]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/page_alloc.c
mm: remove cold parameter from free_hot_cold_page*
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
7aac7898
LS
85#ifdef CONFIG_HAVE_MEMORYLESS_NODES
86/*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 94int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
95#endif
96
bd233f53
MG
97/* work_structs for global per-cpu drains */
98DEFINE_MUTEX(pcpu_drain_mutex);
99DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
38addce8 101#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 102volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
103EXPORT_SYMBOL(latent_entropy);
104#endif
105
1da177e4 106/*
13808910 107 * Array of node states.
1da177e4 108 */
13808910
CL
109nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112#ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114#ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 116#endif
20b2f52b 117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa
MG
291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292static inline void reset_deferred_meminit(pg_data_t *pgdat)
293{
864b9a39
MH
294 unsigned long max_initialise;
295 unsigned long reserved_lowmem;
296
297 /*
298 * Initialise at least 2G of a node but also take into account that
299 * two large system hashes that can take up 1GB for 0.25TB/node.
300 */
301 max_initialise = max(2UL << (30 - PAGE_SHIFT),
302 (pgdat->node_spanned_pages >> 8));
303
304 /*
305 * Compensate the all the memblock reservations (e.g. crash kernel)
306 * from the initial estimation to make sure we will initialize enough
307 * memory to boot.
308 */
309 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
310 pgdat->node_start_pfn + max_initialise);
311 max_initialise += reserved_lowmem;
312
313 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
314 pgdat->first_deferred_pfn = ULONG_MAX;
315}
316
317/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 318static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 319{
ef70b6f4
MG
320 int nid = early_pfn_to_nid(pfn);
321
322 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
323 return true;
324
325 return false;
326}
327
328/*
329 * Returns false when the remaining initialisation should be deferred until
330 * later in the boot cycle when it can be parallelised.
331 */
332static inline bool update_defer_init(pg_data_t *pgdat,
333 unsigned long pfn, unsigned long zone_end,
334 unsigned long *nr_initialised)
335{
336 /* Always populate low zones for address-contrained allocations */
337 if (zone_end < pgdat_end_pfn(pgdat))
338 return true;
3a80a7fa 339 (*nr_initialised)++;
864b9a39 340 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
341 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
342 pgdat->first_deferred_pfn = pfn;
343 return false;
344 }
345
346 return true;
347}
348#else
349static inline void reset_deferred_meminit(pg_data_t *pgdat)
350{
351}
352
353static inline bool early_page_uninitialised(unsigned long pfn)
354{
355 return false;
356}
357
358static inline bool update_defer_init(pg_data_t *pgdat,
359 unsigned long pfn, unsigned long zone_end,
360 unsigned long *nr_initialised)
361{
362 return true;
363}
364#endif
365
0b423ca2
MG
366/* Return a pointer to the bitmap storing bits affecting a block of pages */
367static inline unsigned long *get_pageblock_bitmap(struct page *page,
368 unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 return __pfn_to_section(pfn)->pageblock_flags;
372#else
373 return page_zone(page)->pageblock_flags;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
378{
379#ifdef CONFIG_SPARSEMEM
380 pfn &= (PAGES_PER_SECTION-1);
381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
382#else
383 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
385#endif /* CONFIG_SPARSEMEM */
386}
387
388/**
389 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
390 * @page: The page within the block of interest
391 * @pfn: The target page frame number
392 * @end_bitidx: The last bit of interest to retrieve
393 * @mask: mask of bits that the caller is interested in
394 *
395 * Return: pageblock_bits flags
396 */
397static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
398 unsigned long pfn,
399 unsigned long end_bitidx,
400 unsigned long mask)
401{
402 unsigned long *bitmap;
403 unsigned long bitidx, word_bitidx;
404 unsigned long word;
405
406 bitmap = get_pageblock_bitmap(page, pfn);
407 bitidx = pfn_to_bitidx(page, pfn);
408 word_bitidx = bitidx / BITS_PER_LONG;
409 bitidx &= (BITS_PER_LONG-1);
410
411 word = bitmap[word_bitidx];
412 bitidx += end_bitidx;
413 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
414}
415
416unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
421}
422
423static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
424{
425 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
426}
427
428/**
429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
430 * @page: The page within the block of interest
431 * @flags: The flags to set
432 * @pfn: The target page frame number
433 * @end_bitidx: The last bit of interest
434 * @mask: mask of bits that the caller is interested in
435 */
436void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
437 unsigned long pfn,
438 unsigned long end_bitidx,
439 unsigned long mask)
440{
441 unsigned long *bitmap;
442 unsigned long bitidx, word_bitidx;
443 unsigned long old_word, word;
444
445 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
446
447 bitmap = get_pageblock_bitmap(page, pfn);
448 bitidx = pfn_to_bitidx(page, pfn);
449 word_bitidx = bitidx / BITS_PER_LONG;
450 bitidx &= (BITS_PER_LONG-1);
451
452 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
453
454 bitidx += end_bitidx;
455 mask <<= (BITS_PER_LONG - bitidx - 1);
456 flags <<= (BITS_PER_LONG - bitidx - 1);
457
458 word = READ_ONCE(bitmap[word_bitidx]);
459 for (;;) {
460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
461 if (word == old_word)
462 break;
463 word = old_word;
464 }
465}
3a80a7fa 466
ee6f509c 467void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 468{
5d0f3f72
KM
469 if (unlikely(page_group_by_mobility_disabled &&
470 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
471 migratetype = MIGRATE_UNMOVABLE;
472
b2a0ac88
MG
473 set_pageblock_flags_group(page, (unsigned long)migratetype,
474 PB_migrate, PB_migrate_end);
475}
476
13e7444b 477#ifdef CONFIG_DEBUG_VM
c6a57e19 478static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 479{
bdc8cb98
DH
480 int ret = 0;
481 unsigned seq;
482 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 483 unsigned long sp, start_pfn;
c6a57e19 484
bdc8cb98
DH
485 do {
486 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
487 start_pfn = zone->zone_start_pfn;
488 sp = zone->spanned_pages;
108bcc96 489 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
490 ret = 1;
491 } while (zone_span_seqretry(zone, seq));
492
b5e6a5a2 493 if (ret)
613813e8
DH
494 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
495 pfn, zone_to_nid(zone), zone->name,
496 start_pfn, start_pfn + sp);
b5e6a5a2 497
bdc8cb98 498 return ret;
c6a57e19
DH
499}
500
501static int page_is_consistent(struct zone *zone, struct page *page)
502{
14e07298 503 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 504 return 0;
1da177e4 505 if (zone != page_zone(page))
c6a57e19
DH
506 return 0;
507
508 return 1;
509}
510/*
511 * Temporary debugging check for pages not lying within a given zone.
512 */
d73d3c9f 513static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
514{
515 if (page_outside_zone_boundaries(zone, page))
1da177e4 516 return 1;
c6a57e19
DH
517 if (!page_is_consistent(zone, page))
518 return 1;
519
1da177e4
LT
520 return 0;
521}
13e7444b 522#else
d73d3c9f 523static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
524{
525 return 0;
526}
527#endif
528
d230dec1
KS
529static void bad_page(struct page *page, const char *reason,
530 unsigned long bad_flags)
1da177e4 531{
d936cf9b
HD
532 static unsigned long resume;
533 static unsigned long nr_shown;
534 static unsigned long nr_unshown;
535
536 /*
537 * Allow a burst of 60 reports, then keep quiet for that minute;
538 * or allow a steady drip of one report per second.
