]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm: add zone_is_empty() and zone_is_initialized()
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
ac924c60 64#include <asm/div64.h>
1da177e4
LT
65#include "internal.h"
66
72812019
LS
67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68DEFINE_PER_CPU(int, numa_node);
69EXPORT_PER_CPU_SYMBOL(numa_node);
70#endif
71
7aac7898
LS
72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
73/*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81#endif
82
1da177e4 83/*
13808910 84 * Array of node states.
1da177e4 85 */
13808910
CL
86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89#ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91#ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
93#endif
94#ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
96#endif
97 [N_CPU] = { { [0] = 1UL } },
98#endif /* NUMA */
99};
100EXPORT_SYMBOL(node_states);
101
6c231b7b 102unsigned long totalram_pages __read_mostly;
cb45b0e9 103unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
104/*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110unsigned long dirty_balance_reserve __read_mostly;
111
1b76b02f 112int percpu_pagelist_fraction;
dcce284a 113gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 114
452aa699
RW
115#ifdef CONFIG_PM_SLEEP
116/*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
c9e664f1
RW
124
125static gfp_t saved_gfp_mask;
126
127void pm_restore_gfp_mask(void)
452aa699
RW
128{
129 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
452aa699
RW
134}
135
c9e664f1 136void pm_restrict_gfp_mask(void)
452aa699 137{
452aa699 138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 142}
f90ac398
MG
143
144bool pm_suspended_storage(void)
145{
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149}
452aa699
RW
150#endif /* CONFIG_PM_SLEEP */
151
d9c23400
MG
152#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153int pageblock_order __read_mostly;
154#endif
155
d98c7a09 156static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 157
1da177e4
LT
158/*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
1da177e4 168 */
2f1b6248 169int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 170#ifdef CONFIG_ZONE_DMA
2f1b6248 171 256,
4b51d669 172#endif
fb0e7942 173#ifdef CONFIG_ZONE_DMA32
2f1b6248 174 256,
fb0e7942 175#endif
e53ef38d 176#ifdef CONFIG_HIGHMEM
2a1e274a 177 32,
e53ef38d 178#endif
2a1e274a 179 32,
2f1b6248 180};
1da177e4
LT
181
182EXPORT_SYMBOL(totalram_pages);
1da177e4 183
15ad7cdc 184static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 185#ifdef CONFIG_ZONE_DMA
2f1b6248 186 "DMA",
4b51d669 187#endif
fb0e7942 188#ifdef CONFIG_ZONE_DMA32
2f1b6248 189 "DMA32",
fb0e7942 190#endif
2f1b6248 191 "Normal",
e53ef38d 192#ifdef CONFIG_HIGHMEM
2a1e274a 193 "HighMem",
e53ef38d 194#endif
2a1e274a 195 "Movable",
2f1b6248
CL
196};
197
1da177e4
LT
198int min_free_kbytes = 1024;
199
2c85f51d
JB
200static unsigned long __meminitdata nr_kernel_pages;
201static unsigned long __meminitdata nr_all_pages;
a3142c8e 202static unsigned long __meminitdata dma_reserve;
1da177e4 203
0ee332c1 204#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
34b71f1e 205/* Movable memory ranges, will also be used by memblock subsystem. */
01a178a9
TC
206struct movablemem_map movablemem_map = {
207 .acpi = false,
208 .nr_map = 0,
209};
34b71f1e 210
0ee332c1
TH
211static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
212static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
213static unsigned long __initdata required_kernelcore;
214static unsigned long __initdata required_movablecore;
215static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
6981ec31 216static unsigned long __meminitdata zone_movable_limit[MAX_NUMNODES];
0ee332c1
TH
217
218/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
219int movable_zone;
220EXPORT_SYMBOL(movable_zone);
221#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 222
418508c1
MS
223#if MAX_NUMNODES > 1
224int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 225int nr_online_nodes __read_mostly = 1;
418508c1 226EXPORT_SYMBOL(nr_node_ids);
62bc62a8 227EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
228#endif
229
9ef9acb0
MG
230int page_group_by_mobility_disabled __read_mostly;
231
ee6f509c 232void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 233{
49255c61
MG
234
235 if (unlikely(page_group_by_mobility_disabled))
236 migratetype = MIGRATE_UNMOVABLE;
237
b2a0ac88
MG
238 set_pageblock_flags_group(page, (unsigned long)migratetype,
239 PB_migrate, PB_migrate_end);
240}
241
7f33d49a
RW
242bool oom_killer_disabled __read_mostly;
243
13e7444b 244#ifdef CONFIG_DEBUG_VM
c6a57e19 245static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 246{
bdc8cb98
DH
247 int ret = 0;
248 unsigned seq;
249 unsigned long pfn = page_to_pfn(page);
c6a57e19 250
bdc8cb98
DH
251 do {
252 seq = zone_span_seqbegin(zone);
108bcc96 253 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
254 ret = 1;
255 } while (zone_span_seqretry(zone, seq));
256
257 return ret;
c6a57e19
DH
258}
259
260static int page_is_consistent(struct zone *zone, struct page *page)
261{
14e07298 262 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 263 return 0;
1da177e4 264 if (zone != page_zone(page))
c6a57e19
DH
265 return 0;
266
267 return 1;
268}
269/*
270 * Temporary debugging check for pages not lying within a given zone.
271 */
272static int bad_range(struct zone *zone, struct page *page)
273{
274 if (page_outside_zone_boundaries(zone, page))
1da177e4 275 return 1;
c6a57e19
DH
276 if (!page_is_consistent(zone, page))
277 return 1;
278
1da177e4
LT
279 return 0;
280}
13e7444b
NP
281#else
282static inline int bad_range(struct zone *zone, struct page *page)
283{
284 return 0;
285}
286#endif
287
224abf92 288static void bad_page(struct page *page)
1da177e4 289{
d936cf9b
HD
290 static unsigned long resume;
291 static unsigned long nr_shown;
292 static unsigned long nr_unshown;
293
2a7684a2
WF
294 /* Don't complain about poisoned pages */
295 if (PageHWPoison(page)) {
22b751c3 296 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
297 return;
298 }
299
d936cf9b
HD
300 /*
301 * Allow a burst of 60 reports, then keep quiet for that minute;
302 * or allow a steady drip of one report per second.
303 */
304 if (nr_shown == 60) {
305 if (time_before(jiffies, resume)) {
306 nr_unshown++;
307 goto out;
308 }
309 if (nr_unshown) {
1e9e6365
HD
310 printk(KERN_ALERT
311 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
312 nr_unshown);
313 nr_unshown = 0;
314 }
315 nr_shown = 0;
316 }
317 if (nr_shown++ == 0)
318 resume = jiffies + 60 * HZ;
319
1e9e6365 320 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 321 current->comm, page_to_pfn(page));
718a3821 322 dump_page(page);
3dc14741 323
4f31888c 324 print_modules();
1da177e4 325 dump_stack();
d936cf9b 326out:
8cc3b392 327 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 328 page_mapcount_reset(page); /* remove PageBuddy */
9f158333 329 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
330}
331
1da177e4
LT
332/*
333 * Higher-order pages are called "compound pages". They are structured thusly:
334 *
335 * The first PAGE_SIZE page is called the "head page".
336 *
337 * The remaining PAGE_SIZE pages are called "tail pages".
338 *
6416b9fa
WSH
339 * All pages have PG_compound set. All tail pages have their ->first_page
340 * pointing at the head page.
1da177e4 341 *
41d78ba5
HD
342 * The first tail page's ->lru.next holds the address of the compound page's
343 * put_page() function. Its ->lru.prev holds the order of allocation.
344 * This usage means that zero-order pages may not be compound.
1da177e4 345 */
d98c7a09
HD
346
347static void free_compound_page(struct page *page)
348{
d85f3385 349 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
350}
351
01ad1c08 352void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
353{
354 int i;
355 int nr_pages = 1 << order;
356
357 set_compound_page_dtor(page, free_compound_page);
358 set_compound_order(page, order);
359 __SetPageHead(page);
360 for (i = 1; i < nr_pages; i++) {
361 struct page *p = page + i;
18229df5 362 __SetPageTail(p);
58a84aa9 363 set_page_count(p, 0);
18229df5
AW
364 p->first_page = page;
365 }
366}
367
59ff4216 368/* update __split_huge_page_refcount if you change this function */
8cc3b392 369static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
370{
371 int i;
372 int nr_pages = 1 << order;
8cc3b392 373 int bad = 0;
1da177e4 374
0bb2c763 375 if (unlikely(compound_order(page) != order)) {
224abf92 376 bad_page(page);
8cc3b392
HD
377 bad++;
378 }
1da177e4 379
6d777953 380 __ClearPageHead(page);
8cc3b392 381
18229df5
AW
382 for (i = 1; i < nr_pages; i++) {
383 struct page *p = page + i;
1da177e4 384
e713a21d 385 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 386 bad_page(page);
8cc3b392
HD
387 bad++;
388 }
d85f3385 389 __ClearPageTail(p);
1da177e4 390 }
8cc3b392
HD
391
392 return bad;
1da177e4 393}
1da177e4 394
17cf4406
NP
395static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
396{
397 int i;
398
6626c5d5
AM
399 /*
400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 * and __GFP_HIGHMEM from hard or soft interrupt context.
402 */
725d704e 403 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
404 for (i = 0; i < (1 << order); i++)
405 clear_highpage(page + i);
406}
407
c0a32fc5
SG
408#ifdef CONFIG_DEBUG_PAGEALLOC
409unsigned int _debug_guardpage_minorder;
410
411static int __init debug_guardpage_minorder_setup(char *buf)
412{
413 unsigned long res;
414
415 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
416 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
417 return 0;
418 }
419 _debug_guardpage_minorder = res;
420 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
421 return 0;
422}
423__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
424
425static inline void set_page_guard_flag(struct page *page)
426{
427 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428}
429
430static inline void clear_page_guard_flag(struct page *page)
431{
432 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
433}
434#else
435static inline void set_page_guard_flag(struct page *page) { }
436static inline void clear_page_guard_flag(struct page *page) { }
437#endif
438
6aa3001b
AM
439static inline void set_page_order(struct page *page, int order)
440{
4c21e2f2 441 set_page_private(page, order);
676165a8 442 __SetPageBuddy(page);
1da177e4
LT
443}
444
445static inline void rmv_page_order(struct page *page)
446{
676165a8 447 __ClearPageBuddy(page);
4c21e2f2 448 set_page_private(page, 0);
1da177e4
LT
449}
450
451/*
452 * Locate the struct page for both the matching buddy in our
453 * pair (buddy1) and the combined O(n+1) page they form (page).
454 *
455 * 1) Any buddy B1 will have an order O twin B2 which satisfies
456 * the following equation:
457 * B2 = B1 ^ (1 << O)
458 * For example, if the starting buddy (buddy2) is #8 its order
459 * 1 buddy is #10:
460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
461 *
462 * 2) Any buddy B will have an order O+1 parent P which
463 * satisfies the following equation:
464 * P = B & ~(1 << O)
465 *
d6e05edc 466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 467 */
1da177e4 468static inline unsigned long
43506fad 469__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 470{
43506fad 471 return page_idx ^ (1 << order);
1da177e4
LT
472}
473
474/*
475 * This function checks whether a page is free && is the buddy
476 * we can do coalesce a page and its buddy if
13e7444b 477 * (a) the buddy is not in a hole &&
676165a8 478 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
479 * (c) a page and its buddy have the same order &&
480 * (d) a page and its buddy are in the same zone.
676165a8 481 *
5f24ce5f
AA
482 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 484 *
676165a8 485 * For recording page's order, we use page_private(page).
1da177e4 486 */
cb2b95e1
AW
487static inline int page_is_buddy(struct page *page, struct page *buddy,
488 int order)
1da177e4 489{
14e07298 490 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 491 return 0;
13e7444b 492
cb2b95e1
AW
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
c0a32fc5
SG
496 if (page_is_guard(buddy) && page_order(buddy) == order) {
497 VM_BUG_ON(page_count(buddy) != 0);
498 return 1;
499 }
500
cb2b95e1 501 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 502 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 503 return 1;
676165a8 504 }
6aa3001b 505 return 0;
1da177e4
LT
506}
507
508/*
509 * Freeing function for a buddy system allocator.
510 *
511 * The concept of a buddy system is to maintain direct-mapped table
512 * (containing bit values) for memory blocks of various "orders".
513 * The bottom level table contains the map for the smallest allocatable
514 * units of memory (here, pages), and each level above it describes
515 * pairs of units from the levels below, hence, "buddies".
516 * At a high level, all that happens here is marking the table entry
517 * at the bottom level available, and propagating the changes upward
518 * as necessary, plus some accounting needed to play nicely with other
519 * parts of the VM system.
520 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 522 * order is recorded in page_private(page) field.
1da177e4 523 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
524 * other. That is, if we allocate a small block, and both were
525 * free, the remainder of the region must be split into blocks.
1da177e4 526 * If a block is freed, and its buddy is also free, then this
5f63b720 527 * triggers coalescing into a block of larger size.
1da177e4 528 *
6d49e352 529 * -- nyc
1da177e4
LT
530 */
531
48db57f8 532static inline void __free_one_page(struct page *page,
ed0ae21d
MG
533 struct zone *zone, unsigned int order,
534 int migratetype)
1da177e4
LT
535{
536 unsigned long page_idx;
6dda9d55 537 unsigned long combined_idx;
43506fad 538 unsigned long uninitialized_var(buddy_idx);
6dda9d55 539 struct page *buddy;
1da177e4 540
224abf92 541 if (unlikely(PageCompound(page)))
8cc3b392
HD
542 if (unlikely(destroy_compound_page(page, order)))
543 return;
1da177e4 544
ed0ae21d
MG
545 VM_BUG_ON(migratetype == -1);
546
1da177e4
LT
547 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
548
f2260e6b 549 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 550 VM_BUG_ON(bad_range(zone, page));
1da177e4 551
1da177e4 552 while (order < MAX_ORDER-1) {
43506fad
KC
553 buddy_idx = __find_buddy_index(page_idx, order);
554 buddy = page + (buddy_idx - page_idx);
cb2b95e1 555 if (!page_is_buddy(page, buddy, order))
3c82d0ce 556 break;
c0a32fc5
SG
557 /*
558 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
559 * merge with it and move up one order.
560 */
561 if (page_is_guard(buddy)) {
562 clear_page_guard_flag(buddy);
563 set_page_private(page, 0);
d1ce749a
BZ
564 __mod_zone_freepage_state(zone, 1 << order,
565 migratetype);
c0a32fc5
SG
566 } else {
567 list_del(&buddy->lru);
568 zone->free_area[order].nr_free--;
569 rmv_page_order(buddy);
570 }
43506fad 571 combined_idx = buddy_idx & page_idx;
1da177e4
LT
572 page = page + (combined_idx - page_idx);
573 page_idx = combined_idx;
574 order++;
575 }
576 set_page_order(page, order);
6dda9d55
CZ
577
578 /*
579 * If this is not the largest possible page, check if the buddy
580 * of the next-highest order is free. If it is, it's possible
581 * that pages are being freed that will coalesce soon. In case,
582 * that is happening, add the free page to the tail of the list
583 * so it's less likely to be used soon and more likely to be merged
584 * as a higher order page
585 */
b7f50cfa 586 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 587 struct page *higher_page, *higher_buddy;
43506fad
KC
588 combined_idx = buddy_idx & page_idx;
589 higher_page = page + (combined_idx - page_idx);
590 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 591 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
592 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
593 list_add_tail(&page->lru,
594 &zone->free_area[order].free_list[migratetype]);
595 goto out;
596 }
597 }
598
599 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
600out:
1da177e4
LT
601 zone->free_area[order].nr_free++;
602}
603
224abf92 604static inline int free_pages_check(struct page *page)
1da177e4 605{
92be2e33
NP
606 if (unlikely(page_mapcount(page) |
607 (page->mapping != NULL) |
a3af9c38 608 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
609 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
610 (mem_cgroup_bad_page_check(page)))) {
224abf92 611 bad_page(page);
79f4b7bf 612 return 1;
8cc3b392 613 }
22b751c3 614 page_nid_reset_last(page);
79f4b7bf
HD
615 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
616 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
617 return 0;
1da177e4
LT
618}
619
620/*
5f8dcc21 621 * Frees a number of pages from the PCP lists
1da177e4 622 * Assumes all pages on list are in same zone, and of same order.
207f36ee 623 * count is the number of pages to free.
1da177e4
LT
624 *
625 * If the zone was previously in an "all pages pinned" state then look to
626 * see if this freeing clears that state.
627 *
628 * And clear the zone's pages_scanned counter, to hold off the "all pages are
629 * pinned" detection logic.
630 */
5f8dcc21
MG
631static void free_pcppages_bulk(struct zone *zone, int count,
632 struct per_cpu_pages *pcp)
1da177e4 633{
5f8dcc21 634 int migratetype = 0;
a6f9edd6 635 int batch_free = 0;
72853e29 636 int to_free = count;
5f8dcc21 637
c54ad30c 638 spin_lock(&zone->lock);
93e4a89a 639 zone->all_unreclaimable = 0;
1da177e4 640 zone->pages_scanned = 0;
f2260e6b 641
72853e29 642 while (to_free) {
48db57f8 643 struct page *page;
5f8dcc21
MG
644 struct list_head *list;
645
646 /*
a6f9edd6
MG
647 * Remove pages from lists in a round-robin fashion. A
648 * batch_free count is maintained that is incremented when an
649 * empty list is encountered. This is so more pages are freed
650 * off fuller lists instead of spinning excessively around empty
651 * lists
5f8dcc21
MG
652 */
653 do {
a6f9edd6 654 batch_free++;
5f8dcc21
MG
655 if (++migratetype == MIGRATE_PCPTYPES)
656 migratetype = 0;
657 list = &pcp->lists[migratetype];
658 } while (list_empty(list));
48db57f8 659
1d16871d
NK
660 /* This is the only non-empty list. Free them all. */
661 if (batch_free == MIGRATE_PCPTYPES)
662 batch_free = to_free;
663
a6f9edd6 664 do {
770c8aaa
BZ
665 int mt; /* migratetype of the to-be-freed page */
666
a6f9edd6
MG
667 page = list_entry(list->prev, struct page, lru);
668 /* must delete as __free_one_page list manipulates */
669 list_del(&page->lru);
b12c4ad1 670 mt = get_freepage_migratetype(page);
a7016235 671 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
672 __free_one_page(page, zone, 0, mt);
673 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 674 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
675 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
676 if (is_migrate_cma(mt))
677 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
678 }
72853e29 679 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 680 }
c54ad30c 681 spin_unlock(&zone->lock);
1da177e4
LT
682}
683
ed0ae21d
MG
684static void free_one_page(struct zone *zone, struct page *page, int order,
685 int migratetype)
1da177e4 686{
006d22d9 687 spin_lock(&zone->lock);
93e4a89a 688 zone->all_unreclaimable = 0;
006d22d9 689 zone->pages_scanned = 0;
f2260e6b 690
ed0ae21d 691 __free_one_page(page, zone, order, migratetype);
194159fb 692 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 693 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 694 spin_unlock(&zone->lock);
48db57f8
NP
695}
696
ec95f53a 697static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 698{
1da177e4 699 int i;
8cc3b392 700 int bad = 0;
1da177e4 701
b413d48a 702 trace_mm_page_free(page, order);
b1eeab67
VN
703 kmemcheck_free_shadow(page, order);
704
8dd60a3a
AA
705 if (PageAnon(page))
706 page->mapping = NULL;
707 for (i = 0; i < (1 << order); i++)
708 bad += free_pages_check(page + i);
8cc3b392 709 if (bad)
ec95f53a 710 return false;
689bcebf 711
3ac7fe5a 712 if (!PageHighMem(page)) {
9858db50 713 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
714 debug_check_no_obj_freed(page_address(page),
715 PAGE_SIZE << order);
716 }
dafb1367 717 arch_free_page(page, order);
48db57f8 718 kernel_map_pages(page, 1 << order, 0);
dafb1367 719
ec95f53a
KM
720 return true;
721}
722
723static void __free_pages_ok(struct page *page, unsigned int order)
724{
725 unsigned long flags;
95e34412 726 int migratetype;
ec95f53a
KM
727
728 if (!free_pages_prepare(page, order))
729 return;
730
c54ad30c 731 local_irq_save(flags);
f8891e5e 732 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
733 migratetype = get_pageblock_migratetype(page);
734 set_freepage_migratetype(page, migratetype);
735 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 736 local_irq_restore(flags);
1da177e4
LT
737}
738
9feedc9d
JL
739/*
740 * Read access to zone->managed_pages is safe because it's unsigned long,
741 * but we still need to serialize writers. Currently all callers of
742 * __free_pages_bootmem() except put_page_bootmem() should only be used
743 * at boot time. So for shorter boot time, we shift the burden to
744 * put_page_bootmem() to serialize writers.
745 */
af370fb8 746void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 747{
c3993076
JW
748 unsigned int nr_pages = 1 << order;
749 unsigned int loop;
a226f6c8 750
c3993076
JW
751 prefetchw(page);
752 for (loop = 0; loop < nr_pages; loop++) {
753 struct page *p = &page[loop];
754
755 if (loop + 1 < nr_pages)
756 prefetchw(p + 1);
757 __ClearPageReserved(p);
758 set_page_count(p, 0);
a226f6c8 759 }
c3993076 760
9feedc9d 761 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
762 set_page_refcounted(page);
763 __free_pages(page, order);
a226f6c8
DH
764}
765
47118af0
MN
766#ifdef CONFIG_CMA
767/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
768void __init init_cma_reserved_pageblock(struct page *page)
769{
770 unsigned i = pageblock_nr_pages;
771 struct page *p = page;
772
773 do {
774 __ClearPageReserved(p);
775 set_page_count(p, 0);
776 } while (++p, --i);
777
778 set_page_refcounted(page);
779 set_pageblock_migratetype(page, MIGRATE_CMA);
780 __free_pages(page, pageblock_order);
781 totalram_pages += pageblock_nr_pages;
41a79734
MS
782#ifdef CONFIG_HIGHMEM
783 if (PageHighMem(page))
784 totalhigh_pages += pageblock_nr_pages;
785#endif
47118af0
MN
786}
787#endif
1da177e4
LT
788
789/*
790 * The order of subdivision here is critical for the IO subsystem.
791 * Please do not alter this order without good reasons and regression
792 * testing. Specifically, as large blocks of memory are subdivided,
793 * the order in which smaller blocks are delivered depends on the order
794 * they're subdivided in this function. This is the primary factor
795 * influencing the order in which pages are delivered to the IO
796 * subsystem according to empirical testing, and this is also justified
797 * by considering the behavior of a buddy system containing a single
798 * large block of memory acted on by a series of small allocations.
799 * This behavior is a critical factor in sglist merging's success.
800 *
6d49e352 801 * -- nyc
1da177e4 802 */
085cc7d5 803static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
804 int low, int high, struct free_area *area,
805 int migratetype)
1da177e4
LT
806{
807 unsigned long size = 1 << high;
808
809 while (high > low) {
810 area--;
811 high--;
812 size >>= 1;
725d704e 813 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
814
815#ifdef CONFIG_DEBUG_PAGEALLOC
816 if (high < debug_guardpage_minorder()) {
817 /*
818 * Mark as guard pages (or page), that will allow to
819 * merge back to allocator when buddy will be freed.
820 * Corresponding page table entries will not be touched,
821 * pages will stay not present in virtual address space
822 */
823 INIT_LIST_HEAD(&page[size].lru);
824 set_page_guard_flag(&page[size]);
825 set_page_private(&page[size], high);
826 /* Guard pages are not available for any usage */
d1ce749a
BZ
827 __mod_zone_freepage_state(zone, -(1 << high),
828 migratetype);
c0a32fc5
SG
829 continue;
830 }
831#endif
b2a0ac88 832 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
833 area->nr_free++;
834 set_page_order(&page[size], high);
835 }
1da177e4
LT
836}
837
1da177e4
LT
838/*
839 * This page is about to be returned from the page allocator
840 */
2a7684a2 841static inline int check_new_page(struct page *page)
1da177e4 842{
92be2e33
NP
843 if (unlikely(page_mapcount(page) |
844 (page->mapping != NULL) |
a3af9c38 845 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
846 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
847 (mem_cgroup_bad_page_check(page)))) {
224abf92 848 bad_page(page);
689bcebf 849 return 1;
8cc3b392 850 }
2a7684a2
WF
851 return 0;
852}
853
854static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
855{
856 int i;
857
858 for (i = 0; i < (1 << order); i++) {
859 struct page *p = page + i;
860 if (unlikely(check_new_page(p)))
861 return 1;
862 }
689bcebf 863
4c21e2f2 864 set_page_private(page, 0);
7835e98b 865 set_page_refcounted(page);
cc102509
NP
866
867 arch_alloc_page(page, order);
1da177e4 868 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
869
870 if (gfp_flags & __GFP_ZERO)
871 prep_zero_page(page, order, gfp_flags);
872
873 if (order && (gfp_flags & __GFP_COMP))
874 prep_compound_page(page, order);
875
689bcebf 876 return 0;
1da177e4
LT
877}
878
56fd56b8
MG
879/*
880 * Go through the free lists for the given migratetype and remove
881 * the smallest available page from the freelists
882 */
728ec980
MG
883static inline
884struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
885 int migratetype)
886{
887 unsigned int current_order;
888 struct free_area * area;
889 struct page *page;
890
891 /* Find a page of the appropriate size in the preferred list */
892 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
893 area = &(zone->free_area[current_order]);
894 if (list_empty(&area->free_list[migratetype]))
895 continue;
896
897 page = list_entry(area->free_list[migratetype].next,
898 struct page, lru);
899 list_del(&page->lru);
900 rmv_page_order(page);
901 area->nr_free--;
56fd56b8
MG
902 expand(zone, page, order, current_order, area, migratetype);
903 return page;
904 }
905
906 return NULL;
907}
908
909
b2a0ac88
MG
910/*
911 * This array describes the order lists are fallen back to when
912 * the free lists for the desirable migrate type are depleted
913 */
47118af0
MN
914static int fallbacks[MIGRATE_TYPES][4] = {
915 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917#ifdef CONFIG_CMA
918 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
920#else
921 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922#endif
6d4a4916 923 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 924#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 925 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 926#endif
b2a0ac88
MG
927};
928
c361be55
MG
929/*
930 * Move the free pages in a range to the free lists of the requested type.
d9c23400 931 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
932 * boundary. If alignment is required, use move_freepages_block()
933 */
435b405c 934int move_freepages(struct zone *zone,
b69a7288
AB
935 struct page *start_page, struct page *end_page,
936 int migratetype)
c361be55
MG
937{
938 struct page *page;
939 unsigned long order;
d100313f 940 int pages_moved = 0;
c361be55
MG
941
942#ifndef CONFIG_HOLES_IN_ZONE
943 /*
944 * page_zone is not safe to call in this context when
945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
946 * anyway as we check zone boundaries in move_freepages_block().
