]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm/hmm: add ARCH_HAS_HMM_MIRROR ARCH_HAS_HMM_DEVICE Kconfig
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
ca79b0c2 19#include <linux/highmem.h>
1da177e4
LT
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
10ed273f 23#include <linux/jiffies.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53 99/* work_structs for global per-cpu drains */
d9367bd0
WY
100struct pcpu_drain {
101 struct zone *zone;
102 struct work_struct work;
103};
bd233f53 104DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 105DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 106
38addce8 107#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 108volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
109EXPORT_SYMBOL(latent_entropy);
110#endif
111
1da177e4 112/*
13808910 113 * Array of node states.
1da177e4 114 */
13808910
CL
115nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 [N_POSSIBLE] = NODE_MASK_ALL,
117 [N_ONLINE] = { { [0] = 1UL } },
118#ifndef CONFIG_NUMA
119 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
120#ifdef CONFIG_HIGHMEM
121 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 122#endif
20b2f52b 123 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
124 [N_CPU] = { { [0] = 1UL } },
125#endif /* NUMA */
126};
127EXPORT_SYMBOL(node_states);
128
ca79b0c2
AK
129atomic_long_t _totalram_pages __read_mostly;
130EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 131unsigned long totalreserve_pages __read_mostly;
e48322ab 132unsigned long totalcma_pages __read_mostly;
ab8fabd4 133
1b76b02f 134int percpu_pagelist_fraction;
dcce284a 135gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 136
bb14c2c7
VB
137/*
138 * A cached value of the page's pageblock's migratetype, used when the page is
139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141 * Also the migratetype set in the page does not necessarily match the pcplist
142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143 * other index - this ensures that it will be put on the correct CMA freelist.
144 */
145static inline int get_pcppage_migratetype(struct page *page)
146{
147 return page->index;
148}
149
150static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151{
152 page->index = migratetype;
153}
154
452aa699
RW
155#ifdef CONFIG_PM_SLEEP
156/*
157 * The following functions are used by the suspend/hibernate code to temporarily
158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
160 * they should always be called with system_transition_mutex held
161 * (gfp_allowed_mask also should only be modified with system_transition_mutex
162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163 * with that modification).
452aa699 164 */
c9e664f1
RW
165
166static gfp_t saved_gfp_mask;
167
168void pm_restore_gfp_mask(void)
452aa699 169{
55f2503c 170 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
171 if (saved_gfp_mask) {
172 gfp_allowed_mask = saved_gfp_mask;
173 saved_gfp_mask = 0;
174 }
452aa699
RW
175}
176
c9e664f1 177void pm_restrict_gfp_mask(void)
452aa699 178{
55f2503c 179 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
180 WARN_ON(saved_gfp_mask);
181 saved_gfp_mask = gfp_allowed_mask;
d0164adc 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 183}
f90ac398
MG
184
185bool pm_suspended_storage(void)
186{
d0164adc 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
188 return false;
189 return true;
190}
452aa699
RW
191#endif /* CONFIG_PM_SLEEP */
192
d9c23400 193#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 194unsigned int pageblock_order __read_mostly;
d9c23400
MG
195#endif
196
d98c7a09 197static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 198
1da177e4
LT
199/*
200 * results with 256, 32 in the lowmem_reserve sysctl:
201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202 * 1G machine -> (16M dma, 784M normal, 224M high)
203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
206 *
207 * TBD: should special case ZONE_DMA32 machines here - in those we normally
208 * don't need any ZONE_NORMAL reservation
1da177e4 209 */
d3cda233 210int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
d3cda233 212 [ZONE_DMA] = 256,
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
d3cda233 215 [ZONE_DMA32] = 256,
fb0e7942 216#endif
d3cda233 217 [ZONE_NORMAL] = 32,
e53ef38d 218#ifdef CONFIG_HIGHMEM
d3cda233 219 [ZONE_HIGHMEM] = 0,
e53ef38d 220#endif
d3cda233 221 [ZONE_MOVABLE] = 0,
2f1b6248 222};
1da177e4
LT
223
224EXPORT_SYMBOL(totalram_pages);
1da177e4 225
15ad7cdc 226static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 227#ifdef CONFIG_ZONE_DMA
2f1b6248 228 "DMA",
4b51d669 229#endif
fb0e7942 230#ifdef CONFIG_ZONE_DMA32
2f1b6248 231 "DMA32",
fb0e7942 232#endif
2f1b6248 233 "Normal",
e53ef38d 234#ifdef CONFIG_HIGHMEM
2a1e274a 235 "HighMem",
e53ef38d 236#endif
2a1e274a 237 "Movable",
033fbae9
DW
238#ifdef CONFIG_ZONE_DEVICE
239 "Device",
240#endif
2f1b6248
CL
241};
242
c999fbd3 243const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
244 "Unmovable",
245 "Movable",
246 "Reclaimable",
247 "HighAtomic",
248#ifdef CONFIG_CMA
249 "CMA",
250#endif
251#ifdef CONFIG_MEMORY_ISOLATION
252 "Isolate",
253#endif
254};
255
f1e61557
KS
256compound_page_dtor * const compound_page_dtors[] = {
257 NULL,
258 free_compound_page,
259#ifdef CONFIG_HUGETLB_PAGE
260 free_huge_page,
261#endif
9a982250
KS
262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 free_transhuge_page,
264#endif
f1e61557
KS
265};
266
1da177e4 267int min_free_kbytes = 1024;
42aa83cb 268int user_min_free_kbytes = -1;
24512228
MG
269#ifdef CONFIG_DISCONTIGMEM
270/*
271 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
272 * are not on separate NUMA nodes. Functionally this works but with
273 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
274 * quite small. By default, do not boost watermarks on discontigmem as in
275 * many cases very high-order allocations like THP are likely to be
276 * unsupported and the premature reclaim offsets the advantage of long-term
277 * fragmentation avoidance.
278 */
279int watermark_boost_factor __read_mostly;
280#else
1c30844d 281int watermark_boost_factor __read_mostly = 15000;
24512228 282#endif
795ae7a0 283int watermark_scale_factor = 10;
1da177e4 284
bbe5d993
OS
285static unsigned long nr_kernel_pages __initdata;
286static unsigned long nr_all_pages __initdata;
287static unsigned long dma_reserve __initdata;
1da177e4 288
0ee332c1 289#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
290static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
291static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 292static unsigned long required_kernelcore __initdata;
a5c6d650 293static unsigned long required_kernelcore_percent __initdata;
7f16f91f 294static unsigned long required_movablecore __initdata;
a5c6d650 295static unsigned long required_movablecore_percent __initdata;
bbe5d993 296static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 297static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
298
299/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
300int movable_zone;
301EXPORT_SYMBOL(movable_zone);
302#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 303
418508c1 304#if MAX_NUMNODES > 1
b9726c26 305unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 306unsigned int nr_online_nodes __read_mostly = 1;
418508c1 307EXPORT_SYMBOL(nr_node_ids);
62bc62a8 308EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
309#endif
310
9ef9acb0
MG
311int page_group_by_mobility_disabled __read_mostly;
312
3a80a7fa 313#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
314/*
315 * During boot we initialize deferred pages on-demand, as needed, but once
316 * page_alloc_init_late() has finished, the deferred pages are all initialized,
317 * and we can permanently disable that path.
318 */
319static DEFINE_STATIC_KEY_TRUE(deferred_pages);
320
321/*
322 * Calling kasan_free_pages() only after deferred memory initialization
323 * has completed. Poisoning pages during deferred memory init will greatly
324 * lengthen the process and cause problem in large memory systems as the
325 * deferred pages initialization is done with interrupt disabled.
326 *
327 * Assuming that there will be no reference to those newly initialized
328 * pages before they are ever allocated, this should have no effect on
329 * KASAN memory tracking as the poison will be properly inserted at page
330 * allocation time. The only corner case is when pages are allocated by
331 * on-demand allocation and then freed again before the deferred pages
332 * initialization is done, but this is not likely to happen.
333 */
334static inline void kasan_free_nondeferred_pages(struct page *page, int order)
335{
336 if (!static_branch_unlikely(&deferred_pages))
337 kasan_free_pages(page, order);
338}
339
3a80a7fa 340/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 341static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 342{
ef70b6f4
MG
343 int nid = early_pfn_to_nid(pfn);
344
345 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
346 return true;
347
348 return false;
349}
350
351/*
d3035be4 352 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
353 * later in the boot cycle when it can be parallelised.
354 */
d3035be4
PT
355static bool __meminit
356defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 357{
d3035be4
PT
358 static unsigned long prev_end_pfn, nr_initialised;
359
360 /*
361 * prev_end_pfn static that contains the end of previous zone
362 * No need to protect because called very early in boot before smp_init.
363 */
364 if (prev_end_pfn != end_pfn) {
365 prev_end_pfn = end_pfn;
366 nr_initialised = 0;
367 }
368
3c2c6488 369 /* Always populate low zones for address-constrained allocations */
d3035be4 370 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 371 return false;
23b68cfa
WY
372
373 /*
374 * We start only with one section of pages, more pages are added as
375 * needed until the rest of deferred pages are initialized.
376 */
d3035be4 377 nr_initialised++;
23b68cfa 378 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
379 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
380 NODE_DATA(nid)->first_deferred_pfn = pfn;
381 return true;
3a80a7fa 382 }
d3035be4 383 return false;
3a80a7fa
MG
384}
385#else
3c0c12cc
WL
386#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
387
3a80a7fa
MG
388static inline bool early_page_uninitialised(unsigned long pfn)
389{
390 return false;
391}
392
d3035be4 393static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 394{
d3035be4 395 return false;
3a80a7fa
MG
396}
397#endif
398
0b423ca2
MG
399/* Return a pointer to the bitmap storing bits affecting a block of pages */
400static inline unsigned long *get_pageblock_bitmap(struct page *page,
401 unsigned long pfn)
402{
403#ifdef CONFIG_SPARSEMEM
404 return __pfn_to_section(pfn)->pageblock_flags;
405#else
406 return page_zone(page)->pageblock_flags;
407#endif /* CONFIG_SPARSEMEM */
408}
409
410static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
411{
412#ifdef CONFIG_SPARSEMEM
413 pfn &= (PAGES_PER_SECTION-1);
414 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
415#else
416 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418#endif /* CONFIG_SPARSEMEM */
419}
420
421/**
422 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
423 * @page: The page within the block of interest
424 * @pfn: The target page frame number
425 * @end_bitidx: The last bit of interest to retrieve
426 * @mask: mask of bits that the caller is interested in
427 *
428 * Return: pageblock_bits flags
429 */
430static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
431 unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434{
435 unsigned long *bitmap;
436 unsigned long bitidx, word_bitidx;
437 unsigned long word;
438
439 bitmap = get_pageblock_bitmap(page, pfn);
440 bitidx = pfn_to_bitidx(page, pfn);
441 word_bitidx = bitidx / BITS_PER_LONG;
442 bitidx &= (BITS_PER_LONG-1);
443
444 word = bitmap[word_bitidx];
445 bitidx += end_bitidx;
446 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
447}
448
449unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
450 unsigned long end_bitidx,
451 unsigned long mask)
452{
453 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
454}
455
456static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
457{
458 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
459}
460
461/**
462 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
463 * @page: The page within the block of interest
464 * @flags: The flags to set
465 * @pfn: The target page frame number
466 * @end_bitidx: The last bit of interest
467 * @mask: mask of bits that the caller is interested in
468 */
469void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
470 unsigned long pfn,
471 unsigned long end_bitidx,
472 unsigned long mask)
473{
474 unsigned long *bitmap;
475 unsigned long bitidx, word_bitidx;
476 unsigned long old_word, word;
477
478 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 479 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
480
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
485
486 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
487
488 bitidx += end_bitidx;
489 mask <<= (BITS_PER_LONG - bitidx - 1);
490 flags <<= (BITS_PER_LONG - bitidx - 1);
491
492 word = READ_ONCE(bitmap[word_bitidx]);
493 for (;;) {
494 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
495 if (word == old_word)
496 break;
497 word = old_word;
498 }
499}
3a80a7fa 500
ee6f509c 501void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 502{
5d0f3f72
KM
503 if (unlikely(page_group_by_mobility_disabled &&
504 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
505 migratetype = MIGRATE_UNMOVABLE;
506
b2a0ac88
MG
507 set_pageblock_flags_group(page, (unsigned long)migratetype,
508 PB_migrate, PB_migrate_end);
509}
510
13e7444b 511#ifdef CONFIG_DEBUG_VM
c6a57e19 512static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 513{
bdc8cb98
DH
514 int ret = 0;
515 unsigned seq;
516 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 517 unsigned long sp, start_pfn;
c6a57e19 518
bdc8cb98
DH
519 do {
520 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
521 start_pfn = zone->zone_start_pfn;
522 sp = zone->spanned_pages;
108bcc96 523 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
524 ret = 1;
525 } while (zone_span_seqretry(zone, seq));
526
b5e6a5a2 527 if (ret)
613813e8
DH
528 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
529 pfn, zone_to_nid(zone), zone->name,
530 start_pfn, start_pfn + sp);
b5e6a5a2 531
bdc8cb98 532 return ret;
c6a57e19
DH
533}
534
535static int page_is_consistent(struct zone *zone, struct page *page)
536{
14e07298 537 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 538 return 0;
1da177e4 539 if (zone != page_zone(page))
c6a57e19
DH
540 return 0;
541
542 return 1;
543}
544/*
545 * Temporary debugging check for pages not lying within a given zone.
546 */
d73d3c9f 547static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
548{
549 if (page_outside_zone_boundaries(zone, page))
1da177e4 550 return 1;
c6a57e19
DH
551 if (!page_is_consistent(zone, page))
552 return 1;
553
1da177e4
LT
554 return 0;
555}
13e7444b 556#else
d73d3c9f 557static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
558{
559 return 0;
560}
561#endif
562
d230dec1
KS
563static void bad_page(struct page *page, const char *reason,
564 unsigned long bad_flags)
1da177e4 565{
d936cf9b
HD
566 static unsigned long resume;
567 static unsigned long nr_shown;
568 static unsigned long nr_unshown;
569
570 /*
571 * Allow a burst of 60 reports, then keep quiet for that minute;
572 * or allow a steady drip of one report per second.
573 */
574 if (nr_shown == 60) {
575 if (time_before(jiffies, resume)) {
576 nr_unshown++;
577 goto out;
578 }
579 if (nr_unshown) {
ff8e8116 580 pr_alert(
1e9e6365 581 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
582 nr_unshown);
583 nr_unshown = 0;
584 }
585 nr_shown = 0;
586 }
587 if (nr_shown++ == 0)
588 resume = jiffies + 60 * HZ;
589
ff8e8116 590 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 591 current->comm, page_to_pfn(page));
ff8e8116
VB
592 __dump_page(page, reason);
593 bad_flags &= page->flags;
594 if (bad_flags)
595 pr_alert("bad because of flags: %#lx(%pGp)\n",
596 bad_flags, &bad_flags);
4e462112 597 dump_page_owner(page);
3dc14741 598
4f31888c 599 print_modules();
1da177e4 600 dump_stack();
d936cf9b 601out:
8cc3b392 602 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 603 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 604 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
605}
606
1da177e4
LT
607/*
608 * Higher-order pages are called "compound pages". They are structured thusly:
609 *
1d798ca3 610 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 611 *
1d798ca3
KS
612 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
613 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 614 *
1d798ca3
KS
615 * The first tail page's ->compound_dtor holds the offset in array of compound
616 * page destructors. See compound_page_dtors.
1da177e4 617 *
1d798ca3 618 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 619 * This usage means that zero-order pages may not be compound.
1da177e4 620 */
d98c7a09 621
9a982250 622void free_compound_page(struct page *page)
d98c7a09 623{
d85f3385 624 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
625}
626
d00181b9 627void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
628{
629 int i;
630 int nr_pages = 1 << order;
631
f1e61557 632 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
633 set_compound_order(page, order);
634 __SetPageHead(page);
635 for (i = 1; i < nr_pages; i++) {
636 struct page *p = page + i;
58a84aa9 637 set_page_count(p, 0);
1c290f64 638 p->mapping = TAIL_MAPPING;
1d798ca3 639 set_compound_head(p, page);
18229df5 640 }
53f9263b 641 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
642}
643
c0a32fc5
SG
644#ifdef CONFIG_DEBUG_PAGEALLOC
645unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
646bool _debug_pagealloc_enabled __read_mostly
647 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 648EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
649bool _debug_guardpage_enabled __read_mostly;
650
031bc574
JK
651static int __init early_debug_pagealloc(char *buf)
652{
653 if (!buf)
654 return -EINVAL;
2a138dc7 655 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
656}
657early_param("debug_pagealloc", early_debug_pagealloc);
658
e30825f1
JK
659static bool need_debug_guardpage(void)
660{
031bc574
JK
661 /* If we don't use debug_pagealloc, we don't need guard page */
662 if (!debug_pagealloc_enabled())
663 return false;
664
f1c1e9f7
JK
665 if (!debug_guardpage_minorder())
666 return false;
667
e30825f1
JK
668 return true;
669}
670
671static void init_debug_guardpage(void)
672{
031bc574
JK
673 if (!debug_pagealloc_enabled())
674 return;
675
f1c1e9f7
JK
676 if (!debug_guardpage_minorder())
677 return;
678
e30825f1
JK
679 _debug_guardpage_enabled = true;
680}
681
682struct page_ext_operations debug_guardpage_ops = {
683 .need = need_debug_guardpage,
684 .init = init_debug_guardpage,
685};
c0a32fc5
SG
686
687static int __init debug_guardpage_minorder_setup(char *buf)
688{
689 unsigned long res;
690
691 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 692 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
693 return 0;
694 }
695 _debug_guardpage_minorder = res;
1170532b 696 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
697 return 0;
698}
f1c1e9f7 699early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 700
acbc15a4 701static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 702 unsigned int order, int migratetype)
c0a32fc5 703{
e30825f1
JK
704 struct page_ext *page_ext;
705
706 if (!debug_guardpage_enabled())
acbc15a4
JK
707 return false;
708
709 if (order >= debug_guardpage_minorder())
710 return false;
e30825f1
JK
711
712 page_ext = lookup_page_ext(page);
f86e4271 713 if (unlikely(!page_ext))
acbc15a4 714 return false;
f86e4271 715
e30825f1
JK
716 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
717
2847cf95
JK
718 INIT_LIST_HEAD(&page->lru);
719 set_page_private(page, order);
720 /* Guard pages are not available for any usage */
721 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
722
723 return true;
c0a32fc5
SG
724}
725
2847cf95
JK
726static inline void clear_page_guard(struct zone *zone, struct page *page,
727 unsigned int order, int migratetype)
c0a32fc5 728{
e30825f1
JK
729 struct page_ext *page_ext;
730
731 if (!debug_guardpage_enabled())
732 return;
733
734 page_ext = lookup_page_ext(page);
f86e4271
YS
735 if (unlikely(!page_ext))
736 return;
737
e30825f1
JK
738 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
739
2847cf95
JK
740 set_page_private(page, 0);
741 if (!is_migrate_isolate(migratetype))
742 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
743}
744#else
980ac167 745struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
746static inline bool set_page_guard(struct zone *zone, struct page *page,
747 unsigned int order, int migratetype) { return false; }
2847cf95
JK
748static inline void clear_page_guard(struct zone *zone, struct page *page,
749 unsigned int order, int migratetype) {}
c0a32fc5
SG
750#endif
751
7aeb09f9 752static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 753{
4c21e2f2 754 set_page_private(page, order);
676165a8 755 __SetPageBuddy(page);
1da177e4
LT
756}
757
758static inline void rmv_page_order(struct page *page)
759{
676165a8 760 __ClearPageBuddy(page);
4c21e2f2 761 set_page_private(page, 0);
1da177e4
LT
762}
763
1da177e4
LT
764/*
765 * This function checks whether a page is free && is the buddy
6e292b9b 766 * we can coalesce a page and its buddy if
13ad59df 767 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 768 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
769 * (c) a page and its buddy have the same order &&
770 * (d) a page and its buddy are in the same zone.
676165a8 771 *
6e292b9b
MW
772 * For recording whether a page is in the buddy system, we set PageBuddy.
773 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 774 *
676165a8 775 * For recording page's order, we use page_private(page).
1da177e4 776 */
cb2b95e1 777static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 778 unsigned int order)
1da177e4 779{
c0a32fc5 780 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
781 if (page_zone_id(page) != page_zone_id(buddy))
782 return 0;
783
4c5018ce
WY
784 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
785
c0a32fc5
SG
786 return 1;
787 }
788
cb2b95e1 789 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
790 /*
791 * zone check is done late to avoid uselessly
792 * calculating zone/node ids for pages that could
793 * never merge.
794 */
795 if (page_zone_id(page) != page_zone_id(buddy))
796 return 0;
797
4c5018ce
WY
798 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
799
6aa3001b 800 return 1;
676165a8 801 }
6aa3001b 802 return 0;
1da177e4
LT
803}
804
5e1f0f09
MG
805#ifdef CONFIG_COMPACTION
806static inline struct capture_control *task_capc(struct zone *zone)
807{
808 struct capture_control *capc = current->capture_control;
809
810 return capc &&
811 !(current->flags & PF_KTHREAD) &&
812 !capc->page &&
813 capc->cc->zone == zone &&
814 capc->cc->direct_compaction ? capc : NULL;
815}
816
817static inline bool
818compaction_capture(struct capture_control *capc, struct page *page,
819 int order, int migratetype)
820{
821 if (!capc || order != capc->cc->order)
822 return false;
823
824 /* Do not accidentally pollute CMA or isolated regions*/
825 if (is_migrate_cma(migratetype) ||
826 is_migrate_isolate(migratetype))
827 return false;
828
829 /*
830 * Do not let lower order allocations polluate a movable pageblock.
831 * This might let an unmovable request use a reclaimable pageblock
832 * and vice-versa but no more than normal fallback logic which can
833 * have trouble finding a high-order free page.
834 */
835 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 return false;
837
838 capc->page = page;
839 return true;
840}
841
842#else
843static inline struct capture_control *task_capc(struct zone *zone)
844{
845 return NULL;
846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 return false;
853}
854#endif /* CONFIG_COMPACTION */
855
1da177e4
LT
856/*
857 * Freeing function for a buddy system allocator.
858 *
859 * The concept of a buddy system is to maintain direct-mapped table
860 * (containing bit values) for memory blocks of various "orders".
861 * The bottom level table contains the map for the smallest allocatable
862 * units of memory (here, pages), and each level above it describes
863 * pairs of units from the levels below, hence, "buddies".
864 * At a high level, all that happens here is marking the table entry
865 * at the bottom level available, and propagating the changes upward
866 * as necessary, plus some accounting needed to play nicely with other
867 * parts of the VM system.
868 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
869 * free pages of length of (1 << order) and marked with PageBuddy.
870 * Page's order is recorded in page_private(page) field.
1da177e4 871 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
872 * other. That is, if we allocate a small block, and both were
873 * free, the remainder of the region must be split into blocks.
1da177e4 874 * If a block is freed, and its buddy is also free, then this
5f63b720 875 * triggers coalescing into a block of larger size.
1da177e4 876 *
6d49e352 877 * -- nyc
1da177e4
LT
878 */
879
48db57f8 880static inline void __free_one_page(struct page *page,
dc4b0caf 881 unsigned long pfn,
ed0ae21d
MG
882 struct zone *zone, unsigned int order,
883 int migratetype)
1da177e4 884{
76741e77
VB
885 unsigned long combined_pfn;
886 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 887 struct page *buddy;
d9dddbf5 888 unsigned int max_order;
5e1f0f09 889 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
890
891 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 892
d29bb978 893 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 894 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 895
ed0ae21d 896 VM_BUG_ON(migratetype == -1);
d9dddbf5 897 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 898 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 899
76741e77 900 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 901 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 902
d9dddbf5 903continue_merging:
3c605096 904 while (order < max_order - 1) {
5e1f0f09
MG
905 if (compaction_capture(capc, page, order, migratetype)) {
906 __mod_zone_freepage_state(zone, -(1 << order),
907 migratetype);
908 return;
909 }
76741e77
VB
910 buddy_pfn = __find_buddy_pfn(pfn, order);
911 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
912
913 if (!pfn_valid_within(buddy_pfn))
914 goto done_merging;
cb2b95e1 915 if (!page_is_buddy(page, buddy, order))
d9dddbf5 916 goto done_merging;
c0a32fc5
SG
917 /*
918 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
919 * merge with it and move up one order.
920 */
921 if (page_is_guard(buddy)) {
2847cf95 922 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
923 } else {
924 list_del(&buddy->lru);
925 zone->free_area[order].nr_free--;
926 rmv_page_order(buddy);
927 }
76741e77
VB
928 combined_pfn = buddy_pfn & pfn;
929 page = page + (combined_pfn - pfn);
930 pfn = combined_pfn;
1da177e4
LT
931 order++;
932 }
d9dddbf5
VB
933 if (max_order < MAX_ORDER) {
934 /* If we are here, it means order is >= pageblock_order.
935 * We want to prevent merge between freepages on isolate
936 * pageblock and normal pageblock. Without this, pageblock
937 * isolation could cause incorrect freepage or CMA accounting.
938 *
939 * We don't want to hit this code for the more frequent
940 * low-order merging.
941 */
942 if (unlikely(has_isolate_pageblock(zone))) {
943 int buddy_mt;
944
76741e77
VB
945 buddy_pfn = __find_buddy_pfn(pfn, order);
946 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
947 buddy_mt = get_pageblock_migratetype(buddy);
948
949 if (migratetype != buddy_mt
950 && (is_migrate_isolate(migratetype) ||
951 is_migrate_isolate(buddy_mt)))
952 goto done_merging;
953 }
954 max_order++;
955 goto continue_merging;
956 }
957
958done_merging:
1da177e4 959 set_page_order(page, order);
6dda9d55
CZ
960
961 /*
962 * If this is not the largest possible page, check if the buddy
963 * of the next-highest order is free. If it is, it's possible
964 * that pages are being freed that will coalesce soon. In case,
965 * that is happening, add the free page to the tail of the list
966 * so it's less likely to be used soon and more likely to be merged
967 * as a higher order page
968 */
13ad59df 969 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 970 struct page *higher_page, *higher_buddy;
76741e77
VB
971 combined_pfn = buddy_pfn & pfn;
972 higher_page = page + (combined_pfn - pfn);
973 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
974 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
975 if (pfn_valid_within(buddy_pfn) &&
976 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
977 list_add_tail(&page->lru,
978 &zone->free_area[order].free_list[migratetype]);
979 goto out;
980 }
981 }
982
983 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
984out:
1da177e4
LT
985 zone->free_area[order].nr_free++;
986}
987
7bfec6f4
MG
988/*
989 * A bad page could be due to a number of fields. Instead of multiple branches,
990 * try and check multiple fields with one check. The caller must do a detailed
991 * check if necessary.
992 */
993static inline bool page_expected_state(struct page *page,
994 unsigned long check_flags)
995{
996 if (unlikely(atomic_read(&page->_mapcount) != -1))
997 return false;
998
999 if (unlikely((unsigned long)page->mapping |
1000 page_ref_count(page) |
1001#ifdef CONFIG_MEMCG
1002 (unsigned long)page->mem_cgroup |
1003#endif
1004 (page->flags & check_flags)))
1005 return false;
1006
1007 return true;
1008}
1009
bb552ac6 1010static void free_pages_check_bad(struct page *page)
1da177e4 1011{
7bfec6f4
MG
1012 const char *bad_reason;
1013 unsigned long bad_flags;
1014
7bfec6f4
MG
1015 bad_reason = NULL;
1016 bad_flags = 0;
f0b791a3 1017
53f9263b 1018 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1019 bad_reason = "nonzero mapcount";
1020 if (unlikely(page->mapping != NULL))
1021 bad_reason = "non-NULL mapping";
fe896d18 1022 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1023 bad_reason = "nonzero _refcount";
f0b791a3
DH
1024 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1025 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1026 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1027 }
9edad6ea
JW
1028#ifdef CONFIG_MEMCG
1029 if (unlikely(page->mem_cgroup))
1030 bad_reason = "page still charged to cgroup";
1031#endif
7bfec6f4 1032 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1033}
1034
1035static inline int free_pages_check(struct page *page)
1036{
da838d4f 1037 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1038 return 0;
bb552ac6
MG
1039
1040 /* Something has gone sideways, find it */
1041 free_pages_check_bad(page);
7bfec6f4 1042 return 1;
1da177e4
LT
1043}
1044
4db7548c
MG
1045static int free_tail_pages_check(struct page *head_page, struct page *page)
1046{
1047 int ret = 1;
1048
1049 /*
1050 * We rely page->lru.next never has bit 0 set, unless the page
1051 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1052 */
1053 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1054
1055 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1056 ret = 0;
1057 goto out;
1058 }
1059 switch (page - head_page) {
1060 case 1:
4da1984e 1061 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1062 if (unlikely(compound_mapcount(page))) {
1063 bad_page(page, "nonzero compound_mapcount", 0);
1064 goto out;
1065 }
1066 break;
1067 case 2:
1068 /*
1069 * the second tail page: ->mapping is
fa3015b7 1070 * deferred_list.next -- ignore value.
4db7548c
MG
1071 */
1072 break;
1073 default:
1074 if (page->mapping != TAIL_MAPPING) {
1075 bad_page(page, "corrupted mapping in tail page", 0);
1076 goto out;
1077 }
1078 break;
1079 }
1080 if (unlikely(!PageTail(page))) {
1081 bad_page(page, "PageTail not set", 0);
1082 goto out;
1083 }
1084 if (unlikely(compound_head(page) != head_page)) {
1085 bad_page(page, "compound_head not consistent", 0);
1086 goto out;
1087 }
1088 ret = 0;
1089out:
1090 page->mapping = NULL;
1091 clear_compound_head(page);
1092 return ret;
1093}
1094
e2769dbd
MG
1095static __always_inline bool free_pages_prepare(struct page *page,
1096 unsigned int order, bool check_free)
4db7548c 1097{
e2769dbd 1098 int bad = 0;
4db7548c 1099
4db7548c
MG
1100 VM_BUG_ON_PAGE(PageTail(page), page);
1101
e2769dbd 1102 trace_mm_page_free(page, order);
e2769dbd
MG
1103
1104 /*
1105 * Check tail pages before head page information is cleared to
1106 * avoid checking PageCompound for order-0 pages.
1107 */
1108 if (unlikely(order)) {
1109 bool compound = PageCompound(page);
1110 int i;
1111
1112 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1113
9a73f61b
KS
1114 if (compound)
1115 ClearPageDoubleMap(page);
e2769dbd
MG
1116 for (i = 1; i < (1 << order); i++) {
1117 if (compound)
1118 bad += free_tail_pages_check(page, page + i);
1119 if (unlikely(free_pages_check(page + i))) {
1120 bad++;
1121 continue;
1122 }
1123 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 }
1125 }
bda807d4 1126 if (PageMappingFlags(page))
4db7548c 1127 page->mapping = NULL;
c4159a75 1128 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1129 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1130 if (check_free)
1131 bad += free_pages_check(page);
1132 if (bad)
1133 return false;
4db7548c 1134
e2769dbd
MG
1135 page_cpupid_reset_last(page);
1136 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1137 reset_page_owner(page, order);
4db7548c
MG
1138
1139 if (!PageHighMem(page)) {
1140 debug_check_no_locks_freed(page_address(page),
e2769dbd 1141 PAGE_SIZE << order);
4db7548c 1142 debug_check_no_obj_freed(page_address(page),
e2769dbd 1143 PAGE_SIZE << order);
4db7548c 1144 }
e2769dbd
MG
1145 arch_free_page(page, order);
1146 kernel_poison_pages(page, 1 << order, 0);
d6332692
RE
1147 if (debug_pagealloc_enabled())
1148 kernel_map_pages(page, 1 << order, 0);
1149
3c0c12cc 1150 kasan_free_nondeferred_pages(page, order);
4db7548c 1151
4db7548c
MG
1152 return true;
1153}
1154
e2769dbd
MG
1155#ifdef CONFIG_DEBUG_VM
1156static inline bool free_pcp_prepare(struct page *page)
1157{
1158 return free_pages_prepare(page, 0, true);
1159}
1160
1161static inline bool bulkfree_pcp_prepare(struct page *page)
1162{
1163 return false;
1164}
1165#else
1166static bool free_pcp_prepare(struct page *page)
1167{
1168 return free_pages_prepare(page, 0, false);
1169}
1170
4db7548c
MG
1171static bool bulkfree_pcp_prepare(struct page *page)
1172{
1173 return free_pages_check(page);
1174}
1175#endif /* CONFIG_DEBUG_VM */
1176
97334162
AL
1177static inline void prefetch_buddy(struct page *page)
1178{
1179 unsigned long pfn = page_to_pfn(page);
1180 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1181 struct page *buddy = page + (buddy_pfn - pfn);
1182
1183 prefetch(buddy);
1184}
1185
1da177e4 1186/*
5f8dcc21 1187 * Frees a number of pages from the PCP lists
1da177e4 1188 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1189 * count is the number of pages to free.
1da177e4
LT
1190 *
1191 * If the zone was previously in an "all pages pinned" state then look to
1192 * see if this freeing clears that state.
1193 *
1194 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1195 * pinned" detection logic.
