even if the next movable
2290 * allocation falls back into a different pageblock than this
2291 * one, it won't cause permanent fragmentation.
2292 */
2293 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2294 && current_order > order)
2295 goto find_smallest;
b2a0ac88 2296
7a8f58f3
VB
2297 goto do_steal;
2298 }
e0fff1bd 2299
7a8f58f3 2300 return false;
e0fff1bd 2301
7a8f58f3
VB
2302find_smallest:
2303 for (current_order = order; current_order < MAX_ORDER;
2304 current_order++) {
2305 area = &(zone->free_area[current_order]);
2306 fallback_mt = find_suitable_fallback(area, current_order,
2307 start_migratetype, false, &can_steal);
2308 if (fallback_mt != -1)
2309 break;
b2a0ac88
MG
2310 }
2311
7a8f58f3
VB
2312 /*
2313 * This should not happen - we already found a suitable fallback
2314 * when looking for the largest page.
2315 */
2316 VM_BUG_ON(current_order == MAX_ORDER);
2317
2318do_steal:
2319 page = list_first_entry(&area->free_list[fallback_mt],
2320 struct page, lru);
2321
2322 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2323
2324 trace_mm_page_alloc_extfrag(page, order, current_order,
2325 start_migratetype, fallback_mt);
2326
2327 return true;
2328
b2a0ac88
MG
2329}
2330
56fd56b8 2331/*
1da177e4
LT
2332 * Do the hard work of removing an element from the buddy allocator.
2333 * Call me with the zone->lock already held.
2334 */
85ccc8fa
AL
2335static __always_inline struct page *
2336__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2337{
1da177e4
LT
2338 struct page *page;
2339
3bc48f96 2340retry:
56fd56b8 2341 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2342 if (unlikely(!page)) {
dc67647b
JK
2343 if (migratetype == MIGRATE_MOVABLE)
2344 page = __rmqueue_cma_fallback(zone, order);
2345
3bc48f96
VB
2346 if (!page && __rmqueue_fallback(zone, order, migratetype))
2347 goto retry;
728ec980
MG
2348 }
2349
0d3d062a 2350 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2351 return page;
1da177e4
LT
2352}
2353
5f63b720 2354/*
1da177e4
LT
2355 * Obtain a specified number of elements from the buddy allocator, all under
2356 * a single hold of the lock, for efficiency. Add them to the supplied list.
2357 * Returns the number of new pages which were placed at *list.
2358 */
5f63b720 2359static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2360 unsigned long count, struct list_head *list,
453f85d4 2361 int migratetype)
1da177e4 2362{
a6de734b 2363 int i, alloced = 0;
5f63b720 2364
d34b0733 2365 spin_lock(&zone->lock);
1da177e4 2366 for (i = 0; i < count; ++i) {
6ac0206b 2367 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2368 if (unlikely(page == NULL))
1da177e4 2369 break;
81eabcbe 2370
479f854a
MG
2371 if (unlikely(check_pcp_refill(page)))
2372 continue;
2373
81eabcbe 2374 /*
0fac3ba5
VB
2375 * Split buddy pages returned by expand() are received here in
2376 * physical page order. The page is added to the tail of
2377 * caller's list. From the callers perspective, the linked list
2378 * is ordered by page number under some conditions. This is
2379 * useful for IO devices that can forward direction from the
2380 * head, thus also in the physical page order. This is useful
2381 * for IO devices that can merge IO requests if the physical
2382 * pages are ordered properly.
81eabcbe 2383 */
0fac3ba5 2384 list_add_tail(&page->lru, list);
a6de734b 2385 alloced++;
bb14c2c7 2386 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2387 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2388 -(1 << order));
1da177e4 2389 }
a6de734b
MG
2390
2391 /*
2392 * i pages were removed from the buddy list even if some leak due
2393 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2394 * on i. Do not confuse with 'alloced' which is the number of
2395 * pages added to the pcp list.
2396 */
f2260e6b 2397 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2398 spin_unlock(&zone->lock);
a6de734b 2399 return alloced;
1da177e4
LT
2400}
2401
4ae7c039 2402#ifdef CONFIG_NUMA
8fce4d8e 2403/*
4037d452
CL
2404 * Called from the vmstat counter updater to drain pagesets of this
2405 * currently executing processor on remote nodes after they have
2406 * expired.
2407 *
879336c3
CL
2408 * Note that this function must be called with the thread pinned to
2409 * a single processor.
8fce4d8e 2410 */
4037d452 2411void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2412{
4ae7c039 2413 unsigned long flags;
7be12fc9 2414 int to_drain, batch;
4ae7c039 2415
4037d452 2416 local_irq_save(flags);
4db0c3c2 2417 batch = READ_ONCE(pcp->batch);
7be12fc9 2418 to_drain = min(pcp->count, batch);
2a13515c
KM
2419 if (to_drain > 0) {
2420 free_pcppages_bulk(zone, to_drain, pcp);
2421 pcp->count -= to_drain;
2422 }
4037d452 2423 local_irq_restore(flags);
4ae7c039
CL
2424}
2425#endif
2426
9f8f2172 2427/*
93481ff0 2428 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2429 *
2430 * The processor must either be the current processor and the
2431 * thread pinned to the current processor or a processor that
2432 * is not online.
2433 */
93481ff0 2434static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2435{
c54ad30c 2436 unsigned long flags;
93481ff0
VB
2437 struct per_cpu_pageset *pset;
2438 struct per_cpu_pages *pcp;
1da177e4 2439
93481ff0
VB
2440 local_irq_save(flags);
2441 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2442
93481ff0
VB
2443 pcp = &pset->pcp;
2444 if (pcp->count) {
2445 free_pcppages_bulk(zone, pcp->count, pcp);
2446 pcp->count = 0;
2447 }
2448 local_irq_restore(flags);
2449}
3dfa5721 2450
93481ff0
VB
2451/*
2452 * Drain pcplists of all zones on the indicated processor.
2453 *
2454 * The processor must either be the current processor and the
2455 * thread pinned to the current processor or a processor that
2456 * is not online.
2457 */
2458static void drain_pages(unsigned int cpu)
2459{
2460 struct zone *zone;
2461
2462 for_each_populated_zone(zone) {
2463 drain_pages_zone(cpu, zone);
1da177e4
LT
2464 }
2465}
1da177e4 2466
9f8f2172
CL
2467/*
2468 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2469 *
2470 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2471 * the single zone's pages.
9f8f2172 2472 */
93481ff0 2473void drain_local_pages(struct zone *zone)
9f8f2172 2474{
93481ff0
VB
2475 int cpu = smp_processor_id();
2476
2477 if (zone)
2478 drain_pages_zone(cpu, zone);
2479 else
2480 drain_pages(cpu);
9f8f2172
CL
2481}
2482
0ccce3b9
MG
2483static void drain_local_pages_wq(struct work_struct *work)
2484{
a459eeb7
MH
2485 /*
2486 * drain_all_pages doesn't use proper cpu hotplug protection so
2487 * we can race with cpu offline when the WQ can move this from
2488 * a cpu pinned worker to an unbound one. We can operate on a different
2489 * cpu which is allright but we also have to make sure to not move to
2490 * a different one.
2491 */
2492 preempt_disable();
0ccce3b9 2493 drain_local_pages(NULL);
a459eeb7 2494 preempt_enable();
0ccce3b9
MG
2495}
2496
9f8f2172 2497/*
74046494
GBY
2498 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2499 *
93481ff0
VB
2500 * When zone parameter is non-NULL, spill just the single zone's pages.
2501 *
0ccce3b9 2502 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2503 */
93481ff0 2504void drain_all_pages(struct zone *zone)
9f8f2172 2505{
74046494 2506 int cpu;
74046494
GBY
2507
2508 /*
2509 * Allocate in the BSS so we wont require allocation in
2510 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2511 */
2512 static cpumask_t cpus_with_pcps;
2513
ce612879
MH
2514 /*
2515 * Make sure nobody triggers this path before mm_percpu_wq is fully
2516 * initialized.
2517 */
2518 if (WARN_ON_ONCE(!mm_percpu_wq))
2519 return;
2520
bd233f53
MG
2521 /*
2522 * Do not drain if one is already in progress unless it's specific to
2523 * a zone. Such callers are primarily CMA and memory hotplug and need
2524 * the drain to be complete when the call returns.
2525 */
2526 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2527 if (!zone)
2528 return;
2529 mutex_lock(&pcpu_drain_mutex);
2530 }
0ccce3b9 2531
74046494
GBY
2532 /*
2533 * We don't care about racing with CPU hotplug event
2534 * as offline notification will cause the notified
2535 * cpu to drain that CPU pcps and on_each_cpu_mask
2536 * disables preemption as part of its processing
2537 */
2538 for_each_online_cpu(cpu) {
93481ff0
VB
2539 struct per_cpu_pageset *pcp;
2540 struct zone *z;
74046494 2541 bool has_pcps = false;
93481ff0
VB
2542
2543 if (zone) {
74046494 2544 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2545 if (pcp->pcp.count)
74046494 2546 has_pcps = true;
93481ff0
VB
2547 } else {
2548 for_each_populated_zone(z) {
2549 pcp = per_cpu_ptr(z->pageset, cpu);
2550 if (pcp->pcp.count) {
2551 has_pcps = true;
2552 break;
2553 }
74046494
GBY
2554 }
2555 }
93481ff0 2556
74046494
GBY
2557 if (has_pcps)
2558 cpumask_set_cpu(cpu, &cpus_with_pcps);
2559 else
2560 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2561 }
0ccce3b9 2562
bd233f53
MG
2563 for_each_cpu(cpu, &cpus_with_pcps) {
2564 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2565 INIT_WORK(work, drain_local_pages_wq);
ce612879 2566 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2567 }
bd233f53
MG
2568 for_each_cpu(cpu, &cpus_with_pcps)
2569 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2570
2571 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2572}
2573
296699de 2574#ifdef CONFIG_HIBERNATION
1da177e4 2575
556b969a
CY
2576/*
2577 * Touch the watchdog for every WD_PAGE_COUNT pages.
2578 */
2579#define WD_PAGE_COUNT (128*1024)
2580
1da177e4
LT
2581void mark_free_pages(struct zone *zone)
2582{
556b969a 2583 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2584 unsigned long flags;
7aeb09f9 2585 unsigned int order, t;
86760a2c 2586 struct page *page;
1da177e4 2587
8080fc03 2588 if (zone_is_empty(zone))
1da177e4
LT
2589 return;
2590
2591 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2592
108bcc96 2593 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2594 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2595 if (pfn_valid(pfn)) {
86760a2c 2596 page = pfn_to_page(pfn);
ba6b0979 2597
556b969a
CY
2598 if (!--page_count) {
2599 touch_nmi_watchdog();
2600 page_count = WD_PAGE_COUNT;
2601 }
2602
ba6b0979
JK
2603 if (page_zone(page) != zone)
2604 continue;
2605
7be98234
RW
2606 if (!swsusp_page_is_forbidden(page))
2607 swsusp_unset_page_free(page);
f623f0db 2608 }
1da177e4 2609
b2a0ac88 2610 for_each_migratetype_order(order, t) {
86760a2c
GT
2611 list_for_each_entry(page,
2612 &zone->free_area[order].free_list[t], lru) {
f623f0db 2613 unsigned long i;
1da177e4 2614
86760a2c 2615 pfn = page_to_pfn(page);
556b969a
CY
2616 for (i = 0; i < (1UL << order); i++) {
2617 if (!--page_count) {
2618 touch_nmi_watchdog();
2619 page_count = WD_PAGE_COUNT;
2620 }
7be98234 2621 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2622 }
f623f0db 2623 }
b2a0ac88 2624 }
1da177e4
LT
2625 spin_unlock_irqrestore(&zone->lock, flags);
2626}
e2c55dc8 2627#endif /* CONFIG_PM */
1da177e4 2628
2d4894b5 2629static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2630{
5f8dcc21 2631 int migratetype;
1da177e4 2632
4db7548c 2633 if (!free_pcp_prepare(page))
9cca35d4 2634 return false;
689bcebf 2635
dc4b0caf 2636 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2637 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2638 return true;
2639}
2640
2d4894b5 2641static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2642{
2643 struct zone *zone = page_zone(page);
2644 struct per_cpu_pages *pcp;
2645 int migratetype;
2646
2647 migratetype = get_pcppage_migratetype(page);
d34b0733 2648 __count_vm_event(PGFREE);
da456f14 2649
5f8dcc21
MG
2650 /*
2651 * We only track unmovable, reclaimable and movable on pcp lists.
2652 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2653 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2654 * areas back if necessary. Otherwise, we may have to free
2655 * excessively into the page allocator
2656 */
2657 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2658 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2659 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2660 return;
5f8dcc21
MG
2661 }
2662 migratetype = MIGRATE_MOVABLE;
2663 }
2664
99dcc3e5 2665 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2666 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2667 pcp->count++;
48db57f8 2668 if (pcp->count >= pcp->high) {
4db0c3c2 2669 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2670 free_pcppages_bulk(zone, batch, pcp);
2671 pcp->count -= batch;
48db57f8 2672 }
9cca35d4 2673}
5f8dcc21 2674
9cca35d4
MG
2675/*
2676 * Free a 0-order page
9cca35d4 2677 */
2d4894b5 2678void free_unref_page(struct page *page)
9cca35d4
MG
2679{
2680 unsigned long flags;
2681 unsigned long pfn = page_to_pfn(page);
2682
2d4894b5 2683 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2684 return;
2685
2686 local_irq_save(flags);
2d4894b5 2687 free_unref_page_commit(page, pfn);
d34b0733 2688 local_irq_restore(flags);
1da177e4
LT
2689}
2690
cc59850e
KK
2691/*
2692 * Free a list of 0-order pages
2693 */
2d4894b5 2694void free_unref_page_list(struct list_head *list)
cc59850e
KK
2695{
2696 struct page *page, *next;
9cca35d4 2697 unsigned long flags, pfn;
c24ad77d 2698 int batch_count = 0;
9cca35d4
MG
2699
2700 /* Prepare pages for freeing */
2701 list_for_each_entry_safe(page, next, list, lru) {
2702 pfn = page_to_pfn(page);
2d4894b5 2703 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2704 list_del(&page->lru);
2705 set_page_private(page, pfn);
2706 }
cc59850e 2707
9cca35d4 2708 local_irq_save(flags);
cc59850e 2709 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2710 unsigned long pfn = page_private(page);
2711
2712 set_page_private(page, 0);
2d4894b5
MG
2713 trace_mm_page_free_batched(page);
2714 free_unref_page_commit(page, pfn);
c24ad77d
LS
2715
2716 /*
2717 * Guard against excessive IRQ disabled times when we get
2718 * a large list of pages to free.
2719 */
2720 if (++batch_count == SWAP_CLUSTER_MAX) {
2721 local_irq_restore(flags);
2722 batch_count = 0;
2723 local_irq_save(flags);
2724 }
cc59850e 2725 }
9cca35d4 2726 local_irq_restore(flags);
cc59850e
KK
2727}
2728
8dfcc9ba
NP
2729/*
2730 * split_page takes a non-compound higher-order page, and splits it into
2731 * n (1<<order) sub-pages: page[0..n]
2732 * Each sub-page must be freed individually.
2733 *
2734 * Note: this is probably too low level an operation for use in drivers.
2735 * Please consult with lkml before using this in your driver.
2736 */
2737void split_page(struct page *page, unsigned int order)
2738{
2739 int i;
2740
309381fe
SL
2741 VM_BUG_ON_PAGE(PageCompound(page), page);
2742 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2743
a9627bc5 2744 for (i = 1; i < (1 << order); i++)
7835e98b 2745 set_page_refcounted(page + i);
a9627bc5 2746 split_page_owner(page, order);
8dfcc9ba 2747}
5853ff23 2748EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2749
3c605096 2750int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2751{
748446bb
MG
2752 unsigned long watermark;
2753 struct zone *zone;
2139cbe6 2754 int mt;
748446bb
MG
2755
2756 BUG_ON(!PageBuddy(page));
2757
2758 zone = page_zone(page);
2e30abd1 2759 mt = get_pageblock_migratetype(page);
748446bb 2760
194159fb 2761 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2762 /*
2763 * Obey watermarks as if the page was being allocated. We can
2764 * emulate a high-order watermark check with a raised order-0
2765 * watermark, because we already know our high-order page
2766 * exists.
2767 */
2768 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2769 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2770 return 0;
2771
8fb74b9f 2772 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2773 }
748446bb
MG
2774
2775 /* Remove page from free list */
2776 list_del(&page->lru);
2777 zone->free_area[order].nr_free--;
2778 rmv_page_order(page);
2139cbe6 2779
400bc7fd 2780 /*
2781 * Set the pageblock if the isolated page is at least half of a
2782 * pageblock
2783 */
748446bb
MG
2784 if (order >= pageblock_order - 1) {
2785 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2786 for (; page < endpage; page += pageblock_nr_pages) {
2787 int mt = get_pageblock_migratetype(page);
88ed365e 2788 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2789 && !is_migrate_highatomic(mt))
47118af0
MN
2790 set_pageblock_migratetype(page,
2791 MIGRATE_MOVABLE);
2792 }
748446bb
MG
2793 }
2794
f3a14ced 2795
8fb74b9f 2796 return 1UL << order;
1fb3f8ca
MG
2797}
2798
060e7417
MG
2799/*
2800 * Update NUMA hit/miss statistics
2801 *
2802 * Must be called with interrupts disabled.
060e7417 2803 */
41b6167e 2804static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2805{
2806#ifdef CONFIG_NUMA
3a321d2a 2807 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2808
4518085e
KW
2809 /* skip numa counters update if numa stats is disabled */
2810 if (!static_branch_likely(&vm_numa_stat_key))
2811 return;
2812
2df26639 2813 if (z->node != numa_node_id())
060e7417 2814 local_stat = NUMA_OTHER;
060e7417 2815
2df26639 2816 if (z->node == preferred_zone->node)
3a321d2a 2817 __inc_numa_state(z, NUMA_HIT);
2df26639 2818 else {
3a321d2a
KW
2819 __inc_numa_state(z, NUMA_MISS);
2820 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2821 }
3a321d2a 2822 __inc_numa_state(z, local_stat);
060e7417
MG
2823#endif
2824}
2825
066b2393
MG
2826/* Remove page from the per-cpu list, caller must protect the list */
2827static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2828 struct per_cpu_pages *pcp,
066b2393
MG
2829 struct list_head *list)
2830{
2831 struct page *page;
2832
2833 do {
2834 if (list_empty(list)) {
2835 pcp->count += rmqueue_bulk(zone, 0,
2836 pcp->batch, list,
453f85d4 2837 migratetype);
066b2393
MG
2838 if (unlikely(list_empty(list)))
2839 return NULL;
2840 }
2841
453f85d4 2842 page = list_first_entry(list, struct page, lru);
066b2393
MG
2843 list_del(&page->lru);
2844 pcp->count--;
2845 } while (check_new_pcp(page));
2846
2847 return page;
2848}
2849
2850/* Lock and remove page from the per-cpu list */
2851static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2852 struct zone *zone, unsigned int order,
2853 gfp_t gfp_flags, int migratetype)
2854{
2855 struct per_cpu_pages *pcp;
2856 struct list_head *list;
066b2393 2857 struct page *page;
d34b0733 2858 unsigned long flags;
066b2393 2859
d34b0733 2860 local_irq_save(flags);
066b2393
MG
2861 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2862 list = &pcp->lists[migratetype];
453f85d4 2863 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2864 if (page) {
2865 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2866 zone_statistics(preferred_zone, zone);
2867 }
d34b0733 2868 local_irq_restore(flags);
066b2393
MG
2869 return page;
2870}
2871
1da177e4 2872/*
75379191 2873 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2874 */
0a15c3e9 2875static inline
066b2393 2876struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2877 struct zone *zone, unsigned int order,
c603844b
MG
2878 gfp_t gfp_flags, unsigned int alloc_flags,
2879 int migratetype)
1da177e4
LT
2880{
2881 unsigned long flags;
689bcebf 2882 struct page *page;
1da177e4 2883
d34b0733 2884 if (likely(order == 0)) {
066b2393
MG
2885 page = rmqueue_pcplist(preferred_zone, zone, order,
2886 gfp_flags, migratetype);
2887 goto out;
2888 }
83b9355b 2889
066b2393
MG
2890 /*
2891 * We most definitely don't want callers attempting to
2892 * allocate greater than order-1 page units with __GFP_NOFAIL.
2893 */
2894 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2895 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2896
066b2393
MG
2897 do {
2898 page = NULL;
2899 if (alloc_flags & ALLOC_HARDER) {
2900 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2901 if (page)
2902 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2903 }
a74609fa 2904 if (!page)
066b2393
MG
2905 page = __rmqueue(zone, order, migratetype);
2906 } while (page && check_new_pages(page, order));
2907 spin_unlock(&zone->lock);
2908 if (!page)
2909 goto failed;
2910 __mod_zone_freepage_state(zone, -(1 << order),
2911 get_pcppage_migratetype(page));
1da177e4 2912
16709d1d 2913 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2914 zone_statistics(preferred_zone, zone);
a74609fa 2915 local_irq_restore(flags);
1da177e4 2916
066b2393
MG
2917out:
2918 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2919 return page;
a74609fa
NP
2920
2921failed:
2922 local_irq_restore(flags);
a74609fa 2923 return NULL;
1da177e4
LT
2924}
2925
933e312e
AM
2926#ifdef CONFIG_FAIL_PAGE_ALLOC
2927
b2588c4b 2928static struct {
933e312e
AM
2929 struct fault_attr attr;
2930
621a5f7a 2931 bool ignore_gfp_highmem;
71baba4b 2932 bool ignore_gfp_reclaim;
54114994 2933 u32 min_order;
933e312e
AM
2934} fail_page_alloc = {
2935 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2936 .ignore_gfp_reclaim = true,
621a5f7a 2937 .ignore_gfp_highmem = true,
54114994 2938 .min_order = 1,
933e312e
AM
2939};
2940
2941static int __init setup_fail_page_alloc(char *str)
2942{
2943 return setup_fault_attr(&fail_page_alloc.attr, str);
2944}
2945__setup("fail_page_alloc=", setup_fail_page_alloc);
2946
deaf386e 2947static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2948{
54114994 2949 if (order < fail_page_alloc.min_order)
deaf386e 2950 return false;
933e312e 2951 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2952 return false;
933e312e 2953 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2954 return false;
71baba4b
MG
2955 if (fail_page_alloc.ignore_gfp_reclaim &&
2956 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2957 return false;
933e312e
AM
2958
2959 return should_fail(&fail_page_alloc.attr, 1 << order);
2960}
2961
2962#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2963
2964static int __init fail_page_alloc_debugfs(void)
2965{
f4ae40a6 2966 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2967 struct dentry *dir;
933e312e 2968
dd48c085
AM
2969 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2970 &fail_page_alloc.attr);
2971 if (IS_ERR(dir))
2972 return PTR_ERR(dir);
933e312e 2973
b2588c4b 2974 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2975 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2976 goto fail;
2977 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2978 &fail_page_alloc.ignore_gfp_highmem))
2979 goto fail;
2980 if (!debugfs_create_u32("min-order", mode, dir,
2981 &fail_page_alloc.min_order))
2982 goto fail;
2983
2984 return 0;
2985fail:
dd48c085 2986 debugfs_remove_recursive(dir);
933e312e 2987
b2588c4b 2988 return -ENOMEM;
933e312e
AM
2989}
2990
2991late_initcall(fail_page_alloc_debugfs);
2992
2993#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2994
2995#else /* CONFIG_FAIL_PAGE_ALLOC */
2996
deaf386e 2997static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2998{
deaf386e 2999 return false;
933e312e
AM
3000}
3001
3002#endif /* CONFIG_FAIL_PAGE_ALLOC */
3003
1da177e4 3004/*
97a16fc8
MG
3005 * Return true if free base pages are above 'mark'. For high-order checks it
3006 * will return true of the order-0 watermark is reached and there is at least
3007 * one free page of a suitable size. Checking now avoids taking the zone lock
3008 * to check in the allocation paths if no pages are free.