947 * Remove at a later date when no bug reports exist related to
ac0e5b7a 948 * grouping pages by mobility
c361be55
MG
949 */
950 BUG_ON(page_zone(start_page) != page_zone(end_page));
951#endif
952
953 for (page = start_page; page <= end_page;) {
344c790e
AL
954 /* Make sure we are not inadvertently changing nodes */
955 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
956
c361be55
MG
957 if (!pfn_valid_within(page_to_pfn(page))) {
958 page++;
959 continue;
960 }
961
962 if (!PageBuddy(page)) {
963 page++;
964 continue;
965 }
966
967 order = page_order(page);
84be48d8
KS
968 list_move(&page->lru,
969 &zone->free_area[order].free_list[migratetype]);
95e34412 970 set_freepage_migratetype(page, migratetype);
c361be55 971 page += 1 << order;
d100313f 972 pages_moved += 1 << order;
c361be55
MG
973 }
974
d100313f 975 return pages_moved;
c361be55
MG
976}
977
ee6f509c 978int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 979 int migratetype)
c361be55
MG
980{
981 unsigned long start_pfn, end_pfn;
982 struct page *start_page, *end_page;
983
984 start_pfn = page_to_pfn(page);
d9c23400 985 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 986 start_page = pfn_to_page(start_pfn);
d9c23400
MG
987 end_page = start_page + pageblock_nr_pages - 1;
988 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
989
990 /* Do not cross zone boundaries */
108bcc96 991 if (!zone_spans_pfn(zone, start_pfn))
c361be55 992 start_page = page;
108bcc96 993 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
994 return 0;
995
996 return move_freepages(zone, start_page, end_page, migratetype);
997}
998
2f66a68f
MG
999static void change_pageblock_range(struct page *pageblock_page,
1000 int start_order, int migratetype)
1001{
1002 int nr_pageblocks = 1 << (start_order - pageblock_order);
1003
1004 while (nr_pageblocks--) {
1005 set_pageblock_migratetype(pageblock_page, migratetype);
1006 pageblock_page += pageblock_nr_pages;
1007 }
1008}
1009
b2a0ac88 1010/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1011static inline struct page *
1012__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1013{
1014 struct free_area * area;
1015 int current_order;
1016 struct page *page;
1017 int migratetype, i;
1018
1019 /* Find the largest possible block of pages in the other list */
1020 for (current_order = MAX_ORDER-1; current_order >= order;
1021 --current_order) {
6d4a4916 1022 for (i = 0;; i++) {
b2a0ac88
MG
1023 migratetype = fallbacks[start_migratetype][i];
1024
56fd56b8
MG
1025 /* MIGRATE_RESERVE handled later if necessary */
1026 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1027 break;
e010487d 1028
b2a0ac88
MG
1029 area = &(zone->free_area[current_order]);
1030 if (list_empty(&area->free_list[migratetype]))
1031 continue;
1032
1033 page = list_entry(area->free_list[migratetype].next,
1034 struct page, lru);
1035 area->nr_free--;
1036
1037 /*
c361be55 1038 * If breaking a large block of pages, move all free
46dafbca
MG
1039 * pages to the preferred allocation list. If falling
1040 * back for a reclaimable kernel allocation, be more
25985edc 1041 * aggressive about taking ownership of free pages
47118af0
MN
1042 *
1043 * On the other hand, never change migration
1044 * type of MIGRATE_CMA pageblocks nor move CMA
1045 * pages on different free lists. We don't
1046 * want unmovable pages to be allocated from
1047 * MIGRATE_CMA areas.
b2a0ac88 1048 */
47118af0
MN
1049 if (!is_migrate_cma(migratetype) &&
1050 (unlikely(current_order >= pageblock_order / 2) ||
1051 start_migratetype == MIGRATE_RECLAIMABLE ||
1052 page_group_by_mobility_disabled)) {
1053 int pages;
46dafbca
MG
1054 pages = move_freepages_block(zone, page,
1055 start_migratetype);
1056
1057 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1058 if (pages >= (1 << (pageblock_order-1)) ||
1059 page_group_by_mobility_disabled)
46dafbca
MG
1060 set_pageblock_migratetype(page,
1061 start_migratetype);
1062
b2a0ac88 1063 migratetype = start_migratetype;
c361be55 1064 }
b2a0ac88
MG
1065
1066 /* Remove the page from the freelists */
1067 list_del(&page->lru);
1068 rmv_page_order(page);
b2a0ac88 1069
2f66a68f 1070 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1071 if (current_order >= pageblock_order &&
1072 !is_migrate_cma(migratetype))
2f66a68f 1073 change_pageblock_range(page, current_order,
b2a0ac88
MG
1074 start_migratetype);
1075
47118af0
MN
1076 expand(zone, page, order, current_order, area,
1077 is_migrate_cma(migratetype)
1078 ? migratetype : start_migratetype);
e0fff1bd
MG
1079
1080 trace_mm_page_alloc_extfrag(page, order, current_order,
1081 start_migratetype, migratetype);
1082
b2a0ac88
MG
1083 return page;
1084 }
1085 }
1086
728ec980 1087 return NULL;
b2a0ac88
MG
1088}
1089
56fd56b8 1090/*
1da177e4
LT
1091 * Do the hard work of removing an element from the buddy allocator.
1092 * Call me with the zone->lock already held.
1093 */
b2a0ac88
MG
1094static struct page *__rmqueue(struct zone *zone, unsigned int order,
1095 int migratetype)
1da177e4 1096{
1da177e4
LT
1097 struct page *page;
1098
728ec980 1099retry_reserve:
56fd56b8 1100 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1101
728ec980 1102 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1103 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1104
728ec980
MG
1105 /*
1106 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1107 * is used because __rmqueue_smallest is an inline function
1108 * and we want just one call site
1109 */
1110 if (!page) {
1111 migratetype = MIGRATE_RESERVE;
1112 goto retry_reserve;
1113 }
1114 }
1115
0d3d062a 1116 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1117 return page;
1da177e4
LT
1118}
1119
5f63b720 1120/*
1da177e4
LT
1121 * Obtain a specified number of elements from the buddy allocator, all under
1122 * a single hold of the lock, for efficiency. Add them to the supplied list.
1123 * Returns the number of new pages which were placed at *list.
1124 */
5f63b720 1125static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1126 unsigned long count, struct list_head *list,
e084b2d9 1127 int migratetype, int cold)
1da177e4 1128{
47118af0 1129 int mt = migratetype, i;
5f63b720 1130
c54ad30c 1131 spin_lock(&zone->lock);
1da177e4 1132 for (i = 0; i < count; ++i) {
b2a0ac88 1133 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1134 if (unlikely(page == NULL))
1da177e4 1135 break;
81eabcbe
MG
1136
1137 /*
1138 * Split buddy pages returned by expand() are received here
1139 * in physical page order. The page is added to the callers and
1140 * list and the list head then moves forward. From the callers
1141 * perspective, the linked list is ordered by page number in
1142 * some conditions. This is useful for IO devices that can
1143 * merge IO requests if the physical pages are ordered
1144 * properly.
1145 */
e084b2d9
MG
1146 if (likely(cold == 0))
1147 list_add(&page->lru, list);
1148 else
1149 list_add_tail(&page->lru, list);
47118af0
MN
1150 if (IS_ENABLED(CONFIG_CMA)) {
1151 mt = get_pageblock_migratetype(page);
194159fb 1152 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1153 mt = migratetype;
1154 }
b12c4ad1 1155 set_freepage_migratetype(page, mt);
81eabcbe 1156 list = &page->lru;
d1ce749a
BZ
1157 if (is_migrate_cma(mt))
1158 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1159 -(1 << order));
1da177e4 1160 }
f2260e6b 1161 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1162 spin_unlock(&zone->lock);
085cc7d5 1163 return i;
1da177e4
LT
1164}
1165
4ae7c039 1166#ifdef CONFIG_NUMA
8fce4d8e 1167/*
4037d452
CL
1168 * Called from the vmstat counter updater to drain pagesets of this
1169 * currently executing processor on remote nodes after they have
1170 * expired.
1171 *
879336c3
CL
1172 * Note that this function must be called with the thread pinned to
1173 * a single processor.
8fce4d8e 1174 */
4037d452 1175void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1176{
4ae7c039 1177 unsigned long flags;
4037d452 1178 int to_drain;
4ae7c039 1179
4037d452
CL
1180 local_irq_save(flags);
1181 if (pcp->count >= pcp->batch)
1182 to_drain = pcp->batch;
1183 else
1184 to_drain = pcp->count;
2a13515c
KM
1185 if (to_drain > 0) {
1186 free_pcppages_bulk(zone, to_drain, pcp);
1187 pcp->count -= to_drain;
1188 }
4037d452 1189 local_irq_restore(flags);
4ae7c039
CL
1190}
1191#endif
1192
9f8f2172
CL
1193/*
1194 * Drain pages of the indicated processor.
1195 *
1196 * The processor must either be the current processor and the
1197 * thread pinned to the current processor or a processor that
1198 * is not online.
1199 */
1200static void drain_pages(unsigned int cpu)
1da177e4 1201{
c54ad30c 1202 unsigned long flags;
1da177e4 1203 struct zone *zone;
1da177e4 1204
ee99c71c 1205 for_each_populated_zone(zone) {
1da177e4 1206 struct per_cpu_pageset *pset;
3dfa5721 1207 struct per_cpu_pages *pcp;
1da177e4 1208
99dcc3e5
CL
1209 local_irq_save(flags);
1210 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1211
1212 pcp = &pset->pcp;
2ff754fa
DR
1213 if (pcp->count) {
1214 free_pcppages_bulk(zone, pcp->count, pcp);
1215 pcp->count = 0;
1216 }
3dfa5721 1217 local_irq_restore(flags);
1da177e4
LT
1218 }
1219}
1da177e4 1220
9f8f2172
CL
1221/*
1222 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1223 */
1224void drain_local_pages(void *arg)
1225{
1226 drain_pages(smp_processor_id());
1227}
1228
1229/*
74046494
GBY
1230 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1231 *
1232 * Note that this code is protected against sending an IPI to an offline
1233 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1234 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1235 * nothing keeps CPUs from showing up after we populated the cpumask and
1236 * before the call to on_each_cpu_mask().
9f8f2172
CL
1237 */
1238void drain_all_pages(void)
1239{
74046494
GBY
1240 int cpu;
1241 struct per_cpu_pageset *pcp;
1242 struct zone *zone;
1243
1244 /*
1245 * Allocate in the BSS so we wont require allocation in
1246 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1247 */
1248 static cpumask_t cpus_with_pcps;
1249
1250 /*
1251 * We don't care about racing with CPU hotplug event
1252 * as offline notification will cause the notified
1253 * cpu to drain that CPU pcps and on_each_cpu_mask
1254 * disables preemption as part of its processing
1255 */
1256 for_each_online_cpu(cpu) {
1257 bool has_pcps = false;
1258 for_each_populated_zone(zone) {
1259 pcp = per_cpu_ptr(zone->pageset, cpu);
1260 if (pcp->pcp.count) {
1261 has_pcps = true;
1262 break;
1263 }
1264 }
1265 if (has_pcps)
1266 cpumask_set_cpu(cpu, &cpus_with_pcps);
1267 else
1268 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1269 }
1270 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1271}
1272
296699de 1273#ifdef CONFIG_HIBERNATION
1da177e4
LT
1274
1275void mark_free_pages(struct zone *zone)
1276{
f623f0db
RW
1277 unsigned long pfn, max_zone_pfn;
1278 unsigned long flags;
b2a0ac88 1279 int order, t;
1da177e4
LT
1280 struct list_head *curr;
1281
1282 if (!zone->spanned_pages)
1283 return;
1284
1285 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1286
108bcc96 1287 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1288 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1289 if (pfn_valid(pfn)) {
1290 struct page *page = pfn_to_page(pfn);
1291
7be98234
RW
1292 if (!swsusp_page_is_forbidden(page))
1293 swsusp_unset_page_free(page);
f623f0db 1294 }
1da177e4 1295
b2a0ac88
MG
1296 for_each_migratetype_order(order, t) {
1297 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1298 unsigned long i;
1da177e4 1299
f623f0db
RW
1300 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1301 for (i = 0; i < (1UL << order); i++)
7be98234 1302 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1303 }
b2a0ac88 1304 }
1da177e4
LT
1305 spin_unlock_irqrestore(&zone->lock, flags);
1306}
e2c55dc8 1307#endif /* CONFIG_PM */
1da177e4 1308
1da177e4
LT
1309/*
1310 * Free a 0-order page
fc91668e 1311 * cold == 1 ? free a cold page : free a hot page
1da177e4 1312 */
fc91668e 1313void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1314{
1315 struct zone *zone = page_zone(page);
1316 struct per_cpu_pages *pcp;
1317 unsigned long flags;
5f8dcc21 1318 int migratetype;
1da177e4 1319
ec95f53a 1320 if (!free_pages_prepare(page, 0))
689bcebf
HD
1321 return;
1322
5f8dcc21 1323 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1324 set_freepage_migratetype(page, migratetype);
1da177e4 1325 local_irq_save(flags);
f8891e5e 1326 __count_vm_event(PGFREE);
da456f14 1327
5f8dcc21
MG
1328 /*
1329 * We only track unmovable, reclaimable and movable on pcp lists.
1330 * Free ISOLATE pages back to the allocator because they are being
1331 * offlined but treat RESERVE as movable pages so we can get those
1332 * areas back if necessary. Otherwise, we may have to free
1333 * excessively into the page allocator
1334 */
1335 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1336 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1337 free_one_page(zone, page, 0, migratetype);
1338 goto out;
1339 }
1340 migratetype = MIGRATE_MOVABLE;
1341 }
1342
99dcc3e5 1343 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1344 if (cold)
5f8dcc21 1345 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1346 else
5f8dcc21 1347 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1348 pcp->count++;
48db57f8 1349 if (pcp->count >= pcp->high) {
5f8dcc21 1350 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1351 pcp->count -= pcp->batch;
1352 }
5f8dcc21
MG
1353
1354out:
1da177e4 1355 local_irq_restore(flags);
1da177e4
LT
1356}
1357
cc59850e
KK
1358/*
1359 * Free a list of 0-order pages
1360 */
1361void free_hot_cold_page_list(struct list_head *list, int cold)
1362{
1363 struct page *page, *next;
1364
1365 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1366 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1367 free_hot_cold_page(page, cold);
1368 }
1369}
1370
8dfcc9ba
NP
1371/*
1372 * split_page takes a non-compound higher-order page, and splits it into
1373 * n (1<<order) sub-pages: page[0..n]
1374 * Each sub-page must be freed individually.
1375 *
1376 * Note: this is probably too low level an operation for use in drivers.
1377 * Please consult with lkml before using this in your driver.
1378 */
1379void split_page(struct page *page, unsigned int order)
1380{
1381 int i;
1382
725d704e
NP
1383 VM_BUG_ON(PageCompound(page));
1384 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1385
1386#ifdef CONFIG_KMEMCHECK
1387 /*
1388 * Split shadow pages too, because free(page[0]) would
1389 * otherwise free the whole shadow.
1390 */
1391 if (kmemcheck_page_is_tracked(page))
1392 split_page(virt_to_page(page[0].shadow), order);
1393#endif
1394
7835e98b
NP
1395 for (i = 1; i < (1 << order); i++)
1396 set_page_refcounted(page + i);
8dfcc9ba 1397}
8dfcc9ba 1398
8fb74b9f 1399static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1400{
748446bb
MG
1401 unsigned long watermark;
1402 struct zone *zone;
2139cbe6 1403 int mt;
748446bb
MG
1404
1405 BUG_ON(!PageBuddy(page));
1406
1407 zone = page_zone(page);
2e30abd1 1408 mt = get_pageblock_migratetype(page);
748446bb 1409
194159fb 1410 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1411 /* Obey watermarks as if the page was being allocated */
1412 watermark = low_wmark_pages(zone) + (1 << order);
1413 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1414 return 0;
1415
8fb74b9f 1416 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1417 }
748446bb
MG
1418
1419 /* Remove page from free list */
1420 list_del(&page->lru);
1421 zone->free_area[order].nr_free--;
1422 rmv_page_order(page);
2139cbe6 1423
8fb74b9f 1424 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1425 if (order >= pageblock_order - 1) {
1426 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1427 for (; page < endpage; page += pageblock_nr_pages) {
1428 int mt = get_pageblock_migratetype(page);
194159fb 1429 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1430 set_pageblock_migratetype(page,
1431 MIGRATE_MOVABLE);
1432 }
748446bb
MG
1433 }
1434
8fb74b9f 1435 return 1UL << order;
1fb3f8ca
MG
1436}
1437
1438/*
1439 * Similar to split_page except the page is already free. As this is only
1440 * being used for migration, the migratetype of the block also changes.
1441 * As this is called with interrupts disabled, the caller is responsible
1442 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1443 * are enabled.
1444 *
1445 * Note: this is probably too low level an operation for use in drivers.
1446 * Please consult with lkml before using this in your driver.
1447 */
1448int split_free_page(struct page *page)
1449{
1450 unsigned int order;
1451 int nr_pages;
1452
1fb3f8ca
MG
1453 order = page_order(page);
1454
8fb74b9f 1455 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1456 if (!nr_pages)
1457 return 0;
1458
1459 /* Split into individual pages */
1460 set_page_refcounted(page);
1461 split_page(page, order);
1462 return nr_pages;
748446bb
MG
1463}
1464
1da177e4
LT
1465/*
1466 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1467 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1468 * or two.
1469 */
0a15c3e9
MG
1470static inline
1471struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1472 struct zone *zone, int order, gfp_t gfp_flags,
1473 int migratetype)
1da177e4
LT
1474{
1475 unsigned long flags;
689bcebf 1476 struct page *page;
1da177e4
LT
1477 int cold = !!(gfp_flags & __GFP_COLD);
1478
689bcebf 1479again:
48db57f8 1480 if (likely(order == 0)) {
1da177e4 1481 struct per_cpu_pages *pcp;
5f8dcc21 1482 struct list_head *list;
1da177e4 1483
1da177e4 1484 local_irq_save(flags);
99dcc3e5
CL
1485 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1486 list = &pcp->lists[migratetype];
5f8dcc21 1487 if (list_empty(list)) {
535131e6 1488 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1489 pcp->batch, list,
e084b2d9 1490 migratetype, cold);
5f8dcc21 1491 if (unlikely(list_empty(list)))
6fb332fa 1492 goto failed;
535131e6 1493 }
b92a6edd 1494
5f8dcc21
MG
1495 if (cold)
1496 page = list_entry(list->prev, struct page, lru);
1497 else
1498 page = list_entry(list->next, struct page, lru);
1499
b92a6edd
MG
1500 list_del(&page->lru);
1501 pcp->count--;
7fb1d9fc 1502 } else {
dab48dab
AM
1503 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1504 /*
1505 * __GFP_NOFAIL is not to be used in new code.
1506 *
1507 * All __GFP_NOFAIL callers should be fixed so that they
1508 * properly detect and handle allocation failures.
1509 *
1510 * We most definitely don't want callers attempting to
4923abf9 1511 * allocate greater than order-1 page units with
dab48dab
AM
1512 * __GFP_NOFAIL.
1513 */
4923abf9 1514 WARN_ON_ONCE(order > 1);
dab48dab 1515 }
1da177e4 1516 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1517 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1518 spin_unlock(&zone->lock);
1519 if (!page)
1520 goto failed;
d1ce749a
BZ
1521 __mod_zone_freepage_state(zone, -(1 << order),
1522 get_pageblock_migratetype(page));
1da177e4
LT
1523 }
1524
f8891e5e 1525 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1526 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1527 local_irq_restore(flags);
1da177e4 1528
725d704e 1529 VM_BUG_ON(bad_range(zone, page));
17cf4406 1530 if (prep_new_page(page, order, gfp_flags))
a74609fa 1531 goto again;
1da177e4 1532 return page;
a74609fa
NP
1533
1534failed:
1535 local_irq_restore(flags);
a74609fa 1536 return NULL;
1da177e4
LT
1537}
1538
933e312e
AM
1539#ifdef CONFIG_FAIL_PAGE_ALLOC
1540
b2588c4b 1541static struct {
933e312e
AM
1542 struct fault_attr attr;
1543
1544 u32 ignore_gfp_highmem;
1545 u32 ignore_gfp_wait;
54114994 1546 u32 min_order;
933e312e
AM
1547} fail_page_alloc = {
1548 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1549 .ignore_gfp_wait = 1,
1550 .ignore_gfp_highmem = 1,
54114994 1551 .min_order = 1,
933e312e
AM
1552};
1553
1554static int __init setup_fail_page_alloc(char *str)
1555{
1556 return setup_fault_attr(&fail_page_alloc.attr, str);
1557}
1558__setup("fail_page_alloc=", setup_fail_page_alloc);
1559
deaf386e 1560static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1561{
54114994 1562 if (order < fail_page_alloc.min_order)
deaf386e 1563 return false;
933e312e 1564 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1565 return false;
933e312e 1566 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1567 return false;
933e312e 1568 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1569 return false;
933e312e
AM
1570
1571 return should_fail(&fail_page_alloc.attr, 1 << order);
1572}
1573
1574#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1575
1576static int __init fail_page_alloc_debugfs(void)
1577{
f4ae40a6 1578 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1579 struct dentry *dir;
933e312e 1580
dd48c085
AM
1581 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1582 &fail_page_alloc.attr);
1583 if (IS_ERR(dir))
1584 return PTR_ERR(dir);
933e312e 1585
b2588c4b
AM
1586 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1587 &fail_page_alloc.ignore_gfp_wait))
1588 goto fail;
1589 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1590 &fail_page_alloc.ignore_gfp_highmem))
1591 goto fail;
1592 if (!debugfs_create_u32("min-order", mode, dir,
1593 &fail_page_alloc.min_order))
1594 goto fail;
1595
1596 return 0;
1597fail:
dd48c085 1598 debugfs_remove_recursive(dir);
933e312e 1599
b2588c4b 1600 return -ENOMEM;
933e312e
AM
1601}
1602
1603late_initcall(fail_page_alloc_debugfs);
1604
1605#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1606
1607#else /* CONFIG_FAIL_PAGE_ALLOC */
1608
deaf386e 1609static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1610{
deaf386e 1611 return false;
933e312e
AM
1612}
1613
1614#endif /* CONFIG_FAIL_PAGE_ALLOC */
1615
1da177e4 1616/*
88f5acf8 1617 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1618 * of the allocation.
1619 */
88f5acf8
MG
1620static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1622{
1623 /* free_pages my go negative - that's OK */
d23ad423 1624 long min = mark;
2cfed075 1625 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1626 int o;
1627
df0a6daa 1628 free_pages -= (1 << order) - 1;
7fb1d9fc 1629 if (alloc_flags & ALLOC_HIGH)
1da177e4 1630 min -= min / 2;
7fb1d9fc 1631 if (alloc_flags & ALLOC_HARDER)
1da177e4 1632 min -= min / 4;
d95ea5d1
BZ
1633#ifdef CONFIG_CMA
1634 /* If allocation can't use CMA areas don't use free CMA pages */
1635 if (!(alloc_flags & ALLOC_CMA))
1636 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1637#endif
2cfed075 1638 if (free_pages <= min + lowmem_reserve)
88f5acf8 1639 return false;
1da177e4
LT
1640 for (o = 0; o < order; o++) {
1641 /* At the next order, this order's pages become unavailable */
1642 free_pages -= z->free_area[o].nr_free << o;
1643
1644 /* Require fewer higher order pages to be free */
1645 min >>= 1;
1646
1647 if (free_pages <= min)
88f5acf8 1648 return false;
1da177e4 1649 }
88f5acf8
MG
1650 return true;
1651}
1652
1653bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1654 int classzone_idx, int alloc_flags)
1655{
1656 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1657 zone_page_state(z, NR_FREE_PAGES));
1658}
1659
1660bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1661 int classzone_idx, int alloc_flags)
1662{
1663 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1664
1665 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1666 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1667
1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 free_pages);
1da177e4
LT
1670}
1671
9276b1bc
PJ
1672#ifdef CONFIG_NUMA
1673/*
1674 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1675 * skip over zones that are not allowed by the cpuset, or that have
1676 * been recently (in last second) found to be nearly full. See further
1677 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1678 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1679 *
1680 * If the zonelist cache is present in the passed in zonelist, then
1681 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1682 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1683 *
1684 * If the zonelist cache is not available for this zonelist, does
1685 * nothing and returns NULL.