1196 */
5f8dcc21
MG
1197static void free_pcppages_bulk(struct zone *zone, int count,
1198 struct per_cpu_pages *pcp)
1da177e4 1199{
5f8dcc21 1200 int migratetype = 0;
a6f9edd6 1201 int batch_free = 0;
97334162 1202 int prefetch_nr = 0;
3777999d 1203 bool isolated_pageblocks;
0a5f4e5b
AL
1204 struct page *page, *tmp;
1205 LIST_HEAD(head);
f2260e6b 1206
e5b31ac2 1207 while (count) {
5f8dcc21
MG
1208 struct list_head *list;
1209
1210 /*
a6f9edd6
MG
1211 * Remove pages from lists in a round-robin fashion. A
1212 * batch_free count is maintained that is incremented when an
1213 * empty list is encountered. This is so more pages are freed
1214 * off fuller lists instead of spinning excessively around empty
1215 * lists
5f8dcc21
MG
1216 */
1217 do {
a6f9edd6 1218 batch_free++;
5f8dcc21
MG
1219 if (++migratetype == MIGRATE_PCPTYPES)
1220 migratetype = 0;
1221 list = &pcp->lists[migratetype];
1222 } while (list_empty(list));
48db57f8 1223
1d16871d
NK
1224 /* This is the only non-empty list. Free them all. */
1225 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1226 batch_free = count;
1d16871d 1227
a6f9edd6 1228 do {
a16601c5 1229 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1230 /* must delete to avoid corrupting pcp list */
a6f9edd6 1231 list_del(&page->lru);
77ba9062 1232 pcp->count--;
aa016d14 1233
4db7548c
MG
1234 if (bulkfree_pcp_prepare(page))
1235 continue;
1236
0a5f4e5b 1237 list_add_tail(&page->lru, &head);
97334162
AL
1238
1239 /*
1240 * We are going to put the page back to the global
1241 * pool, prefetch its buddy to speed up later access
1242 * under zone->lock. It is believed the overhead of
1243 * an additional test and calculating buddy_pfn here
1244 * can be offset by reduced memory latency later. To
1245 * avoid excessive prefetching due to large count, only
1246 * prefetch buddy for the first pcp->batch nr of pages.
1247 */
1248 if (prefetch_nr++ < pcp->batch)
1249 prefetch_buddy(page);
e5b31ac2 1250 } while (--count && --batch_free && !list_empty(list));
1da177e4 1251 }
0a5f4e5b
AL
1252
1253 spin_lock(&zone->lock);
1254 isolated_pageblocks = has_isolate_pageblock(zone);
1255
1256 /*
1257 * Use safe version since after __free_one_page(),
1258 * page->lru.next will not point to original list.
1259 */
1260 list_for_each_entry_safe(page, tmp, &head, lru) {
1261 int mt = get_pcppage_migratetype(page);
1262 /* MIGRATE_ISOLATE page should not go to pcplists */
1263 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1264 /* Pageblock could have been isolated meanwhile */
1265 if (unlikely(isolated_pageblocks))
1266 mt = get_pageblock_migratetype(page);
1267
1268 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1269 trace_mm_page_pcpu_drain(page, 0, mt);
1270 }
d34b0733 1271 spin_unlock(&zone->lock);
1da177e4
LT
1272}
1273
dc4b0caf
MG
1274static void free_one_page(struct zone *zone,
1275 struct page *page, unsigned long pfn,
7aeb09f9 1276 unsigned int order,
ed0ae21d 1277 int migratetype)
1da177e4 1278{
d34b0733 1279 spin_lock(&zone->lock);
ad53f92e
JK
1280 if (unlikely(has_isolate_pageblock(zone) ||
1281 is_migrate_isolate(migratetype))) {
1282 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1283 }
dc4b0caf 1284 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1285 spin_unlock(&zone->lock);
48db57f8
NP
1286}
1287
1e8ce83c 1288static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1289 unsigned long zone, int nid)
1e8ce83c 1290{
d0dc12e8 1291 mm_zero_struct_page(page);
1e8ce83c 1292 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1293 init_page_count(page);
1294 page_mapcount_reset(page);
1295 page_cpupid_reset_last(page);
2813b9c0 1296 page_kasan_tag_reset(page);
1e8ce83c 1297
1e8ce83c
RH
1298 INIT_LIST_HEAD(&page->lru);
1299#ifdef WANT_PAGE_VIRTUAL
1300 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1301 if (!is_highmem_idx(zone))
1302 set_page_address(page, __va(pfn << PAGE_SHIFT));
1303#endif
1304}
1305
7e18adb4 1306#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1307static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1308{
1309 pg_data_t *pgdat;
1310 int nid, zid;
1311
1312 if (!early_page_uninitialised(pfn))
1313 return;
1314
1315 nid = early_pfn_to_nid(pfn);
1316 pgdat = NODE_DATA(nid);
1317
1318 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1319 struct zone *zone = &pgdat->node_zones[zid];
1320
1321 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1322 break;
1323 }
d0dc12e8 1324 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1325}
1326#else
1327static inline void init_reserved_page(unsigned long pfn)
1328{
1329}
1330#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1331
92923ca3
NZ
1332/*
1333 * Initialised pages do not have PageReserved set. This function is
1334 * called for each range allocated by the bootmem allocator and
1335 * marks the pages PageReserved. The remaining valid pages are later
1336 * sent to the buddy page allocator.
1337 */
4b50bcc7 1338void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1339{
1340 unsigned long start_pfn = PFN_DOWN(start);
1341 unsigned long end_pfn = PFN_UP(end);
1342
7e18adb4
MG
1343 for (; start_pfn < end_pfn; start_pfn++) {
1344 if (pfn_valid(start_pfn)) {
1345 struct page *page = pfn_to_page(start_pfn);
1346
1347 init_reserved_page(start_pfn);
1d798ca3
KS
1348
1349 /* Avoid false-positive PageTail() */
1350 INIT_LIST_HEAD(&page->lru);
1351
d483da5b
AD
1352 /*
1353 * no need for atomic set_bit because the struct
1354 * page is not visible yet so nobody should
1355 * access it yet.
1356 */
1357 __SetPageReserved(page);
7e18adb4
MG
1358 }
1359 }
92923ca3
NZ
1360}
1361
ec95f53a
KM
1362static void __free_pages_ok(struct page *page, unsigned int order)
1363{
d34b0733 1364 unsigned long flags;
95e34412 1365 int migratetype;
dc4b0caf 1366 unsigned long pfn = page_to_pfn(page);
ec95f53a 1367
e2769dbd 1368 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1369 return;
1370
cfc47a28 1371 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1372 local_irq_save(flags);
1373 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1374 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1375 local_irq_restore(flags);
1da177e4
LT
1376}
1377
a9cd410a 1378void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1379{
c3993076 1380 unsigned int nr_pages = 1 << order;
e2d0bd2b 1381 struct page *p = page;
c3993076 1382 unsigned int loop;
a226f6c8 1383
e2d0bd2b
YL
1384 prefetchw(p);
1385 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1386 prefetchw(p + 1);
c3993076
JW
1387 __ClearPageReserved(p);
1388 set_page_count(p, 0);
a226f6c8 1389 }
e2d0bd2b
YL
1390 __ClearPageReserved(p);
1391 set_page_count(p, 0);
c3993076 1392
9705bea5 1393 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1394 set_page_refcounted(page);
1395 __free_pages(page, order);
a226f6c8
DH
1396}
1397
75a592a4
MG
1398#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1399 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1400
75a592a4
MG
1401static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1402
1403int __meminit early_pfn_to_nid(unsigned long pfn)
1404{
7ace9917 1405 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1406 int nid;
1407
7ace9917 1408 spin_lock(&early_pfn_lock);
75a592a4 1409 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1410 if (nid < 0)
e4568d38 1411 nid = first_online_node;
7ace9917
MG
1412 spin_unlock(&early_pfn_lock);
1413
1414 return nid;
75a592a4
MG
1415}
1416#endif
1417
1418#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1419/* Only safe to use early in boot when initialisation is single-threaded */
1420static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1421{
1422 int nid;
1423
56ec43d8 1424 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1425 if (nid >= 0 && nid != node)
1426 return false;
1427 return true;
1428}
1429
75a592a4 1430#else
75a592a4
MG
1431static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1432{
1433 return true;
1434}
75a592a4
MG
1435#endif
1436
1437
7c2ee349 1438void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1439 unsigned int order)
1440{
1441 if (early_page_uninitialised(pfn))
1442 return;
a9cd410a 1443 __free_pages_core(page, order);
3a80a7fa
MG
1444}
1445
7cf91a98
JK
1446/*
1447 * Check that the whole (or subset of) a pageblock given by the interval of
1448 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1449 * with the migration of free compaction scanner. The scanners then need to
1450 * use only pfn_valid_within() check for arches that allow holes within
1451 * pageblocks.
1452 *
1453 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1454 *
1455 * It's possible on some configurations to have a setup like node0 node1 node0
1456 * i.e. it's possible that all pages within a zones range of pages do not
1457 * belong to a single zone. We assume that a border between node0 and node1
1458 * can occur within a single pageblock, but not a node0 node1 node0
1459 * interleaving within a single pageblock. It is therefore sufficient to check
1460 * the first and last page of a pageblock and avoid checking each individual
1461 * page in a pageblock.
1462 */
1463struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1464 unsigned long end_pfn, struct zone *zone)
1465{
1466 struct page *start_page;
1467 struct page *end_page;
1468
1469 /* end_pfn is one past the range we are checking */
1470 end_pfn--;
1471
1472 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1473 return NULL;
1474
2d070eab
MH
1475 start_page = pfn_to_online_page(start_pfn);
1476 if (!start_page)
1477 return NULL;
7cf91a98
JK
1478
1479 if (page_zone(start_page) != zone)
1480 return NULL;
1481
1482 end_page = pfn_to_page(end_pfn);
1483
1484 /* This gives a shorter code than deriving page_zone(end_page) */
1485 if (page_zone_id(start_page) != page_zone_id(end_page))
1486 return NULL;
1487
1488 return start_page;
1489}
1490
1491void set_zone_contiguous(struct zone *zone)
1492{
1493 unsigned long block_start_pfn = zone->zone_start_pfn;
1494 unsigned long block_end_pfn;
1495
1496 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1497 for (; block_start_pfn < zone_end_pfn(zone);
1498 block_start_pfn = block_end_pfn,
1499 block_end_pfn += pageblock_nr_pages) {
1500
1501 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1502
1503 if (!__pageblock_pfn_to_page(block_start_pfn,
1504 block_end_pfn, zone))
1505 return;
1506 }
1507
1508 /* We confirm that there is no hole */
1509 zone->contiguous = true;
1510}
1511
1512void clear_zone_contiguous(struct zone *zone)
1513{
1514 zone->contiguous = false;
1515}
1516
7e18adb4 1517#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1518static void __init deferred_free_range(unsigned long pfn,
1519 unsigned long nr_pages)
a4de83dd 1520{
2f47a91f
PT
1521 struct page *page;
1522 unsigned long i;
a4de83dd 1523
2f47a91f 1524 if (!nr_pages)
a4de83dd
MG
1525 return;
1526
2f47a91f
PT
1527 page = pfn_to_page(pfn);
1528
a4de83dd 1529 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1530 if (nr_pages == pageblock_nr_pages &&
1531 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1532 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1533 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1534 return;
1535 }
1536
e780149b
XQ
1537 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1538 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1539 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1540 __free_pages_core(page, 0);
e780149b 1541 }
a4de83dd
MG
1542}
1543
d3cd131d
NS
1544/* Completion tracking for deferred_init_memmap() threads */
1545static atomic_t pgdat_init_n_undone __initdata;
1546static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1547
1548static inline void __init pgdat_init_report_one_done(void)
1549{
1550 if (atomic_dec_and_test(&pgdat_init_n_undone))
1551 complete(&pgdat_init_all_done_comp);
1552}
0e1cc95b 1553
2f47a91f 1554/*
80b1f41c
PT
1555 * Returns true if page needs to be initialized or freed to buddy allocator.
1556 *
1557 * First we check if pfn is valid on architectures where it is possible to have
1558 * holes within pageblock_nr_pages. On systems where it is not possible, this
1559 * function is optimized out.
1560 *
1561 * Then, we check if a current large page is valid by only checking the validity
1562 * of the head pfn.
2f47a91f 1563 */
56ec43d8 1564static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1565{
80b1f41c
PT
1566 if (!pfn_valid_within(pfn))
1567 return false;
1568 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1569 return false;
80b1f41c
PT
1570 return true;
1571}
2f47a91f 1572
80b1f41c
PT
1573/*
1574 * Free pages to buddy allocator. Try to free aligned pages in
1575 * pageblock_nr_pages sizes.
1576 */
56ec43d8 1577static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1578 unsigned long end_pfn)
1579{
80b1f41c
PT
1580 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1581 unsigned long nr_free = 0;
2f47a91f 1582
80b1f41c 1583 for (; pfn < end_pfn; pfn++) {
56ec43d8 1584 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1585 deferred_free_range(pfn - nr_free, nr_free);
1586 nr_free = 0;
1587 } else if (!(pfn & nr_pgmask)) {
1588 deferred_free_range(pfn - nr_free, nr_free);
1589 nr_free = 1;
3a2d7fa8 1590 touch_nmi_watchdog();
80b1f41c
PT
1591 } else {
1592 nr_free++;
1593 }
1594 }
1595 /* Free the last block of pages to allocator */
1596 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1597}
1598
80b1f41c
PT
1599/*
1600 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1601 * by performing it only once every pageblock_nr_pages.
1602 * Return number of pages initialized.
1603 */
56ec43d8 1604static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1605 unsigned long pfn,
1606 unsigned long end_pfn)
2f47a91f 1607{
2f47a91f 1608 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1609 int nid = zone_to_nid(zone);
2f47a91f 1610 unsigned long nr_pages = 0;
56ec43d8 1611 int zid = zone_idx(zone);
2f47a91f 1612 struct page *page = NULL;
2f47a91f 1613
80b1f41c 1614 for (; pfn < end_pfn; pfn++) {
56ec43d8 1615 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1616 page = NULL;
2f47a91f 1617 continue;
80b1f41c 1618 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1619 page = pfn_to_page(pfn);
3a2d7fa8 1620 touch_nmi_watchdog();
80b1f41c
PT
1621 } else {
1622 page++;
2f47a91f 1623 }
d0dc12e8 1624 __init_single_page(page, pfn, zid, nid);
80b1f41c 1625 nr_pages++;
2f47a91f 1626 }
80b1f41c 1627 return (nr_pages);
2f47a91f
PT
1628}
1629
0e56acae
AD
1630/*
1631 * This function is meant to pre-load the iterator for the zone init.
1632 * Specifically it walks through the ranges until we are caught up to the
1633 * first_init_pfn value and exits there. If we never encounter the value we
1634 * return false indicating there are no valid ranges left.
1635 */
1636static bool __init
1637deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1638 unsigned long *spfn, unsigned long *epfn,
1639 unsigned long first_init_pfn)
1640{
1641 u64 j;
1642
1643 /*
1644 * Start out by walking through the ranges in this zone that have
1645 * already been initialized. We don't need to do anything with them
1646 * so we just need to flush them out of the system.
1647 */
1648 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1649 if (*epfn <= first_init_pfn)
1650 continue;
1651 if (*spfn < first_init_pfn)
1652 *spfn = first_init_pfn;
1653 *i = j;
1654 return true;
1655 }
1656
1657 return false;
1658}
1659
1660/*
1661 * Initialize and free pages. We do it in two loops: first we initialize
1662 * struct page, then free to buddy allocator, because while we are
1663 * freeing pages we can access pages that are ahead (computing buddy
1664 * page in __free_one_page()).
1665 *
1666 * In order to try and keep some memory in the cache we have the loop
1667 * broken along max page order boundaries. This way we will not cause
1668 * any issues with the buddy page computation.
1669 */
1670static unsigned long __init
1671deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1672 unsigned long *end_pfn)
1673{
1674 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1675 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1676 unsigned long nr_pages = 0;
1677 u64 j = *i;
1678
1679 /* First we loop through and initialize the page values */
1680 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1681 unsigned long t;
1682
1683 if (mo_pfn <= *start_pfn)
1684 break;
1685
1686 t = min(mo_pfn, *end_pfn);
1687 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1688
1689 if (mo_pfn < *end_pfn) {
1690 *start_pfn = mo_pfn;
1691 break;
1692 }
1693 }
1694
1695 /* Reset values and now loop through freeing pages as needed */
1696 swap(j, *i);
1697
1698 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1699 unsigned long t;
1700
1701 if (mo_pfn <= spfn)
1702 break;
1703
1704 t = min(mo_pfn, epfn);
1705 deferred_free_pages(spfn, t);
1706
1707 if (mo_pfn <= epfn)
1708 break;
1709 }
1710
1711 return nr_pages;
1712}
1713
7e18adb4 1714/* Initialise remaining memory on a node */
0e1cc95b 1715static int __init deferred_init_memmap(void *data)
7e18adb4 1716{
0e1cc95b 1717 pg_data_t *pgdat = data;
0e56acae
AD
1718 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1719 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1720 unsigned long first_init_pfn, flags;
7e18adb4 1721 unsigned long start = jiffies;
7e18adb4 1722 struct zone *zone;
0e56acae 1723 int zid;
2f47a91f 1724 u64 i;
7e18adb4 1725
3a2d7fa8
PT
1726 /* Bind memory initialisation thread to a local node if possible */
1727 if (!cpumask_empty(cpumask))
1728 set_cpus_allowed_ptr(current, cpumask);
1729
1730 pgdat_resize_lock(pgdat, &flags);
1731 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1732 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1733 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1734 pgdat_init_report_one_done();
0e1cc95b
MG
1735 return 0;
1736 }
1737
7e18adb4
MG
1738 /* Sanity check boundaries */
1739 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1740 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1741 pgdat->first_deferred_pfn = ULONG_MAX;
1742
1743 /* Only the highest zone is deferred so find it */
1744 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1745 zone = pgdat->node_zones + zid;
1746 if (first_init_pfn < zone_end_pfn(zone))
1747 break;
1748 }
0e56acae
AD
1749
1750 /* If the zone is empty somebody else may have cleared out the zone */
1751 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1752 first_init_pfn))
1753 goto zone_empty;
7e18adb4 1754
80b1f41c 1755 /*
0e56acae
AD
1756 * Initialize and free pages in MAX_ORDER sized increments so
1757 * that we can avoid introducing any issues with the buddy
1758 * allocator.
80b1f41c 1759 */
0e56acae
AD
1760 while (spfn < epfn)
1761 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1762zone_empty:
3a2d7fa8 1763 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1764
1765 /* Sanity check that the next zone really is unpopulated */
1766 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1767
837566e7
AD
1768 pr_info("node %d initialised, %lu pages in %ums\n",
1769 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1770
1771 pgdat_init_report_one_done();
0e1cc95b
MG
1772 return 0;
1773}
c9e97a19 1774
c9e97a19
PT
1775/*
1776 * If this zone has deferred pages, try to grow it by initializing enough
1777 * deferred pages to satisfy the allocation specified by order, rounded up to
1778 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1779 * of SECTION_SIZE bytes by initializing struct pages in increments of
1780 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1781 *
1782 * Return true when zone was grown, otherwise return false. We return true even
1783 * when we grow less than requested, to let the caller decide if there are
1784 * enough pages to satisfy the allocation.
1785 *
1786 * Note: We use noinline because this function is needed only during boot, and
1787 * it is called from a __ref function _deferred_grow_zone. This way we are
1788 * making sure that it is not inlined into permanent text section.
1789 */
1790static noinline bool __init
1791deferred_grow_zone(struct zone *zone, unsigned int order)
1792{
c9e97a19 1793 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1794 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1795 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1796 unsigned long spfn, epfn, flags;
1797 unsigned long nr_pages = 0;
c9e97a19
PT
1798 u64 i;
1799
1800 /* Only the last zone may have deferred pages */
1801 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1802 return false;
1803
1804 pgdat_resize_lock(pgdat, &flags);
1805
1806 /*
1807 * If deferred pages have been initialized while we were waiting for
1808 * the lock, return true, as the zone was grown. The caller will retry
1809 * this zone. We won't return to this function since the caller also
1810 * has this static branch.
1811 */
1812 if (!static_branch_unlikely(&deferred_pages)) {
1813 pgdat_resize_unlock(pgdat, &flags);
1814 return true;
1815 }
1816
1817 /*
1818 * If someone grew this zone while we were waiting for spinlock, return
1819 * true, as there might be enough pages already.
1820 */
1821 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1822 pgdat_resize_unlock(pgdat, &flags);
1823 return true;
1824 }
1825
0e56acae
AD
1826 /* If the zone is empty somebody else may have cleared out the zone */
1827 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1828 first_deferred_pfn)) {
1829 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1830 pgdat_resize_unlock(pgdat, &flags);
0e56acae 1831 return true;
c9e97a19
PT
1832 }
1833
0e56acae
AD
1834 /*
1835 * Initialize and free pages in MAX_ORDER sized increments so
1836 * that we can avoid introducing any issues with the buddy
1837 * allocator.
1838 */
1839 while (spfn < epfn) {
1840 /* update our first deferred PFN for this section */
1841 first_deferred_pfn = spfn;
1842
1843 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1844
0e56acae
AD
1845 /* We should only stop along section boundaries */
1846 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1847 continue;
c9e97a19 1848
0e56acae 1849 /* If our quota has been met we can stop here */
c9e97a19
PT
1850 if (nr_pages >= nr_pages_needed)
1851 break;
1852 }
1853
0e56acae 1854 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1855 pgdat_resize_unlock(pgdat, &flags);
1856
1857 return nr_pages > 0;
1858}
1859
1860/*
1861 * deferred_grow_zone() is __init, but it is called from
1862 * get_page_from_freelist() during early boot until deferred_pages permanently
1863 * disables this call. This is why we have refdata wrapper to avoid warning,
1864 * and to ensure that the function body gets unloaded.
1865 */
1866static bool __ref
1867_deferred_grow_zone(struct zone *zone, unsigned int order)
1868{
1869 return deferred_grow_zone(zone, order);
1870}
1871
7cf91a98 1872#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1873
1874void __init page_alloc_init_late(void)
1875{
7cf91a98
JK
1876 struct zone *zone;
1877
1878#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1879 int nid;
1880
d3cd131d
NS
1881 /* There will be num_node_state(N_MEMORY) threads */
1882 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1883 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1884 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1885 }
1886
1887 /* Block until all are initialised */
d3cd131d 1888 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1889
c9e97a19
PT
1890 /*
1891 * We initialized the rest of the deferred pages. Permanently disable
1892 * on-demand struct page initialization.
1893 */
1894 static_branch_disable(&deferred_pages);
1895
4248b0da
MG
1896 /* Reinit limits that are based on free pages after the kernel is up */
1897 files_maxfiles_init();
7cf91a98 1898#endif
3010f876
PT
1899#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1900 /* Discard memblock private memory */
1901 memblock_discard();
1902#endif
7cf91a98
JK
1903
1904 for_each_populated_zone(zone)
1905 set_zone_contiguous(zone);
7e18adb4 1906}
7e18adb4 1907
47118af0 1908#ifdef CONFIG_CMA
9cf510a5 1909/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1910void __init init_cma_reserved_pageblock(struct page *page)
1911{
1912 unsigned i = pageblock_nr_pages;
1913 struct page *p = page;
1914
1915 do {
1916 __ClearPageReserved(p);
1917 set_page_count(p, 0);
d883c6cf 1918 } while (++p, --i);
47118af0 1919
47118af0 1920 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1921
1922 if (pageblock_order >= MAX_ORDER) {
1923 i = pageblock_nr_pages;
1924 p = page;
1925 do {
1926 set_page_refcounted(p);
1927 __free_pages(p, MAX_ORDER - 1);
1928 p += MAX_ORDER_NR_PAGES;
1929 } while (i -= MAX_ORDER_NR_PAGES);
1930 } else {
1931 set_page_refcounted(page);
1932 __free_pages(page, pageblock_order);
1933 }
1934
3dcc0571 1935 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1936}
1937#endif
1da177e4
LT
1938
1939/*
1940 * The order of subdivision here is critical for the IO subsystem.
1941 * Please do not alter this order without good reasons and regression
1942 * testing. Specifically, as large blocks of memory are subdivided,
1943 * the order in which smaller blocks are delivered depends on the order
1944 * they're subdivided in this function. This is the primary factor
1945 * influencing the order in which pages are delivered to the IO
1946 * subsystem according to empirical testing, and this is also justified
1947 * by considering the behavior of a buddy system containing a single
1948 * large block of memory acted on by a series of small allocations.
1949 * This behavior is a critical factor in sglist merging's success.
1950 *
6d49e352 1951 * -- nyc
1da177e4 1952 */
085cc7d5 1953static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1954 int low, int high, struct free_area *area,
1955 int migratetype)
1da177e4
LT
1956{
1957 unsigned long size = 1 << high;
1958
1959 while (high > low) {
1960 area--;
1961 high--;
1962 size >>= 1;
309381fe 1963 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1964
acbc15a4
JK
1965 /*
1966 * Mark as guard pages (or page), that will allow to
1967 * merge back to allocator when buddy will be freed.
1968 * Corresponding page table entries will not be touched,
1969 * pages will stay not present in virtual address space
1970 */
1971 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1972 continue;
acbc15a4 1973
b2a0ac88 1974 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1975 area->nr_free++;
1976 set_page_order(&page[size], high);
1977 }
1da177e4
LT
1978}
1979
4e611801 1980static void check_new_page_bad(struct page *page)
1da177e4 1981{
4e611801
VB
1982 const char *bad_reason = NULL;
1983 unsigned long bad_flags = 0;
7bfec6f4 1984
53f9263b 1985 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1986 bad_reason = "nonzero mapcount";
1987 if (unlikely(page->mapping != NULL))
1988 bad_reason = "non-NULL mapping";
fe896d18 1989 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1990 bad_reason = "nonzero _count";
f4c18e6f
NH
1991 if (unlikely(page->flags & __PG_HWPOISON)) {
1992 bad_reason = "HWPoisoned (hardware-corrupted)";
1993 bad_flags = __PG_HWPOISON;
e570f56c
NH
1994 /* Don't complain about hwpoisoned pages */
1995 page_mapcount_reset(page); /* remove PageBuddy */
1996 return;
f4c18e6f 1997 }
f0b791a3
DH
1998 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1999 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2000 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2001 }
9edad6ea
JW
2002#ifdef CONFIG_MEMCG
2003 if (unlikely(page->mem_cgroup))
2004 bad_reason = "page still charged to cgroup";
2005#endif
4e611801
VB
2006 bad_page(page, bad_reason, bad_flags);
2007}
2008
2009/*
2010 * This page is about to be returned from the page allocator
2011 */
2012static inline int check_new_page(struct page *page)
2013{
2014 if (likely(page_expected_state(page,
2015 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2016 return 0;
2017
2018 check_new_page_bad(page);
2019 return 1;
2a7684a2
WF
2020}
2021
bd33ef36 2022static inline bool free_pages_prezeroed(void)
1414c7f4
LA
2023{
2024 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 2025 page_poisoning_enabled();
1414c7f4
LA
2026}
2027
479f854a
MG
2028#ifdef CONFIG_DEBUG_VM
2029static bool check_pcp_refill(struct page *page)
2030{
2031 return false;
2032}
2033
2034static bool check_new_pcp(struct page *page)
2035{
2036 return check_new_page(page);
2037}
2038#else
2039static bool check_pcp_refill(struct page *page)
2040{
2041 return check_new_page(page);
2042}
2043static bool check_new_pcp(struct page *page)
2044{
2045 return false;
2046}
2047#endif /* CONFIG_DEBUG_VM */
2048
2049static bool check_new_pages(struct page *page, unsigned int order)
2050{
2051 int i;
2052 for (i = 0; i < (1 << order); i++) {
2053 struct page *p = page + i;
2054
2055 if (unlikely(check_new_page(p)))
2056 return true;
2057 }
2058
2059 return false;
2060}
2061
46f24fd8
JK
2062inline void post_alloc_hook(struct page *page, unsigned int order,
2063 gfp_t gfp_flags)
2064{
2065 set_page_private(page, 0);
2066 set_page_refcounted(page);
2067
2068 arch_alloc_page(page, order);
d6332692
RE
2069 if (debug_pagealloc_enabled())
2070 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2071 kasan_alloc_pages(page, order);
4117992d 2072 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2073 set_page_owner(page, order, gfp_flags);
2074}
2075
479f854a 2076static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2077 unsigned int alloc_flags)
2a7684a2
WF
2078{
2079 int i;
689bcebf 2080
46f24fd8 2081 post_alloc_hook(page, order, gfp_flags);
17cf4406 2082
bd33ef36 2083 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
2084 for (i = 0; i < (1 << order); i++)
2085 clear_highpage(page + i);
17cf4406
NP
2086
2087 if (order && (gfp_flags & __GFP_COMP))
2088 prep_compound_page(page, order);
2089
75379191 2090 /*
2f064f34 2091 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2092 * allocate the page. The expectation is that the caller is taking
2093 * steps that will free more memory. The caller should avoid the page
2094 * being used for !PFMEMALLOC purposes.
2095 */
2f064f34
MH
2096 if (alloc_flags & ALLOC_NO_WATERMARKS)
2097 set_page_pfmemalloc(page);
2098 else
2099 clear_page_pfmemalloc(page);
1da177e4
LT
2100}
2101
56fd56b8
MG
2102/*
2103 * Go through the free lists for the given migratetype and remove
2104 * the smallest available page from the freelists
2105 */
85ccc8fa 2106static __always_inline
728ec980 2107struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2108 int migratetype)
2109{
2110 unsigned int current_order;
b8af2941 2111 struct free_area *area;
56fd56b8
MG
2112 struct page *page;
2113
2114 /* Find a page of the appropriate size in the preferred list */
2115 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2116 area = &(zone->free_area[current_order]);
a16601c5 2117 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 2118 struct page, lru);
a16601c5
GT
2119 if (!page)
2120 continue;
56fd56b8
MG
2121 list_del(&page->lru);
2122 rmv_page_order(page);
2123 area->nr_free--;
56fd56b8 2124 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2125 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2126 return page;
2127 }
2128
2129 return NULL;
2130}
2131
2132
b2a0ac88
MG
2133/*
2134 * This array describes the order lists are fallen back to when
2135 * the free lists for the desirable migrate type are depleted
2136 */
47118af0 2137static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2138 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2139 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2140 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2141#ifdef CONFIG_CMA
974a786e 2142 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2143#endif
194159fb 2144#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2145 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2146#endif
b2a0ac88
MG
2147};
2148
dc67647b 2149#ifdef CONFIG_CMA
85ccc8fa 2150static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2151 unsigned int order)
2152{
2153 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2154}
2155#else
2156static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2157 unsigned int order) { return NULL; }
2158#endif
2159
c361be55
MG
2160/*
2161 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2162 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2163 * boundary. If alignment is required, use move_freepages_block()
2164 */
02aa0cdd 2165static int move_freepages(struct zone *zone,
b69a7288 2166 struct page *start_page, struct page *end_page,
02aa0cdd 2167 int migratetype, int *num_movable)
c361be55
MG
2168{
2169 struct page *page;
d00181b9 2170 unsigned int order;
d100313f 2171 int pages_moved = 0;
c361be55
MG
2172
2173#ifndef CONFIG_HOLES_IN_ZONE
2174 /*
2175 * page_zone is not safe to call in this context when
2176 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2177 * anyway as we check zone boundaries in move_freepages_block().
2178 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2179 * grouping pages by mobility
c361be55 2180 */
3e04040d
AB
2181 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2182 pfn_valid(page_to_pfn(end_page)) &&
2183 page_zone(start_page) != page_zone(end_page));
c361be55 2184#endif
c361be55
MG
2185 for (page = start_page; page <= end_page;) {
2186 if (!pfn_valid_within(page_to_pfn(page))) {
2187 page++;
2188 continue;
2189 }
2190
f073bdc5
AB
2191 /* Make sure we are not inadvertently changing nodes */
2192 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2193
c361be55 2194 if (!PageBuddy(page)) {
02aa0cdd
VB
2195 /*
2196 * We assume that pages that could be isolated for
2197 * migration are movable. But we don't actually try
2198 * isolating, as that would be expensive.
2199 */
2200 if (num_movable &&
2201 (PageLRU(page) || __PageMovable(page)))
2202 (*num_movable)++;
2203
c361be55
MG
2204 page++;
2205 continue;
2206 }
2207
2208 order = page_order(page);
84be48d8
KS
2209 list_move(&page->lru,
2210 &zone->free_area[order].free_list[migratetype]);
c361be55 2211 page += 1 << order;
d100313f 2212 pages_moved += 1 << order;
c361be55
MG
2213 }
2214
d100313f 2215 return pages_moved;
c361be55
MG
2216}
2217
ee6f509c 2218int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2219 int migratetype, int *num_movable)
c361be55
MG
2220{
2221 unsigned long start_pfn, end_pfn;
2222 struct page *start_page, *end_page;
2223
4a222127
DR
2224 if (num_movable)
2225 *num_movable = 0;
2226
c361be55 2227 start_pfn = page_to_pfn(page);
d9c23400 2228 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2229 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2230 end_page = start_page + pageblock_nr_pages - 1;
2231 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2232
2233 /* Do not cross zone boundaries */
108bcc96 2234 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2235 start_page = page;
108bcc96 2236 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2237 return 0;
2238
02aa0cdd
VB
2239 return move_freepages(zone, start_page, end_page, migratetype,
2240 num_movable);
c361be55
MG
2241}
2242
2f66a68f
MG
2243static void change_pageblock_range(struct page *pageblock_page,
2244 int start_order, int migratetype)
2245{
2246 int nr_pageblocks = 1 << (start_order - pageblock_order);
2247
2248 while (nr_pageblocks--) {
2249 set_pageblock_migratetype(pageblock_page, migratetype);
2250 pageblock_page += pageblock_nr_pages;
2251 }
2252}
2253
fef903ef 2254/*
9c0415eb
VB
2255 * When we are falling back to another migratetype during allocation, try to
2256 * steal extra free pages from the same pageblocks to satisfy further
2257 * allocations, instead of polluting multiple pageblocks.