1da177e4 3009 */
86a294a8
MH
3010bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3011 int classzone_idx, unsigned int alloc_flags,
3012 long free_pages)
1da177e4 3013{
d23ad423 3014 long min = mark;
1da177e4 3015 int o;
cd04ae1e 3016 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3017
0aaa29a5 3018 /* free_pages may go negative - that's OK */
df0a6daa 3019 free_pages -= (1 << order) - 1;
0aaa29a5 3020
7fb1d9fc 3021 if (alloc_flags & ALLOC_HIGH)
1da177e4 3022 min -= min / 2;
0aaa29a5
MG
3023
3024 /*
3025 * If the caller does not have rights to ALLOC_HARDER then subtract
3026 * the high-atomic reserves. This will over-estimate the size of the
3027 * atomic reserve but it avoids a search.
3028 */
cd04ae1e 3029 if (likely(!alloc_harder)) {
0aaa29a5 3030 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3031 } else {
3032 /*
3033 * OOM victims can try even harder than normal ALLOC_HARDER
3034 * users on the grounds that it's definitely going to be in
3035 * the exit path shortly and free memory. Any allocation it
3036 * makes during the free path will be small and short-lived.
3037 */
3038 if (alloc_flags & ALLOC_OOM)
3039 min -= min / 2;
3040 else
3041 min -= min / 4;
3042 }
3043
e2b19197 3044
d95ea5d1
BZ
3045#ifdef CONFIG_CMA
3046 /* If allocation can't use CMA areas don't use free CMA pages */
3047 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3048 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3049#endif
026b0814 3050
97a16fc8
MG
3051 /*
3052 * Check watermarks for an order-0 allocation request. If these
3053 * are not met, then a high-order request also cannot go ahead
3054 * even if a suitable page happened to be free.
3055 */
3056 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3057 return false;
1da177e4 3058
97a16fc8
MG
3059 /* If this is an order-0 request then the watermark is fine */
3060 if (!order)
3061 return true;
3062
3063 /* For a high-order request, check at least one suitable page is free */
3064 for (o = order; o < MAX_ORDER; o++) {
3065 struct free_area *area = &z->free_area[o];
3066 int mt;
3067
3068 if (!area->nr_free)
3069 continue;
3070
97a16fc8
MG
3071 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3072 if (!list_empty(&area->free_list[mt]))
3073 return true;
3074 }
3075
3076#ifdef CONFIG_CMA
3077 if ((alloc_flags & ALLOC_CMA) &&
3078 !list_empty(&area->free_list[MIGRATE_CMA])) {
3079 return true;
3080 }
3081#endif
b050e376
VB
3082 if (alloc_harder &&
3083 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3084 return true;
1da177e4 3085 }
97a16fc8 3086 return false;
88f5acf8
MG
3087}
3088
7aeb09f9 3089bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3090 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3091{
3092 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3093 zone_page_state(z, NR_FREE_PAGES));
3094}
3095
48ee5f36
MG
3096static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3097 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3098{
3099 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3100 long cma_pages = 0;
3101
3102#ifdef CONFIG_CMA
3103 /* If allocation can't use CMA areas don't use free CMA pages */
3104 if (!(alloc_flags & ALLOC_CMA))
3105 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3106#endif
3107
3108 /*
3109 * Fast check for order-0 only. If this fails then the reserves
3110 * need to be calculated. There is a corner case where the check
3111 * passes but only the high-order atomic reserve are free. If
3112 * the caller is !atomic then it'll uselessly search the free
3113 * list. That corner case is then slower but it is harmless.
3114 */
3115 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3116 return true;
3117
3118 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3119 free_pages);
3120}
3121
7aeb09f9 3122bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3123 unsigned long mark, int classzone_idx)
88f5acf8
MG
3124{
3125 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3126
3127 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3128 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3129
e2b19197 3130 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3131 free_pages);
1da177e4
LT
3132}
3133
9276b1bc 3134#ifdef CONFIG_NUMA
957f822a
DR
3135static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3136{
e02dc017 3137 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3138 RECLAIM_DISTANCE;
957f822a 3139}
9276b1bc 3140#else /* CONFIG_NUMA */
957f822a
DR
3141static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3142{
3143 return true;
3144}
9276b1bc
PJ
3145#endif /* CONFIG_NUMA */
3146
7fb1d9fc 3147/*
0798e519 3148 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3149 * a page.
3150 */
3151static struct page *
a9263751
VB
3152get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3153 const struct alloc_context *ac)
753ee728 3154{
c33d6c06 3155 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3156 struct zone *zone;
3b8c0be4
MG
3157 struct pglist_data *last_pgdat_dirty_limit = NULL;
3158
7fb1d9fc 3159 /*
9276b1bc 3160 * Scan zonelist, looking for a zone with enough free.
344736f2 3161 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3162 */
c33d6c06 3163 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3164 ac->nodemask) {
be06af00 3165 struct page *page;
e085dbc5
JW
3166 unsigned long mark;
3167
664eedde
MG
3168 if (cpusets_enabled() &&
3169 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3170 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3171 continue;
a756cf59
JW
3172 /*
3173 * When allocating a page cache page for writing, we
281e3726
MG
3174 * want to get it from a node that is within its dirty
3175 * limit, such that no single node holds more than its
a756cf59 3176 * proportional share of globally allowed dirty pages.
281e3726 3177 * The dirty limits take into account the node's
a756cf59
JW
3178 * lowmem reserves and high watermark so that kswapd
3179 * should be able to balance it without having to
3180 * write pages from its LRU list.
3181 *
a756cf59 3182 * XXX: For now, allow allocations to potentially
281e3726 3183 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3184 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3185 * which is important when on a NUMA setup the allowed
281e3726 3186 * nodes are together not big enough to reach the
a756cf59 3187 * global limit. The proper fix for these situations
281e3726 3188 * will require awareness of nodes in the
a756cf59
JW
3189 * dirty-throttling and the flusher threads.
3190 */
3b8c0be4
MG
3191 if (ac->spread_dirty_pages) {
3192 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3193 continue;
3194
3195 if (!node_dirty_ok(zone->zone_pgdat)) {
3196 last_pgdat_dirty_limit = zone->zone_pgdat;
3197 continue;
3198 }
3199 }
7fb1d9fc 3200
e085dbc5 3201 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3202 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3203 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3204 int ret;
3205
5dab2911
MG
3206 /* Checked here to keep the fast path fast */
3207 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3208 if (alloc_flags & ALLOC_NO_WATERMARKS)
3209 goto try_this_zone;
3210
a5f5f91d 3211 if (node_reclaim_mode == 0 ||
c33d6c06 3212 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3213 continue;
3214
a5f5f91d 3215 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3216 switch (ret) {
a5f5f91d 3217 case NODE_RECLAIM_NOSCAN:
fa5e084e 3218 /* did not scan */
cd38b115 3219 continue;
a5f5f91d 3220 case NODE_RECLAIM_FULL:
fa5e084e 3221 /* scanned but unreclaimable */
cd38b115 3222 continue;
fa5e084e
MG
3223 default:
3224 /* did we reclaim enough */
fed2719e 3225 if (zone_watermark_ok(zone, order, mark,
93ea9964 3226 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3227 goto try_this_zone;
3228
fed2719e 3229 continue;
0798e519 3230 }
7fb1d9fc
RS
3231 }
3232
fa5e084e 3233try_this_zone:
066b2393 3234 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3235 gfp_mask, alloc_flags, ac->migratetype);
75379191 3236 if (page) {
479f854a 3237 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3238
3239 /*
3240 * If this is a high-order atomic allocation then check
3241 * if the pageblock should be reserved for the future
3242 */
3243 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3244 reserve_highatomic_pageblock(page, zone, order);
3245
75379191
VB
3246 return page;
3247 }
54a6eb5c 3248 }
9276b1bc 3249
4ffeaf35 3250 return NULL;
753ee728
MH
3251}
3252
29423e77
DR
3253/*
3254 * Large machines with many possible nodes should not always dump per-node
3255 * meminfo in irq context.
3256 */
3257static inline bool should_suppress_show_mem(void)
3258{
3259 bool ret = false;
3260
3261#if NODES_SHIFT > 8
3262 ret = in_interrupt();
3263#endif
3264 return ret;
3265}
3266
9af744d7 3267static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3268{
a238ab5b 3269 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3270 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3271
aa187507 3272 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3273 return;
3274
3275 /*
3276 * This documents exceptions given to allocations in certain
3277 * contexts that are allowed to allocate outside current's set
3278 * of allowed nodes.
3279 */
3280 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3281 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3282 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3283 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3284 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3285 filter &= ~SHOW_MEM_FILTER_NODES;
3286
9af744d7 3287 show_mem(filter, nodemask);
aa187507
MH
3288}
3289
a8e99259 3290void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3291{
3292 struct va_format vaf;
3293 va_list args;
3294 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3295 DEFAULT_RATELIMIT_BURST);
3296
0f7896f1 3297 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3298 return;
3299
7877cdcc
MH
3300 va_start(args, fmt);
3301 vaf.fmt = fmt;
3302 vaf.va = &args;
0205f755
MH
3303 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3304 current->comm, &vaf, gfp_mask, &gfp_mask,
3305 nodemask_pr_args(nodemask));
7877cdcc 3306 va_end(args);
3ee9a4f0 3307
a8e99259 3308 cpuset_print_current_mems_allowed();
3ee9a4f0 3309
a238ab5b 3310 dump_stack();
685dbf6f 3311 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3312}
3313
6c18ba7a
MH
3314static inline struct page *
3315__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3316 unsigned int alloc_flags,
3317 const struct alloc_context *ac)
3318{
3319 struct page *page;
3320
3321 page = get_page_from_freelist(gfp_mask, order,
3322 alloc_flags|ALLOC_CPUSET, ac);
3323 /*
3324 * fallback to ignore cpuset restriction if our nodes
3325 * are depleted
3326 */
3327 if (!page)
3328 page = get_page_from_freelist(gfp_mask, order,
3329 alloc_flags, ac);
3330
3331 return page;
3332}
3333
11e33f6a
MG
3334static inline struct page *
3335__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3336 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3337{
6e0fc46d
DR
3338 struct oom_control oc = {
3339 .zonelist = ac->zonelist,
3340 .nodemask = ac->nodemask,
2a966b77 3341 .memcg = NULL,
6e0fc46d
DR
3342 .gfp_mask = gfp_mask,
3343 .order = order,
6e0fc46d 3344 };
11e33f6a
MG
3345 struct page *page;
3346
9879de73
JW
3347 *did_some_progress = 0;
3348
9879de73 3349 /*
dc56401f
JW
3350 * Acquire the oom lock. If that fails, somebody else is
3351 * making progress for us.
9879de73 3352 */
dc56401f 3353 if (!mutex_trylock(&oom_lock)) {
9879de73 3354 *did_some_progress = 1;
11e33f6a 3355 schedule_timeout_uninterruptible(1);
1da177e4
LT
3356 return NULL;
3357 }
6b1de916 3358
11e33f6a
MG
3359 /*
3360 * Go through the zonelist yet one more time, keep very high watermark
3361 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3362 * we're still under heavy pressure. But make sure that this reclaim
3363 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3364 * allocation which will never fail due to oom_lock already held.
11e33f6a 3365 */
e746bf73
TH
3366 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3367 ~__GFP_DIRECT_RECLAIM, order,
3368 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3369 if (page)
11e33f6a
MG
3370 goto out;
3371
06ad276a
MH
3372 /* Coredumps can quickly deplete all memory reserves */
3373 if (current->flags & PF_DUMPCORE)
3374 goto out;
3375 /* The OOM killer will not help higher order allocs */
3376 if (order > PAGE_ALLOC_COSTLY_ORDER)
3377 goto out;
dcda9b04
MH
3378 /*
3379 * We have already exhausted all our reclaim opportunities without any
3380 * success so it is time to admit defeat. We will skip the OOM killer
3381 * because it is very likely that the caller has a more reasonable
3382 * fallback than shooting a random task.
3383 */
3384 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3385 goto out;
06ad276a
MH
3386 /* The OOM killer does not needlessly kill tasks for lowmem */
3387 if (ac->high_zoneidx < ZONE_NORMAL)
3388 goto out;
3389 if (pm_suspended_storage())
3390 goto out;
3391 /*
3392 * XXX: GFP_NOFS allocations should rather fail than rely on
3393 * other request to make a forward progress.
3394 * We are in an unfortunate situation where out_of_memory cannot
3395 * do much for this context but let's try it to at least get
3396 * access to memory reserved if the current task is killed (see
3397 * out_of_memory). Once filesystems are ready to handle allocation
3398 * failures more gracefully we should just bail out here.
3399 */
3400
3401 /* The OOM killer may not free memory on a specific node */
3402 if (gfp_mask & __GFP_THISNODE)
3403 goto out;
3da88fb3 3404
3c2c6488 3405 /* Exhausted what can be done so it's blame time */
5020e285 3406 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3407 *did_some_progress = 1;
5020e285 3408
6c18ba7a
MH
3409 /*
3410 * Help non-failing allocations by giving them access to memory
3411 * reserves
3412 */
3413 if (gfp_mask & __GFP_NOFAIL)
3414 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3415 ALLOC_NO_WATERMARKS, ac);
5020e285 3416 }
11e33f6a 3417out:
dc56401f 3418 mutex_unlock(&oom_lock);
11e33f6a
MG
3419 return page;
3420}
3421
33c2d214
MH
3422/*
3423 * Maximum number of compaction retries wit a progress before OOM
3424 * killer is consider as the only way to move forward.
3425 */
3426#define MAX_COMPACT_RETRIES 16
3427
56de7263
MG
3428#ifdef CONFIG_COMPACTION
3429/* Try memory compaction for high-order allocations before reclaim */
3430static struct page *
3431__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3432 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3433 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3434{
98dd3b48 3435 struct page *page;
499118e9 3436 unsigned int noreclaim_flag;
53853e2d
VB
3437
3438 if (!order)
66199712 3439 return NULL;
66199712 3440
499118e9 3441 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3442 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3443 prio);
499118e9 3444 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3445
c5d01d0d 3446 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3447 return NULL;
53853e2d 3448
98dd3b48
VB
3449 /*
3450 * At least in one zone compaction wasn't deferred or skipped, so let's
3451 * count a compaction stall
3452 */
3453 count_vm_event(COMPACTSTALL);
8fb74b9f 3454
31a6c190 3455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3456
98dd3b48
VB
3457 if (page) {
3458 struct zone *zone = page_zone(page);
53853e2d 3459
98dd3b48
VB
3460 zone->compact_blockskip_flush = false;
3461 compaction_defer_reset(zone, order, true);
3462 count_vm_event(COMPACTSUCCESS);
3463 return page;
3464 }
56de7263 3465
98dd3b48
VB
3466 /*
3467 * It's bad if compaction run occurs and fails. The most likely reason
3468 * is that pages exist, but not enough to satisfy watermarks.
3469 */
3470 count_vm_event(COMPACTFAIL);
66199712 3471
98dd3b48 3472 cond_resched();
56de7263
MG
3473
3474 return NULL;
3475}
33c2d214 3476
3250845d
VB
3477static inline bool
3478should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3479 enum compact_result compact_result,
3480 enum compact_priority *compact_priority,
d9436498 3481 int *compaction_retries)
3250845d
VB
3482{
3483 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3484 int min_priority;
65190cff
MH
3485 bool ret = false;
3486 int retries = *compaction_retries;
3487 enum compact_priority priority = *compact_priority;
3250845d
VB
3488
3489 if (!order)
3490 return false;
3491
d9436498
VB
3492 if (compaction_made_progress(compact_result))
3493 (*compaction_retries)++;
3494
3250845d
VB
3495 /*
3496 * compaction considers all the zone as desperately out of memory
3497 * so it doesn't really make much sense to retry except when the
3498 * failure could be caused by insufficient priority
3499 */
d9436498
VB
3500 if (compaction_failed(compact_result))
3501 goto check_priority;
3250845d
VB
3502
3503 /*
3504 * make sure the compaction wasn't deferred or didn't bail out early
3505 * due to locks contention before we declare that we should give up.
3506 * But do not retry if the given zonelist is not suitable for
3507 * compaction.
3508 */
65190cff
MH
3509 if (compaction_withdrawn(compact_result)) {
3510 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3511 goto out;
3512 }
3250845d
VB
3513
3514 /*
dcda9b04 3515 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3516 * costly ones because they are de facto nofail and invoke OOM
3517 * killer to move on while costly can fail and users are ready
3518 * to cope with that. 1/4 retries is rather arbitrary but we
3519 * would need much more detailed feedback from compaction to
3520 * make a better decision.
3521 */
3522 if (order > PAGE_ALLOC_COSTLY_ORDER)
3523 max_retries /= 4;
65190cff
MH
3524 if (*compaction_retries <= max_retries) {
3525 ret = true;
3526 goto out;
3527 }
3250845d 3528
d9436498
VB
3529 /*
3530 * Make sure there are attempts at the highest priority if we exhausted
3531 * all retries or failed at the lower priorities.
3532 */
3533check_priority:
c2033b00
VB
3534 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3535 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3536
c2033b00 3537 if (*compact_priority > min_priority) {
d9436498
VB
3538 (*compact_priority)--;
3539 *compaction_retries = 0;
65190cff 3540 ret = true;
d9436498 3541 }
65190cff
MH
3542out:
3543 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3544 return ret;
3250845d 3545}
56de7263
MG
3546#else
3547static inline struct page *
3548__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3549 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3550 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3551{
33c2d214 3552 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3553 return NULL;
3554}
33c2d214
MH
3555
3556static inline bool
86a294a8
MH
3557should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3558 enum compact_result compact_result,
a5508cd8 3559 enum compact_priority *compact_priority,
d9436498 3560 int *compaction_retries)
33c2d214 3561{
31e49bfd
MH
3562 struct zone *zone;
3563 struct zoneref *z;
3564
3565 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3566 return false;
3567
3568 /*
3569 * There are setups with compaction disabled which would prefer to loop
3570 * inside the allocator rather than hit the oom killer prematurely.
3571 * Let's give them a good hope and keep retrying while the order-0
3572 * watermarks are OK.
3573 */
3574 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3575 ac->nodemask) {
3576 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3577 ac_classzone_idx(ac), alloc_flags))
3578 return true;
3579 }
33c2d214
MH
3580 return false;
3581}
3250845d 3582#endif /* CONFIG_COMPACTION */
56de7263 3583
d92a8cfc
PZ
3584#ifdef CONFIG_LOCKDEP
3585struct lockdep_map __fs_reclaim_map =
3586 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3587
3588static bool __need_fs_reclaim(gfp_t gfp_mask)
3589{
3590 gfp_mask = current_gfp_context(gfp_mask);
3591
3592 /* no reclaim without waiting on it */
3593 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3594 return false;
3595
3596 /* this guy won't enter reclaim */
3597 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3598 return false;
3599
3600 /* We're only interested __GFP_FS allocations for now */
3601 if (!(gfp_mask & __GFP_FS))
3602 return false;
3603
3604 if (gfp_mask & __GFP_NOLOCKDEP)
3605 return false;
3606
3607 return true;
3608}
3609
3610void fs_reclaim_acquire(gfp_t gfp_mask)
3611{
3612 if (__need_fs_reclaim(gfp_mask))
3613 lock_map_acquire(&__fs_reclaim_map);
3614}
3615EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3616
3617void fs_reclaim_release(gfp_t gfp_mask)
3618{
3619 if (__need_fs_reclaim(gfp_mask))
3620 lock_map_release(&__fs_reclaim_map);
3621}
3622EXPORT_SYMBOL_GPL(fs_reclaim_release);
3623#endif
3624
bba90710
MS
3625/* Perform direct synchronous page reclaim */
3626static int
a9263751
VB
3627__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3628 const struct alloc_context *ac)
11e33f6a 3629{
11e33f6a 3630 struct reclaim_state reclaim_state;
bba90710 3631 int progress;
499118e9 3632 unsigned int noreclaim_flag;
11e33f6a
MG
3633
3634 cond_resched();
3635
3636 /* We now go into synchronous reclaim */
3637 cpuset_memory_pressure_bump();
499118e9 3638 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3639 fs_reclaim_acquire(gfp_mask);
11e33f6a 3640 reclaim_state.reclaimed_slab = 0;
c06b1fca 3641 current->reclaim_state = &reclaim_state;
11e33f6a 3642
a9263751
VB
3643 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3644 ac->nodemask);
11e33f6a 3645
c06b1fca 3646 current->reclaim_state = NULL;
d92a8cfc 3647 fs_reclaim_release(gfp_mask);
499118e9 3648 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3649
3650 cond_resched();
3651
bba90710
MS
3652 return progress;
3653}
3654
3655/* The really slow allocator path where we enter direct reclaim */
3656static inline struct page *
3657__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3658 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3659 unsigned long *did_some_progress)
bba90710
MS
3660{
3661 struct page *page = NULL;
3662 bool drained = false;
3663
a9263751 3664 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3665 if (unlikely(!(*did_some_progress)))
3666 return NULL;
11e33f6a 3667
9ee493ce 3668retry:
31a6c190 3669 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3670
3671 /*
3672 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3673 * pages are pinned on the per-cpu lists or in high alloc reserves.