1686 *
1687 * If the fullzones BITMAP in the zonelist cache is stale (more than
1688 * a second since last zap'd) then we zap it out (clear its bits.)
1689 *
1690 * We hold off even calling zlc_setup, until after we've checked the
1691 * first zone in the zonelist, on the theory that most allocations will
1692 * be satisfied from that first zone, so best to examine that zone as
1693 * quickly as we can.
1694 */
1695static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1696{
1697 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1698 nodemask_t *allowednodes; /* zonelist_cache approximation */
1699
1700 zlc = zonelist->zlcache_ptr;
1701 if (!zlc)
1702 return NULL;
1703
f05111f5 1704 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1705 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1706 zlc->last_full_zap = jiffies;
1707 }
1708
1709 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1710 &cpuset_current_mems_allowed :
4b0ef1fe 1711 &node_states[N_MEMORY];
9276b1bc
PJ
1712 return allowednodes;
1713}
1714
1715/*
1716 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1717 * if it is worth looking at further for free memory:
1718 * 1) Check that the zone isn't thought to be full (doesn't have its
1719 * bit set in the zonelist_cache fullzones BITMAP).
1720 * 2) Check that the zones node (obtained from the zonelist_cache
1721 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1722 * Return true (non-zero) if zone is worth looking at further, or
1723 * else return false (zero) if it is not.
1724 *
1725 * This check -ignores- the distinction between various watermarks,
1726 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1727 * found to be full for any variation of these watermarks, it will
1728 * be considered full for up to one second by all requests, unless
1729 * we are so low on memory on all allowed nodes that we are forced
1730 * into the second scan of the zonelist.
1731 *
1732 * In the second scan we ignore this zonelist cache and exactly
1733 * apply the watermarks to all zones, even it is slower to do so.
1734 * We are low on memory in the second scan, and should leave no stone
1735 * unturned looking for a free page.
1736 */
dd1a239f 1737static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1738 nodemask_t *allowednodes)
1739{
1740 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1741 int i; /* index of *z in zonelist zones */
1742 int n; /* node that zone *z is on */
1743
1744 zlc = zonelist->zlcache_ptr;
1745 if (!zlc)
1746 return 1;
1747
dd1a239f 1748 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1749 n = zlc->z_to_n[i];
1750
1751 /* This zone is worth trying if it is allowed but not full */
1752 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1753}
1754
1755/*
1756 * Given 'z' scanning a zonelist, set the corresponding bit in
1757 * zlc->fullzones, so that subsequent attempts to allocate a page
1758 * from that zone don't waste time re-examining it.
1759 */
dd1a239f 1760static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1761{
1762 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1763 int i; /* index of *z in zonelist zones */
1764
1765 zlc = zonelist->zlcache_ptr;
1766 if (!zlc)
1767 return;
1768
dd1a239f 1769 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1770
1771 set_bit(i, zlc->fullzones);
1772}
1773
76d3fbf8
MG
1774/*
1775 * clear all zones full, called after direct reclaim makes progress so that
1776 * a zone that was recently full is not skipped over for up to a second
1777 */
1778static void zlc_clear_zones_full(struct zonelist *zonelist)
1779{
1780 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1781
1782 zlc = zonelist->zlcache_ptr;
1783 if (!zlc)
1784 return;
1785
1786 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1787}
1788
957f822a
DR
1789static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1790{
1791 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1792}
1793
1794static void __paginginit init_zone_allows_reclaim(int nid)
1795{
1796 int i;
1797
1798 for_each_online_node(i)
6b187d02 1799 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1800 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1801 else
957f822a 1802 zone_reclaim_mode = 1;
957f822a
DR
1803}
1804
9276b1bc
PJ
1805#else /* CONFIG_NUMA */
1806
1807static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1808{
1809 return NULL;
1810}
1811
dd1a239f 1812static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1813 nodemask_t *allowednodes)
1814{
1815 return 1;
1816}
1817
dd1a239f 1818static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1819{
1820}
76d3fbf8
MG
1821
1822static void zlc_clear_zones_full(struct zonelist *zonelist)
1823{
1824}
957f822a
DR
1825
1826static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1827{
1828 return true;
1829}
1830
1831static inline void init_zone_allows_reclaim(int nid)
1832{
1833}
9276b1bc
PJ
1834#endif /* CONFIG_NUMA */
1835
7fb1d9fc 1836/*
0798e519 1837 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1838 * a page.
1839 */
1840static struct page *
19770b32 1841get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1842 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1843 struct zone *preferred_zone, int migratetype)
753ee728 1844{
dd1a239f 1845 struct zoneref *z;
7fb1d9fc 1846 struct page *page = NULL;
54a6eb5c 1847 int classzone_idx;
5117f45d 1848 struct zone *zone;
9276b1bc
PJ
1849 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1850 int zlc_active = 0; /* set if using zonelist_cache */
1851 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1852
19770b32 1853 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1854zonelist_scan:
7fb1d9fc 1855 /*
9276b1bc 1856 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1857 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1858 */
19770b32
MG
1859 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1860 high_zoneidx, nodemask) {
e5adfffc 1861 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1862 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1863 continue;
7fb1d9fc 1864 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1865 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1866 continue;
a756cf59
JW
1867 /*
1868 * When allocating a page cache page for writing, we
1869 * want to get it from a zone that is within its dirty
1870 * limit, such that no single zone holds more than its
1871 * proportional share of globally allowed dirty pages.
1872 * The dirty limits take into account the zone's
1873 * lowmem reserves and high watermark so that kswapd
1874 * should be able to balance it without having to
1875 * write pages from its LRU list.
1876 *
1877 * This may look like it could increase pressure on
1878 * lower zones by failing allocations in higher zones
1879 * before they are full. But the pages that do spill
1880 * over are limited as the lower zones are protected
1881 * by this very same mechanism. It should not become
1882 * a practical burden to them.
1883 *
1884 * XXX: For now, allow allocations to potentially
1885 * exceed the per-zone dirty limit in the slowpath
1886 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1887 * which is important when on a NUMA setup the allowed
1888 * zones are together not big enough to reach the
1889 * global limit. The proper fix for these situations
1890 * will require awareness of zones in the
1891 * dirty-throttling and the flusher threads.
1892 */
1893 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1894 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1895 goto this_zone_full;
7fb1d9fc 1896
41858966 1897 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1898 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1899 unsigned long mark;
fa5e084e
MG
1900 int ret;
1901
41858966 1902 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1903 if (zone_watermark_ok(zone, order, mark,
1904 classzone_idx, alloc_flags))
1905 goto try_this_zone;
1906
e5adfffc
KS
1907 if (IS_ENABLED(CONFIG_NUMA) &&
1908 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1909 /*
1910 * we do zlc_setup if there are multiple nodes
1911 * and before considering the first zone allowed
1912 * by the cpuset.
1913 */
1914 allowednodes = zlc_setup(zonelist, alloc_flags);
1915 zlc_active = 1;
1916 did_zlc_setup = 1;
1917 }
1918
957f822a
DR
1919 if (zone_reclaim_mode == 0 ||
1920 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1921 goto this_zone_full;
1922
cd38b115
MG
1923 /*
1924 * As we may have just activated ZLC, check if the first
1925 * eligible zone has failed zone_reclaim recently.
1926 */
e5adfffc 1927 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1928 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1929 continue;
1930
fa5e084e
MG
1931 ret = zone_reclaim(zone, gfp_mask, order);
1932 switch (ret) {
1933 case ZONE_RECLAIM_NOSCAN:
1934 /* did not scan */
cd38b115 1935 continue;
fa5e084e
MG
1936 case ZONE_RECLAIM_FULL:
1937 /* scanned but unreclaimable */
cd38b115 1938 continue;
fa5e084e
MG
1939 default:
1940 /* did we reclaim enough */
1941 if (!zone_watermark_ok(zone, order, mark,
1942 classzone_idx, alloc_flags))
9276b1bc 1943 goto this_zone_full;
0798e519 1944 }
7fb1d9fc
RS
1945 }
1946
fa5e084e 1947try_this_zone:
3dd28266
MG
1948 page = buffered_rmqueue(preferred_zone, zone, order,
1949 gfp_mask, migratetype);
0798e519 1950 if (page)
7fb1d9fc 1951 break;
9276b1bc 1952this_zone_full:
e5adfffc 1953 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1954 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1955 }
9276b1bc 1956
e5adfffc 1957 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1958 /* Disable zlc cache for second zonelist scan */
1959 zlc_active = 0;
1960 goto zonelist_scan;
1961 }
b121186a
AS
1962
1963 if (page)
1964 /*
1965 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1966 * necessary to allocate the page. The expectation is
1967 * that the caller is taking steps that will free more
1968 * memory. The caller should avoid the page being used
1969 * for !PFMEMALLOC purposes.
1970 */
1971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1972
7fb1d9fc 1973 return page;
753ee728
MH
1974}
1975
29423e77
DR
1976/*
1977 * Large machines with many possible nodes should not always dump per-node
1978 * meminfo in irq context.
1979 */
1980static inline bool should_suppress_show_mem(void)
1981{
1982 bool ret = false;
1983
1984#if NODES_SHIFT > 8
1985 ret = in_interrupt();
1986#endif
1987 return ret;
1988}
1989
a238ab5b
DH
1990static DEFINE_RATELIMIT_STATE(nopage_rs,
1991 DEFAULT_RATELIMIT_INTERVAL,
1992 DEFAULT_RATELIMIT_BURST);
1993
1994void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1995{
a238ab5b
DH
1996 unsigned int filter = SHOW_MEM_FILTER_NODES;
1997
c0a32fc5
SG
1998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1999 debug_guardpage_minorder() > 0)
a238ab5b
DH
2000 return;
2001
2002 /*
2003 * This documents exceptions given to allocations in certain
2004 * contexts that are allowed to allocate outside current's set
2005 * of allowed nodes.
2006 */
2007 if (!(gfp_mask & __GFP_NOMEMALLOC))
2008 if (test_thread_flag(TIF_MEMDIE) ||
2009 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2010 filter &= ~SHOW_MEM_FILTER_NODES;
2011 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2013
2014 if (fmt) {
3ee9a4f0
JP
2015 struct va_format vaf;
2016 va_list args;
2017
a238ab5b 2018 va_start(args, fmt);
3ee9a4f0
JP
2019
2020 vaf.fmt = fmt;
2021 vaf.va = &args;
2022
2023 pr_warn("%pV", &vaf);
2024
a238ab5b
DH
2025 va_end(args);
2026 }
2027
3ee9a4f0
JP
2028 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2029 current->comm, order, gfp_mask);
a238ab5b
DH
2030
2031 dump_stack();
2032 if (!should_suppress_show_mem())
2033 show_mem(filter);
2034}
2035
11e33f6a
MG
2036static inline int
2037should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2038 unsigned long did_some_progress,
11e33f6a 2039 unsigned long pages_reclaimed)
1da177e4 2040{
11e33f6a
MG
2041 /* Do not loop if specifically requested */
2042 if (gfp_mask & __GFP_NORETRY)
2043 return 0;
1da177e4 2044
f90ac398
MG
2045 /* Always retry if specifically requested */
2046 if (gfp_mask & __GFP_NOFAIL)
2047 return 1;
2048
2049 /*
2050 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2051 * making forward progress without invoking OOM. Suspend also disables
2052 * storage devices so kswapd will not help. Bail if we are suspending.
2053 */
2054 if (!did_some_progress && pm_suspended_storage())
2055 return 0;
2056
11e33f6a
MG
2057 /*
2058 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2059 * means __GFP_NOFAIL, but that may not be true in other
2060 * implementations.
2061 */
2062 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2063 return 1;
2064
2065 /*
2066 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2067 * specified, then we retry until we no longer reclaim any pages
2068 * (above), or we've reclaimed an order of pages at least as
2069 * large as the allocation's order. In both cases, if the
2070 * allocation still fails, we stop retrying.
2071 */
2072 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2073 return 1;
cf40bd16 2074
11e33f6a
MG
2075 return 0;
2076}
933e312e 2077
11e33f6a
MG
2078static inline struct page *
2079__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2081 nodemask_t *nodemask, struct zone *preferred_zone,
2082 int migratetype)
11e33f6a
MG
2083{
2084 struct page *page;
2085
2086 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2087 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2088 schedule_timeout_uninterruptible(1);
1da177e4
LT
2089 return NULL;
2090 }
6b1de916 2091
11e33f6a
MG
2092 /*
2093 * Go through the zonelist yet one more time, keep very high watermark
2094 * here, this is only to catch a parallel oom killing, we must fail if
2095 * we're still under heavy pressure.
2096 */
2097 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2098 order, zonelist, high_zoneidx,
5117f45d 2099 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2100 preferred_zone, migratetype);
7fb1d9fc 2101 if (page)
11e33f6a
MG
2102 goto out;
2103
4365a567
KH
2104 if (!(gfp_mask & __GFP_NOFAIL)) {
2105 /* The OOM killer will not help higher order allocs */
2106 if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 goto out;
03668b3c
DR
2108 /* The OOM killer does not needlessly kill tasks for lowmem */
2109 if (high_zoneidx < ZONE_NORMAL)
2110 goto out;
4365a567
KH
2111 /*
2112 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2113 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2114 * The caller should handle page allocation failure by itself if
2115 * it specifies __GFP_THISNODE.
2116 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2117 */
2118 if (gfp_mask & __GFP_THISNODE)
2119 goto out;
2120 }
11e33f6a 2121 /* Exhausted what can be done so it's blamo time */
08ab9b10 2122 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2123
2124out:
2125 clear_zonelist_oom(zonelist, gfp_mask);
2126 return page;
2127}
2128
56de7263
MG
2129#ifdef CONFIG_COMPACTION
2130/* Try memory compaction for high-order allocations before reclaim */
2131static struct page *
2132__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2133 struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2135 int migratetype, bool sync_migration,
c67fe375 2136 bool *contended_compaction, bool *deferred_compaction,
66199712 2137 unsigned long *did_some_progress)
56de7263 2138{
66199712 2139 if (!order)
56de7263
MG
2140 return NULL;
2141
aff62249 2142 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2143 *deferred_compaction = true;
2144 return NULL;
2145 }
2146
c06b1fca 2147 current->flags |= PF_MEMALLOC;
56de7263 2148 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2149 nodemask, sync_migration,
8fb74b9f 2150 contended_compaction);
c06b1fca 2151 current->flags &= ~PF_MEMALLOC;
56de7263 2152
1fb3f8ca 2153 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2154 struct page *page;
2155
56de7263
MG
2156 /* Page migration frees to the PCP lists but we want merging */
2157 drain_pages(get_cpu());
2158 put_cpu();
2159
2160 page = get_page_from_freelist(gfp_mask, nodemask,
2161 order, zonelist, high_zoneidx,
cfd19c5a
MG
2162 alloc_flags & ~ALLOC_NO_WATERMARKS,
2163 preferred_zone, migratetype);
56de7263 2164 if (page) {
62997027 2165 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2166 preferred_zone->compact_considered = 0;
2167 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2168 if (order >= preferred_zone->compact_order_failed)
2169 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2170 count_vm_event(COMPACTSUCCESS);
2171 return page;
2172 }
2173
2174 /*
2175 * It's bad if compaction run occurs and fails.
2176 * The most likely reason is that pages exist,
2177 * but not enough to satisfy watermarks.
2178 */
2179 count_vm_event(COMPACTFAIL);
66199712
MG
2180
2181 /*
2182 * As async compaction considers a subset of pageblocks, only
2183 * defer if the failure was a sync compaction failure.
2184 */
2185 if (sync_migration)
aff62249 2186 defer_compaction(preferred_zone, order);
56de7263
MG
2187
2188 cond_resched();
2189 }
2190
2191 return NULL;
2192}
2193#else
2194static inline struct page *
2195__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2196 struct zonelist *zonelist, enum zone_type high_zoneidx,
2197 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2198 int migratetype, bool sync_migration,
c67fe375 2199 bool *contended_compaction, bool *deferred_compaction,
66199712 2200 unsigned long *did_some_progress)
56de7263
MG
2201{
2202 return NULL;
2203}
2204#endif /* CONFIG_COMPACTION */
2205
bba90710
MS
2206/* Perform direct synchronous page reclaim */
2207static int
2208__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2209 nodemask_t *nodemask)
11e33f6a 2210{
11e33f6a 2211 struct reclaim_state reclaim_state;
bba90710 2212 int progress;
11e33f6a
MG
2213
2214 cond_resched();
2215
2216 /* We now go into synchronous reclaim */
2217 cpuset_memory_pressure_bump();
c06b1fca 2218 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2219 lockdep_set_current_reclaim_state(gfp_mask);
2220 reclaim_state.reclaimed_slab = 0;
c06b1fca 2221 current->reclaim_state = &reclaim_state;
11e33f6a 2222
bba90710 2223 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2224
c06b1fca 2225 current->reclaim_state = NULL;
11e33f6a 2226 lockdep_clear_current_reclaim_state();
c06b1fca 2227 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2228
2229 cond_resched();
2230
bba90710
MS
2231 return progress;
2232}
2233
2234/* The really slow allocator path where we enter direct reclaim */
2235static inline struct page *
2236__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2237 struct zonelist *zonelist, enum zone_type high_zoneidx,
2238 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2239 int migratetype, unsigned long *did_some_progress)
2240{
2241 struct page *page = NULL;
2242 bool drained = false;
2243
2244 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2245 nodemask);
9ee493ce
MG
2246 if (unlikely(!(*did_some_progress)))
2247 return NULL;
11e33f6a 2248
76d3fbf8 2249 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2250 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2251 zlc_clear_zones_full(zonelist);
2252
9ee493ce
MG
2253retry:
2254 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2255 zonelist, high_zoneidx,
cfd19c5a
MG
2256 alloc_flags & ~ALLOC_NO_WATERMARKS,
2257 preferred_zone, migratetype);
9ee493ce
MG
2258
2259 /*
2260 * If an allocation failed after direct reclaim, it could be because
2261 * pages are pinned on the per-cpu lists. Drain them and try again
2262 */
2263 if (!page && !drained) {
2264 drain_all_pages();
2265 drained = true;
2266 goto retry;
2267 }
2268
11e33f6a
MG
2269 return page;
2270}
2271
1da177e4 2272/*
11e33f6a
MG
2273 * This is called in the allocator slow-path if the allocation request is of
2274 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2275 */
11e33f6a
MG
2276static inline struct page *
2277__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2278 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2279 nodemask_t *nodemask, struct zone *preferred_zone,
2280 int migratetype)
11e33f6a
MG
2281{
2282 struct page *page;
2283
2284 do {
2285 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2286 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2287 preferred_zone, migratetype);
11e33f6a
MG
2288
2289 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2290 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2291 } while (!page && (gfp_mask & __GFP_NOFAIL));
2292
2293 return page;
2294}
2295
2296static inline
2297void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2298 enum zone_type high_zoneidx,
2299 enum zone_type classzone_idx)
1da177e4 2300{
dd1a239f
MG
2301 struct zoneref *z;
2302 struct zone *zone;
1da177e4 2303
11e33f6a 2304 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2305 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2306}
cf40bd16 2307
341ce06f
PZ
2308static inline int
2309gfp_to_alloc_flags(gfp_t gfp_mask)
2310{
341ce06f
PZ
2311 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2312 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2313
a56f57ff 2314 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2315 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2316
341ce06f
PZ
2317 /*
2318 * The caller may dip into page reserves a bit more if the caller
2319 * cannot run direct reclaim, or if the caller has realtime scheduling
2320 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2321 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2322 */
e6223a3b 2323 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2324
341ce06f 2325 if (!wait) {
5c3240d9
AA
2326 /*
2327 * Not worth trying to allocate harder for
2328 * __GFP_NOMEMALLOC even if it can't schedule.
2329 */
2330 if (!(gfp_mask & __GFP_NOMEMALLOC))
2331 alloc_flags |= ALLOC_HARDER;
523b9458 2332 /*
341ce06f
PZ
2333 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2334 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2335 */
341ce06f 2336 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2337 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2338 alloc_flags |= ALLOC_HARDER;
2339
b37f1dd0
MG
2340 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2341 if (gfp_mask & __GFP_MEMALLOC)
2342 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2343 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2344 alloc_flags |= ALLOC_NO_WATERMARKS;
2345 else if (!in_interrupt() &&
2346 ((current->flags & PF_MEMALLOC) ||
2347 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2348 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2349 }
d95ea5d1
BZ
2350#ifdef CONFIG_CMA
2351 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2352 alloc_flags |= ALLOC_CMA;
2353#endif
341ce06f
PZ
2354 return alloc_flags;
2355}
2356
072bb0aa
MG
2357bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2358{
b37f1dd0 2359 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2360}
2361
11e33f6a
MG
2362static inline struct page *
2363__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2364 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2365 nodemask_t *nodemask, struct zone *preferred_zone,
2366 int migratetype)
11e33f6a
MG
2367{
2368 const gfp_t wait = gfp_mask & __GFP_WAIT;
2369 struct page *page = NULL;
2370 int alloc_flags;
2371 unsigned long pages_reclaimed = 0;
2372 unsigned long did_some_progress;
77f1fe6b 2373 bool sync_migration = false;
66199712 2374 bool deferred_compaction = false;
c67fe375 2375 bool contended_compaction = false;
1da177e4 2376
72807a74
MG
2377 /*
2378 * In the slowpath, we sanity check order to avoid ever trying to
2379 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2380 * be using allocators in order of preference for an area that is
2381 * too large.
2382 */
1fc28b70
MG
2383 if (order >= MAX_ORDER) {
2384 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2385 return NULL;
1fc28b70 2386 }
1da177e4 2387
952f3b51
CL
2388 /*
2389 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2390 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2391 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2392 * using a larger set of nodes after it has established that the
2393 * allowed per node queues are empty and that nodes are
2394 * over allocated.
2395 */
e5adfffc
KS
2396 if (IS_ENABLED(CONFIG_NUMA) &&
2397 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2398 goto nopage;
2399
cc4a6851 2400restart:
caf49191
LT
2401 if (!(gfp_mask & __GFP_NO_KSWAPD))
2402 wake_all_kswapd(order, zonelist, high_zoneidx,
2403 zone_idx(preferred_zone));
1da177e4 2404
9bf2229f 2405 /*
7fb1d9fc
RS
2406 * OK, we're below the kswapd watermark and have kicked background
2407 * reclaim. Now things get more complex, so set up alloc_flags according
2408 * to how we want to proceed.
9bf2229f 2409 */
341ce06f 2410 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2411
f33261d7
DR
2412 /*
2413 * Find the true preferred zone if the allocation is unconstrained by
2414 * cpusets.
2415 */
2416 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2417 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2418 &preferred_zone);
2419
cfa54a0f 2420rebalance:
341ce06f 2421 /* This is the last chance, in general, before the goto nopage. */
19770b32 2422 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2423 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2424 preferred_zone, migratetype);
7fb1d9fc
RS
2425 if (page)
2426 goto got_pg;
1da177e4 2427
11e33f6a 2428 /* Allocate without watermarks if the context allows */
341ce06f 2429 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2430 /*
2431 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2432 * the allocation is high priority and these type of
2433 * allocations are system rather than user orientated
2434 */
2435 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2436
341ce06f
PZ
2437 page = __alloc_pages_high_priority(gfp_mask, order,
2438 zonelist, high_zoneidx, nodemask,
2439 preferred_zone, migratetype);
cfd19c5a 2440 if (page) {
341ce06f 2441 goto got_pg;
cfd19c5a 2442 }
1da177e4
LT
2443 }
2444
2445 /* Atomic allocations - we can't balance anything */
2446 if (!wait)
2447 goto nopage;
2448
341ce06f 2449 /* Avoid recursion of direct reclaim */
c06b1fca 2450 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2451 goto nopage;
2452
6583bb64
DR
2453 /* Avoid allocations with no watermarks from looping endlessly */
2454 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2455 goto nopage;
2456
77f1fe6b
MG
2457 /*
2458 * Try direct compaction. The first pass is asynchronous. Subsequent
2459 * attempts after direct reclaim are synchronous
2460 */
56de7263
MG
2461 page = __alloc_pages_direct_compact(gfp_mask, order,
2462 zonelist, high_zoneidx,
2463 nodemask,
2464 alloc_flags, preferred_zone,
66199712 2465 migratetype, sync_migration,
c67fe375 2466 &contended_compaction,
66199712
MG
2467 &deferred_compaction,
2468 &did_some_progress);
56de7263
MG
2469 if (page)
2470 goto got_pg;
c6a140bf 2471 sync_migration = true;
56de7263 2472
31f8d42d
LT
2473 /*
2474 * If compaction is deferred for high-order allocations, it is because
2475 * sync compaction recently failed. In this is the case and the caller
2476 * requested a movable allocation that does not heavily disrupt the
2477 * system then fail the allocation instead of entering direct reclaim.
2478 */
2479 if ((deferred_compaction || contended_compaction) &&
caf49191 2480 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2481 goto nopage;
66199712 2482
11e33f6a
MG
2483 /* Try direct reclaim and then allocating */
2484 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2485 zonelist, high_zoneidx,
2486 nodemask,
5117f45d 2487 alloc_flags, preferred_zone,
3dd28266 2488 migratetype, &did_some_progress);
11e33f6a
MG
2489 if (page)
2490 goto got_pg;
1da177e4 2491
e33c3b5e 2492 /*
11e33f6a
MG
2493 * If we failed to make any progress reclaiming, then we are
2494 * running out of options and have to consider going OOM
e33c3b5e 2495 */
11e33f6a
MG
2496 if (!did_some_progress) {
2497 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2498 if (oom_killer_disabled)
2499 goto nopage;
29fd66d2
DR
2500 /* Coredumps can quickly deplete all memory reserves */
2501 if ((current->flags & PF_DUMPCORE) &&
2502 !(gfp_mask & __GFP_NOFAIL))
2503 goto nopage;
11e33f6a
MG
2504 page = __alloc_pages_may_oom(gfp_mask, order,
2505 zonelist, high_zoneidx,
3dd28266
MG
2506 nodemask, preferred_zone,
2507 migratetype);
11e33f6a
MG
2508 if (page)
2509 goto got_pg;
1da177e4 2510
03668b3c
DR
2511 if (!(gfp_mask & __GFP_NOFAIL)) {
2512 /*
2513 * The oom killer is not called for high-order
2514 * allocations that may fail, so if no progress
2515 * is being made, there are no other options and
2516 * retrying is unlikely to help.