539 */
540 if (nr_shown == 60) {
541 if (time_before(jiffies, resume)) {
542 nr_unshown++;
543 goto out;
544 }
545 if (nr_unshown) {
ff8e8116 546 pr_alert(
1e9e6365 547 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
548 nr_unshown);
549 nr_unshown = 0;
550 }
551 nr_shown = 0;
552 }
553 if (nr_shown++ == 0)
554 resume = jiffies + 60 * HZ;
555
ff8e8116 556 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 557 current->comm, page_to_pfn(page));
ff8e8116
VB
558 __dump_page(page, reason);
559 bad_flags &= page->flags;
560 if (bad_flags)
561 pr_alert("bad because of flags: %#lx(%pGp)\n",
562 bad_flags, &bad_flags);
4e462112 563 dump_page_owner(page);
3dc14741 564
4f31888c 565 print_modules();
1da177e4 566 dump_stack();
d936cf9b 567out:
8cc3b392 568 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 569 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
571}
572
1da177e4
LT
573/*
574 * Higher-order pages are called "compound pages". They are structured thusly:
575 *
1d798ca3 576 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 577 *
1d798ca3
KS
578 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
579 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 580 *
1d798ca3
KS
581 * The first tail page's ->compound_dtor holds the offset in array of compound
582 * page destructors. See compound_page_dtors.
1da177e4 583 *
1d798ca3 584 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 585 * This usage means that zero-order pages may not be compound.
1da177e4 586 */
d98c7a09 587
9a982250 588void free_compound_page(struct page *page)
d98c7a09 589{
d85f3385 590 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
591}
592
d00181b9 593void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
594{
595 int i;
596 int nr_pages = 1 << order;
597
f1e61557 598 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
599 set_compound_order(page, order);
600 __SetPageHead(page);
601 for (i = 1; i < nr_pages; i++) {
602 struct page *p = page + i;
58a84aa9 603 set_page_count(p, 0);
1c290f64 604 p->mapping = TAIL_MAPPING;
1d798ca3 605 set_compound_head(p, page);
18229df5 606 }
53f9263b 607 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
608}
609
c0a32fc5
SG
610#ifdef CONFIG_DEBUG_PAGEALLOC
611unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
612bool _debug_pagealloc_enabled __read_mostly
613 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 614EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
615bool _debug_guardpage_enabled __read_mostly;
616
031bc574
JK
617static int __init early_debug_pagealloc(char *buf)
618{
619 if (!buf)
620 return -EINVAL;
2a138dc7 621 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
622}
623early_param("debug_pagealloc", early_debug_pagealloc);
624
e30825f1
JK
625static bool need_debug_guardpage(void)
626{
031bc574
JK
627 /* If we don't use debug_pagealloc, we don't need guard page */
628 if (!debug_pagealloc_enabled())
629 return false;
630
f1c1e9f7
JK
631 if (!debug_guardpage_minorder())
632 return false;
633
e30825f1
JK
634 return true;
635}
636
637static void init_debug_guardpage(void)
638{
031bc574
JK
639 if (!debug_pagealloc_enabled())
640 return;
641
f1c1e9f7
JK
642 if (!debug_guardpage_minorder())
643 return;
644
e30825f1
JK
645 _debug_guardpage_enabled = true;
646}
647
648struct page_ext_operations debug_guardpage_ops = {
649 .need = need_debug_guardpage,
650 .init = init_debug_guardpage,
651};
c0a32fc5
SG
652
653static int __init debug_guardpage_minorder_setup(char *buf)
654{
655 unsigned long res;
656
657 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 658 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
659 return 0;
660 }
661 _debug_guardpage_minorder = res;
1170532b 662 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
663 return 0;
664}
f1c1e9f7 665early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 666
acbc15a4 667static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 668 unsigned int order, int migratetype)
c0a32fc5 669{
e30825f1
JK
670 struct page_ext *page_ext;
671
672 if (!debug_guardpage_enabled())
acbc15a4
JK
673 return false;
674
675 if (order >= debug_guardpage_minorder())
676 return false;
e30825f1
JK
677
678 page_ext = lookup_page_ext(page);
f86e4271 679 if (unlikely(!page_ext))
acbc15a4 680 return false;
f86e4271 681
e30825f1
JK
682 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
2847cf95
JK
684 INIT_LIST_HEAD(&page->lru);
685 set_page_private(page, order);
686 /* Guard pages are not available for any usage */
687 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
688
689 return true;
c0a32fc5
SG
690}
691
2847cf95
JK
692static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype)
c0a32fc5 694{
e30825f1
JK
695 struct page_ext *page_ext;
696
697 if (!debug_guardpage_enabled())
698 return;
699
700 page_ext = lookup_page_ext(page);
f86e4271
YS
701 if (unlikely(!page_ext))
702 return;
703
e30825f1
JK
704 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
705
2847cf95
JK
706 set_page_private(page, 0);
707 if (!is_migrate_isolate(migratetype))
708 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
709}
710#else
980ac167 711struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
712static inline bool set_page_guard(struct zone *zone, struct page *page,
713 unsigned int order, int migratetype) { return false; }
2847cf95
JK
714static inline void clear_page_guard(struct zone *zone, struct page *page,
715 unsigned int order, int migratetype) {}
c0a32fc5
SG
716#endif
717
7aeb09f9 718static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 719{
4c21e2f2 720 set_page_private(page, order);
676165a8 721 __SetPageBuddy(page);
1da177e4
LT
722}
723
724static inline void rmv_page_order(struct page *page)
725{
676165a8 726 __ClearPageBuddy(page);
4c21e2f2 727 set_page_private(page, 0);
1da177e4
LT
728}
729
1da177e4
LT
730/*
731 * This function checks whether a page is free && is the buddy
732 * we can do coalesce a page and its buddy if
13ad59df 733 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 734 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
735 * (c) a page and its buddy have the same order &&
736 * (d) a page and its buddy are in the same zone.
676165a8 737 *
cf6fe945
WSH
738 * For recording whether a page is in the buddy system, we set ->_mapcount
739 * PAGE_BUDDY_MAPCOUNT_VALUE.
740 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
741 * serialized by zone->lock.
1da177e4 742 *
676165a8 743 * For recording page's order, we use page_private(page).
1da177e4 744 */
cb2b95e1 745static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 746 unsigned int order)
1da177e4 747{
c0a32fc5 748 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
749 if (page_zone_id(page) != page_zone_id(buddy))
750 return 0;
751
4c5018ce
WY
752 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
753
c0a32fc5
SG
754 return 1;
755 }
756
cb2b95e1 757 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
758 /*
759 * zone check is done late to avoid uselessly
760 * calculating zone/node ids for pages that could
761 * never merge.