3674 * Shrink them them and try again
9ee493ce
MG
3675 */
3676 if (!page && !drained) {
29fac03b 3677 unreserve_highatomic_pageblock(ac, false);
93481ff0 3678 drain_all_pages(NULL);
9ee493ce
MG
3679 drained = true;
3680 goto retry;
3681 }
3682
11e33f6a
MG
3683 return page;
3684}
3685
a9263751 3686static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3687{
3688 struct zoneref *z;
3689 struct zone *zone;
e1a55637 3690 pg_data_t *last_pgdat = NULL;
3a025760 3691
a9263751 3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3693 ac->high_zoneidx, ac->nodemask) {
3694 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3695 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3696 last_pgdat = zone->zone_pgdat;
3697 }
3a025760
JW
3698}
3699
c603844b 3700static inline unsigned int
341ce06f
PZ
3701gfp_to_alloc_flags(gfp_t gfp_mask)
3702{
c603844b 3703 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3704
a56f57ff 3705 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3706 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3707
341ce06f
PZ
3708 /*
3709 * The caller may dip into page reserves a bit more if the caller
3710 * cannot run direct reclaim, or if the caller has realtime scheduling
3711 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3712 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3713 */
e6223a3b 3714 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3715
d0164adc 3716 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3717 /*
b104a35d
DR
3718 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3719 * if it can't schedule.
5c3240d9 3720 */
b104a35d 3721 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3722 alloc_flags |= ALLOC_HARDER;
523b9458 3723 /*
b104a35d 3724 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3725 * comment for __cpuset_node_allowed().
523b9458 3726 */
341ce06f 3727 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3728 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3729 alloc_flags |= ALLOC_HARDER;
3730
d95ea5d1 3731#ifdef CONFIG_CMA
43e7a34d 3732 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3733 alloc_flags |= ALLOC_CMA;
3734#endif
341ce06f
PZ
3735 return alloc_flags;
3736}
3737
cd04ae1e 3738static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3739{
cd04ae1e
MH
3740 if (!tsk_is_oom_victim(tsk))
3741 return false;
3742
3743 /*
3744 * !MMU doesn't have oom reaper so give access to memory reserves
3745 * only to the thread with TIF_MEMDIE set
3746 */
3747 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3748 return false;
3749
cd04ae1e
MH
3750 return true;
3751}
3752
3753/*
3754 * Distinguish requests which really need access to full memory
3755 * reserves from oom victims which can live with a portion of it
3756 */
3757static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3758{
3759 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3760 return 0;
31a6c190 3761 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3762 return ALLOC_NO_WATERMARKS;
31a6c190 3763 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3764 return ALLOC_NO_WATERMARKS;
3765 if (!in_interrupt()) {
3766 if (current->flags & PF_MEMALLOC)
3767 return ALLOC_NO_WATERMARKS;
3768 else if (oom_reserves_allowed(current))
3769 return ALLOC_OOM;
3770 }
31a6c190 3771
cd04ae1e
MH
3772 return 0;
3773}
3774
3775bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3776{
3777 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3778}
3779
0a0337e0
MH
3780/*
3781 * Checks whether it makes sense to retry the reclaim to make a forward progress
3782 * for the given allocation request.
491d79ae
JW
3783 *
3784 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3785 * without success, or when we couldn't even meet the watermark if we
3786 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3787 *
3788 * Returns true if a retry is viable or false to enter the oom path.
3789 */
3790static inline bool
3791should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3792 struct alloc_context *ac, int alloc_flags,
423b452e 3793 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3794{
3795 struct zone *zone;
3796 struct zoneref *z;
3797
423b452e
VB
3798 /*
3799 * Costly allocations might have made a progress but this doesn't mean
3800 * their order will become available due to high fragmentation so
3801 * always increment the no progress counter for them
3802 */
3803 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3804 *no_progress_loops = 0;
3805 else
3806 (*no_progress_loops)++;
3807
0a0337e0
MH
3808 /*
3809 * Make sure we converge to OOM if we cannot make any progress
3810 * several times in the row.
3811 */
04c8716f
MK
3812 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3813 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3814 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3815 }
0a0337e0 3816
bca67592
MG
3817 /*
3818 * Keep reclaiming pages while there is a chance this will lead
3819 * somewhere. If none of the target zones can satisfy our allocation
3820 * request even if all reclaimable pages are considered then we are
3821 * screwed and have to go OOM.
0a0337e0
MH
3822 */
3823 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3824 ac->nodemask) {
3825 unsigned long available;
ede37713 3826 unsigned long reclaimable;
d379f01d
MH
3827 unsigned long min_wmark = min_wmark_pages(zone);
3828 bool wmark;
0a0337e0 3829
5a1c84b4 3830 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3831 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3832
3833 /*
491d79ae
JW
3834 * Would the allocation succeed if we reclaimed all
3835 * reclaimable pages?
0a0337e0 3836 */
d379f01d
MH
3837 wmark = __zone_watermark_ok(zone, order, min_wmark,
3838 ac_classzone_idx(ac), alloc_flags, available);
3839 trace_reclaim_retry_zone(z, order, reclaimable,
3840 available, min_wmark, *no_progress_loops, wmark);
3841 if (wmark) {
ede37713
MH
3842 /*
3843 * If we didn't make any progress and have a lot of
3844 * dirty + writeback pages then we should wait for
3845 * an IO to complete to slow down the reclaim and
3846 * prevent from pre mature OOM
3847 */
3848 if (!did_some_progress) {
11fb9989 3849 unsigned long write_pending;
ede37713 3850
5a1c84b4
MG
3851 write_pending = zone_page_state_snapshot(zone,
3852 NR_ZONE_WRITE_PENDING);
ede37713 3853
11fb9989 3854 if (2 * write_pending > reclaimable) {
ede37713
MH
3855 congestion_wait(BLK_RW_ASYNC, HZ/10);
3856 return true;
3857 }
3858 }
5a1c84b4 3859
ede37713
MH
3860 /*
3861 * Memory allocation/reclaim might be called from a WQ
3862 * context and the current implementation of the WQ
3863 * concurrency control doesn't recognize that
3864 * a particular WQ is congested if the worker thread is
3865 * looping without ever sleeping. Therefore we have to
3866 * do a short sleep here rather than calling
3867 * cond_resched().
3868 */
3869 if (current->flags & PF_WQ_WORKER)
3870 schedule_timeout_uninterruptible(1);
3871 else
3872 cond_resched();
3873
0a0337e0
MH
3874 return true;
3875 }
3876 }
3877
3878 return false;
3879}
3880
902b6281
VB
3881static inline bool
3882check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3883{
3884 /*
3885 * It's possible that cpuset's mems_allowed and the nodemask from
3886 * mempolicy don't intersect. This should be normally dealt with by
3887 * policy_nodemask(), but it's possible to race with cpuset update in
3888 * such a way the check therein was true, and then it became false
3889 * before we got our cpuset_mems_cookie here.
3890 * This assumes that for all allocations, ac->nodemask can come only
3891 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3892 * when it does not intersect with the cpuset restrictions) or the
3893 * caller can deal with a violated nodemask.
3894 */
3895 if (cpusets_enabled() && ac->nodemask &&
3896 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3897 ac->nodemask = NULL;
3898 return true;
3899 }
3900
3901 /*
3902 * When updating a task's mems_allowed or mempolicy nodemask, it is
3903 * possible to race with parallel threads in such a way that our
3904 * allocation can fail while the mask is being updated. If we are about
3905 * to fail, check if the cpuset changed during allocation and if so,
3906 * retry.
3907 */
3908 if (read_mems_allowed_retry(cpuset_mems_cookie))
3909 return true;
3910
3911 return false;
3912}
3913
11e33f6a
MG
3914static inline struct page *
3915__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3916 struct alloc_context *ac)
11e33f6a 3917{
d0164adc 3918 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3919 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3920 struct page *page = NULL;
c603844b 3921 unsigned int alloc_flags;
11e33f6a 3922 unsigned long did_some_progress;
5ce9bfef 3923 enum compact_priority compact_priority;
c5d01d0d 3924 enum compact_result compact_result;
5ce9bfef
VB
3925 int compaction_retries;
3926 int no_progress_loops;
5ce9bfef 3927 unsigned int cpuset_mems_cookie;
cd04ae1e 3928 int reserve_flags;
1da177e4 3929
72807a74
MG
3930 /*
3931 * In the slowpath, we sanity check order to avoid ever trying to
3932 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3933 * be using allocators in order of preference for an area that is
3934 * too large.
3935 */
1fc28b70
MG
3936 if (order >= MAX_ORDER) {
3937 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3938 return NULL;
1fc28b70 3939 }
1da177e4 3940
d0164adc
MG
3941 /*
3942 * We also sanity check to catch abuse of atomic reserves being used by
3943 * callers that are not in atomic context.
3944 */
3945 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3946 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3947 gfp_mask &= ~__GFP_ATOMIC;
3948
5ce9bfef
VB
3949retry_cpuset:
3950 compaction_retries = 0;
3951 no_progress_loops = 0;
3952 compact_priority = DEF_COMPACT_PRIORITY;
3953 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3954
3955 /*
3956 * The fast path uses conservative alloc_flags to succeed only until
3957 * kswapd needs to be woken up, and to avoid the cost of setting up
3958 * alloc_flags precisely. So we do that now.
3959 */
3960 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3961
e47483bc
VB
3962 /*
3963 * We need to recalculate the starting point for the zonelist iterator
3964 * because we might have used different nodemask in the fast path, or
3965 * there was a cpuset modification and we are retrying - otherwise we
3966 * could end up iterating over non-eligible zones endlessly.
3967 */
3968 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3969 ac->high_zoneidx, ac->nodemask);
3970 if (!ac->preferred_zoneref->zone)
3971 goto nopage;
3972
23771235
VB
3973 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3974 wake_all_kswapds(order, ac);
3975
3976 /*
3977 * The adjusted alloc_flags might result in immediate success, so try
3978 * that first
3979 */
3980 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3981 if (page)
3982 goto got_pg;
3983
a8161d1e
VB
3984 /*
3985 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3986 * that we have enough base pages and don't need to reclaim. For non-
3987 * movable high-order allocations, do that as well, as compaction will
3988 * try prevent permanent fragmentation by migrating from blocks of the
3989 * same migratetype.
3990 * Don't try this for allocations that are allowed to ignore
3991 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3992 */
282722b0
VB
3993 if (can_direct_reclaim &&
3994 (costly_order ||
3995 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3996 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3997 page = __alloc_pages_direct_compact(gfp_mask, order,
3998 alloc_flags, ac,
a5508cd8 3999 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4000 &compact_result);
4001 if (page)
4002 goto got_pg;
4003
3eb2771b
VB
4004 /*
4005 * Checks for costly allocations with __GFP_NORETRY, which
4006 * includes THP page fault allocations
4007 */
282722b0 4008 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4009 /*
4010 * If compaction is deferred for high-order allocations,
4011 * it is because sync compaction recently failed. If
4012 * this is the case and the caller requested a THP
4013 * allocation, we do not want to heavily disrupt the
4014 * system, so we fail the allocation instead of entering
4015 * direct reclaim.
4016 */
4017 if (compact_result == COMPACT_DEFERRED)
4018 goto nopage;
4019
a8161d1e 4020 /*
3eb2771b
VB
4021 * Looks like reclaim/compaction is worth trying, but
4022 * sync compaction could be very expensive, so keep
25160354 4023 * using async compaction.
a8161d1e 4024 */
a5508cd8 4025 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4026 }
4027 }
23771235 4028
31a6c190 4029retry:
23771235 4030 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4031 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4032 wake_all_kswapds(order, ac);
4033
cd04ae1e
MH
4034 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4035 if (reserve_flags)
4036 alloc_flags = reserve_flags;
23771235 4037
e46e7b77
MG
4038 /*
4039 * Reset the zonelist iterators if memory policies can be ignored.
4040 * These allocations are high priority and system rather than user
4041 * orientated.
4042 */
cd04ae1e 4043 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4044 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4045 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4046 ac->high_zoneidx, ac->nodemask);
4047 }
4048
23771235 4049 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4050 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4051 if (page)
4052 goto got_pg;
1da177e4 4053
d0164adc 4054 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4055 if (!can_direct_reclaim)
1da177e4
LT
4056 goto nopage;
4057
9a67f648
MH
4058 /* Avoid recursion of direct reclaim */
4059 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4060 goto nopage;
4061
a8161d1e
VB
4062 /* Try direct reclaim and then allocating */
4063 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4064 &did_some_progress);
4065 if (page)
4066 goto got_pg;
4067
4068 /* Try direct compaction and then allocating */
a9263751 4069 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4070 compact_priority, &compact_result);
56de7263
MG
4071 if (page)
4072 goto got_pg;
75f30861 4073
9083905a
JW
4074 /* Do not loop if specifically requested */
4075 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4076 goto nopage;
9083905a 4077
0a0337e0
MH
4078 /*
4079 * Do not retry costly high order allocations unless they are
dcda9b04 4080 * __GFP_RETRY_MAYFAIL
0a0337e0 4081 */
dcda9b04 4082 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4083 goto nopage;
0a0337e0 4084
0a0337e0 4085 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4086 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4087 goto retry;
4088
33c2d214
MH
4089 /*
4090 * It doesn't make any sense to retry for the compaction if the order-0
4091 * reclaim is not able to make any progress because the current
4092 * implementation of the compaction depends on the sufficient amount
4093 * of free memory (see __compaction_suitable)
4094 */
4095 if (did_some_progress > 0 &&
86a294a8 4096 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4097 compact_result, &compact_priority,
d9436498 4098 &compaction_retries))
33c2d214
MH
4099 goto retry;
4100
902b6281
VB
4101
4102 /* Deal with possible cpuset update races before we start OOM killing */
4103 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4104 goto retry_cpuset;
4105
9083905a
JW
4106 /* Reclaim has failed us, start killing things */
4107 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4108 if (page)
4109 goto got_pg;
4110
9a67f648 4111 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4112 if (tsk_is_oom_victim(current) &&
4113 (alloc_flags == ALLOC_OOM ||
c288983d 4114 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4115 goto nopage;
4116
9083905a 4117 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4118 if (did_some_progress) {
4119 no_progress_loops = 0;
9083905a 4120 goto retry;
0a0337e0 4121 }
9083905a 4122
1da177e4 4123nopage:
902b6281
VB
4124 /* Deal with possible cpuset update races before we fail */
4125 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4126 goto retry_cpuset;
4127
9a67f648
MH
4128 /*
4129 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4130 * we always retry
4131 */
4132 if (gfp_mask & __GFP_NOFAIL) {
4133 /*
4134 * All existing users of the __GFP_NOFAIL are blockable, so warn
4135 * of any new users that actually require GFP_NOWAIT
4136 */
4137 if (WARN_ON_ONCE(!can_direct_reclaim))
4138 goto fail;
4139
4140 /*
4141 * PF_MEMALLOC request from this context is rather bizarre
4142 * because we cannot reclaim anything and only can loop waiting
4143 * for somebody to do a work for us
4144 */
4145 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4146
4147 /*
4148 * non failing costly orders are a hard requirement which we
4149 * are not prepared for much so let's warn about these users
4150 * so that we can identify them and convert them to something
4151 * else.
4152 */
4153 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4154
6c18ba7a
MH
4155 /*
4156 * Help non-failing allocations by giving them access to memory
4157 * reserves but do not use ALLOC_NO_WATERMARKS because this
4158 * could deplete whole memory reserves which would just make
4159 * the situation worse
4160 */
4161 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4162 if (page)
4163 goto got_pg;
4164
9a67f648
MH
4165 cond_resched();
4166 goto retry;
4167 }
4168fail:
a8e99259 4169 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4170 "page allocation failure: order:%u", order);
1da177e4 4171got_pg:
072bb0aa 4172 return page;
1da177e4 4173}
11e33f6a 4174
9cd75558 4175static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4176 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4177 struct alloc_context *ac, gfp_t *alloc_mask,
4178 unsigned int *alloc_flags)
11e33f6a 4179{
9cd75558 4180 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4181 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4182 ac->nodemask = nodemask;
4183 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4184
682a3385 4185 if (cpusets_enabled()) {
9cd75558 4186 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4187 if (!ac->nodemask)
4188 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4189 else
4190 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4191 }
4192
d92a8cfc
PZ
4193 fs_reclaim_acquire(gfp_mask);
4194 fs_reclaim_release(gfp_mask);
11e33f6a 4195
d0164adc 4196 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4197
4198 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4199 return false;
11e33f6a 4200
9cd75558
MG
4201 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4202 *alloc_flags |= ALLOC_CMA;
4203
4204 return true;
4205}
21bb9bd1 4206
9cd75558
MG
4207/* Determine whether to spread dirty pages and what the first usable zone */
4208static inline void finalise_ac(gfp_t gfp_mask,
4209 unsigned int order, struct alloc_context *ac)
4210{
c9ab0c4f 4211 /* Dirty zone balancing only done in the fast path */
9cd75558 4212 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4213
e46e7b77
MG
4214 /*
4215 * The preferred zone is used for statistics but crucially it is
4216 * also used as the starting point for the zonelist iterator. It
4217 * may get reset for allocations that ignore memory policies.
4218 */
9cd75558
MG
4219 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4220 ac->high_zoneidx, ac->nodemask);
4221}
4222
4223/*
4224 * This is the 'heart' of the zoned buddy allocator.
4225 */
4226struct page *
04ec6264
VB
4227__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4228 nodemask_t *nodemask)
9cd75558
MG
4229{
4230 struct page *page;
4231 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4232 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4233 struct alloc_context ac = { };
4234
4235 gfp_mask &= gfp_allowed_mask;
f19360f0 4236 alloc_mask = gfp_mask;
04ec6264 4237 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4238 return NULL;
4239
4240 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4241
5117f45d 4242 /* First allocation attempt */
a9263751 4243 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4244 if (likely(page))
4245 goto out;
11e33f6a 4246
4fcb0971 4247 /*
7dea19f9
MH
4248 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4249 * resp. GFP_NOIO which has to be inherited for all allocation requests
4250 * from a particular context which has been marked by
4251 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4252 */
7dea19f9 4253 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4254 ac.spread_dirty_pages = false;
23f086f9 4255
4741526b
MG
4256 /*
4257 * Restore the original nodemask if it was potentially replaced with
4258 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4259 */
e47483bc 4260 if (unlikely(ac.nodemask != nodemask))
4741526b 4261 ac.nodemask = nodemask;
16096c25 4262
4fcb0971 4263 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4264
4fcb0971 4265out:
c4159a75
VD
4266 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4267 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4268 __free_pages(page, order);
4269 page = NULL;
4949148a
VD
4270 }
4271
4fcb0971
MG
4272 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4273
11e33f6a 4274 return page;
1da177e4 4275}
d239171e 4276EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4277
4278/*
4279 * Common helper functions.
4280 */
920c7a5d 4281unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4282{
945a1113
AM
4283 struct page *page;
4284
4285 /*
48128397 4286 * __get_free_pages() returns a virtual address, which cannot represent
945a1113
AM
4287 * a highmem page
4288 */
4289 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4290
1da177e4
LT
4291 page = alloc_pages(gfp_mask, order);
4292 if (!page)
4293 return 0;
4294 return (unsigned long) page_address(page);
4295}
1da177e4
LT
4296EXPORT_SYMBOL(__get_free_pages);
4297
920c7a5d 4298unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4299{
945a1113 4300 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4301}
1da177e4
LT
4302EXPORT_SYMBOL(get_zeroed_page);
4303
920c7a5d 4304void __free_pages(struct page *page, unsigned int order)
1da177e4 4305{
b5810039 4306 if (put_page_testzero(page)) {
1da177e4 4307 if (order == 0)
2d4894b5 4308 free_unref_page(page);
1da177e4
LT
4309 else
4310 __free_pages_ok(page, order);
4311 }
4312}
4313
4314EXPORT_SYMBOL(__free_pages);
4315
920c7a5d 4316void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4317{
4318 if (addr != 0) {
725d704e 4319 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4320 __free_pages(virt_to_page((void *)addr), order);
4321 }
4322}
4323
4324EXPORT_SYMBOL(free_pages);
4325
b63ae8ca
AD
4326/*
4327 * Page Fragment:
4328 * An arbitrary-length arbitrary-offset area of memory which resides
4329 * within a 0 or higher order page. Multiple fragments within that page
4330 * are individually refcounted, in the page's reference counter.
4331 *
4332 * The page_frag functions below provide a simple allocation framework for
4333 * page fragments. This is used by the network stack and network device
4334 * drivers to provide a backing region of memory for use as either an
4335 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4336 */
2976db80
AD
4337static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4338 gfp_t gfp_mask)
b63ae8ca
AD
4339{
4340 struct page *page = NULL;
4341 gfp_t gfp = gfp_mask;
4342
4343#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4344 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4345 __GFP_NOMEMALLOC;
4346 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4347 PAGE_FRAG_CACHE_MAX_ORDER);
4348 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4349#endif
4350 if (unlikely(!page))
4351 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4352
4353 nc->va = page ? page_address(page) : NULL;
4354
4355 return page;
4356}
4357
2976db80 4358void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4359{
4360 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4361
4362 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4363 unsigned int order = compound_order(page);
4364
44fdffd7 4365 if (order == 0)
2d4894b5 4366 free_unref_page(page);
44fdffd7
AD
4367 else
4368 __free_pages_ok(page, order);
4369 }
4370}
2976db80 4371EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4372
8c2dd3e4
AD
4373void *page_frag_alloc(struct page_frag_cache *nc,
4374 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4375{
4376 unsigned int size = PAGE_SIZE;
4377 struct page *page;
4378 int offset;
4379
4380 if (unlikely(!nc->va)) {
4381refill:
2976db80 4382 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4383 if (!page)
4384 return NULL;
4385
4386#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4387 /* if size can vary use size else just use PAGE_SIZE */
4388 size = nc->size;
4389#endif
4390 /* Even if we own the page, we do not use atomic_set().
4391 * This would break get_page_unless_zero() users.
4392 */
fe896d18 4393 page_ref_add(page, size - 1);
b63ae8ca
AD
4394
4395 /* reset page count bias and offset to start of new frag */
2f064f34 4396 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4397 nc->pagecnt_bias = size;
4398 nc->offset = size;
4399 }
4400
4401 offset = nc->offset - fragsz;
4402 if (unlikely(offset < 0)) {
4403 page = virt_to_page(nc->va);
4404
fe896d18 4405 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4406 goto refill;
4407
4408#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4409 /* if size can vary use size else just use PAGE_SIZE */
4410 size = nc->size;
4411#endif
4412 /* OK, page count is 0, we can safely set it */
fe896d18 4413 set_page_count(page, size);
b63ae8ca
AD
4414
4415 /* reset page count bias and offset to start of new frag */
4416 nc->pagecnt_bias = size;
4417 offset = size - fragsz;
4418 }
4419
4420 nc->pagecnt_bias--;
4421 nc->offset = offset;
4422
4423 return nc->va + offset;
4424}
8c2dd3e4 4425EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4426
4427/*
4428 * Frees a page fragment allocated out of either a compound or order 0 page.