2517 */
2518 if (order > PAGE_ALLOC_COSTLY_ORDER)
2519 goto nopage;
2520 /*
2521 * The oom killer is not called for lowmem
2522 * allocations to prevent needlessly killing
2523 * innocent tasks.
2524 */
2525 if (high_zoneidx < ZONE_NORMAL)
2526 goto nopage;
2527 }
e2c55dc8 2528
ff0ceb9d
DR
2529 goto restart;
2530 }
1da177e4
LT
2531 }
2532
11e33f6a 2533 /* Check if we should retry the allocation */
a41f24ea 2534 pages_reclaimed += did_some_progress;
f90ac398
MG
2535 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2536 pages_reclaimed)) {
11e33f6a 2537 /* Wait for some write requests to complete then retry */
0e093d99 2538 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2539 goto rebalance;
3e7d3449
MG
2540 } else {
2541 /*
2542 * High-order allocations do not necessarily loop after
2543 * direct reclaim and reclaim/compaction depends on compaction
2544 * being called after reclaim so call directly if necessary
2545 */
2546 page = __alloc_pages_direct_compact(gfp_mask, order,
2547 zonelist, high_zoneidx,
2548 nodemask,
2549 alloc_flags, preferred_zone,
66199712 2550 migratetype, sync_migration,
c67fe375 2551 &contended_compaction,
66199712
MG
2552 &deferred_compaction,
2553 &did_some_progress);
3e7d3449
MG
2554 if (page)
2555 goto got_pg;
1da177e4
LT
2556 }
2557
2558nopage:
a238ab5b 2559 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2560 return page;
1da177e4 2561got_pg:
b1eeab67
VN
2562 if (kmemcheck_enabled)
2563 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2564
072bb0aa 2565 return page;
1da177e4 2566}
11e33f6a
MG
2567
2568/*
2569 * This is the 'heart' of the zoned buddy allocator.
2570 */
2571struct page *
2572__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2573 struct zonelist *zonelist, nodemask_t *nodemask)
2574{
2575 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2576 struct zone *preferred_zone;
cc9a6c87 2577 struct page *page = NULL;
3dd28266 2578 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2579 unsigned int cpuset_mems_cookie;
d95ea5d1 2580 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2581 struct mem_cgroup *memcg = NULL;
11e33f6a 2582
dcce284a
BH
2583 gfp_mask &= gfp_allowed_mask;
2584
11e33f6a
MG
2585 lockdep_trace_alloc(gfp_mask);
2586
2587 might_sleep_if(gfp_mask & __GFP_WAIT);
2588
2589 if (should_fail_alloc_page(gfp_mask, order))
2590 return NULL;
2591
2592 /*
2593 * Check the zones suitable for the gfp_mask contain at least one
2594 * valid zone. It's possible to have an empty zonelist as a result
2595 * of GFP_THISNODE and a memoryless node
2596 */
2597 if (unlikely(!zonelist->_zonerefs->zone))
2598 return NULL;
2599
6a1a0d3b
GC
2600 /*
2601 * Will only have any effect when __GFP_KMEMCG is set. This is
2602 * verified in the (always inline) callee
2603 */
2604 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2605 return NULL;
2606
cc9a6c87
MG
2607retry_cpuset:
2608 cpuset_mems_cookie = get_mems_allowed();
2609
5117f45d 2610 /* The preferred zone is used for statistics later */
f33261d7
DR
2611 first_zones_zonelist(zonelist, high_zoneidx,
2612 nodemask ? : &cpuset_current_mems_allowed,
2613 &preferred_zone);
cc9a6c87
MG
2614 if (!preferred_zone)
2615 goto out;
5117f45d 2616
d95ea5d1
BZ
2617#ifdef CONFIG_CMA
2618 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2619 alloc_flags |= ALLOC_CMA;
2620#endif
5117f45d 2621 /* First allocation attempt */
11e33f6a 2622 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2623 zonelist, high_zoneidx, alloc_flags,
3dd28266 2624 preferred_zone, migratetype);
21caf2fc
ML
2625 if (unlikely(!page)) {
2626 /*
2627 * Runtime PM, block IO and its error handling path
2628 * can deadlock because I/O on the device might not
2629 * complete.
2630 */
2631 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2632 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2633 zonelist, high_zoneidx, nodemask,
3dd28266 2634 preferred_zone, migratetype);
21caf2fc 2635 }
11e33f6a 2636
4b4f278c 2637 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2638
2639out:
2640 /*
2641 * When updating a task's mems_allowed, it is possible to race with
2642 * parallel threads in such a way that an allocation can fail while
2643 * the mask is being updated. If a page allocation is about to fail,
2644 * check if the cpuset changed during allocation and if so, retry.
2645 */
2646 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2647 goto retry_cpuset;
2648
6a1a0d3b
GC
2649 memcg_kmem_commit_charge(page, memcg, order);
2650
11e33f6a 2651 return page;
1da177e4 2652}
d239171e 2653EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2654
2655/*
2656 * Common helper functions.
2657 */
920c7a5d 2658unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2659{
945a1113
AM
2660 struct page *page;
2661
2662 /*
2663 * __get_free_pages() returns a 32-bit address, which cannot represent
2664 * a highmem page
2665 */
2666 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2667
1da177e4
LT
2668 page = alloc_pages(gfp_mask, order);
2669 if (!page)
2670 return 0;
2671 return (unsigned long) page_address(page);
2672}
1da177e4
LT
2673EXPORT_SYMBOL(__get_free_pages);
2674
920c7a5d 2675unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2676{
945a1113 2677 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2678}
1da177e4
LT
2679EXPORT_SYMBOL(get_zeroed_page);
2680
920c7a5d 2681void __free_pages(struct page *page, unsigned int order)
1da177e4 2682{
b5810039 2683 if (put_page_testzero(page)) {
1da177e4 2684 if (order == 0)
fc91668e 2685 free_hot_cold_page(page, 0);
1da177e4
LT
2686 else
2687 __free_pages_ok(page, order);
2688 }
2689}
2690
2691EXPORT_SYMBOL(__free_pages);
2692
920c7a5d 2693void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2694{
2695 if (addr != 0) {
725d704e 2696 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2697 __free_pages(virt_to_page((void *)addr), order);
2698 }
2699}
2700
2701EXPORT_SYMBOL(free_pages);
2702
6a1a0d3b
GC
2703/*
2704 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2705 * pages allocated with __GFP_KMEMCG.
2706 *
2707 * Those pages are accounted to a particular memcg, embedded in the
2708 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2709 * for that information only to find out that it is NULL for users who have no
2710 * interest in that whatsoever, we provide these functions.
2711 *
2712 * The caller knows better which flags it relies on.
2713 */
2714void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2715{
2716 memcg_kmem_uncharge_pages(page, order);
2717 __free_pages(page, order);
2718}
2719
2720void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2721{
2722 if (addr != 0) {
2723 VM_BUG_ON(!virt_addr_valid((void *)addr));
2724 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2725 }
2726}
2727
ee85c2e1
AK
2728static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2729{
2730 if (addr) {
2731 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2732 unsigned long used = addr + PAGE_ALIGN(size);
2733
2734 split_page(virt_to_page((void *)addr), order);
2735 while (used < alloc_end) {
2736 free_page(used);
2737 used += PAGE_SIZE;
2738 }
2739 }
2740 return (void *)addr;
2741}
2742
2be0ffe2
TT
2743/**
2744 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2745 * @size: the number of bytes to allocate
2746 * @gfp_mask: GFP flags for the allocation
2747 *
2748 * This function is similar to alloc_pages(), except that it allocates the
2749 * minimum number of pages to satisfy the request. alloc_pages() can only
2750 * allocate memory in power-of-two pages.
2751 *
2752 * This function is also limited by MAX_ORDER.
2753 *
2754 * Memory allocated by this function must be released by free_pages_exact().
2755 */
2756void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2757{
2758 unsigned int order = get_order(size);
2759 unsigned long addr;
2760
2761 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2762 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2763}
2764EXPORT_SYMBOL(alloc_pages_exact);
2765
ee85c2e1
AK
2766/**
2767 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2768 * pages on a node.
b5e6ab58 2769 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2770 * @size: the number of bytes to allocate
2771 * @gfp_mask: GFP flags for the allocation
2772 *
2773 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2774 * back.
2775 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2776 * but is not exact.
2777 */
2778void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2779{
2780 unsigned order = get_order(size);
2781 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2782 if (!p)
2783 return NULL;
2784 return make_alloc_exact((unsigned long)page_address(p), order, size);
2785}
2786EXPORT_SYMBOL(alloc_pages_exact_nid);
2787
2be0ffe2
TT
2788/**
2789 * free_pages_exact - release memory allocated via alloc_pages_exact()
2790 * @virt: the value returned by alloc_pages_exact.
2791 * @size: size of allocation, same value as passed to alloc_pages_exact().
2792 *
2793 * Release the memory allocated by a previous call to alloc_pages_exact.
2794 */
2795void free_pages_exact(void *virt, size_t size)
2796{
2797 unsigned long addr = (unsigned long)virt;
2798 unsigned long end = addr + PAGE_ALIGN(size);
2799
2800 while (addr < end) {
2801 free_page(addr);
2802 addr += PAGE_SIZE;
2803 }
2804}
2805EXPORT_SYMBOL(free_pages_exact);
2806
1da177e4
LT
2807static unsigned int nr_free_zone_pages(int offset)
2808{
dd1a239f 2809 struct zoneref *z;
54a6eb5c
MG
2810 struct zone *zone;
2811
e310fd43 2812 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2813 unsigned int sum = 0;
2814
0e88460d 2815 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2816
54a6eb5c 2817 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2818 unsigned long size = zone->managed_pages;
41858966 2819 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2820 if (size > high)
2821 sum += size - high;
1da177e4
LT
2822 }
2823
2824 return sum;
2825}
2826
2827/*
2828 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2829 */
2830unsigned int nr_free_buffer_pages(void)
2831{
af4ca457 2832 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2833}
c2f1a551 2834EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2835
2836/*
2837 * Amount of free RAM allocatable within all zones
2838 */
2839unsigned int nr_free_pagecache_pages(void)
2840{
2a1e274a 2841 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2842}
08e0f6a9
CL
2843
2844static inline void show_node(struct zone *zone)
1da177e4 2845{
e5adfffc 2846 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2847 printk("Node %d ", zone_to_nid(zone));
1da177e4 2848}
1da177e4 2849
1da177e4
LT
2850void si_meminfo(struct sysinfo *val)
2851{
2852 val->totalram = totalram_pages;
2853 val->sharedram = 0;
d23ad423 2854 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2855 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2856 val->totalhigh = totalhigh_pages;
2857 val->freehigh = nr_free_highpages();
1da177e4
LT
2858 val->mem_unit = PAGE_SIZE;
2859}
2860
2861EXPORT_SYMBOL(si_meminfo);
2862
2863#ifdef CONFIG_NUMA
2864void si_meminfo_node(struct sysinfo *val, int nid)
2865{
2866 pg_data_t *pgdat = NODE_DATA(nid);
2867
2868 val->totalram = pgdat->node_present_pages;
d23ad423 2869 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2870#ifdef CONFIG_HIGHMEM
b40da049 2871 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2872 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2873 NR_FREE_PAGES);
98d2b0eb
CL
2874#else
2875 val->totalhigh = 0;
2876 val->freehigh = 0;
2877#endif
1da177e4
LT
2878 val->mem_unit = PAGE_SIZE;
2879}
2880#endif
2881
ddd588b5 2882/*
7bf02ea2
DR
2883 * Determine whether the node should be displayed or not, depending on whether
2884 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2885 */
7bf02ea2 2886bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2887{
2888 bool ret = false;
cc9a6c87 2889 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2890
2891 if (!(flags & SHOW_MEM_FILTER_NODES))
2892 goto out;
2893
cc9a6c87
MG
2894 do {
2895 cpuset_mems_cookie = get_mems_allowed();
2896 ret = !node_isset(nid, cpuset_current_mems_allowed);
2897 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2898out:
2899 return ret;
2900}
2901
1da177e4
LT
2902#define K(x) ((x) << (PAGE_SHIFT-10))
2903
377e4f16
RV
2904static void show_migration_types(unsigned char type)
2905{
2906 static const char types[MIGRATE_TYPES] = {
2907 [MIGRATE_UNMOVABLE] = 'U',
2908 [MIGRATE_RECLAIMABLE] = 'E',
2909 [MIGRATE_MOVABLE] = 'M',
2910 [MIGRATE_RESERVE] = 'R',
2911#ifdef CONFIG_CMA
2912 [MIGRATE_CMA] = 'C',
2913#endif
194159fb 2914#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 2915 [MIGRATE_ISOLATE] = 'I',
194159fb 2916#endif
377e4f16
RV
2917 };
2918 char tmp[MIGRATE_TYPES + 1];
2919 char *p = tmp;
2920 int i;
2921
2922 for (i = 0; i < MIGRATE_TYPES; i++) {
2923 if (type & (1 << i))
2924 *p++ = types[i];
2925 }
2926
2927 *p = '\0';
2928 printk("(%s) ", tmp);
2929}
2930
1da177e4
LT
2931/*
2932 * Show free area list (used inside shift_scroll-lock stuff)
2933 * We also calculate the percentage fragmentation. We do this by counting the
2934 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2935 * Suppresses nodes that are not allowed by current's cpuset if
2936 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2937 */
7bf02ea2 2938void show_free_areas(unsigned int filter)
1da177e4 2939{
c7241913 2940 int cpu;
1da177e4
LT
2941 struct zone *zone;
2942
ee99c71c 2943 for_each_populated_zone(zone) {
7bf02ea2 2944 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2945 continue;
c7241913
JS
2946 show_node(zone);
2947 printk("%s per-cpu:\n", zone->name);
1da177e4 2948
6b482c67 2949 for_each_online_cpu(cpu) {
1da177e4
LT
2950 struct per_cpu_pageset *pageset;
2951
99dcc3e5 2952 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2953
3dfa5721
CL
2954 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2955 cpu, pageset->pcp.high,
2956 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2957 }
2958 }
2959
a731286d
KM
2960 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2961 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2962 " unevictable:%lu"
b76146ed 2963 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2964 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2965 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2966 " free_cma:%lu\n",
4f98a2fe 2967 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2968 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2969 global_page_state(NR_ISOLATED_ANON),
2970 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2971 global_page_state(NR_INACTIVE_FILE),
a731286d 2972 global_page_state(NR_ISOLATED_FILE),
7b854121 2973 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2974 global_page_state(NR_FILE_DIRTY),
ce866b34 2975 global_page_state(NR_WRITEBACK),
fd39fc85 2976 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2977 global_page_state(NR_FREE_PAGES),
3701b033
KM
2978 global_page_state(NR_SLAB_RECLAIMABLE),
2979 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2980 global_page_state(NR_FILE_MAPPED),
4b02108a 2981 global_page_state(NR_SHMEM),
a25700a5 2982 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2983 global_page_state(NR_BOUNCE),
2984 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2985
ee99c71c 2986 for_each_populated_zone(zone) {
1da177e4
LT
2987 int i;
2988
7bf02ea2 2989 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2990 continue;
1da177e4
LT
2991 show_node(zone);
2992 printk("%s"
2993 " free:%lukB"
2994 " min:%lukB"
2995 " low:%lukB"
2996 " high:%lukB"
4f98a2fe
RR
2997 " active_anon:%lukB"
2998 " inactive_anon:%lukB"
2999 " active_file:%lukB"
3000 " inactive_file:%lukB"
7b854121 3001 " unevictable:%lukB"
a731286d
KM
3002 " isolated(anon):%lukB"
3003 " isolated(file):%lukB"
1da177e4 3004 " present:%lukB"
9feedc9d 3005 " managed:%lukB"
4a0aa73f
KM
3006 " mlocked:%lukB"
3007 " dirty:%lukB"
3008 " writeback:%lukB"
3009 " mapped:%lukB"
4b02108a 3010 " shmem:%lukB"
4a0aa73f
KM
3011 " slab_reclaimable:%lukB"
3012 " slab_unreclaimable:%lukB"
c6a7f572 3013 " kernel_stack:%lukB"
4a0aa73f
KM
3014 " pagetables:%lukB"
3015 " unstable:%lukB"
3016 " bounce:%lukB"
d1ce749a 3017 " free_cma:%lukB"
4a0aa73f 3018 " writeback_tmp:%lukB"
1da177e4
LT
3019 " pages_scanned:%lu"
3020 " all_unreclaimable? %s"
3021 "\n",
3022 zone->name,
88f5acf8 3023 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3024 K(min_wmark_pages(zone)),
3025 K(low_wmark_pages(zone)),
3026 K(high_wmark_pages(zone)),
4f98a2fe
RR
3027 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3028 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3029 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3030 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3031 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3032 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3033 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3034 K(zone->present_pages),
9feedc9d 3035 K(zone->managed_pages),
4a0aa73f
KM
3036 K(zone_page_state(zone, NR_MLOCK)),
3037 K(zone_page_state(zone, NR_FILE_DIRTY)),
3038 K(zone_page_state(zone, NR_WRITEBACK)),
3039 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3040 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3041 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3042 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3043 zone_page_state(zone, NR_KERNEL_STACK) *
3044 THREAD_SIZE / 1024,
4a0aa73f
KM
3045 K(zone_page_state(zone, NR_PAGETABLE)),
3046 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3047 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3048 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3049 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3050 zone->pages_scanned,
93e4a89a 3051 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3052 );
3053 printk("lowmem_reserve[]:");
3054 for (i = 0; i < MAX_NR_ZONES; i++)
3055 printk(" %lu", zone->lowmem_reserve[i]);
3056 printk("\n");
3057 }
3058
ee99c71c 3059 for_each_populated_zone(zone) {
8f9de51a 3060 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3061 unsigned char types[MAX_ORDER];
1da177e4 3062
7bf02ea2 3063 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3064 continue;
1da177e4
LT
3065 show_node(zone);
3066 printk("%s: ", zone->name);
1da177e4
LT
3067
3068 spin_lock_irqsave(&zone->lock, flags);
3069 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3070 struct free_area *area = &zone->free_area[order];
3071 int type;
3072
3073 nr[order] = area->nr_free;
8f9de51a 3074 total += nr[order] << order;
377e4f16
RV
3075
3076 types[order] = 0;
3077 for (type = 0; type < MIGRATE_TYPES; type++) {
3078 if (!list_empty(&area->free_list[type]))
3079 types[order] |= 1 << type;
3080 }
1da177e4
LT
3081 }
3082 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3083 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3084 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3085 if (nr[order])
3086 show_migration_types(types[order]);
3087 }
1da177e4
LT
3088 printk("= %lukB\n", K(total));
3089 }
3090
e6f3602d
LW
3091 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3092
1da177e4
LT
3093 show_swap_cache_info();
3094}
3095
19770b32
MG
3096static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3097{
3098 zoneref->zone = zone;
3099 zoneref->zone_idx = zone_idx(zone);
3100}
3101
1da177e4
LT
3102/*
3103 * Builds allocation fallback zone lists.
1a93205b
CL
3104 *
3105 * Add all populated zones of a node to the zonelist.
1da177e4 3106 */
f0c0b2b8
KH
3107static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3108 int nr_zones, enum zone_type zone_type)
1da177e4 3109{
1a93205b
CL
3110 struct zone *zone;
3111
98d2b0eb 3112 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3113 zone_type++;
02a68a5e
CL
3114
3115 do {
2f6726e5 3116 zone_type--;
070f8032 3117 zone = pgdat->node_zones + zone_type;
1a93205b 3118 if (populated_zone(zone)) {
dd1a239f
MG
3119 zoneref_set_zone(zone,
3120 &zonelist->_zonerefs[nr_zones++]);
070f8032 3121 check_highest_zone(zone_type);
1da177e4 3122 }
02a68a5e 3123
2f6726e5 3124 } while (zone_type);
070f8032 3125 return nr_zones;
1da177e4
LT
3126}
3127
f0c0b2b8
KH
3128
3129/*
3130 * zonelist_order:
3131 * 0 = automatic detection of better ordering.
3132 * 1 = order by ([node] distance, -zonetype)
3133 * 2 = order by (-zonetype, [node] distance)
3134 *
3135 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3136 * the same zonelist. So only NUMA can configure this param.
3137 */
3138#define ZONELIST_ORDER_DEFAULT 0
3139#define ZONELIST_ORDER_NODE 1
3140#define ZONELIST_ORDER_ZONE 2
3141
3142/* zonelist order in the kernel.
3143 * set_zonelist_order() will set this to NODE or ZONE.
3144 */
3145static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3146static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3147
3148
1da177e4 3149#ifdef CONFIG_NUMA
f0c0b2b8
KH
3150/* The value user specified ....changed by config */
3151static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3152/* string for sysctl */
3153#define NUMA_ZONELIST_ORDER_LEN 16
3154char numa_zonelist_order[16] = "default";
3155
3156/*
3157 * interface for configure zonelist ordering.
3158 * command line option "numa_zonelist_order"
3159 * = "[dD]efault - default, automatic configuration.
3160 * = "[nN]ode - order by node locality, then by zone within node
3161 * = "[zZ]one - order by zone, then by locality within zone
3162 */
3163
3164static int __parse_numa_zonelist_order(char *s)
3165{
3166 if (*s == 'd' || *s == 'D') {
3167 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3168 } else if (*s == 'n' || *s == 'N') {
3169 user_zonelist_order = ZONELIST_ORDER_NODE;
3170 } else if (*s == 'z' || *s == 'Z') {
3171 user_zonelist_order = ZONELIST_ORDER_ZONE;
3172 } else {
3173 printk(KERN_WARNING
3174 "Ignoring invalid numa_zonelist_order value: "
3175 "%s\n", s);
3176 return -EINVAL;
3177 }
3178 return 0;
3179}
3180
3181static __init int setup_numa_zonelist_order(char *s)
3182{
ecb256f8
VL
3183 int ret;
3184
3185 if (!s)
3186 return 0;
3187
3188 ret = __parse_numa_zonelist_order(s);
3189 if (ret == 0)
3190 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3191
3192 return ret;
f0c0b2b8
KH
3193}
3194early_param("numa_zonelist_order", setup_numa_zonelist_order);
3195
3196/*
3197 * sysctl handler for numa_zonelist_order
3198 */
3199int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3200 void __user *buffer, size_t *length,
f0c0b2b8
KH
3201 loff_t *ppos)
3202{
3203 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3204 int ret;
443c6f14 3205 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3206
443c6f14 3207 mutex_lock(&zl_order_mutex);
f0c0b2b8 3208 if (write)
443c6f14 3209 strcpy(saved_string, (char*)table->data);
8d65af78 3210 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3211 if (ret)
443c6f14 3212 goto out;
f0c0b2b8
KH
3213 if (write) {
3214 int oldval = user_zonelist_order;
3215 if (__parse_numa_zonelist_order((char*)table->data)) {
3216 /*
3217 * bogus value. restore saved string
3218 */
3219 strncpy((char*)table->data, saved_string,
3220 NUMA_ZONELIST_ORDER_LEN);
3221 user_zonelist_order = oldval;
4eaf3f64
HL
3222 } else if (oldval != user_zonelist_order) {
3223 mutex_lock(&zonelists_mutex);
9adb62a5 3224 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3225 mutex_unlock(&zonelists_mutex);
3226 }
f0c0b2b8 3227 }
443c6f14
AK
3228out:
3229 mutex_unlock(&zl_order_mutex);
3230 return ret;
f0c0b2b8
KH
3231}
3232
3233
62bc62a8 3234#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3235static int node_load[MAX_NUMNODES];
3236
1da177e4 3237/**
4dc3b16b 3238 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3239 * @node: node whose fallback list we're appending
3240 * @used_node_mask: nodemask_t of already used nodes
3241 *
3242 * We use a number of factors to determine which is the next node that should
3243 * appear on a given node's fallback list. The node should not have appeared
3244 * already in @node's fallback list, and it should be the next closest node
3245 * according to the distance array (which contains arbitrary distance values
3246 * from each node to each node in the system), and should also prefer nodes
3247 * with no CPUs, since presumably they'll have very little allocation pressure
3248 * on them otherwise.
3249 * It returns -1 if no node is found.