762 */
763 if (page_zone_id(page) != page_zone_id(buddy))
764 return 0;
765
4c5018ce
WY
766 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
767
6aa3001b 768 return 1;
676165a8 769 }
6aa3001b 770 return 0;
1da177e4
LT
771}
772
773/*
774 * Freeing function for a buddy system allocator.
775 *
776 * The concept of a buddy system is to maintain direct-mapped table
777 * (containing bit values) for memory blocks of various "orders".
778 * The bottom level table contains the map for the smallest allocatable
779 * units of memory (here, pages), and each level above it describes
780 * pairs of units from the levels below, hence, "buddies".
781 * At a high level, all that happens here is marking the table entry
782 * at the bottom level available, and propagating the changes upward
783 * as necessary, plus some accounting needed to play nicely with other
784 * parts of the VM system.
785 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
786 * free pages of length of (1 << order) and marked with _mapcount
787 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
788 * field.
1da177e4 789 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
790 * other. That is, if we allocate a small block, and both were
791 * free, the remainder of the region must be split into blocks.
1da177e4 792 * If a block is freed, and its buddy is also free, then this
5f63b720 793 * triggers coalescing into a block of larger size.
1da177e4 794 *
6d49e352 795 * -- nyc
1da177e4
LT
796 */
797
48db57f8 798static inline void __free_one_page(struct page *page,
dc4b0caf 799 unsigned long pfn,
ed0ae21d
MG
800 struct zone *zone, unsigned int order,
801 int migratetype)
1da177e4 802{
76741e77
VB
803 unsigned long combined_pfn;
804 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 805 struct page *buddy;
d9dddbf5
VB
806 unsigned int max_order;
807
808 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 809
d29bb978 810 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 811 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 812
ed0ae21d 813 VM_BUG_ON(migratetype == -1);
d9dddbf5 814 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 815 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 816
76741e77 817 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 818 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 819
d9dddbf5 820continue_merging:
3c605096 821 while (order < max_order - 1) {
76741e77
VB
822 buddy_pfn = __find_buddy_pfn(pfn, order);
823 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
824
825 if (!pfn_valid_within(buddy_pfn))
826 goto done_merging;
cb2b95e1 827 if (!page_is_buddy(page, buddy, order))
d9dddbf5 828 goto done_merging;
c0a32fc5
SG
829 /*
830 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
831 * merge with it and move up one order.
832 */
833 if (page_is_guard(buddy)) {
2847cf95 834 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
835 } else {
836 list_del(&buddy->lru);
837 zone->free_area[order].nr_free--;
838 rmv_page_order(buddy);
839 }
76741e77
VB
840 combined_pfn = buddy_pfn & pfn;
841 page = page + (combined_pfn - pfn);
842 pfn = combined_pfn;
1da177e4
LT
843 order++;
844 }
d9dddbf5
VB
845 if (max_order < MAX_ORDER) {
846 /* If we are here, it means order is >= pageblock_order.
847 * We want to prevent merge between freepages on isolate
848 * pageblock and normal pageblock. Without this, pageblock
849 * isolation could cause incorrect freepage or CMA accounting.
850 *
851 * We don't want to hit this code for the more frequent
852 * low-order merging.
853 */
854 if (unlikely(has_isolate_pageblock(zone))) {
855 int buddy_mt;
856
76741e77
VB
857 buddy_pfn = __find_buddy_pfn(pfn, order);
858 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
859 buddy_mt = get_pageblock_migratetype(buddy);
860
861 if (migratetype != buddy_mt
862 && (is_migrate_isolate(migratetype) ||
863 is_migrate_isolate(buddy_mt)))
864 goto done_merging;
865 }
866 max_order++;
867 goto continue_merging;
868 }
869
870done_merging:
1da177e4 871 set_page_order(page, order);
6dda9d55
CZ
872
873 /*
874 * If this is not the largest possible page, check if the buddy
875 * of the next-highest order is free. If it is, it's possible
876 * that pages are being freed that will coalesce soon. In case,
877 * that is happening, add the free page to the tail of the list
878 * so it's less likely to be used soon and more likely to be merged
879 * as a higher order page
880 */
13ad59df 881 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 882 struct page *higher_page, *higher_buddy;
76741e77
VB
883 combined_pfn = buddy_pfn & pfn;
884 higher_page = page + (combined_pfn - pfn);
885 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
886 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
887 if (pfn_valid_within(buddy_pfn) &&
888 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
889 list_add_tail(&page->lru,
890 &zone->free_area[order].free_list[migratetype]);
891 goto out;
892 }
893 }
894
895 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
896out:
1da177e4
LT
897 zone->free_area[order].nr_free++;
898}
899
7bfec6f4
MG
900/*
901 * A bad page could be due to a number of fields. Instead of multiple branches,
902 * try and check multiple fields with one check. The caller must do a detailed
903 * check if necessary.
904 */
905static inline bool page_expected_state(struct page *page,
906 unsigned long check_flags)
907{
908 if (unlikely(atomic_read(&page->_mapcount) != -1))
909 return false;
910
911 if (unlikely((unsigned long)page->mapping |
912 page_ref_count(page) |
913#ifdef CONFIG_MEMCG
914 (unsigned long)page->mem_cgroup |
915#endif
916 (page->flags & check_flags)))
917 return false;
918
919 return true;
920}
921
bb552ac6 922static void free_pages_check_bad(struct page *page)
1da177e4 923{
7bfec6f4
MG
924 const char *bad_reason;
925 unsigned long bad_flags;
926
7bfec6f4
MG
927 bad_reason = NULL;
928 bad_flags = 0;
f0b791a3 929
53f9263b 930 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
931 bad_reason = "nonzero mapcount";
932 if (unlikely(page->mapping != NULL))
933 bad_reason = "non-NULL mapping";
fe896d18 934 if (unlikely(page_ref_count(page) != 0))
0139aa7b 935 bad_reason = "nonzero _refcount";
f0b791a3
DH
936 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
937 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
938 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
939 }
9edad6ea
JW
940#ifdef CONFIG_MEMCG
941 if (unlikely(page->mem_cgroup))
942 bad_reason = "page still charged to cgroup";
943#endif
7bfec6f4 944 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
945}
946
947static inline int free_pages_check(struct page *page)
948{
da838d4f 949 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 950 return 0;
bb552ac6
MG
951
952 /* Something has gone sideways, find it */
953 free_pages_check_bad(page);
7bfec6f4 954 return 1;
1da177e4
LT
955}
956
4db7548c
MG
957static int free_tail_pages_check(struct page *head_page, struct page *page)
958{
959 int ret = 1;
960
961 /*
962 * We rely page->lru.next never has bit 0 set, unless the page
963 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
964 */
965 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
966
967 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
968 ret = 0;
969 goto out;
970 }
971 switch (page - head_page) {
972 case 1:
973 /* the first tail page: ->mapping is compound_mapcount() */
974 if (unlikely(compound_mapcount(page))) {
975 bad_page(page, "nonzero compound_mapcount", 0);
976 goto out;
977 }
978 break;
979 case 2:
980 /*
981 * the second tail page: ->mapping is
982 * page_deferred_list().next -- ignore value.