4429 */
8c2dd3e4 4430void page_frag_free(void *addr)
b63ae8ca
AD
4431{
4432 struct page *page = virt_to_head_page(addr);
4433
4434 if (unlikely(put_page_testzero(page)))
4435 __free_pages_ok(page, compound_order(page));
4436}
8c2dd3e4 4437EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4438
d00181b9
KS
4439static void *make_alloc_exact(unsigned long addr, unsigned int order,
4440 size_t size)
ee85c2e1
AK
4441{
4442 if (addr) {
4443 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4444 unsigned long used = addr + PAGE_ALIGN(size);
4445
4446 split_page(virt_to_page((void *)addr), order);
4447 while (used < alloc_end) {
4448 free_page(used);
4449 used += PAGE_SIZE;
4450 }
4451 }
4452 return (void *)addr;
4453}
4454
2be0ffe2
TT
4455/**
4456 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4457 * @size: the number of bytes to allocate
4458 * @gfp_mask: GFP flags for the allocation
4459 *
4460 * This function is similar to alloc_pages(), except that it allocates the
4461 * minimum number of pages to satisfy the request. alloc_pages() can only
4462 * allocate memory in power-of-two pages.
4463 *
4464 * This function is also limited by MAX_ORDER.
4465 *
4466 * Memory allocated by this function must be released by free_pages_exact().
4467 */
4468void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4469{
4470 unsigned int order = get_order(size);
4471 unsigned long addr;
4472
4473 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4474 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4475}
4476EXPORT_SYMBOL(alloc_pages_exact);
4477
ee85c2e1
AK
4478/**
4479 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4480 * pages on a node.
b5e6ab58 4481 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4482 * @size: the number of bytes to allocate
4483 * @gfp_mask: GFP flags for the allocation
4484 *
4485 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4486 * back.
ee85c2e1 4487 */
e1931811 4488void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4489{
d00181b9 4490 unsigned int order = get_order(size);
ee85c2e1
AK
4491 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4492 if (!p)
4493 return NULL;
4494 return make_alloc_exact((unsigned long)page_address(p), order, size);
4495}
ee85c2e1 4496
2be0ffe2
TT
4497/**
4498 * free_pages_exact - release memory allocated via alloc_pages_exact()
4499 * @virt: the value returned by alloc_pages_exact.
4500 * @size: size of allocation, same value as passed to alloc_pages_exact().
4501 *
4502 * Release the memory allocated by a previous call to alloc_pages_exact.
4503 */
4504void free_pages_exact(void *virt, size_t size)
4505{
4506 unsigned long addr = (unsigned long)virt;
4507 unsigned long end = addr + PAGE_ALIGN(size);
4508
4509 while (addr < end) {
4510 free_page(addr);
4511 addr += PAGE_SIZE;
4512 }
4513}
4514EXPORT_SYMBOL(free_pages_exact);
4515
e0fb5815
ZY
4516/**
4517 * nr_free_zone_pages - count number of pages beyond high watermark
4518 * @offset: The zone index of the highest zone
4519 *
4520 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4521 * high watermark within all zones at or below a given zone index. For each
4522 * zone, the number of pages is calculated as:
0e056eb5
MCC
4523 *
4524 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4525 */
ebec3862 4526static unsigned long nr_free_zone_pages(int offset)
1da177e4 4527{
dd1a239f 4528 struct zoneref *z;
54a6eb5c
MG
4529 struct zone *zone;
4530
e310fd43 4531 /* Just pick one node, since fallback list is circular */
ebec3862 4532 unsigned long sum = 0;
1da177e4 4533
0e88460d 4534 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4535
54a6eb5c 4536 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4537 unsigned long size = zone->managed_pages;
41858966 4538 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4539 if (size > high)
4540 sum += size - high;
1da177e4
LT
4541 }
4542
4543 return sum;
4544}
4545
e0fb5815
ZY
4546/**
4547 * nr_free_buffer_pages - count number of pages beyond high watermark
4548 *
4549 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4550 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4551 */
ebec3862 4552unsigned long nr_free_buffer_pages(void)
1da177e4 4553{
af4ca457 4554 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4555}
c2f1a551 4556EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4557
e0fb5815
ZY
4558/**
4559 * nr_free_pagecache_pages - count number of pages beyond high watermark
4560 *
4561 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4562 * high watermark within all zones.
1da177e4 4563 */
ebec3862 4564unsigned long nr_free_pagecache_pages(void)
1da177e4 4565{
2a1e274a 4566 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4567}
08e0f6a9
CL
4568
4569static inline void show_node(struct zone *zone)
1da177e4 4570{
e5adfffc 4571 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4572 printk("Node %d ", zone_to_nid(zone));
1da177e4 4573}
1da177e4 4574
d02bd27b
IR
4575long si_mem_available(void)
4576{
4577 long available;
4578 unsigned long pagecache;
4579 unsigned long wmark_low = 0;
4580 unsigned long pages[NR_LRU_LISTS];
4581 struct zone *zone;
4582 int lru;
4583
4584 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4585 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4586
4587 for_each_zone(zone)
4588 wmark_low += zone->watermark[WMARK_LOW];
4589
4590 /*
4591 * Estimate the amount of memory available for userspace allocations,
4592 * without causing swapping.
4593 */
c41f012a 4594 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4595
4596 /*
4597 * Not all the page cache can be freed, otherwise the system will
4598 * start swapping. Assume at least half of the page cache, or the
4599 * low watermark worth of cache, needs to stay.
4600 */
4601 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4602 pagecache -= min(pagecache / 2, wmark_low);
4603 available += pagecache;
4604
4605 /*
4606 * Part of the reclaimable slab consists of items that are in use,
4607 * and cannot be freed. Cap this estimate at the low watermark.
4608 */
d507e2eb
JW
4609 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4610 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4611 wmark_low);
d02bd27b
IR
4612
4613 if (available < 0)
4614 available = 0;
4615 return available;
4616}
4617EXPORT_SYMBOL_GPL(si_mem_available);
4618
1da177e4
LT
4619void si_meminfo(struct sysinfo *val)
4620{
4621 val->totalram = totalram_pages;
11fb9989 4622 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4623 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4624 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4625 val->totalhigh = totalhigh_pages;
4626 val->freehigh = nr_free_highpages();
1da177e4
LT
4627 val->mem_unit = PAGE_SIZE;
4628}
4629
4630EXPORT_SYMBOL(si_meminfo);
4631
4632#ifdef CONFIG_NUMA
4633void si_meminfo_node(struct sysinfo *val, int nid)
4634{
cdd91a77
JL
4635 int zone_type; /* needs to be signed */
4636 unsigned long managed_pages = 0;
fc2bd799
JK
4637 unsigned long managed_highpages = 0;
4638 unsigned long free_highpages = 0;
1da177e4
LT
4639 pg_data_t *pgdat = NODE_DATA(nid);
4640
cdd91a77
JL
4641 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4642 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4643 val->totalram = managed_pages;
11fb9989 4644 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4645 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4646#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4647 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4648 struct zone *zone = &pgdat->node_zones[zone_type];
4649
4650 if (is_highmem(zone)) {
4651 managed_highpages += zone->managed_pages;
4652 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4653 }
4654 }
4655 val->totalhigh = managed_highpages;
4656 val->freehigh = free_highpages;
98d2b0eb 4657#else
fc2bd799
JK
4658 val->totalhigh = managed_highpages;
4659 val->freehigh = free_highpages;
98d2b0eb 4660#endif
1da177e4
LT
4661 val->mem_unit = PAGE_SIZE;
4662}
4663#endif
4664
ddd588b5 4665/*
7bf02ea2
DR
4666 * Determine whether the node should be displayed or not, depending on whether
4667 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4668 */
9af744d7 4669static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4670{
ddd588b5 4671 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4672 return false;
ddd588b5 4673
9af744d7
MH
4674 /*
4675 * no node mask - aka implicit memory numa policy. Do not bother with
4676 * the synchronization - read_mems_allowed_begin - because we do not
4677 * have to be precise here.
4678 */
4679 if (!nodemask)
4680 nodemask = &cpuset_current_mems_allowed;
4681
4682 return !node_isset(nid, *nodemask);
ddd588b5
DR
4683}
4684
1da177e4
LT
4685#define K(x) ((x) << (PAGE_SHIFT-10))
4686
377e4f16
RV
4687static void show_migration_types(unsigned char type)
4688{
4689 static const char types[MIGRATE_TYPES] = {
4690 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4691 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4692 [MIGRATE_RECLAIMABLE] = 'E',
4693 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4694#ifdef CONFIG_CMA
4695 [MIGRATE_CMA] = 'C',
4696#endif
194159fb 4697#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4698 [MIGRATE_ISOLATE] = 'I',
194159fb 4699#endif
377e4f16
RV
4700 };
4701 char tmp[MIGRATE_TYPES + 1];
4702 char *p = tmp;
4703 int i;
4704
4705 for (i = 0; i < MIGRATE_TYPES; i++) {
4706 if (type & (1 << i))
4707 *p++ = types[i];
4708 }
4709
4710 *p = '\0';
1f84a18f 4711 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4712}
4713
1da177e4
LT
4714/*
4715 * Show free area list (used inside shift_scroll-lock stuff)
4716 * We also calculate the percentage fragmentation. We do this by counting the
4717 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4718 *
4719 * Bits in @filter:
4720 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4721 * cpuset.
1da177e4 4722 */
9af744d7 4723void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4724{
d1bfcdb8 4725 unsigned long free_pcp = 0;
c7241913 4726 int cpu;
1da177e4 4727 struct zone *zone;
599d0c95 4728 pg_data_t *pgdat;
1da177e4 4729
ee99c71c 4730 for_each_populated_zone(zone) {
9af744d7 4731 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4732 continue;
d1bfcdb8 4733
761b0677
KK
4734 for_each_online_cpu(cpu)
4735 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4736 }
4737
a731286d
KM
4738 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4739 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4740 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4741 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4742 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4743 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4744 global_node_page_state(NR_ACTIVE_ANON),
4745 global_node_page_state(NR_INACTIVE_ANON),
4746 global_node_page_state(NR_ISOLATED_ANON),
4747 global_node_page_state(NR_ACTIVE_FILE),
4748 global_node_page_state(NR_INACTIVE_FILE),
4749 global_node_page_state(NR_ISOLATED_FILE),
4750 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4751 global_node_page_state(NR_FILE_DIRTY),
4752 global_node_page_state(NR_WRITEBACK),
4753 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4754 global_node_page_state(NR_SLAB_RECLAIMABLE),
4755 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4756 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4757 global_node_page_state(NR_SHMEM),
c41f012a
MH
4758 global_zone_page_state(NR_PAGETABLE),
4759 global_zone_page_state(NR_BOUNCE),
4760 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4761 free_pcp,
c41f012a 4762 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4763
599d0c95 4764 for_each_online_pgdat(pgdat) {
9af744d7 4765 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4766 continue;
4767
599d0c95
MG
4768 printk("Node %d"
4769 " active_anon:%lukB"
4770 " inactive_anon:%lukB"
4771 " active_file:%lukB"
4772 " inactive_file:%lukB"
4773 " unevictable:%lukB"
4774 " isolated(anon):%lukB"
4775 " isolated(file):%lukB"
50658e2e 4776 " mapped:%lukB"
11fb9989
MG
4777 " dirty:%lukB"
4778 " writeback:%lukB"
4779 " shmem:%lukB"
4780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4781 " shmem_thp: %lukB"
4782 " shmem_pmdmapped: %lukB"
4783 " anon_thp: %lukB"
4784#endif
4785 " writeback_tmp:%lukB"
4786 " unstable:%lukB"
599d0c95
MG
4787 " all_unreclaimable? %s"
4788 "\n",
4789 pgdat->node_id,
4790 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4791 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4792 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4793 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4794 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4795 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4796 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4797 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4798 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4799 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4800 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4801#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4802 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4803 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4804 * HPAGE_PMD_NR),
4805 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4806#endif
11fb9989
MG
4807 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4808 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4809 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4810 "yes" : "no");
599d0c95
MG
4811 }
4812
ee99c71c 4813 for_each_populated_zone(zone) {
1da177e4
LT
4814 int i;
4815
9af744d7 4816 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4817 continue;
d1bfcdb8
KK
4818
4819 free_pcp = 0;
4820 for_each_online_cpu(cpu)
4821 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4822
1da177e4 4823 show_node(zone);
1f84a18f
JP
4824 printk(KERN_CONT
4825 "%s"
1da177e4
LT
4826 " free:%lukB"
4827 " min:%lukB"
4828 " low:%lukB"
4829 " high:%lukB"
71c799f4
MK
4830 " active_anon:%lukB"
4831 " inactive_anon:%lukB"
4832 " active_file:%lukB"
4833 " inactive_file:%lukB"
4834 " unevictable:%lukB"
5a1c84b4 4835 " writepending:%lukB"
1da177e4 4836 " present:%lukB"
9feedc9d 4837 " managed:%lukB"
4a0aa73f 4838 " mlocked:%lukB"
c6a7f572 4839 " kernel_stack:%lukB"
4a0aa73f 4840 " pagetables:%lukB"
4a0aa73f 4841 " bounce:%lukB"
d1bfcdb8
KK
4842 " free_pcp:%lukB"
4843 " local_pcp:%ukB"
d1ce749a 4844 " free_cma:%lukB"
1da177e4
LT
4845 "\n",
4846 zone->name,
88f5acf8 4847 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4848 K(min_wmark_pages(zone)),
4849 K(low_wmark_pages(zone)),
4850 K(high_wmark_pages(zone)),
71c799f4
MK
4851 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4852 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4853 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4854 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4855 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4856 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4857 K(zone->present_pages),
9feedc9d 4858 K(zone->managed_pages),
4a0aa73f 4859 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4860 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4861 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4862 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4863 K(free_pcp),
4864 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4865 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4866 printk("lowmem_reserve[]:");
4867 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4868 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4869 printk(KERN_CONT "\n");
1da177e4
LT
4870 }
4871
ee99c71c 4872 for_each_populated_zone(zone) {
d00181b9
KS
4873 unsigned int order;
4874 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4875 unsigned char types[MAX_ORDER];
1da177e4 4876
9af744d7 4877 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4878 continue;
1da177e4 4879 show_node(zone);
1f84a18f 4880 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4881
4882 spin_lock_irqsave(&zone->lock, flags);
4883 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4884 struct free_area *area = &zone->free_area[order];
4885 int type;
4886
4887 nr[order] = area->nr_free;
8f9de51a 4888 total += nr[order] << order;
377e4f16
RV
4889
4890 types[order] = 0;
4891 for (type = 0; type < MIGRATE_TYPES; type++) {
4892 if (!list_empty(&area->free_list[type]))
4893 types[order] |= 1 << type;
4894 }
1da177e4
LT
4895 }
4896 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4897 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4898 printk(KERN_CONT "%lu*%lukB ",
4899 nr[order], K(1UL) << order);
377e4f16
RV
4900 if (nr[order])
4901 show_migration_types(types[order]);
4902 }
1f84a18f 4903 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4904 }
4905
949f7ec5
DR
4906 hugetlb_show_meminfo();
4907
11fb9989 4908 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4909
1da177e4
LT
4910 show_swap_cache_info();
4911}
4912
19770b32
MG
4913static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4914{
4915 zoneref->zone = zone;
4916 zoneref->zone_idx = zone_idx(zone);
4917}
4918
1da177e4
LT
4919/*
4920 * Builds allocation fallback zone lists.
1a93205b
CL
4921 *
4922 * Add all populated zones of a node to the zonelist.
1da177e4 4923 */
9d3be21b 4924static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4925{
1a93205b 4926 struct zone *zone;
bc732f1d 4927 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4928 int nr_zones = 0;
02a68a5e
CL
4929
4930 do {
2f6726e5 4931 zone_type--;
070f8032 4932 zone = pgdat->node_zones + zone_type;
6aa303de 4933 if (managed_zone(zone)) {
9d3be21b 4934 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4935 check_highest_zone(zone_type);
1da177e4 4936 }
2f6726e5 4937 } while (zone_type);
bc732f1d 4938
070f8032 4939 return nr_zones;
1da177e4
LT
4940}
4941
4942#ifdef CONFIG_NUMA
f0c0b2b8
KH
4943
4944static int __parse_numa_zonelist_order(char *s)
4945{
c9bff3ee
MH
4946 /*
4947 * We used to support different zonlists modes but they turned
4948 * out to be just not useful. Let's keep the warning in place
4949 * if somebody still use the cmd line parameter so that we do
4950 * not fail it silently
4951 */
4952 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4953 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4954 return -EINVAL;
4955 }
4956 return 0;
4957}
4958
4959static __init int setup_numa_zonelist_order(char *s)
4960{
ecb256f8
VL
4961 if (!s)
4962 return 0;
4963
c9bff3ee 4964 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4965}
4966early_param("numa_zonelist_order", setup_numa_zonelist_order);
4967
c9bff3ee
MH
4968char numa_zonelist_order[] = "Node";
4969
f0c0b2b8
KH
4970/*
4971 * sysctl handler for numa_zonelist_order
4972 */
cccad5b9 4973int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4974 void __user *buffer, size_t *length,
f0c0b2b8
KH
4975 loff_t *ppos)
4976{
c9bff3ee 4977 char *str;
f0c0b2b8
KH
4978 int ret;
4979
c9bff3ee
MH
4980 if (!write)
4981 return proc_dostring(table, write, buffer, length, ppos);
4982 str = memdup_user_nul(buffer, 16);
4983 if (IS_ERR(str))
4984 return PTR_ERR(str);
dacbde09 4985
c9bff3ee
MH
4986 ret = __parse_numa_zonelist_order(str);
4987 kfree(str);
443c6f14 4988 return ret;
f0c0b2b8
KH
4989}
4990
4991
62bc62a8 4992#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4993static int node_load[MAX_NUMNODES];
4994
1da177e4 4995/**
4dc3b16b 4996 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4997 * @node: node whose fallback list we're appending
4998 * @used_node_mask: nodemask_t of already used nodes
4999 *
5000 * We use a number of factors to determine which is the next node that should
5001 * appear on a given node's fallback list. The node should not have appeared
5002 * already in @node's fallback list, and it should be the next closest node
5003 * according to the distance array (which contains arbitrary distance values
5004 * from each node to each node in the system), and should also prefer nodes
5005 * with no CPUs, since presumably they'll have very little allocation pressure
5006 * on them otherwise.
5007 * It returns -1 if no node is found.
5008 */
f0c0b2b8 5009static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5010{
4cf808eb 5011 int n, val;
1da177e4 5012 int min_val = INT_MAX;
00ef2d2f 5013 int best_node = NUMA_NO_NODE;
a70f7302 5014 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5015
4cf808eb
LT
5016 /* Use the local node if we haven't already */
5017 if (!node_isset(node, *used_node_mask)) {
5018 node_set(node, *used_node_mask);
5019 return node;
5020 }
1da177e4 5021
4b0ef1fe 5022 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5023
5024 /* Don't want a node to appear more than once */
5025 if (node_isset(n, *used_node_mask))
5026 continue;
5027
1da177e4
LT
5028 /* Use the distance array to find the distance */
5029 val = node_distance(node, n);
5030
4cf808eb
LT
5031 /* Penalize nodes under us ("prefer the next node") */
5032 val += (n < node);
5033
1da177e4 5034 /* Give preference to headless and unused nodes */
a70f7302
RR
5035 tmp = cpumask_of_node(n);
5036 if (!cpumask_empty(tmp))
1da177e4
LT
5037 val += PENALTY_FOR_NODE_WITH_CPUS;
5038
5039 /* Slight preference for less loaded node */
5040 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5041 val += node_load[n];
5042
5043 if (val < min_val) {
5044 min_val = val;
5045 best_node = n;
5046 }
5047 }
5048
5049 if (best_node >= 0)
5050 node_set(best_node, *used_node_mask);
5051
5052 return best_node;
5053}
5054
f0c0b2b8
KH
5055
5056/*
5057 * Build zonelists ordered by node and zones within node.
5058 * This results in maximum locality--normal zone overflows into local
5059 * DMA zone, if any--but risks exhausting DMA zone.
5060 */
9d3be21b
MH
5061static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5062 unsigned nr_nodes)
1da177e4 5063{
9d3be21b
MH
5064 struct zoneref *zonerefs;
5065 int i;
5066
5067 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5068
5069 for (i = 0; i < nr_nodes; i++) {
5070 int nr_zones;
5071
5072 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5073
9d3be21b
MH
5074 nr_zones = build_zonerefs_node(node, zonerefs);
5075 zonerefs += nr_zones;
5076 }
5077 zonerefs->zone = NULL;
5078 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5079}
5080
523b9458
CL
5081/*
5082 * Build gfp_thisnode zonelists
5083 */
5084static void build_thisnode_zonelists(pg_data_t *pgdat)
5085{
9d3be21b
MH
5086 struct zoneref *zonerefs;
5087 int nr_zones;
523b9458 5088
9d3be21b
MH
5089 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5090 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5091 zonerefs += nr_zones;
5092 zonerefs->zone = NULL;
5093 zonerefs->zone_idx = 0;
523b9458
CL
5094}
5095
f0c0b2b8
KH
5096/*
5097 * Build zonelists ordered by zone and nodes within zones.
5098 * This results in conserving DMA zone[s] until all Normal memory is
5099 * exhausted, but results in overflowing to remote node while memory
5100 * may still exist in local DMA zone.
5101 */
f0c0b2b8 5102
f0c0b2b8
KH
5103static void build_zonelists(pg_data_t *pgdat)
5104{
9d3be21b
MH
5105 static int node_order[MAX_NUMNODES];
5106 int node, load, nr_nodes = 0;
1da177e4 5107 nodemask_t used_mask;
f0c0b2b8 5108 int local_node, prev_node;
1da177e4
LT
5109
5110 /* NUMA-aware ordering of nodes */
5111 local_node = pgdat->node_id;
62bc62a8 5112 load = nr_online_nodes;
1da177e4
LT
5113 prev_node = local_node;
5114 nodes_clear(used_mask);
f0c0b2b8 5115
f0c0b2b8 5116 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5117 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5118 /*
5119 * We don't want to pressure a particular node.
5120 * So adding penalty to the first node in same
5121 * distance group to make it round-robin.
5122 */
957f822a
DR
5123 if (node_distance(local_node, node) !=
5124 node_distance(local_node, prev_node))
f0c0b2b8
KH
5125 node_load[node] = load;
5126
9d3be21b 5127 node_order[nr_nodes++] = node;
1da177e4
LT
5128 prev_node = node;
5129 load--;
1da177e4 5130 }
523b9458 5131
9d3be21b 5132 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5133 build_thisnode_zonelists(pgdat);
1da177e4
LT
5134}
5135
7aac7898
LS
5136#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5137/*
5138 * Return node id of node used for "local" allocations.