3250 */
f0c0b2b8 3251static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3252{
4cf808eb 3253 int n, val;
1da177e4
LT
3254 int min_val = INT_MAX;
3255 int best_node = -1;
a70f7302 3256 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3257
4cf808eb
LT
3258 /* Use the local node if we haven't already */
3259 if (!node_isset(node, *used_node_mask)) {
3260 node_set(node, *used_node_mask);
3261 return node;
3262 }
1da177e4 3263
4b0ef1fe 3264 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3265
3266 /* Don't want a node to appear more than once */
3267 if (node_isset(n, *used_node_mask))
3268 continue;
3269
1da177e4
LT
3270 /* Use the distance array to find the distance */
3271 val = node_distance(node, n);
3272
4cf808eb
LT
3273 /* Penalize nodes under us ("prefer the next node") */
3274 val += (n < node);
3275
1da177e4 3276 /* Give preference to headless and unused nodes */
a70f7302
RR
3277 tmp = cpumask_of_node(n);
3278 if (!cpumask_empty(tmp))
1da177e4
LT
3279 val += PENALTY_FOR_NODE_WITH_CPUS;
3280
3281 /* Slight preference for less loaded node */
3282 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3283 val += node_load[n];
3284
3285 if (val < min_val) {
3286 min_val = val;
3287 best_node = n;
3288 }
3289 }
3290
3291 if (best_node >= 0)
3292 node_set(best_node, *used_node_mask);
3293
3294 return best_node;
3295}
3296
f0c0b2b8
KH
3297
3298/*
3299 * Build zonelists ordered by node and zones within node.
3300 * This results in maximum locality--normal zone overflows into local
3301 * DMA zone, if any--but risks exhausting DMA zone.
3302 */
3303static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3304{
f0c0b2b8 3305 int j;
1da177e4 3306 struct zonelist *zonelist;
f0c0b2b8 3307
54a6eb5c 3308 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3309 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3310 ;
3311 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3312 MAX_NR_ZONES - 1);
dd1a239f
MG
3313 zonelist->_zonerefs[j].zone = NULL;
3314 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3315}
3316
523b9458
CL
3317/*
3318 * Build gfp_thisnode zonelists
3319 */
3320static void build_thisnode_zonelists(pg_data_t *pgdat)
3321{
523b9458
CL
3322 int j;
3323 struct zonelist *zonelist;
3324
54a6eb5c
MG
3325 zonelist = &pgdat->node_zonelists[1];
3326 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3327 zonelist->_zonerefs[j].zone = NULL;
3328 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3329}
3330
f0c0b2b8
KH
3331/*
3332 * Build zonelists ordered by zone and nodes within zones.
3333 * This results in conserving DMA zone[s] until all Normal memory is
3334 * exhausted, but results in overflowing to remote node while memory
3335 * may still exist in local DMA zone.
3336 */
3337static int node_order[MAX_NUMNODES];
3338
3339static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3340{
f0c0b2b8
KH
3341 int pos, j, node;
3342 int zone_type; /* needs to be signed */
3343 struct zone *z;
3344 struct zonelist *zonelist;
3345
54a6eb5c
MG
3346 zonelist = &pgdat->node_zonelists[0];
3347 pos = 0;
3348 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3349 for (j = 0; j < nr_nodes; j++) {
3350 node = node_order[j];
3351 z = &NODE_DATA(node)->node_zones[zone_type];
3352 if (populated_zone(z)) {
dd1a239f
MG
3353 zoneref_set_zone(z,
3354 &zonelist->_zonerefs[pos++]);
54a6eb5c 3355 check_highest_zone(zone_type);
f0c0b2b8
KH
3356 }
3357 }
f0c0b2b8 3358 }
dd1a239f
MG
3359 zonelist->_zonerefs[pos].zone = NULL;
3360 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3361}
3362
3363static int default_zonelist_order(void)
3364{
3365 int nid, zone_type;
3366 unsigned long low_kmem_size,total_size;
3367 struct zone *z;
3368 int average_size;
3369 /*
88393161 3370 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3371 * If they are really small and used heavily, the system can fall
3372 * into OOM very easily.
e325c90f 3373 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3374 */
3375 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3376 low_kmem_size = 0;
3377 total_size = 0;
3378 for_each_online_node(nid) {
3379 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3380 z = &NODE_DATA(nid)->node_zones[zone_type];
3381 if (populated_zone(z)) {
3382 if (zone_type < ZONE_NORMAL)
3383 low_kmem_size += z->present_pages;
3384 total_size += z->present_pages;
e325c90f
DR
3385 } else if (zone_type == ZONE_NORMAL) {
3386 /*
3387 * If any node has only lowmem, then node order
3388 * is preferred to allow kernel allocations
3389 * locally; otherwise, they can easily infringe
3390 * on other nodes when there is an abundance of
3391 * lowmem available to allocate from.
3392 */
3393 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3394 }
3395 }
3396 }
3397 if (!low_kmem_size || /* there are no DMA area. */
3398 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3399 return ZONELIST_ORDER_NODE;
3400 /*
3401 * look into each node's config.
3402 * If there is a node whose DMA/DMA32 memory is very big area on
3403 * local memory, NODE_ORDER may be suitable.
3404 */
37b07e41 3405 average_size = total_size /
4b0ef1fe 3406 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3407 for_each_online_node(nid) {
3408 low_kmem_size = 0;
3409 total_size = 0;
3410 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3411 z = &NODE_DATA(nid)->node_zones[zone_type];
3412 if (populated_zone(z)) {
3413 if (zone_type < ZONE_NORMAL)
3414 low_kmem_size += z->present_pages;
3415 total_size += z->present_pages;
3416 }
3417 }
3418 if (low_kmem_size &&
3419 total_size > average_size && /* ignore small node */
3420 low_kmem_size > total_size * 70/100)
3421 return ZONELIST_ORDER_NODE;
3422 }
3423 return ZONELIST_ORDER_ZONE;
3424}
3425
3426static void set_zonelist_order(void)
3427{
3428 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3429 current_zonelist_order = default_zonelist_order();
3430 else
3431 current_zonelist_order = user_zonelist_order;
3432}
3433
3434static void build_zonelists(pg_data_t *pgdat)
3435{
3436 int j, node, load;
3437 enum zone_type i;
1da177e4 3438 nodemask_t used_mask;
f0c0b2b8
KH
3439 int local_node, prev_node;
3440 struct zonelist *zonelist;
3441 int order = current_zonelist_order;
1da177e4
LT
3442
3443 /* initialize zonelists */
523b9458 3444 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3445 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3446 zonelist->_zonerefs[0].zone = NULL;
3447 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3448 }
3449
3450 /* NUMA-aware ordering of nodes */
3451 local_node = pgdat->node_id;
62bc62a8 3452 load = nr_online_nodes;
1da177e4
LT
3453 prev_node = local_node;
3454 nodes_clear(used_mask);
f0c0b2b8 3455
f0c0b2b8
KH
3456 memset(node_order, 0, sizeof(node_order));
3457 j = 0;
3458
1da177e4
LT
3459 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3460 /*
3461 * We don't want to pressure a particular node.
3462 * So adding penalty to the first node in same
3463 * distance group to make it round-robin.
3464 */
957f822a
DR
3465 if (node_distance(local_node, node) !=
3466 node_distance(local_node, prev_node))
f0c0b2b8
KH
3467 node_load[node] = load;
3468
1da177e4
LT
3469 prev_node = node;
3470 load--;
f0c0b2b8
KH
3471 if (order == ZONELIST_ORDER_NODE)
3472 build_zonelists_in_node_order(pgdat, node);
3473 else
3474 node_order[j++] = node; /* remember order */
3475 }
1da177e4 3476
f0c0b2b8
KH
3477 if (order == ZONELIST_ORDER_ZONE) {
3478 /* calculate node order -- i.e., DMA last! */
3479 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3480 }
523b9458
CL
3481
3482 build_thisnode_zonelists(pgdat);
1da177e4
LT
3483}
3484
9276b1bc 3485/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3486static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3487{
54a6eb5c
MG
3488 struct zonelist *zonelist;
3489 struct zonelist_cache *zlc;
dd1a239f 3490 struct zoneref *z;
9276b1bc 3491
54a6eb5c
MG
3492 zonelist = &pgdat->node_zonelists[0];
3493 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3494 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3495 for (z = zonelist->_zonerefs; z->zone; z++)
3496 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3497}
3498
7aac7898
LS
3499#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3500/*
3501 * Return node id of node used for "local" allocations.
3502 * I.e., first node id of first zone in arg node's generic zonelist.
3503 * Used for initializing percpu 'numa_mem', which is used primarily
3504 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3505 */
3506int local_memory_node(int node)
3507{
3508 struct zone *zone;
3509
3510 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3511 gfp_zone(GFP_KERNEL),
3512 NULL,
3513 &zone);
3514 return zone->node;
3515}
3516#endif
f0c0b2b8 3517
1da177e4
LT
3518#else /* CONFIG_NUMA */
3519
f0c0b2b8
KH
3520static void set_zonelist_order(void)
3521{
3522 current_zonelist_order = ZONELIST_ORDER_ZONE;
3523}
3524
3525static void build_zonelists(pg_data_t *pgdat)
1da177e4 3526{
19655d34 3527 int node, local_node;
54a6eb5c
MG
3528 enum zone_type j;
3529 struct zonelist *zonelist;
1da177e4
LT
3530
3531 local_node = pgdat->node_id;
1da177e4 3532
54a6eb5c
MG
3533 zonelist = &pgdat->node_zonelists[0];
3534 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3535
54a6eb5c
MG
3536 /*
3537 * Now we build the zonelist so that it contains the zones
3538 * of all the other nodes.
3539 * We don't want to pressure a particular node, so when
3540 * building the zones for node N, we make sure that the
3541 * zones coming right after the local ones are those from
3542 * node N+1 (modulo N)
3543 */
3544 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3545 if (!node_online(node))
3546 continue;
3547 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3548 MAX_NR_ZONES - 1);
1da177e4 3549 }
54a6eb5c
MG
3550 for (node = 0; node < local_node; node++) {
3551 if (!node_online(node))
3552 continue;
3553 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3554 MAX_NR_ZONES - 1);
3555 }
3556
dd1a239f
MG
3557 zonelist->_zonerefs[j].zone = NULL;
3558 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3559}
3560
9276b1bc 3561/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3562static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3563{
54a6eb5c 3564 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3565}
3566
1da177e4
LT
3567#endif /* CONFIG_NUMA */
3568
99dcc3e5
CL
3569/*
3570 * Boot pageset table. One per cpu which is going to be used for all
3571 * zones and all nodes. The parameters will be set in such a way
3572 * that an item put on a list will immediately be handed over to
3573 * the buddy list. This is safe since pageset manipulation is done
3574 * with interrupts disabled.
3575 *
3576 * The boot_pagesets must be kept even after bootup is complete for
3577 * unused processors and/or zones. They do play a role for bootstrapping
3578 * hotplugged processors.
3579 *
3580 * zoneinfo_show() and maybe other functions do
3581 * not check if the processor is online before following the pageset pointer.
3582 * Other parts of the kernel may not check if the zone is available.
3583 */
3584static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3585static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3586static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3587
4eaf3f64
HL
3588/*
3589 * Global mutex to protect against size modification of zonelists
3590 * as well as to serialize pageset setup for the new populated zone.
3591 */
3592DEFINE_MUTEX(zonelists_mutex);
3593
9b1a4d38 3594/* return values int ....just for stop_machine() */
4ed7e022 3595static int __build_all_zonelists(void *data)
1da177e4 3596{
6811378e 3597 int nid;
99dcc3e5 3598 int cpu;
9adb62a5 3599 pg_data_t *self = data;
9276b1bc 3600
7f9cfb31
BL
3601#ifdef CONFIG_NUMA
3602 memset(node_load, 0, sizeof(node_load));
3603#endif
9adb62a5
JL
3604
3605 if (self && !node_online(self->node_id)) {
3606 build_zonelists(self);
3607 build_zonelist_cache(self);
3608 }
3609
9276b1bc 3610 for_each_online_node(nid) {
7ea1530a
CL
3611 pg_data_t *pgdat = NODE_DATA(nid);
3612
3613 build_zonelists(pgdat);
3614 build_zonelist_cache(pgdat);
9276b1bc 3615 }
99dcc3e5
CL
3616
3617 /*
3618 * Initialize the boot_pagesets that are going to be used
3619 * for bootstrapping processors. The real pagesets for
3620 * each zone will be allocated later when the per cpu
3621 * allocator is available.
3622 *
3623 * boot_pagesets are used also for bootstrapping offline
3624 * cpus if the system is already booted because the pagesets
3625 * are needed to initialize allocators on a specific cpu too.
3626 * F.e. the percpu allocator needs the page allocator which
3627 * needs the percpu allocator in order to allocate its pagesets
3628 * (a chicken-egg dilemma).
3629 */
7aac7898 3630 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3631 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3632
7aac7898
LS
3633#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3634 /*
3635 * We now know the "local memory node" for each node--
3636 * i.e., the node of the first zone in the generic zonelist.
3637 * Set up numa_mem percpu variable for on-line cpus. During
3638 * boot, only the boot cpu should be on-line; we'll init the
3639 * secondary cpus' numa_mem as they come on-line. During
3640 * node/memory hotplug, we'll fixup all on-line cpus.
3641 */
3642 if (cpu_online(cpu))
3643 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3644#endif
3645 }
3646
6811378e
YG
3647 return 0;
3648}
3649
4eaf3f64
HL
3650/*
3651 * Called with zonelists_mutex held always
3652 * unless system_state == SYSTEM_BOOTING.
3653 */
9adb62a5 3654void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3655{
f0c0b2b8
KH
3656 set_zonelist_order();
3657
6811378e 3658 if (system_state == SYSTEM_BOOTING) {
423b41d7 3659 __build_all_zonelists(NULL);
68ad8df4 3660 mminit_verify_zonelist();
6811378e
YG
3661 cpuset_init_current_mems_allowed();
3662 } else {
183ff22b 3663 /* we have to stop all cpus to guarantee there is no user
6811378e 3664 of zonelist */
e9959f0f 3665#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3666 if (zone)
3667 setup_zone_pageset(zone);
e9959f0f 3668#endif
9adb62a5 3669 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3670 /* cpuset refresh routine should be here */
3671 }
bd1e22b8 3672 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3673 /*
3674 * Disable grouping by mobility if the number of pages in the
3675 * system is too low to allow the mechanism to work. It would be
3676 * more accurate, but expensive to check per-zone. This check is
3677 * made on memory-hotadd so a system can start with mobility
3678 * disabled and enable it later
3679 */
d9c23400 3680 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3681 page_group_by_mobility_disabled = 1;
3682 else
3683 page_group_by_mobility_disabled = 0;
3684
3685 printk("Built %i zonelists in %s order, mobility grouping %s. "
3686 "Total pages: %ld\n",
62bc62a8 3687 nr_online_nodes,
f0c0b2b8 3688 zonelist_order_name[current_zonelist_order],
9ef9acb0 3689 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3690 vm_total_pages);
3691#ifdef CONFIG_NUMA
3692 printk("Policy zone: %s\n", zone_names[policy_zone]);
3693#endif
1da177e4
LT
3694}
3695
3696/*
3697 * Helper functions to size the waitqueue hash table.
3698 * Essentially these want to choose hash table sizes sufficiently
3699 * large so that collisions trying to wait on pages are rare.
3700 * But in fact, the number of active page waitqueues on typical
3701 * systems is ridiculously low, less than 200. So this is even
3702 * conservative, even though it seems large.
3703 *
3704 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3705 * waitqueues, i.e. the size of the waitq table given the number of pages.
3706 */
3707#define PAGES_PER_WAITQUEUE 256
3708
cca448fe 3709#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3710static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3711{
3712 unsigned long size = 1;
3713
3714 pages /= PAGES_PER_WAITQUEUE;
3715
3716 while (size < pages)
3717 size <<= 1;
3718
3719 /*
3720 * Once we have dozens or even hundreds of threads sleeping
3721 * on IO we've got bigger problems than wait queue collision.
3722 * Limit the size of the wait table to a reasonable size.
3723 */
3724 size = min(size, 4096UL);
3725
3726 return max(size, 4UL);
3727}
cca448fe
YG
3728#else
3729/*
3730 * A zone's size might be changed by hot-add, so it is not possible to determine
3731 * a suitable size for its wait_table. So we use the maximum size now.
3732 *
3733 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3734 *
3735 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3736 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3737 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3738 *
3739 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3740 * or more by the traditional way. (See above). It equals:
3741 *
3742 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3743 * ia64(16K page size) : = ( 8G + 4M)byte.
3744 * powerpc (64K page size) : = (32G +16M)byte.
3745 */
3746static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3747{
3748 return 4096UL;
3749}
3750#endif
1da177e4
LT
3751
3752/*
3753 * This is an integer logarithm so that shifts can be used later
3754 * to extract the more random high bits from the multiplicative
3755 * hash function before the remainder is taken.
3756 */
3757static inline unsigned long wait_table_bits(unsigned long size)
3758{
3759 return ffz(~size);
3760}
3761
3762#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3763
6d3163ce
AH
3764/*
3765 * Check if a pageblock contains reserved pages
3766 */
3767static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3768{
3769 unsigned long pfn;
3770
3771 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3772 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3773 return 1;
3774 }
3775 return 0;
3776}
3777
56fd56b8 3778/*
d9c23400 3779 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3780 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3781 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3782 * higher will lead to a bigger reserve which will get freed as contiguous
3783 * blocks as reclaim kicks in
3784 */
3785static void setup_zone_migrate_reserve(struct zone *zone)
3786{
6d3163ce 3787 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3788 struct page *page;
78986a67
MG
3789 unsigned long block_migratetype;
3790 int reserve;
56fd56b8 3791
d0215638
MH
3792 /*
3793 * Get the start pfn, end pfn and the number of blocks to reserve
3794 * We have to be careful to be aligned to pageblock_nr_pages to
3795 * make sure that we always check pfn_valid for the first page in
3796 * the block.
3797 */
56fd56b8 3798 start_pfn = zone->zone_start_pfn;
108bcc96 3799 end_pfn = zone_end_pfn(zone);
d0215638 3800 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3801 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3802 pageblock_order;
56fd56b8 3803
78986a67
MG
3804 /*
3805 * Reserve blocks are generally in place to help high-order atomic
3806 * allocations that are short-lived. A min_free_kbytes value that
3807 * would result in more than 2 reserve blocks for atomic allocations
3808 * is assumed to be in place to help anti-fragmentation for the
3809 * future allocation of hugepages at runtime.
3810 */
3811 reserve = min(2, reserve);
3812
d9c23400 3813 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3814 if (!pfn_valid(pfn))
3815 continue;
3816 page = pfn_to_page(pfn);
3817
344c790e
AL
3818 /* Watch out for overlapping nodes */
3819 if (page_to_nid(page) != zone_to_nid(zone))
3820 continue;
3821
56fd56b8
MG
3822 block_migratetype = get_pageblock_migratetype(page);
3823
938929f1
MG
3824 /* Only test what is necessary when the reserves are not met */
3825 if (reserve > 0) {
3826 /*
3827 * Blocks with reserved pages will never free, skip
3828 * them.
3829 */
3830 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3831 if (pageblock_is_reserved(pfn, block_end_pfn))
3832 continue;
56fd56b8 3833
938929f1
MG
3834 /* If this block is reserved, account for it */
3835 if (block_migratetype == MIGRATE_RESERVE) {
3836 reserve--;
3837 continue;
3838 }
3839
3840 /* Suitable for reserving if this block is movable */
3841 if (block_migratetype == MIGRATE_MOVABLE) {
3842 set_pageblock_migratetype(page,
3843 MIGRATE_RESERVE);
3844 move_freepages_block(zone, page,
3845 MIGRATE_RESERVE);
3846 reserve--;
3847 continue;
3848 }
56fd56b8
MG
3849 }
3850
3851 /*
3852 * If the reserve is met and this is a previous reserved block,
3853 * take it back
3854 */
3855 if (block_migratetype == MIGRATE_RESERVE) {
3856 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3857 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3858 }
3859 }
3860}
ac0e5b7a 3861
1da177e4
LT
3862/*
3863 * Initially all pages are reserved - free ones are freed
3864 * up by free_all_bootmem() once the early boot process is
3865 * done. Non-atomic initialization, single-pass.
3866 */
c09b4240 3867void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3868 unsigned long start_pfn, enum memmap_context context)
1da177e4 3869{
1da177e4 3870 struct page *page;
29751f69
AW
3871 unsigned long end_pfn = start_pfn + size;
3872 unsigned long pfn;
86051ca5 3873 struct zone *z;
1da177e4 3874
22b31eec
HD
3875 if (highest_memmap_pfn < end_pfn - 1)
3876 highest_memmap_pfn = end_pfn - 1;
3877
86051ca5 3878 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3879 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3880 /*
3881 * There can be holes in boot-time mem_map[]s
3882 * handed to this function. They do not
3883 * exist on hotplugged memory.
3884 */
3885 if (context == MEMMAP_EARLY) {
3886 if (!early_pfn_valid(pfn))
3887 continue;
3888 if (!early_pfn_in_nid(pfn, nid))
3889 continue;
3890 }
d41dee36
AW
3891 page = pfn_to_page(pfn);
3892 set_page_links(page, zone, nid, pfn);
708614e6 3893 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3894 init_page_count(page);
22b751c3
MG
3895 page_mapcount_reset(page);
3896 page_nid_reset_last(page);
1da177e4 3897 SetPageReserved(page);
b2a0ac88
MG
3898 /*
3899 * Mark the block movable so that blocks are reserved for
3900 * movable at startup. This will force kernel allocations
3901 * to reserve their blocks rather than leaking throughout
3902 * the address space during boot when many long-lived
56fd56b8
MG
3903 * kernel allocations are made. Later some blocks near
3904 * the start are marked MIGRATE_RESERVE by
3905 * setup_zone_migrate_reserve()
86051ca5
KH
3906 *
3907 * bitmap is created for zone's valid pfn range. but memmap
3908 * can be created for invalid pages (for alignment)
3909 * check here not to call set_pageblock_migratetype() against
3910 * pfn out of zone.
b2a0ac88 3911 */
86051ca5 3912 if ((z->zone_start_pfn <= pfn)
108bcc96 3913 && (pfn < zone_end_pfn(z))
86051ca5 3914 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3915 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3916
1da177e4
LT
3917 INIT_LIST_HEAD(&page->lru);
3918#ifdef WANT_PAGE_VIRTUAL
3919 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3920 if (!is_highmem_idx(zone))
3212c6be 3921 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3922#endif
1da177e4
LT
3923 }
3924}
3925
1e548deb 3926static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3927{
b2a0ac88
MG
3928 int order, t;
3929 for_each_migratetype_order(order, t) {
3930 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3931 zone->free_area[order].nr_free = 0;
3932 }
3933}
3934
3935#ifndef __HAVE_ARCH_MEMMAP_INIT
3936#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3937 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3938#endif
3939
4ed7e022 3940static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3941{
3a6be87f 3942#ifdef CONFIG_MMU
e7c8d5c9
CL
3943 int batch;
3944
3945 /*
3946 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3947 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3948 *
3949 * OK, so we don't know how big the cache is. So guess.
3950 */
b40da049 3951 batch = zone->managed_pages / 1024;
ba56e91c
SR
3952 if (batch * PAGE_SIZE > 512 * 1024)
3953 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3954 batch /= 4; /* We effectively *= 4 below */
3955 if (batch < 1)
3956 batch = 1;
3957
3958 /*
0ceaacc9
NP
3959 * Clamp the batch to a 2^n - 1 value. Having a power
3960 * of 2 value was found to be more likely to have
3961 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3962 *
0ceaacc9
NP
3963 * For example if 2 tasks are alternately allocating
3964 * batches of pages, one task can end up with a lot
3965 * of pages of one half of the possible page colors
3966 * and the other with pages of the other colors.
e7c8d5c9 3967 */
9155203a 3968 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3969
e7c8d5c9 3970 return batch;
3a6be87f
DH
3971
3972#else
3973 /* The deferral and batching of frees should be suppressed under NOMMU
3974 * conditions.
3975 *
3976 * The problem is that NOMMU needs to be able to allocate large chunks
3977 * of contiguous memory as there's no hardware page translation to
3978 * assemble apparent contiguous memory from discontiguous pages.
3979 *
3980 * Queueing large contiguous runs of pages for batching, however,
3981 * causes the pages to actually be freed in smaller chunks. As there
3982 * can be a significant delay between the individual batches being
3983 * recycled, this leads to the once large chunks of space being
3984 * fragmented and becoming unavailable for high-order allocations.
3985 */
3986 return 0;
3987#endif
e7c8d5c9
CL
3988}
3989
b69a7288 3990static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3991{
3992 struct per_cpu_pages *pcp;
5f8dcc21 3993 int migratetype;
2caaad41 3994
1c6fe946
MD
3995 memset(p, 0, sizeof(*p));
3996
3dfa5721 3997 pcp = &p->pcp;
2caaad41 3998 pcp->count = 0;
2caaad41
CL
3999 pcp->high = 6 * batch;
4000 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
4001 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4002 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4003}
4004
8ad4b1fb
RS
4005/*
4006 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4007 * to the value high for the pageset p.
4008 */
4009
4010static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4011 unsigned long high)
4012{
4013 struct per_cpu_pages *pcp;
4014
3dfa5721 4015 pcp = &p->pcp;
8ad4b1fb
RS
4016 pcp->high = high;
4017 pcp->batch = max(1UL, high/4);
4018 if ((high/4) > (PAGE_SHIFT * 8))
4019 pcp->batch = PAGE_SHIFT * 8;
4020}
4021
4ed7e022 4022static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4023{
4024 int cpu;
4025
4026 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4027
4028 for_each_possible_cpu(cpu) {
4029 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4030
4031 setup_pageset(pcp, zone_batchsize(zone));
4032
4033 if (percpu_pagelist_fraction)
4034 setup_pagelist_highmark(pcp,
b40da049 4035 (zone->managed_pages /
319774e2
WF
4036 percpu_pagelist_fraction));
4037 }
4038}
4039
2caaad41 4040/*
99dcc3e5
CL
4041 * Allocate per cpu pagesets and initialize them.