983 */
984 break;
985 default:
986 if (page->mapping != TAIL_MAPPING) {
987 bad_page(page, "corrupted mapping in tail page", 0);
988 goto out;
989 }
990 break;
991 }
992 if (unlikely(!PageTail(page))) {
993 bad_page(page, "PageTail not set", 0);
994 goto out;
995 }
996 if (unlikely(compound_head(page) != head_page)) {
997 bad_page(page, "compound_head not consistent", 0);
998 goto out;
999 }
1000 ret = 0;
1001out:
1002 page->mapping = NULL;
1003 clear_compound_head(page);
1004 return ret;
1005}
1006
e2769dbd
MG
1007static __always_inline bool free_pages_prepare(struct page *page,
1008 unsigned int order, bool check_free)
4db7548c 1009{
e2769dbd 1010 int bad = 0;
4db7548c 1011
4db7548c
MG
1012 VM_BUG_ON_PAGE(PageTail(page), page);
1013
e2769dbd 1014 trace_mm_page_free(page, order);
e2769dbd
MG
1015
1016 /*
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1019 */
1020 if (unlikely(order)) {
1021 bool compound = PageCompound(page);
1022 int i;
1023
1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1025
9a73f61b
KS
1026 if (compound)
1027 ClearPageDoubleMap(page);
e2769dbd
MG
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 if (unlikely(free_pages_check(page + i))) {
1032 bad++;
1033 continue;
1034 }
1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 }
1037 }
bda807d4 1038 if (PageMappingFlags(page))
4db7548c 1039 page->mapping = NULL;
c4159a75 1040 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1041 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1042 if (check_free)
1043 bad += free_pages_check(page);
1044 if (bad)
1045 return false;
4db7548c 1046
e2769dbd
MG
1047 page_cpupid_reset_last(page);
1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 reset_page_owner(page, order);
4db7548c
MG
1050
1051 if (!PageHighMem(page)) {
1052 debug_check_no_locks_freed(page_address(page),
e2769dbd 1053 PAGE_SIZE << order);
4db7548c 1054 debug_check_no_obj_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 }
e2769dbd
MG
1057 arch_free_page(page, order);
1058 kernel_poison_pages(page, 1 << order, 0);
1059 kernel_map_pages(page, 1 << order, 0);
29b52de1 1060 kasan_free_pages(page, order);
4db7548c 1061
4db7548c
MG
1062 return true;
1063}
1064
e2769dbd
MG
1065#ifdef CONFIG_DEBUG_VM
1066static inline bool free_pcp_prepare(struct page *page)
1067{
1068 return free_pages_prepare(page, 0, true);
1069}
1070
1071static inline bool bulkfree_pcp_prepare(struct page *page)
1072{
1073 return false;
1074}
1075#else
1076static bool free_pcp_prepare(struct page *page)
1077{
1078 return free_pages_prepare(page, 0, false);
1079}
1080
4db7548c
MG
1081static bool bulkfree_pcp_prepare(struct page *page)
1082{
1083 return free_pages_check(page);
1084}
1085#endif /* CONFIG_DEBUG_VM */
1086
1da177e4 1087/*
5f8dcc21 1088 * Frees a number of pages from the PCP lists
1da177e4 1089 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1090 * count is the number of pages to free.
1da177e4
LT
1091 *
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1094 *
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1097 */
5f8dcc21
MG
1098static void free_pcppages_bulk(struct zone *zone, int count,
1099 struct per_cpu_pages *pcp)
1da177e4 1100{
5f8dcc21 1101 int migratetype = 0;
a6f9edd6 1102 int batch_free = 0;
3777999d 1103 bool isolated_pageblocks;
5f8dcc21 1104
d34b0733 1105 spin_lock(&zone->lock);
3777999d 1106 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1107
e5b31ac2 1108 while (count) {
48db57f8 1109 struct page *page;
5f8dcc21
MG
1110 struct list_head *list;
1111
1112 /*
a6f9edd6
MG
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1117 * lists
5f8dcc21
MG
1118 */
1119 do {
a6f9edd6 1120 batch_free++;
5f8dcc21
MG
1121 if (++migratetype == MIGRATE_PCPTYPES)
1122 migratetype = 0;
1123 list = &pcp->lists[migratetype];
1124 } while (list_empty(list));
48db57f8 1125
1d16871d
NK
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1128 batch_free = count;
1d16871d 1129
a6f9edd6 1130 do {
770c8aaa
BZ
1131 int mt; /* migratetype of the to-be-freed page */
1132
a16601c5 1133 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page->lru);
aa016d14 1136
bb14c2c7 1137 mt = get_pcppage_migratetype(page);
aa016d14
VB
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 /* Pageblock could have been isolated meanwhile */
3777999d 1141 if (unlikely(isolated_pageblocks))
51bb1a40 1142 mt = get_pageblock_migratetype(page);
51bb1a40 1143
4db7548c
MG
1144 if (bulkfree_pcp_prepare(page))
1145 continue;
1146
dc4b0caf 1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1148 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1149 } while (--count && --batch_free && !list_empty(list));
1da177e4 1150 }
d34b0733 1151 spin_unlock(&zone->lock);
1da177e4
LT
1152}
1153
dc4b0caf
MG
1154static void free_one_page(struct zone *zone,
1155 struct page *page, unsigned long pfn,
7aeb09f9 1156 unsigned int order,
ed0ae21d 1157 int migratetype)
1da177e4 1158{
d34b0733 1159 spin_lock(&zone->lock);
ad53f92e
JK
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1163 }
dc4b0caf 1164 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1165 spin_unlock(&zone->lock);
48db57f8
NP
1166}
1167
1e8ce83c
RH
1168static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170{
f7f99100 1171 mm_zero_struct_page(page);
1e8ce83c 1172 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1173 init_page_count(page);
1174 page_mapcount_reset(page);
1175 page_cpupid_reset_last(page);
1e8ce83c 1176
1e8ce83c
RH
1177 INIT_LIST_HEAD(&page->lru);
1178#ifdef WANT_PAGE_VIRTUAL
1179 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1180 if (!is_highmem_idx(zone))
1181 set_page_address(page, __va(pfn << PAGE_SHIFT));
1182#endif
1183}
1184
1185static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1186 int nid)
1187{
1188 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1189}
1190
7e18adb4 1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1192static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1193{
1194 pg_data_t *pgdat;
1195 int nid, zid;
1196
1197 if (!early_page_uninitialised(pfn))
1198 return;
1199
1200 nid = early_pfn_to_nid(pfn);
1201 pgdat = NODE_DATA(nid);
1202
1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204 struct zone *zone = &pgdat->node_zones[zid];
1205
1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207 break;
1208 }
1209 __init_single_pfn(pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
92923ca3
NZ
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
4b50bcc7 1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1224{
1225 unsigned long start_pfn = PFN_DOWN(start);
1226 unsigned long end_pfn = PFN_UP(end);
1227
7e18adb4
MG
1228 for (; start_pfn < end_pfn; start_pfn++) {