5139 * I.e., first node id of first zone in arg node's generic zonelist.
5140 * Used for initializing percpu 'numa_mem', which is used primarily
5141 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5142 */
5143int local_memory_node(int node)
5144{
c33d6c06 5145 struct zoneref *z;
7aac7898 5146
c33d6c06 5147 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5148 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5149 NULL);
5150 return z->zone->node;
7aac7898
LS
5151}
5152#endif
f0c0b2b8 5153
6423aa81
JK
5154static void setup_min_unmapped_ratio(void);
5155static void setup_min_slab_ratio(void);
1da177e4
LT
5156#else /* CONFIG_NUMA */
5157
f0c0b2b8 5158static void build_zonelists(pg_data_t *pgdat)
1da177e4 5159{
19655d34 5160 int node, local_node;
9d3be21b
MH
5161 struct zoneref *zonerefs;
5162 int nr_zones;
1da177e4
LT
5163
5164 local_node = pgdat->node_id;
1da177e4 5165
9d3be21b
MH
5166 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5167 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5168 zonerefs += nr_zones;
1da177e4 5169
54a6eb5c
MG
5170 /*
5171 * Now we build the zonelist so that it contains the zones
5172 * of all the other nodes.
5173 * We don't want to pressure a particular node, so when
5174 * building the zones for node N, we make sure that the
5175 * zones coming right after the local ones are those from
5176 * node N+1 (modulo N)
5177 */
5178 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5179 if (!node_online(node))
5180 continue;
9d3be21b
MH
5181 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5182 zonerefs += nr_zones;
1da177e4 5183 }
54a6eb5c
MG
5184 for (node = 0; node < local_node; node++) {
5185 if (!node_online(node))
5186 continue;
9d3be21b
MH
5187 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5188 zonerefs += nr_zones;
54a6eb5c
MG
5189 }
5190
9d3be21b
MH
5191 zonerefs->zone = NULL;
5192 zonerefs->zone_idx = 0;
1da177e4
LT
5193}
5194
5195#endif /* CONFIG_NUMA */
5196
99dcc3e5
CL
5197/*
5198 * Boot pageset table. One per cpu which is going to be used for all
5199 * zones and all nodes. The parameters will be set in such a way
5200 * that an item put on a list will immediately be handed over to
5201 * the buddy list. This is safe since pageset manipulation is done
5202 * with interrupts disabled.
5203 *
5204 * The boot_pagesets must be kept even after bootup is complete for
5205 * unused processors and/or zones. They do play a role for bootstrapping
5206 * hotplugged processors.
5207 *
5208 * zoneinfo_show() and maybe other functions do
5209 * not check if the processor is online before following the pageset pointer.
5210 * Other parts of the kernel may not check if the zone is available.
5211 */
5212static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5213static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5214static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5215
11cd8638 5216static void __build_all_zonelists(void *data)
1da177e4 5217{
6811378e 5218 int nid;
afb6ebb3 5219 int __maybe_unused cpu;
9adb62a5 5220 pg_data_t *self = data;
b93e0f32
MH
5221 static DEFINE_SPINLOCK(lock);
5222
5223 spin_lock(&lock);
9276b1bc 5224
7f9cfb31
BL
5225#ifdef CONFIG_NUMA
5226 memset(node_load, 0, sizeof(node_load));
5227#endif
9adb62a5 5228
c1152583
WY
5229 /*
5230 * This node is hotadded and no memory is yet present. So just
5231 * building zonelists is fine - no need to touch other nodes.
5232 */
9adb62a5
JL
5233 if (self && !node_online(self->node_id)) {
5234 build_zonelists(self);
c1152583
WY
5235 } else {
5236 for_each_online_node(nid) {
5237 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5238
c1152583
WY
5239 build_zonelists(pgdat);
5240 }
99dcc3e5 5241
7aac7898
LS
5242#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5243 /*
5244 * We now know the "local memory node" for each node--
5245 * i.e., the node of the first zone in the generic zonelist.
5246 * Set up numa_mem percpu variable for on-line cpus. During
5247 * boot, only the boot cpu should be on-line; we'll init the
5248 * secondary cpus' numa_mem as they come on-line. During
5249 * node/memory hotplug, we'll fixup all on-line cpus.
5250 */
d9c9a0b9 5251 for_each_online_cpu(cpu)
7aac7898 5252 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5253#endif
d9c9a0b9 5254 }
b93e0f32
MH
5255
5256 spin_unlock(&lock);
6811378e
YG
5257}
5258
061f67bc
RV
5259static noinline void __init
5260build_all_zonelists_init(void)
5261{
afb6ebb3
MH
5262 int cpu;
5263
061f67bc 5264 __build_all_zonelists(NULL);
afb6ebb3
MH
5265
5266 /*
5267 * Initialize the boot_pagesets that are going to be used
5268 * for bootstrapping processors. The real pagesets for
5269 * each zone will be allocated later when the per cpu
5270 * allocator is available.
5271 *
5272 * boot_pagesets are used also for bootstrapping offline
5273 * cpus if the system is already booted because the pagesets
5274 * are needed to initialize allocators on a specific cpu too.
5275 * F.e. the percpu allocator needs the page allocator which
5276 * needs the percpu allocator in order to allocate its pagesets
5277 * (a chicken-egg dilemma).
5278 */
5279 for_each_possible_cpu(cpu)
5280 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5281
061f67bc
RV
5282 mminit_verify_zonelist();
5283 cpuset_init_current_mems_allowed();
5284}
5285
4eaf3f64 5286/*
4eaf3f64 5287 * unless system_state == SYSTEM_BOOTING.
061f67bc 5288 *
72675e13 5289 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5290 * [protected by SYSTEM_BOOTING].
4eaf3f64 5291 */
72675e13 5292void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5293{
5294 if (system_state == SYSTEM_BOOTING) {
061f67bc 5295 build_all_zonelists_init();
6811378e 5296 } else {
11cd8638 5297 __build_all_zonelists(pgdat);
6811378e
YG
5298 /* cpuset refresh routine should be here */
5299 }
bd1e22b8 5300 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5301 /*
5302 * Disable grouping by mobility if the number of pages in the
5303 * system is too low to allow the mechanism to work. It would be
5304 * more accurate, but expensive to check per-zone. This check is
5305 * made on memory-hotadd so a system can start with mobility
5306 * disabled and enable it later
5307 */
d9c23400 5308 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5309 page_group_by_mobility_disabled = 1;
5310 else
5311 page_group_by_mobility_disabled = 0;
5312
c9bff3ee 5313 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5314 nr_online_nodes,
756a025f
JP
5315 page_group_by_mobility_disabled ? "off" : "on",
5316 vm_total_pages);
f0c0b2b8 5317#ifdef CONFIG_NUMA
f88dfff5 5318 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5319#endif
1da177e4
LT
5320}
5321
1da177e4
LT
5322/*
5323 * Initially all pages are reserved - free ones are freed
5324 * up by free_all_bootmem() once the early boot process is
5325 * done. Non-atomic initialization, single-pass.
5326 */
c09b4240 5327void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5328 unsigned long start_pfn, enum memmap_context context,
5329 struct vmem_altmap *altmap)
1da177e4 5330{
29751f69 5331 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5332 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5333 unsigned long pfn;
3a80a7fa 5334 unsigned long nr_initialised = 0;
342332e6
TI
5335#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5336 struct memblock_region *r = NULL, *tmp;
5337#endif
1da177e4 5338
22b31eec
HD
5339 if (highest_memmap_pfn < end_pfn - 1)
5340 highest_memmap_pfn = end_pfn - 1;
5341
4b94ffdc
DW
5342 /*
5343 * Honor reservation requested by the driver for this ZONE_DEVICE
5344 * memory
5345 */
5346 if (altmap && start_pfn == altmap->base_pfn)
5347 start_pfn += altmap->reserve;
5348
cbe8dd4a 5349 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5350 /*
b72d0ffb
AM
5351 * There can be holes in boot-time mem_map[]s handed to this
5352 * function. They do not exist on hotplugged memory.
a2f3aa02 5353 */
b72d0ffb
AM
5354 if (context != MEMMAP_EARLY)
5355 goto not_early;
5356
b92df1de
PB
5357 if (!early_pfn_valid(pfn)) {
5358#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5359 /*
5360 * Skip to the pfn preceding the next valid one (or
5361 * end_pfn), such that we hit a valid pfn (or end_pfn)
864b75f9
DV
5362 * on our next iteration of the loop. Note that it needs
5363 * to be pageblock aligned even when the region itself
5364 * is not. move_freepages_block() can shift ahead of
5365 * the valid region but still depends on correct page
5366 * metadata.
b92df1de 5367 */
864b75f9
DV
5368 pfn = (memblock_next_valid_pfn(pfn, end_pfn) &
5369 ~(pageblock_nr_pages-1)) - 1;
b92df1de 5370#endif
b72d0ffb 5371 continue;
b92df1de 5372 }
b72d0ffb
AM
5373 if (!early_pfn_in_nid(pfn, nid))
5374 continue;
5375 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5376 break;
342332e6
TI
5377
5378#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5379 /*
5380 * Check given memblock attribute by firmware which can affect
5381 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5382 * mirrored, it's an overlapped memmap init. skip it.
5383 */
5384 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5385 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5386 for_each_memblock(memory, tmp)
5387 if (pfn < memblock_region_memory_end_pfn(tmp))
5388 break;
5389 r = tmp;
5390 }
5391 if (pfn >= memblock_region_memory_base_pfn(r) &&
5392 memblock_is_mirror(r)) {
5393 /* already initialized as NORMAL */
5394 pfn = memblock_region_memory_end_pfn(r);
5395 continue;
342332e6 5396 }
a2f3aa02 5397 }
b72d0ffb 5398#endif
ac5d2539 5399
b72d0ffb 5400not_early:
ac5d2539
MG
5401 /*
5402 * Mark the block movable so that blocks are reserved for
5403 * movable at startup. This will force kernel allocations
5404 * to reserve their blocks rather than leaking throughout
5405 * the address space during boot when many long-lived
974a786e 5406 * kernel allocations are made.
ac5d2539
MG
5407 *
5408 * bitmap is created for zone's valid pfn range. but memmap
5409 * can be created for invalid pages (for alignment)
5410 * check here not to call set_pageblock_migratetype() against
5411 * pfn out of zone.
9bb5a391
MH
5412 *
5413 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5414 * because this is done early in sparse_add_one_section
ac5d2539
MG
5415 */
5416 if (!(pfn & (pageblock_nr_pages - 1))) {
5417 struct page *page = pfn_to_page(pfn);
5418
9bb5a391
MH
5419 __init_single_page(page, pfn, zone, nid,
5420 context != MEMMAP_HOTPLUG);
ac5d2539 5421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5422 cond_resched();
ac5d2539 5423 } else {
9bb5a391
MH
5424 __init_single_pfn(pfn, zone, nid,
5425 context != MEMMAP_HOTPLUG);
ac5d2539 5426 }
1da177e4
LT
5427 }
5428}
5429
1e548deb 5430static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5431{
7aeb09f9 5432 unsigned int order, t;
b2a0ac88
MG
5433 for_each_migratetype_order(order, t) {
5434 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5435 zone->free_area[order].nr_free = 0;
5436 }
5437}
5438
5439#ifndef __HAVE_ARCH_MEMMAP_INIT
5440#define memmap_init(size, nid, zone, start_pfn) \
a99583e7 5441 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
1da177e4
LT
5442#endif
5443
7cd2b0a3 5444static int zone_batchsize(struct zone *zone)
e7c8d5c9 5445{
3a6be87f 5446#ifdef CONFIG_MMU
e7c8d5c9
CL
5447 int batch;
5448
5449 /*
5450 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5451 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5452 *
5453 * OK, so we don't know how big the cache is. So guess.
5454 */
b40da049 5455 batch = zone->managed_pages / 1024;
ba56e91c
SR
5456 if (batch * PAGE_SIZE > 512 * 1024)
5457 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5458 batch /= 4; /* We effectively *= 4 below */
5459 if (batch < 1)
5460 batch = 1;
5461
5462 /*
0ceaacc9
NP
5463 * Clamp the batch to a 2^n - 1 value. Having a power
5464 * of 2 value was found to be more likely to have
5465 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5466 *
0ceaacc9
NP
5467 * For example if 2 tasks are alternately allocating
5468 * batches of pages, one task can end up with a lot
5469 * of pages of one half of the possible page colors
5470 * and the other with pages of the other colors.
e7c8d5c9 5471 */
9155203a 5472 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5473
e7c8d5c9 5474 return batch;
3a6be87f
DH
5475
5476#else
5477 /* The deferral and batching of frees should be suppressed under NOMMU
5478 * conditions.
5479 *
5480 * The problem is that NOMMU needs to be able to allocate large chunks
5481 * of contiguous memory as there's no hardware page translation to
5482 * assemble apparent contiguous memory from discontiguous pages.
5483 *
5484 * Queueing large contiguous runs of pages for batching, however,
5485 * causes the pages to actually be freed in smaller chunks. As there
5486 * can be a significant delay between the individual batches being
5487 * recycled, this leads to the once large chunks of space being
5488 * fragmented and becoming unavailable for high-order allocations.
5489 */
5490 return 0;
5491#endif
e7c8d5c9
CL
5492}
5493
8d7a8fa9
CS
5494/*
5495 * pcp->high and pcp->batch values are related and dependent on one another:
5496 * ->batch must never be higher then ->high.
5497 * The following function updates them in a safe manner without read side
5498 * locking.
5499 *
5500 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5501 * those fields changing asynchronously (acording the the above rule).
5502 *
5503 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5504 * outside of boot time (or some other assurance that no concurrent updaters
5505 * exist).
5506 */
5507static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5508 unsigned long batch)
5509{
5510 /* start with a fail safe value for batch */
5511 pcp->batch = 1;
5512 smp_wmb();
5513
5514 /* Update high, then batch, in order */
5515 pcp->high = high;
5516 smp_wmb();
5517
5518 pcp->batch = batch;
5519}
5520
3664033c 5521/* a companion to pageset_set_high() */
4008bab7
CS
5522static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5523{
8d7a8fa9 5524 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5525}
5526
88c90dbc 5527static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5528{
5529 struct per_cpu_pages *pcp;
5f8dcc21 5530 int migratetype;
2caaad41 5531
1c6fe946
MD
5532 memset(p, 0, sizeof(*p));
5533
3dfa5721 5534 pcp = &p->pcp;
2caaad41 5535 pcp->count = 0;
5f8dcc21
MG
5536 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5537 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5538}
5539
88c90dbc
CS
5540static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5541{
5542 pageset_init(p);
5543 pageset_set_batch(p, batch);
5544}
5545
8ad4b1fb 5546/*
3664033c 5547 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5548 * to the value high for the pageset p.
5549 */
3664033c 5550static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5551 unsigned long high)
5552{
8d7a8fa9
CS
5553 unsigned long batch = max(1UL, high / 4);
5554 if ((high / 4) > (PAGE_SHIFT * 8))
5555 batch = PAGE_SHIFT * 8;
8ad4b1fb 5556
8d7a8fa9 5557 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5558}
5559
7cd2b0a3
DR
5560static void pageset_set_high_and_batch(struct zone *zone,
5561 struct per_cpu_pageset *pcp)
56cef2b8 5562{
56cef2b8 5563 if (percpu_pagelist_fraction)
3664033c 5564 pageset_set_high(pcp,
56cef2b8
CS
5565 (zone->managed_pages /
5566 percpu_pagelist_fraction));
5567 else
5568 pageset_set_batch(pcp, zone_batchsize(zone));
5569}
5570
169f6c19
CS
5571static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5572{
5573 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5574
5575 pageset_init(pcp);
5576 pageset_set_high_and_batch(zone, pcp);
5577}
5578
72675e13 5579void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5580{
5581 int cpu;
319774e2 5582 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5583 for_each_possible_cpu(cpu)
5584 zone_pageset_init(zone, cpu);
319774e2
WF
5585}
5586
2caaad41 5587/*
99dcc3e5
CL
5588 * Allocate per cpu pagesets and initialize them.
5589 * Before this call only boot pagesets were available.
e7c8d5c9 5590 */
99dcc3e5 5591void __init setup_per_cpu_pageset(void)
e7c8d5c9 5592{
b4911ea2 5593 struct pglist_data *pgdat;
99dcc3e5 5594 struct zone *zone;
e7c8d5c9 5595
319774e2
WF
5596 for_each_populated_zone(zone)
5597 setup_zone_pageset(zone);
b4911ea2
MG
5598
5599 for_each_online_pgdat(pgdat)
5600 pgdat->per_cpu_nodestats =
5601 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5602}
5603
c09b4240 5604static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5605{
99dcc3e5
CL
5606 /*
5607 * per cpu subsystem is not up at this point. The following code
5608 * relies on the ability of the linker to provide the
5609 * offset of a (static) per cpu variable into the per cpu area.
5610 */
5611 zone->pageset = &boot_pageset;
ed8ece2e 5612
b38a8725 5613 if (populated_zone(zone))
99dcc3e5
CL
5614 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5615 zone->name, zone->present_pages,
5616 zone_batchsize(zone));
ed8ece2e
DH
5617}
5618
dc0bbf3b 5619void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5620 unsigned long zone_start_pfn,
b171e409 5621 unsigned long size)
ed8ece2e
DH
5622{
5623 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5624
ed8ece2e
DH
5625 pgdat->nr_zones = zone_idx(zone) + 1;
5626
ed8ece2e
DH
5627 zone->zone_start_pfn = zone_start_pfn;
5628
708614e6
MG
5629 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5630 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5631 pgdat->node_id,
5632 (unsigned long)zone_idx(zone),
5633 zone_start_pfn, (zone_start_pfn + size));
5634
1e548deb 5635 zone_init_free_lists(zone);
9dcb8b68 5636 zone->initialized = 1;
ed8ece2e
DH
5637}
5638
0ee332c1 5639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5640#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5641
c713216d
MG
5642/*
5643 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5644 */
8a942fde
MG
5645int __meminit __early_pfn_to_nid(unsigned long pfn,
5646 struct mminit_pfnnid_cache *state)
c713216d 5647{
c13291a5 5648 unsigned long start_pfn, end_pfn;
e76b63f8 5649 int nid;
7c243c71 5650
8a942fde
MG
5651 if (state->last_start <= pfn && pfn < state->last_end)
5652 return state->last_nid;
c713216d 5653
e76b63f8
YL
5654 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5655 if (nid != -1) {
8a942fde
MG
5656 state->last_start = start_pfn;
5657 state->last_end = end_pfn;
5658 state->last_nid = nid;
e76b63f8
YL
5659 }
5660
5661 return nid;
c713216d
MG
5662}
5663#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5664
c713216d 5665/**
6782832e 5666 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5667 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5668 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5669 *
7d018176
ZZ
5670 * If an architecture guarantees that all ranges registered contain no holes
5671 * and may be freed, this this function may be used instead of calling
5672 * memblock_free_early_nid() manually.
c713216d 5673 */
c13291a5 5674void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5675{
c13291a5
TH
5676 unsigned long start_pfn, end_pfn;
5677 int i, this_nid;
edbe7d23 5678
c13291a5
TH
5679 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5680 start_pfn = min(start_pfn, max_low_pfn);
5681 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5682
c13291a5 5683 if (start_pfn < end_pfn)
6782832e
SS
5684 memblock_free_early_nid(PFN_PHYS(start_pfn),
5685 (end_pfn - start_pfn) << PAGE_SHIFT,
5686 this_nid);
edbe7d23 5687 }
edbe7d23 5688}
edbe7d23 5689
c713216d
MG
5690/**
5691 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5692 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5693 *
7d018176
ZZ
5694 * If an architecture guarantees that all ranges registered contain no holes and may
5695 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5696 */
5697void __init sparse_memory_present_with_active_regions(int nid)
5698{
c13291a5
TH
5699 unsigned long start_pfn, end_pfn;
5700 int i, this_nid;
c713216d 5701
c13291a5
TH
5702 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5703 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5704}
5705
5706/**
5707 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5708 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5709 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5710 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5711 *
5712 * It returns the start and end page frame of a node based on information
7d018176 5713 * provided by memblock_set_node(). If called for a node
c713216d 5714 * with no available memory, a warning is printed and the start and end
88ca3b94 5715 * PFNs will be 0.
c713216d 5716 */
a3142c8e 5717void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5718 unsigned long *start_pfn, unsigned long *end_pfn)
5719{
c13291a5 5720 unsigned long this_start_pfn, this_end_pfn;
c713216d 5721 int i;
c13291a5 5722
c713216d
MG
5723 *start_pfn = -1UL;
5724 *end_pfn = 0;
5725
c13291a5
TH
5726 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5727 *start_pfn = min(*start_pfn, this_start_pfn);
5728 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5729 }
5730
633c0666 5731 if (*start_pfn == -1UL)
c713216d 5732 *start_pfn = 0;
c713216d
MG
5733}
5734
2a1e274a
MG
5735/*
5736 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5737 * assumption is made that zones within a node are ordered in monotonic
5738 * increasing memory addresses so that the "highest" populated zone is used
5739 */
b69a7288 5740static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5741{
5742 int zone_index;
5743 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5744 if (zone_index == ZONE_MOVABLE)
5745 continue;
5746
5747 if (arch_zone_highest_possible_pfn[zone_index] >
5748 arch_zone_lowest_possible_pfn[zone_index])
5749 break;
5750 }
5751
5752 VM_BUG_ON(zone_index == -1);
5753 movable_zone = zone_index;
5754}
5755
5756/*
5757 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5758 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5759 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5760 * in each node depending on the size of each node and how evenly kernelcore
5761 * is distributed. This helper function adjusts the zone ranges
5762 * provided by the architecture for a given node by using the end of the
5763 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5764 * zones within a node are in order of monotonic increases memory addresses
5765 */
b69a7288 5766static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5767 unsigned long zone_type,
5768 unsigned long node_start_pfn,
5769 unsigned long node_end_pfn,
5770 unsigned long *zone_start_pfn,
5771 unsigned long *zone_end_pfn)
5772{
5773 /* Only adjust if ZONE_MOVABLE is on this node */
5774 if (zone_movable_pfn[nid]) {
5775 /* Size ZONE_MOVABLE */
5776 if (zone_type == ZONE_MOVABLE) {
5777 *zone_start_pfn = zone_movable_pfn[nid];
5778 *zone_end_pfn = min(node_end_pfn,
5779 arch_zone_highest_possible_pfn[movable_zone]);
5780
e506b996
XQ
5781 /* Adjust for ZONE_MOVABLE starting within this range */
5782 } else if (!mirrored_kernelcore &&
5783 *zone_start_pfn < zone_movable_pfn[nid] &&
5784 *zone_end_pfn > zone_movable_pfn[nid]) {
5785 *zone_end_pfn = zone_movable_pfn[nid];
5786
2a1e274a
MG
5787 /* Check if this whole range is within ZONE_MOVABLE */
5788 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5789 *zone_start_pfn = *zone_end_pfn;
5790 }
5791}
5792
c713216d
MG
5793/*
5794 * Return the number of pages a zone spans in a node, including holes
5795 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5796 */
6ea6e688 5797static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5798 unsigned long zone_type,
7960aedd
ZY
5799 unsigned long node_start_pfn,
5800 unsigned long node_end_pfn,
d91749c1
TI
5801 unsigned long *zone_start_pfn,
5802 unsigned long *zone_end_pfn,
c713216d
MG
5803 unsigned long *ignored)
5804{
b5685e92 5805 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5806 if (!node_start_pfn && !node_end_pfn)
5807 return 0;
5808
7960aedd 5809 /* Get the start and end of the zone */
d91749c1
TI
5810 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5811 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5812 adjust_zone_range_for_zone_movable(nid, zone_type,
5813 node_start_pfn, node_end_pfn,
d91749c1 5814 zone_start_pfn, zone_end_pfn);
c713216d
MG
5815
5816 /* Check that this node has pages within the zone's required range */
d91749c1 5817 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5818 return 0;
5819
5820 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5821 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5822 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5823
5824 /* Return the spanned pages */
d91749c1 5825 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5826}
5827
5828/*
5829 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5830 * then all holes in the requested range will be accounted for.
c713216d 5831 */
32996250 5832unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5833 unsigned long range_start_pfn,
5834 unsigned long range_end_pfn)
5835{
96e907d1
TH
5836 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5837 unsigned long start_pfn, end_pfn;
5838 int i;
c713216d 5839
96e907d1
TH
5840 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5841 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5842 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5843 nr_absent -= end_pfn - start_pfn;
c713216d 5844 }
96e907d1 5845 return nr_absent;
c713216d
MG
5846}
5847
5848/**
5849 * absent_pages_in_range - Return number of page frames in holes within a range
5850 * @start_pfn: The start PFN to start searching for holes
5851 * @end_pfn: The end PFN to stop searching for holes
5852 *
88ca3b94 5853 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5854 */
5855unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5856 unsigned long end_pfn)
5857{
5858 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5859}
5860
5861/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5862static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5863 unsigned long zone_type,
7960aedd
ZY
5864 unsigned long node_start_pfn,
5865 unsigned long node_end_pfn,
c713216d
MG
5866 unsigned long *ignored)
5867{
96e907d1
TH
5868 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5869 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5870 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5871 unsigned long nr_absent;
9c7cd687 5872
b5685e92 5873 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5874 if (!node_start_pfn && !node_end_pfn)
5875 return 0;
5876
96e907d1
TH
5877 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5878 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5879
2a1e274a
MG
5880 adjust_zone_range_for_zone_movable(nid, zone_type,
5881 node_start_pfn, node_end_pfn,
5882 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5883 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5884
5885 /*
5886 * ZONE_MOVABLE handling.