2258 *
2259 * If we are stealing a relatively large buddy page, it is likely there will
2260 * be more free pages in the pageblock, so try to steal them all. For
2261 * reclaimable and unmovable allocations, we steal regardless of page size,
2262 * as fragmentation caused by those allocations polluting movable pageblocks
2263 * is worse than movable allocations stealing from unmovable and reclaimable
2264 * pageblocks.
fef903ef 2265 */
4eb7dce6
JK
2266static bool can_steal_fallback(unsigned int order, int start_mt)
2267{
2268 /*
2269 * Leaving this order check is intended, although there is
2270 * relaxed order check in next check. The reason is that
2271 * we can actually steal whole pageblock if this condition met,
2272 * but, below check doesn't guarantee it and that is just heuristic
2273 * so could be changed anytime.
2274 */
2275 if (order >= pageblock_order)
2276 return true;
2277
2278 if (order >= pageblock_order / 2 ||
2279 start_mt == MIGRATE_RECLAIMABLE ||
2280 start_mt == MIGRATE_UNMOVABLE ||
2281 page_group_by_mobility_disabled)
2282 return true;
2283
2284 return false;
2285}
2286
1c30844d
MG
2287static inline void boost_watermark(struct zone *zone)
2288{
2289 unsigned long max_boost;
2290
2291 if (!watermark_boost_factor)
2292 return;
2293
2294 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2295 watermark_boost_factor, 10000);
94b3334c
MG
2296
2297 /*
2298 * high watermark may be uninitialised if fragmentation occurs
2299 * very early in boot so do not boost. We do not fall
2300 * through and boost by pageblock_nr_pages as failing
2301 * allocations that early means that reclaim is not going
2302 * to help and it may even be impossible to reclaim the
2303 * boosted watermark resulting in a hang.
2304 */
2305 if (!max_boost)
2306 return;
2307
1c30844d
MG
2308 max_boost = max(pageblock_nr_pages, max_boost);
2309
2310 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2311 max_boost);
2312}
2313
4eb7dce6
JK
2314/*
2315 * This function implements actual steal behaviour. If order is large enough,
2316 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2317 * pageblock to our migratetype and determine how many already-allocated pages
2318 * are there in the pageblock with a compatible migratetype. If at least half
2319 * of pages are free or compatible, we can change migratetype of the pageblock
2320 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2321 */
2322static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2323 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2324{
d00181b9 2325 unsigned int current_order = page_order(page);
3bc48f96 2326 struct free_area *area;
02aa0cdd
VB
2327 int free_pages, movable_pages, alike_pages;
2328 int old_block_type;
2329
2330 old_block_type = get_pageblock_migratetype(page);
fef903ef 2331
3bc48f96
VB
2332 /*
2333 * This can happen due to races and we want to prevent broken
2334 * highatomic accounting.
2335 */
02aa0cdd 2336 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2337 goto single_page;
2338
fef903ef
SB
2339 /* Take ownership for orders >= pageblock_order */
2340 if (current_order >= pageblock_order) {
2341 change_pageblock_range(page, current_order, start_type);
3bc48f96 2342 goto single_page;
fef903ef
SB
2343 }
2344
1c30844d
MG
2345 /*
2346 * Boost watermarks to increase reclaim pressure to reduce the
2347 * likelihood of future fallbacks. Wake kswapd now as the node
2348 * may be balanced overall and kswapd will not wake naturally.
2349 */
2350 boost_watermark(zone);
2351 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2352 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2353
3bc48f96
VB
2354 /* We are not allowed to try stealing from the whole block */
2355 if (!whole_block)
2356 goto single_page;
2357
02aa0cdd
VB
2358 free_pages = move_freepages_block(zone, page, start_type,
2359 &movable_pages);
2360 /*
2361 * Determine how many pages are compatible with our allocation.
2362 * For movable allocation, it's the number of movable pages which
2363 * we just obtained. For other types it's a bit more tricky.
2364 */
2365 if (start_type == MIGRATE_MOVABLE) {
2366 alike_pages = movable_pages;
2367 } else {
2368 /*
2369 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2370 * to MOVABLE pageblock, consider all non-movable pages as
2371 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2372 * vice versa, be conservative since we can't distinguish the
2373 * exact migratetype of non-movable pages.
2374 */
2375 if (old_block_type == MIGRATE_MOVABLE)
2376 alike_pages = pageblock_nr_pages
2377 - (free_pages + movable_pages);
2378 else
2379 alike_pages = 0;
2380 }
2381
3bc48f96 2382 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2383 if (!free_pages)
3bc48f96 2384 goto single_page;
fef903ef 2385
02aa0cdd
VB
2386 /*
2387 * If a sufficient number of pages in the block are either free or of
2388 * comparable migratability as our allocation, claim the whole block.
2389 */
2390 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2391 page_group_by_mobility_disabled)
2392 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2393
2394 return;
2395
2396single_page:
2397 area = &zone->free_area[current_order];
2398 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2399}
2400
2149cdae
JK
2401/*
2402 * Check whether there is a suitable fallback freepage with requested order.
2403 * If only_stealable is true, this function returns fallback_mt only if
2404 * we can steal other freepages all together. This would help to reduce
2405 * fragmentation due to mixed migratetype pages in one pageblock.
2406 */
2407int find_suitable_fallback(struct free_area *area, unsigned int order,
2408 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2409{
2410 int i;
2411 int fallback_mt;
2412
2413 if (area->nr_free == 0)
2414 return -1;
2415
2416 *can_steal = false;
2417 for (i = 0;; i++) {
2418 fallback_mt = fallbacks[migratetype][i];
974a786e 2419 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2420 break;
2421
2422 if (list_empty(&area->free_list[fallback_mt]))
2423 continue;
fef903ef 2424
4eb7dce6
JK
2425 if (can_steal_fallback(order, migratetype))
2426 *can_steal = true;
2427
2149cdae
JK
2428 if (!only_stealable)
2429 return fallback_mt;
2430
2431 if (*can_steal)
2432 return fallback_mt;
fef903ef 2433 }
4eb7dce6
JK
2434
2435 return -1;
fef903ef
SB
2436}
2437
0aaa29a5
MG
2438/*
2439 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2440 * there are no empty page blocks that contain a page with a suitable order
2441 */
2442static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2443 unsigned int alloc_order)
2444{
2445 int mt;
2446 unsigned long max_managed, flags;
2447
2448 /*
2449 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2450 * Check is race-prone but harmless.
2451 */
9705bea5 2452 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2453 if (zone->nr_reserved_highatomic >= max_managed)
2454 return;
2455
2456 spin_lock_irqsave(&zone->lock, flags);
2457
2458 /* Recheck the nr_reserved_highatomic limit under the lock */
2459 if (zone->nr_reserved_highatomic >= max_managed)
2460 goto out_unlock;
2461
2462 /* Yoink! */
2463 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2464 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2465 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2466 zone->nr_reserved_highatomic += pageblock_nr_pages;
2467 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2468 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2469 }
2470
2471out_unlock:
2472 spin_unlock_irqrestore(&zone->lock, flags);
2473}
2474
2475/*
2476 * Used when an allocation is about to fail under memory pressure. This
2477 * potentially hurts the reliability of high-order allocations when under
2478 * intense memory pressure but failed atomic allocations should be easier
2479 * to recover from than an OOM.
29fac03b
MK
2480 *
2481 * If @force is true, try to unreserve a pageblock even though highatomic
2482 * pageblock is exhausted.
0aaa29a5 2483 */
29fac03b
MK
2484static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2485 bool force)
0aaa29a5
MG
2486{
2487 struct zonelist *zonelist = ac->zonelist;
2488 unsigned long flags;
2489 struct zoneref *z;
2490 struct zone *zone;
2491 struct page *page;
2492 int order;
04c8716f 2493 bool ret;
0aaa29a5
MG
2494
2495 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2496 ac->nodemask) {
29fac03b
MK
2497 /*
2498 * Preserve at least one pageblock unless memory pressure
2499 * is really high.
2500 */
2501 if (!force && zone->nr_reserved_highatomic <=
2502 pageblock_nr_pages)
0aaa29a5
MG
2503 continue;
2504
2505 spin_lock_irqsave(&zone->lock, flags);
2506 for (order = 0; order < MAX_ORDER; order++) {
2507 struct free_area *area = &(zone->free_area[order]);
2508
a16601c5
GT
2509 page = list_first_entry_or_null(
2510 &area->free_list[MIGRATE_HIGHATOMIC],
2511 struct page, lru);
2512 if (!page)
0aaa29a5
MG
2513 continue;
2514
0aaa29a5 2515 /*
4855e4a7
MK
2516 * In page freeing path, migratetype change is racy so
2517 * we can counter several free pages in a pageblock
2518 * in this loop althoug we changed the pageblock type
2519 * from highatomic to ac->migratetype. So we should
2520 * adjust the count once.
0aaa29a5 2521 */
a6ffdc07 2522 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2523 /*
2524 * It should never happen but changes to
2525 * locking could inadvertently allow a per-cpu
2526 * drain to add pages to MIGRATE_HIGHATOMIC
2527 * while unreserving so be safe and watch for
2528 * underflows.
2529 */
2530 zone->nr_reserved_highatomic -= min(
2531 pageblock_nr_pages,
2532 zone->nr_reserved_highatomic);
2533 }
0aaa29a5
MG
2534
2535 /*
2536 * Convert to ac->migratetype and avoid the normal
2537 * pageblock stealing heuristics. Minimally, the caller
2538 * is doing the work and needs the pages. More
2539 * importantly, if the block was always converted to
2540 * MIGRATE_UNMOVABLE or another type then the number
2541 * of pageblocks that cannot be completely freed
2542 * may increase.
2543 */
2544 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2545 ret = move_freepages_block(zone, page, ac->migratetype,
2546 NULL);
29fac03b
MK
2547 if (ret) {
2548 spin_unlock_irqrestore(&zone->lock, flags);
2549 return ret;
2550 }
0aaa29a5
MG
2551 }
2552 spin_unlock_irqrestore(&zone->lock, flags);
2553 }
04c8716f
MK
2554
2555 return false;
0aaa29a5
MG
2556}
2557
3bc48f96
VB
2558/*
2559 * Try finding a free buddy page on the fallback list and put it on the free
2560 * list of requested migratetype, possibly along with other pages from the same
2561 * block, depending on fragmentation avoidance heuristics. Returns true if
2562 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2563 *
2564 * The use of signed ints for order and current_order is a deliberate
2565 * deviation from the rest of this file, to make the for loop
2566 * condition simpler.
3bc48f96 2567 */
85ccc8fa 2568static __always_inline bool
6bb15450
MG
2569__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2570 unsigned int alloc_flags)
b2a0ac88 2571{
b8af2941 2572 struct free_area *area;
b002529d 2573 int current_order;
6bb15450 2574 int min_order = order;
b2a0ac88 2575 struct page *page;
4eb7dce6
JK
2576 int fallback_mt;
2577 bool can_steal;
b2a0ac88 2578
6bb15450
MG
2579 /*
2580 * Do not steal pages from freelists belonging to other pageblocks
2581 * i.e. orders < pageblock_order. If there are no local zones free,
2582 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2583 */
2584 if (alloc_flags & ALLOC_NOFRAGMENT)
2585 min_order = pageblock_order;
2586
7a8f58f3
VB
2587 /*
2588 * Find the largest available free page in the other list. This roughly
2589 * approximates finding the pageblock with the most free pages, which
2590 * would be too costly to do exactly.
2591 */
6bb15450 2592 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2593 --current_order) {
4eb7dce6
JK
2594 area = &(zone->free_area[current_order]);
2595 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2596 start_migratetype, false, &can_steal);
4eb7dce6
JK
2597 if (fallback_mt == -1)
2598 continue;
b2a0ac88 2599
7a8f58f3
VB
2600 /*
2601 * We cannot steal all free pages from the pageblock and the
2602 * requested migratetype is movable. In that case it's better to
2603 * steal and split the smallest available page instead of the
2604 * largest available page, because even if the next movable
2605 * allocation falls back into a different pageblock than this
2606 * one, it won't cause permanent fragmentation.
2607 */
2608 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2609 && current_order > order)
2610 goto find_smallest;
b2a0ac88 2611
7a8f58f3
VB
2612 goto do_steal;
2613 }
e0fff1bd 2614
7a8f58f3 2615 return false;
e0fff1bd 2616
7a8f58f3
VB
2617find_smallest:
2618 for (current_order = order; current_order < MAX_ORDER;
2619 current_order++) {
2620 area = &(zone->free_area[current_order]);
2621 fallback_mt = find_suitable_fallback(area, current_order,
2622 start_migratetype, false, &can_steal);
2623 if (fallback_mt != -1)
2624 break;
b2a0ac88
MG
2625 }
2626
7a8f58f3
VB
2627 /*
2628 * This should not happen - we already found a suitable fallback
2629 * when looking for the largest page.
2630 */
2631 VM_BUG_ON(current_order == MAX_ORDER);
2632
2633do_steal:
2634 page = list_first_entry(&area->free_list[fallback_mt],
2635 struct page, lru);
2636
1c30844d
MG
2637 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2638 can_steal);
7a8f58f3
VB
2639
2640 trace_mm_page_alloc_extfrag(page, order, current_order,
2641 start_migratetype, fallback_mt);
2642
2643 return true;
2644
b2a0ac88
MG
2645}
2646
56fd56b8 2647/*
1da177e4
LT
2648 * Do the hard work of removing an element from the buddy allocator.
2649 * Call me with the zone->lock already held.
2650 */
85ccc8fa 2651static __always_inline struct page *
6bb15450
MG
2652__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2653 unsigned int alloc_flags)
1da177e4 2654{
1da177e4
LT
2655 struct page *page;
2656
3bc48f96 2657retry:
56fd56b8 2658 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2659 if (unlikely(!page)) {
dc67647b
JK
2660 if (migratetype == MIGRATE_MOVABLE)
2661 page = __rmqueue_cma_fallback(zone, order);
2662
6bb15450
MG
2663 if (!page && __rmqueue_fallback(zone, order, migratetype,
2664 alloc_flags))
3bc48f96 2665 goto retry;
728ec980
MG
2666 }
2667
0d3d062a 2668 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2669 return page;
1da177e4
LT
2670}
2671
5f63b720 2672/*
1da177e4
LT
2673 * Obtain a specified number of elements from the buddy allocator, all under
2674 * a single hold of the lock, for efficiency. Add them to the supplied list.
2675 * Returns the number of new pages which were placed at *list.
2676 */
5f63b720 2677static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2678 unsigned long count, struct list_head *list,
6bb15450 2679 int migratetype, unsigned int alloc_flags)
1da177e4 2680{
a6de734b 2681 int i, alloced = 0;
5f63b720 2682
d34b0733 2683 spin_lock(&zone->lock);
1da177e4 2684 for (i = 0; i < count; ++i) {
6bb15450
MG
2685 struct page *page = __rmqueue(zone, order, migratetype,
2686 alloc_flags);
085cc7d5 2687 if (unlikely(page == NULL))
1da177e4 2688 break;
81eabcbe 2689
479f854a
MG
2690 if (unlikely(check_pcp_refill(page)))
2691 continue;
2692
81eabcbe 2693 /*
0fac3ba5
VB
2694 * Split buddy pages returned by expand() are received here in
2695 * physical page order. The page is added to the tail of
2696 * caller's list. From the callers perspective, the linked list
2697 * is ordered by page number under some conditions. This is
2698 * useful for IO devices that can forward direction from the
2699 * head, thus also in the physical page order. This is useful
2700 * for IO devices that can merge IO requests if the physical
2701 * pages are ordered properly.
81eabcbe 2702 */
0fac3ba5 2703 list_add_tail(&page->lru, list);
a6de734b 2704 alloced++;
bb14c2c7 2705 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2706 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2707 -(1 << order));
1da177e4 2708 }
a6de734b
MG
2709
2710 /*
2711 * i pages were removed from the buddy list even if some leak due
2712 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2713 * on i. Do not confuse with 'alloced' which is the number of
2714 * pages added to the pcp list.
2715 */
f2260e6b 2716 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2717 spin_unlock(&zone->lock);
a6de734b 2718 return alloced;
1da177e4
LT
2719}
2720
4ae7c039 2721#ifdef CONFIG_NUMA
8fce4d8e 2722/*
4037d452
CL
2723 * Called from the vmstat counter updater to drain pagesets of this
2724 * currently executing processor on remote nodes after they have
2725 * expired.
2726 *
879336c3
CL
2727 * Note that this function must be called with the thread pinned to
2728 * a single processor.
8fce4d8e 2729 */
4037d452 2730void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2731{
4ae7c039 2732 unsigned long flags;
7be12fc9 2733 int to_drain, batch;
4ae7c039 2734
4037d452 2735 local_irq_save(flags);
4db0c3c2 2736 batch = READ_ONCE(pcp->batch);
7be12fc9 2737 to_drain = min(pcp->count, batch);
77ba9062 2738 if (to_drain > 0)
2a13515c 2739 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2740 local_irq_restore(flags);
4ae7c039
CL
2741}
2742#endif
2743
9f8f2172 2744/*
93481ff0 2745 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2746 *
2747 * The processor must either be the current processor and the
2748 * thread pinned to the current processor or a processor that
2749 * is not online.
2750 */
93481ff0 2751static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2752{
c54ad30c 2753 unsigned long flags;
93481ff0
VB
2754 struct per_cpu_pageset *pset;
2755 struct per_cpu_pages *pcp;
1da177e4 2756
93481ff0
VB
2757 local_irq_save(flags);
2758 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2759
93481ff0 2760 pcp = &pset->pcp;
77ba9062 2761 if (pcp->count)
93481ff0 2762 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2763 local_irq_restore(flags);
2764}
3dfa5721 2765
93481ff0
VB
2766/*
2767 * Drain pcplists of all zones on the indicated processor.
2768 *
2769 * The processor must either be the current processor and the
2770 * thread pinned to the current processor or a processor that
2771 * is not online.
2772 */
2773static void drain_pages(unsigned int cpu)
2774{
2775 struct zone *zone;
2776
2777 for_each_populated_zone(zone) {
2778 drain_pages_zone(cpu, zone);
1da177e4
LT
2779 }
2780}
1da177e4 2781
9f8f2172
CL
2782/*
2783 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2784 *
2785 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2786 * the single zone's pages.
9f8f2172 2787 */
93481ff0 2788void drain_local_pages(struct zone *zone)
9f8f2172 2789{
93481ff0
VB
2790 int cpu = smp_processor_id();
2791
2792 if (zone)
2793 drain_pages_zone(cpu, zone);
2794 else
2795 drain_pages(cpu);
9f8f2172
CL
2796}
2797
0ccce3b9
MG
2798static void drain_local_pages_wq(struct work_struct *work)
2799{
d9367bd0
WY
2800 struct pcpu_drain *drain;
2801
2802 drain = container_of(work, struct pcpu_drain, work);
2803
a459eeb7
MH
2804 /*
2805 * drain_all_pages doesn't use proper cpu hotplug protection so
2806 * we can race with cpu offline when the WQ can move this from
2807 * a cpu pinned worker to an unbound one. We can operate on a different
2808 * cpu which is allright but we also have to make sure to not move to
2809 * a different one.
2810 */
2811 preempt_disable();
d9367bd0 2812 drain_local_pages(drain->zone);
a459eeb7 2813 preempt_enable();
0ccce3b9
MG
2814}
2815
9f8f2172 2816/*
74046494
GBY
2817 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2818 *
93481ff0
VB
2819 * When zone parameter is non-NULL, spill just the single zone's pages.
2820 *
0ccce3b9 2821 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2822 */
93481ff0 2823void drain_all_pages(struct zone *zone)
9f8f2172 2824{
74046494 2825 int cpu;
74046494
GBY
2826
2827 /*
2828 * Allocate in the BSS so we wont require allocation in
2829 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2830 */
2831 static cpumask_t cpus_with_pcps;
2832
ce612879
MH
2833 /*
2834 * Make sure nobody triggers this path before mm_percpu_wq is fully
2835 * initialized.
2836 */
2837 if (WARN_ON_ONCE(!mm_percpu_wq))
2838 return;
2839
bd233f53
MG
2840 /*
2841 * Do not drain if one is already in progress unless it's specific to
2842 * a zone. Such callers are primarily CMA and memory hotplug and need
2843 * the drain to be complete when the call returns.
2844 */
2845 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2846 if (!zone)
2847 return;
2848 mutex_lock(&pcpu_drain_mutex);
2849 }
0ccce3b9 2850
74046494
GBY
2851 /*
2852 * We don't care about racing with CPU hotplug event
2853 * as offline notification will cause the notified
2854 * cpu to drain that CPU pcps and on_each_cpu_mask
2855 * disables preemption as part of its processing
2856 */
2857 for_each_online_cpu(cpu) {
93481ff0
VB
2858 struct per_cpu_pageset *pcp;
2859 struct zone *z;
74046494 2860 bool has_pcps = false;
93481ff0
VB
2861
2862 if (zone) {
74046494 2863 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2864 if (pcp->pcp.count)
74046494 2865 has_pcps = true;
93481ff0
VB
2866 } else {
2867 for_each_populated_zone(z) {
2868 pcp = per_cpu_ptr(z->pageset, cpu);
2869 if (pcp->pcp.count) {
2870 has_pcps = true;
2871 break;
2872 }
74046494
GBY
2873 }
2874 }
93481ff0 2875
74046494
GBY
2876 if (has_pcps)
2877 cpumask_set_cpu(cpu, &cpus_with_pcps);
2878 else
2879 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2880 }
0ccce3b9 2881
bd233f53 2882 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2883 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2884
2885 drain->zone = zone;
2886 INIT_WORK(&drain->work, drain_local_pages_wq);
2887 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2888 }
bd233f53 2889 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2890 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2891
2892 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2893}
2894
296699de 2895#ifdef CONFIG_HIBERNATION
1da177e4 2896
556b969a
CY
2897/*
2898 * Touch the watchdog for every WD_PAGE_COUNT pages.
2899 */
2900#define WD_PAGE_COUNT (128*1024)
2901
1da177e4
LT
2902void mark_free_pages(struct zone *zone)
2903{
556b969a 2904 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2905 unsigned long flags;
7aeb09f9 2906 unsigned int order, t;
86760a2c 2907 struct page *page;
1da177e4 2908
8080fc03 2909 if (zone_is_empty(zone))
1da177e4
LT
2910 return;
2911
2912 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2913
108bcc96 2914 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2915 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2916 if (pfn_valid(pfn)) {
86760a2c 2917 page = pfn_to_page(pfn);
ba6b0979 2918
556b969a
CY
2919 if (!--page_count) {
2920 touch_nmi_watchdog();
2921 page_count = WD_PAGE_COUNT;
2922 }
2923
ba6b0979
JK
2924 if (page_zone(page) != zone)
2925 continue;
2926
7be98234
RW
2927 if (!swsusp_page_is_forbidden(page))
2928 swsusp_unset_page_free(page);
f623f0db 2929 }
1da177e4 2930
b2a0ac88 2931 for_each_migratetype_order(order, t) {
86760a2c
GT
2932 list_for_each_entry(page,
2933 &zone->free_area[order].free_list[t], lru) {
f623f0db 2934 unsigned long i;
1da177e4 2935
86760a2c 2936 pfn = page_to_pfn(page);
556b969a
CY
2937 for (i = 0; i < (1UL << order); i++) {
2938 if (!--page_count) {
2939 touch_nmi_watchdog();
2940 page_count = WD_PAGE_COUNT;
2941 }
7be98234 2942 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2943 }
f623f0db 2944 }
b2a0ac88 2945 }
1da177e4
LT
2946 spin_unlock_irqrestore(&zone->lock, flags);
2947}
e2c55dc8 2948#endif /* CONFIG_PM */
1da177e4 2949
2d4894b5 2950static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2951{
5f8dcc21 2952 int migratetype;
1da177e4 2953
4db7548c 2954 if (!free_pcp_prepare(page))
9cca35d4 2955 return false;
689bcebf 2956
dc4b0caf 2957 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2958 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2959 return true;
2960}
2961
2d4894b5 2962static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2963{
2964 struct zone *zone = page_zone(page);
2965 struct per_cpu_pages *pcp;
2966 int migratetype;
2967
2968 migratetype = get_pcppage_migratetype(page);
d34b0733 2969 __count_vm_event(PGFREE);
da456f14 2970
5f8dcc21
MG
2971 /*
2972 * We only track unmovable, reclaimable and movable on pcp lists.
2973 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2974 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2975 * areas back if necessary. Otherwise, we may have to free
2976 * excessively into the page allocator
2977 */
2978 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2979 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2980 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2981 return;
5f8dcc21
MG
2982 }
2983 migratetype = MIGRATE_MOVABLE;
2984 }
2985
99dcc3e5 2986 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2987 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2988 pcp->count++;
48db57f8 2989 if (pcp->count >= pcp->high) {
4db0c3c2 2990 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2991 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2992 }
9cca35d4 2993}
5f8dcc21 2994
9cca35d4
MG
2995/*
2996 * Free a 0-order page
9cca35d4 2997 */
2d4894b5 2998void free_unref_page(struct page *page)
9cca35d4
MG
2999{
3000 unsigned long flags;
3001 unsigned long pfn = page_to_pfn(page);
3002
2d4894b5 3003 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3004 return;
3005
3006 local_irq_save(flags);
2d4894b5 3007 free_unref_page_commit(page, pfn);
d34b0733 3008 local_irq_restore(flags);
1da177e4
LT
3009}
3010
cc59850e
KK
3011/*
3012 * Free a list of 0-order pages
3013 */
2d4894b5 3014void free_unref_page_list(struct list_head *list)
cc59850e
KK
3015{
3016 struct page *page, *next;
9cca35d4 3017 unsigned long flags, pfn;
c24ad77d 3018 int batch_count = 0;
9cca35d4
MG
3019
3020 /* Prepare pages for freeing */
3021 list_for_each_entry_safe(page, next, list, lru) {
3022 pfn = page_to_pfn(page);
2d4894b5 3023 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3024 list_del(&page->lru);
3025 set_page_private(page, pfn);
3026 }
cc59850e 3027
9cca35d4 3028 local_irq_save(flags);
cc59850e 3029 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3030 unsigned long pfn = page_private(page);
3031
3032 set_page_private(page, 0);
2d4894b5
MG
3033 trace_mm_page_free_batched(page);
3034 free_unref_page_commit(page, pfn);
c24ad77d
LS
3035
3036 /*
3037 * Guard against excessive IRQ disabled times when we get
3038 * a large list of pages to free.
3039 */
3040 if (++batch_count == SWAP_CLUSTER_MAX) {
3041 local_irq_restore(flags);
3042 batch_count = 0;
3043 local_irq_save(flags);
3044 }
cc59850e 3045 }
9cca35d4 3046 local_irq_restore(flags);
cc59850e
KK
3047}
3048
8dfcc9ba
NP
3049/*
3050 * split_page takes a non-compound higher-order page, and splits it into
3051 * n (1<<order) sub-pages: page[0..n]
3052 * Each sub-page must be freed individually.
3053 *
3054 * Note: this is probably too low level an operation for use in drivers.
3055 * Please consult with lkml before using this in your driver.
3056 */
3057void split_page(struct page *page, unsigned int order)
3058{
3059 int i;
3060
309381fe
SL
3061 VM_BUG_ON_PAGE(PageCompound(page), page);
3062 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3063
a9627bc5 3064 for (i = 1; i < (1 << order); i++)
7835e98b 3065 set_page_refcounted(page + i);
a9627bc5 3066 split_page_owner(page, order);
8dfcc9ba 3067}
5853ff23 3068EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3069
3c605096 3070int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3071{
748446bb
MG
3072 unsigned long watermark;
3073 struct zone *zone;
2139cbe6 3074 int mt;
748446bb
MG
3075
3076 BUG_ON(!PageBuddy(page));
3077
3078 zone = page_zone(page);
2e30abd1 3079 mt = get_pageblock_migratetype(page);
748446bb 3080
194159fb 3081 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3082 /*
3083 * Obey watermarks as if the page was being allocated. We can
3084 * emulate a high-order watermark check with a raised order-0
3085 * watermark, because we already know our high-order page
3086 * exists.
3087 */
fd1444b2 3088 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3089 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3090 return 0;
3091
8fb74b9f 3092 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3093 }
748446bb
MG
3094
3095 /* Remove page from free list */
3096 list_del(&page->lru);
3097 zone->free_area[order].nr_free--;
3098 rmv_page_order(page);
2139cbe6 3099
400bc7fd 3100 /*
3101 * Set the pageblock if the isolated page is at least half of a
3102 * pageblock
3103 */
748446bb
MG
3104 if (order >= pageblock_order - 1) {
3105 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3106 for (; page < endpage; page += pageblock_nr_pages) {
3107 int mt = get_pageblock_migratetype(page);
88ed365e 3108 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3109 && !is_migrate_highatomic(mt))
47118af0
MN
3110 set_pageblock_migratetype(page,
3111 MIGRATE_MOVABLE);
3112 }
748446bb
MG
3113 }
3114
f3a14ced 3115
8fb74b9f 3116 return 1UL << order;
1fb3f8ca
MG
3117}
3118
060e7417
MG
3119/*
3120 * Update NUMA hit/miss statistics
3121 *
3122 * Must be called with interrupts disabled.
060e7417 3123 */
41b6167e 3124static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3125{
3126#ifdef CONFIG_NUMA
3a321d2a 3127 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3128
4518085e
KW
3129 /* skip numa counters update if numa stats is disabled */
3130 if (!static_branch_likely(&vm_numa_stat_key))
3131 return;
3132
c1093b74 3133 if (zone_to_nid(z) != numa_node_id())
060e7417 3134 local_stat = NUMA_OTHER;
060e7417 3135
c1093b74 3136 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3137 __inc_numa_state(z, NUMA_HIT);
2df26639 3138 else {
3a321d2a
KW
3139 __inc_numa_state(z, NUMA_MISS);
3140 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3141 }
3a321d2a 3142 __inc_numa_state(z, local_stat);
060e7417
MG
3143#endif
3144}
3145
066b2393
MG
3146/* Remove page from the per-cpu list, caller must protect the list */
3147static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3148 unsigned int alloc_flags,
453f85d4 3149 struct per_cpu_pages *pcp,
066b2393
MG
3150 struct list_head *list)
3151{
3152 struct page *page;
3153
3154 do {
3155 if (list_empty(list)) {
3156 pcp->count += rmqueue_bulk(zone, 0,
3157 pcp->batch, list,
6bb15450 3158 migratetype, alloc_flags);
066b2393
MG
3159 if (unlikely(list_empty(list)))
3160 return NULL;
3161 }
3162
453f85d4 3163 page = list_first_entry(list, struct page, lru);
066b2393
MG
3164 list_del(&page->lru);
3165 pcp->count--;
3166 } while (check_new_pcp(page));
3167
3168 return page;
3169}
3170
3171/* Lock and remove page from the per-cpu list */
3172static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3173 struct zone *zone, unsigned int order,
6bb15450
MG
3174 gfp_t gfp_flags, int migratetype,
3175 unsigned int alloc_flags)
066b2393
MG
3176{
3177 struct per_cpu_pages *pcp;
3178 struct list_head *list;
066b2393 3179 struct page *page;
d34b0733 3180 unsigned long flags;
066b2393 3181
d34b0733 3182 local_irq_save(flags);
066b2393
MG
3183 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3184 list = &pcp->lists[migratetype];
6bb15450 3185 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393
MG
3186 if (page) {
3187 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3188 zone_statistics(preferred_zone, zone);
3189 }
d34b0733 3190 local_irq_restore(flags);
066b2393
MG
3191 return page;
3192}
3193
1da177e4 3194/*
75379191 3195 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3196 */
0a15c3e9 3197static inline
066b2393 3198struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3199 struct zone *zone, unsigned int order,
c603844b
MG
3200 gfp_t gfp_flags, unsigned int alloc_flags,
3201 int migratetype)
1da177e4
LT
3202{
3203 unsigned long flags;
689bcebf 3204 struct page *page;
1da177e4 3205
d34b0733 3206 if (likely(order == 0)) {
066b2393 3207 page = rmqueue_pcplist(preferred_zone, zone, order,
6bb15450 3208 gfp_flags, migratetype, alloc_flags);
066b2393
MG
3209 goto out;
3210 }
83b9355b 3211
066b2393
MG
3212 /*
3213 * We most definitely don't want callers attempting to
3214 * allocate greater than order-1 page units with __GFP_NOFAIL.