4042 * Before this call only boot pagesets were available.
e7c8d5c9 4043 */
99dcc3e5 4044void __init setup_per_cpu_pageset(void)
e7c8d5c9 4045{
99dcc3e5 4046 struct zone *zone;
e7c8d5c9 4047
319774e2
WF
4048 for_each_populated_zone(zone)
4049 setup_zone_pageset(zone);
e7c8d5c9
CL
4050}
4051
577a32f6 4052static noinline __init_refok
cca448fe 4053int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4054{
4055 int i;
4056 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4057 size_t alloc_size;
ed8ece2e
DH
4058
4059 /*
4060 * The per-page waitqueue mechanism uses hashed waitqueues
4061 * per zone.
4062 */
02b694de
YG
4063 zone->wait_table_hash_nr_entries =
4064 wait_table_hash_nr_entries(zone_size_pages);
4065 zone->wait_table_bits =
4066 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4067 alloc_size = zone->wait_table_hash_nr_entries
4068 * sizeof(wait_queue_head_t);
4069
cd94b9db 4070 if (!slab_is_available()) {
cca448fe 4071 zone->wait_table = (wait_queue_head_t *)
8f389a99 4072 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4073 } else {
4074 /*
4075 * This case means that a zone whose size was 0 gets new memory
4076 * via memory hot-add.
4077 * But it may be the case that a new node was hot-added. In
4078 * this case vmalloc() will not be able to use this new node's
4079 * memory - this wait_table must be initialized to use this new
4080 * node itself as well.
4081 * To use this new node's memory, further consideration will be
4082 * necessary.
4083 */
8691f3a7 4084 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4085 }
4086 if (!zone->wait_table)
4087 return -ENOMEM;
ed8ece2e 4088
02b694de 4089 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4090 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4091
4092 return 0;
ed8ece2e
DH
4093}
4094
c09b4240 4095static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4096{
99dcc3e5
CL
4097 /*
4098 * per cpu subsystem is not up at this point. The following code
4099 * relies on the ability of the linker to provide the
4100 * offset of a (static) per cpu variable into the per cpu area.
4101 */
4102 zone->pageset = &boot_pageset;
ed8ece2e 4103
f5335c0f 4104 if (zone->present_pages)
99dcc3e5
CL
4105 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4106 zone->name, zone->present_pages,
4107 zone_batchsize(zone));
ed8ece2e
DH
4108}
4109
4ed7e022 4110int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4111 unsigned long zone_start_pfn,
a2f3aa02
DH
4112 unsigned long size,
4113 enum memmap_context context)
ed8ece2e
DH
4114{
4115 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4116 int ret;
4117 ret = zone_wait_table_init(zone, size);
4118 if (ret)
4119 return ret;
ed8ece2e
DH
4120 pgdat->nr_zones = zone_idx(zone) + 1;
4121
ed8ece2e
DH
4122 zone->zone_start_pfn = zone_start_pfn;
4123
708614e6
MG
4124 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4125 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4126 pgdat->node_id,
4127 (unsigned long)zone_idx(zone),
4128 zone_start_pfn, (zone_start_pfn + size));
4129
1e548deb 4130 zone_init_free_lists(zone);
718127cc
YG
4131
4132 return 0;
ed8ece2e
DH
4133}
4134
0ee332c1 4135#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4136#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4137/*
4138 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4139 * Architectures may implement their own version but if add_active_range()
4140 * was used and there are no special requirements, this is a convenient
4141 * alternative
4142 */
f2dbcfa7 4143int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4144{
c13291a5
TH
4145 unsigned long start_pfn, end_pfn;
4146 int i, nid;
c713216d 4147
c13291a5 4148 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4149 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4150 return nid;
cc2559bc
KH
4151 /* This is a memory hole */
4152 return -1;
c713216d
MG
4153}
4154#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4155
f2dbcfa7
KH
4156int __meminit early_pfn_to_nid(unsigned long pfn)
4157{
cc2559bc
KH
4158 int nid;
4159
4160 nid = __early_pfn_to_nid(pfn);
4161 if (nid >= 0)
4162 return nid;
4163 /* just returns 0 */
4164 return 0;
f2dbcfa7
KH
4165}
4166
cc2559bc
KH
4167#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4168bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4169{
4170 int nid;
4171
4172 nid = __early_pfn_to_nid(pfn);
4173 if (nid >= 0 && nid != node)
4174 return false;
4175 return true;
4176}
4177#endif
f2dbcfa7 4178
c713216d
MG
4179/**
4180 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4181 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4182 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4183 *
4184 * If an architecture guarantees that all ranges registered with
4185 * add_active_ranges() contain no holes and may be freed, this
4186 * this function may be used instead of calling free_bootmem() manually.
4187 */
c13291a5 4188void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4189{
c13291a5
TH
4190 unsigned long start_pfn, end_pfn;
4191 int i, this_nid;
edbe7d23 4192
c13291a5
TH
4193 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4194 start_pfn = min(start_pfn, max_low_pfn);
4195 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4196
c13291a5
TH
4197 if (start_pfn < end_pfn)
4198 free_bootmem_node(NODE_DATA(this_nid),
4199 PFN_PHYS(start_pfn),
4200 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4201 }
edbe7d23 4202}
edbe7d23 4203
c713216d
MG
4204/**
4205 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4206 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4207 *
4208 * If an architecture guarantees that all ranges registered with
4209 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4210 * function may be used instead of calling memory_present() manually.
c713216d
MG
4211 */
4212void __init sparse_memory_present_with_active_regions(int nid)
4213{
c13291a5
TH
4214 unsigned long start_pfn, end_pfn;
4215 int i, this_nid;
c713216d 4216
c13291a5
TH
4217 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4218 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4219}
4220
4221/**
4222 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4223 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4224 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4225 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4226 *
4227 * It returns the start and end page frame of a node based on information
4228 * provided by an arch calling add_active_range(). If called for a node
4229 * with no available memory, a warning is printed and the start and end
88ca3b94 4230 * PFNs will be 0.
c713216d 4231 */
a3142c8e 4232void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4233 unsigned long *start_pfn, unsigned long *end_pfn)
4234{
c13291a5 4235 unsigned long this_start_pfn, this_end_pfn;
c713216d 4236 int i;
c13291a5 4237
c713216d
MG
4238 *start_pfn = -1UL;
4239 *end_pfn = 0;
4240
c13291a5
TH
4241 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4242 *start_pfn = min(*start_pfn, this_start_pfn);
4243 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4244 }
4245
633c0666 4246 if (*start_pfn == -1UL)
c713216d 4247 *start_pfn = 0;
c713216d
MG
4248}
4249
2a1e274a
MG
4250/*
4251 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4252 * assumption is made that zones within a node are ordered in monotonic
4253 * increasing memory addresses so that the "highest" populated zone is used
4254 */
b69a7288 4255static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4256{
4257 int zone_index;
4258 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4259 if (zone_index == ZONE_MOVABLE)
4260 continue;
4261
4262 if (arch_zone_highest_possible_pfn[zone_index] >
4263 arch_zone_lowest_possible_pfn[zone_index])
4264 break;
4265 }
4266
4267 VM_BUG_ON(zone_index == -1);
4268 movable_zone = zone_index;
4269}
4270
4271/*
4272 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4273 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4274 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4275 * in each node depending on the size of each node and how evenly kernelcore
4276 * is distributed. This helper function adjusts the zone ranges
4277 * provided by the architecture for a given node by using the end of the
4278 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4279 * zones within a node are in order of monotonic increases memory addresses
4280 */
b69a7288 4281static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4282 unsigned long zone_type,
4283 unsigned long node_start_pfn,
4284 unsigned long node_end_pfn,
4285 unsigned long *zone_start_pfn,
4286 unsigned long *zone_end_pfn)
4287{
4288 /* Only adjust if ZONE_MOVABLE is on this node */
4289 if (zone_movable_pfn[nid]) {
4290 /* Size ZONE_MOVABLE */
4291 if (zone_type == ZONE_MOVABLE) {
4292 *zone_start_pfn = zone_movable_pfn[nid];
4293 *zone_end_pfn = min(node_end_pfn,
4294 arch_zone_highest_possible_pfn[movable_zone]);
4295
4296 /* Adjust for ZONE_MOVABLE starting within this range */
4297 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4298 *zone_end_pfn > zone_movable_pfn[nid]) {
4299 *zone_end_pfn = zone_movable_pfn[nid];
4300
4301 /* Check if this whole range is within ZONE_MOVABLE */
4302 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4303 *zone_start_pfn = *zone_end_pfn;
4304 }
4305}
4306
c713216d
MG
4307/*
4308 * Return the number of pages a zone spans in a node, including holes
4309 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4310 */
6ea6e688 4311static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4312 unsigned long zone_type,
4313 unsigned long *ignored)
4314{
4315 unsigned long node_start_pfn, node_end_pfn;
4316 unsigned long zone_start_pfn, zone_end_pfn;
4317
4318 /* Get the start and end of the node and zone */
4319 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4320 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4321 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4322 adjust_zone_range_for_zone_movable(nid, zone_type,
4323 node_start_pfn, node_end_pfn,
4324 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4325
4326 /* Check that this node has pages within the zone's required range */
4327 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4328 return 0;
4329
4330 /* Move the zone boundaries inside the node if necessary */
4331 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4332 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4333
4334 /* Return the spanned pages */
4335 return zone_end_pfn - zone_start_pfn;
4336}
4337
4338/*
4339 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4340 * then all holes in the requested range will be accounted for.
c713216d 4341 */
32996250 4342unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4343 unsigned long range_start_pfn,
4344 unsigned long range_end_pfn)
4345{
96e907d1
TH
4346 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4347 unsigned long start_pfn, end_pfn;
4348 int i;
c713216d 4349
96e907d1
TH
4350 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4351 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4352 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4353 nr_absent -= end_pfn - start_pfn;
c713216d 4354 }
96e907d1 4355 return nr_absent;
c713216d
MG
4356}
4357
4358/**
4359 * absent_pages_in_range - Return number of page frames in holes within a range
4360 * @start_pfn: The start PFN to start searching for holes
4361 * @end_pfn: The end PFN to stop searching for holes
4362 *
88ca3b94 4363 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4364 */
4365unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4366 unsigned long end_pfn)
4367{
4368 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4369}
4370
4371/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4372static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4373 unsigned long zone_type,
4374 unsigned long *ignored)
4375{
96e907d1
TH
4376 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4377 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4378 unsigned long node_start_pfn, node_end_pfn;
4379 unsigned long zone_start_pfn, zone_end_pfn;
4380
4381 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4382 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4383 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4384
2a1e274a
MG
4385 adjust_zone_range_for_zone_movable(nid, zone_type,
4386 node_start_pfn, node_end_pfn,
4387 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4388 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4389}
0e0b864e 4390
6981ec31
TC
4391/**
4392 * sanitize_zone_movable_limit - Sanitize the zone_movable_limit array.
4393 *
4394 * zone_movable_limit is initialized as 0. This function will try to get
4395 * the first ZONE_MOVABLE pfn of each node from movablemem_map, and
4396 * assigne them to zone_movable_limit.
4397 * zone_movable_limit[nid] == 0 means no limit for the node.
4398 *
4399 * Note: Each range is represented as [start_pfn, end_pfn)
4400 */
4401static void __meminit sanitize_zone_movable_limit(void)
4402{
4403 int map_pos = 0, i, nid;
4404 unsigned long start_pfn, end_pfn;
4405
4406 if (!movablemem_map.nr_map)
4407 return;
4408
4409 /* Iterate all ranges from minimum to maximum */
4410 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4411 /*
4412 * If we have found lowest pfn of ZONE_MOVABLE of the node
4413 * specified by user, just go on to check next range.
4414 */
4415 if (zone_movable_limit[nid])
4416 continue;
4417
4418#ifdef CONFIG_ZONE_DMA
4419 /* Skip DMA memory. */
4420 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA])
4421 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA];
4422#endif
4423
4424#ifdef CONFIG_ZONE_DMA32
4425 /* Skip DMA32 memory. */
4426 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA32])
4427 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA32];
4428#endif
4429
4430#ifdef CONFIG_HIGHMEM
4431 /* Skip lowmem if ZONE_MOVABLE is highmem. */
4432 if (zone_movable_is_highmem() &&
4433 start_pfn < arch_zone_lowest_possible_pfn[ZONE_HIGHMEM])
4434 start_pfn = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
4435#endif
4436
4437 if (start_pfn >= end_pfn)
4438 continue;
4439
4440 while (map_pos < movablemem_map.nr_map) {
4441 if (end_pfn <= movablemem_map.map[map_pos].start_pfn)
4442 break;
4443
4444 if (start_pfn >= movablemem_map.map[map_pos].end_pfn) {
4445 map_pos++;
4446 continue;
4447 }
4448
4449 /*
4450 * The start_pfn of ZONE_MOVABLE is either the minimum
4451 * pfn specified by movablemem_map, or 0, which means
4452 * the node has no ZONE_MOVABLE.
4453 */
4454 zone_movable_limit[nid] = max(start_pfn,
4455 movablemem_map.map[map_pos].start_pfn);
4456
4457 break;
4458 }
4459 }
4460}
4461
0ee332c1 4462#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4463static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4464 unsigned long zone_type,
4465 unsigned long *zones_size)
4466{
4467 return zones_size[zone_type];
4468}
4469
6ea6e688 4470static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4471 unsigned long zone_type,
4472 unsigned long *zholes_size)
4473{
4474 if (!zholes_size)
4475 return 0;
4476
4477 return zholes_size[zone_type];
4478}
0ee332c1 4479#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4480
a3142c8e 4481static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4482 unsigned long *zones_size, unsigned long *zholes_size)
4483{
4484 unsigned long realtotalpages, totalpages = 0;
4485 enum zone_type i;
4486
4487 for (i = 0; i < MAX_NR_ZONES; i++)
4488 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4489 zones_size);
4490 pgdat->node_spanned_pages = totalpages;
4491
4492 realtotalpages = totalpages;
4493 for (i = 0; i < MAX_NR_ZONES; i++)
4494 realtotalpages -=
4495 zone_absent_pages_in_node(pgdat->node_id, i,
4496 zholes_size);
4497 pgdat->node_present_pages = realtotalpages;
4498 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4499 realtotalpages);
4500}
4501
835c134e
MG
4502#ifndef CONFIG_SPARSEMEM
4503/*
4504 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4505 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4506 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4507 * round what is now in bits to nearest long in bits, then return it in
4508 * bytes.
4509 */
7c45512d 4510static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4511{
4512 unsigned long usemapsize;
4513
7c45512d 4514 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4515 usemapsize = roundup(zonesize, pageblock_nr_pages);
4516 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4517 usemapsize *= NR_PAGEBLOCK_BITS;
4518 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4519
4520 return usemapsize / 8;
4521}
4522
4523static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4524 struct zone *zone,
4525 unsigned long zone_start_pfn,
4526 unsigned long zonesize)
835c134e 4527{
7c45512d 4528 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4529 zone->pageblock_flags = NULL;
58a01a45 4530 if (usemapsize)
8f389a99
YL
4531 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4532 usemapsize);
835c134e
MG
4533}
4534#else
7c45512d
LT
4535static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4536 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4537#endif /* CONFIG_SPARSEMEM */
4538
d9c23400 4539#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4540
d9c23400 4541/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4542void __init set_pageblock_order(void)
d9c23400 4543{
955c1cd7
AM
4544 unsigned int order;
4545
d9c23400
MG
4546 /* Check that pageblock_nr_pages has not already been setup */
4547 if (pageblock_order)
4548 return;
4549
955c1cd7
AM
4550 if (HPAGE_SHIFT > PAGE_SHIFT)
4551 order = HUGETLB_PAGE_ORDER;
4552 else
4553 order = MAX_ORDER - 1;
4554
d9c23400
MG
4555 /*
4556 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4557 * This value may be variable depending on boot parameters on IA64 and
4558 * powerpc.
d9c23400
MG
4559 */
4560 pageblock_order = order;
4561}
4562#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4563
ba72cb8c
MG
4564/*
4565 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4566 * is unused as pageblock_order is set at compile-time. See
4567 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4568 * the kernel config
ba72cb8c 4569 */
ca57df79 4570void __init set_pageblock_order(void)
ba72cb8c 4571{
ba72cb8c 4572}
d9c23400
MG
4573
4574#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4575
01cefaef
JL
4576static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4577 unsigned long present_pages)
4578{
4579 unsigned long pages = spanned_pages;
4580
4581 /*
4582 * Provide a more accurate estimation if there are holes within
4583 * the zone and SPARSEMEM is in use. If there are holes within the
4584 * zone, each populated memory region may cost us one or two extra
4585 * memmap pages due to alignment because memmap pages for each
4586 * populated regions may not naturally algined on page boundary.
4587 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4588 */
4589 if (spanned_pages > present_pages + (present_pages >> 4) &&
4590 IS_ENABLED(CONFIG_SPARSEMEM))
4591 pages = present_pages;
4592
4593 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4594}
4595
1da177e4
LT
4596/*
4597 * Set up the zone data structures:
4598 * - mark all pages reserved
4599 * - mark all memory queues empty
4600 * - clear the memory bitmaps
6527af5d
MK
4601 *
4602 * NOTE: pgdat should get zeroed by caller.
1da177e4 4603 */
b5a0e011 4604static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4605 unsigned long *zones_size, unsigned long *zholes_size)
4606{
2f1b6248 4607 enum zone_type j;
ed8ece2e 4608 int nid = pgdat->node_id;
1da177e4 4609 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4610 int ret;
1da177e4 4611
208d54e5 4612 pgdat_resize_init(pgdat);
8177a420
AA
4613#ifdef CONFIG_NUMA_BALANCING
4614 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4615 pgdat->numabalancing_migrate_nr_pages = 0;
4616 pgdat->numabalancing_migrate_next_window = jiffies;
4617#endif
1da177e4 4618 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4619 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4620 pgdat_page_cgroup_init(pgdat);
5f63b720 4621
1da177e4
LT
4622 for (j = 0; j < MAX_NR_ZONES; j++) {
4623 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4624 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4625
c713216d 4626 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4627 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4628 zholes_size);
1da177e4 4629
0e0b864e 4630 /*
9feedc9d 4631 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4632 * is used by this zone for memmap. This affects the watermark
4633 * and per-cpu initialisations
4634 */
01cefaef 4635 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4636 if (freesize >= memmap_pages) {
4637 freesize -= memmap_pages;
5594c8c8
YL
4638 if (memmap_pages)
4639 printk(KERN_DEBUG
4640 " %s zone: %lu pages used for memmap\n",
4641 zone_names[j], memmap_pages);
0e0b864e
MG
4642 } else
4643 printk(KERN_WARNING
9feedc9d
JL
4644 " %s zone: %lu pages exceeds freesize %lu\n",
4645 zone_names[j], memmap_pages, freesize);
0e0b864e 4646
6267276f 4647 /* Account for reserved pages */
9feedc9d
JL
4648 if (j == 0 && freesize > dma_reserve) {
4649 freesize -= dma_reserve;
d903ef9f 4650 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4651 zone_names[0], dma_reserve);
0e0b864e
MG
4652 }
4653
98d2b0eb 4654 if (!is_highmem_idx(j))
9feedc9d 4655 nr_kernel_pages += freesize;
01cefaef
JL
4656 /* Charge for highmem memmap if there are enough kernel pages */
4657 else if (nr_kernel_pages > memmap_pages * 2)
4658 nr_kernel_pages -= memmap_pages;
9feedc9d 4659 nr_all_pages += freesize;
1da177e4
LT
4660
4661 zone->spanned_pages = size;
306f2e9e 4662 zone->present_pages = realsize;
9feedc9d
JL
4663 /*
4664 * Set an approximate value for lowmem here, it will be adjusted
4665 * when the bootmem allocator frees pages into the buddy system.
4666 * And all highmem pages will be managed by the buddy system.
4667 */
4668 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4669#ifdef CONFIG_NUMA
d5f541ed 4670 zone->node = nid;
9feedc9d 4671 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4672 / 100;
9feedc9d 4673 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4674#endif
1da177e4
LT
4675 zone->name = zone_names[j];
4676 spin_lock_init(&zone->lock);
4677 spin_lock_init(&zone->lru_lock);
bdc8cb98 4678 zone_seqlock_init(zone);
1da177e4 4679 zone->zone_pgdat = pgdat;
1da177e4 4680
ed8ece2e 4681 zone_pcp_init(zone);
bea8c150 4682 lruvec_init(&zone->lruvec);
1da177e4
LT
4683 if (!size)
4684 continue;
4685
955c1cd7 4686 set_pageblock_order();
7c45512d 4687 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4688 ret = init_currently_empty_zone(zone, zone_start_pfn,
4689 size, MEMMAP_EARLY);
718127cc 4690 BUG_ON(ret);
76cdd58e 4691 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4692 zone_start_pfn += size;
1da177e4
LT
4693 }
4694}
4695
577a32f6 4696static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4697{
1da177e4
LT
4698 /* Skip empty nodes */
4699 if (!pgdat->node_spanned_pages)
4700 return;
4701
d41dee36 4702#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4703 /* ia64 gets its own node_mem_map, before this, without bootmem */
4704 if (!pgdat->node_mem_map) {
e984bb43 4705 unsigned long size, start, end;
d41dee36
AW
4706 struct page *map;
4707
e984bb43
BP
4708 /*
4709 * The zone's endpoints aren't required to be MAX_ORDER
4710 * aligned but the node_mem_map endpoints must be in order
4711 * for the buddy allocator to function correctly.
4712 */
4713 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4714 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4715 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4716 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4717 map = alloc_remap(pgdat->node_id, size);
4718 if (!map)
8f389a99 4719 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4720 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4721 }
12d810c1 4722#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4723 /*
4724 * With no DISCONTIG, the global mem_map is just set as node 0's
4725 */
c713216d 4726 if (pgdat == NODE_DATA(0)) {
1da177e4 4727 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4728#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4729 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4730 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4731#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4732 }
1da177e4 4733#endif
d41dee36 4734#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4735}
4736
9109fb7b
JW
4737void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4738 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4739{
9109fb7b
JW
4740 pg_data_t *pgdat = NODE_DATA(nid);
4741
88fdf75d 4742 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4743 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4744
1da177e4
LT
4745 pgdat->node_id = nid;
4746 pgdat->node_start_pfn = node_start_pfn;
957f822a 4747 init_zone_allows_reclaim(nid);
c713216d 4748 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4749
4750 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4751#ifdef CONFIG_FLAT_NODE_MEM_MAP
4752 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4753 nid, (unsigned long)pgdat,
4754 (unsigned long)pgdat->node_mem_map);
4755#endif
1da177e4
LT
4756
4757 free_area_init_core(pgdat, zones_size, zholes_size);
4758}
4759
0ee332c1 4760#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4761
4762#if MAX_NUMNODES > 1
4763/*
4764 * Figure out the number of possible node ids.
4765 */
4766static void __init setup_nr_node_ids(void)
4767{
4768 unsigned int node;
4769 unsigned int highest = 0;
4770
4771 for_each_node_mask(node, node_possible_map)
4772 highest = node;
4773 nr_node_ids = highest + 1;
4774}
4775#else
4776static inline void setup_nr_node_ids(void)
4777{
4778}
4779#endif
4780
1e01979c
TH
4781/**
4782 * node_map_pfn_alignment - determine the maximum internode alignment
4783 *
4784 * This function should be called after node map is populated and sorted.
4785 * It calculates the maximum power of two alignment which can distinguish
4786 * all the nodes.
4787 *
4788 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4789 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4790 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4791 * shifted, 1GiB is enough and this function will indicate so.
4792 *
4793 * This is used to test whether pfn -> nid mapping of the chosen memory
4794 * model has fine enough granularity to avoid incorrect mapping for the
4795 * populated node map.
4796 *
4797 * Returns the determined alignment in pfn's. 0 if there is no alignment
4798 * requirement (single node).
4799 */
4800unsigned long __init node_map_pfn_alignment(void)
4801{
4802 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4803 unsigned long start, end, mask;
1e01979c 4804 int last_nid = -1;
c13291a5 4805 int i, nid;
1e01979c 4806
c13291a5 4807 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4808 if (!start || last_nid < 0 || last_nid == nid) {
4809 last_nid = nid;
4810 last_end = end;
4811 continue;
4812 }
4813
4814 /*
4815 * Start with a mask granular enough to pin-point to the
4816 * start pfn and tick off bits one-by-one until it becomes
4817 * too coarse to separate the current node from the last.
4818 */
4819 mask = ~((1 << __ffs(start)) - 1);
4820 while (mask && last_end <= (start & (mask << 1)))
4821 mask <<= 1;
4822
4823 /* accumulate all internode masks */
4824 accl_mask |= mask;
4825 }
4826
4827 /* convert mask to number of pages */
4828 return ~accl_mask + 1;
4829}
4830
a6af2bc3 4831/* Find the lowest pfn for a node */
b69a7288 4832static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4833{
a6af2bc3 4834 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4835 unsigned long start_pfn;
4836 int i;
1abbfb41 4837
c13291a5
TH
4838 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4839 min_pfn = min(min_pfn, start_pfn);
c713216d 4840
a6af2bc3
MG
4841 if (min_pfn == ULONG_MAX) {
4842 printk(KERN_WARNING
2bc0d261 4843 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4844 return 0;
4845 }
4846
4847 return min_pfn;
c713216d
MG
4848}
4849
4850/**
4851 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4852 *
4853 * It returns the minimum PFN based on information provided via
88ca3b94 4854 * add_active_range().
c713216d
MG
4855 */
4856unsigned long __init find_min_pfn_with_active_regions(void)
4857{
4858 return find_min_pfn_for_node(MAX_NUMNODES);
4859}
4860
37b07e41
LS
4861/*
4862 * early_calculate_totalpages()
4863 * Sum pages in active regions for movable zone.