1229 if (pfn_valid(start_pfn)) {
1230 struct page *page = pfn_to_page(start_pfn);
1231
1232 init_reserved_page(start_pfn);
1d798ca3
KS
1233
1234 /* Avoid false-positive PageTail() */
1235 INIT_LIST_HEAD(&page->lru);
1236
7e18adb4
MG
1237 SetPageReserved(page);
1238 }
1239 }
92923ca3
NZ
1240}
1241
ec95f53a
KM
1242static void __free_pages_ok(struct page *page, unsigned int order)
1243{
d34b0733 1244 unsigned long flags;
95e34412 1245 int migratetype;
dc4b0caf 1246 unsigned long pfn = page_to_pfn(page);
ec95f53a 1247
e2769dbd 1248 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1249 return;
1250
cfc47a28 1251 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1252 local_irq_save(flags);
1253 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1254 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1255 local_irq_restore(flags);
1da177e4
LT
1256}
1257
949698a3 1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1259{
c3993076 1260 unsigned int nr_pages = 1 << order;
e2d0bd2b 1261 struct page *p = page;
c3993076 1262 unsigned int loop;
a226f6c8 1263
e2d0bd2b
YL
1264 prefetchw(p);
1265 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266 prefetchw(p + 1);
c3993076
JW
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
a226f6c8 1269 }
e2d0bd2b
YL
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
c3993076 1272
e2d0bd2b 1273 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1274 set_page_refcounted(page);
1275 __free_pages(page, order);
a226f6c8
DH
1276}
1277
75a592a4
MG
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1280
75a592a4
MG
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
7ace9917 1285 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1286 int nid;
1287
7ace9917 1288 spin_lock(&early_pfn_lock);
75a592a4 1289 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1290 if (nid < 0)
e4568d38 1291 nid = first_online_node;
7ace9917
MG
1292 spin_unlock(&early_pfn_lock);
1293
1294 return nid;
75a592a4
MG
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
75a592a4
MG
1302{
1303 int nid;
1304
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1307 return false;
1308 return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321 return true;
1322}
d73d3c9f
MK
1323static inline bool __meminit __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325 struct mminit_pfnnid_cache *state)
75a592a4
MG
1326{
1327 return true;
1328}
1329#endif
1330
1331
0e1cc95b 1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1333 unsigned int order)
1334{
1335 if (early_page_uninitialised(pfn))
1336 return;
949698a3 1337 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1338}
1339
7cf91a98
JK
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358 unsigned long end_pfn, struct zone *zone)
1359{
1360 struct page *start_page;
1361 struct page *end_page;
1362
1363 /* end_pfn is one past the range we are checking */
1364 end_pfn--;
1365
1366 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367 return NULL;
1368
2d070eab
MH
1369 start_page = pfn_to_online_page(start_pfn);
1370 if (!start_page)
1371 return NULL;
7cf91a98
JK
1372
1373 if (page_zone(start_page) != zone)
1374 return NULL;
1375
1376 end_page = pfn_to_page(end_pfn);
1377
1378 /* This gives a shorter code than deriving page_zone(end_page) */
1379 if (page_zone_id(start_page) != page_zone_id(end_page))
1380 return NULL;
1381
1382 return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387 unsigned long block_start_pfn = zone->zone_start_pfn;
1388 unsigned long block_end_pfn;
1389
1390 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391 for (; block_start_pfn < zone_end_pfn(zone);
1392 block_start_pfn = block_end_pfn,
1393 block_end_pfn += pageblock_nr_pages) {
1394
1395 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397 if (!__pageblock_pfn_to_page(block_start_pfn,
1398 block_end_pfn, zone))
1399 return;
1400 }
1401
1402 /* We confirm that there is no hole */
1403 zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408 zone->contiguous = false;
1409}
1410
7e18adb4 1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1412static void __init deferred_free_range(unsigned long pfn,
1413 unsigned long nr_pages)
a4de83dd 1414{
2f47a91f
PT
1415 struct page *page;
1416 unsigned long i;
a4de83dd 1417
2f47a91f 1418 if (!nr_pages)
a4de83dd
MG
1419 return;
1420
2f47a91f
PT
1421 page = pfn_to_page(pfn);
1422
a4de83dd 1423 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1424 if (nr_pages == pageblock_nr_pages &&
1425 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1427 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1428 return;
1429 }
1430
e780149b
XQ
1431 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1434 __free_pages_boot_core(page, 0);
e780149b 1435 }
a4de83dd
MG
1436}
1437
d3cd131d
NS
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444 if (atomic_dec_and_test(&pgdat_init_n_undone))
1445 complete(&pgdat_init_all_done_comp);
1446}
0e1cc95b 1447
2f47a91f
PT
1448/*
1449 * Helper for deferred_init_range, free the given range, reset the counters, and
1450 * return number of pages freed.
1451 */
1452static inline unsigned long __init __def_free(unsigned long *nr_free,
1453 unsigned long *free_base_pfn,
1454 struct page **page)
1455{
1456 unsigned long nr = *nr_free;
1457
1458 deferred_free_range(*free_base_pfn, nr);
1459 *free_base_pfn = 0;
1460 *nr_free = 0;
1461 *page = NULL;
1462
1463 return nr;
1464}
1465
1466static unsigned long __init deferred_init_range(int nid, int zid,
1467 unsigned long start_pfn,
1468 unsigned long end_pfn)
1469{
1470 struct mminit_pfnnid_cache nid_init_state = { };
1471 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1472 unsigned long free_base_pfn = 0;
1473 unsigned long nr_pages = 0;
1474 unsigned long nr_free = 0;
1475 struct page *page = NULL;
1476 unsigned long pfn;
1477
1478 /*
1479 * First we check if pfn is valid on architectures where it is possible
1480 * to have holes within pageblock_nr_pages. On systems where it is not
1481 * possible, this function is optimized out.
1482 *
1483 * Then, we check if a current large page is valid by only checking the
1484 * validity of the head pfn.
1485 *
1486 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1487 * within a node: a pfn is between start and end of a node, but does not
1488 * belong to this memory node.
1489 *
1490 * Finally, we minimize pfn page lookups and scheduler checks by
1491 * performing it only once every pageblock_nr_pages.
1492 *
1493 * We do it in two loops: first we initialize struct page, than free to
1494 * buddy allocator, becuse while we are freeing pages we can access
1495 * pages that are ahead (computing buddy page in __free_one_page()).