3215 */
3216 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3217 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3218
066b2393
MG
3219 do {
3220 page = NULL;
3221 if (alloc_flags & ALLOC_HARDER) {
3222 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3223 if (page)
3224 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3225 }
a74609fa 3226 if (!page)
6bb15450 3227 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3228 } while (page && check_new_pages(page, order));
3229 spin_unlock(&zone->lock);
3230 if (!page)
3231 goto failed;
3232 __mod_zone_freepage_state(zone, -(1 << order),
3233 get_pcppage_migratetype(page));
1da177e4 3234
16709d1d 3235 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3236 zone_statistics(preferred_zone, zone);
a74609fa 3237 local_irq_restore(flags);
1da177e4 3238
066b2393 3239out:
73444bc4
MG
3240 /* Separate test+clear to avoid unnecessary atomics */
3241 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3242 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3243 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3244 }
3245
066b2393 3246 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3247 return page;
a74609fa
NP
3248
3249failed:
3250 local_irq_restore(flags);
a74609fa 3251 return NULL;
1da177e4
LT
3252}
3253
933e312e
AM
3254#ifdef CONFIG_FAIL_PAGE_ALLOC
3255
b2588c4b 3256static struct {
933e312e
AM
3257 struct fault_attr attr;
3258
621a5f7a 3259 bool ignore_gfp_highmem;
71baba4b 3260 bool ignore_gfp_reclaim;
54114994 3261 u32 min_order;
933e312e
AM
3262} fail_page_alloc = {
3263 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3264 .ignore_gfp_reclaim = true,
621a5f7a 3265 .ignore_gfp_highmem = true,
54114994 3266 .min_order = 1,
933e312e
AM
3267};
3268
3269static int __init setup_fail_page_alloc(char *str)
3270{
3271 return setup_fault_attr(&fail_page_alloc.attr, str);
3272}
3273__setup("fail_page_alloc=", setup_fail_page_alloc);
3274
af3b8544 3275static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3276{
54114994 3277 if (order < fail_page_alloc.min_order)
deaf386e 3278 return false;
933e312e 3279 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3280 return false;
933e312e 3281 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3282 return false;
71baba4b
MG
3283 if (fail_page_alloc.ignore_gfp_reclaim &&
3284 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3285 return false;
933e312e
AM
3286
3287 return should_fail(&fail_page_alloc.attr, 1 << order);
3288}
3289
3290#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3291
3292static int __init fail_page_alloc_debugfs(void)
3293{
0825a6f9 3294 umode_t mode = S_IFREG | 0600;
933e312e 3295 struct dentry *dir;
933e312e 3296
dd48c085
AM
3297 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3298 &fail_page_alloc.attr);
b2588c4b 3299
d9f7979c
GKH
3300 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3301 &fail_page_alloc.ignore_gfp_reclaim);
3302 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3303 &fail_page_alloc.ignore_gfp_highmem);
3304 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3305
d9f7979c 3306 return 0;
933e312e
AM
3307}
3308
3309late_initcall(fail_page_alloc_debugfs);
3310
3311#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3312
3313#else /* CONFIG_FAIL_PAGE_ALLOC */
3314
af3b8544 3315static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3316{
deaf386e 3317 return false;
933e312e
AM
3318}
3319
3320#endif /* CONFIG_FAIL_PAGE_ALLOC */
3321
af3b8544
BP
3322static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3323{
3324 return __should_fail_alloc_page(gfp_mask, order);
3325}
3326ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3327
1da177e4 3328/*
97a16fc8
MG
3329 * Return true if free base pages are above 'mark'. For high-order checks it
3330 * will return true of the order-0 watermark is reached and there is at least
3331 * one free page of a suitable size. Checking now avoids taking the zone lock
3332 * to check in the allocation paths if no pages are free.
1da177e4 3333 */
86a294a8
MH
3334bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3335 int classzone_idx, unsigned int alloc_flags,
3336 long free_pages)
1da177e4 3337{
d23ad423 3338 long min = mark;
1da177e4 3339 int o;
cd04ae1e 3340 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3341
0aaa29a5 3342 /* free_pages may go negative - that's OK */
df0a6daa 3343 free_pages -= (1 << order) - 1;
0aaa29a5 3344
7fb1d9fc 3345 if (alloc_flags & ALLOC_HIGH)
1da177e4 3346 min -= min / 2;
0aaa29a5
MG
3347
3348 /*
3349 * If the caller does not have rights to ALLOC_HARDER then subtract
3350 * the high-atomic reserves. This will over-estimate the size of the
3351 * atomic reserve but it avoids a search.
3352 */
cd04ae1e 3353 if (likely(!alloc_harder)) {
0aaa29a5 3354 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3355 } else {
3356 /*
3357 * OOM victims can try even harder than normal ALLOC_HARDER
3358 * users on the grounds that it's definitely going to be in
3359 * the exit path shortly and free memory. Any allocation it
3360 * makes during the free path will be small and short-lived.
3361 */
3362 if (alloc_flags & ALLOC_OOM)
3363 min -= min / 2;
3364 else
3365 min -= min / 4;
3366 }
3367
e2b19197 3368
d883c6cf
JK
3369#ifdef CONFIG_CMA
3370 /* If allocation can't use CMA areas don't use free CMA pages */
3371 if (!(alloc_flags & ALLOC_CMA))
3372 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3373#endif
3374
97a16fc8
MG
3375 /*
3376 * Check watermarks for an order-0 allocation request. If these
3377 * are not met, then a high-order request also cannot go ahead
3378 * even if a suitable page happened to be free.
3379 */
3380 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3381 return false;
1da177e4 3382
97a16fc8
MG
3383 /* If this is an order-0 request then the watermark is fine */
3384 if (!order)
3385 return true;
3386
3387 /* For a high-order request, check at least one suitable page is free */
3388 for (o = order; o < MAX_ORDER; o++) {
3389 struct free_area *area = &z->free_area[o];
3390 int mt;
3391
3392 if (!area->nr_free)
3393 continue;
3394
97a16fc8
MG
3395 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3396 if (!list_empty(&area->free_list[mt]))
3397 return true;
3398 }
3399
3400#ifdef CONFIG_CMA
d883c6cf
JK
3401 if ((alloc_flags & ALLOC_CMA) &&
3402 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3403 return true;
d883c6cf 3404 }
97a16fc8 3405#endif
b050e376
VB
3406 if (alloc_harder &&
3407 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3408 return true;
1da177e4 3409 }
97a16fc8 3410 return false;
88f5acf8
MG
3411}
3412
7aeb09f9 3413bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3414 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3415{
3416 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3417 zone_page_state(z, NR_FREE_PAGES));
3418}
3419
48ee5f36
MG
3420static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3421 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3422{
3423 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3424 long cma_pages = 0;
3425
3426#ifdef CONFIG_CMA
3427 /* If allocation can't use CMA areas don't use free CMA pages */
3428 if (!(alloc_flags & ALLOC_CMA))
3429 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3430#endif
48ee5f36
MG
3431
3432 /*
3433 * Fast check for order-0 only. If this fails then the reserves
3434 * need to be calculated. There is a corner case where the check
3435 * passes but only the high-order atomic reserve are free. If
3436 * the caller is !atomic then it'll uselessly search the free
3437 * list. That corner case is then slower but it is harmless.
3438 */
d883c6cf 3439 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3440 return true;
3441
3442 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3443 free_pages);
3444}
3445
7aeb09f9 3446bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3447 unsigned long mark, int classzone_idx)
88f5acf8
MG
3448{
3449 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3450
3451 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3452 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3453
e2b19197 3454 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3455 free_pages);
1da177e4
LT
3456}
3457
9276b1bc 3458#ifdef CONFIG_NUMA
957f822a
DR
3459static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3460{
e02dc017 3461 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3462 RECLAIM_DISTANCE;
957f822a 3463}
9276b1bc 3464#else /* CONFIG_NUMA */
957f822a
DR
3465static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3466{
3467 return true;
3468}
9276b1bc
PJ
3469#endif /* CONFIG_NUMA */
3470
6bb15450
MG
3471/*
3472 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3473 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3474 * premature use of a lower zone may cause lowmem pressure problems that
3475 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3476 * probably too small. It only makes sense to spread allocations to avoid
3477 * fragmentation between the Normal and DMA32 zones.
3478 */
3479static inline unsigned int
0a79cdad 3480alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3481{
0a79cdad
MG
3482 unsigned int alloc_flags = 0;
3483
3484 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3485 alloc_flags |= ALLOC_KSWAPD;
3486
3487#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3488 if (!zone)
3489 return alloc_flags;
3490
6bb15450 3491 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3492 return alloc_flags;
6bb15450
MG
3493
3494 /*
3495 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3496 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3497 * on UMA that if Normal is populated then so is DMA32.
3498 */
3499 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3500 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3501 return alloc_flags;
6bb15450 3502
8118b82e 3503 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3504#endif /* CONFIG_ZONE_DMA32 */
3505 return alloc_flags;
6bb15450 3506}
6bb15450 3507
7fb1d9fc 3508/*
0798e519 3509 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3510 * a page.
3511 */
3512static struct page *
a9263751
VB
3513get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3514 const struct alloc_context *ac)
753ee728 3515{
6bb15450 3516 struct zoneref *z;
5117f45d 3517 struct zone *zone;
3b8c0be4 3518 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3519 bool no_fallback;
3b8c0be4 3520
6bb15450 3521retry:
7fb1d9fc 3522 /*
9276b1bc 3523 * Scan zonelist, looking for a zone with enough free.
344736f2 3524 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3525 */
6bb15450
MG
3526 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3527 z = ac->preferred_zoneref;
c33d6c06 3528 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3529 ac->nodemask) {
be06af00 3530 struct page *page;
e085dbc5
JW
3531 unsigned long mark;
3532
664eedde
MG
3533 if (cpusets_enabled() &&
3534 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3535 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3536 continue;
a756cf59
JW
3537 /*
3538 * When allocating a page cache page for writing, we
281e3726
MG
3539 * want to get it from a node that is within its dirty
3540 * limit, such that no single node holds more than its
a756cf59 3541 * proportional share of globally allowed dirty pages.
281e3726 3542 * The dirty limits take into account the node's
a756cf59
JW
3543 * lowmem reserves and high watermark so that kswapd
3544 * should be able to balance it without having to
3545 * write pages from its LRU list.
3546 *
a756cf59 3547 * XXX: For now, allow allocations to potentially
281e3726 3548 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3549 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3550 * which is important when on a NUMA setup the allowed
281e3726 3551 * nodes are together not big enough to reach the
a756cf59 3552 * global limit. The proper fix for these situations
281e3726 3553 * will require awareness of nodes in the
a756cf59
JW
3554 * dirty-throttling and the flusher threads.
3555 */
3b8c0be4
MG
3556 if (ac->spread_dirty_pages) {
3557 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3558 continue;
3559
3560 if (!node_dirty_ok(zone->zone_pgdat)) {
3561 last_pgdat_dirty_limit = zone->zone_pgdat;
3562 continue;
3563 }
3564 }
7fb1d9fc 3565
6bb15450
MG
3566 if (no_fallback && nr_online_nodes > 1 &&
3567 zone != ac->preferred_zoneref->zone) {
3568 int local_nid;
3569
3570 /*
3571 * If moving to a remote node, retry but allow
3572 * fragmenting fallbacks. Locality is more important
3573 * than fragmentation avoidance.
3574 */
3575 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3576 if (zone_to_nid(zone) != local_nid) {
3577 alloc_flags &= ~ALLOC_NOFRAGMENT;
3578 goto retry;
3579 }
3580 }
3581
a9214443 3582 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3583 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3584 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3585 int ret;
3586
c9e97a19
PT
3587#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3588 /*
3589 * Watermark failed for this zone, but see if we can
3590 * grow this zone if it contains deferred pages.
3591 */
3592 if (static_branch_unlikely(&deferred_pages)) {
3593 if (_deferred_grow_zone(zone, order))
3594 goto try_this_zone;
3595 }
3596#endif
5dab2911
MG
3597 /* Checked here to keep the fast path fast */
3598 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3599 if (alloc_flags & ALLOC_NO_WATERMARKS)
3600 goto try_this_zone;
3601
a5f5f91d 3602 if (node_reclaim_mode == 0 ||
c33d6c06 3603 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3604 continue;
3605
a5f5f91d 3606 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3607 switch (ret) {
a5f5f91d 3608 case NODE_RECLAIM_NOSCAN:
fa5e084e 3609 /* did not scan */
cd38b115 3610 continue;
a5f5f91d 3611 case NODE_RECLAIM_FULL:
fa5e084e 3612 /* scanned but unreclaimable */
cd38b115 3613 continue;
fa5e084e
MG
3614 default:
3615 /* did we reclaim enough */
fed2719e 3616 if (zone_watermark_ok(zone, order, mark,
93ea9964 3617 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3618 goto try_this_zone;
3619
fed2719e 3620 continue;
0798e519 3621 }
7fb1d9fc
RS
3622 }
3623
fa5e084e 3624try_this_zone:
066b2393 3625 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3626 gfp_mask, alloc_flags, ac->migratetype);
75379191 3627 if (page) {
479f854a 3628 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3629
3630 /*
3631 * If this is a high-order atomic allocation then check
3632 * if the pageblock should be reserved for the future
3633 */
3634 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3635 reserve_highatomic_pageblock(page, zone, order);
3636
75379191 3637 return page;
c9e97a19
PT
3638 } else {
3639#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3640 /* Try again if zone has deferred pages */
3641 if (static_branch_unlikely(&deferred_pages)) {
3642 if (_deferred_grow_zone(zone, order))
3643 goto try_this_zone;
3644 }
3645#endif
75379191 3646 }
54a6eb5c 3647 }
9276b1bc 3648
6bb15450
MG
3649 /*
3650 * It's possible on a UMA machine to get through all zones that are
3651 * fragmented. If avoiding fragmentation, reset and try again.
3652 */
3653 if (no_fallback) {
3654 alloc_flags &= ~ALLOC_NOFRAGMENT;
3655 goto retry;
3656 }
3657
4ffeaf35 3658 return NULL;
753ee728
MH
3659}
3660
9af744d7 3661static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3662{
a238ab5b 3663 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3664 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3665
2c029a1e 3666 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3667 return;
3668
3669 /*
3670 * This documents exceptions given to allocations in certain
3671 * contexts that are allowed to allocate outside current's set
3672 * of allowed nodes.
3673 */
3674 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3675 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3676 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3677 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3678 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3679 filter &= ~SHOW_MEM_FILTER_NODES;
3680
9af744d7 3681 show_mem(filter, nodemask);
aa187507
MH
3682}
3683
a8e99259 3684void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3685{
3686 struct va_format vaf;
3687 va_list args;
3688 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3689 DEFAULT_RATELIMIT_BURST);
3690
0f7896f1 3691 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3692 return;
3693
7877cdcc
MH
3694 va_start(args, fmt);
3695 vaf.fmt = fmt;
3696 vaf.va = &args;
ef8444ea 3697 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3698 current->comm, &vaf, gfp_mask, &gfp_mask,
3699 nodemask_pr_args(nodemask));
7877cdcc 3700 va_end(args);
3ee9a4f0 3701
a8e99259 3702 cpuset_print_current_mems_allowed();
ef8444ea 3703 pr_cont("\n");
a238ab5b 3704 dump_stack();
685dbf6f 3705 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3706}
3707
6c18ba7a
MH
3708static inline struct page *
3709__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3710 unsigned int alloc_flags,
3711 const struct alloc_context *ac)
3712{
3713 struct page *page;
3714
3715 page = get_page_from_freelist(gfp_mask, order,
3716 alloc_flags|ALLOC_CPUSET, ac);
3717 /*
3718 * fallback to ignore cpuset restriction if our nodes
3719 * are depleted
3720 */
3721 if (!page)
3722 page = get_page_from_freelist(gfp_mask, order,
3723 alloc_flags, ac);
3724
3725 return page;
3726}
3727
11e33f6a
MG
3728static inline struct page *
3729__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3730 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3731{
6e0fc46d
DR
3732 struct oom_control oc = {
3733 .zonelist = ac->zonelist,
3734 .nodemask = ac->nodemask,
2a966b77 3735 .memcg = NULL,
6e0fc46d
DR
3736 .gfp_mask = gfp_mask,
3737 .order = order,
6e0fc46d 3738 };
11e33f6a
MG
3739 struct page *page;
3740
9879de73
JW
3741 *did_some_progress = 0;
3742
9879de73 3743 /*
dc56401f
JW
3744 * Acquire the oom lock. If that fails, somebody else is
3745 * making progress for us.
9879de73 3746 */
dc56401f 3747 if (!mutex_trylock(&oom_lock)) {
9879de73 3748 *did_some_progress = 1;
11e33f6a 3749 schedule_timeout_uninterruptible(1);
1da177e4
LT
3750 return NULL;
3751 }
6b1de916 3752
11e33f6a
MG
3753 /*
3754 * Go through the zonelist yet one more time, keep very high watermark
3755 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3756 * we're still under heavy pressure. But make sure that this reclaim
3757 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3758 * allocation which will never fail due to oom_lock already held.
11e33f6a 3759 */
e746bf73
TH
3760 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3761 ~__GFP_DIRECT_RECLAIM, order,
3762 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3763 if (page)
11e33f6a
MG
3764 goto out;
3765
06ad276a
MH
3766 /* Coredumps can quickly deplete all memory reserves */
3767 if (current->flags & PF_DUMPCORE)
3768 goto out;
3769 /* The OOM killer will not help higher order allocs */
3770 if (order > PAGE_ALLOC_COSTLY_ORDER)
3771 goto out;
dcda9b04
MH
3772 /*
3773 * We have already exhausted all our reclaim opportunities without any
3774 * success so it is time to admit defeat. We will skip the OOM killer
3775 * because it is very likely that the caller has a more reasonable
3776 * fallback than shooting a random task.
3777 */
3778 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3779 goto out;
06ad276a
MH
3780 /* The OOM killer does not needlessly kill tasks for lowmem */
3781 if (ac->high_zoneidx < ZONE_NORMAL)
3782 goto out;
3783 if (pm_suspended_storage())
3784 goto out;
3785 /*
3786 * XXX: GFP_NOFS allocations should rather fail than rely on
3787 * other request to make a forward progress.
3788 * We are in an unfortunate situation where out_of_memory cannot
3789 * do much for this context but let's try it to at least get
3790 * access to memory reserved if the current task is killed (see
3791 * out_of_memory). Once filesystems are ready to handle allocation
3792 * failures more gracefully we should just bail out here.
3793 */
3794
3795 /* The OOM killer may not free memory on a specific node */
3796 if (gfp_mask & __GFP_THISNODE)
3797 goto out;
3da88fb3 3798
3c2c6488 3799 /* Exhausted what can be done so it's blame time */
5020e285 3800 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3801 *did_some_progress = 1;
5020e285 3802
6c18ba7a
MH
3803 /*
3804 * Help non-failing allocations by giving them access to memory
3805 * reserves
3806 */
3807 if (gfp_mask & __GFP_NOFAIL)
3808 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3809 ALLOC_NO_WATERMARKS, ac);
5020e285 3810 }
11e33f6a 3811out:
dc56401f 3812 mutex_unlock(&oom_lock);
11e33f6a
MG
3813 return page;
3814}
3815
33c2d214
MH
3816/*
3817 * Maximum number of compaction retries wit a progress before OOM
3818 * killer is consider as the only way to move forward.
3819 */
3820#define MAX_COMPACT_RETRIES 16
3821
56de7263
MG
3822#ifdef CONFIG_COMPACTION
3823/* Try memory compaction for high-order allocations before reclaim */
3824static struct page *
3825__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3826 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3827 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3828{
5e1f0f09 3829 struct page *page = NULL;
eb414681 3830 unsigned long pflags;
499118e9 3831 unsigned int noreclaim_flag;
53853e2d
VB
3832
3833 if (!order)
66199712 3834 return NULL;
66199712 3835
eb414681 3836 psi_memstall_enter(&pflags);
499118e9 3837 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3838
c5d01d0d 3839 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3840 prio, &page);
eb414681 3841
499118e9 3842 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3843 psi_memstall_leave(&pflags);
56de7263 3844
98dd3b48
VB
3845 /*
3846 * At least in one zone compaction wasn't deferred or skipped, so let's
3847 * count a compaction stall
3848 */
3849 count_vm_event(COMPACTSTALL);
8fb74b9f 3850
5e1f0f09
MG
3851 /* Prep a captured page if available */
3852 if (page)
3853 prep_new_page(page, order, gfp_mask, alloc_flags);
3854
3855 /* Try get a page from the freelist if available */
3856 if (!page)
3857 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3858
98dd3b48
VB
3859 if (page) {
3860 struct zone *zone = page_zone(page);
53853e2d 3861
98dd3b48
VB
3862 zone->compact_blockskip_flush = false;
3863 compaction_defer_reset(zone, order, true);
3864 count_vm_event(COMPACTSUCCESS);
3865 return page;
3866 }
56de7263 3867
98dd3b48
VB
3868 /*
3869 * It's bad if compaction run occurs and fails. The most likely reason
3870 * is that pages exist, but not enough to satisfy watermarks.
3871 */
3872 count_vm_event(COMPACTFAIL);
66199712 3873
98dd3b48 3874 cond_resched();
56de7263
MG
3875
3876 return NULL;
3877}
33c2d214 3878
3250845d
VB
3879static inline bool
3880should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3881 enum compact_result compact_result,
3882 enum compact_priority *compact_priority,
d9436498 3883 int *compaction_retries)
3250845d
VB
3884{
3885 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3886 int min_priority;
65190cff
MH
3887 bool ret = false;
3888 int retries = *compaction_retries;
3889 enum compact_priority priority = *compact_priority;
3250845d
VB
3890
3891 if (!order)
3892 return false;
3893
d9436498
VB
3894 if (compaction_made_progress(compact_result))
3895 (*compaction_retries)++;
3896
3250845d
VB
3897 /*
3898 * compaction considers all the zone as desperately out of memory
3899 * so it doesn't really make much sense to retry except when the
3900 * failure could be caused by insufficient priority
3901 */
d9436498
VB
3902 if (compaction_failed(compact_result))
3903 goto check_priority;
3250845d
VB
3904
3905 /*
3906 * make sure the compaction wasn't deferred or didn't bail out early
3907 * due to locks contention before we declare that we should give up.
3908 * But do not retry if the given zonelist is not suitable for
3909 * compaction.
3910 */
65190cff
MH
3911 if (compaction_withdrawn(compact_result)) {
3912 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3913 goto out;
3914 }
3250845d
VB
3915
3916 /*
dcda9b04 3917 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3918 * costly ones because they are de facto nofail and invoke OOM
3919 * killer to move on while costly can fail and users are ready
3920 * to cope with that. 1/4 retries is rather arbitrary but we
3921 * would need much more detailed feedback from compaction to
3922 * make a better decision.
3923 */
3924 if (order > PAGE_ALLOC_COSTLY_ORDER)
3925 max_retries /= 4;
65190cff
MH
3926 if (*compaction_retries <= max_retries) {
3927 ret = true;
3928 goto out;
3929 }
3250845d 3930
d9436498
VB
3931 /*
3932 * Make sure there are attempts at the highest priority if we exhausted
3933 * all retries or failed at the lower priorities.
3934 */
3935check_priority:
c2033b00
VB
3936 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3937 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3938
c2033b00 3939 if (*compact_priority > min_priority) {
d9436498
VB
3940 (*compact_priority)--;
3941 *compaction_retries = 0;
65190cff 3942 ret = true;
d9436498 3943 }
65190cff
MH
3944out:
3945 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3946 return ret;
3250845d 3947}
56de7263
MG
3948#else
3949static inline struct page *
3950__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3951 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3952 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3953{
33c2d214 3954 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3955 return NULL;
3956}
33c2d214
MH
3957
3958static inline bool
86a294a8
MH
3959should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3960 enum compact_result compact_result,
a5508cd8 3961 enum compact_priority *compact_priority,
d9436498 3962 int *compaction_retries)
33c2d214 3963{
31e49bfd
MH
3964 struct zone *zone;
3965 struct zoneref *z;
3966
3967 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3968 return false;
3969
3970 /*
3971 * There are setups with compaction disabled which would prefer to loop
3972 * inside the allocator rather than hit the oom killer prematurely.
3973 * Let's give them a good hope and keep retrying while the order-0
3974 * watermarks are OK.
3975 */
3976 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3977 ac->nodemask) {
3978 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3979 ac_classzone_idx(ac), alloc_flags))
3980 return true;
3981 }
33c2d214
MH
3982 return false;
3983}
3250845d 3984#endif /* CONFIG_COMPACTION */
56de7263 3985
d92a8cfc 3986#ifdef CONFIG_LOCKDEP
93781325 3987static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3988 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3989
3990static bool __need_fs_reclaim(gfp_t gfp_mask)
3991{
3992 gfp_mask = current_gfp_context(gfp_mask);
3993
3994 /* no reclaim without waiting on it */
3995 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3996 return false;
3997
3998 /* this guy won't enter reclaim */
2e517d68 3999 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4000 return false;
4001
4002 /* We're only interested __GFP_FS allocations for now */
4003 if (!(gfp_mask & __GFP_FS))
4004 return false;
4005
4006 if (gfp_mask & __GFP_NOLOCKDEP)
4007 return false;
4008
4009 return true;
4010}
4011
93781325
OS
4012void __fs_reclaim_acquire(void)
4013{
4014 lock_map_acquire(&__fs_reclaim_map);
4015}
4016
4017void __fs_reclaim_release(void)
4018{
4019 lock_map_release(&__fs_reclaim_map);
4020}
4021
d92a8cfc
PZ
4022void fs_reclaim_acquire(gfp_t gfp_mask)
4023{
4024 if (__need_fs_reclaim(gfp_mask))
93781325 4025 __fs_reclaim_acquire();
d92a8cfc
PZ
4026}
4027EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4028
4029void fs_reclaim_release(gfp_t gfp_mask)
4030{
4031 if (__need_fs_reclaim(gfp_mask))
93781325 4032 __fs_reclaim_release();
d92a8cfc
PZ
4033}
4034EXPORT_SYMBOL_GPL(fs_reclaim_release);
4035#endif
4036
bba90710
MS
4037/* Perform direct synchronous page reclaim */
4038static int
a9263751
VB
4039__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4040 const struct alloc_context *ac)
11e33f6a 4041{
11e33f6a 4042 struct reclaim_state reclaim_state;
bba90710 4043 int progress;
499118e9 4044 unsigned int noreclaim_flag;
eb414681 4045 unsigned long pflags;
11e33f6a
MG
4046
4047 cond_resched();
4048
4049 /* We now go into synchronous reclaim */
4050 cpuset_memory_pressure_bump();
eb414681 4051 psi_memstall_enter(&pflags);
d92a8cfc 4052 fs_reclaim_acquire(gfp_mask);
93781325 4053 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4054 reclaim_state.reclaimed_slab = 0;
c06b1fca 4055 current->reclaim_state = &reclaim_state;
11e33f6a 4056
a9263751
VB
4057 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4058 ac->nodemask);
11e33f6a 4059
c06b1fca 4060 current->reclaim_state = NULL;
499118e9 4061 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4062 fs_reclaim_release(gfp_mask);
eb414681 4063 psi_memstall_leave(&pflags);
11e33f6a
MG
4064
4065 cond_resched();
4066
bba90710
MS
4067 return progress;
4068}
4069
4070/* The really slow allocator path where we enter direct reclaim */
4071static inline struct page *
4072__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4073 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4074 unsigned long *did_some_progress)
bba90710
MS
4075{
4076 struct page *page = NULL;
4077 bool drained = false;
4078
a9263751 4079 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4080 if (unlikely(!(*did_some_progress)))
4081 return NULL;
11e33f6a 4082
9ee493ce 4083retry:
31a6c190 4084 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4085
4086 /*
4087 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4088 * pages are pinned on the per-cpu lists or in high alloc reserves.
4089 * Shrink them them and try again
9ee493ce
MG
4090 */
4091 if (!page && !drained) {
29fac03b 4092 unreserve_highatomic_pageblock(ac, false);
93481ff0 4093 drain_all_pages(NULL);
9ee493ce
MG
4094 drained = true;
4095 goto retry;
4096 }
4097
11e33f6a
MG
4098 return page;
4099}
4100
5ecd9d40
DR
4101static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4102 const struct alloc_context *ac)
3a025760
JW
4103{
4104 struct zoneref *z;
4105 struct zone *zone;
e1a55637 4106 pg_data_t *last_pgdat = NULL;
5ecd9d40 4107 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4108
5ecd9d40
DR
4109 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4110 ac->nodemask) {
e1a55637 4111 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4112 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4113 last_pgdat = zone->zone_pgdat;
4114 }
3a025760
JW
4115}
4116
c603844b 4117static inline unsigned int
341ce06f
PZ
4118gfp_to_alloc_flags(gfp_t gfp_mask)
4119{
c603844b 4120 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4121
a56f57ff 4122 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4123 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4124
341ce06f
PZ
4125 /*
4126 * The caller may dip into page reserves a bit more if the caller
4127 * cannot run direct reclaim, or if the caller has realtime scheduling
4128 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4129 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4130 */
e6223a3b 4131 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4132
d0164adc 4133 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4134 /*
b104a35d
DR
4135 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4136 * if it can't schedule.
5c3240d9 4137 */
b104a35d 4138 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4139 alloc_flags |= ALLOC_HARDER;
523b9458 4140 /*
b104a35d 4141 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4142 * comment for __cpuset_node_allowed().
523b9458 4143 */
341ce06f 4144 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4145 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4146 alloc_flags |= ALLOC_HARDER;
4147
0a79cdad
MG
4148 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4149 alloc_flags |= ALLOC_KSWAPD;
4150
d883c6cf
JK
4151#ifdef CONFIG_CMA
4152 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4153 alloc_flags |= ALLOC_CMA;
4154#endif
341ce06f
PZ
4155 return alloc_flags;
4156}
4157
cd04ae1e 4158static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4159{
cd04ae1e
MH
4160 if (!tsk_is_oom_victim(tsk))
4161 return false;
4162
4163 /*
4164 * !MMU doesn't have oom reaper so give access to memory reserves
4165 * only to the thread with TIF_MEMDIE set
4166 */
4167 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4168 return false;
4169
cd04ae1e
MH
4170 return true;
4171}
4172
4173/*
4174 * Distinguish requests which really need access to full memory
4175 * reserves from oom victims which can live with a portion of it
4176 */
4177static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4178{
4179 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4180 return 0;
31a6c190 4181 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4182 return ALLOC_NO_WATERMARKS;
31a6c190 4183 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4184 return ALLOC_NO_WATERMARKS;
4185 if (!in_interrupt()) {
4186 if (current->flags & PF_MEMALLOC)
4187 return ALLOC_NO_WATERMARKS;
4188 else if (oom_reserves_allowed(current))
4189 return ALLOC_OOM;
4190 }
31a6c190 4191
cd04ae1e
MH
4192 return 0;
4193}
4194
4195bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4196{
4197 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4198}
4199
0a0337e0
MH
4200/*
4201 * Checks whether it makes sense to retry the reclaim to make a forward progress
4202 * for the given allocation request.
491d79ae
JW
4203 *
4204 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4205 * without success, or when we couldn't even meet the watermark if we
4206 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4207 *
4208 * Returns true if a retry is viable or false to enter the oom path.
4209 */
4210static inline bool
4211should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4212 struct alloc_context *ac, int alloc_flags,
423b452e 4213 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4214{
4215 struct zone *zone;
4216 struct zoneref *z;
15f570bf 4217 bool ret = false;
0a0337e0 4218
423b452e
VB
4219 /*
4220 * Costly allocations might have made a progress but this doesn't mean
4221 * their order will become available due to high fragmentation so
4222 * always increment the no progress counter for them
4223 */
4224 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4225 *no_progress_loops = 0;
4226 else
4227 (*no_progress_loops)++;
4228
0a0337e0
MH
4229 /*
4230 * Make sure we converge to OOM if we cannot make any progress
4231 * several times in the row.
4232 */
04c8716f
MK
4233 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4234 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4235 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4236 }
0a0337e0 4237
bca67592
MG
4238 /*
4239 * Keep reclaiming pages while there is a chance this will lead
4240 * somewhere. If none of the target zones can satisfy our allocation
4241 * request even if all reclaimable pages are considered then we are
4242 * screwed and have to go OOM.
0a0337e0
MH
4243 */
4244 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4245 ac->nodemask) {
4246 unsigned long available;
ede37713 4247 unsigned long reclaimable;
d379f01d
MH
4248 unsigned long min_wmark = min_wmark_pages(zone);
4249 bool wmark;
0a0337e0 4250
5a1c84b4 4251 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4252 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4253
4254 /*
491d79ae
JW
4255 * Would the allocation succeed if we reclaimed all
4256 * reclaimable pages?
0a0337e0 4257 */
d379f01d
MH
4258 wmark = __zone_watermark_ok(zone, order, min_wmark,
4259 ac_classzone_idx(ac), alloc_flags, available);
4260 trace_reclaim_retry_zone(z, order, reclaimable,
4261 available, min_wmark, *no_progress_loops, wmark);
4262 if (wmark) {
ede37713
MH
4263 /*
4264 * If we didn't make any progress and have a lot of
4265 * dirty + writeback pages then we should wait for
4266 * an IO to complete to slow down the reclaim and
4267 * prevent from pre mature OOM
4268 */
4269 if (!did_some_progress) {
11fb9989 4270 unsigned long write_pending;
ede37713 4271
5a1c84b4
MG
4272 write_pending = zone_page_state_snapshot(zone,
4273 NR_ZONE_WRITE_PENDING);
ede37713 4274
11fb9989 4275 if (2 * write_pending > reclaimable) {
ede37713
MH
4276 congestion_wait(BLK_RW_ASYNC, HZ/10);
4277 return true;
4278 }
4279 }
5a1c84b4 4280
15f570bf
MH
4281 ret = true;
4282 goto out;
0a0337e0
MH
4283 }
4284 }
4285
15f570bf
MH
4286out:
4287 /*
4288 * Memory allocation/reclaim might be called from a WQ context and the
4289 * current implementation of the WQ concurrency control doesn't
4290 * recognize that a particular WQ is congested if the worker thread is
4291 * looping without ever sleeping. Therefore we have to do a short sleep
4292 * here rather than calling cond_resched().
4293 */
4294 if (current->flags & PF_WQ_WORKER)
4295 schedule_timeout_uninterruptible(1);
4296 else
4297 cond_resched();
4298 return ret;
0a0337e0
MH
4299}
4300
902b6281
VB
4301static inline bool
4302check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4303{
4304 /*
4305 * It's possible that cpuset's mems_allowed and the nodemask from
4306 * mempolicy don't intersect. This should be normally dealt with by
4307 * policy_nodemask(), but it's possible to race with cpuset update in
4308 * such a way the check therein was true, and then it became false
4309 * before we got our cpuset_mems_cookie here.
4310 * This assumes that for all allocations, ac->nodemask can come only
4311 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4312 * when it does not intersect with the cpuset restrictions) or the
4313 * caller can deal with a violated nodemask.
4314 */
4315 if (cpusets_enabled() && ac->nodemask &&
4316 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4317 ac->nodemask = NULL;
4318 return true;
4319 }
4320
4321 /*
4322 * When updating a task's mems_allowed or mempolicy nodemask, it is
4323 * possible to race with parallel threads in such a way that our
4324 * allocation can fail while the mask is being updated. If we are about
4325 * to fail, check if the cpuset changed during allocation and if so,
4326 * retry.