4b0ef1fe 4864 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4865 */
484f51f8 4866static unsigned long __init early_calculate_totalpages(void)
7e63efef 4867{
7e63efef 4868 unsigned long totalpages = 0;
c13291a5
TH
4869 unsigned long start_pfn, end_pfn;
4870 int i, nid;
4871
4872 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4873 unsigned long pages = end_pfn - start_pfn;
7e63efef 4874
37b07e41
LS
4875 totalpages += pages;
4876 if (pages)
4b0ef1fe 4877 node_set_state(nid, N_MEMORY);
37b07e41
LS
4878 }
4879 return totalpages;
7e63efef
MG
4880}
4881
2a1e274a
MG
4882/*
4883 * Find the PFN the Movable zone begins in each node. Kernel memory
4884 * is spread evenly between nodes as long as the nodes have enough
4885 * memory. When they don't, some nodes will have more kernelcore than
4886 * others
4887 */
b224ef85 4888static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4889{
4890 int i, nid;
4891 unsigned long usable_startpfn;
4892 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4893 /* save the state before borrow the nodemask */
4b0ef1fe 4894 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4895 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4896 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4897
7e63efef
MG
4898 /*
4899 * If movablecore was specified, calculate what size of
4900 * kernelcore that corresponds so that memory usable for
4901 * any allocation type is evenly spread. If both kernelcore
4902 * and movablecore are specified, then the value of kernelcore
4903 * will be used for required_kernelcore if it's greater than
4904 * what movablecore would have allowed.
4905 */
4906 if (required_movablecore) {
7e63efef
MG
4907 unsigned long corepages;
4908
4909 /*
4910 * Round-up so that ZONE_MOVABLE is at least as large as what
4911 * was requested by the user
4912 */
4913 required_movablecore =
4914 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4915 corepages = totalpages - required_movablecore;
4916
4917 required_kernelcore = max(required_kernelcore, corepages);
4918 }
4919
42f47e27
TC
4920 /*
4921 * If neither kernelcore/movablecore nor movablemem_map is specified,
4922 * there is no ZONE_MOVABLE. But if movablemem_map is specified, the
4923 * start pfn of ZONE_MOVABLE has been stored in zone_movable_limit[].
4924 */
4925 if (!required_kernelcore) {
4926 if (movablemem_map.nr_map)
4927 memcpy(zone_movable_pfn, zone_movable_limit,
4928 sizeof(zone_movable_pfn));
66918dcd 4929 goto out;
42f47e27 4930 }
2a1e274a
MG
4931
4932 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
4933 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4934
4935restart:
4936 /* Spread kernelcore memory as evenly as possible throughout nodes */
4937 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4938 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4939 unsigned long start_pfn, end_pfn;
4940
2a1e274a
MG
4941 /*
4942 * Recalculate kernelcore_node if the division per node
4943 * now exceeds what is necessary to satisfy the requested
4944 * amount of memory for the kernel
4945 */
4946 if (required_kernelcore < kernelcore_node)
4947 kernelcore_node = required_kernelcore / usable_nodes;
4948
4949 /*
4950 * As the map is walked, we track how much memory is usable
4951 * by the kernel using kernelcore_remaining. When it is
4952 * 0, the rest of the node is usable by ZONE_MOVABLE
4953 */
4954 kernelcore_remaining = kernelcore_node;
4955
4956 /* Go through each range of PFNs within this node */
c13291a5 4957 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4958 unsigned long size_pages;
4959
42f47e27
TC
4960 /*
4961 * Find more memory for kernelcore in
4962 * [zone_movable_pfn[nid], zone_movable_limit[nid]).
4963 */
c13291a5 4964 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4965 if (start_pfn >= end_pfn)
4966 continue;
4967
42f47e27
TC
4968 if (zone_movable_limit[nid]) {
4969 end_pfn = min(end_pfn, zone_movable_limit[nid]);
4970 /* No range left for kernelcore in this node */
4971 if (start_pfn >= end_pfn) {
4972 zone_movable_pfn[nid] =
4973 zone_movable_limit[nid];
4974 break;
4975 }
4976 }
4977
2a1e274a
MG
4978 /* Account for what is only usable for kernelcore */
4979 if (start_pfn < usable_startpfn) {
4980 unsigned long kernel_pages;
4981 kernel_pages = min(end_pfn, usable_startpfn)
4982 - start_pfn;
4983
4984 kernelcore_remaining -= min(kernel_pages,
4985 kernelcore_remaining);
4986 required_kernelcore -= min(kernel_pages,
4987 required_kernelcore);
4988
4989 /* Continue if range is now fully accounted */
4990 if (end_pfn <= usable_startpfn) {
4991
4992 /*
4993 * Push zone_movable_pfn to the end so
4994 * that if we have to rebalance
4995 * kernelcore across nodes, we will
4996 * not double account here
4997 */
4998 zone_movable_pfn[nid] = end_pfn;
4999 continue;
5000 }
5001 start_pfn = usable_startpfn;
5002 }
5003
5004 /*
5005 * The usable PFN range for ZONE_MOVABLE is from
5006 * start_pfn->end_pfn. Calculate size_pages as the
5007 * number of pages used as kernelcore
5008 */
5009 size_pages = end_pfn - start_pfn;
5010 if (size_pages > kernelcore_remaining)
5011 size_pages = kernelcore_remaining;
5012 zone_movable_pfn[nid] = start_pfn + size_pages;
5013
5014 /*
5015 * Some kernelcore has been met, update counts and
5016 * break if the kernelcore for this node has been
5017 * satisified
5018 */
5019 required_kernelcore -= min(required_kernelcore,
5020 size_pages);
5021 kernelcore_remaining -= size_pages;
5022 if (!kernelcore_remaining)
5023 break;
5024 }
5025 }
5026
5027 /*
5028 * If there is still required_kernelcore, we do another pass with one
5029 * less node in the count. This will push zone_movable_pfn[nid] further
5030 * along on the nodes that still have memory until kernelcore is
5031 * satisified
5032 */
5033 usable_nodes--;
5034 if (usable_nodes && required_kernelcore > usable_nodes)
5035 goto restart;
5036
42f47e27 5037out:
2a1e274a
MG
5038 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5039 for (nid = 0; nid < MAX_NUMNODES; nid++)
5040 zone_movable_pfn[nid] =
5041 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5042
66918dcd 5043 /* restore the node_state */
4b0ef1fe 5044 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5045}
5046
4b0ef1fe
LJ
5047/* Any regular or high memory on that node ? */
5048static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5049{
37b07e41
LS
5050 enum zone_type zone_type;
5051
4b0ef1fe
LJ
5052 if (N_MEMORY == N_NORMAL_MEMORY)
5053 return;
5054
5055 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5056 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5057 if (zone->present_pages) {
4b0ef1fe
LJ
5058 node_set_state(nid, N_HIGH_MEMORY);
5059 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5060 zone_type <= ZONE_NORMAL)
5061 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5062 break;
5063 }
37b07e41 5064 }
37b07e41
LS
5065}
5066
c713216d
MG
5067/**
5068 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5069 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5070 *
5071 * This will call free_area_init_node() for each active node in the system.
5072 * Using the page ranges provided by add_active_range(), the size of each
5073 * zone in each node and their holes is calculated. If the maximum PFN
5074 * between two adjacent zones match, it is assumed that the zone is empty.
5075 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5076 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5077 * starts where the previous one ended. For example, ZONE_DMA32 starts
5078 * at arch_max_dma_pfn.
5079 */
5080void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5081{
c13291a5
TH
5082 unsigned long start_pfn, end_pfn;
5083 int i, nid;
a6af2bc3 5084
c713216d
MG
5085 /* Record where the zone boundaries are */
5086 memset(arch_zone_lowest_possible_pfn, 0,
5087 sizeof(arch_zone_lowest_possible_pfn));
5088 memset(arch_zone_highest_possible_pfn, 0,
5089 sizeof(arch_zone_highest_possible_pfn));
5090 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5091 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5092 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5093 if (i == ZONE_MOVABLE)
5094 continue;
c713216d
MG
5095 arch_zone_lowest_possible_pfn[i] =
5096 arch_zone_highest_possible_pfn[i-1];
5097 arch_zone_highest_possible_pfn[i] =
5098 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5099 }
2a1e274a
MG
5100 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5101 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5102
5103 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5104 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6981ec31
TC
5105 find_usable_zone_for_movable();
5106 sanitize_zone_movable_limit();
b224ef85 5107 find_zone_movable_pfns_for_nodes();
c713216d 5108
c713216d 5109 /* Print out the zone ranges */
a62e2f4f 5110 printk("Zone ranges:\n");
2a1e274a
MG
5111 for (i = 0; i < MAX_NR_ZONES; i++) {
5112 if (i == ZONE_MOVABLE)
5113 continue;
155cbfc8 5114 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5115 if (arch_zone_lowest_possible_pfn[i] ==
5116 arch_zone_highest_possible_pfn[i])
155cbfc8 5117 printk(KERN_CONT "empty\n");
72f0ba02 5118 else
a62e2f4f
BH
5119 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5120 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5121 (arch_zone_highest_possible_pfn[i]
5122 << PAGE_SHIFT) - 1);
2a1e274a
MG
5123 }
5124
5125 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5126 printk("Movable zone start for each node\n");
2a1e274a
MG
5127 for (i = 0; i < MAX_NUMNODES; i++) {
5128 if (zone_movable_pfn[i])
a62e2f4f
BH
5129 printk(" Node %d: %#010lx\n", i,
5130 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5131 }
c713216d 5132
f2d52fe5 5133 /* Print out the early node map */
a62e2f4f 5134 printk("Early memory node ranges\n");
c13291a5 5135 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5136 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5137 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5138
5139 /* Initialise every node */
708614e6 5140 mminit_verify_pageflags_layout();
8ef82866 5141 setup_nr_node_ids();
c713216d
MG
5142 for_each_online_node(nid) {
5143 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5144 free_area_init_node(nid, NULL,
c713216d 5145 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5146
5147 /* Any memory on that node */
5148 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5149 node_set_state(nid, N_MEMORY);
5150 check_for_memory(pgdat, nid);
c713216d
MG
5151 }
5152}
2a1e274a 5153
7e63efef 5154static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5155{
5156 unsigned long long coremem;
5157 if (!p)
5158 return -EINVAL;
5159
5160 coremem = memparse(p, &p);
7e63efef 5161 *core = coremem >> PAGE_SHIFT;
2a1e274a 5162
7e63efef 5163 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5164 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5165
5166 return 0;
5167}
ed7ed365 5168
7e63efef
MG
5169/*
5170 * kernelcore=size sets the amount of memory for use for allocations that
5171 * cannot be reclaimed or migrated.
5172 */
5173static int __init cmdline_parse_kernelcore(char *p)
5174{
5175 return cmdline_parse_core(p, &required_kernelcore);
5176}
5177
5178/*
5179 * movablecore=size sets the amount of memory for use for allocations that
5180 * can be reclaimed or migrated.
5181 */
5182static int __init cmdline_parse_movablecore(char *p)
5183{
5184 return cmdline_parse_core(p, &required_movablecore);
5185}
5186
ed7ed365 5187early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5188early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5189
27168d38
TC
5190/**
5191 * movablemem_map_overlap() - Check if a range overlaps movablemem_map.map[].
5192 * @start_pfn: start pfn of the range to be checked
5193 * @end_pfn: end pfn of the range to be checked (exclusive)
5194 *
5195 * This function checks if a given memory range [start_pfn, end_pfn) overlaps
5196 * the movablemem_map.map[] array.
5197 *
5198 * Return: index of the first overlapped element in movablemem_map.map[]
5199 * or -1 if they don't overlap each other.
5200 */
5201int __init movablemem_map_overlap(unsigned long start_pfn,
5202 unsigned long end_pfn)
5203{
5204 int overlap;
5205
5206 if (!movablemem_map.nr_map)
5207 return -1;
5208
5209 for (overlap = 0; overlap < movablemem_map.nr_map; overlap++)
5210 if (start_pfn < movablemem_map.map[overlap].end_pfn)
5211 break;
5212
5213 if (overlap == movablemem_map.nr_map ||
5214 end_pfn <= movablemem_map.map[overlap].start_pfn)
5215 return -1;
5216
5217 return overlap;
5218}
5219
34b71f1e
TC
5220/**
5221 * insert_movablemem_map - Insert a memory range in to movablemem_map.map.
5222 * @start_pfn: start pfn of the range
5223 * @end_pfn: end pfn of the range
5224 *
5225 * This function will also merge the overlapped ranges, and sort the array
5226 * by start_pfn in monotonic increasing order.
5227 */
27168d38
TC
5228void __init insert_movablemem_map(unsigned long start_pfn,
5229 unsigned long end_pfn)
34b71f1e
TC
5230{
5231 int pos, overlap;
5232
5233 /*
5234 * pos will be at the 1st overlapped range, or the position
5235 * where the element should be inserted.
5236 */
5237 for (pos = 0; pos < movablemem_map.nr_map; pos++)
5238 if (start_pfn <= movablemem_map.map[pos].end_pfn)
5239 break;
5240
5241 /* If there is no overlapped range, just insert the element. */
5242 if (pos == movablemem_map.nr_map ||
5243 end_pfn < movablemem_map.map[pos].start_pfn) {
5244 /*
5245 * If pos is not the end of array, we need to move all
5246 * the rest elements backward.
5247 */
5248 if (pos < movablemem_map.nr_map)
5249 memmove(&movablemem_map.map[pos+1],
5250 &movablemem_map.map[pos],
5251 sizeof(struct movablemem_entry) *
5252 (movablemem_map.nr_map - pos));
5253 movablemem_map.map[pos].start_pfn = start_pfn;
5254 movablemem_map.map[pos].end_pfn = end_pfn;
5255 movablemem_map.nr_map++;
5256 return;
5257 }
5258
5259 /* overlap will be at the last overlapped range */
5260 for (overlap = pos + 1; overlap < movablemem_map.nr_map; overlap++)
5261 if (end_pfn < movablemem_map.map[overlap].start_pfn)
5262 break;
5263
5264 /*
5265 * If there are more ranges overlapped, we need to merge them,
5266 * and move the rest elements forward.
5267 */
5268 overlap--;
5269 movablemem_map.map[pos].start_pfn = min(start_pfn,
5270 movablemem_map.map[pos].start_pfn);
5271 movablemem_map.map[pos].end_pfn = max(end_pfn,
5272 movablemem_map.map[overlap].end_pfn);
5273
5274 if (pos != overlap && overlap + 1 != movablemem_map.nr_map)
5275 memmove(&movablemem_map.map[pos+1],
5276 &movablemem_map.map[overlap+1],
5277 sizeof(struct movablemem_entry) *
5278 (movablemem_map.nr_map - overlap - 1));
5279
5280 movablemem_map.nr_map -= overlap - pos;
5281}
5282
5283/**
5284 * movablemem_map_add_region - Add a memory range into movablemem_map.
5285 * @start: physical start address of range
5286 * @end: physical end address of range
5287 *
5288 * This function transform the physical address into pfn, and then add the
5289 * range into movablemem_map by calling insert_movablemem_map().
5290 */
5291static void __init movablemem_map_add_region(u64 start, u64 size)
5292{
5293 unsigned long start_pfn, end_pfn;
5294
5295 /* In case size == 0 or start + size overflows */
5296 if (start + size <= start)
5297 return;
5298
5299 if (movablemem_map.nr_map >= ARRAY_SIZE(movablemem_map.map)) {
5300 pr_err("movablemem_map: too many entries;"
5301 " ignoring [mem %#010llx-%#010llx]\n",
5302 (unsigned long long) start,
5303 (unsigned long long) (start + size - 1));
5304 return;
5305 }
5306
5307 start_pfn = PFN_DOWN(start);
5308 end_pfn = PFN_UP(start + size);
5309 insert_movablemem_map(start_pfn, end_pfn);
5310}
5311
5312/*
5313 * cmdline_parse_movablemem_map - Parse boot option movablemem_map.
5314 * @p: The boot option of the following format:
5315 * movablemem_map=nn[KMG]@ss[KMG]
5316 *
5317 * This option sets the memory range [ss, ss+nn) to be used as movable memory.
5318 *
5319 * Return: 0 on success or -EINVAL on failure.
5320 */
5321static int __init cmdline_parse_movablemem_map(char *p)
5322{
5323 char *oldp;
5324 u64 start_at, mem_size;
5325
5326 if (!p)
5327 goto err;
5328
01a178a9
TC
5329 if (!strcmp(p, "acpi"))
5330 movablemem_map.acpi = true;
5331
5332 /*
5333 * If user decide to use info from BIOS, all the other user specified
5334 * ranges will be ingored.
5335 */
5336 if (movablemem_map.acpi) {
5337 if (movablemem_map.nr_map) {
5338 memset(movablemem_map.map, 0,
5339 sizeof(struct movablemem_entry)
5340 * movablemem_map.nr_map);
5341 movablemem_map.nr_map = 0;
5342 }
5343 return 0;
5344 }
5345
34b71f1e
TC
5346 oldp = p;
5347 mem_size = memparse(p, &p);
5348 if (p == oldp)
5349 goto err;
5350
5351 if (*p == '@') {
5352 oldp = ++p;
5353 start_at = memparse(p, &p);
5354 if (p == oldp || *p != '\0')
5355 goto err;
5356
5357 movablemem_map_add_region(start_at, mem_size);
5358 return 0;
5359 }
5360err:
5361 return -EINVAL;
5362}
5363early_param("movablemem_map", cmdline_parse_movablemem_map);
5364
0ee332c1 5365#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5366
0e0b864e 5367/**
88ca3b94
RD
5368 * set_dma_reserve - set the specified number of pages reserved in the first zone
5369 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5370 *
5371 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5372 * In the DMA zone, a significant percentage may be consumed by kernel image
5373 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5374 * function may optionally be used to account for unfreeable pages in the
5375 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5376 * smaller per-cpu batchsize.
0e0b864e
MG
5377 */
5378void __init set_dma_reserve(unsigned long new_dma_reserve)
5379{
5380 dma_reserve = new_dma_reserve;
5381}
5382
1da177e4
LT
5383void __init free_area_init(unsigned long *zones_size)
5384{
9109fb7b 5385 free_area_init_node(0, zones_size,
1da177e4
LT
5386 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5387}
1da177e4 5388
1da177e4
LT
5389static int page_alloc_cpu_notify(struct notifier_block *self,
5390 unsigned long action, void *hcpu)
5391{
5392 int cpu = (unsigned long)hcpu;
1da177e4 5393
8bb78442 5394 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5395 lru_add_drain_cpu(cpu);
9f8f2172
CL
5396 drain_pages(cpu);
5397
5398 /*
5399 * Spill the event counters of the dead processor
5400 * into the current processors event counters.
5401 * This artificially elevates the count of the current
5402 * processor.
5403 */
f8891e5e 5404 vm_events_fold_cpu(cpu);
9f8f2172
CL
5405
5406 /*
5407 * Zero the differential counters of the dead processor
5408 * so that the vm statistics are consistent.
5409 *
5410 * This is only okay since the processor is dead and cannot
5411 * race with what we are doing.
5412 */
2244b95a 5413 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5414 }
5415 return NOTIFY_OK;
5416}
1da177e4
LT
5417
5418void __init page_alloc_init(void)
5419{
5420 hotcpu_notifier(page_alloc_cpu_notify, 0);
5421}
5422
cb45b0e9
HA
5423/*
5424 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5425 * or min_free_kbytes changes.
5426 */
5427static void calculate_totalreserve_pages(void)
5428{
5429 struct pglist_data *pgdat;
5430 unsigned long reserve_pages = 0;
2f6726e5 5431 enum zone_type i, j;
cb45b0e9
HA
5432
5433 for_each_online_pgdat(pgdat) {
5434 for (i = 0; i < MAX_NR_ZONES; i++) {
5435 struct zone *zone = pgdat->node_zones + i;
5436 unsigned long max = 0;
5437
5438 /* Find valid and maximum lowmem_reserve in the zone */
5439 for (j = i; j < MAX_NR_ZONES; j++) {
5440 if (zone->lowmem_reserve[j] > max)
5441 max = zone->lowmem_reserve[j];
5442 }
5443
41858966
MG
5444 /* we treat the high watermark as reserved pages. */
5445 max += high_wmark_pages(zone);
cb45b0e9 5446
b40da049
JL
5447 if (max > zone->managed_pages)
5448 max = zone->managed_pages;
cb45b0e9 5449 reserve_pages += max;
ab8fabd4
JW
5450 /*
5451 * Lowmem reserves are not available to
5452 * GFP_HIGHUSER page cache allocations and
5453 * kswapd tries to balance zones to their high
5454 * watermark. As a result, neither should be
5455 * regarded as dirtyable memory, to prevent a
5456 * situation where reclaim has to clean pages
5457 * in order to balance the zones.
5458 */
5459 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5460 }
5461 }
ab8fabd4 5462 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5463 totalreserve_pages = reserve_pages;
5464}
5465
1da177e4
LT
5466/*
5467 * setup_per_zone_lowmem_reserve - called whenever
5468 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5469 * has a correct pages reserved value, so an adequate number of
5470 * pages are left in the zone after a successful __alloc_pages().
5471 */
5472static void setup_per_zone_lowmem_reserve(void)
5473{
5474 struct pglist_data *pgdat;
2f6726e5 5475 enum zone_type j, idx;
1da177e4 5476
ec936fc5 5477 for_each_online_pgdat(pgdat) {
1da177e4
LT
5478 for (j = 0; j < MAX_NR_ZONES; j++) {
5479 struct zone *zone = pgdat->node_zones + j;
b40da049 5480 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5481
5482 zone->lowmem_reserve[j] = 0;
5483
2f6726e5
CL
5484 idx = j;
5485 while (idx) {
1da177e4
LT
5486 struct zone *lower_zone;
5487
2f6726e5
CL
5488 idx--;
5489
1da177e4
LT
5490 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5491 sysctl_lowmem_reserve_ratio[idx] = 1;
5492
5493 lower_zone = pgdat->node_zones + idx;
b40da049 5494 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5495 sysctl_lowmem_reserve_ratio[idx];
b40da049 5496 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5497 }
5498 }
5499 }
cb45b0e9
HA
5500
5501 /* update totalreserve_pages */
5502 calculate_totalreserve_pages();
1da177e4
LT
5503}
5504
cfd3da1e 5505static void __setup_per_zone_wmarks(void)
1da177e4
LT
5506{
5507 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5508 unsigned long lowmem_pages = 0;
5509 struct zone *zone;
5510 unsigned long flags;
5511
5512 /* Calculate total number of !ZONE_HIGHMEM pages */
5513 for_each_zone(zone) {
5514 if (!is_highmem(zone))
b40da049 5515 lowmem_pages += zone->managed_pages;
1da177e4
LT
5516 }
5517
5518 for_each_zone(zone) {
ac924c60
AM
5519 u64 tmp;
5520
1125b4e3 5521 spin_lock_irqsave(&zone->lock, flags);
b40da049 5522 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5523 do_div(tmp, lowmem_pages);
1da177e4
LT
5524 if (is_highmem(zone)) {
5525 /*
669ed175
NP
5526 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5527 * need highmem pages, so cap pages_min to a small
5528 * value here.
5529 *
41858966 5530 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5531 * deltas controls asynch page reclaim, and so should
5532 * not be capped for highmem.
1da177e4 5533 */
90ae8d67 5534 unsigned long min_pages;
1da177e4 5535
b40da049 5536 min_pages = zone->managed_pages / 1024;
90ae8d67 5537 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5538 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5539 } else {
669ed175
NP
5540 /*
5541 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5542 * proportionate to the zone's size.
5543 */
41858966 5544 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5545 }
5546
41858966
MG
5547 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5548 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5549
56fd56b8 5550 setup_zone_migrate_reserve(zone);
1125b4e3 5551 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5552 }
cb45b0e9
HA
5553
5554 /* update totalreserve_pages */
5555 calculate_totalreserve_pages();
1da177e4
LT
5556}
5557
cfd3da1e
MG
5558/**
5559 * setup_per_zone_wmarks - called when min_free_kbytes changes
5560 * or when memory is hot-{added|removed}
5561 *
5562 * Ensures that the watermark[min,low,high] values for each zone are set
5563 * correctly with respect to min_free_kbytes.
5564 */
5565void setup_per_zone_wmarks(void)
5566{
5567 mutex_lock(&zonelists_mutex);
5568 __setup_per_zone_wmarks();
5569 mutex_unlock(&zonelists_mutex);
5570}
5571
55a4462a 5572/*
556adecb
RR
5573 * The inactive anon list should be small enough that the VM never has to
5574 * do too much work, but large enough that each inactive page has a chance
5575 * to be referenced again before it is swapped out.
5576 *
5577 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5578 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5579 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5580 * the anonymous pages are kept on the inactive list.
5581 *
5582 * total target max
5583 * memory ratio inactive anon
5584 * -------------------------------------
5585 * 10MB 1 5MB
5586 * 100MB 1 50MB
5587 * 1GB 3 250MB
5588 * 10GB 10 0.9GB
5589 * 100GB 31 3GB
5590 * 1TB 101 10GB
5591 * 10TB 320 32GB
5592 */
1b79acc9 5593static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5594{
96cb4df5 5595 unsigned int gb, ratio;
556adecb 5596
96cb4df5 5597 /* Zone size in gigabytes */
b40da049 5598 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5599 if (gb)
556adecb 5600 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5601 else
5602 ratio = 1;
556adecb 5603
96cb4df5
MK
5604 zone->inactive_ratio = ratio;
5605}
556adecb 5606
839a4fcc 5607static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5608{
5609 struct zone *zone;
5610
5611 for_each_zone(zone)
5612 calculate_zone_inactive_ratio(zone);
556adecb
RR
5613}
5614
1da177e4
LT
5615/*
5616 * Initialise min_free_kbytes.