5887 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5888 * and vice versa.
5889 */
e506b996
XQ
5890 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5891 unsigned long start_pfn, end_pfn;
5892 struct memblock_region *r;
5893
5894 for_each_memblock(memory, r) {
5895 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5896 zone_start_pfn, zone_end_pfn);
5897 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5898 zone_start_pfn, zone_end_pfn);
5899
5900 if (zone_type == ZONE_MOVABLE &&
5901 memblock_is_mirror(r))
5902 nr_absent += end_pfn - start_pfn;
5903
5904 if (zone_type == ZONE_NORMAL &&
5905 !memblock_is_mirror(r))
5906 nr_absent += end_pfn - start_pfn;
342332e6
TI
5907 }
5908 }
5909
5910 return nr_absent;
c713216d 5911}
0e0b864e 5912
0ee332c1 5913#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5914static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5915 unsigned long zone_type,
7960aedd
ZY
5916 unsigned long node_start_pfn,
5917 unsigned long node_end_pfn,
d91749c1
TI
5918 unsigned long *zone_start_pfn,
5919 unsigned long *zone_end_pfn,
c713216d
MG
5920 unsigned long *zones_size)
5921{
d91749c1
TI
5922 unsigned int zone;
5923
5924 *zone_start_pfn = node_start_pfn;
5925 for (zone = 0; zone < zone_type; zone++)
5926 *zone_start_pfn += zones_size[zone];
5927
5928 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5929
c713216d
MG
5930 return zones_size[zone_type];
5931}
5932
6ea6e688 5933static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5934 unsigned long zone_type,
7960aedd
ZY
5935 unsigned long node_start_pfn,
5936 unsigned long node_end_pfn,
c713216d
MG
5937 unsigned long *zholes_size)
5938{
5939 if (!zholes_size)
5940 return 0;
5941
5942 return zholes_size[zone_type];
5943}
20e6926d 5944
0ee332c1 5945#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5946
a3142c8e 5947static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5948 unsigned long node_start_pfn,
5949 unsigned long node_end_pfn,
5950 unsigned long *zones_size,
5951 unsigned long *zholes_size)
c713216d 5952{
febd5949 5953 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5954 enum zone_type i;
5955
febd5949
GZ
5956 for (i = 0; i < MAX_NR_ZONES; i++) {
5957 struct zone *zone = pgdat->node_zones + i;
d91749c1 5958 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5959 unsigned long size, real_size;
c713216d 5960
febd5949
GZ
5961 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5962 node_start_pfn,
5963 node_end_pfn,
d91749c1
TI
5964 &zone_start_pfn,
5965 &zone_end_pfn,
febd5949
GZ
5966 zones_size);
5967 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5968 node_start_pfn, node_end_pfn,
5969 zholes_size);
d91749c1
TI
5970 if (size)
5971 zone->zone_start_pfn = zone_start_pfn;
5972 else
5973 zone->zone_start_pfn = 0;
febd5949
GZ
5974 zone->spanned_pages = size;
5975 zone->present_pages = real_size;
5976
5977 totalpages += size;
5978 realtotalpages += real_size;
5979 }
5980
5981 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5982 pgdat->node_present_pages = realtotalpages;
5983 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5984 realtotalpages);
5985}
5986
835c134e
MG
5987#ifndef CONFIG_SPARSEMEM
5988/*
5989 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5990 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5991 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5992 * round what is now in bits to nearest long in bits, then return it in
5993 * bytes.
5994 */
7c45512d 5995static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5996{
5997 unsigned long usemapsize;
5998
7c45512d 5999 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6000 usemapsize = roundup(zonesize, pageblock_nr_pages);
6001 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6002 usemapsize *= NR_PAGEBLOCK_BITS;
6003 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6004
6005 return usemapsize / 8;
6006}
6007
6008static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6009 struct zone *zone,
6010 unsigned long zone_start_pfn,
6011 unsigned long zonesize)
835c134e 6012{
7c45512d 6013 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6014 zone->pageblock_flags = NULL;
58a01a45 6015 if (usemapsize)
6782832e
SS
6016 zone->pageblock_flags =
6017 memblock_virt_alloc_node_nopanic(usemapsize,
6018 pgdat->node_id);
835c134e
MG
6019}
6020#else
7c45512d
LT
6021static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6022 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6023#endif /* CONFIG_SPARSEMEM */
6024
d9c23400 6025#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6026
d9c23400 6027/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6028void __paginginit set_pageblock_order(void)
d9c23400 6029{
955c1cd7
AM
6030 unsigned int order;
6031
d9c23400
MG
6032 /* Check that pageblock_nr_pages has not already been setup */
6033 if (pageblock_order)
6034 return;
6035
955c1cd7
AM
6036 if (HPAGE_SHIFT > PAGE_SHIFT)
6037 order = HUGETLB_PAGE_ORDER;
6038 else
6039 order = MAX_ORDER - 1;
6040
d9c23400
MG
6041 /*
6042 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6043 * This value may be variable depending on boot parameters on IA64 and
6044 * powerpc.
d9c23400
MG
6045 */
6046 pageblock_order = order;
6047}
6048#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6049
ba72cb8c
MG
6050/*
6051 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6052 * is unused as pageblock_order is set at compile-time. See
6053 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6054 * the kernel config
ba72cb8c 6055 */
15ca220e 6056void __paginginit set_pageblock_order(void)
ba72cb8c 6057{
ba72cb8c 6058}
d9c23400
MG
6059
6060#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6061
01cefaef
JL
6062static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6063 unsigned long present_pages)
6064{
6065 unsigned long pages = spanned_pages;
6066
6067 /*
6068 * Provide a more accurate estimation if there are holes within
6069 * the zone and SPARSEMEM is in use. If there are holes within the
6070 * zone, each populated memory region may cost us one or two extra
6071 * memmap pages due to alignment because memmap pages for each
89d790ab 6072 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6073 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6074 */
6075 if (spanned_pages > present_pages + (present_pages >> 4) &&
6076 IS_ENABLED(CONFIG_SPARSEMEM))
6077 pages = present_pages;
6078
6079 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6080}
6081
1da177e4
LT
6082/*
6083 * Set up the zone data structures:
6084 * - mark all pages reserved
6085 * - mark all memory queues empty
6086 * - clear the memory bitmaps
6527af5d
MK
6087 *
6088 * NOTE: pgdat should get zeroed by caller.
1da177e4 6089 */
7f3eb55b 6090static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6091{
2f1b6248 6092 enum zone_type j;
ed8ece2e 6093 int nid = pgdat->node_id;
1da177e4 6094
208d54e5 6095 pgdat_resize_init(pgdat);
8177a420
AA
6096#ifdef CONFIG_NUMA_BALANCING
6097 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6098 pgdat->numabalancing_migrate_nr_pages = 0;
6099 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6100#endif
6101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6102 spin_lock_init(&pgdat->split_queue_lock);
6103 INIT_LIST_HEAD(&pgdat->split_queue);
6104 pgdat->split_queue_len = 0;
8177a420 6105#endif
1da177e4 6106 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6107 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6108#ifdef CONFIG_COMPACTION
6109 init_waitqueue_head(&pgdat->kcompactd_wait);
6110#endif
eefa864b 6111 pgdat_page_ext_init(pgdat);
a52633d8 6112 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6113 lruvec_init(node_lruvec(pgdat));
5f63b720 6114
385386cf
JW
6115 pgdat->per_cpu_nodestats = &boot_nodestats;
6116
1da177e4
LT
6117 for (j = 0; j < MAX_NR_ZONES; j++) {
6118 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6119 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6120 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6121
febd5949
GZ
6122 size = zone->spanned_pages;
6123 realsize = freesize = zone->present_pages;
1da177e4 6124
0e0b864e 6125 /*
9feedc9d 6126 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6127 * is used by this zone for memmap. This affects the watermark
6128 * and per-cpu initialisations
6129 */
01cefaef 6130 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6131 if (!is_highmem_idx(j)) {
6132 if (freesize >= memmap_pages) {
6133 freesize -= memmap_pages;
6134 if (memmap_pages)
6135 printk(KERN_DEBUG
6136 " %s zone: %lu pages used for memmap\n",
6137 zone_names[j], memmap_pages);
6138 } else
1170532b 6139 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6140 zone_names[j], memmap_pages, freesize);
6141 }
0e0b864e 6142
6267276f 6143 /* Account for reserved pages */
9feedc9d
JL
6144 if (j == 0 && freesize > dma_reserve) {
6145 freesize -= dma_reserve;
d903ef9f 6146 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6147 zone_names[0], dma_reserve);
0e0b864e
MG
6148 }
6149
98d2b0eb 6150 if (!is_highmem_idx(j))
9feedc9d 6151 nr_kernel_pages += freesize;
01cefaef
JL
6152 /* Charge for highmem memmap if there are enough kernel pages */
6153 else if (nr_kernel_pages > memmap_pages * 2)
6154 nr_kernel_pages -= memmap_pages;
9feedc9d 6155 nr_all_pages += freesize;
1da177e4 6156
9feedc9d
JL
6157 /*
6158 * Set an approximate value for lowmem here, it will be adjusted
6159 * when the bootmem allocator frees pages into the buddy system.
6160 * And all highmem pages will be managed by the buddy system.
6161 */
6162 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6163#ifdef CONFIG_NUMA
d5f541ed 6164 zone->node = nid;
9614634f 6165#endif
1da177e4 6166 zone->name = zone_names[j];
a52633d8 6167 zone->zone_pgdat = pgdat;
1da177e4 6168 spin_lock_init(&zone->lock);
bdc8cb98 6169 zone_seqlock_init(zone);
ed8ece2e 6170 zone_pcp_init(zone);
81c0a2bb 6171
1da177e4
LT
6172 if (!size)
6173 continue;
6174
955c1cd7 6175 set_pageblock_order();
7c45512d 6176 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6177 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6178 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6179 }
6180}
6181
0cd842f9 6182#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6183static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6184{
b0aeba74 6185 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6186 unsigned long __maybe_unused offset = 0;
6187
1da177e4
LT
6188 /* Skip empty nodes */
6189 if (!pgdat->node_spanned_pages)
6190 return;
6191
b0aeba74
TL
6192 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6193 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6194 /* ia64 gets its own node_mem_map, before this, without bootmem */
6195 if (!pgdat->node_mem_map) {
b0aeba74 6196 unsigned long size, end;
d41dee36
AW
6197 struct page *map;
6198
e984bb43
BP
6199 /*
6200 * The zone's endpoints aren't required to be MAX_ORDER
6201 * aligned but the node_mem_map endpoints must be in order
6202 * for the buddy allocator to function correctly.
6203 */
108bcc96 6204 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6205 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6206 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6207 map = alloc_remap(pgdat->node_id, size);
6208 if (!map)
6782832e
SS
6209 map = memblock_virt_alloc_node_nopanic(size,
6210 pgdat->node_id);
a1c34a3b 6211 pgdat->node_mem_map = map + offset;
1da177e4 6212 }
0cd842f9
OS
6213 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6214 __func__, pgdat->node_id, (unsigned long)pgdat,
6215 (unsigned long)pgdat->node_mem_map);
12d810c1 6216#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6217 /*
6218 * With no DISCONTIG, the global mem_map is just set as node 0's
6219 */
c713216d 6220 if (pgdat == NODE_DATA(0)) {
1da177e4 6221 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6222#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6223 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6224 mem_map -= offset;
0ee332c1 6225#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6226 }
1da177e4
LT
6227#endif
6228}
0cd842f9
OS
6229#else
6230static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6231#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6232
9109fb7b
JW
6233void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6234 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6235{
9109fb7b 6236 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6237 unsigned long start_pfn = 0;
6238 unsigned long end_pfn = 0;
9109fb7b 6239
88fdf75d 6240 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6241 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6242
1da177e4
LT
6243 pgdat->node_id = nid;
6244 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6245 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6246#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6247 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6248 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6249 (u64)start_pfn << PAGE_SHIFT,
6250 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6251#else
6252 start_pfn = node_start_pfn;
7960aedd
ZY
6253#endif
6254 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6255 zones_size, zholes_size);
1da177e4
LT
6256
6257 alloc_node_mem_map(pgdat);
6258
864b9a39 6259 reset_deferred_meminit(pgdat);
7f3eb55b 6260 free_area_init_core(pgdat);
1da177e4
LT
6261}
6262
a4a3ede2
PT
6263#ifdef CONFIG_HAVE_MEMBLOCK
6264/*
6265 * Only struct pages that are backed by physical memory are zeroed and
6266 * initialized by going through __init_single_page(). But, there are some
6267 * struct pages which are reserved in memblock allocator and their fields
6268 * may be accessed (for example page_to_pfn() on some configuration accesses
6269 * flags). We must explicitly zero those struct pages.
6270 */
6271void __paginginit zero_resv_unavail(void)
6272{
6273 phys_addr_t start, end;
6274 unsigned long pfn;
6275 u64 i, pgcnt;
6276
6277 /*
6278 * Loop through ranges that are reserved, but do not have reported
6279 * physical memory backing.
6280 */
6281 pgcnt = 0;
6282 for_each_resv_unavail_range(i, &start, &end) {
6283 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
e8c24773
DY
6284 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6285 continue;
a4a3ede2
PT
6286 mm_zero_struct_page(pfn_to_page(pfn));
6287 pgcnt++;
6288 }
6289 }
6290
6291 /*
6292 * Struct pages that do not have backing memory. This could be because
6293 * firmware is using some of this memory, or for some other reasons.
6294 * Once memblock is changed so such behaviour is not allowed: i.e.
6295 * list of "reserved" memory must be a subset of list of "memory", then
6296 * this code can be removed.
6297 */
6298 if (pgcnt)
6299 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6300}
6301#endif /* CONFIG_HAVE_MEMBLOCK */
6302
0ee332c1 6303#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6304
6305#if MAX_NUMNODES > 1
6306/*
6307 * Figure out the number of possible node ids.
6308 */
f9872caf 6309void __init setup_nr_node_ids(void)
418508c1 6310{
904a9553 6311 unsigned int highest;
418508c1 6312
904a9553 6313 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6314 nr_node_ids = highest + 1;
6315}
418508c1
MS
6316#endif
6317
1e01979c
TH
6318/**
6319 * node_map_pfn_alignment - determine the maximum internode alignment
6320 *
6321 * This function should be called after node map is populated and sorted.
6322 * It calculates the maximum power of two alignment which can distinguish
6323 * all the nodes.
6324 *
6325 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6326 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6327 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6328 * shifted, 1GiB is enough and this function will indicate so.
6329 *
6330 * This is used to test whether pfn -> nid mapping of the chosen memory
6331 * model has fine enough granularity to avoid incorrect mapping for the
6332 * populated node map.
6333 *
6334 * Returns the determined alignment in pfn's. 0 if there is no alignment
6335 * requirement (single node).
6336 */
6337unsigned long __init node_map_pfn_alignment(void)
6338{
6339 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6340 unsigned long start, end, mask;
1e01979c 6341 int last_nid = -1;
c13291a5 6342 int i, nid;
1e01979c 6343
c13291a5 6344 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6345 if (!start || last_nid < 0 || last_nid == nid) {
6346 last_nid = nid;
6347 last_end = end;
6348 continue;
6349 }
6350
6351 /*
6352 * Start with a mask granular enough to pin-point to the
6353 * start pfn and tick off bits one-by-one until it becomes
6354 * too coarse to separate the current node from the last.
6355 */
6356 mask = ~((1 << __ffs(start)) - 1);
6357 while (mask && last_end <= (start & (mask << 1)))
6358 mask <<= 1;
6359
6360 /* accumulate all internode masks */
6361 accl_mask |= mask;
6362 }
6363
6364 /* convert mask to number of pages */
6365 return ~accl_mask + 1;
6366}
6367
a6af2bc3 6368/* Find the lowest pfn for a node */
b69a7288 6369static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6370{
a6af2bc3 6371 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6372 unsigned long start_pfn;
6373 int i;
1abbfb41 6374
c13291a5
TH
6375 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6376 min_pfn = min(min_pfn, start_pfn);
c713216d 6377
a6af2bc3 6378 if (min_pfn == ULONG_MAX) {
1170532b 6379 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6380 return 0;
6381 }
6382
6383 return min_pfn;
c713216d
MG
6384}
6385
6386/**
6387 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6388 *
6389 * It returns the minimum PFN based on information provided via
7d018176 6390 * memblock_set_node().
c713216d
MG
6391 */
6392unsigned long __init find_min_pfn_with_active_regions(void)
6393{
6394 return find_min_pfn_for_node(MAX_NUMNODES);
6395}
6396
37b07e41
LS
6397/*
6398 * early_calculate_totalpages()
6399 * Sum pages in active regions for movable zone.
4b0ef1fe 6400 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6401 */
484f51f8 6402static unsigned long __init early_calculate_totalpages(void)
7e63efef 6403{
7e63efef 6404 unsigned long totalpages = 0;
c13291a5
TH
6405 unsigned long start_pfn, end_pfn;
6406 int i, nid;
6407
6408 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6409 unsigned long pages = end_pfn - start_pfn;
7e63efef 6410
37b07e41
LS
6411 totalpages += pages;
6412 if (pages)
4b0ef1fe 6413 node_set_state(nid, N_MEMORY);
37b07e41 6414 }
b8af2941 6415 return totalpages;
7e63efef
MG
6416}
6417
2a1e274a
MG
6418/*
6419 * Find the PFN the Movable zone begins in each node. Kernel memory
6420 * is spread evenly between nodes as long as the nodes have enough
6421 * memory. When they don't, some nodes will have more kernelcore than
6422 * others
6423 */
b224ef85 6424static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6425{
6426 int i, nid;
6427 unsigned long usable_startpfn;
6428 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6429 /* save the state before borrow the nodemask */
4b0ef1fe 6430 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6431 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6432 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6433 struct memblock_region *r;
b2f3eebe
TC
6434
6435 /* Need to find movable_zone earlier when movable_node is specified. */
6436 find_usable_zone_for_movable();
6437
6438 /*
6439 * If movable_node is specified, ignore kernelcore and movablecore
6440 * options.
6441 */
6442 if (movable_node_is_enabled()) {
136199f0
EM
6443 for_each_memblock(memory, r) {
6444 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6445 continue;
6446
136199f0 6447 nid = r->nid;
b2f3eebe 6448
136199f0 6449 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6450 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6451 min(usable_startpfn, zone_movable_pfn[nid]) :
6452 usable_startpfn;
6453 }
6454
6455 goto out2;
6456 }
2a1e274a 6457
342332e6
TI
6458 /*
6459 * If kernelcore=mirror is specified, ignore movablecore option
6460 */
6461 if (mirrored_kernelcore) {
6462 bool mem_below_4gb_not_mirrored = false;
6463
6464 for_each_memblock(memory, r) {
6465 if (memblock_is_mirror(r))
6466 continue;
6467
6468 nid = r->nid;
6469
6470 usable_startpfn = memblock_region_memory_base_pfn(r);
6471
6472 if (usable_startpfn < 0x100000) {
6473 mem_below_4gb_not_mirrored = true;
6474 continue;
6475 }
6476
6477 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6478 min(usable_startpfn, zone_movable_pfn[nid]) :
6479 usable_startpfn;
6480 }
6481
6482 if (mem_below_4gb_not_mirrored)
6483 pr_warn("This configuration results in unmirrored kernel memory.");
6484
6485 goto out2;
6486 }
6487
7e63efef 6488 /*
b2f3eebe 6489 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6490 * kernelcore that corresponds so that memory usable for
6491 * any allocation type is evenly spread. If both kernelcore
6492 * and movablecore are specified, then the value of kernelcore
6493 * will be used for required_kernelcore if it's greater than
6494 * what movablecore would have allowed.