4327 */
4328 if (read_mems_allowed_retry(cpuset_mems_cookie))
4329 return true;
4330
4331 return false;
4332}
4333
11e33f6a
MG
4334static inline struct page *
4335__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4336 struct alloc_context *ac)
11e33f6a 4337{
d0164adc 4338 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4339 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4340 struct page *page = NULL;
c603844b 4341 unsigned int alloc_flags;
11e33f6a 4342 unsigned long did_some_progress;
5ce9bfef 4343 enum compact_priority compact_priority;
c5d01d0d 4344 enum compact_result compact_result;
5ce9bfef
VB
4345 int compaction_retries;
4346 int no_progress_loops;
5ce9bfef 4347 unsigned int cpuset_mems_cookie;
cd04ae1e 4348 int reserve_flags;
1da177e4 4349
d0164adc
MG
4350 /*
4351 * We also sanity check to catch abuse of atomic reserves being used by
4352 * callers that are not in atomic context.
4353 */
4354 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4355 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4356 gfp_mask &= ~__GFP_ATOMIC;
4357
5ce9bfef
VB
4358retry_cpuset:
4359 compaction_retries = 0;
4360 no_progress_loops = 0;
4361 compact_priority = DEF_COMPACT_PRIORITY;
4362 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4363
4364 /*
4365 * The fast path uses conservative alloc_flags to succeed only until
4366 * kswapd needs to be woken up, and to avoid the cost of setting up
4367 * alloc_flags precisely. So we do that now.
4368 */
4369 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4370
e47483bc
VB
4371 /*
4372 * We need to recalculate the starting point for the zonelist iterator
4373 * because we might have used different nodemask in the fast path, or
4374 * there was a cpuset modification and we are retrying - otherwise we
4375 * could end up iterating over non-eligible zones endlessly.
4376 */
4377 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4378 ac->high_zoneidx, ac->nodemask);
4379 if (!ac->preferred_zoneref->zone)
4380 goto nopage;
4381
0a79cdad 4382 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4383 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4384
4385 /*
4386 * The adjusted alloc_flags might result in immediate success, so try
4387 * that first
4388 */
4389 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4390 if (page)
4391 goto got_pg;
4392
a8161d1e
VB
4393 /*
4394 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4395 * that we have enough base pages and don't need to reclaim. For non-
4396 * movable high-order allocations, do that as well, as compaction will
4397 * try prevent permanent fragmentation by migrating from blocks of the
4398 * same migratetype.
4399 * Don't try this for allocations that are allowed to ignore
4400 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4401 */
282722b0
VB
4402 if (can_direct_reclaim &&
4403 (costly_order ||
4404 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4405 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4406 page = __alloc_pages_direct_compact(gfp_mask, order,
4407 alloc_flags, ac,
a5508cd8 4408 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4409 &compact_result);
4410 if (page)
4411 goto got_pg;
4412
3eb2771b
VB
4413 /*
4414 * Checks for costly allocations with __GFP_NORETRY, which
4415 * includes THP page fault allocations
4416 */
282722b0 4417 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4418 /*
4419 * If compaction is deferred for high-order allocations,
4420 * it is because sync compaction recently failed. If
4421 * this is the case and the caller requested a THP
4422 * allocation, we do not want to heavily disrupt the
4423 * system, so we fail the allocation instead of entering
4424 * direct reclaim.
4425 */
4426 if (compact_result == COMPACT_DEFERRED)
4427 goto nopage;
4428
a8161d1e 4429 /*
3eb2771b
VB
4430 * Looks like reclaim/compaction is worth trying, but
4431 * sync compaction could be very expensive, so keep
25160354 4432 * using async compaction.
a8161d1e 4433 */
a5508cd8 4434 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4435 }
4436 }
23771235 4437
31a6c190 4438retry:
23771235 4439 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4440 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4441 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4442
cd04ae1e
MH
4443 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4444 if (reserve_flags)
4445 alloc_flags = reserve_flags;
23771235 4446
e46e7b77 4447 /*
d6a24df0
VB
4448 * Reset the nodemask and zonelist iterators if memory policies can be
4449 * ignored. These allocations are high priority and system rather than
4450 * user oriented.
e46e7b77 4451 */
cd04ae1e 4452 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4453 ac->nodemask = NULL;
e46e7b77
MG
4454 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4455 ac->high_zoneidx, ac->nodemask);
4456 }
4457
23771235 4458 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4459 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4460 if (page)
4461 goto got_pg;
1da177e4 4462
d0164adc 4463 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4464 if (!can_direct_reclaim)
1da177e4
LT
4465 goto nopage;
4466
9a67f648
MH
4467 /* Avoid recursion of direct reclaim */
4468 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4469 goto nopage;
4470
a8161d1e
VB
4471 /* Try direct reclaim and then allocating */
4472 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4473 &did_some_progress);
4474 if (page)
4475 goto got_pg;
4476
4477 /* Try direct compaction and then allocating */
a9263751 4478 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4479 compact_priority, &compact_result);
56de7263
MG
4480 if (page)
4481 goto got_pg;
75f30861 4482
9083905a
JW
4483 /* Do not loop if specifically requested */
4484 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4485 goto nopage;
9083905a 4486
0a0337e0
MH
4487 /*
4488 * Do not retry costly high order allocations unless they are
dcda9b04 4489 * __GFP_RETRY_MAYFAIL
0a0337e0 4490 */
dcda9b04 4491 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4492 goto nopage;
0a0337e0 4493
0a0337e0 4494 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4495 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4496 goto retry;
4497
33c2d214
MH
4498 /*
4499 * It doesn't make any sense to retry for the compaction if the order-0
4500 * reclaim is not able to make any progress because the current
4501 * implementation of the compaction depends on the sufficient amount
4502 * of free memory (see __compaction_suitable)
4503 */
4504 if (did_some_progress > 0 &&
86a294a8 4505 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4506 compact_result, &compact_priority,
d9436498 4507 &compaction_retries))
33c2d214
MH
4508 goto retry;
4509
902b6281
VB
4510
4511 /* Deal with possible cpuset update races before we start OOM killing */
4512 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4513 goto retry_cpuset;
4514
9083905a
JW
4515 /* Reclaim has failed us, start killing things */
4516 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4517 if (page)
4518 goto got_pg;
4519
9a67f648 4520 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4521 if (tsk_is_oom_victim(current) &&
4522 (alloc_flags == ALLOC_OOM ||
c288983d 4523 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4524 goto nopage;
4525
9083905a 4526 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4527 if (did_some_progress) {
4528 no_progress_loops = 0;
9083905a 4529 goto retry;
0a0337e0 4530 }
9083905a 4531
1da177e4 4532nopage:
902b6281
VB
4533 /* Deal with possible cpuset update races before we fail */
4534 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4535 goto retry_cpuset;
4536
9a67f648
MH
4537 /*
4538 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4539 * we always retry
4540 */
4541 if (gfp_mask & __GFP_NOFAIL) {
4542 /*
4543 * All existing users of the __GFP_NOFAIL are blockable, so warn
4544 * of any new users that actually require GFP_NOWAIT
4545 */
4546 if (WARN_ON_ONCE(!can_direct_reclaim))
4547 goto fail;
4548
4549 /*
4550 * PF_MEMALLOC request from this context is rather bizarre
4551 * because we cannot reclaim anything and only can loop waiting
4552 * for somebody to do a work for us
4553 */
4554 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4555
4556 /*
4557 * non failing costly orders are a hard requirement which we
4558 * are not prepared for much so let's warn about these users
4559 * so that we can identify them and convert them to something
4560 * else.
4561 */
4562 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4563
6c18ba7a
MH
4564 /*
4565 * Help non-failing allocations by giving them access to memory
4566 * reserves but do not use ALLOC_NO_WATERMARKS because this
4567 * could deplete whole memory reserves which would just make
4568 * the situation worse
4569 */
4570 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4571 if (page)
4572 goto got_pg;
4573
9a67f648
MH
4574 cond_resched();
4575 goto retry;
4576 }
4577fail:
a8e99259 4578 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4579 "page allocation failure: order:%u", order);
1da177e4 4580got_pg:
072bb0aa 4581 return page;
1da177e4 4582}
11e33f6a 4583
9cd75558 4584static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4585 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4586 struct alloc_context *ac, gfp_t *alloc_mask,
4587 unsigned int *alloc_flags)
11e33f6a 4588{
9cd75558 4589 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4590 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4591 ac->nodemask = nodemask;
4592 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4593
682a3385 4594 if (cpusets_enabled()) {
9cd75558 4595 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4596 if (!ac->nodemask)
4597 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4598 else
4599 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4600 }
4601
d92a8cfc
PZ
4602 fs_reclaim_acquire(gfp_mask);
4603 fs_reclaim_release(gfp_mask);
11e33f6a 4604
d0164adc 4605 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4606
4607 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4608 return false;
11e33f6a 4609
d883c6cf
JK
4610 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4611 *alloc_flags |= ALLOC_CMA;
4612
9cd75558
MG
4613 return true;
4614}
21bb9bd1 4615
9cd75558 4616/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4617static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4618{
c9ab0c4f 4619 /* Dirty zone balancing only done in the fast path */
9cd75558 4620 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4621
e46e7b77
MG
4622 /*
4623 * The preferred zone is used for statistics but crucially it is
4624 * also used as the starting point for the zonelist iterator. It
4625 * may get reset for allocations that ignore memory policies.
4626 */
9cd75558
MG
4627 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4628 ac->high_zoneidx, ac->nodemask);
4629}
4630
4631/*
4632 * This is the 'heart' of the zoned buddy allocator.
4633 */
4634struct page *
04ec6264
VB
4635__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4636 nodemask_t *nodemask)
9cd75558
MG
4637{
4638 struct page *page;
4639 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4640 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4641 struct alloc_context ac = { };
4642
c63ae43b
MH
4643 /*
4644 * There are several places where we assume that the order value is sane
4645 * so bail out early if the request is out of bound.
4646 */
4647 if (unlikely(order >= MAX_ORDER)) {
4648 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4649 return NULL;
4650 }
4651
9cd75558 4652 gfp_mask &= gfp_allowed_mask;
f19360f0 4653 alloc_mask = gfp_mask;
04ec6264 4654 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4655 return NULL;
4656
a380b40a 4657 finalise_ac(gfp_mask, &ac);
5bb1b169 4658
6bb15450
MG
4659 /*
4660 * Forbid the first pass from falling back to types that fragment
4661 * memory until all local zones are considered.
4662 */
0a79cdad 4663 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4664
5117f45d 4665 /* First allocation attempt */
a9263751 4666 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4667 if (likely(page))
4668 goto out;
11e33f6a 4669
4fcb0971 4670 /*
7dea19f9
MH
4671 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4672 * resp. GFP_NOIO which has to be inherited for all allocation requests
4673 * from a particular context which has been marked by
4674 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4675 */
7dea19f9 4676 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4677 ac.spread_dirty_pages = false;
23f086f9 4678
4741526b
MG
4679 /*
4680 * Restore the original nodemask if it was potentially replaced with
4681 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4682 */
e47483bc 4683 if (unlikely(ac.nodemask != nodemask))
4741526b 4684 ac.nodemask = nodemask;
16096c25 4685
4fcb0971 4686 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4687
4fcb0971 4688out:
c4159a75 4689 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4690 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4691 __free_pages(page, order);
4692 page = NULL;
4949148a
VD
4693 }
4694
4fcb0971
MG
4695 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4696
11e33f6a 4697 return page;
1da177e4 4698}
d239171e 4699EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4700
4701/*
9ea9a680
MH
4702 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4703 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4704 * you need to access high mem.
1da177e4 4705 */
920c7a5d 4706unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4707{
945a1113
AM
4708 struct page *page;
4709
9ea9a680 4710 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4711 if (!page)
4712 return 0;
4713 return (unsigned long) page_address(page);
4714}
1da177e4
LT
4715EXPORT_SYMBOL(__get_free_pages);
4716
920c7a5d 4717unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4718{
945a1113 4719 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4720}
1da177e4
LT
4721EXPORT_SYMBOL(get_zeroed_page);
4722
742aa7fb 4723static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4724{
742aa7fb
AL
4725 if (order == 0) /* Via pcp? */
4726 free_unref_page(page);
4727 else
4728 __free_pages_ok(page, order);
1da177e4
LT
4729}
4730
742aa7fb
AL
4731void __free_pages(struct page *page, unsigned int order)
4732{
4733 if (put_page_testzero(page))
4734 free_the_page(page, order);
4735}
1da177e4
LT
4736EXPORT_SYMBOL(__free_pages);
4737
920c7a5d 4738void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4739{
4740 if (addr != 0) {
725d704e 4741 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4742 __free_pages(virt_to_page((void *)addr), order);
4743 }
4744}
4745
4746EXPORT_SYMBOL(free_pages);
4747
b63ae8ca
AD
4748/*
4749 * Page Fragment:
4750 * An arbitrary-length arbitrary-offset area of memory which resides
4751 * within a 0 or higher order page. Multiple fragments within that page
4752 * are individually refcounted, in the page's reference counter.
4753 *
4754 * The page_frag functions below provide a simple allocation framework for
4755 * page fragments. This is used by the network stack and network device
4756 * drivers to provide a backing region of memory for use as either an
4757 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4758 */
2976db80
AD
4759static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4760 gfp_t gfp_mask)
b63ae8ca
AD
4761{
4762 struct page *page = NULL;
4763 gfp_t gfp = gfp_mask;
4764
4765#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4766 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4767 __GFP_NOMEMALLOC;
4768 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4769 PAGE_FRAG_CACHE_MAX_ORDER);
4770 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4771#endif
4772 if (unlikely(!page))
4773 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4774
4775 nc->va = page ? page_address(page) : NULL;
4776
4777 return page;
4778}
4779
2976db80 4780void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4781{
4782 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4783
742aa7fb
AL
4784 if (page_ref_sub_and_test(page, count))
4785 free_the_page(page, compound_order(page));
44fdffd7 4786}
2976db80 4787EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4788
8c2dd3e4
AD
4789void *page_frag_alloc(struct page_frag_cache *nc,
4790 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4791{
4792 unsigned int size = PAGE_SIZE;
4793 struct page *page;
4794 int offset;
4795
4796 if (unlikely(!nc->va)) {
4797refill:
2976db80 4798 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4799 if (!page)
4800 return NULL;
4801
4802#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4803 /* if size can vary use size else just use PAGE_SIZE */
4804 size = nc->size;
4805#endif
4806 /* Even if we own the page, we do not use atomic_set().
4807 * This would break get_page_unless_zero() users.
4808 */
86447726 4809 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4810
4811 /* reset page count bias and offset to start of new frag */
2f064f34 4812 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4813 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4814 nc->offset = size;
4815 }
4816
4817 offset = nc->offset - fragsz;
4818 if (unlikely(offset < 0)) {
4819 page = virt_to_page(nc->va);
4820
fe896d18 4821 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4822 goto refill;
4823
4824#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4825 /* if size can vary use size else just use PAGE_SIZE */
4826 size = nc->size;
4827#endif
4828 /* OK, page count is 0, we can safely set it */
86447726 4829 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4830
4831 /* reset page count bias and offset to start of new frag */
86447726 4832 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4833 offset = size - fragsz;
4834 }
4835
4836 nc->pagecnt_bias--;
4837 nc->offset = offset;
4838
4839 return nc->va + offset;
4840}
8c2dd3e4 4841EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4842
4843/*
4844 * Frees a page fragment allocated out of either a compound or order 0 page.
4845 */
8c2dd3e4 4846void page_frag_free(void *addr)
b63ae8ca
AD
4847{
4848 struct page *page = virt_to_head_page(addr);
4849
742aa7fb
AL
4850 if (unlikely(put_page_testzero(page)))
4851 free_the_page(page, compound_order(page));
b63ae8ca 4852}
8c2dd3e4 4853EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4854
d00181b9
KS
4855static void *make_alloc_exact(unsigned long addr, unsigned int order,
4856 size_t size)
ee85c2e1
AK
4857{
4858 if (addr) {
4859 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4860 unsigned long used = addr + PAGE_ALIGN(size);
4861
4862 split_page(virt_to_page((void *)addr), order);
4863 while (used < alloc_end) {
4864 free_page(used);
4865 used += PAGE_SIZE;
4866 }
4867 }
4868 return (void *)addr;
4869}
4870
2be0ffe2
TT
4871/**
4872 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4873 * @size: the number of bytes to allocate
63931eb9 4874 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4875 *
4876 * This function is similar to alloc_pages(), except that it allocates the
4877 * minimum number of pages to satisfy the request. alloc_pages() can only
4878 * allocate memory in power-of-two pages.
4879 *
4880 * This function is also limited by MAX_ORDER.
4881 *
4882 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4883 *
4884 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4885 */
4886void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4887{
4888 unsigned int order = get_order(size);
4889 unsigned long addr;
4890
63931eb9
VB
4891 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4892 gfp_mask &= ~__GFP_COMP;
4893
2be0ffe2 4894 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4895 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4896}
4897EXPORT_SYMBOL(alloc_pages_exact);
4898
ee85c2e1
AK
4899/**
4900 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4901 * pages on a node.
b5e6ab58 4902 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4903 * @size: the number of bytes to allocate
63931eb9 4904 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4905 *
4906 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4907 * back.
a862f68a
MR
4908 *
4909 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4910 */
e1931811 4911void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4912{
d00181b9 4913 unsigned int order = get_order(size);
63931eb9
VB
4914 struct page *p;
4915
4916 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4917 gfp_mask &= ~__GFP_COMP;
4918
4919 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4920 if (!p)
4921 return NULL;
4922 return make_alloc_exact((unsigned long)page_address(p), order, size);
4923}
ee85c2e1 4924
2be0ffe2
TT
4925/**
4926 * free_pages_exact - release memory allocated via alloc_pages_exact()
4927 * @virt: the value returned by alloc_pages_exact.
4928 * @size: size of allocation, same value as passed to alloc_pages_exact().
4929 *
4930 * Release the memory allocated by a previous call to alloc_pages_exact.
4931 */
4932void free_pages_exact(void *virt, size_t size)
4933{
4934 unsigned long addr = (unsigned long)virt;
4935 unsigned long end = addr + PAGE_ALIGN(size);
4936
4937 while (addr < end) {
4938 free_page(addr);
4939 addr += PAGE_SIZE;
4940 }
4941}
4942EXPORT_SYMBOL(free_pages_exact);
4943
e0fb5815
ZY
4944/**
4945 * nr_free_zone_pages - count number of pages beyond high watermark
4946 * @offset: The zone index of the highest zone
4947 *
a862f68a 4948 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4949 * high watermark within all zones at or below a given zone index. For each
4950 * zone, the number of pages is calculated as:
0e056eb5
MCC
4951 *
4952 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4953 *
4954 * Return: number of pages beyond high watermark.
e0fb5815 4955 */
ebec3862 4956static unsigned long nr_free_zone_pages(int offset)
1da177e4 4957{
dd1a239f 4958 struct zoneref *z;
54a6eb5c
MG
4959 struct zone *zone;
4960
e310fd43 4961 /* Just pick one node, since fallback list is circular */
ebec3862 4962 unsigned long sum = 0;
1da177e4 4963
0e88460d 4964 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4965
54a6eb5c 4966 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4967 unsigned long size = zone_managed_pages(zone);
41858966 4968 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4969 if (size > high)
4970 sum += size - high;
1da177e4
LT
4971 }
4972
4973 return sum;
4974}
4975
e0fb5815
ZY
4976/**
4977 * nr_free_buffer_pages - count number of pages beyond high watermark
4978 *
4979 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4980 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4981 *
4982 * Return: number of pages beyond high watermark within ZONE_DMA and
4983 * ZONE_NORMAL.
1da177e4 4984 */
ebec3862 4985unsigned long nr_free_buffer_pages(void)
1da177e4 4986{
af4ca457 4987 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4988}
c2f1a551 4989EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4990
e0fb5815
ZY
4991/**
4992 * nr_free_pagecache_pages - count number of pages beyond high watermark
4993 *
4994 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4995 * high watermark within all zones.
a862f68a
MR
4996 *
4997 * Return: number of pages beyond high watermark within all zones.
1da177e4 4998 */
ebec3862 4999unsigned long nr_free_pagecache_pages(void)
1da177e4 5000{
2a1e274a 5001 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5002}
08e0f6a9
CL
5003
5004static inline void show_node(struct zone *zone)
1da177e4 5005{
e5adfffc 5006 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5007 printk("Node %d ", zone_to_nid(zone));
1da177e4 5008}
1da177e4 5009
d02bd27b
IR
5010long si_mem_available(void)
5011{
5012 long available;
5013 unsigned long pagecache;
5014 unsigned long wmark_low = 0;
5015 unsigned long pages[NR_LRU_LISTS];
b29940c1 5016 unsigned long reclaimable;
d02bd27b
IR
5017 struct zone *zone;
5018 int lru;
5019
5020 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5021 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5022
5023 for_each_zone(zone)
a9214443 5024 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5025
5026 /*
5027 * Estimate the amount of memory available for userspace allocations,
5028 * without causing swapping.
5029 */
c41f012a 5030 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5031
5032 /*
5033 * Not all the page cache can be freed, otherwise the system will
5034 * start swapping. Assume at least half of the page cache, or the
5035 * low watermark worth of cache, needs to stay.
5036 */
5037 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5038 pagecache -= min(pagecache / 2, wmark_low);
5039 available += pagecache;
5040
5041 /*
b29940c1
VB
5042 * Part of the reclaimable slab and other kernel memory consists of
5043 * items that are in use, and cannot be freed. Cap this estimate at the
5044 * low watermark.
d02bd27b 5045 */
b29940c1
VB
5046 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5047 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5048 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5049
d02bd27b
IR
5050 if (available < 0)
5051 available = 0;
5052 return available;
5053}
5054EXPORT_SYMBOL_GPL(si_mem_available);
5055
1da177e4
LT
5056void si_meminfo(struct sysinfo *val)
5057{
ca79b0c2 5058 val->totalram = totalram_pages();
11fb9989 5059 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5060 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5061 val->bufferram = nr_blockdev_pages();
ca79b0c2 5062 val->totalhigh = totalhigh_pages();
1da177e4 5063 val->freehigh = nr_free_highpages();
1da177e4
LT
5064 val->mem_unit = PAGE_SIZE;
5065}
5066
5067EXPORT_SYMBOL(si_meminfo);
5068
5069#ifdef CONFIG_NUMA
5070void si_meminfo_node(struct sysinfo *val, int nid)
5071{
cdd91a77
JL
5072 int zone_type; /* needs to be signed */
5073 unsigned long managed_pages = 0;
fc2bd799
JK
5074 unsigned long managed_highpages = 0;
5075 unsigned long free_highpages = 0;
1da177e4
LT
5076 pg_data_t *pgdat = NODE_DATA(nid);
5077
cdd91a77 5078 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5079 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5080 val->totalram = managed_pages;
11fb9989 5081 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5082 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5083#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5084 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5085 struct zone *zone = &pgdat->node_zones[zone_type];
5086
5087 if (is_highmem(zone)) {
9705bea5 5088 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5089 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5090 }
5091 }
5092 val->totalhigh = managed_highpages;
5093 val->freehigh = free_highpages;
98d2b0eb 5094#else
fc2bd799
JK
5095 val->totalhigh = managed_highpages;
5096 val->freehigh = free_highpages;
98d2b0eb 5097#endif
1da177e4
LT
5098 val->mem_unit = PAGE_SIZE;
5099}
5100#endif
5101
ddd588b5 5102/*
7bf02ea2
DR
5103 * Determine whether the node should be displayed or not, depending on whether
5104 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5105 */
9af744d7 5106static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5107{
ddd588b5 5108 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5109 return false;
ddd588b5 5110
9af744d7
MH
5111 /*
5112 * no node mask - aka implicit memory numa policy. Do not bother with
5113 * the synchronization - read_mems_allowed_begin - because we do not
5114 * have to be precise here.
5115 */
5116 if (!nodemask)
5117 nodemask = &cpuset_current_mems_allowed;
5118
5119 return !node_isset(nid, *nodemask);
ddd588b5
DR
5120}
5121
1da177e4
LT
5122#define K(x) ((x) << (PAGE_SHIFT-10))
5123
377e4f16
RV
5124static void show_migration_types(unsigned char type)
5125{
5126 static const char types[MIGRATE_TYPES] = {
5127 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5128 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5129 [MIGRATE_RECLAIMABLE] = 'E',
5130 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5131#ifdef CONFIG_CMA
5132 [MIGRATE_CMA] = 'C',
5133#endif
194159fb 5134#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5135 [MIGRATE_ISOLATE] = 'I',
194159fb 5136#endif
377e4f16
RV
5137 };
5138 char tmp[MIGRATE_TYPES + 1];
5139 char *p = tmp;
5140 int i;
5141
5142 for (i = 0; i < MIGRATE_TYPES; i++) {
5143 if (type & (1 << i))
5144 *p++ = types[i];
5145 }
5146
5147 *p = '\0';
1f84a18f 5148 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5149}
5150
1da177e4
LT
5151/*
5152 * Show free area list (used inside shift_scroll-lock stuff)
5153 * We also calculate the percentage fragmentation. We do this by counting the
5154 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5155 *
5156 * Bits in @filter:
5157 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5158 * cpuset.
1da177e4 5159 */
9af744d7 5160void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5161{
d1bfcdb8 5162 unsigned long free_pcp = 0;
c7241913 5163 int cpu;
1da177e4 5164 struct zone *zone;
599d0c95 5165 pg_data_t *pgdat;
1da177e4 5166
ee99c71c 5167 for_each_populated_zone(zone) {
9af744d7 5168 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5169 continue;
d1bfcdb8 5170
761b0677
KK
5171 for_each_online_cpu(cpu)
5172 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5173 }
5174
a731286d
KM
5175 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5176 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5177 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5178 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5179 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5180 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5181 global_node_page_state(NR_ACTIVE_ANON),
5182 global_node_page_state(NR_INACTIVE_ANON),
5183 global_node_page_state(NR_ISOLATED_ANON),
5184 global_node_page_state(NR_ACTIVE_FILE),
5185 global_node_page_state(NR_INACTIVE_FILE),
5186 global_node_page_state(NR_ISOLATED_FILE),
5187 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5188 global_node_page_state(NR_FILE_DIRTY),
5189 global_node_page_state(NR_WRITEBACK),
5190 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5191 global_node_page_state(NR_SLAB_RECLAIMABLE),
5192 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5193 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5194 global_node_page_state(NR_SHMEM),
c41f012a
MH
5195 global_zone_page_state(NR_PAGETABLE),
5196 global_zone_page_state(NR_BOUNCE),
5197 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5198 free_pcp,
c41f012a 5199 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5200
599d0c95 5201 for_each_online_pgdat(pgdat) {
9af744d7 5202 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5203 continue;
5204
599d0c95
MG
5205 printk("Node %d"
5206 " active_anon:%lukB"
5207 " inactive_anon:%lukB"
5208 " active_file:%lukB"
5209 " inactive_file:%lukB"
5210 " unevictable:%lukB"
5211 " isolated(anon):%lukB"
5212 " isolated(file):%lukB"
50658e2e 5213 " mapped:%lukB"
11fb9989
MG
5214 " dirty:%lukB"
5215 " writeback:%lukB"
5216 " shmem:%lukB"
5217#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5218 " shmem_thp: %lukB"
5219 " shmem_pmdmapped: %lukB"
5220 " anon_thp: %lukB"
5221#endif
5222 " writeback_tmp:%lukB"
5223 " unstable:%lukB"
599d0c95
MG
5224 " all_unreclaimable? %s"
5225 "\n",
5226 pgdat->node_id,
5227 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5228 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5229 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5230 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5231 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5232 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5233 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5234 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5235 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5236 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5237 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5238#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5239 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5240 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5241 * HPAGE_PMD_NR),
5242 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5243#endif
11fb9989
MG
5244 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5245 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5246 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5247 "yes" : "no");
599d0c95
MG
5248 }
5249
ee99c71c 5250 for_each_populated_zone(zone) {
1da177e4
LT
5251 int i;
5252
9af744d7 5253 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5254 continue;
d1bfcdb8
KK
5255
5256 free_pcp = 0;
5257 for_each_online_cpu(cpu)
5258 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5259
1da177e4 5260 show_node(zone);
1f84a18f
JP
5261 printk(KERN_CONT
5262 "%s"
1da177e4
LT
5263 " free:%lukB"
5264 " min:%lukB"
5265 " low:%lukB"
5266 " high:%lukB"
71c799f4
MK
5267 " active_anon:%lukB"
5268 " inactive_anon:%lukB"
5269 " active_file:%lukB"
5270 " inactive_file:%lukB"
5271 " unevictable:%lukB"
5a1c84b4 5272 " writepending:%lukB"
1da177e4 5273 " present:%lukB"
9feedc9d 5274 " managed:%lukB"
4a0aa73f 5275 " mlocked:%lukB"
c6a7f572 5276 " kernel_stack:%lukB"
4a0aa73f 5277 " pagetables:%lukB"
4a0aa73f 5278 " bounce:%lukB"
d1bfcdb8
KK
5279 " free_pcp:%lukB"
5280 " local_pcp:%ukB"
d1ce749a 5281 " free_cma:%lukB"
1da177e4
LT
5282 "\n",
5283 zone->name,
88f5acf8 5284 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5285 K(min_wmark_pages(zone)),
5286 K(low_wmark_pages(zone)),
5287 K(high_wmark_pages(zone)),
71c799f4
MK
5288 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5289 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5290 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5291 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5292 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5293 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5294 K(zone->present_pages),
9705bea5 5295 K(zone_managed_pages(zone)),
4a0aa73f 5296 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5297 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5298 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5299 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5300 K(free_pcp),
5301 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5302 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5303 printk("lowmem_reserve[]:");
5304 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5305 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5306 printk(KERN_CONT "\n");
1da177e4
LT
5307 }
5308
ee99c71c 5309 for_each_populated_zone(zone) {
d00181b9
KS
5310 unsigned int order;
5311 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5312 unsigned char types[MAX_ORDER];
1da177e4 5313
9af744d7 5314 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5315 continue;
1da177e4 5316 show_node(zone);
1f84a18f 5317 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5318
5319 spin_lock_irqsave(&zone->lock, flags);
5320 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5321 struct free_area *area = &zone->free_area[order];
5322 int type;
5323
5324 nr[order] = area->nr_free;
8f9de51a 5325 total += nr[order] << order;
377e4f16
RV
5326
5327 types[order] = 0;
5328 for (type = 0; type < MIGRATE_TYPES; type++) {
5329 if (!list_empty(&area->free_list[type]))
5330 types[order] |= 1 << type;
5331 }
1da177e4
LT
5332 }
5333 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5334 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5335 printk(KERN_CONT "%lu*%lukB ",
5336 nr[order], K(1UL) << order);
377e4f16
RV
5337 if (nr[order])
5338 show_migration_types(types[order]);
5339 }
1f84a18f 5340 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5341 }
5342
949f7ec5
DR
5343 hugetlb_show_meminfo();
5344
11fb9989 5345 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5346
1da177e4
LT
5347 show_swap_cache_info();
5348}
5349
19770b32
MG
5350static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5351{
5352 zoneref->zone = zone;
5353 zoneref->zone_idx = zone_idx(zone);
5354}
5355
1da177e4
LT
5356/*
5357 * Builds allocation fallback zone lists.
1a93205b
CL
5358 *
5359 * Add all populated zones of a node to the zonelist.
1da177e4 5360 */
9d3be21b 5361static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5362{
1a93205b 5363 struct zone *zone;
bc732f1d 5364 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5365 int nr_zones = 0;
02a68a5e
CL
5366
5367 do {
2f6726e5 5368 zone_type--;
070f8032 5369 zone = pgdat->node_zones + zone_type;
6aa303de 5370 if (managed_zone(zone)) {
9d3be21b 5371 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5372 check_highest_zone(zone_type);
1da177e4 5373 }
2f6726e5 5374 } while (zone_type);
bc732f1d 5375
070f8032 5376 return nr_zones;
1da177e4
LT
5377}
5378
5379#ifdef CONFIG_NUMA
f0c0b2b8
KH
5380
5381static int __parse_numa_zonelist_order(char *s)
5382{
c9bff3ee
MH
5383 /*
5384 * We used to support different zonlists modes but they turned
5385 * out to be just not useful. Let's keep the warning in place
5386 * if somebody still use the cmd line parameter so that we do
5387 * not fail it silently
5388 */
5389 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5390 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5391 return -EINVAL;
5392 }
5393 return 0;
5394}
5395
5396static __init int setup_numa_zonelist_order(char *s)
5397{
ecb256f8
VL
5398 if (!s)
5399 return 0;
5400
c9bff3ee 5401 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5402}
5403early_param("numa_zonelist_order", setup_numa_zonelist_order);
5404
c9bff3ee
MH
5405char numa_zonelist_order[] = "Node";
5406
f0c0b2b8
KH
5407/*
5408 * sysctl handler for numa_zonelist_order
5409 */
cccad5b9 5410int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5411 void __user *buffer, size_t *length,
f0c0b2b8
KH
5412 loff_t *ppos)
5413{
c9bff3ee 5414 char *str;
f0c0b2b8
KH
5415 int ret;
5416
c9bff3ee
MH
5417 if (!write)
5418 return proc_dostring(table, write, buffer, length, ppos);
5419 str = memdup_user_nul(buffer, 16);
5420 if (IS_ERR(str))
5421 return PTR_ERR(str);
dacbde09 5422
c9bff3ee
MH
5423 ret = __parse_numa_zonelist_order(str);
5424 kfree(str);
443c6f14 5425 return ret;
f0c0b2b8
KH
5426}
5427
5428
62bc62a8 5429#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5430static int node_load[MAX_NUMNODES];
5431
1da177e4 5432/**
4dc3b16b 5433 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5434 * @node: node whose fallback list we're appending
5435 * @used_node_mask: nodemask_t of already used nodes
5436 *
5437 * We use a number of factors to determine which is the next node that should
5438 * appear on a given node's fallback list. The node should not have appeared
5439 * already in @node's fallback list, and it should be the next closest node
5440 * according to the distance array (which contains arbitrary distance values
5441 * from each node to each node in the system), and should also prefer nodes
5442 * with no CPUs, since presumably they'll have very little allocation pressure
5443 * on them otherwise.
a862f68a
MR
5444 *
5445 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5446 */
f0c0b2b8 5447static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5448{
4cf808eb 5449 int n, val;
1da177e4 5450 int min_val = INT_MAX;
00ef2d2f 5451 int best_node = NUMA_NO_NODE;
a70f7302 5452 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5453
4cf808eb
LT
5454 /* Use the local node if we haven't already */
5455 if (!node_isset(node, *used_node_mask)) {
5456 node_set(node, *used_node_mask);
5457 return node;
5458 }
1da177e4 5459
4b0ef1fe 5460 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5461
5462 /* Don't want a node to appear more than once */
5463 if (node_isset(n, *used_node_mask))
5464 continue;
5465
1da177e4
LT
5466 /* Use the distance array to find the distance */
5467 val = node_distance(node, n);
5468
4cf808eb
LT
5469 /* Penalize nodes under us ("prefer the next node") */
5470 val += (n < node);
5471
1da177e4 5472 /* Give preference to headless and unused nodes */
a70f7302
RR
5473 tmp = cpumask_of_node(n);
5474 if (!cpumask_empty(tmp))
1da177e4
LT
5475 val += PENALTY_FOR_NODE_WITH_CPUS;
5476
5477 /* Slight preference for less loaded node */
5478 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5479 val += node_load[n];
5480
5481 if (val < min_val) {
5482 min_val = val;
5483 best_node = n;
5484 }
5485 }
5486
5487 if (best_node >= 0)
5488 node_set(best_node, *used_node_mask);
5489
5490 return best_node;
5491}
5492
f0c0b2b8
KH
5493
5494/*
5495 * Build zonelists ordered by node and zones within node.