5617 *
5618 * For small machines we want it small (128k min). For large machines
5619 * we want it large (64MB max). But it is not linear, because network
5620 * bandwidth does not increase linearly with machine size. We use
5621 *
5622 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5623 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5624 *
5625 * which yields
5626 *
5627 * 16MB: 512k
5628 * 32MB: 724k
5629 * 64MB: 1024k
5630 * 128MB: 1448k
5631 * 256MB: 2048k
5632 * 512MB: 2896k
5633 * 1024MB: 4096k
5634 * 2048MB: 5792k
5635 * 4096MB: 8192k
5636 * 8192MB: 11584k
5637 * 16384MB: 16384k
5638 */
1b79acc9 5639int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5640{
5641 unsigned long lowmem_kbytes;
5642
5643 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5644
5645 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5646 if (min_free_kbytes < 128)
5647 min_free_kbytes = 128;
5648 if (min_free_kbytes > 65536)
5649 min_free_kbytes = 65536;
bc75d33f 5650 setup_per_zone_wmarks();
a6cccdc3 5651 refresh_zone_stat_thresholds();
1da177e4 5652 setup_per_zone_lowmem_reserve();
556adecb 5653 setup_per_zone_inactive_ratio();
1da177e4
LT
5654 return 0;
5655}
bc75d33f 5656module_init(init_per_zone_wmark_min)
1da177e4
LT
5657
5658/*
5659 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5660 * that we can call two helper functions whenever min_free_kbytes
5661 * changes.
5662 */
5663int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5664 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5665{
8d65af78 5666 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5667 if (write)
bc75d33f 5668 setup_per_zone_wmarks();
1da177e4
LT
5669 return 0;
5670}
5671
9614634f
CL
5672#ifdef CONFIG_NUMA
5673int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5674 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5675{
5676 struct zone *zone;
5677 int rc;
5678
8d65af78 5679 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5680 if (rc)
5681 return rc;
5682
5683 for_each_zone(zone)
b40da049 5684 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5685 sysctl_min_unmapped_ratio) / 100;
5686 return 0;
5687}
0ff38490
CL
5688
5689int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5690 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5691{
5692 struct zone *zone;
5693 int rc;
5694
8d65af78 5695 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5696 if (rc)
5697 return rc;
5698
5699 for_each_zone(zone)
b40da049 5700 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5701 sysctl_min_slab_ratio) / 100;
5702 return 0;
5703}
9614634f
CL
5704#endif
5705
1da177e4
LT
5706/*
5707 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5708 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5709 * whenever sysctl_lowmem_reserve_ratio changes.
5710 *
5711 * The reserve ratio obviously has absolutely no relation with the
41858966 5712 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5713 * if in function of the boot time zone sizes.
5714 */
5715int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5716 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5717{
8d65af78 5718 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5719 setup_per_zone_lowmem_reserve();
5720 return 0;
5721}
5722
8ad4b1fb
RS
5723/*
5724 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5725 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5726 * can have before it gets flushed back to buddy allocator.
5727 */
5728
5729int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5730 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5731{
5732 struct zone *zone;
5733 unsigned int cpu;
5734 int ret;
5735
8d65af78 5736 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5737 if (!write || (ret < 0))
8ad4b1fb 5738 return ret;
364df0eb 5739 for_each_populated_zone(zone) {
99dcc3e5 5740 for_each_possible_cpu(cpu) {
8ad4b1fb 5741 unsigned long high;
b40da049 5742 high = zone->managed_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5743 setup_pagelist_highmark(
5744 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5745 }
5746 }
5747 return 0;
5748}
5749
f034b5d4 5750int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5751
5752#ifdef CONFIG_NUMA
5753static int __init set_hashdist(char *str)
5754{
5755 if (!str)
5756 return 0;
5757 hashdist = simple_strtoul(str, &str, 0);
5758 return 1;
5759}
5760__setup("hashdist=", set_hashdist);
5761#endif
5762
5763/*
5764 * allocate a large system hash table from bootmem
5765 * - it is assumed that the hash table must contain an exact power-of-2
5766 * quantity of entries
5767 * - limit is the number of hash buckets, not the total allocation size
5768 */
5769void *__init alloc_large_system_hash(const char *tablename,
5770 unsigned long bucketsize,
5771 unsigned long numentries,
5772 int scale,
5773 int flags,
5774 unsigned int *_hash_shift,
5775 unsigned int *_hash_mask,
31fe62b9
TB
5776 unsigned long low_limit,
5777 unsigned long high_limit)
1da177e4 5778{
31fe62b9 5779 unsigned long long max = high_limit;
1da177e4
LT
5780 unsigned long log2qty, size;
5781 void *table = NULL;
5782
5783 /* allow the kernel cmdline to have a say */
5784 if (!numentries) {
5785 /* round applicable memory size up to nearest megabyte */
04903664 5786 numentries = nr_kernel_pages;
1da177e4
LT
5787 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5788 numentries >>= 20 - PAGE_SHIFT;
5789 numentries <<= 20 - PAGE_SHIFT;
5790
5791 /* limit to 1 bucket per 2^scale bytes of low memory */
5792 if (scale > PAGE_SHIFT)
5793 numentries >>= (scale - PAGE_SHIFT);
5794 else
5795 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5796
5797 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5798 if (unlikely(flags & HASH_SMALL)) {
5799 /* Makes no sense without HASH_EARLY */
5800 WARN_ON(!(flags & HASH_EARLY));
5801 if (!(numentries >> *_hash_shift)) {
5802 numentries = 1UL << *_hash_shift;
5803 BUG_ON(!numentries);
5804 }
5805 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5806 numentries = PAGE_SIZE / bucketsize;
1da177e4 5807 }
6e692ed3 5808 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5809
5810 /* limit allocation size to 1/16 total memory by default */
5811 if (max == 0) {
5812 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5813 do_div(max, bucketsize);
5814 }
074b8517 5815 max = min(max, 0x80000000ULL);
1da177e4 5816
31fe62b9
TB
5817 if (numentries < low_limit)
5818 numentries = low_limit;
1da177e4
LT
5819 if (numentries > max)
5820 numentries = max;
5821
f0d1b0b3 5822 log2qty = ilog2(numentries);
1da177e4
LT
5823
5824 do {
5825 size = bucketsize << log2qty;
5826 if (flags & HASH_EARLY)
74768ed8 5827 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5828 else if (hashdist)
5829 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5830 else {
1037b83b
ED
5831 /*
5832 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5833 * some pages at the end of hash table which
5834 * alloc_pages_exact() automatically does
1037b83b 5835 */
264ef8a9 5836 if (get_order(size) < MAX_ORDER) {
a1dd268c 5837 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5838 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5839 }
1da177e4
LT
5840 }
5841 } while (!table && size > PAGE_SIZE && --log2qty);
5842
5843 if (!table)
5844 panic("Failed to allocate %s hash table\n", tablename);
5845
f241e660 5846 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5847 tablename,
f241e660 5848 (1UL << log2qty),
f0d1b0b3 5849 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5850 size);
5851
5852 if (_hash_shift)
5853 *_hash_shift = log2qty;
5854 if (_hash_mask)
5855 *_hash_mask = (1 << log2qty) - 1;
5856
5857 return table;
5858}
a117e66e 5859
835c134e
MG
5860/* Return a pointer to the bitmap storing bits affecting a block of pages */
5861static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5862 unsigned long pfn)
5863{
5864#ifdef CONFIG_SPARSEMEM
5865 return __pfn_to_section(pfn)->pageblock_flags;
5866#else
5867 return zone->pageblock_flags;
5868#endif /* CONFIG_SPARSEMEM */
5869}
5870
5871static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5872{
5873#ifdef CONFIG_SPARSEMEM
5874 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5875 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5876#else
c060f943 5877 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5878 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5879#endif /* CONFIG_SPARSEMEM */
5880}
5881
5882/**
d9c23400 5883 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5884 * @page: The page within the block of interest
5885 * @start_bitidx: The first bit of interest to retrieve
5886 * @end_bitidx: The last bit of interest
5887 * returns pageblock_bits flags
5888 */
5889unsigned long get_pageblock_flags_group(struct page *page,
5890 int start_bitidx, int end_bitidx)
5891{
5892 struct zone *zone;
5893 unsigned long *bitmap;
5894 unsigned long pfn, bitidx;
5895 unsigned long flags = 0;
5896 unsigned long value = 1;
5897
5898 zone = page_zone(page);
5899 pfn = page_to_pfn(page);
5900 bitmap = get_pageblock_bitmap(zone, pfn);
5901 bitidx = pfn_to_bitidx(zone, pfn);
5902
5903 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5904 if (test_bit(bitidx + start_bitidx, bitmap))
5905 flags |= value;
6220ec78 5906
835c134e
MG
5907 return flags;
5908}
5909
5910/**
d9c23400 5911 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5912 * @page: The page within the block of interest
5913 * @start_bitidx: The first bit of interest
5914 * @end_bitidx: The last bit of interest
5915 * @flags: The flags to set
5916 */
5917void set_pageblock_flags_group(struct page *page, unsigned long flags,
5918 int start_bitidx, int end_bitidx)
5919{
5920 struct zone *zone;
5921 unsigned long *bitmap;
5922 unsigned long pfn, bitidx;
5923 unsigned long value = 1;
5924
5925 zone = page_zone(page);
5926 pfn = page_to_pfn(page);
5927 bitmap = get_pageblock_bitmap(zone, pfn);
5928 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5929 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5930
5931 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5932 if (flags & value)
5933 __set_bit(bitidx + start_bitidx, bitmap);
5934 else
5935 __clear_bit(bitidx + start_bitidx, bitmap);
5936}
a5d76b54
KH
5937
5938/*
80934513
MK
5939 * This function checks whether pageblock includes unmovable pages or not.
5940 * If @count is not zero, it is okay to include less @count unmovable pages
5941 *
5942 * PageLRU check wihtout isolation or lru_lock could race so that
5943 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5944 * expect this function should be exact.
a5d76b54 5945 */
b023f468
WC
5946bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5947 bool skip_hwpoisoned_pages)
49ac8255
KH
5948{
5949 unsigned long pfn, iter, found;
47118af0
MN
5950 int mt;
5951
49ac8255
KH
5952 /*
5953 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5954 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5955 */
5956 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5957 return false;
47118af0
MN
5958 mt = get_pageblock_migratetype(page);
5959 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5960 return false;
49ac8255
KH
5961
5962 pfn = page_to_pfn(page);
5963 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5964 unsigned long check = pfn + iter;
5965
29723fcc 5966 if (!pfn_valid_within(check))
49ac8255 5967 continue;
29723fcc 5968
49ac8255 5969 page = pfn_to_page(check);
97d255c8
MK
5970 /*
5971 * We can't use page_count without pin a page
5972 * because another CPU can free compound page.
5973 * This check already skips compound tails of THP
5974 * because their page->_count is zero at all time.
5975 */
5976 if (!atomic_read(&page->_count)) {
49ac8255
KH
5977 if (PageBuddy(page))
5978 iter += (1 << page_order(page)) - 1;
5979 continue;
5980 }
97d255c8 5981
b023f468
WC
5982 /*
5983 * The HWPoisoned page may be not in buddy system, and
5984 * page_count() is not 0.
5985 */
5986 if (skip_hwpoisoned_pages && PageHWPoison(page))
5987 continue;
5988
49ac8255
KH
5989 if (!PageLRU(page))
5990 found++;
5991 /*
5992 * If there are RECLAIMABLE pages, we need to check it.
5993 * But now, memory offline itself doesn't call shrink_slab()
5994 * and it still to be fixed.
5995 */
5996 /*
5997 * If the page is not RAM, page_count()should be 0.
5998 * we don't need more check. This is an _used_ not-movable page.
5999 *
6000 * The problematic thing here is PG_reserved pages. PG_reserved
6001 * is set to both of a memory hole page and a _used_ kernel
6002 * page at boot.
6003 */
6004 if (found > count)
80934513 6005 return true;
49ac8255 6006 }
80934513 6007 return false;
49ac8255
KH
6008}
6009
6010bool is_pageblock_removable_nolock(struct page *page)
6011{
656a0706
MH
6012 struct zone *zone;
6013 unsigned long pfn;
687875fb
MH
6014
6015 /*
6016 * We have to be careful here because we are iterating over memory
6017 * sections which are not zone aware so we might end up outside of
6018 * the zone but still within the section.
656a0706
MH
6019 * We have to take care about the node as well. If the node is offline
6020 * its NODE_DATA will be NULL - see page_zone.
687875fb 6021 */
656a0706
MH
6022 if (!node_online(page_to_nid(page)))
6023 return false;
6024
6025 zone = page_zone(page);
6026 pfn = page_to_pfn(page);
108bcc96 6027 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6028 return false;
6029
b023f468 6030 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6031}
0c0e6195 6032
041d3a8c
MN
6033#ifdef CONFIG_CMA
6034
6035static unsigned long pfn_max_align_down(unsigned long pfn)
6036{
6037 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6038 pageblock_nr_pages) - 1);
6039}
6040
6041static unsigned long pfn_max_align_up(unsigned long pfn)
6042{
6043 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6044 pageblock_nr_pages));
6045}
6046
041d3a8c 6047/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6048static int __alloc_contig_migrate_range(struct compact_control *cc,
6049 unsigned long start, unsigned long end)
041d3a8c
MN
6050{
6051 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6052 unsigned long nr_reclaimed;
041d3a8c
MN
6053 unsigned long pfn = start;
6054 unsigned int tries = 0;
6055 int ret = 0;
6056
be49a6e1 6057 migrate_prep();
041d3a8c 6058
bb13ffeb 6059 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6060 if (fatal_signal_pending(current)) {
6061 ret = -EINTR;
6062 break;
6063 }
6064
bb13ffeb
MG
6065 if (list_empty(&cc->migratepages)) {
6066 cc->nr_migratepages = 0;
6067 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6068 pfn, end, true);
041d3a8c
MN
6069 if (!pfn) {
6070 ret = -EINTR;
6071 break;
6072 }
6073 tries = 0;
6074 } else if (++tries == 5) {
6075 ret = ret < 0 ? ret : -EBUSY;
6076 break;
6077 }
6078
beb51eaa
MK
6079 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6080 &cc->migratepages);
6081 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6082
9c620e2b
HD
6083 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6084 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6085 }
2a6f5124
SP
6086 if (ret < 0) {
6087 putback_movable_pages(&cc->migratepages);
6088 return ret;
6089 }
6090 return 0;
041d3a8c
MN
6091}
6092
6093/**
6094 * alloc_contig_range() -- tries to allocate given range of pages
6095 * @start: start PFN to allocate
6096 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6097 * @migratetype: migratetype of the underlaying pageblocks (either
6098 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6099 * in range must have the same migratetype and it must
6100 * be either of the two.
041d3a8c
MN
6101 *
6102 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6103 * aligned, however it's the caller's responsibility to guarantee that
6104 * we are the only thread that changes migrate type of pageblocks the
6105 * pages fall in.
6106 *
6107 * The PFN range must belong to a single zone.
6108 *
6109 * Returns zero on success or negative error code. On success all
6110 * pages which PFN is in [start, end) are allocated for the caller and
6111 * need to be freed with free_contig_range().
6112 */
0815f3d8
MN
6113int alloc_contig_range(unsigned long start, unsigned long end,
6114 unsigned migratetype)
041d3a8c 6115{
041d3a8c
MN
6116 unsigned long outer_start, outer_end;
6117 int ret = 0, order;
6118
bb13ffeb
MG
6119 struct compact_control cc = {
6120 .nr_migratepages = 0,
6121 .order = -1,
6122 .zone = page_zone(pfn_to_page(start)),
6123 .sync = true,
6124 .ignore_skip_hint = true,
6125 };
6126 INIT_LIST_HEAD(&cc.migratepages);
6127
041d3a8c
MN
6128 /*
6129 * What we do here is we mark all pageblocks in range as
6130 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6131 * have different sizes, and due to the way page allocator
6132 * work, we align the range to biggest of the two pages so
6133 * that page allocator won't try to merge buddies from
6134 * different pageblocks and change MIGRATE_ISOLATE to some
6135 * other migration type.
6136 *
6137 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6138 * migrate the pages from an unaligned range (ie. pages that
6139 * we are interested in). This will put all the pages in
6140 * range back to page allocator as MIGRATE_ISOLATE.
6141 *
6142 * When this is done, we take the pages in range from page
6143 * allocator removing them from the buddy system. This way
6144 * page allocator will never consider using them.
6145 *
6146 * This lets us mark the pageblocks back as
6147 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6148 * aligned range but not in the unaligned, original range are
6149 * put back to page allocator so that buddy can use them.
6150 */
6151
6152 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6153 pfn_max_align_up(end), migratetype,
6154 false);
041d3a8c 6155 if (ret)
86a595f9 6156 return ret;
041d3a8c 6157
bb13ffeb 6158 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6159 if (ret)
6160 goto done;
6161
6162 /*
6163 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6164 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6165 * more, all pages in [start, end) are free in page allocator.
6166 * What we are going to do is to allocate all pages from
6167 * [start, end) (that is remove them from page allocator).
6168 *
6169 * The only problem is that pages at the beginning and at the
6170 * end of interesting range may be not aligned with pages that
6171 * page allocator holds, ie. they can be part of higher order
6172 * pages. Because of this, we reserve the bigger range and
6173 * once this is done free the pages we are not interested in.
6174 *
6175 * We don't have to hold zone->lock here because the pages are
6176 * isolated thus they won't get removed from buddy.
6177 */
6178
6179 lru_add_drain_all();
6180 drain_all_pages();
6181
6182 order = 0;
6183 outer_start = start;
6184 while (!PageBuddy(pfn_to_page(outer_start))) {
6185 if (++order >= MAX_ORDER) {
6186 ret = -EBUSY;
6187 goto done;
6188 }
6189 outer_start &= ~0UL << order;
6190 }
6191
6192 /* Make sure the range is really isolated. */
b023f468 6193 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6194 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6195 outer_start, end);
6196 ret = -EBUSY;
6197 goto done;
6198 }
6199
49f223a9
MS
6200
6201 /* Grab isolated pages from freelists. */
bb13ffeb 6202 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6203 if (!outer_end) {
6204 ret = -EBUSY;
6205 goto done;
6206 }
6207
6208 /* Free head and tail (if any) */
6209 if (start != outer_start)
6210 free_contig_range(outer_start, start - outer_start);
6211 if (end != outer_end)
6212 free_contig_range(end, outer_end - end);
6213
6214done:
6215 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6216 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6217 return ret;
6218}
6219
6220void free_contig_range(unsigned long pfn, unsigned nr_pages)
6221{
bcc2b02f
MS
6222 unsigned int count = 0;
6223
6224 for (; nr_pages--; pfn++) {
6225 struct page *page = pfn_to_page(pfn);
6226
6227 count += page_count(page) != 1;
6228 __free_page(page);
6229 }
6230 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6231}
6232#endif
6233
4ed7e022
JL
6234#ifdef CONFIG_MEMORY_HOTPLUG
6235static int __meminit __zone_pcp_update(void *data)
6236{
6237 struct zone *zone = data;
6238 int cpu;
6239 unsigned long batch = zone_batchsize(zone), flags;
6240
6241 for_each_possible_cpu(cpu) {
6242 struct per_cpu_pageset *pset;
6243 struct per_cpu_pages *pcp;
6244
6245 pset = per_cpu_ptr(zone->pageset, cpu);
6246 pcp = &pset->pcp;
6247
6248 local_irq_save(flags);
6249 if (pcp->count > 0)
6250 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 6251 drain_zonestat(zone, pset);
4ed7e022
JL
6252 setup_pageset(pset, batch);
6253 local_irq_restore(flags);
6254 }
6255 return 0;
6256}
6257
6258void __meminit zone_pcp_update(struct zone *zone)
6259{
6260 stop_machine(__zone_pcp_update, zone, NULL);
6261}
6262#endif
6263
340175b7
JL
6264void zone_pcp_reset(struct zone *zone)
6265{
6266 unsigned long flags;
5a883813
MK
6267 int cpu;
6268 struct per_cpu_pageset *pset;
340175b7
JL
6269
6270 /* avoid races with drain_pages() */
6271 local_irq_save(flags);
6272 if (zone->pageset != &boot_pageset) {
5a883813
MK
6273 for_each_online_cpu(cpu) {
6274 pset = per_cpu_ptr(zone->pageset, cpu);
6275 drain_zonestat(zone, pset);
6276 }
340175b7
JL
6277 free_percpu(zone->pageset);
6278 zone->pageset = &boot_pageset;
6279 }
6280 local_irq_restore(flags);
6281}
6282
6dcd73d7 6283#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6284/*
6285 * All pages in the range must be isolated before calling this.
6286 */
6287void
6288__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6289{
6290 struct page *page;
6291 struct zone *zone;
6292 int order, i;
6293 unsigned long pfn;
6294 unsigned long flags;
6295 /* find the first valid pfn */
6296 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6297 if (pfn_valid(pfn))
6298 break;
6299 if (pfn == end_pfn)
6300 return;
6301 zone = page_zone(pfn_to_page(pfn));
6302 spin_lock_irqsave(&zone->lock, flags);
6303 pfn = start_pfn;
6304 while (pfn < end_pfn) {
6305 if (!pfn_valid(pfn)) {
6306 pfn++;
6307 continue;
6308 }
6309 page = pfn_to_page(pfn);
b023f468
WC
6310 /*
6311 * The HWPoisoned page may be not in buddy system, and
6312 * page_count() is not 0.
6313 */
6314 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6315 pfn++;
6316 SetPageReserved(page);
6317 continue;
6318 }
6319
0c0e6195
KH
6320 BUG_ON(page_count(page));
6321 BUG_ON(!PageBuddy(page));
6322 order = page_order(page);
6323#ifdef CONFIG_DEBUG_VM
6324 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6325 pfn, 1 << order, end_pfn);
6326#endif
6327 list_del(&page->lru);
6328 rmv_page_order(page);
6329 zone->free_area[order].nr_free--;
0c0e6195
KH
6330 for (i = 0; i < (1 << order); i++)
6331 SetPageReserved((page+i));
6332 pfn += (1 << order);
6333 }
6334 spin_unlock_irqrestore(&zone->lock, flags);
6335}
6336#endif
8d22ba1b
WF
6337
6338#ifdef CONFIG_MEMORY_FAILURE
6339bool is_free_buddy_page(struct page *page)
6340{
6341 struct zone *zone = page_zone(page);
6342 unsigned long pfn = page_to_pfn(page);
6343 unsigned long flags;
6344 int order;
6345
6346 spin_lock_irqsave(&zone->lock, flags);
6347 for (order = 0; order < MAX_ORDER; order++) {
6348 struct page *page_head = page - (pfn & ((1 << order) - 1));
6349
6350 if (PageBuddy(page_head) && page_order(page_head) >= order)
6351 break;
6352 }
6353 spin_unlock_irqrestore(&zone->lock, flags);
6354
6355 return order < MAX_ORDER;
6356}
6357#endif
718a3821 6358
51300cef 6359static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6360 {1UL << PG_locked, "locked" },
6361 {1UL << PG_error, "error" },
6362 {1UL << PG_referenced, "referenced" },
6363 {1UL << PG_uptodate, "uptodate" },
6364 {1UL << PG_dirty, "dirty" },
6365 {1UL << PG_lru, "lru" },
6366 {1UL << PG_active, "active" },
6367 {1UL << PG_slab, "slab" },
6368 {1UL << PG_owner_priv_1, "owner_priv_1" },
6369 {1UL << PG_arch_1, "arch_1" },
6370 {1UL << PG_reserved, "reserved" },
6371 {1UL << PG_private, "private" },
6372 {1UL << PG_private_2, "private_2" },
6373 {1UL << PG_writeback, "writeback" },
6374#ifdef CONFIG_PAGEFLAGS_EXTENDED
6375 {1UL << PG_head, "head" },
6376 {1UL << PG_tail, "tail" },
6377#else
6378 {1UL << PG_compound, "compound" },
6379#endif
6380 {1UL << PG_swapcache, "swapcache" },
6381 {1UL << PG_mappedtodisk, "mappedtodisk" },
6382 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6383 {1UL << PG_swapbacked, "swapbacked" },
6384 {1UL << PG_unevictable, "unevictable" },
6385#ifdef CONFIG_MMU
6386 {1UL << PG_mlocked, "mlocked" },
6387#endif
6388#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6389 {1UL << PG_uncached, "uncached" },
6390#endif
6391#ifdef CONFIG_MEMORY_FAILURE
6392 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6393#endif
6394#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6395 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6396#endif
718a3821
WF
6397};
6398
6399static void dump_page_flags(unsigned long flags)
6400{
6401 const char *delim = "";
6402 unsigned long mask;
6403 int i;
6404
51300cef 6405 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6406
718a3821
WF
6407 printk(KERN_ALERT "page flags: %#lx(", flags);
6408
6409 /* remove zone id */
6410 flags &= (1UL << NR_PAGEFLAGS) - 1;
6411
51300cef 6412 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6413
6414 mask = pageflag_names[i].mask;
6415 if ((flags & mask) != mask)
6416 continue;
6417
6418 flags &= ~mask;
6419 printk("%s%s", delim, pageflag_names[i].name);
6420 delim = "|";
6421 }
6422
6423 /* check for left over flags */
6424 if (flags)
6425 printk("%s%#lx", delim, flags);
6426
6427 printk(")\n");
6428}
6429
6430void dump_page(struct page *page)
6431{
6432 printk(KERN_ALERT
6433 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6434 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6435 page->mapping, page->index);
6436 dump_page_flags(page->flags);
f212ad7c 6437 mem_cgroup_print_bad_page(page);
718a3821 6438}