6495 */
6496 if (required_movablecore) {
7e63efef
MG
6497 unsigned long corepages;
6498
6499 /*
6500 * Round-up so that ZONE_MOVABLE is at least as large as what
6501 * was requested by the user
6502 */
6503 required_movablecore =
6504 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6505 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6506 corepages = totalpages - required_movablecore;
6507
6508 required_kernelcore = max(required_kernelcore, corepages);
6509 }
6510
bde304bd
XQ
6511 /*
6512 * If kernelcore was not specified or kernelcore size is larger
6513 * than totalpages, there is no ZONE_MOVABLE.
6514 */
6515 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6516 goto out;
2a1e274a
MG
6517
6518 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6519 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6520
6521restart:
6522 /* Spread kernelcore memory as evenly as possible throughout nodes */
6523 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6524 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6525 unsigned long start_pfn, end_pfn;
6526
2a1e274a
MG
6527 /*
6528 * Recalculate kernelcore_node if the division per node
6529 * now exceeds what is necessary to satisfy the requested
6530 * amount of memory for the kernel
6531 */
6532 if (required_kernelcore < kernelcore_node)
6533 kernelcore_node = required_kernelcore / usable_nodes;
6534
6535 /*
6536 * As the map is walked, we track how much memory is usable
6537 * by the kernel using kernelcore_remaining. When it is
6538 * 0, the rest of the node is usable by ZONE_MOVABLE
6539 */
6540 kernelcore_remaining = kernelcore_node;
6541
6542 /* Go through each range of PFNs within this node */
c13291a5 6543 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6544 unsigned long size_pages;
6545
c13291a5 6546 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6547 if (start_pfn >= end_pfn)
6548 continue;
6549
6550 /* Account for what is only usable for kernelcore */
6551 if (start_pfn < usable_startpfn) {
6552 unsigned long kernel_pages;
6553 kernel_pages = min(end_pfn, usable_startpfn)
6554 - start_pfn;
6555
6556 kernelcore_remaining -= min(kernel_pages,
6557 kernelcore_remaining);
6558 required_kernelcore -= min(kernel_pages,
6559 required_kernelcore);
6560
6561 /* Continue if range is now fully accounted */
6562 if (end_pfn <= usable_startpfn) {
6563
6564 /*
6565 * Push zone_movable_pfn to the end so
6566 * that if we have to rebalance
6567 * kernelcore across nodes, we will
6568 * not double account here
6569 */
6570 zone_movable_pfn[nid] = end_pfn;
6571 continue;
6572 }
6573 start_pfn = usable_startpfn;
6574 }
6575
6576 /*
6577 * The usable PFN range for ZONE_MOVABLE is from
6578 * start_pfn->end_pfn. Calculate size_pages as the
6579 * number of pages used as kernelcore
6580 */
6581 size_pages = end_pfn - start_pfn;
6582 if (size_pages > kernelcore_remaining)
6583 size_pages = kernelcore_remaining;
6584 zone_movable_pfn[nid] = start_pfn + size_pages;
6585
6586 /*
6587 * Some kernelcore has been met, update counts and
6588 * break if the kernelcore for this node has been
b8af2941 6589 * satisfied
2a1e274a
MG
6590 */
6591 required_kernelcore -= min(required_kernelcore,
6592 size_pages);
6593 kernelcore_remaining -= size_pages;
6594 if (!kernelcore_remaining)
6595 break;
6596 }
6597 }
6598
6599 /*
6600 * If there is still required_kernelcore, we do another pass with one
6601 * less node in the count. This will push zone_movable_pfn[nid] further
6602 * along on the nodes that still have memory until kernelcore is
b8af2941 6603 * satisfied
2a1e274a
MG
6604 */
6605 usable_nodes--;
6606 if (usable_nodes && required_kernelcore > usable_nodes)
6607 goto restart;
6608
b2f3eebe 6609out2:
2a1e274a
MG
6610 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6611 for (nid = 0; nid < MAX_NUMNODES; nid++)
6612 zone_movable_pfn[nid] =
6613 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6614
20e6926d 6615out:
66918dcd 6616 /* restore the node_state */
4b0ef1fe 6617 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6618}
6619
4b0ef1fe
LJ
6620/* Any regular or high memory on that node ? */
6621static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6622{
37b07e41
LS
6623 enum zone_type zone_type;
6624
4b0ef1fe
LJ
6625 if (N_MEMORY == N_NORMAL_MEMORY)
6626 return;
6627
6628 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6629 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6630 if (populated_zone(zone)) {
4b0ef1fe
LJ
6631 node_set_state(nid, N_HIGH_MEMORY);
6632 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6633 zone_type <= ZONE_NORMAL)
6634 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6635 break;
6636 }
37b07e41 6637 }
37b07e41
LS
6638}
6639
c713216d
MG
6640/**
6641 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6642 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6643 *
6644 * This will call free_area_init_node() for each active node in the system.
7d018176 6645 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6646 * zone in each node and their holes is calculated. If the maximum PFN
6647 * between two adjacent zones match, it is assumed that the zone is empty.
6648 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6649 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6650 * starts where the previous one ended. For example, ZONE_DMA32 starts
6651 * at arch_max_dma_pfn.
6652 */
6653void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6654{
c13291a5
TH
6655 unsigned long start_pfn, end_pfn;
6656 int i, nid;
a6af2bc3 6657
c713216d
MG
6658 /* Record where the zone boundaries are */
6659 memset(arch_zone_lowest_possible_pfn, 0,
6660 sizeof(arch_zone_lowest_possible_pfn));
6661 memset(arch_zone_highest_possible_pfn, 0,
6662 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6663
6664 start_pfn = find_min_pfn_with_active_regions();
6665
6666 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6667 if (i == ZONE_MOVABLE)
6668 continue;
90cae1fe
OH
6669
6670 end_pfn = max(max_zone_pfn[i], start_pfn);
6671 arch_zone_lowest_possible_pfn[i] = start_pfn;
6672 arch_zone_highest_possible_pfn[i] = end_pfn;
6673
6674 start_pfn = end_pfn;
c713216d 6675 }
2a1e274a
MG
6676
6677 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6678 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6679 find_zone_movable_pfns_for_nodes();
c713216d 6680
c713216d 6681 /* Print out the zone ranges */
f88dfff5 6682 pr_info("Zone ranges:\n");
2a1e274a
MG
6683 for (i = 0; i < MAX_NR_ZONES; i++) {
6684 if (i == ZONE_MOVABLE)
6685 continue;
f88dfff5 6686 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6687 if (arch_zone_lowest_possible_pfn[i] ==
6688 arch_zone_highest_possible_pfn[i])
f88dfff5 6689 pr_cont("empty\n");
72f0ba02 6690 else
8d29e18a
JG
6691 pr_cont("[mem %#018Lx-%#018Lx]\n",
6692 (u64)arch_zone_lowest_possible_pfn[i]
6693 << PAGE_SHIFT,
6694 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6695 << PAGE_SHIFT) - 1);
2a1e274a
MG
6696 }
6697
6698 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6699 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6700 for (i = 0; i < MAX_NUMNODES; i++) {
6701 if (zone_movable_pfn[i])
8d29e18a
JG
6702 pr_info(" Node %d: %#018Lx\n", i,
6703 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6704 }
c713216d 6705
f2d52fe5 6706 /* Print out the early node map */
f88dfff5 6707 pr_info("Early memory node ranges\n");
c13291a5 6708 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6709 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6710 (u64)start_pfn << PAGE_SHIFT,
6711 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6712
6713 /* Initialise every node */
708614e6 6714 mminit_verify_pageflags_layout();
8ef82866 6715 setup_nr_node_ids();
c713216d
MG
6716 for_each_online_node(nid) {
6717 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6718 free_area_init_node(nid, NULL,
c713216d 6719 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6720
6721 /* Any memory on that node */
6722 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6723 node_set_state(nid, N_MEMORY);
6724 check_for_memory(pgdat, nid);
c713216d 6725 }
a4a3ede2 6726 zero_resv_unavail();
c713216d 6727}
2a1e274a 6728
7e63efef 6729static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6730{
6731 unsigned long long coremem;
6732 if (!p)
6733 return -EINVAL;
6734
6735 coremem = memparse(p, &p);
7e63efef 6736 *core = coremem >> PAGE_SHIFT;
2a1e274a 6737
7e63efef 6738 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6739 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6740
6741 return 0;
6742}
ed7ed365 6743
7e63efef
MG
6744/*
6745 * kernelcore=size sets the amount of memory for use for allocations that
6746 * cannot be reclaimed or migrated.
6747 */
6748static int __init cmdline_parse_kernelcore(char *p)
6749{
342332e6
TI
6750 /* parse kernelcore=mirror */
6751 if (parse_option_str(p, "mirror")) {
6752 mirrored_kernelcore = true;
6753 return 0;
6754 }
6755
7e63efef
MG
6756 return cmdline_parse_core(p, &required_kernelcore);
6757}
6758
6759/*
6760 * movablecore=size sets the amount of memory for use for allocations that
6761 * can be reclaimed or migrated.
6762 */
6763static int __init cmdline_parse_movablecore(char *p)
6764{
6765 return cmdline_parse_core(p, &required_movablecore);
6766}
6767
ed7ed365 6768early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6769early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6770
0ee332c1 6771#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6772
c3d5f5f0
JL
6773void adjust_managed_page_count(struct page *page, long count)
6774{
6775 spin_lock(&managed_page_count_lock);
6776 page_zone(page)->managed_pages += count;
6777 totalram_pages += count;
3dcc0571
JL
6778#ifdef CONFIG_HIGHMEM
6779 if (PageHighMem(page))
6780 totalhigh_pages += count;
6781#endif
c3d5f5f0
JL
6782 spin_unlock(&managed_page_count_lock);
6783}
3dcc0571 6784EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6785
11199692 6786unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6787{
11199692
JL
6788 void *pos;
6789 unsigned long pages = 0;
69afade7 6790
11199692
JL
6791 start = (void *)PAGE_ALIGN((unsigned long)start);
6792 end = (void *)((unsigned long)end & PAGE_MASK);
6793 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6794 if ((unsigned int)poison <= 0xFF)
11199692
JL
6795 memset(pos, poison, PAGE_SIZE);
6796 free_reserved_page(virt_to_page(pos));
69afade7
JL
6797 }
6798
6799 if (pages && s)
adb1fe9a
JP
6800 pr_info("Freeing %s memory: %ldK\n",
6801 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6802
6803 return pages;
6804}
11199692 6805EXPORT_SYMBOL(free_reserved_area);
69afade7 6806
cfa11e08
JL
6807#ifdef CONFIG_HIGHMEM
6808void free_highmem_page(struct page *page)
6809{
6810 __free_reserved_page(page);
6811 totalram_pages++;
7b4b2a0d 6812 page_zone(page)->managed_pages++;
cfa11e08
JL
6813 totalhigh_pages++;
6814}
6815#endif
6816
7ee3d4e8
JL
6817
6818void __init mem_init_print_info(const char *str)
6819{
6820 unsigned long physpages, codesize, datasize, rosize, bss_size;
6821 unsigned long init_code_size, init_data_size;
6822
6823 physpages = get_num_physpages();
6824 codesize = _etext - _stext;
6825 datasize = _edata - _sdata;
6826 rosize = __end_rodata - __start_rodata;
6827 bss_size = __bss_stop - __bss_start;
6828 init_data_size = __init_end - __init_begin;
6829 init_code_size = _einittext - _sinittext;
6830
6831 /*
6832 * Detect special cases and adjust section sizes accordingly:
6833 * 1) .init.* may be embedded into .data sections
6834 * 2) .init.text.* may be out of [__init_begin, __init_end],
6835 * please refer to arch/tile/kernel/vmlinux.lds.S.
6836 * 3) .rodata.* may be embedded into .text or .data sections.
6837 */
6838#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6839 do { \
6840 if (start <= pos && pos < end && size > adj) \
6841 size -= adj; \
6842 } while (0)
7ee3d4e8
JL
6843
6844 adj_init_size(__init_begin, __init_end, init_data_size,
6845 _sinittext, init_code_size);
6846 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6847 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6848 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6849 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6850
6851#undef adj_init_size
6852
756a025f 6853 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6854#ifdef CONFIG_HIGHMEM
756a025f 6855 ", %luK highmem"
7ee3d4e8 6856#endif
756a025f
JP
6857 "%s%s)\n",
6858 nr_free_pages() << (PAGE_SHIFT - 10),
6859 physpages << (PAGE_SHIFT - 10),
6860 codesize >> 10, datasize >> 10, rosize >> 10,
6861 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6862 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6863 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6864#ifdef CONFIG_HIGHMEM
756a025f 6865 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6866#endif
756a025f 6867 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6868}
6869
0e0b864e 6870/**
88ca3b94
RD
6871 * set_dma_reserve - set the specified number of pages reserved in the first zone
6872 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6873 *
013110a7 6874 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6875 * In the DMA zone, a significant percentage may be consumed by kernel image
6876 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6877 * function may optionally be used to account for unfreeable pages in the
6878 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6879 * smaller per-cpu batchsize.
0e0b864e
MG
6880 */
6881void __init set_dma_reserve(unsigned long new_dma_reserve)
6882{
6883 dma_reserve = new_dma_reserve;
6884}
6885
1da177e4
LT
6886void __init free_area_init(unsigned long *zones_size)
6887{
9109fb7b 6888 free_area_init_node(0, zones_size,
1da177e4 6889 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 6890 zero_resv_unavail();
1da177e4 6891}
1da177e4 6892
005fd4bb 6893static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6894{
1da177e4 6895
005fd4bb
SAS
6896 lru_add_drain_cpu(cpu);
6897 drain_pages(cpu);
9f8f2172 6898
005fd4bb
SAS
6899 /*
6900 * Spill the event counters of the dead processor
6901 * into the current processors event counters.
6902 * This artificially elevates the count of the current
6903 * processor.
6904 */
6905 vm_events_fold_cpu(cpu);
9f8f2172 6906
005fd4bb
SAS
6907 /*
6908 * Zero the differential counters of the dead processor
6909 * so that the vm statistics are consistent.
6910 *
6911 * This is only okay since the processor is dead and cannot
6912 * race with what we are doing.
6913 */
6914 cpu_vm_stats_fold(cpu);
6915 return 0;
1da177e4 6916}
1da177e4
LT
6917
6918void __init page_alloc_init(void)
6919{
005fd4bb
SAS
6920 int ret;
6921
6922 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6923 "mm/page_alloc:dead", NULL,
6924 page_alloc_cpu_dead);
6925 WARN_ON(ret < 0);
1da177e4
LT
6926}
6927
cb45b0e9 6928/*
34b10060 6929 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6930 * or min_free_kbytes changes.
6931 */
6932static void calculate_totalreserve_pages(void)
6933{
6934 struct pglist_data *pgdat;
6935 unsigned long reserve_pages = 0;
2f6726e5 6936 enum zone_type i, j;
cb45b0e9
HA
6937
6938 for_each_online_pgdat(pgdat) {
281e3726
MG
6939
6940 pgdat->totalreserve_pages = 0;
6941
cb45b0e9
HA
6942 for (i = 0; i < MAX_NR_ZONES; i++) {
6943 struct zone *zone = pgdat->node_zones + i;
3484b2de 6944 long max = 0;
cb45b0e9
HA
6945
6946 /* Find valid and maximum lowmem_reserve in the zone */
6947 for (j = i; j < MAX_NR_ZONES; j++) {
6948 if (zone->lowmem_reserve[j] > max)
6949 max = zone->lowmem_reserve[j];
6950 }
6951
41858966
MG
6952 /* we treat the high watermark as reserved pages. */
6953 max += high_wmark_pages(zone);
cb45b0e9 6954
b40da049
JL
6955 if (max > zone->managed_pages)
6956 max = zone->managed_pages;
a8d01437 6957
281e3726 6958 pgdat->totalreserve_pages += max;
a8d01437 6959
cb45b0e9
HA
6960 reserve_pages += max;
6961 }
6962 }
6963 totalreserve_pages = reserve_pages;
6964}
6965
1da177e4
LT
6966/*
6967 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6968 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6969 * has a correct pages reserved value, so an adequate number of
6970 * pages are left in the zone after a successful __alloc_pages().
6971 */
6972static void setup_per_zone_lowmem_reserve(void)
6973{
6974 struct pglist_data *pgdat;
2f6726e5 6975 enum zone_type j, idx;
1da177e4 6976
ec936fc5 6977 for_each_online_pgdat(pgdat) {
1da177e4
LT
6978 for (j = 0; j < MAX_NR_ZONES; j++) {
6979 struct zone *zone = pgdat->node_zones + j;
b40da049 6980 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6981
6982 zone->lowmem_reserve[j] = 0;
6983
2f6726e5
CL
6984 idx = j;
6985 while (idx) {
1da177e4
LT
6986 struct zone *lower_zone;
6987
2f6726e5
CL
6988 idx--;
6989
1da177e4
LT
6990 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6991 sysctl_lowmem_reserve_ratio[idx] = 1;
6992
6993 lower_zone = pgdat->node_zones + idx;
b40da049 6994 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6995 sysctl_lowmem_reserve_ratio[idx];
b40da049 6996 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6997 }
6998 }
6999 }
cb45b0e9
HA
7000
7001 /* update totalreserve_pages */
7002 calculate_totalreserve_pages();
1da177e4
LT
7003}
7004
cfd3da1e 7005static void __setup_per_zone_wmarks(void)
1da177e4
LT
7006{
7007 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7008 unsigned long lowmem_pages = 0;
7009 struct zone *zone;
7010 unsigned long flags;
7011
7012 /* Calculate total number of !ZONE_HIGHMEM pages */
7013 for_each_zone(zone) {
7014 if (!is_highmem(zone))
b40da049 7015 lowmem_pages += zone->managed_pages;
1da177e4
LT
7016 }
7017
7018 for_each_zone(zone) {
ac924c60
AM
7019 u64 tmp;
7020
1125b4e3 7021 spin_lock_irqsave(&zone->lock, flags);
b40da049 7022 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7023 do_div(tmp, lowmem_pages);
1da177e4
LT
7024 if (is_highmem(zone)) {
7025 /*
669ed175
NP
7026 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7027 * need highmem pages, so cap pages_min to a small
7028 * value here.
7029 *
41858966 7030 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7031 * deltas control asynch page reclaim, and so should
669ed175 7032 * not be capped for highmem.
1da177e4 7033 */
90ae8d67 7034 unsigned long min_pages;
1da177e4 7035
b40da049 7036 min_pages = zone->managed_pages / 1024;
90ae8d67 7037 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7038 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7039 } else {
669ed175
NP
7040 /*
7041 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7042 * proportionate to the zone's size.
7043 */
41858966 7044 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7045 }
7046
795ae7a0
JW
7047 /*
7048 * Set the kswapd watermarks distance according to the
7049 * scale factor in proportion to available memory, but
7050 * ensure a minimum size on small systems.
7051 */
7052 tmp = max_t(u64, tmp >> 2,
7053 mult_frac(zone->managed_pages,
7054 watermark_scale_factor, 10000));
7055
7056 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7057 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7058
1125b4e3 7059 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7060 }
cb45b0e9
HA
7061
7062 /* update totalreserve_pages */
7063 calculate_totalreserve_pages();
1da177e4
LT
7064}
7065
cfd3da1e
MG
7066/**
7067 * setup_per_zone_wmarks - called when min_free_kbytes changes
7068 * or when memory is hot-{added|removed}
7069 *
7070 * Ensures that the watermark[min,low,high] values for each zone are set
7071 * correctly with respect to min_free_kbytes.
7072 */
7073void setup_per_zone_wmarks(void)
7074{
b93e0f32
MH
7075 static DEFINE_SPINLOCK(lock);
7076
7077 spin_lock(&lock);
cfd3da1e 7078 __setup_per_zone_wmarks();
b93e0f32 7079 spin_unlock(&lock);
cfd3da1e
MG
7080}
7081
1da177e4
LT
7082/*
7083 * Initialise min_free_kbytes.
7084 *
7085 * For small machines we want it small (128k min). For large machines
7086 * we want it large (64MB max). But it is not linear, because network
7087 * bandwidth does not increase linearly with machine size. We use
7088 *
b8af2941 7089 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7090 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7091 *
7092 * which yields
7093 *
7094 * 16MB: 512k
7095 * 32MB: 724k
7096 * 64MB: 1024k
7097 * 128MB: 1448k
7098 * 256MB: 2048k
7099 * 512MB: 2896k
7100 * 1024MB: 4096k
7101 * 2048MB: 5792k
7102 * 4096MB: 8192k
7103 * 8192MB: 11584k
7104 * 16384MB: 16384k
7105 */
1b79acc9 7106int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7107{
7108 unsigned long lowmem_kbytes;
5f12733e 7109 int new_min_free_kbytes;
1da177e4
LT
7110
7111 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7112 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7113
7114 if (new_min_free_kbytes > user_min_free_kbytes) {
7115 min_free_kbytes = new_min_free_kbytes;
7116 if (min_free_kbytes < 128)
7117 min_free_kbytes = 128;
7118 if (min_free_kbytes > 65536)
7119 min_free_kbytes = 65536;
7120 } else {
7121 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7122 new_min_free_kbytes, user_min_free_kbytes);
7123 }
bc75d33f 7124 setup_per_zone_wmarks();
a6cccdc3 7125 refresh_zone_stat_thresholds();
1da177e4 7126 setup_per_zone_lowmem_reserve();
6423aa81
JK
7127
7128#ifdef CONFIG_NUMA
7129 setup_min_unmapped_ratio();
7130 setup_min_slab_ratio();
7131#endif
7132
1da177e4
LT
7133 return 0;
7134}
bc22af74 7135core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7136
7137/*
b8af2941 7138 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7139 * that we can call two helper functions whenever min_free_kbytes
7140 * changes.