1496 */
1497 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1498 if (!pfn_valid_within(pfn))
1499 continue;
1500 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1501 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1502 if (page && (pfn & nr_pgmask))
1503 page++;
1504 else
1505 page = pfn_to_page(pfn);
1506 __init_single_page(page, pfn, zid, nid);
1507 cond_resched();
1508 }
1509 }
1510 }
1511
1512 page = NULL;
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn)) {
1515 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1516 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1517 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1518 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1519 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1520 } else if (page && (pfn & nr_pgmask)) {
1521 page++;
1522 nr_free++;
1523 } else {
1524 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1525 page = pfn_to_page(pfn);
1526 free_base_pfn = pfn;
1527 nr_free = 1;
1528 cond_resched();
1529 }
1530 }
1531 /* Free the last block of pages to allocator */
1532 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1533
1534 return nr_pages;
1535}
1536
7e18adb4 1537/* Initialise remaining memory on a node */
0e1cc95b 1538static int __init deferred_init_memmap(void *data)
7e18adb4 1539{
0e1cc95b
MG
1540 pg_data_t *pgdat = data;
1541 int nid = pgdat->node_id;
7e18adb4
MG
1542 unsigned long start = jiffies;
1543 unsigned long nr_pages = 0;
2f47a91f
PT
1544 unsigned long spfn, epfn;
1545 phys_addr_t spa, epa;
1546 int zid;
7e18adb4 1547 struct zone *zone;
7e18adb4 1548 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1549 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1550 u64 i;
7e18adb4 1551
0e1cc95b 1552 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1553 pgdat_init_report_one_done();
0e1cc95b
MG
1554 return 0;
1555 }
1556
1557 /* Bind memory initialisation thread to a local node if possible */
1558 if (!cpumask_empty(cpumask))
1559 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1560
1561 /* Sanity check boundaries */
1562 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1563 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1564 pgdat->first_deferred_pfn = ULONG_MAX;
1565
1566 /* Only the highest zone is deferred so find it */
1567 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1568 zone = pgdat->node_zones + zid;
1569 if (first_init_pfn < zone_end_pfn(zone))
1570 break;
1571 }
2f47a91f 1572 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1573
2f47a91f
PT
1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1578 }
1579
1580 /* Sanity check that the next zone really is unpopulated */
1581 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1582
0e1cc95b 1583 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1584 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1585
1586 pgdat_init_report_one_done();
0e1cc95b
MG
1587 return 0;
1588}
7cf91a98 1589#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1590
1591void __init page_alloc_init_late(void)
1592{
7cf91a98
JK
1593 struct zone *zone;
1594
1595#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1596 int nid;
1597
d3cd131d
NS
1598 /* There will be num_node_state(N_MEMORY) threads */
1599 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1600 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1601 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1602 }
1603
1604 /* Block until all are initialised */
d3cd131d 1605 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1606
1607 /* Reinit limits that are based on free pages after the kernel is up */
1608 files_maxfiles_init();
7cf91a98 1609#endif
3010f876
PT
1610#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1611 /* Discard memblock private memory */
1612 memblock_discard();
1613#endif
7cf91a98
JK
1614
1615 for_each_populated_zone(zone)
1616 set_zone_contiguous(zone);
7e18adb4 1617}
7e18adb4 1618
47118af0 1619#ifdef CONFIG_CMA
9cf510a5 1620/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1621void __init init_cma_reserved_pageblock(struct page *page)
1622{
1623 unsigned i = pageblock_nr_pages;
1624 struct page *p = page;
1625
1626 do {
1627 __ClearPageReserved(p);
1628 set_page_count(p, 0);
1629 } while (++p, --i);
1630
47118af0 1631 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1632
1633 if (pageblock_order >= MAX_ORDER) {
1634 i = pageblock_nr_pages;
1635 p = page;
1636 do {
1637 set_page_refcounted(p);
1638 __free_pages(p, MAX_ORDER - 1);
1639 p += MAX_ORDER_NR_PAGES;
1640 } while (i -= MAX_ORDER_NR_PAGES);
1641 } else {
1642 set_page_refcounted(page);
1643 __free_pages(page, pageblock_order);
1644 }
1645
3dcc0571 1646 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1647}
1648#endif
1da177e4
LT
1649
1650/*
1651 * The order of subdivision here is critical for the IO subsystem.
1652 * Please do not alter this order without good reasons and regression
1653 * testing. Specifically, as large blocks of memory are subdivided,
1654 * the order in which smaller blocks are delivered depends on the order
1655 * they're subdivided in this function. This is the primary factor
1656 * influencing the order in which pages are delivered to the IO
1657 * subsystem according to empirical testing, and this is also justified
1658 * by considering the behavior of a buddy system containing a single
1659 * large block of memory acted on by a series of small allocations.
1660 * This behavior is a critical factor in sglist merging's success.
1661 *
6d49e352 1662 * -- nyc
1da177e4 1663 */
085cc7d5 1664static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1665 int low, int high, struct free_area *area,
1666 int migratetype)
1da177e4
LT
1667{
1668 unsigned long size = 1 << high;
1669
1670 while (high > low) {
1671 area--;
1672 high--;
1673 size >>= 1;
309381fe 1674 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1675
acbc15a4
JK
1676 /*
1677 * Mark as guard pages (or page), that will allow to
1678 * merge back to allocator when buddy will be freed.
1679 * Corresponding page table entries will not be touched,
1680 * pages will stay not present in virtual address space
1681 */
1682 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1683 continue;
acbc15a4 1684
b2a0ac88 1685 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1686 area->nr_free++;
1687 set_page_order(&page[size], high);
1688 }
1da177e4
LT
1689}
1690
4e611801 1691static void check_new_page_bad(struct page *page)
1da177e4 1692{
4e611801
VB
1693 const char *bad_reason = NULL;
1694 unsigned long bad_flags = 0;
7bfec6f4 1695
53f9263b 1696 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1697 bad_reason = "nonzero mapcount";
1698 if (unlikely(page->mapping != NULL))
1699 bad_reason = "non-NULL mapping";
fe896d18 1700 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1701 bad_reason = "nonzero _count";
f4c18e6f
NH
1702 if (unlikely(page->flags & __PG_HWPOISON)) {
1703 bad_reason = "HWPoisoned (hardware-corrupted)";
1704 bad_flags = __PG_HWPOISON;
e570f56c
NH
1705 /* Don't complain about hwpoisoned pages */
1706 page_mapcount_reset(page); /* remove PageBuddy */
1707 return;
f4c18e6f 1708 }
f0b791a3
DH
1709 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1710 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1711 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1712 }
9edad6ea
JW
1713#ifdef CONFIG_MEMCG
1714 if (unlikely(page->mem_cgroup))
1715 bad_reason = "page still charged to cgroup";
1716#endif
4e611801
VB
1717 bad_page(page, bad_reason, bad_flags);
1718}
1719
1720/*
1721 * This page is about to be returned from the page allocator
1722 */
1723static inline int check_new_page(struct page *page)
1724{
1725 if (likely(page_expected_state(page,
1726 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1727 return 0;
1728
1729 check_new_page_bad(page);
1730 return 1;
2a7684a2
WF
1731}
1732
bd33ef36 1733static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1734{
1735 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1736 page_poisoning_enabled();
1414c7f4
LA
1737}
1738
479f854a
MG
1739#ifdef CONFIG_DEBUG_VM
1740static bool check_pcp_refill(struct page *page)
1741{
1742 return false;
1743}
1744
1745static bool check_new_pcp(struct page *page)
1746{
1747 return check_new_page(page);
1748}
1749#else
1750static bool check_pcp_refill(struct page *page)
1751{
1752 return check_new_page(page);
1753}
1754static bool check_new_pcp(struct page *page)
1755{
1756 return false;
1757}
1758#endif /* CONFIG_DEBUG_VM */
1759
1760static bool check_new_pages(struct page *page, unsigned int order)
1761{
1762 int i;
1763 for (i = 0; i < (1 << order); i++) {
1764 struct page *p = page + i;
1765
1766 if (unlikely(check_new_page(p)))
1767 return true;
1768 }
1769
1770 return false;
1771}
1772
46f24fd8
JK
1773inline void post_alloc_hook(struct page *page, unsigned int order,
1774 gfp_t gfp_flags)
1775{
1776 set_page_private(page, 0);
1777 set_page_refcounted(page);
1778
1779 arch_alloc_page(page, order);
1780 kernel_map_pages(page, 1 << order, 1);
1781 kernel_poison_pages(page, 1 << order, 1);
1782 kasan_alloc_pages(page, order);
1783 set_page_owner(page, order, gfp_flags);
1784}
1785
479f854a 1786static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1787 unsigned int alloc_flags)
2a7684a2
WF
1788{
1789 int i;
689bcebf 1790
46f24fd8 1791 post_alloc_hook(page, order, gfp_flags);
17cf4406 1792
bd33ef36 1793 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1794 for (i = 0; i < (1 << order); i++)
1795 clear_highpage(page + i);
17cf4406
NP
1796
1797 if (order && (gfp_flags & __GFP_COMP))
1798 prep_compound_page(page, order);
1799
75379191 1800 /*
2f064f34 1801 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1802 * allocate the page. The expectation is that the caller is taking
1803 * steps that will free more memory. The caller should avoid the page
1804 * being used for !PFMEMALLOC purposes.