5496 * This results in maximum locality--normal zone overflows into local
5497 * DMA zone, if any--but risks exhausting DMA zone.
5498 */
9d3be21b
MH
5499static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5500 unsigned nr_nodes)
1da177e4 5501{
9d3be21b
MH
5502 struct zoneref *zonerefs;
5503 int i;
5504
5505 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5506
5507 for (i = 0; i < nr_nodes; i++) {
5508 int nr_zones;
5509
5510 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5511
9d3be21b
MH
5512 nr_zones = build_zonerefs_node(node, zonerefs);
5513 zonerefs += nr_zones;
5514 }
5515 zonerefs->zone = NULL;
5516 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5517}
5518
523b9458
CL
5519/*
5520 * Build gfp_thisnode zonelists
5521 */
5522static void build_thisnode_zonelists(pg_data_t *pgdat)
5523{
9d3be21b
MH
5524 struct zoneref *zonerefs;
5525 int nr_zones;
523b9458 5526
9d3be21b
MH
5527 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5528 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5529 zonerefs += nr_zones;
5530 zonerefs->zone = NULL;
5531 zonerefs->zone_idx = 0;
523b9458
CL
5532}
5533
f0c0b2b8
KH
5534/*
5535 * Build zonelists ordered by zone and nodes within zones.
5536 * This results in conserving DMA zone[s] until all Normal memory is
5537 * exhausted, but results in overflowing to remote node while memory
5538 * may still exist in local DMA zone.
5539 */
f0c0b2b8 5540
f0c0b2b8
KH
5541static void build_zonelists(pg_data_t *pgdat)
5542{
9d3be21b
MH
5543 static int node_order[MAX_NUMNODES];
5544 int node, load, nr_nodes = 0;
1da177e4 5545 nodemask_t used_mask;
f0c0b2b8 5546 int local_node, prev_node;
1da177e4
LT
5547
5548 /* NUMA-aware ordering of nodes */
5549 local_node = pgdat->node_id;
62bc62a8 5550 load = nr_online_nodes;
1da177e4
LT
5551 prev_node = local_node;
5552 nodes_clear(used_mask);
f0c0b2b8 5553
f0c0b2b8 5554 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5555 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5556 /*
5557 * We don't want to pressure a particular node.
5558 * So adding penalty to the first node in same
5559 * distance group to make it round-robin.
5560 */
957f822a
DR
5561 if (node_distance(local_node, node) !=
5562 node_distance(local_node, prev_node))
f0c0b2b8
KH
5563 node_load[node] = load;
5564
9d3be21b 5565 node_order[nr_nodes++] = node;
1da177e4
LT
5566 prev_node = node;
5567 load--;
1da177e4 5568 }
523b9458 5569
9d3be21b 5570 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5571 build_thisnode_zonelists(pgdat);
1da177e4
LT
5572}
5573
7aac7898
LS
5574#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5575/*
5576 * Return node id of node used for "local" allocations.
5577 * I.e., first node id of first zone in arg node's generic zonelist.
5578 * Used for initializing percpu 'numa_mem', which is used primarily
5579 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5580 */
5581int local_memory_node(int node)
5582{
c33d6c06 5583 struct zoneref *z;
7aac7898 5584
c33d6c06 5585 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5586 gfp_zone(GFP_KERNEL),
c33d6c06 5587 NULL);
c1093b74 5588 return zone_to_nid(z->zone);
7aac7898
LS
5589}
5590#endif
f0c0b2b8 5591
6423aa81
JK
5592static void setup_min_unmapped_ratio(void);
5593static void setup_min_slab_ratio(void);
1da177e4
LT
5594#else /* CONFIG_NUMA */
5595
f0c0b2b8 5596static void build_zonelists(pg_data_t *pgdat)
1da177e4 5597{
19655d34 5598 int node, local_node;
9d3be21b
MH
5599 struct zoneref *zonerefs;
5600 int nr_zones;
1da177e4
LT
5601
5602 local_node = pgdat->node_id;
1da177e4 5603
9d3be21b
MH
5604 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5605 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5606 zonerefs += nr_zones;
1da177e4 5607
54a6eb5c
MG
5608 /*
5609 * Now we build the zonelist so that it contains the zones
5610 * of all the other nodes.
5611 * We don't want to pressure a particular node, so when
5612 * building the zones for node N, we make sure that the
5613 * zones coming right after the local ones are those from
5614 * node N+1 (modulo N)
5615 */
5616 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5617 if (!node_online(node))
5618 continue;
9d3be21b
MH
5619 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5620 zonerefs += nr_zones;
1da177e4 5621 }
54a6eb5c
MG
5622 for (node = 0; node < local_node; node++) {
5623 if (!node_online(node))
5624 continue;
9d3be21b
MH
5625 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5626 zonerefs += nr_zones;
54a6eb5c
MG
5627 }
5628
9d3be21b
MH
5629 zonerefs->zone = NULL;
5630 zonerefs->zone_idx = 0;
1da177e4
LT
5631}
5632
5633#endif /* CONFIG_NUMA */
5634
99dcc3e5
CL
5635/*
5636 * Boot pageset table. One per cpu which is going to be used for all
5637 * zones and all nodes. The parameters will be set in such a way
5638 * that an item put on a list will immediately be handed over to
5639 * the buddy list. This is safe since pageset manipulation is done
5640 * with interrupts disabled.
5641 *
5642 * The boot_pagesets must be kept even after bootup is complete for
5643 * unused processors and/or zones. They do play a role for bootstrapping
5644 * hotplugged processors.
5645 *
5646 * zoneinfo_show() and maybe other functions do
5647 * not check if the processor is online before following the pageset pointer.
5648 * Other parts of the kernel may not check if the zone is available.
5649 */
5650static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5651static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5652static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5653
11cd8638 5654static void __build_all_zonelists(void *data)
1da177e4 5655{
6811378e 5656 int nid;
afb6ebb3 5657 int __maybe_unused cpu;
9adb62a5 5658 pg_data_t *self = data;
b93e0f32
MH
5659 static DEFINE_SPINLOCK(lock);
5660
5661 spin_lock(&lock);
9276b1bc 5662
7f9cfb31
BL
5663#ifdef CONFIG_NUMA
5664 memset(node_load, 0, sizeof(node_load));
5665#endif
9adb62a5 5666
c1152583
WY
5667 /*
5668 * This node is hotadded and no memory is yet present. So just
5669 * building zonelists is fine - no need to touch other nodes.
5670 */
9adb62a5
JL
5671 if (self && !node_online(self->node_id)) {
5672 build_zonelists(self);
c1152583
WY
5673 } else {
5674 for_each_online_node(nid) {
5675 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5676
c1152583
WY
5677 build_zonelists(pgdat);
5678 }
99dcc3e5 5679
7aac7898
LS
5680#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5681 /*
5682 * We now know the "local memory node" for each node--
5683 * i.e., the node of the first zone in the generic zonelist.
5684 * Set up numa_mem percpu variable for on-line cpus. During
5685 * boot, only the boot cpu should be on-line; we'll init the
5686 * secondary cpus' numa_mem as they come on-line. During
5687 * node/memory hotplug, we'll fixup all on-line cpus.
5688 */
d9c9a0b9 5689 for_each_online_cpu(cpu)
7aac7898 5690 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5691#endif
d9c9a0b9 5692 }
b93e0f32
MH
5693
5694 spin_unlock(&lock);
6811378e
YG
5695}
5696
061f67bc
RV
5697static noinline void __init
5698build_all_zonelists_init(void)
5699{
afb6ebb3
MH
5700 int cpu;
5701
061f67bc 5702 __build_all_zonelists(NULL);
afb6ebb3
MH
5703
5704 /*
5705 * Initialize the boot_pagesets that are going to be used
5706 * for bootstrapping processors. The real pagesets for
5707 * each zone will be allocated later when the per cpu
5708 * allocator is available.
5709 *
5710 * boot_pagesets are used also for bootstrapping offline
5711 * cpus if the system is already booted because the pagesets
5712 * are needed to initialize allocators on a specific cpu too.
5713 * F.e. the percpu allocator needs the page allocator which
5714 * needs the percpu allocator in order to allocate its pagesets
5715 * (a chicken-egg dilemma).
5716 */
5717 for_each_possible_cpu(cpu)
5718 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5719
061f67bc
RV
5720 mminit_verify_zonelist();
5721 cpuset_init_current_mems_allowed();
5722}
5723
4eaf3f64 5724/*
4eaf3f64 5725 * unless system_state == SYSTEM_BOOTING.
061f67bc 5726 *
72675e13 5727 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5728 * [protected by SYSTEM_BOOTING].
4eaf3f64 5729 */
72675e13 5730void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5731{
5732 if (system_state == SYSTEM_BOOTING) {
061f67bc 5733 build_all_zonelists_init();
6811378e 5734 } else {
11cd8638 5735 __build_all_zonelists(pgdat);
6811378e
YG
5736 /* cpuset refresh routine should be here */
5737 }
bd1e22b8 5738 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5739 /*
5740 * Disable grouping by mobility if the number of pages in the
5741 * system is too low to allow the mechanism to work. It would be
5742 * more accurate, but expensive to check per-zone. This check is
5743 * made on memory-hotadd so a system can start with mobility
5744 * disabled and enable it later
5745 */
d9c23400 5746 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5747 page_group_by_mobility_disabled = 1;
5748 else
5749 page_group_by_mobility_disabled = 0;
5750
ce0725f7 5751 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5752 nr_online_nodes,
756a025f
JP
5753 page_group_by_mobility_disabled ? "off" : "on",
5754 vm_total_pages);
f0c0b2b8 5755#ifdef CONFIG_NUMA
f88dfff5 5756 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5757#endif
1da177e4
LT
5758}
5759
a9a9e77f
PT
5760/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5761static bool __meminit
5762overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5763{
5764#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5765 static struct memblock_region *r;
5766
5767 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5768 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5769 for_each_memblock(memory, r) {
5770 if (*pfn < memblock_region_memory_end_pfn(r))
5771 break;
5772 }
5773 }
5774 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5775 memblock_is_mirror(r)) {
5776 *pfn = memblock_region_memory_end_pfn(r);
5777 return true;
5778 }
5779 }
5780#endif
5781 return false;
5782}
5783
1da177e4
LT
5784/*
5785 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5786 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5787 * done. Non-atomic initialization, single-pass.
5788 */
c09b4240 5789void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5790 unsigned long start_pfn, enum memmap_context context,
5791 struct vmem_altmap *altmap)
1da177e4 5792{
a9a9e77f 5793 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5794 struct page *page;
1da177e4 5795
22b31eec
HD
5796 if (highest_memmap_pfn < end_pfn - 1)
5797 highest_memmap_pfn = end_pfn - 1;
5798
966cf44f 5799#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5800 /*
5801 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5802 * memory. We limit the total number of pages to initialize to just
5803 * those that might contain the memory mapping. We will defer the
5804 * ZONE_DEVICE page initialization until after we have released
5805 * the hotplug lock.
4b94ffdc 5806 */
966cf44f
AD
5807 if (zone == ZONE_DEVICE) {
5808 if (!altmap)
5809 return;
5810
5811 if (start_pfn == altmap->base_pfn)
5812 start_pfn += altmap->reserve;
5813 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5814 }
5815#endif
4b94ffdc 5816
cbe8dd4a 5817 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5818 /*
b72d0ffb
AM
5819 * There can be holes in boot-time mem_map[]s handed to this
5820 * function. They do not exist on hotplugged memory.
a2f3aa02 5821 */
a9a9e77f
PT
5822 if (context == MEMMAP_EARLY) {
5823 if (!early_pfn_valid(pfn))
b72d0ffb 5824 continue;
a9a9e77f
PT
5825 if (!early_pfn_in_nid(pfn, nid))
5826 continue;
5827 if (overlap_memmap_init(zone, &pfn))
5828 continue;
5829 if (defer_init(nid, pfn, end_pfn))
5830 break;
a2f3aa02 5831 }
ac5d2539 5832
d0dc12e8
PT
5833 page = pfn_to_page(pfn);
5834 __init_single_page(page, pfn, zone, nid);
5835 if (context == MEMMAP_HOTPLUG)
d483da5b 5836 __SetPageReserved(page);
d0dc12e8 5837
ac5d2539
MG
5838 /*
5839 * Mark the block movable so that blocks are reserved for
5840 * movable at startup. This will force kernel allocations
5841 * to reserve their blocks rather than leaking throughout
5842 * the address space during boot when many long-lived
974a786e 5843 * kernel allocations are made.
ac5d2539
MG
5844 *
5845 * bitmap is created for zone's valid pfn range. but memmap
5846 * can be created for invalid pages (for alignment)
5847 * check here not to call set_pageblock_migratetype() against
5848 * pfn out of zone.
5849 */
5850 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5851 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5852 cond_resched();
ac5d2539 5853 }
1da177e4
LT
5854 }
5855}
5856
966cf44f
AD
5857#ifdef CONFIG_ZONE_DEVICE
5858void __ref memmap_init_zone_device(struct zone *zone,
5859 unsigned long start_pfn,
5860 unsigned long size,
5861 struct dev_pagemap *pgmap)
5862{
5863 unsigned long pfn, end_pfn = start_pfn + size;
5864 struct pglist_data *pgdat = zone->zone_pgdat;
5865 unsigned long zone_idx = zone_idx(zone);
5866 unsigned long start = jiffies;
5867 int nid = pgdat->node_id;
5868
5869 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5870 return;
5871
5872 /*
5873 * The call to memmap_init_zone should have already taken care
5874 * of the pages reserved for the memmap, so we can just jump to
5875 * the end of that region and start processing the device pages.
5876 */
5877 if (pgmap->altmap_valid) {
5878 struct vmem_altmap *altmap = &pgmap->altmap;
5879
5880 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5881 size = end_pfn - start_pfn;
5882 }
5883
5884 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5885 struct page *page = pfn_to_page(pfn);
5886
5887 __init_single_page(page, pfn, zone_idx, nid);
5888
5889 /*
5890 * Mark page reserved as it will need to wait for onlining
5891 * phase for it to be fully associated with a zone.
5892 *
5893 * We can use the non-atomic __set_bit operation for setting
5894 * the flag as we are still initializing the pages.
5895 */
5896 __SetPageReserved(page);
5897
5898 /*
5899 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5900 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5901 * page is ever freed or placed on a driver-private list.
5902 */
5903 page->pgmap = pgmap;
5904 page->hmm_data = 0;
5905
5906 /*
5907 * Mark the block movable so that blocks are reserved for
5908 * movable at startup. This will force kernel allocations
5909 * to reserve their blocks rather than leaking throughout
5910 * the address space during boot when many long-lived
5911 * kernel allocations are made.
5912 *
5913 * bitmap is created for zone's valid pfn range. but memmap
5914 * can be created for invalid pages (for alignment)
5915 * check here not to call set_pageblock_migratetype() against
5916 * pfn out of zone.
5917 *
5918 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5919 * because this is done early in sparse_add_one_section
5920 */
5921 if (!(pfn & (pageblock_nr_pages - 1))) {
5922 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5923 cond_resched();
5924 }
5925 }
5926
5927 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5928 size, jiffies_to_msecs(jiffies - start));
5929}
5930
5931#endif
1e548deb 5932static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5933{
7aeb09f9 5934 unsigned int order, t;
b2a0ac88
MG
5935 for_each_migratetype_order(order, t) {
5936 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5937 zone->free_area[order].nr_free = 0;
5938 }
5939}
5940
dfb3ccd0
PT
5941void __meminit __weak memmap_init(unsigned long size, int nid,
5942 unsigned long zone, unsigned long start_pfn)
5943{
5944 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5945}
1da177e4 5946
7cd2b0a3 5947static int zone_batchsize(struct zone *zone)
e7c8d5c9 5948{
3a6be87f 5949#ifdef CONFIG_MMU
e7c8d5c9
CL
5950 int batch;
5951
5952 /*
5953 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5954 * size of the zone.
e7c8d5c9 5955 */
9705bea5 5956 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5957 /* But no more than a meg. */
5958 if (batch * PAGE_SIZE > 1024 * 1024)
5959 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5960 batch /= 4; /* We effectively *= 4 below */
5961 if (batch < 1)
5962 batch = 1;
5963
5964 /*
0ceaacc9
NP
5965 * Clamp the batch to a 2^n - 1 value. Having a power
5966 * of 2 value was found to be more likely to have
5967 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5968 *
0ceaacc9
NP
5969 * For example if 2 tasks are alternately allocating
5970 * batches of pages, one task can end up with a lot
5971 * of pages of one half of the possible page colors
5972 * and the other with pages of the other colors.
e7c8d5c9 5973 */
9155203a 5974 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5975
e7c8d5c9 5976 return batch;
3a6be87f
DH
5977
5978#else
5979 /* The deferral and batching of frees should be suppressed under NOMMU
5980 * conditions.
5981 *
5982 * The problem is that NOMMU needs to be able to allocate large chunks
5983 * of contiguous memory as there's no hardware page translation to
5984 * assemble apparent contiguous memory from discontiguous pages.
5985 *
5986 * Queueing large contiguous runs of pages for batching, however,
5987 * causes the pages to actually be freed in smaller chunks. As there
5988 * can be a significant delay between the individual batches being
5989 * recycled, this leads to the once large chunks of space being
5990 * fragmented and becoming unavailable for high-order allocations.
5991 */
5992 return 0;
5993#endif
e7c8d5c9
CL
5994}
5995
8d7a8fa9
CS
5996/*
5997 * pcp->high and pcp->batch values are related and dependent on one another:
5998 * ->batch must never be higher then ->high.
5999 * The following function updates them in a safe manner without read side
6000 * locking.
6001 *
6002 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6003 * those fields changing asynchronously (acording the the above rule).
6004 *
6005 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6006 * outside of boot time (or some other assurance that no concurrent updaters
6007 * exist).
6008 */
6009static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6010 unsigned long batch)
6011{
6012 /* start with a fail safe value for batch */
6013 pcp->batch = 1;
6014 smp_wmb();
6015
6016 /* Update high, then batch, in order */
6017 pcp->high = high;
6018 smp_wmb();
6019
6020 pcp->batch = batch;
6021}
6022
3664033c 6023/* a companion to pageset_set_high() */
4008bab7
CS
6024static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6025{
8d7a8fa9 6026 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6027}
6028
88c90dbc 6029static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6030{
6031 struct per_cpu_pages *pcp;
5f8dcc21 6032 int migratetype;
2caaad41 6033
1c6fe946
MD
6034 memset(p, 0, sizeof(*p));
6035
3dfa5721 6036 pcp = &p->pcp;
5f8dcc21
MG
6037 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6038 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6039}
6040
88c90dbc
CS
6041static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6042{
6043 pageset_init(p);
6044 pageset_set_batch(p, batch);
6045}
6046
8ad4b1fb 6047/*
3664033c 6048 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6049 * to the value high for the pageset p.
6050 */
3664033c 6051static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6052 unsigned long high)
6053{
8d7a8fa9
CS
6054 unsigned long batch = max(1UL, high / 4);
6055 if ((high / 4) > (PAGE_SHIFT * 8))
6056 batch = PAGE_SHIFT * 8;
8ad4b1fb 6057
8d7a8fa9 6058 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6059}
6060
7cd2b0a3
DR
6061static void pageset_set_high_and_batch(struct zone *zone,
6062 struct per_cpu_pageset *pcp)
56cef2b8 6063{
56cef2b8 6064 if (percpu_pagelist_fraction)
3664033c 6065 pageset_set_high(pcp,
9705bea5 6066 (zone_managed_pages(zone) /
56cef2b8
CS
6067 percpu_pagelist_fraction));
6068 else
6069 pageset_set_batch(pcp, zone_batchsize(zone));
6070}
6071
169f6c19
CS
6072static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6073{
6074 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6075
6076 pageset_init(pcp);
6077 pageset_set_high_and_batch(zone, pcp);
6078}
6079
72675e13 6080void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6081{
6082 int cpu;
319774e2 6083 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6084 for_each_possible_cpu(cpu)
6085 zone_pageset_init(zone, cpu);
319774e2
WF
6086}
6087
2caaad41 6088/*
99dcc3e5
CL
6089 * Allocate per cpu pagesets and initialize them.
6090 * Before this call only boot pagesets were available.
e7c8d5c9 6091 */
99dcc3e5 6092void __init setup_per_cpu_pageset(void)
e7c8d5c9 6093{
b4911ea2 6094 struct pglist_data *pgdat;
99dcc3e5 6095 struct zone *zone;
e7c8d5c9 6096
319774e2
WF
6097 for_each_populated_zone(zone)
6098 setup_zone_pageset(zone);
b4911ea2
MG
6099
6100 for_each_online_pgdat(pgdat)
6101 pgdat->per_cpu_nodestats =
6102 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6103}
6104
c09b4240 6105static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6106{
99dcc3e5
CL
6107 /*
6108 * per cpu subsystem is not up at this point. The following code
6109 * relies on the ability of the linker to provide the
6110 * offset of a (static) per cpu variable into the per cpu area.
6111 */
6112 zone->pageset = &boot_pageset;
ed8ece2e 6113
b38a8725 6114 if (populated_zone(zone))
99dcc3e5
CL
6115 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6116 zone->name, zone->present_pages,
6117 zone_batchsize(zone));
ed8ece2e
DH
6118}
6119
dc0bbf3b 6120void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6121 unsigned long zone_start_pfn,
b171e409 6122 unsigned long size)
ed8ece2e
DH
6123{
6124 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6125 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6126
8f416836
WY
6127 if (zone_idx > pgdat->nr_zones)
6128 pgdat->nr_zones = zone_idx;
ed8ece2e 6129
ed8ece2e
DH
6130 zone->zone_start_pfn = zone_start_pfn;
6131
708614e6
MG
6132 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6133 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6134 pgdat->node_id,
6135 (unsigned long)zone_idx(zone),
6136 zone_start_pfn, (zone_start_pfn + size));
6137
1e548deb 6138 zone_init_free_lists(zone);
9dcb8b68 6139 zone->initialized = 1;
ed8ece2e
DH
6140}
6141
0ee332c1 6142#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6143#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6144
c713216d
MG
6145/*
6146 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6147 */
8a942fde
MG
6148int __meminit __early_pfn_to_nid(unsigned long pfn,
6149 struct mminit_pfnnid_cache *state)
c713216d 6150{
c13291a5 6151 unsigned long start_pfn, end_pfn;
e76b63f8 6152 int nid;
7c243c71 6153
8a942fde
MG
6154 if (state->last_start <= pfn && pfn < state->last_end)
6155 return state->last_nid;
c713216d 6156
e76b63f8 6157 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6158 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6159 state->last_start = start_pfn;
6160 state->last_end = end_pfn;
6161 state->last_nid = nid;
e76b63f8
YL
6162 }
6163
6164 return nid;
c713216d
MG
6165}
6166#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6167
c713216d 6168/**
6782832e 6169 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6170 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6171 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6172 *
7d018176
ZZ
6173 * If an architecture guarantees that all ranges registered contain no holes
6174 * and may be freed, this this function may be used instead of calling
6175 * memblock_free_early_nid() manually.
c713216d 6176 */
c13291a5 6177void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6178{
c13291a5
TH
6179 unsigned long start_pfn, end_pfn;
6180 int i, this_nid;
edbe7d23 6181
c13291a5
TH
6182 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6183 start_pfn = min(start_pfn, max_low_pfn);
6184 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6185
c13291a5 6186 if (start_pfn < end_pfn)
6782832e
SS
6187 memblock_free_early_nid(PFN_PHYS(start_pfn),
6188 (end_pfn - start_pfn) << PAGE_SHIFT,
6189 this_nid);
edbe7d23 6190 }
edbe7d23 6191}
edbe7d23 6192
c713216d
MG
6193/**
6194 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6195 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6196 *
7d018176
ZZ
6197 * If an architecture guarantees that all ranges registered contain no holes and may
6198 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6199 */
6200void __init sparse_memory_present_with_active_regions(int nid)
6201{
c13291a5
TH
6202 unsigned long start_pfn, end_pfn;
6203 int i, this_nid;
c713216d 6204
c13291a5
TH
6205 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6206 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6207}
6208
6209/**
6210 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6211 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6212 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6213 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6214 *
6215 * It returns the start and end page frame of a node based on information
7d018176 6216 * provided by memblock_set_node(). If called for a node
c713216d 6217 * with no available memory, a warning is printed and the start and end
88ca3b94 6218 * PFNs will be 0.
c713216d 6219 */
bbe5d993 6220void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6221 unsigned long *start_pfn, unsigned long *end_pfn)
6222{
c13291a5 6223 unsigned long this_start_pfn, this_end_pfn;
c713216d 6224 int i;
c13291a5 6225
c713216d
MG
6226 *start_pfn = -1UL;
6227 *end_pfn = 0;
6228
c13291a5
TH
6229 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6230 *start_pfn = min(*start_pfn, this_start_pfn);
6231 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6232 }
6233
633c0666 6234 if (*start_pfn == -1UL)
c713216d 6235 *start_pfn = 0;
c713216d
MG
6236}
6237
2a1e274a
MG
6238/*
6239 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6240 * assumption is made that zones within a node are ordered in monotonic
6241 * increasing memory addresses so that the "highest" populated zone is used
6242 */
b69a7288 6243static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6244{
6245 int zone_index;
6246 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6247 if (zone_index == ZONE_MOVABLE)
6248 continue;
6249
6250 if (arch_zone_highest_possible_pfn[zone_index] >
6251 arch_zone_lowest_possible_pfn[zone_index])
6252 break;
6253 }
6254
6255 VM_BUG_ON(zone_index == -1);
6256 movable_zone = zone_index;
6257}
6258
6259/*
6260 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6261 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6262 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6263 * in each node depending on the size of each node and how evenly kernelcore
6264 * is distributed. This helper function adjusts the zone ranges
6265 * provided by the architecture for a given node by using the end of the
6266 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6267 * zones within a node are in order of monotonic increases memory addresses
6268 */
bbe5d993 6269static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6270 unsigned long zone_type,
6271 unsigned long node_start_pfn,
6272 unsigned long node_end_pfn,
6273 unsigned long *zone_start_pfn,
6274 unsigned long *zone_end_pfn)
6275{
6276 /* Only adjust if ZONE_MOVABLE is on this node */
6277 if (zone_movable_pfn[nid]) {
6278 /* Size ZONE_MOVABLE */
6279 if (zone_type == ZONE_MOVABLE) {
6280 *zone_start_pfn = zone_movable_pfn[nid];
6281 *zone_end_pfn = min(node_end_pfn,
6282 arch_zone_highest_possible_pfn[movable_zone]);
6283
e506b996
XQ
6284 /* Adjust for ZONE_MOVABLE starting within this range */
6285 } else if (!mirrored_kernelcore &&
6286 *zone_start_pfn < zone_movable_pfn[nid] &&
6287 *zone_end_pfn > zone_movable_pfn[nid]) {
6288 *zone_end_pfn = zone_movable_pfn[nid];
6289
2a1e274a
MG
6290 /* Check if this whole range is within ZONE_MOVABLE */
6291 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6292 *zone_start_pfn = *zone_end_pfn;
6293 }
6294}
6295
c713216d
MG
6296/*
6297 * Return the number of pages a zone spans in a node, including holes
6298 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6299 */
bbe5d993 6300static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6301 unsigned long zone_type,
7960aedd
ZY
6302 unsigned long node_start_pfn,
6303 unsigned long node_end_pfn,
d91749c1
TI
6304 unsigned long *zone_start_pfn,
6305 unsigned long *zone_end_pfn,
c713216d
MG
6306 unsigned long *ignored)
6307{
299c83dc
LF
6308 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6309 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6310 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6311 if (!node_start_pfn && !node_end_pfn)
6312 return 0;
6313
7960aedd 6314 /* Get the start and end of the zone */
299c83dc
LF
6315 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6316 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6317 adjust_zone_range_for_zone_movable(nid, zone_type,
6318 node_start_pfn, node_end_pfn,
d91749c1 6319 zone_start_pfn, zone_end_pfn);
c713216d
MG
6320
6321 /* Check that this node has pages within the zone's required range */
d91749c1 6322 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6323 return 0;
6324
6325 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6326 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6327 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6328
6329 /* Return the spanned pages */
d91749c1 6330 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6331}
6332
6333/*
6334 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6335 * then all holes in the requested range will be accounted for.
c713216d 6336 */
bbe5d993 6337unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6338 unsigned long range_start_pfn,
6339 unsigned long range_end_pfn)
6340{
96e907d1
TH
6341 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6342 unsigned long start_pfn, end_pfn;
6343 int i;
c713216d 6344
96e907d1
TH
6345 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6346 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6347 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6348 nr_absent -= end_pfn - start_pfn;
c713216d 6349 }
96e907d1 6350 return nr_absent;
c713216d
MG
6351}
6352
6353/**
6354 * absent_pages_in_range - Return number of page frames in holes within a range
6355 * @start_pfn: The start PFN to start searching for holes
6356 * @end_pfn: The end PFN to stop searching for holes
6357 *
a862f68a 6358 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6359 */
6360unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6361 unsigned long end_pfn)
6362{
6363 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6364}
6365
6366/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6367static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6368 unsigned long zone_type,
7960aedd
ZY
6369 unsigned long node_start_pfn,
6370 unsigned long node_end_pfn,
c713216d
MG
6371 unsigned long *ignored)
6372{
96e907d1
TH
6373 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6374 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6375 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6376 unsigned long nr_absent;
9c7cd687 6377
b5685e92 6378 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6379 if (!node_start_pfn && !node_end_pfn)
6380 return 0;
6381
96e907d1
TH
6382 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6383 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6384
2a1e274a
MG
6385 adjust_zone_range_for_zone_movable(nid, zone_type,
6386 node_start_pfn, node_end_pfn,
6387 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6388 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6389
6390 /*
6391 * ZONE_MOVABLE handling.
6392 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6393 * and vice versa.
6394 */
e506b996
XQ
6395 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6396 unsigned long start_pfn, end_pfn;
6397 struct memblock_region *r;
6398
6399 for_each_memblock(memory, r) {
6400 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6401 zone_start_pfn, zone_end_pfn);
6402 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6403 zone_start_pfn, zone_end_pfn);
6404
6405 if (zone_type == ZONE_MOVABLE &&
6406 memblock_is_mirror(r))
6407 nr_absent += end_pfn - start_pfn;
6408
6409 if (zone_type == ZONE_NORMAL &&
6410 !memblock_is_mirror(r))
6411 nr_absent += end_pfn - start_pfn;
342332e6
TI
6412 }
6413 }
6414
6415 return nr_absent;
c713216d 6416}
0e0b864e 6417
0ee332c1 6418#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6419static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6420 unsigned long zone_type,
7960aedd
ZY
6421 unsigned long node_start_pfn,
6422 unsigned long node_end_pfn,
d91749c1
TI
6423 unsigned long *zone_start_pfn,
6424 unsigned long *zone_end_pfn,
c713216d
MG
6425 unsigned long *zones_size)
6426{
d91749c1
TI
6427 unsigned int zone;
6428
6429 *zone_start_pfn = node_start_pfn;
6430 for (zone = 0; zone < zone_type; zone++)
6431 *zone_start_pfn += zones_size[zone];
6432
6433 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6434
c713216d
MG
6435 return zones_size[zone_type];
6436}
6437
bbe5d993 6438static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6439 unsigned long zone_type,
7960aedd
ZY
6440 unsigned long node_start_pfn,
6441 unsigned long node_end_pfn,
c713216d
MG
6442 unsigned long *zholes_size)
6443{
6444 if (!zholes_size)
6445 return 0;
6446
6447 return zholes_size[zone_type];
6448}
20e6926d 6449
0ee332c1 6450#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6451
bbe5d993 6452static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6453 unsigned long node_start_pfn,
6454 unsigned long node_end_pfn,
6455 unsigned long *zones_size,
6456 unsigned long *zholes_size)
c713216d 6457{
febd5949 6458 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6459 enum zone_type i;
6460
febd5949
GZ
6461 for (i = 0; i < MAX_NR_ZONES; i++) {
6462 struct zone *zone = pgdat->node_zones + i;
d91749c1 6463 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6464 unsigned long size, real_size;
c713216d 6465
febd5949
GZ
6466 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6467 node_start_pfn,
6468 node_end_pfn,
d91749c1
TI
6469 &zone_start_pfn,
6470 &zone_end_pfn,
febd5949
GZ
6471 zones_size);
6472 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6473 node_start_pfn, node_end_pfn,
6474 zholes_size);
d91749c1
TI
6475 if (size)
6476 zone->zone_start_pfn = zone_start_pfn;
6477 else
6478 zone->zone_start_pfn = 0;
febd5949
GZ
6479 zone->spanned_pages = size;
6480 zone->present_pages = real_size;
6481
6482 totalpages += size;
6483 realtotalpages += real_size;
6484 }
6485
6486 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6487 pgdat->node_present_pages = realtotalpages;
6488 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6489 realtotalpages);
6490}
6491
835c134e
MG
6492#ifndef CONFIG_SPARSEMEM
6493/*
6494 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6495 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6496 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6497 * round what is now in bits to nearest long in bits, then return it in
6498 * bytes.