7141 */
cccad5b9 7142int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7143 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7144{
da8c757b
HP
7145 int rc;
7146
7147 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7148 if (rc)
7149 return rc;
7150
5f12733e
MH
7151 if (write) {
7152 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7153 setup_per_zone_wmarks();
5f12733e 7154 }
1da177e4
LT
7155 return 0;
7156}
7157
795ae7a0
JW
7158int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7159 void __user *buffer, size_t *length, loff_t *ppos)
7160{
7161 int rc;
7162
7163 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7164 if (rc)
7165 return rc;
7166
7167 if (write)
7168 setup_per_zone_wmarks();
7169
7170 return 0;
7171}
7172
9614634f 7173#ifdef CONFIG_NUMA
6423aa81 7174static void setup_min_unmapped_ratio(void)
9614634f 7175{
6423aa81 7176 pg_data_t *pgdat;
9614634f 7177 struct zone *zone;
9614634f 7178
a5f5f91d 7179 for_each_online_pgdat(pgdat)
81cbcbc2 7180 pgdat->min_unmapped_pages = 0;
a5f5f91d 7181
9614634f 7182 for_each_zone(zone)
a5f5f91d 7183 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7184 sysctl_min_unmapped_ratio) / 100;
9614634f 7185}
0ff38490 7186
6423aa81
JK
7187
7188int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7189 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7190{
0ff38490
CL
7191 int rc;
7192
8d65af78 7193 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7194 if (rc)
7195 return rc;
7196
6423aa81
JK
7197 setup_min_unmapped_ratio();
7198
7199 return 0;
7200}
7201
7202static void setup_min_slab_ratio(void)
7203{
7204 pg_data_t *pgdat;
7205 struct zone *zone;
7206
a5f5f91d
MG
7207 for_each_online_pgdat(pgdat)
7208 pgdat->min_slab_pages = 0;
7209
0ff38490 7210 for_each_zone(zone)
a5f5f91d 7211 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7212 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7213}
7214
7215int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7216 void __user *buffer, size_t *length, loff_t *ppos)
7217{
7218 int rc;
7219
7220 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7221 if (rc)
7222 return rc;
7223
7224 setup_min_slab_ratio();
7225
0ff38490
CL
7226 return 0;
7227}
9614634f
CL
7228#endif
7229
1da177e4
LT
7230/*
7231 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7232 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7233 * whenever sysctl_lowmem_reserve_ratio changes.
7234 *
7235 * The reserve ratio obviously has absolutely no relation with the
41858966 7236 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7237 * if in function of the boot time zone sizes.
7238 */
cccad5b9 7239int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7240 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7241{
8d65af78 7242 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7243 setup_per_zone_lowmem_reserve();
7244 return 0;
7245}
7246
8ad4b1fb
RS
7247/*
7248 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7249 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7250 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7251 */
cccad5b9 7252int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7253 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7254{
7255 struct zone *zone;
7cd2b0a3 7256 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7257 int ret;
7258
7cd2b0a3
DR
7259 mutex_lock(&pcp_batch_high_lock);
7260 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7261
8d65af78 7262 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7263 if (!write || ret < 0)
7264 goto out;
7265
7266 /* Sanity checking to avoid pcp imbalance */
7267 if (percpu_pagelist_fraction &&
7268 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7269 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7270 ret = -EINVAL;
7271 goto out;
7272 }
7273
7274 /* No change? */
7275 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7276 goto out;
c8e251fa 7277
364df0eb 7278 for_each_populated_zone(zone) {
7cd2b0a3
DR
7279 unsigned int cpu;
7280
22a7f12b 7281 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7282 pageset_set_high_and_batch(zone,
7283 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7284 }
7cd2b0a3 7285out:
c8e251fa 7286 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7287 return ret;
8ad4b1fb
RS
7288}
7289
a9919c79 7290#ifdef CONFIG_NUMA
f034b5d4 7291int hashdist = HASHDIST_DEFAULT;
1da177e4 7292
1da177e4
LT
7293static int __init set_hashdist(char *str)
7294{
7295 if (!str)
7296 return 0;
7297 hashdist = simple_strtoul(str, &str, 0);
7298 return 1;
7299}
7300__setup("hashdist=", set_hashdist);
7301#endif
7302
f6f34b43
SD
7303#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7304/*
7305 * Returns the number of pages that arch has reserved but
7306 * is not known to alloc_large_system_hash().
7307 */
7308static unsigned long __init arch_reserved_kernel_pages(void)
7309{
7310 return 0;
7311}
7312#endif
7313
9017217b
PT
7314/*
7315 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7316 * machines. As memory size is increased the scale is also increased but at
7317 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7318 * quadruples the scale is increased by one, which means the size of hash table
7319 * only doubles, instead of quadrupling as well.
7320 * Because 32-bit systems cannot have large physical memory, where this scaling
7321 * makes sense, it is disabled on such platforms.
7322 */
7323#if __BITS_PER_LONG > 32
7324#define ADAPT_SCALE_BASE (64ul << 30)
7325#define ADAPT_SCALE_SHIFT 2
7326#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7327#endif
7328
1da177e4
LT
7329/*
7330 * allocate a large system hash table from bootmem
7331 * - it is assumed that the hash table must contain an exact power-of-2
7332 * quantity of entries
7333 * - limit is the number of hash buckets, not the total allocation size
7334 */
7335void *__init alloc_large_system_hash(const char *tablename,
7336 unsigned long bucketsize,
7337 unsigned long numentries,
7338 int scale,
7339 int flags,
7340 unsigned int *_hash_shift,
7341 unsigned int *_hash_mask,
31fe62b9
TB
7342 unsigned long low_limit,
7343 unsigned long high_limit)
1da177e4 7344{
31fe62b9 7345 unsigned long long max = high_limit;
1da177e4
LT
7346 unsigned long log2qty, size;
7347 void *table = NULL;
3749a8f0 7348 gfp_t gfp_flags;
1da177e4
LT
7349
7350 /* allow the kernel cmdline to have a say */
7351 if (!numentries) {
7352 /* round applicable memory size up to nearest megabyte */
04903664 7353 numentries = nr_kernel_pages;
f6f34b43 7354 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7355
7356 /* It isn't necessary when PAGE_SIZE >= 1MB */
7357 if (PAGE_SHIFT < 20)
7358 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7359
9017217b
PT
7360#if __BITS_PER_LONG > 32
7361 if (!high_limit) {
7362 unsigned long adapt;
7363
7364 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7365 adapt <<= ADAPT_SCALE_SHIFT)
7366 scale++;
7367 }
7368#endif
7369
1da177e4
LT
7370 /* limit to 1 bucket per 2^scale bytes of low memory */
7371 if (scale > PAGE_SHIFT)
7372 numentries >>= (scale - PAGE_SHIFT);
7373 else
7374 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7375
7376 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7377 if (unlikely(flags & HASH_SMALL)) {
7378 /* Makes no sense without HASH_EARLY */
7379 WARN_ON(!(flags & HASH_EARLY));
7380 if (!(numentries >> *_hash_shift)) {
7381 numentries = 1UL << *_hash_shift;
7382 BUG_ON(!numentries);
7383 }
7384 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7385 numentries = PAGE_SIZE / bucketsize;
1da177e4 7386 }
6e692ed3 7387 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7388
7389 /* limit allocation size to 1/16 total memory by default */
7390 if (max == 0) {
7391 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7392 do_div(max, bucketsize);
7393 }
074b8517 7394 max = min(max, 0x80000000ULL);
1da177e4 7395
31fe62b9
TB
7396 if (numentries < low_limit)
7397 numentries = low_limit;
1da177e4
LT
7398 if (numentries > max)
7399 numentries = max;
7400
f0d1b0b3 7401 log2qty = ilog2(numentries);
1da177e4 7402
3749a8f0 7403 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7404 do {
7405 size = bucketsize << log2qty;
ea1f5f37
PT
7406 if (flags & HASH_EARLY) {
7407 if (flags & HASH_ZERO)
7408 table = memblock_virt_alloc_nopanic(size, 0);
7409 else
7410 table = memblock_virt_alloc_raw(size, 0);
7411 } else if (hashdist) {
3749a8f0 7412 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7413 } else {
1037b83b
ED
7414 /*
7415 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7416 * some pages at the end of hash table which
7417 * alloc_pages_exact() automatically does
1037b83b 7418 */
264ef8a9 7419 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7420 table = alloc_pages_exact(size, gfp_flags);
7421 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7422 }
1da177e4
LT
7423 }
7424 } while (!table && size > PAGE_SIZE && --log2qty);
7425
7426 if (!table)
7427 panic("Failed to allocate %s hash table\n", tablename);
7428
1170532b
JP
7429 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7430 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7431
7432 if (_hash_shift)
7433 *_hash_shift = log2qty;
7434 if (_hash_mask)
7435 *_hash_mask = (1 << log2qty) - 1;
7436
7437 return table;
7438}
a117e66e 7439
a5d76b54 7440/*
80934513
MK
7441 * This function checks whether pageblock includes unmovable pages or not.
7442 * If @count is not zero, it is okay to include less @count unmovable pages
7443 *
b8af2941 7444 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7445 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7446 * check without lock_page also may miss some movable non-lru pages at
7447 * race condition. So you can't expect this function should be exact.
a5d76b54 7448 */
b023f468 7449bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7450 int migratetype,
b023f468 7451 bool skip_hwpoisoned_pages)
49ac8255
KH
7452{
7453 unsigned long pfn, iter, found;
47118af0 7454
49ac8255
KH
7455 /*
7456 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7457 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7458 */
7459 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7460 return false;
49ac8255 7461
4da2ce25
MH
7462 /*
7463 * CMA allocations (alloc_contig_range) really need to mark isolate
7464 * CMA pageblocks even when they are not movable in fact so consider
7465 * them movable here.
7466 */
7467 if (is_migrate_cma(migratetype) &&
7468 is_migrate_cma(get_pageblock_migratetype(page)))
7469 return false;
7470
49ac8255
KH
7471 pfn = page_to_pfn(page);
7472 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7473 unsigned long check = pfn + iter;
7474
29723fcc 7475 if (!pfn_valid_within(check))
49ac8255 7476 continue;
29723fcc 7477
49ac8255 7478 page = pfn_to_page(check);
c8721bbb 7479
d7ab3672
MH
7480 if (PageReserved(page))
7481 return true;
7482
c8721bbb
NH
7483 /*
7484 * Hugepages are not in LRU lists, but they're movable.
7485 * We need not scan over tail pages bacause we don't
7486 * handle each tail page individually in migration.
7487 */
7488 if (PageHuge(page)) {
7489 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7490 continue;
7491 }
7492
97d255c8
MK
7493 /*
7494 * We can't use page_count without pin a page
7495 * because another CPU can free compound page.
7496 * This check already skips compound tails of THP
0139aa7b 7497 * because their page->_refcount is zero at all time.
97d255c8 7498 */
fe896d18 7499 if (!page_ref_count(page)) {
49ac8255
KH
7500 if (PageBuddy(page))
7501 iter += (1 << page_order(page)) - 1;
7502 continue;
7503 }
97d255c8 7504
b023f468
WC
7505 /*
7506 * The HWPoisoned page may be not in buddy system, and
7507 * page_count() is not 0.
7508 */
7509 if (skip_hwpoisoned_pages && PageHWPoison(page))
7510 continue;
7511
0efadf48
YX
7512 if (__PageMovable(page))
7513 continue;
7514
49ac8255
KH
7515 if (!PageLRU(page))
7516 found++;
7517 /*
6b4f7799
JW
7518 * If there are RECLAIMABLE pages, we need to check
7519 * it. But now, memory offline itself doesn't call
7520 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7521 */
7522 /*
7523 * If the page is not RAM, page_count()should be 0.
7524 * we don't need more check. This is an _used_ not-movable page.
7525 *
7526 * The problematic thing here is PG_reserved pages. PG_reserved
7527 * is set to both of a memory hole page and a _used_ kernel
7528 * page at boot.
7529 */
7530 if (found > count)
80934513 7531 return true;
49ac8255 7532 }
80934513 7533 return false;
49ac8255
KH
7534}
7535
7536bool is_pageblock_removable_nolock(struct page *page)
7537{
656a0706
MH
7538 struct zone *zone;
7539 unsigned long pfn;
687875fb
MH
7540
7541 /*
7542 * We have to be careful here because we are iterating over memory
7543 * sections which are not zone aware so we might end up outside of
7544 * the zone but still within the section.
656a0706
MH
7545 * We have to take care about the node as well. If the node is offline
7546 * its NODE_DATA will be NULL - see page_zone.
687875fb 7547 */
656a0706
MH
7548 if (!node_online(page_to_nid(page)))
7549 return false;
7550
7551 zone = page_zone(page);
7552 pfn = page_to_pfn(page);
108bcc96 7553 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7554 return false;
7555
4da2ce25 7556 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7557}
0c0e6195 7558
080fe206 7559#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7560
7561static unsigned long pfn_max_align_down(unsigned long pfn)
7562{
7563 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7564 pageblock_nr_pages) - 1);
7565}
7566
7567static unsigned long pfn_max_align_up(unsigned long pfn)
7568{
7569 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7570 pageblock_nr_pages));
7571}
7572
041d3a8c 7573/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7574static int __alloc_contig_migrate_range(struct compact_control *cc,
7575 unsigned long start, unsigned long end)
041d3a8c
MN
7576{
7577 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7578 unsigned long nr_reclaimed;
041d3a8c
MN
7579 unsigned long pfn = start;
7580 unsigned int tries = 0;
7581 int ret = 0;
7582
be49a6e1 7583 migrate_prep();
041d3a8c 7584
bb13ffeb 7585 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7586 if (fatal_signal_pending(current)) {
7587 ret = -EINTR;
7588 break;
7589 }
7590
bb13ffeb
MG
7591 if (list_empty(&cc->migratepages)) {
7592 cc->nr_migratepages = 0;
edc2ca61 7593 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7594 if (!pfn) {
7595 ret = -EINTR;
7596 break;
7597 }
7598 tries = 0;
7599 } else if (++tries == 5) {
7600 ret = ret < 0 ? ret : -EBUSY;
7601 break;
7602 }
7603
beb51eaa
MK
7604 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7605 &cc->migratepages);
7606 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7607
9c620e2b 7608 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7609 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7610 }
2a6f5124
SP
7611 if (ret < 0) {
7612 putback_movable_pages(&cc->migratepages);
7613 return ret;
7614 }
7615 return 0;
041d3a8c
MN
7616}
7617
7618/**
7619 * alloc_contig_range() -- tries to allocate given range of pages
7620 * @start: start PFN to allocate
7621 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7622 * @migratetype: migratetype of the underlaying pageblocks (either
7623 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7624 * in range must have the same migratetype and it must
7625 * be either of the two.
ca96b625 7626 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7627 *
7628 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7629 * aligned, however it's the caller's responsibility to guarantee that
7630 * we are the only thread that changes migrate type of pageblocks the
7631 * pages fall in.
7632 *
7633 * The PFN range must belong to a single zone.
7634 *
7635 * Returns zero on success or negative error code. On success all
7636 * pages which PFN is in [start, end) are allocated for the caller and
7637 * need to be freed with free_contig_range().
7638 */
0815f3d8 7639int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7640 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7641{
041d3a8c 7642 unsigned long outer_start, outer_end;
d00181b9
KS
7643 unsigned int order;
7644 int ret = 0;
041d3a8c 7645
bb13ffeb
MG
7646 struct compact_control cc = {
7647 .nr_migratepages = 0,
7648 .order = -1,
7649 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7650 .mode = MIGRATE_SYNC,
bb13ffeb 7651 .ignore_skip_hint = true,
2583d671 7652 .no_set_skip_hint = true,
7dea19f9 7653 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7654 };
7655 INIT_LIST_HEAD(&cc.migratepages);
7656
041d3a8c
MN
7657 /*
7658 * What we do here is we mark all pageblocks in range as
7659 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7660 * have different sizes, and due to the way page allocator
7661 * work, we align the range to biggest of the two pages so
7662 * that page allocator won't try to merge buddies from
7663 * different pageblocks and change MIGRATE_ISOLATE to some
7664 * other migration type.
7665 *
7666 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7667 * migrate the pages from an unaligned range (ie. pages that
7668 * we are interested in). This will put all the pages in
7669 * range back to page allocator as MIGRATE_ISOLATE.
7670 *
7671 * When this is done, we take the pages in range from page
7672 * allocator removing them from the buddy system. This way
7673 * page allocator will never consider using them.
7674 *
7675 * This lets us mark the pageblocks back as
7676 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7677 * aligned range but not in the unaligned, original range are
7678 * put back to page allocator so that buddy can use them.
7679 */
7680
7681 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7682 pfn_max_align_up(end), migratetype,
7683 false);
041d3a8c 7684 if (ret)
86a595f9 7685 return ret;
041d3a8c 7686
8ef5849f
JK
7687 /*
7688 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7689 * So, just fall through. test_pages_isolated() has a tracepoint
7690 * which will report the busy page.
7691 *
7692 * It is possible that busy pages could become available before
7693 * the call to test_pages_isolated, and the range will actually be
7694 * allocated. So, if we fall through be sure to clear ret so that
7695 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7696 */
bb13ffeb 7697 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7698 if (ret && ret != -EBUSY)
041d3a8c 7699 goto done;
63cd4489 7700 ret =0;
041d3a8c
MN
7701
7702 /*
7703 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7704 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7705 * more, all pages in [start, end) are free in page allocator.
7706 * What we are going to do is to allocate all pages from
7707 * [start, end) (that is remove them from page allocator).
7708 *
7709 * The only problem is that pages at the beginning and at the
7710 * end of interesting range may be not aligned with pages that
7711 * page allocator holds, ie. they can be part of higher order
7712 * pages. Because of this, we reserve the bigger range and
7713 * once this is done free the pages we are not interested in.
7714 *
7715 * We don't have to hold zone->lock here because the pages are
7716 * isolated thus they won't get removed from buddy.
7717 */
7718
7719 lru_add_drain_all();
510f5507 7720 drain_all_pages(cc.zone);
041d3a8c
MN
7721
7722 order = 0;
7723 outer_start = start;
7724 while (!PageBuddy(pfn_to_page(outer_start))) {
7725 if (++order >= MAX_ORDER) {
8ef5849f
JK
7726 outer_start = start;
7727 break;
041d3a8c
MN
7728 }
7729 outer_start &= ~0UL << order;
7730 }
7731
8ef5849f
JK
7732 if (outer_start != start) {
7733 order = page_order(pfn_to_page(outer_start));
7734
7735 /*
7736 * outer_start page could be small order buddy page and
7737 * it doesn't include start page. Adjust outer_start
7738 * in this case to report failed page properly
7739 * on tracepoint in test_pages_isolated()
7740 */
7741 if (outer_start + (1UL << order) <= start)
7742 outer_start = start;
7743 }
7744
041d3a8c 7745 /* Make sure the range is really isolated. */
b023f468 7746 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7747 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7748 __func__, outer_start, end);
041d3a8c
MN
7749 ret = -EBUSY;
7750 goto done;
7751 }
7752
49f223a9 7753 /* Grab isolated pages from freelists. */
bb13ffeb 7754 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7755 if (!outer_end) {
7756 ret = -EBUSY;
7757 goto done;
7758 }
7759
7760 /* Free head and tail (if any) */
7761 if (start != outer_start)
7762 free_contig_range(outer_start, start - outer_start);
7763 if (end != outer_end)
7764 free_contig_range(end, outer_end - end);
7765
7766done:
7767 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7768 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7769 return ret;
7770}
7771
7772void free_contig_range(unsigned long pfn, unsigned nr_pages)
7773{
bcc2b02f
MS
7774 unsigned int count = 0;
7775
7776 for (; nr_pages--; pfn++) {
7777 struct page *page = pfn_to_page(pfn);
7778
7779 count += page_count(page) != 1;
7780 __free_page(page);
7781 }
7782 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7783}
7784#endif
7785
4ed7e022 7786#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7787/*
7788 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7789 * page high values need to be recalulated.
7790 */
4ed7e022
JL
7791void __meminit zone_pcp_update(struct zone *zone)
7792{
0a647f38 7793 unsigned cpu;
c8e251fa 7794 mutex_lock(&pcp_batch_high_lock);
0a647f38 7795 for_each_possible_cpu(cpu)
169f6c19
CS
7796 pageset_set_high_and_batch(zone,
7797 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7798 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7799}
7800#endif
7801
340175b7
JL
7802void zone_pcp_reset(struct zone *zone)
7803{
7804 unsigned long flags;
5a883813
MK
7805 int cpu;
7806 struct per_cpu_pageset *pset;
340175b7
JL
7807
7808 /* avoid races with drain_pages() */
7809 local_irq_save(flags);
7810 if (zone->pageset != &boot_pageset) {
5a883813
MK
7811 for_each_online_cpu(cpu) {
7812 pset = per_cpu_ptr(zone->pageset, cpu);
7813 drain_zonestat(zone, pset);
7814 }
340175b7
JL
7815 free_percpu(zone->pageset);
7816 zone->pageset = &boot_pageset;
7817 }
7818 local_irq_restore(flags);
7819}
7820
6dcd73d7 7821#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7822/*
b9eb6319
JK
7823 * All pages in the range must be in a single zone and isolated
7824 * before calling this.
0c0e6195
KH
7825 */
7826void
7827__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7828{
7829 struct page *page;
7830 struct zone *zone;
7aeb09f9 7831 unsigned int order, i;
0c0e6195
KH
7832 unsigned long pfn;
7833 unsigned long flags;
7834 /* find the first valid pfn */
7835 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7836 if (pfn_valid(pfn))
7837 break;
7838 if (pfn == end_pfn)
7839 return;
2d070eab 7840 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7841 zone = page_zone(pfn_to_page(pfn));
7842 spin_lock_irqsave(&zone->lock, flags);
7843 pfn = start_pfn;
7844 while (pfn < end_pfn) {
7845 if (!pfn_valid(pfn)) {
7846 pfn++;
7847 continue;
7848 }
7849 page = pfn_to_page(pfn);
b023f468
WC
7850 /*
7851 * The HWPoisoned page may be not in buddy system, and
7852 * page_count() is not 0.
7853 */
7854 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7855 pfn++;
7856 SetPageReserved(page);
7857 continue;
7858 }
7859
0c0e6195
KH
7860 BUG_ON(page_count(page));
7861 BUG_ON(!PageBuddy(page));
7862 order = page_order(page);
7863#ifdef CONFIG_DEBUG_VM
1170532b
JP
7864 pr_info("remove from free list %lx %d %lx\n",
7865 pfn, 1 << order, end_pfn);
0c0e6195
KH
7866#endif
7867 list_del(&page->lru);
7868 rmv_page_order(page);
7869 zone->free_area[order].nr_free--;
0c0e6195
KH
7870 for (i = 0; i < (1 << order); i++)
7871 SetPageReserved((page+i));
7872 pfn += (1 << order);
7873 }
7874 spin_unlock_irqrestore(&zone->lock, flags);
7875}
7876#endif
8d22ba1b 7877
8d22ba1b
WF
7878bool is_free_buddy_page(struct page *page)
7879{
7880 struct zone *zone = page_zone(page);
7881 unsigned long pfn = page_to_pfn(page);
7882 unsigned long flags;
7aeb09f9 7883 unsigned int order;
8d22ba1b
WF
7884
7885 spin_lock_irqsave(&zone->lock, flags);
7886 for (order = 0; order < MAX_ORDER; order++) {
7887 struct page *page_head = page - (pfn & ((1 << order) - 1));
7888
7889 if (PageBuddy(page_head) && page_order(page_head) >= order)
7890 break;
7891 }
7892 spin_unlock_irqrestore(&zone->lock, flags);
7893
7894 return order < MAX_ORDER;
7895}