1805 */
2f064f34
MH
1806 if (alloc_flags & ALLOC_NO_WATERMARKS)
1807 set_page_pfmemalloc(page);
1808 else
1809 clear_page_pfmemalloc(page);
1da177e4
LT
1810}
1811
56fd56b8
MG
1812/*
1813 * Go through the free lists for the given migratetype and remove
1814 * the smallest available page from the freelists
1815 */
85ccc8fa 1816static __always_inline
728ec980 1817struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1818 int migratetype)
1819{
1820 unsigned int current_order;
b8af2941 1821 struct free_area *area;
56fd56b8
MG
1822 struct page *page;
1823
1824 /* Find a page of the appropriate size in the preferred list */
1825 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1826 area = &(zone->free_area[current_order]);
a16601c5 1827 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1828 struct page, lru);
a16601c5
GT
1829 if (!page)
1830 continue;
56fd56b8
MG
1831 list_del(&page->lru);
1832 rmv_page_order(page);
1833 area->nr_free--;
56fd56b8 1834 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1835 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1836 return page;
1837 }
1838
1839 return NULL;
1840}
1841
1842
b2a0ac88
MG
1843/*
1844 * This array describes the order lists are fallen back to when
1845 * the free lists for the desirable migrate type are depleted
1846 */
47118af0 1847static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1848 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1849 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1850 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1851#ifdef CONFIG_CMA
974a786e 1852 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1853#endif
194159fb 1854#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1855 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1856#endif
b2a0ac88
MG
1857};
1858
dc67647b 1859#ifdef CONFIG_CMA
85ccc8fa 1860static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1861 unsigned int order)
1862{
1863 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1864}
1865#else
1866static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1867 unsigned int order) { return NULL; }
1868#endif
1869
c361be55
MG
1870/*
1871 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1872 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1873 * boundary. If alignment is required, use move_freepages_block()
1874 */
02aa0cdd 1875static int move_freepages(struct zone *zone,
b69a7288 1876 struct page *start_page, struct page *end_page,
02aa0cdd 1877 int migratetype, int *num_movable)
c361be55
MG
1878{
1879 struct page *page;
d00181b9 1880 unsigned int order;
d100313f 1881 int pages_moved = 0;
c361be55
MG
1882
1883#ifndef CONFIG_HOLES_IN_ZONE
1884 /*
1885 * page_zone is not safe to call in this context when
1886 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1887 * anyway as we check zone boundaries in move_freepages_block().
1888 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1889 * grouping pages by mobility
c361be55 1890 */
97ee4ba7 1891 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1892#endif
1893
02aa0cdd
VB
1894 if (num_movable)
1895 *num_movable = 0;
1896
c361be55
MG
1897 for (page = start_page; page <= end_page;) {
1898 if (!pfn_valid_within(page_to_pfn(page))) {
1899 page++;
1900 continue;
1901 }
1902
f073bdc5
AB
1903 /* Make sure we are not inadvertently changing nodes */
1904 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1905
c361be55 1906 if (!PageBuddy(page)) {
02aa0cdd
VB
1907 /*
1908 * We assume that pages that could be isolated for
1909 * migration are movable. But we don't actually try
1910 * isolating, as that would be expensive.
1911 */
1912 if (num_movable &&
1913 (PageLRU(page) || __PageMovable(page)))
1914 (*num_movable)++;
1915
c361be55
MG
1916 page++;
1917 continue;
1918 }
1919
1920 order = page_order(page);
84be48d8
KS
1921 list_move(&page->lru,
1922 &zone->free_area[order].free_list[migratetype]);
c361be55 1923 page += 1 << order;
d100313f 1924 pages_moved += 1 << order;
c361be55
MG
1925 }
1926
d100313f 1927 return pages_moved;
c361be55
MG
1928}
1929
ee6f509c 1930int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1931 int migratetype, int *num_movable)
c361be55
MG
1932{
1933 unsigned long start_pfn, end_pfn;
1934 struct page *start_page, *end_page;
1935
1936 start_pfn = page_to_pfn(page);
d9c23400 1937 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1938 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1939 end_page = start_page + pageblock_nr_pages - 1;
1940 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1941
1942 /* Do not cross zone boundaries */
108bcc96 1943 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1944 start_page = page;
108bcc96 1945 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1946 return 0;
1947
02aa0cdd
VB
1948 return move_freepages(zone, start_page, end_page, migratetype,
1949 num_movable);
c361be55
MG
1950}
1951
2f66a68f
MG
1952static void change_pageblock_range(struct page *pageblock_page,
1953 int start_order, int migratetype)
1954{
1955 int nr_pageblocks = 1 << (start_order - pageblock_order);
1956
1957 while (nr_pageblocks--) {
1958 set_pageblock_migratetype(pageblock_page, migratetype);
1959 pageblock_page += pageblock_nr_pages;
1960 }
1961}
1962
fef903ef 1963/*
9c0415eb
VB
1964 * When we are falling back to another migratetype during allocation, try to
1965 * steal extra free pages from the same pageblocks to satisfy further
1966 * allocations, instead of polluting multiple pageblocks.
1967 *
1968 * If we are stealing a relatively large buddy page, it is likely there will
1969 * be more free pages in the pageblock, so try to steal them all. For
1970 * reclaimable and unmovable allocations, we steal regardless of page size,
1971 * as fragmentation caused by those allocations polluting movable pageblocks
1972 * is worse than movable allocations stealing from unmovable and reclaimable
1973 * pageblocks.
fef903ef 1974 */
4eb7dce6
JK
1975static bool can_steal_fallback(unsigned int order, int start_mt)
1976{
1977 /*
1978 * Leaving this order check is intended, although there is
1979 * relaxed order check in next check. The reason is that
1980 * we can actually steal whole pageblock if this condition met,
1981 * but, below check doesn't guarantee it and that is just heuristic
1982 * so could be changed anytime.