6499 */
7c45512d 6500static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6501{
6502 unsigned long usemapsize;
6503
7c45512d 6504 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6505 usemapsize = roundup(zonesize, pageblock_nr_pages);
6506 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6507 usemapsize *= NR_PAGEBLOCK_BITS;
6508 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6509
6510 return usemapsize / 8;
6511}
6512
7cc2a959 6513static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6514 struct zone *zone,
6515 unsigned long zone_start_pfn,
6516 unsigned long zonesize)
835c134e 6517{
7c45512d 6518 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6519 zone->pageblock_flags = NULL;
23a7052a 6520 if (usemapsize) {
6782832e 6521 zone->pageblock_flags =
26fb3dae
MR
6522 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6523 pgdat->node_id);
23a7052a
MR
6524 if (!zone->pageblock_flags)
6525 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6526 usemapsize, zone->name, pgdat->node_id);
6527 }
835c134e
MG
6528}
6529#else
7c45512d
LT
6530static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6531 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6532#endif /* CONFIG_SPARSEMEM */
6533
d9c23400 6534#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6535
d9c23400 6536/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6537void __init set_pageblock_order(void)
d9c23400 6538{
955c1cd7
AM
6539 unsigned int order;
6540
d9c23400
MG
6541 /* Check that pageblock_nr_pages has not already been setup */
6542 if (pageblock_order)
6543 return;
6544
955c1cd7
AM
6545 if (HPAGE_SHIFT > PAGE_SHIFT)
6546 order = HUGETLB_PAGE_ORDER;
6547 else
6548 order = MAX_ORDER - 1;
6549
d9c23400
MG
6550 /*
6551 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6552 * This value may be variable depending on boot parameters on IA64 and
6553 * powerpc.
d9c23400
MG
6554 */
6555 pageblock_order = order;
6556}
6557#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6558
ba72cb8c
MG
6559/*
6560 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6561 * is unused as pageblock_order is set at compile-time. See
6562 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6563 * the kernel config
ba72cb8c 6564 */
03e85f9d 6565void __init set_pageblock_order(void)
ba72cb8c 6566{
ba72cb8c 6567}
d9c23400
MG
6568
6569#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6570
03e85f9d 6571static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6572 unsigned long present_pages)
01cefaef
JL
6573{
6574 unsigned long pages = spanned_pages;
6575
6576 /*
6577 * Provide a more accurate estimation if there are holes within
6578 * the zone and SPARSEMEM is in use. If there are holes within the
6579 * zone, each populated memory region may cost us one or two extra
6580 * memmap pages due to alignment because memmap pages for each
89d790ab 6581 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6582 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6583 */
6584 if (spanned_pages > present_pages + (present_pages >> 4) &&
6585 IS_ENABLED(CONFIG_SPARSEMEM))
6586 pages = present_pages;
6587
6588 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6589}
6590
ace1db39
OS
6591#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6592static void pgdat_init_split_queue(struct pglist_data *pgdat)
6593{
6594 spin_lock_init(&pgdat->split_queue_lock);
6595 INIT_LIST_HEAD(&pgdat->split_queue);
6596 pgdat->split_queue_len = 0;
6597}
6598#else
6599static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6600#endif
6601
6602#ifdef CONFIG_COMPACTION
6603static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6604{
6605 init_waitqueue_head(&pgdat->kcompactd_wait);
6606}
6607#else
6608static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6609#endif
6610
03e85f9d 6611static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6612{
208d54e5 6613 pgdat_resize_init(pgdat);
ace1db39 6614
ace1db39
OS
6615 pgdat_init_split_queue(pgdat);
6616 pgdat_init_kcompactd(pgdat);
6617
1da177e4 6618 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6619 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6620
eefa864b 6621 pgdat_page_ext_init(pgdat);
a52633d8 6622 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6623 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6624}
6625
6626static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6627 unsigned long remaining_pages)
6628{
9705bea5 6629 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6630 zone_set_nid(zone, nid);
6631 zone->name = zone_names[idx];
6632 zone->zone_pgdat = NODE_DATA(nid);
6633 spin_lock_init(&zone->lock);
6634 zone_seqlock_init(zone);
6635 zone_pcp_init(zone);
6636}
6637
6638/*
6639 * Set up the zone data structures
6640 * - init pgdat internals
6641 * - init all zones belonging to this node
6642 *
6643 * NOTE: this function is only called during memory hotplug
6644 */
6645#ifdef CONFIG_MEMORY_HOTPLUG
6646void __ref free_area_init_core_hotplug(int nid)
6647{
6648 enum zone_type z;
6649 pg_data_t *pgdat = NODE_DATA(nid);
6650
6651 pgdat_init_internals(pgdat);
6652 for (z = 0; z < MAX_NR_ZONES; z++)
6653 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6654}
6655#endif
6656
6657/*
6658 * Set up the zone data structures:
6659 * - mark all pages reserved
6660 * - mark all memory queues empty
6661 * - clear the memory bitmaps
6662 *
6663 * NOTE: pgdat should get zeroed by caller.
6664 * NOTE: this function is only called during early init.
6665 */
6666static void __init free_area_init_core(struct pglist_data *pgdat)
6667{
6668 enum zone_type j;
6669 int nid = pgdat->node_id;
5f63b720 6670
03e85f9d 6671 pgdat_init_internals(pgdat);
385386cf
JW
6672 pgdat->per_cpu_nodestats = &boot_nodestats;
6673
1da177e4
LT
6674 for (j = 0; j < MAX_NR_ZONES; j++) {
6675 struct zone *zone = pgdat->node_zones + j;
e6943859 6676 unsigned long size, freesize, memmap_pages;
d91749c1 6677 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6678
febd5949 6679 size = zone->spanned_pages;
e6943859 6680 freesize = zone->present_pages;
1da177e4 6681
0e0b864e 6682 /*
9feedc9d 6683 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6684 * is used by this zone for memmap. This affects the watermark
6685 * and per-cpu initialisations
6686 */
e6943859 6687 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6688 if (!is_highmem_idx(j)) {
6689 if (freesize >= memmap_pages) {
6690 freesize -= memmap_pages;
6691 if (memmap_pages)
6692 printk(KERN_DEBUG
6693 " %s zone: %lu pages used for memmap\n",
6694 zone_names[j], memmap_pages);
6695 } else
1170532b 6696 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6697 zone_names[j], memmap_pages, freesize);
6698 }
0e0b864e 6699
6267276f 6700 /* Account for reserved pages */
9feedc9d
JL
6701 if (j == 0 && freesize > dma_reserve) {
6702 freesize -= dma_reserve;
d903ef9f 6703 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6704 zone_names[0], dma_reserve);
0e0b864e
MG
6705 }
6706
98d2b0eb 6707 if (!is_highmem_idx(j))
9feedc9d 6708 nr_kernel_pages += freesize;
01cefaef
JL
6709 /* Charge for highmem memmap if there are enough kernel pages */
6710 else if (nr_kernel_pages > memmap_pages * 2)
6711 nr_kernel_pages -= memmap_pages;
9feedc9d 6712 nr_all_pages += freesize;
1da177e4 6713
9feedc9d
JL
6714 /*
6715 * Set an approximate value for lowmem here, it will be adjusted
6716 * when the bootmem allocator frees pages into the buddy system.
6717 * And all highmem pages will be managed by the buddy system.
6718 */
03e85f9d 6719 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6720
d883c6cf 6721 if (!size)
1da177e4
LT
6722 continue;
6723
955c1cd7 6724 set_pageblock_order();
d883c6cf
JK
6725 setup_usemap(pgdat, zone, zone_start_pfn, size);
6726 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6727 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6728 }
6729}
6730
0cd842f9 6731#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6732static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6733{
b0aeba74 6734 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6735 unsigned long __maybe_unused offset = 0;
6736
1da177e4
LT
6737 /* Skip empty nodes */
6738 if (!pgdat->node_spanned_pages)
6739 return;
6740
b0aeba74
TL
6741 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6742 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6743 /* ia64 gets its own node_mem_map, before this, without bootmem */
6744 if (!pgdat->node_mem_map) {
b0aeba74 6745 unsigned long size, end;
d41dee36
AW
6746 struct page *map;
6747
e984bb43
BP
6748 /*
6749 * The zone's endpoints aren't required to be MAX_ORDER
6750 * aligned but the node_mem_map endpoints must be in order
6751 * for the buddy allocator to function correctly.
6752 */
108bcc96 6753 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6754 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6755 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6756 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6757 pgdat->node_id);
23a7052a
MR
6758 if (!map)
6759 panic("Failed to allocate %ld bytes for node %d memory map\n",
6760 size, pgdat->node_id);
a1c34a3b 6761 pgdat->node_mem_map = map + offset;
1da177e4 6762 }
0cd842f9
OS
6763 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6764 __func__, pgdat->node_id, (unsigned long)pgdat,
6765 (unsigned long)pgdat->node_mem_map);
12d810c1 6766#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6767 /*
6768 * With no DISCONTIG, the global mem_map is just set as node 0's
6769 */
c713216d 6770 if (pgdat == NODE_DATA(0)) {
1da177e4 6771 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6772#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6773 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6774 mem_map -= offset;
0ee332c1 6775#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6776 }
1da177e4
LT
6777#endif
6778}
0cd842f9
OS
6779#else
6780static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6781#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6782
0188dc98
OS
6783#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6784static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6785{
0188dc98
OS
6786 pgdat->first_deferred_pfn = ULONG_MAX;
6787}
6788#else
6789static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6790#endif
6791
03e85f9d 6792void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6793 unsigned long node_start_pfn,
6794 unsigned long *zholes_size)
1da177e4 6795{
9109fb7b 6796 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6797 unsigned long start_pfn = 0;
6798 unsigned long end_pfn = 0;
9109fb7b 6799
88fdf75d 6800 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6801 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6802
1da177e4
LT
6803 pgdat->node_id = nid;
6804 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6805 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6806#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6807 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6808 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6809 (u64)start_pfn << PAGE_SHIFT,
6810 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6811#else
6812 start_pfn = node_start_pfn;
7960aedd
ZY
6813#endif
6814 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6815 zones_size, zholes_size);
1da177e4
LT
6816
6817 alloc_node_mem_map(pgdat);
0188dc98 6818 pgdat_set_deferred_range(pgdat);
1da177e4 6819
7f3eb55b 6820 free_area_init_core(pgdat);
1da177e4
LT
6821}
6822
aca52c39 6823#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6824/*
6825 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6826 * pages zeroed
6827 */
6828static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6829{
6830 unsigned long pfn;
6831 u64 pgcnt = 0;
6832
6833 for (pfn = spfn; pfn < epfn; pfn++) {
6834 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6835 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6836 + pageblock_nr_pages - 1;
6837 continue;
6838 }
6839 mm_zero_struct_page(pfn_to_page(pfn));
6840 pgcnt++;
6841 }
6842
6843 return pgcnt;
6844}
6845
a4a3ede2
PT
6846/*
6847 * Only struct pages that are backed by physical memory are zeroed and
6848 * initialized by going through __init_single_page(). But, there are some
6849 * struct pages which are reserved in memblock allocator and their fields
6850 * may be accessed (for example page_to_pfn() on some configuration accesses
6851 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6852 *
6853 * This function also addresses a similar issue where struct pages are left
6854 * uninitialized because the physical address range is not covered by
6855 * memblock.memory or memblock.reserved. That could happen when memblock
6856 * layout is manually configured via memmap=.
a4a3ede2 6857 */
03e85f9d 6858void __init zero_resv_unavail(void)
a4a3ede2
PT
6859{
6860 phys_addr_t start, end;
a4a3ede2 6861 u64 i, pgcnt;
907ec5fc 6862 phys_addr_t next = 0;
a4a3ede2
PT
6863
6864 /*
907ec5fc 6865 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6866 */
6867 pgcnt = 0;
907ec5fc
NH
6868 for_each_mem_range(i, &memblock.memory, NULL,
6869 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6870 if (next < start)
6871 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6872 next = end;
6873 }
ec393a0f 6874 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6875
a4a3ede2
PT
6876 /*
6877 * Struct pages that do not have backing memory. This could be because
6878 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6879 */
6880 if (pgcnt)
907ec5fc 6881 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6882}
aca52c39 6883#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6884
0ee332c1 6885#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6886
6887#if MAX_NUMNODES > 1
6888/*
6889 * Figure out the number of possible node ids.
6890 */
f9872caf 6891void __init setup_nr_node_ids(void)
418508c1 6892{
904a9553 6893 unsigned int highest;
418508c1 6894
904a9553 6895 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6896 nr_node_ids = highest + 1;
6897}
418508c1
MS
6898#endif
6899
1e01979c
TH
6900/**
6901 * node_map_pfn_alignment - determine the maximum internode alignment
6902 *
6903 * This function should be called after node map is populated and sorted.
6904 * It calculates the maximum power of two alignment which can distinguish
6905 * all the nodes.
6906 *
6907 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6908 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6909 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6910 * shifted, 1GiB is enough and this function will indicate so.
6911 *
6912 * This is used to test whether pfn -> nid mapping of the chosen memory
6913 * model has fine enough granularity to avoid incorrect mapping for the
6914 * populated node map.
6915 *
a862f68a 6916 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6917 * requirement (single node).
6918 */
6919unsigned long __init node_map_pfn_alignment(void)
6920{
6921 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6922 unsigned long start, end, mask;
98fa15f3 6923 int last_nid = NUMA_NO_NODE;
c13291a5 6924 int i, nid;
1e01979c 6925
c13291a5 6926 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6927 if (!start || last_nid < 0 || last_nid == nid) {
6928 last_nid = nid;
6929 last_end = end;
6930 continue;
6931 }
6932
6933 /*
6934 * Start with a mask granular enough to pin-point to the
6935 * start pfn and tick off bits one-by-one until it becomes
6936 * too coarse to separate the current node from the last.
6937 */
6938 mask = ~((1 << __ffs(start)) - 1);
6939 while (mask && last_end <= (start & (mask << 1)))
6940 mask <<= 1;
6941
6942 /* accumulate all internode masks */
6943 accl_mask |= mask;
6944 }
6945
6946 /* convert mask to number of pages */
6947 return ~accl_mask + 1;
6948}
6949
a6af2bc3 6950/* Find the lowest pfn for a node */
b69a7288 6951static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6952{
a6af2bc3 6953 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6954 unsigned long start_pfn;
6955 int i;
1abbfb41 6956
c13291a5
TH
6957 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6958 min_pfn = min(min_pfn, start_pfn);
c713216d 6959
a6af2bc3 6960 if (min_pfn == ULONG_MAX) {
1170532b 6961 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6962 return 0;
6963 }
6964
6965 return min_pfn;
c713216d
MG
6966}
6967
6968/**
6969 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6970 *
a862f68a 6971 * Return: the minimum PFN based on information provided via
7d018176 6972 * memblock_set_node().
c713216d
MG
6973 */
6974unsigned long __init find_min_pfn_with_active_regions(void)
6975{
6976 return find_min_pfn_for_node(MAX_NUMNODES);
6977}
6978
37b07e41
LS
6979/*
6980 * early_calculate_totalpages()
6981 * Sum pages in active regions for movable zone.
4b0ef1fe 6982 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6983 */
484f51f8 6984static unsigned long __init early_calculate_totalpages(void)
7e63efef 6985{
7e63efef 6986 unsigned long totalpages = 0;
c13291a5
TH
6987 unsigned long start_pfn, end_pfn;
6988 int i, nid;
6989
6990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6991 unsigned long pages = end_pfn - start_pfn;
7e63efef 6992
37b07e41
LS
6993 totalpages += pages;
6994 if (pages)
4b0ef1fe 6995 node_set_state(nid, N_MEMORY);
37b07e41 6996 }
b8af2941 6997 return totalpages;
7e63efef
MG
6998}
6999
2a1e274a
MG
7000/*
7001 * Find the PFN the Movable zone begins in each node. Kernel memory
7002 * is spread evenly between nodes as long as the nodes have enough
7003 * memory. When they don't, some nodes will have more kernelcore than
7004 * others
7005 */
b224ef85 7006static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7007{
7008 int i, nid;
7009 unsigned long usable_startpfn;
7010 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7011 /* save the state before borrow the nodemask */
4b0ef1fe 7012 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7013 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7014 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7015 struct memblock_region *r;
b2f3eebe
TC
7016
7017 /* Need to find movable_zone earlier when movable_node is specified. */
7018 find_usable_zone_for_movable();
7019
7020 /*
7021 * If movable_node is specified, ignore kernelcore and movablecore
7022 * options.
7023 */
7024 if (movable_node_is_enabled()) {
136199f0
EM
7025 for_each_memblock(memory, r) {
7026 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7027 continue;
7028
136199f0 7029 nid = r->nid;
b2f3eebe 7030
136199f0 7031 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7032 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7033 min(usable_startpfn, zone_movable_pfn[nid]) :
7034 usable_startpfn;
7035 }
7036
7037 goto out2;
7038 }
2a1e274a 7039
342332e6
TI
7040 /*
7041 * If kernelcore=mirror is specified, ignore movablecore option
7042 */
7043 if (mirrored_kernelcore) {
7044 bool mem_below_4gb_not_mirrored = false;
7045
7046 for_each_memblock(memory, r) {
7047 if (memblock_is_mirror(r))
7048 continue;
7049
7050 nid = r->nid;
7051
7052 usable_startpfn = memblock_region_memory_base_pfn(r);
7053
7054 if (usable_startpfn < 0x100000) {
7055 mem_below_4gb_not_mirrored = true;
7056 continue;
7057 }
7058
7059 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7060 min(usable_startpfn, zone_movable_pfn[nid]) :
7061 usable_startpfn;
7062 }
7063
7064 if (mem_below_4gb_not_mirrored)
7065 pr_warn("This configuration results in unmirrored kernel memory.");
7066
7067 goto out2;
7068 }
7069
7e63efef 7070 /*
a5c6d650
DR
7071 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7072 * amount of necessary memory.
7073 */
7074 if (required_kernelcore_percent)
7075 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7076 10000UL;
7077 if (required_movablecore_percent)
7078 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7079 10000UL;
7080
7081 /*
7082 * If movablecore= was specified, calculate what size of
7e63efef
MG
7083 * kernelcore that corresponds so that memory usable for
7084 * any allocation type is evenly spread. If both kernelcore
7085 * and movablecore are specified, then the value of kernelcore
7086 * will be used for required_kernelcore if it's greater than
7087 * what movablecore would have allowed.
7088 */
7089 if (required_movablecore) {
7e63efef
MG
7090 unsigned long corepages;
7091
7092 /*
7093 * Round-up so that ZONE_MOVABLE is at least as large as what
7094 * was requested by the user
7095 */
7096 required_movablecore =
7097 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7098 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7099 corepages = totalpages - required_movablecore;
7100
7101 required_kernelcore = max(required_kernelcore, corepages);
7102 }
7103
bde304bd
XQ
7104 /*
7105 * If kernelcore was not specified or kernelcore size is larger
7106 * than totalpages, there is no ZONE_MOVABLE.
7107 */
7108 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7109 goto out;
2a1e274a
MG
7110
7111 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7112 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7113
7114restart:
7115 /* Spread kernelcore memory as evenly as possible throughout nodes */
7116 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7117 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7118 unsigned long start_pfn, end_pfn;
7119
2a1e274a
MG
7120 /*
7121 * Recalculate kernelcore_node if the division per node
7122 * now exceeds what is necessary to satisfy the requested
7123 * amount of memory for the kernel
7124 */
7125 if (required_kernelcore < kernelcore_node)
7126 kernelcore_node = required_kernelcore / usable_nodes;
7127
7128 /*
7129 * As the map is walked, we track how much memory is usable
7130 * by the kernel using kernelcore_remaining. When it is
7131 * 0, the rest of the node is usable by ZONE_MOVABLE
7132 */
7133 kernelcore_remaining = kernelcore_node;
7134
7135 /* Go through each range of PFNs within this node */
c13291a5 7136 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7137 unsigned long size_pages;
7138
c13291a5 7139 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7140 if (start_pfn >= end_pfn)
7141 continue;
7142
7143 /* Account for what is only usable for kernelcore */
7144 if (start_pfn < usable_startpfn) {
7145 unsigned long kernel_pages;
7146 kernel_pages = min(end_pfn, usable_startpfn)
7147 - start_pfn;
7148
7149 kernelcore_remaining -= min(kernel_pages,
7150 kernelcore_remaining);
7151 required_kernelcore -= min(kernel_pages,
7152 required_kernelcore);
7153
7154 /* Continue if range is now fully accounted */
7155 if (end_pfn <= usable_startpfn) {
7156
7157 /*
7158 * Push zone_movable_pfn to the end so
7159 * that if we have to rebalance
7160 * kernelcore across nodes, we will
7161 * not double account here
7162 */
7163 zone_movable_pfn[nid] = end_pfn;
7164 continue;
7165 }
7166 start_pfn = usable_startpfn;
7167 }
7168
7169 /*
7170 * The usable PFN range for ZONE_MOVABLE is from
7171 * start_pfn->end_pfn. Calculate size_pages as the
7172 * number of pages used as kernelcore
7173 */
7174 size_pages = end_pfn - start_pfn;
7175 if (size_pages > kernelcore_remaining)
7176 size_pages = kernelcore_remaining;
7177 zone_movable_pfn[nid] = start_pfn + size_pages;
7178
7179 /*
7180 * Some kernelcore has been met, update counts and
7181 * break if the kernelcore for this node has been
b8af2941 7182 * satisfied
2a1e274a
MG
7183 */
7184 required_kernelcore -= min(required_kernelcore,
7185 size_pages);
7186 kernelcore_remaining -= size_pages;
7187 if (!kernelcore_remaining)
7188 break;
7189 }
7190 }
7191
7192 /*
7193 * If there is still required_kernelcore, we do another pass with one
7194 * less node in the count. This will push zone_movable_pfn[nid] further
7195 * along on the nodes that still have memory until kernelcore is
b8af2941 7196 * satisfied
2a1e274a
MG
7197 */
7198 usable_nodes--;
7199 if (usable_nodes && required_kernelcore > usable_nodes)
7200 goto restart;
7201
b2f3eebe 7202out2:
2a1e274a
MG
7203 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7204 for (nid = 0; nid < MAX_NUMNODES; nid++)
7205 zone_movable_pfn[nid] =
7206 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7207
20e6926d 7208out:
66918dcd 7209 /* restore the node_state */
4b0ef1fe 7210 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7211}
7212
4b0ef1fe
LJ
7213/* Any regular or high memory on that node ? */
7214static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7215{
37b07e41
LS
7216 enum zone_type zone_type;
7217
4b0ef1fe 7218 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7219 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7220 if (populated_zone(zone)) {
7b0e0c0e
OS
7221 if (IS_ENABLED(CONFIG_HIGHMEM))
7222 node_set_state(nid, N_HIGH_MEMORY);
7223 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7224 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7225 break;
7226 }
37b07e41 7227 }
37b07e41
LS
7228}
7229
c713216d
MG
7230/**
7231 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7232 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7233 *
7234 * This will call free_area_init_node() for each active node in the system.
7d018176 7235 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7236 * zone in each node and their holes is calculated. If the maximum PFN
7237 * between two adjacent zones match, it is assumed that the zone is empty.
7238 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7239 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7240 * starts where the previous one ended. For example, ZONE_DMA32 starts
7241 * at arch_max_dma_pfn.
7242 */
7243void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7244{
c13291a5
TH
7245 unsigned long start_pfn, end_pfn;
7246 int i, nid;
a6af2bc3 7247
c713216d
MG
7248 /* Record where the zone boundaries are */
7249 memset(arch_zone_lowest_possible_pfn, 0,
7250 sizeof(arch_zone_lowest_possible_pfn));
7251 memset(arch_zone_highest_possible_pfn, 0,
7252 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7253
7254 start_pfn = find_min_pfn_with_active_regions();
7255
7256 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7257 if (i == ZONE_MOVABLE)
7258 continue;
90cae1fe
OH
7259
7260 end_pfn = max(max_zone_pfn[i], start_pfn);
7261 arch_zone_lowest_possible_pfn[i] = start_pfn;
7262 arch_zone_highest_possible_pfn[i] = end_pfn;
7263
7264 start_pfn = end_pfn;
c713216d 7265 }
2a1e274a
MG
7266
7267 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7268 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7269 find_zone_movable_pfns_for_nodes();
c713216d 7270
c713216d 7271 /* Print out the zone ranges */
f88dfff5 7272 pr_info("Zone ranges:\n");
2a1e274a
MG
7273 for (i = 0; i < MAX_NR_ZONES; i++) {
7274 if (i == ZONE_MOVABLE)
7275 continue;
f88dfff5 7276 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7277 if (arch_zone_lowest_possible_pfn[i] ==
7278 arch_zone_highest_possible_pfn[i])
f88dfff5 7279 pr_cont("empty\n");
72f0ba02 7280 else
8d29e18a
JG
7281 pr_cont("[mem %#018Lx-%#018Lx]\n",
7282 (u64)arch_zone_lowest_possible_pfn[i]
7283 << PAGE_SHIFT,
7284 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7285 << PAGE_SHIFT) - 1);
2a1e274a
MG
7286 }
7287
7288 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7289 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7290 for (i = 0; i < MAX_NUMNODES; i++) {
7291 if (zone_movable_pfn[i])
8d29e18a
JG
7292 pr_info(" Node %d: %#018Lx\n", i,
7293 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7294 }
c713216d 7295
f2d52fe5 7296 /* Print out the early node map */
f88dfff5 7297 pr_info("Early memory node ranges\n");
c13291a5 7298 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7299 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7300 (u64)start_pfn << PAGE_SHIFT,
7301 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7302
7303 /* Initialise every node */
708614e6 7304 mminit_verify_pageflags_layout();
8ef82866 7305 setup_nr_node_ids();
e181ae0c 7306 zero_resv_unavail();
c713216d
MG
7307 for_each_online_node(nid) {
7308 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7309 free_area_init_node(nid, NULL,
c713216d 7310 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7311
7312 /* Any memory on that node */
7313 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7314 node_set_state(nid, N_MEMORY);
7315 check_for_memory(pgdat, nid);
c713216d
MG
7316 }
7317}
2a1e274a 7318
a5c6d650
DR
7319static int __init cmdline_parse_core(char *p, unsigned long *core,
7320 unsigned long *percent)
2a1e274a
MG
7321{
7322 unsigned long long coremem;
a5c6d650
DR
7323 char *endptr;
7324
2a1e274a
MG
7325 if (!p)
7326 return -EINVAL;
7327
a5c6d650
DR
7328 /* Value may be a percentage of total memory, otherwise bytes */
7329 coremem = simple_strtoull(p, &endptr, 0);
7330 if (*endptr == '%') {
7331 /* Paranoid check for percent values greater than 100 */
7332 WARN_ON(coremem > 100);
2a1e274a 7333
a5c6d650
DR
7334 *percent = coremem;
7335 } else {
7336 coremem = memparse(p, &p);
7337 /* Paranoid check that UL is enough for the coremem value */
7338 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7339
a5c6d650
DR
7340 *core = coremem >> PAGE_SHIFT;
7341 *percent = 0UL;
7342 }
2a1e274a
MG
7343 return 0;
7344}
ed7ed365 7345
7e63efef
MG
7346/*
7347 * kernelcore=size sets the amount of memory for use for allocations that
7348 * cannot be reclaimed or migrated.
7349 */
7350static int __init cmdline_parse_kernelcore(char *p)
7351{
342332e6
TI
7352 /* parse kernelcore=mirror */
7353 if (parse_option_str(p, "mirror")) {
7354 mirrored_kernelcore = true;
7355 return 0;
7356 }
7357
a5c6d650
DR
7358 return cmdline_parse_core(p, &required_kernelcore,
7359 &required_kernelcore_percent);
7e63efef
MG
7360}
7361
7362/*
7363 * movablecore=size sets the amount of memory for use for allocations that
7364 * can be reclaimed or migrated.
7365 */
7366static int __init cmdline_parse_movablecore(char *p)
7367{
a5c6d650
DR
7368 return cmdline_parse_core(p, &required_movablecore,
7369 &required_movablecore_percent);
7e63efef
MG
7370}
7371
ed7ed365 7372early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7373early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7374
0ee332c1 7375#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7376
c3d5f5f0
JL
7377void adjust_managed_page_count(struct page *page, long count)
7378{
9705bea5 7379 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7380 totalram_pages_add(count);
3dcc0571
JL
7381#ifdef CONFIG_HIGHMEM
7382 if (PageHighMem(page))
ca79b0c2 7383 totalhigh_pages_add(count);
3dcc0571 7384#endif
c3d5f5f0 7385}
3dcc0571 7386EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7387
e5cb113f 7388unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7389{
11199692
JL
7390 void *pos;
7391 unsigned long pages = 0;
69afade7 7392
11199692
JL
7393 start = (void *)PAGE_ALIGN((unsigned long)start);
7394 end = (void *)((unsigned long)end & PAGE_MASK);
7395 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7396 struct page *page = virt_to_page(pos);
7397 void *direct_map_addr;
7398
7399 /*
7400 * 'direct_map_addr' might be different from 'pos'
7401 * because some architectures' virt_to_page()
7402 * work with aliases. Getting the direct map
7403 * address ensures that we get a _writeable_
7404 * alias for the memset().
7405 */
7406 direct_map_addr = page_address(page);
dbe67df4 7407 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7408 memset(direct_map_addr, poison, PAGE_SIZE);
7409
7410 free_reserved_page(page);
69afade7
JL
7411 }
7412
7413 if (pages && s)
adb1fe9a
JP
7414 pr_info("Freeing %s memory: %ldK\n",
7415 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7416
7417 return pages;
7418}
7419
cfa11e08
JL
7420#ifdef CONFIG_HIGHMEM
7421void free_highmem_page(struct page *page)
7422{
7423 __free_reserved_page(page);
ca79b0c2 7424 totalram_pages_inc();
9705bea5 7425 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7426 totalhigh_pages_inc();
cfa11e08
JL
7427}
7428#endif
7429
7ee3d4e8
JL
7430
7431void __init mem_init_print_info(const char *str)
7432{
7433 unsigned long physpages, codesize, datasize, rosize, bss_size;
7434 unsigned long init_code_size, init_data_size;
7435
7436 physpages = get_num_physpages();
7437 codesize = _etext - _stext;
7438 datasize = _edata - _sdata;
7439 rosize = __end_rodata - __start_rodata;
7440 bss_size = __bss_stop - __bss_start;
7441 init_data_size = __init_end - __init_begin;
7442 init_code_size = _einittext - _sinittext;
7443
7444 /*
7445 * Detect special cases and adjust section sizes accordingly:
7446 * 1) .init.* may be embedded into .data sections
7447 * 2) .init.text.* may be out of [__init_begin, __init_end],
7448 * please refer to arch/tile/kernel/vmlinux.lds.S.
7449 * 3) .rodata.* may be embedded into .text or .data sections.
7450 */
7451#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7452 do { \
7453 if (start <= pos && pos < end && size > adj) \
7454 size -= adj; \
7455 } while (0)
7ee3d4e8
JL
7456
7457 adj_init_size(__init_begin, __init_end, init_data_size,
7458 _sinittext, init_code_size);
7459 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7460 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7461 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7462 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7463
7464#undef adj_init_size
7465
756a025f 7466 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7467#ifdef CONFIG_HIGHMEM
756a025f 7468 ", %luK highmem"
7ee3d4e8 7469#endif
756a025f
JP
7470 "%s%s)\n",
7471 nr_free_pages() << (PAGE_SHIFT - 10),
7472 physpages << (PAGE_SHIFT - 10),
7473 codesize >> 10, datasize >> 10, rosize >> 10,
7474 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7475 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7476 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7477#ifdef CONFIG_HIGHMEM
ca79b0c2 7478 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7479#endif
756a025f 7480 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7481}
7482
0e0b864e 7483/**
88ca3b94
RD
7484 * set_dma_reserve - set the specified number of pages reserved in the first zone
7485 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7486 *
013110a7 7487 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7488 * In the DMA zone, a significant percentage may be consumed by kernel image
7489 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7490 * function may optionally be used to account for unfreeable pages in the
7491 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7492 * smaller per-cpu batchsize.
0e0b864e
MG
7493 */
7494void __init set_dma_reserve(unsigned long new_dma_reserve)
7495{
7496 dma_reserve = new_dma_reserve;
7497}
7498
1da177e4
LT
7499void __init free_area_init(unsigned long *zones_size)
7500{
e181ae0c 7501 zero_resv_unavail();
9109fb7b 7502 free_area_init_node(0, zones_size,
1da177e4
LT
7503 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7504}
1da177e4 7505
005fd4bb 7506static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7507{
1da177e4 7508
005fd4bb
SAS
7509 lru_add_drain_cpu(cpu);
7510 drain_pages(cpu);
9f8f2172 7511
005fd4bb
SAS
7512 /*
7513 * Spill the event counters of the dead processor
7514 * into the current processors event counters.
7515 * This artificially elevates the count of the current
7516 * processor.
7517 */
7518 vm_events_fold_cpu(cpu);
9f8f2172 7519
005fd4bb
SAS
7520 /*
7521 * Zero the differential counters of the dead processor
7522 * so that the vm statistics are consistent.
7523 *
7524 * This is only okay since the processor is dead and cannot
7525 * race with what we are doing.
7526 */
7527 cpu_vm_stats_fold(cpu);
7528 return 0;
1da177e4 7529}
1da177e4
LT
7530
7531void __init page_alloc_init(void)
7532{
005fd4bb
SAS
7533 int ret;
7534
7535 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7536 "mm/page_alloc:dead", NULL,
7537 page_alloc_cpu_dead);
7538 WARN_ON(ret < 0);
1da177e4
LT
7539}
7540
cb45b0e9 7541/*
34b10060 7542 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7543 * or min_free_kbytes changes.
7544 */
7545static void calculate_totalreserve_pages(void)
7546{
7547 struct pglist_data *pgdat;
7548 unsigned long reserve_pages = 0;
2f6726e5 7549 enum zone_type i, j;
cb45b0e9
HA
7550
7551 for_each_online_pgdat(pgdat) {
281e3726
MG
7552
7553 pgdat->totalreserve_pages = 0;
7554
cb45b0e9
HA
7555 for (i = 0; i < MAX_NR_ZONES; i++) {
7556 struct zone *zone = pgdat->node_zones + i;
3484b2de 7557 long max = 0;
9705bea5 7558 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7559
7560 /* Find valid and maximum lowmem_reserve in the zone */
7561 for (j = i; j < MAX_NR_ZONES; j++) {
7562 if (zone->lowmem_reserve[j] > max)
7563 max = zone->lowmem_reserve[j];
7564 }
7565
41858966
MG
7566 /* we treat the high watermark as reserved pages. */
7567 max += high_wmark_pages(zone);
cb45b0e9 7568
3d6357de
AK
7569 if (max > managed_pages)
7570 max = managed_pages;
a8d01437 7571
281e3726 7572 pgdat->totalreserve_pages += max;
a8d01437 7573
cb45b0e9
HA
7574 reserve_pages += max;
7575 }
7576 }
7577 totalreserve_pages = reserve_pages;
7578}
7579
1da177e4
LT
7580/*
7581 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7582 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7583 * has a correct pages reserved value, so an adequate number of
7584 * pages are left in the zone after a successful __alloc_pages().
7585 */
7586static void setup_per_zone_lowmem_reserve(void)
7587{
7588 struct pglist_data *pgdat;
2f6726e5 7589 enum zone_type j, idx;
1da177e4 7590
ec936fc5 7591 for_each_online_pgdat(pgdat) {
1da177e4
LT
7592 for (j = 0; j < MAX_NR_ZONES; j++) {
7593 struct zone *zone = pgdat->node_zones + j;
9705bea5 7594 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7595
7596 zone->lowmem_reserve[j] = 0;
7597
2f6726e5
CL
7598 idx = j;
7599 while (idx) {
1da177e4
LT
7600 struct zone *lower_zone;
7601
2f6726e5 7602 idx--;
1da177e4 7603 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7604
7605 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7606 sysctl_lowmem_reserve_ratio[idx] = 0;
7607 lower_zone->lowmem_reserve[j] = 0;
7608 } else {
7609 lower_zone->lowmem_reserve[j] =
7610 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7611 }
9705bea5 7612 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7613 }
7614 }
7615 }
cb45b0e9
HA
7616
7617 /* update totalreserve_pages */
7618 calculate_totalreserve_pages();
1da177e4
LT
7619}
7620
cfd3da1e 7621static void __setup_per_zone_wmarks(void)
1da177e4
LT
7622{
7623 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7624 unsigned long lowmem_pages = 0;
7625 struct zone *zone;
7626 unsigned long flags;
7627
7628 /* Calculate total number of !ZONE_HIGHMEM pages */
7629 for_each_zone(zone) {
7630 if (!is_highmem(zone))
9705bea5 7631 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7632 }
7633
7634 for_each_zone(zone) {
ac924c60
AM
7635 u64 tmp;
7636
1125b4e3 7637 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7638 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7639 do_div(tmp, lowmem_pages);
1da177e4
LT
7640 if (is_highmem(zone)) {
7641 /*
669ed175
NP
7642 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7643 * need highmem pages, so cap pages_min to a small
7644 * value here.
7645 *
41858966 7646 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7647 * deltas control async page reclaim, and so should
669ed175 7648 * not be capped for highmem.
1da177e4 7649 */
90ae8d67 7650 unsigned long min_pages;
1da177e4 7651
9705bea5 7652 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7653 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7654 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7655 } else {
669ed175
NP
7656 /*
7657 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7658 * proportionate to the zone's size.
7659 */
a9214443 7660 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7661 }
7662
795ae7a0
JW
7663 /*
7664 * Set the kswapd watermarks distance according to the
7665 * scale factor in proportion to available memory, but
7666 * ensure a minimum size on small systems.
7667 */
7668 tmp = max_t(u64, tmp >> 2,
9705bea5 7669 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7670 watermark_scale_factor, 10000));
7671
a9214443
MG
7672 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7673 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7674 zone->watermark_boost = 0;
49f223a9 7675
1125b4e3 7676 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7677 }
cb45b0e9
HA
7678
7679 /* update totalreserve_pages */
7680 calculate_totalreserve_pages();
1da177e4
LT
7681}
7682
cfd3da1e
MG
7683/**
7684 * setup_per_zone_wmarks - called when min_free_kbytes changes
7685 * or when memory is hot-{added|removed}
7686 *
7687 * Ensures that the watermark[min,low,high] values for each zone are set
7688 * correctly with respect to min_free_kbytes.
7689 */
7690void setup_per_zone_wmarks(void)
7691{
b93e0f32
MH
7692 static DEFINE_SPINLOCK(lock);
7693
7694 spin_lock(&lock);
cfd3da1e 7695 __setup_per_zone_wmarks();
b93e0f32 7696 spin_unlock(&lock);
cfd3da1e
MG
7697}
7698
1da177e4
LT
7699/*
7700 * Initialise min_free_kbytes.
7701 *
7702 * For small machines we want it small (128k min). For large machines
7703 * we want it large (64MB max). But it is not linear, because network
7704 * bandwidth does not increase linearly with machine size. We use
7705 *
b8af2941 7706 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7707 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7708 *
7709 * which yields
7710 *
7711 * 16MB: 512k
7712 * 32MB: 724k
7713 * 64MB: 1024k
7714 * 128MB: 1448k
7715 * 256MB: 2048k
7716 * 512MB: 2896k
7717 * 1024MB: 4096k
7718 * 2048MB: 5792k
7719 * 4096MB: 8192k
7720 * 8192MB: 11584k
7721 * 16384MB: 16384k
7722 */
1b79acc9 7723int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7724{
7725 unsigned long lowmem_kbytes;
5f12733e 7726 int new_min_free_kbytes;
1da177e4
LT
7727
7728 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7729 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7730
7731 if (new_min_free_kbytes > user_min_free_kbytes) {
7732 min_free_kbytes = new_min_free_kbytes;
7733 if (min_free_kbytes < 128)
7734 min_free_kbytes = 128;
7735 if (min_free_kbytes > 65536)
7736 min_free_kbytes = 65536;
7737 } else {
7738 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7739 new_min_free_kbytes, user_min_free_kbytes);
7740 }
bc75d33f 7741 setup_per_zone_wmarks();
a6cccdc3 7742 refresh_zone_stat_thresholds();
1da177e4 7743 setup_per_zone_lowmem_reserve();
6423aa81
JK
7744
7745#ifdef CONFIG_NUMA
7746 setup_min_unmapped_ratio();
7747 setup_min_slab_ratio();
7748#endif
7749
1da177e4
LT
7750 return 0;
7751}
bc22af74 7752core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7753
7754/*
b8af2941 7755 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7756 * that we can call two helper functions whenever min_free_kbytes
7757 * changes.
7758 */
cccad5b9 7759int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7760 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7761{
da8c757b
HP
7762 int rc;
7763
7764 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7765 if (rc)
7766 return rc;
7767
5f12733e
MH
7768 if (write) {
7769 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7770 setup_per_zone_wmarks();
5f12733e 7771 }
1da177e4
LT
7772 return 0;
7773}
7774
1c30844d
MG
7775int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7776 void __user *buffer, size_t *length, loff_t *ppos)
7777{
7778 int rc;
7779
7780 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7781 if (rc)
7782 return rc;
7783
7784 return 0;
7785}
7786
795ae7a0
JW
7787int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7788 void __user *buffer, size_t *length, loff_t *ppos)
7789{
7790 int rc;
7791
7792 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7793 if (rc)
7794 return rc;
7795
7796 if (write)
7797 setup_per_zone_wmarks();
7798
7799 return 0;
7800}
7801
9614634f 7802#ifdef CONFIG_NUMA
6423aa81 7803static void setup_min_unmapped_ratio(void)
9614634f 7804{
6423aa81 7805 pg_data_t *pgdat;
9614634f 7806 struct zone *zone;
9614634f 7807
a5f5f91d 7808 for_each_online_pgdat(pgdat)
81cbcbc2 7809 pgdat->min_unmapped_pages = 0;
a5f5f91d 7810
9614634f 7811 for_each_zone(zone)
9705bea5
AK
7812 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7813 sysctl_min_unmapped_ratio) / 100;
9614634f 7814}
0ff38490 7815
6423aa81
JK
7816
7817int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7818 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7819{
0ff38490
CL
7820 int rc;
7821
8d65af78 7822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7823 if (rc)
7824 return rc;
7825
6423aa81
JK
7826 setup_min_unmapped_ratio();
7827
7828 return 0;
7829}
7830
7831static void setup_min_slab_ratio(void)
7832{
7833 pg_data_t *pgdat;
7834 struct zone *zone;
7835
a5f5f91d
MG
7836 for_each_online_pgdat(pgdat)
7837 pgdat->min_slab_pages = 0;
7838
0ff38490 7839 for_each_zone(zone)
9705bea5
AK
7840 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7841 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7842}
7843
7844int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7845 void __user *buffer, size_t *length, loff_t *ppos)
7846{
7847 int rc;
7848
7849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7850 if (rc)
7851 return rc;
7852
7853 setup_min_slab_ratio();
7854
0ff38490
CL
7855 return 0;
7856}
9614634f
CL
7857#endif
7858
1da177e4
LT
7859/*
7860 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7861 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7862 * whenever sysctl_lowmem_reserve_ratio changes.
7863 *
7864 * The reserve ratio obviously has absolutely no relation with the
41858966 7865 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7866 * if in function of the boot time zone sizes.
7867 */
cccad5b9 7868int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7869 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7870{
8d65af78 7871 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7872 setup_per_zone_lowmem_reserve();
7873 return 0;
7874}
7875
8ad4b1fb
RS
7876/*
7877 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7878 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7879 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7880 */
cccad5b9 7881int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7882 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7883{
7884 struct zone *zone;
7cd2b0a3 7885 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7886 int ret;
7887
7cd2b0a3
DR
7888 mutex_lock(&pcp_batch_high_lock);
7889 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7890
8d65af78 7891 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7892 if (!write || ret < 0)
7893 goto out;
7894
7895 /* Sanity checking to avoid pcp imbalance */
7896 if (percpu_pagelist_fraction &&
7897 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7898 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7899 ret = -EINVAL;
7900 goto out;
7901 }
7902
7903 /* No change? */
7904 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7905 goto out;
c8e251fa 7906
364df0eb 7907 for_each_populated_zone(zone) {
7cd2b0a3
DR
7908 unsigned int cpu;
7909
22a7f12b 7910 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7911 pageset_set_high_and_batch(zone,
7912 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7913 }
7cd2b0a3 7914out:
c8e251fa 7915 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7916 return ret;
8ad4b1fb
RS
7917}
7918
a9919c79 7919#ifdef CONFIG_NUMA
f034b5d4 7920int hashdist = HASHDIST_DEFAULT;
1da177e4 7921
1da177e4
LT
7922static int __init set_hashdist(char *str)
7923{
7924 if (!str)
7925 return 0;
7926 hashdist = simple_strtoul(str, &str, 0);
7927 return 1;
7928}
7929__setup("hashdist=", set_hashdist);
7930#endif
7931
f6f34b43
SD
7932#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7933/*
7934 * Returns the number of pages that arch has reserved but
7935 * is not known to alloc_large_system_hash().
7936 */
7937static unsigned long __init arch_reserved_kernel_pages(void)
7938{
7939 return 0;
7940}
7941#endif
7942
9017217b
PT
7943/*
7944 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7945 * machines. As memory size is increased the scale is also increased but at
7946 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7947 * quadruples the scale is increased by one, which means the size of hash table
7948 * only doubles, instead of quadrupling as well.
7949 * Because 32-bit systems cannot have large physical memory, where this scaling
7950 * makes sense, it is disabled on such platforms.
7951 */
7952#if __BITS_PER_LONG > 32
7953#define ADAPT_SCALE_BASE (64ul << 30)
7954#define ADAPT_SCALE_SHIFT 2
7955#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7956#endif
7957
1da177e4
LT
7958/*
7959 * allocate a large system hash table from bootmem
7960 * - it is assumed that the hash table must contain an exact power-of-2
7961 * quantity of entries
7962 * - limit is the number of hash buckets, not the total allocation size
7963 */
7964void *__init alloc_large_system_hash(const char *tablename,
7965 unsigned long bucketsize,
7966 unsigned long numentries,
7967 int scale,
7968 int flags,
7969 unsigned int *_hash_shift,
7970 unsigned int *_hash_mask,
31fe62b9
TB
7971 unsigned long low_limit,
7972 unsigned long high_limit)
1da177e4 7973{
31fe62b9 7974 unsigned long long max = high_limit;
1da177e4
LT
7975 unsigned long log2qty, size;
7976 void *table = NULL;
3749a8f0 7977 gfp_t gfp_flags;
1da177e4
LT
7978
7979 /* allow the kernel cmdline to have a say */
7980 if (!numentries) {
7981 /* round applicable memory size up to nearest megabyte */
04903664 7982 numentries = nr_kernel_pages;
f6f34b43 7983 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7984
7985 /* It isn't necessary when PAGE_SIZE >= 1MB */
7986 if (PAGE_SHIFT < 20)
7987 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7988
9017217b
PT
7989#if __BITS_PER_LONG > 32
7990 if (!high_limit) {
7991 unsigned long adapt;
7992
7993 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7994 adapt <<= ADAPT_SCALE_SHIFT)
7995 scale++;
7996 }
7997#endif
7998
1da177e4
LT
7999 /* limit to 1 bucket per 2^scale bytes of low memory */
8000 if (scale > PAGE_SHIFT)
8001 numentries >>= (scale - PAGE_SHIFT);
8002 else
8003 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8004
8005 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8006 if (unlikely(flags & HASH_SMALL)) {
8007 /* Makes no sense without HASH_EARLY */
8008 WARN_ON(!(flags & HASH_EARLY));
8009 if (!(numentries >> *_hash_shift)) {
8010 numentries = 1UL << *_hash_shift;
8011 BUG_ON(!numentries);
8012 }
8013 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8014 numentries = PAGE_SIZE / bucketsize;
1da177e4 8015 }
6e692ed3 8016 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8017
8018 /* limit allocation size to 1/16 total memory by default */
8019 if (max == 0) {
8020 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8021 do_div(max, bucketsize);
8022 }
074b8517 8023 max = min(max, 0x80000000ULL);
1da177e4 8024
31fe62b9
TB
8025 if (numentries < low_limit)
8026 numentries = low_limit;
1da177e4
LT
8027 if (numentries > max)
8028 numentries = max;
8029
f0d1b0b3 8030 log2qty = ilog2(numentries);
1da177e4 8031
3749a8f0 8032 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
8033 do {
8034 size = bucketsize << log2qty;
ea1f5f37
PT
8035 if (flags & HASH_EARLY) {
8036 if (flags & HASH_ZERO)
26fb3dae 8037 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8038 else
7e1c4e27
MR
8039 table = memblock_alloc_raw(size,
8040 SMP_CACHE_BYTES);
ea1f5f37 8041 } else if (hashdist) {
3749a8f0 8042 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 8043 } else {
1037b83b
ED
8044 /*
8045 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8046 * some pages at the end of hash table which
8047 * alloc_pages_exact() automatically does
1037b83b 8048 */
264ef8a9 8049 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
8050 table = alloc_pages_exact(size, gfp_flags);
8051 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 8052 }
1da177e4
LT
8053 }
8054 } while (!table && size > PAGE_SIZE && --log2qty);
8055
8056 if (!table)
8057 panic("Failed to allocate %s hash table\n", tablename);
8058
1170532b
JP
8059 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8060 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
8061
8062 if (_hash_shift)
8063 *_hash_shift = log2qty;
8064 if (_hash_mask)
8065 *_hash_mask = (1 << log2qty) - 1;
8066
8067 return table;
8068}
a117e66e 8069
a5d76b54 8070/*
80934513
MK
8071 * This function checks whether pageblock includes unmovable pages or not.
8072 * If @count is not zero, it is okay to include less @count unmovable pages
8073 *
b8af2941 8074 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8075 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8076 * check without lock_page also may miss some movable non-lru pages at
8077 * race condition. So you can't expect this function should be exact.
a5d76b54 8078 */
b023f468 8079bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8080 int migratetype, int flags)
49ac8255 8081{
1a9f2191
QC
8082 unsigned long found;
8083 unsigned long iter = 0;
8084 unsigned long pfn = page_to_pfn(page);
8085 const char *reason = "unmovable page";
47118af0 8086
49ac8255 8087 /*
15c30bc0
MH
8088 * TODO we could make this much more efficient by not checking every
8089 * page in the range if we know all of them are in MOVABLE_ZONE and
8090 * that the movable zone guarantees that pages are migratable but
8091 * the later is not the case right now unfortunatelly. E.g. movablecore
8092 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8093 */
49ac8255 8094
1a9f2191
QC
8095 if (is_migrate_cma_page(page)) {
8096 /*
8097 * CMA allocations (alloc_contig_range) really need to mark
8098 * isolate CMA pageblocks even when they are not movable in fact
8099 * so consider them movable here.
8100 */
8101 if (is_migrate_cma(migratetype))
8102 return false;
8103
8104 reason = "CMA page";
8105 goto unmovable;
8106 }
4da2ce25 8107
1a9f2191 8108 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8109 unsigned long check = pfn + iter;
8110
29723fcc 8111 if (!pfn_valid_within(check))
49ac8255 8112 continue;
29723fcc 8113
49ac8255 8114 page = pfn_to_page(check);
c8721bbb 8115
d7ab3672 8116 if (PageReserved(page))
15c30bc0 8117 goto unmovable;
d7ab3672 8118
9d789999
MH
8119 /*
8120 * If the zone is movable and we have ruled out all reserved
8121 * pages then it should be reasonably safe to assume the rest
8122 * is movable.
8123 */
8124 if (zone_idx(zone) == ZONE_MOVABLE)
8125 continue;
8126
c8721bbb
NH
8127 /*
8128 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8129 * We need not scan over tail pages because we don't
c8721bbb
NH
8130 * handle each tail page individually in migration.
8131 */
8132 if (PageHuge(page)) {
17e2e7d7
OS
8133 struct page *head = compound_head(page);
8134 unsigned int skip_pages;
464c7ffb 8135
17e2e7d7 8136 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8137 goto unmovable;
8138
17e2e7d7
OS
8139 skip_pages = (1 << compound_order(head)) - (page - head);
8140 iter += skip_pages - 1;
c8721bbb
NH
8141 continue;
8142 }
8143
97d255c8
MK
8144 /*
8145 * We can't use page_count without pin a page
8146 * because another CPU can free compound page.
8147 * This check already skips compound tails of THP
0139aa7b 8148 * because their page->_refcount is zero at all time.
97d255c8 8149 */
fe896d18 8150 if (!page_ref_count(page)) {
49ac8255
KH
8151 if (PageBuddy(page))
8152 iter += (1 << page_order(page)) - 1;
8153 continue;
8154 }
97d255c8 8155
b023f468
WC
8156 /*
8157 * The HWPoisoned page may be not in buddy system, and
8158 * page_count() is not 0.
8159 */
d381c547 8160 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8161 continue;
8162
0efadf48
YX
8163 if (__PageMovable(page))
8164 continue;
8165
49ac8255
KH
8166 if (!PageLRU(page))
8167 found++;
8168 /*
6b4f7799
JW
8169 * If there are RECLAIMABLE pages, we need to check
8170 * it. But now, memory offline itself doesn't call
8171 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8172 */
8173 /*
8174 * If the page is not RAM, page_count()should be 0.
8175 * we don't need more check. This is an _used_ not-movable page.
8176 *
8177 * The problematic thing here is PG_reserved pages. PG_reserved
8178 * is set to both of a memory hole page and a _used_ kernel
8179 * page at boot.
8180 */
8181 if (found > count)
15c30bc0 8182 goto unmovable;
49ac8255 8183 }
80934513 8184 return false;
15c30bc0
MH
8185unmovable:
8186 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8187 if (flags & REPORT_FAILURE)
1a9f2191 8188 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8189 return true;
49ac8255
KH
8190}
8191
8df995f6 8192#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8193static unsigned long pfn_max_align_down(unsigned long pfn)
8194{
8195 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8196 pageblock_nr_pages) - 1);
8197}
8198
8199static unsigned long pfn_max_align_up(unsigned long pfn)
8200{
8201 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8202 pageblock_nr_pages));
8203}
8204
041d3a8c 8205/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8206static int __alloc_contig_migrate_range(struct compact_control *cc,
8207 unsigned long start, unsigned long end)
041d3a8c
MN
8208{
8209 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8210 unsigned long nr_reclaimed;
041d3a8c
MN
8211 unsigned long pfn = start;
8212 unsigned int tries = 0;
8213 int ret = 0;
8214
be49a6e1 8215 migrate_prep();
041d3a8c 8216
bb13ffeb 8217 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8218 if (fatal_signal_pending(current)) {
8219 ret = -EINTR;
8220 break;
8221 }
8222
bb13ffeb
MG
8223 if (list_empty(&cc->migratepages)) {
8224 cc->nr_migratepages = 0;
edc2ca61 8225 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8226 if (!pfn) {
8227 ret = -EINTR;
8228 break;
8229 }
8230 tries = 0;
8231 } else if (++tries == 5) {
8232 ret = ret < 0 ? ret : -EBUSY;
8233 break;
8234 }
8235
beb51eaa
MK
8236 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8237 &cc->migratepages);
8238 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8239
9c620e2b 8240 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8241 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8242 }
2a6f5124
SP
8243 if (ret < 0) {
8244 putback_movable_pages(&cc->migratepages);
8245 return ret;
8246 }
8247 return 0;
041d3a8c
MN
8248}
8249
8250/**
8251 * alloc_contig_range() -- tries to allocate given range of pages
8252 * @start: start PFN to allocate
8253 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8254 * @migratetype: migratetype of the underlaying pageblocks (either
8255 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8256 * in range must have the same migratetype and it must
8257 * be either of the two.
ca96b625 8258 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8259 *
8260 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8261 * aligned. The PFN range must belong to a single zone.
041d3a8c 8262 *
2c7452a0
MK
8263 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8264 * pageblocks in the range. Once isolated, the pageblocks should not
8265 * be modified by others.
041d3a8c 8266 *
a862f68a 8267 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8268 * pages which PFN is in [start, end) are allocated for the caller and
8269 * need to be freed with free_contig_range().
8270 */
0815f3d8 8271int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8272 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8273{
041d3a8c 8274 unsigned long outer_start, outer_end;
d00181b9
KS
8275 unsigned int order;
8276 int ret = 0;
041d3a8c 8277
bb13ffeb
MG
8278 struct compact_control cc = {
8279 .nr_migratepages = 0,
8280 .order = -1,
8281 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8282 .mode = MIGRATE_SYNC,
bb13ffeb 8283 .ignore_skip_hint = true,
2583d671 8284 .no_set_skip_hint = true,
7dea19f9 8285 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8286 };
8287 INIT_LIST_HEAD(&cc.migratepages);
8288
041d3a8c
MN
8289 /*
8290 * What we do here is we mark all pageblocks in range as
8291 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8292 * have different sizes, and due to the way page allocator
8293 * work, we align the range to biggest of the two pages so
8294 * that page allocator won't try to merge buddies from
8295 * different pageblocks and change MIGRATE_ISOLATE to some
8296 * other migration type.
8297 *
8298 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8299 * migrate the pages from an unaligned range (ie. pages that
8300 * we are interested in). This will put all the pages in
8301 * range back to page allocator as MIGRATE_ISOLATE.
8302 *
8303 * When this is done, we take the pages in range from page
8304 * allocator removing them from the buddy system. This way
8305 * page allocator will never consider using them.
8306 *
8307 * This lets us mark the pageblocks back as
8308 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8309 * aligned range but not in the unaligned, original range are
8310 * put back to page allocator so that buddy can use them.
8311 */
8312
8313 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8314 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8315 if (ret < 0)
86a595f9 8316 return ret;
041d3a8c 8317
8ef5849f
JK
8318 /*
8319 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8320 * So, just fall through. test_pages_isolated() has a tracepoint
8321 * which will report the busy page.
8322 *
8323 * It is possible that busy pages could become available before
8324 * the call to test_pages_isolated, and the range will actually be
8325 * allocated. So, if we fall through be sure to clear ret so that
8326 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8327 */
bb13ffeb 8328 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8329 if (ret && ret != -EBUSY)
041d3a8c 8330 goto done;
63cd4489 8331 ret =0;
041d3a8c
MN
8332
8333 /*
8334 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8335 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8336 * more, all pages in [start, end) are free in page allocator.
8337 * What we are going to do is to allocate all pages from
8338 * [start, end) (that is remove them from page allocator).
8339 *
8340 * The only problem is that pages at the beginning and at the
8341 * end of interesting range may be not aligned with pages that
8342 * page allocator holds, ie. they can be part of higher order
8343 * pages. Because of this, we reserve the bigger range and
8344 * once this is done free the pages we are not interested in.
8345 *
8346 * We don't have to hold zone->lock here because the pages are
8347 * isolated thus they won't get removed from buddy.
8348 */
8349
8350 lru_add_drain_all();
041d3a8c
MN
8351
8352 order = 0;
8353 outer_start = start;
8354 while (!PageBuddy(pfn_to_page(outer_start))) {
8355 if (++order >= MAX_ORDER) {
8ef5849f
JK
8356 outer_start = start;
8357 break;
041d3a8c
MN
8358 }
8359 outer_start &= ~0UL << order;
8360 }
8361
8ef5849f
JK
8362 if (outer_start != start) {
8363 order = page_order(pfn_to_page(outer_start));
8364
8365 /*
8366 * outer_start page could be small order buddy page and
8367 * it doesn't include start page. Adjust outer_start
8368 * in this case to report failed page properly
8369 * on tracepoint in test_pages_isolated()
8370 */
8371 if (outer_start + (1UL << order) <= start)
8372 outer_start = start;
8373 }
8374
041d3a8c 8375 /* Make sure the range is really isolated. */
b023f468 8376 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8377 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8378 __func__, outer_start, end);
041d3a8c
MN
8379 ret = -EBUSY;
8380 goto done;
8381 }
8382
49f223a9 8383 /* Grab isolated pages from freelists. */
bb13ffeb 8384 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8385 if (!outer_end) {
8386 ret = -EBUSY;
8387 goto done;
8388 }
8389
8390 /* Free head and tail (if any) */
8391 if (start != outer_start)
8392 free_contig_range(outer_start, start - outer_start);
8393 if (end != outer_end)
8394 free_contig_range(end, outer_end - end);
8395
8396done:
8397 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8398 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8399 return ret;
8400}
4eb0716e 8401#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8402
4eb0716e 8403void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8404{
bcc2b02f
MS
8405 unsigned int count = 0;
8406
8407 for (; nr_pages--; pfn++) {
8408 struct page *page = pfn_to_page(pfn);
8409
8410 count += page_count(page) != 1;
8411 __free_page(page);
8412 }
8413 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8414}
041d3a8c 8415
d883c6cf 8416#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8417/*
8418 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8419 * page high values need to be recalulated.
8420 */
4ed7e022
JL
8421void __meminit zone_pcp_update(struct zone *zone)
8422{
0a647f38 8423 unsigned cpu;
c8e251fa 8424 mutex_lock(&pcp_batch_high_lock);
0a647f38 8425 for_each_possible_cpu(cpu)
169f6c19
CS
8426 pageset_set_high_and_batch(zone,
8427 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8428 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8429}
8430#endif
8431
340175b7
JL
8432void zone_pcp_reset(struct zone *zone)
8433{
8434 unsigned long flags;
5a883813
MK
8435 int cpu;
8436 struct per_cpu_pageset *pset;
340175b7
JL
8437
8438 /* avoid races with drain_pages() */
8439 local_irq_save(flags);
8440 if (zone->pageset != &boot_pageset) {
5a883813
MK
8441 for_each_online_cpu(cpu) {
8442 pset = per_cpu_ptr(zone->pageset, cpu);
8443 drain_zonestat(zone, pset);
8444 }
340175b7
JL
8445 free_percpu(zone->pageset);
8446 zone->pageset = &boot_pageset;
8447 }
8448 local_irq_restore(flags);
8449}
8450
6dcd73d7 8451#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8452/*
b9eb6319
JK
8453 * All pages in the range must be in a single zone and isolated
8454 * before calling this.
0c0e6195 8455 */
5557c766 8456unsigned long
0c0e6195
KH
8457__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8458{
8459 struct page *page;
8460 struct zone *zone;
7aeb09f9 8461 unsigned int order, i;
0c0e6195
KH
8462 unsigned long pfn;
8463 unsigned long flags;
5557c766
MH
8464 unsigned long offlined_pages = 0;
8465
0c0e6195
KH
8466 /* find the first valid pfn */
8467 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8468 if (pfn_valid(pfn))
8469 break;
8470 if (pfn == end_pfn)
5557c766
MH
8471 return offlined_pages;
8472
2d070eab 8473 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8474 zone = page_zone(pfn_to_page(pfn));
8475 spin_lock_irqsave(&zone->lock, flags);
8476 pfn = start_pfn;
8477 while (pfn < end_pfn) {
8478 if (!pfn_valid(pfn)) {
8479 pfn++;
8480 continue;
8481 }
8482 page = pfn_to_page(pfn);
b023f468
WC
8483 /*
8484 * The HWPoisoned page may be not in buddy system, and
8485 * page_count() is not 0.
8486 */
8487 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8488 pfn++;
8489 SetPageReserved(page);
5557c766 8490 offlined_pages++;
b023f468
WC
8491 continue;
8492 }
8493
0c0e6195
KH
8494 BUG_ON(page_count(page));
8495 BUG_ON(!PageBuddy(page));
8496 order = page_order(page);
5557c766 8497 offlined_pages += 1 << order;
0c0e6195 8498#ifdef CONFIG_DEBUG_VM
1170532b
JP
8499 pr_info("remove from free list %lx %d %lx\n",
8500 pfn, 1 << order, end_pfn);
0c0e6195
KH
8501#endif
8502 list_del(&page->lru);
8503 rmv_page_order(page);
8504 zone->free_area[order].nr_free--;
0c0e6195
KH
8505 for (i = 0; i < (1 << order); i++)
8506 SetPageReserved((page+i));
8507 pfn += (1 << order);
8508 }
8509 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8510
8511 return offlined_pages;
0c0e6195
KH
8512}
8513#endif
8d22ba1b 8514
8d22ba1b
WF
8515bool is_free_buddy_page(struct page *page)
8516{
8517 struct zone *zone = page_zone(page);
8518 unsigned long pfn = page_to_pfn(page);
8519 unsigned long flags;
7aeb09f9 8520 unsigned int order;
8d22ba1b
WF
8521
8522 spin_lock_irqsave(&zone->lock, flags);
8523 for (order = 0; order < MAX_ORDER; order++) {
8524 struct page *page_head = page - (pfn & ((1 << order) - 1));
8525
8526 if (PageBuddy(page_head) && page_order(page_head) >= order)
8527 break;
8528 }
8529 spin_unlock_irqrestore(&zone->lock, flags);
8530
8531 return order < MAX_ORDER;
8532}
d4ae9916
NH
8533
8534#ifdef CONFIG_MEMORY_FAILURE
8535/*
8536 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8537 * test is performed under the zone lock to prevent a race against page
8538 * allocation.
8539 */
8540bool set_hwpoison_free_buddy_page(struct page *page)
8541{
8542 struct zone *zone = page_zone(page);
8543 unsigned long pfn = page_to_pfn(page);
8544 unsigned long flags;
8545 unsigned int order;
8546 bool hwpoisoned = false;
8547
8548 spin_lock_irqsave(&zone->lock, flags);
8549 for (order = 0; order < MAX_ORDER; order++) {
8550 struct page *page_head = page - (pfn & ((1 << order) - 1));
8551
8552 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8553 if (!TestSetPageHWPoison(page))
8554 hwpoisoned = true;
8555 break;
8556 }
8557 }
8558 spin_unlock_irqrestore(&zone->lock, flags);
8559
8560 return hwpoisoned;
8561}
8562#endif