1983 */
1984 if (order >= pageblock_order)
1985 return true;
1986
1987 if (order >= pageblock_order / 2 ||
1988 start_mt == MIGRATE_RECLAIMABLE ||
1989 start_mt == MIGRATE_UNMOVABLE ||
1990 page_group_by_mobility_disabled)
1991 return true;
1992
1993 return false;
1994}
1995
1996/*
1997 * This function implements actual steal behaviour. If order is large enough,
1998 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1999 * pageblock to our migratetype and determine how many already-allocated pages
2000 * are there in the pageblock with a compatible migratetype. If at least half
2001 * of pages are free or compatible, we can change migratetype of the pageblock
2002 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2003 */
2004static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2005 int start_type, bool whole_block)
fef903ef 2006{
d00181b9 2007 unsigned int current_order = page_order(page);
3bc48f96 2008 struct free_area *area;
02aa0cdd
VB
2009 int free_pages, movable_pages, alike_pages;
2010 int old_block_type;
2011
2012 old_block_type = get_pageblock_migratetype(page);
fef903ef 2013
3bc48f96
VB
2014 /*
2015 * This can happen due to races and we want to prevent broken
2016 * highatomic accounting.
2017 */
02aa0cdd 2018 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2019 goto single_page;
2020
fef903ef
SB
2021 /* Take ownership for orders >= pageblock_order */
2022 if (current_order >= pageblock_order) {
2023 change_pageblock_range(page, current_order, start_type);
3bc48f96 2024 goto single_page;
fef903ef
SB
2025 }
2026
3bc48f96
VB
2027 /* We are not allowed to try stealing from the whole block */
2028 if (!whole_block)
2029 goto single_page;
2030
02aa0cdd
VB
2031 free_pages = move_freepages_block(zone, page, start_type,
2032 &movable_pages);
2033 /*
2034 * Determine how many pages are compatible with our allocation.
2035 * For movable allocation, it's the number of movable pages which
2036 * we just obtained. For other types it's a bit more tricky.
2037 */
2038 if (start_type == MIGRATE_MOVABLE) {
2039 alike_pages = movable_pages;
2040 } else {
2041 /*
2042 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2043 * to MOVABLE pageblock, consider all non-movable pages as
2044 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2045 * vice versa, be conservative since we can't distinguish the
2046 * exact migratetype of non-movable pages.
2047 */
2048 if (old_block_type == MIGRATE_MOVABLE)
2049 alike_pages = pageblock_nr_pages
2050 - (free_pages + movable_pages);
2051 else
2052 alike_pages = 0;
2053 }
2054
3bc48f96 2055 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2056 if (!free_pages)
3bc48f96 2057 goto single_page;
fef903ef 2058
02aa0cdd
VB
2059 /*
2060 * If a sufficient number of pages in the block are either free or of
2061 * comparable migratability as our allocation, claim the whole block.
2062 */
2063 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2064 page_group_by_mobility_disabled)
2065 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2066
2067 return;
2068
2069single_page:
2070 area = &zone->free_area[current_order];
2071 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2072}
2073
2149cdae
JK
2074/*
2075 * Check whether there is a suitable fallback freepage with requested order.
2076 * If only_stealable is true, this function returns fallback_mt only if
2077 * we can steal other freepages all together. This would help to reduce
2078 * fragmentation due to mixed migratetype pages in one pageblock.
2079 */
2080int find_suitable_fallback(struct free_area *area, unsigned int order,
2081 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2082{
2083 int i;
2084 int fallback_mt;
2085
2086 if (area->nr_free == 0)
2087 return -1;
2088
2089 *can_steal = false;
2090 for (i = 0;; i++) {
2091 fallback_mt = fallbacks[migratetype][i];
974a786e 2092 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2093 break;
2094
2095 if (list_empty(&area->free_list[fallback_mt]))
2096 continue;
fef903ef 2097
4eb7dce6
JK
2098 if (can_steal_fallback(order, migratetype))
2099 *can_steal = true;
2100
2149cdae
JK
2101 if (!only_stealable)
2102 return fallback_mt;
2103
2104 if (*can_steal)
2105 return fallback_mt;
fef903ef 2106 }
4eb7dce6
JK
2107
2108 return -1;
fef903ef
SB
2109}
2110
0aaa29a5
MG
2111/*
2112 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2113 * there are no empty page blocks that contain a page with a suitable order
2114 */
2115static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2116 unsigned int alloc_order)
2117{
2118 int mt;
2119 unsigned long max_managed, flags;
2120
2121 /*
2122 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2123 * Check is race-prone but harmless.
2124 */
2125 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2126 if (zone->nr_reserved_highatomic >= max_managed)
2127 return;
2128
2129 spin_lock_irqsave(&zone->lock, flags);
2130
2131 /* Recheck the nr_reserved_highatomic limit under the lock */
2132 if (zone->nr_reserved_highatomic >= max_managed)
2133 goto out_unlock;
2134
2135 /* Yoink! */
2136 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2137 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2138 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2139 zone->nr_reserved_highatomic += pageblock_nr_pages;
2140 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2141 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2142 }
2143
2144out_unlock:
2145 spin_unlock_irqrestore(&zone->lock, flags);
2146}
2147
2148/*
2149 * Used when an allocation is about to fail under memory pressure. This
2150 * potentially hurts the reliability of high-order allocations when under
2151 * intense memory pressure but failed atomic allocations should be easier
2152 * to recover from than an OOM.
29fac03b
MK
2153 *
2154 * If @force is true, try to unreserve a pageblock even though highatomic
2155 * pageblock is exhausted.
0aaa29a5 2156 */
29fac03b
MK
2157static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2158 bool force)
0aaa29a5
MG
2159{
2160 struct zonelist *zonelist = ac->zonelist;
2161 unsigned long flags;
2162 struct zoneref *z;
2163 struct zone *zone;
2164 struct page *page;
2165 int order;
04c8716f 2166 bool ret;
0aaa29a5
MG
2167
2168 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2169 ac->nodemask) {
29fac03b
MK
2170 /*
2171 * Preserve at least one pageblock unless memory pressure
2172 * is really high.
2173 */
2174 if (!force && zone->nr_reserved_highatomic <=
2175 pageblock_nr_pages)
0aaa29a5
MG
2176 continue;
2177
2178 spin_lock_irqsave(&zone->lock, flags);
2179 for (order = 0; order < MAX_ORDER; order++) {
2180 struct free_area *area = &(zone->free_area[order]);
2181
a16601c5
GT
2182 page = list_first_entry_or_null(
2183 &area->free_list[MIGRATE_HIGHATOMIC],
2184 struct page, lru);
2185 if (!page)
0aaa29a5
MG
2186 continue;
2187
0aaa29a5 2188 /*
4855e4a7
MK
2189 * In page freeing path, migratetype change is racy so
2190 * we can counter several free pages in a pageblock
2191 * in this loop althoug we changed the pageblock type
2192 * from highatomic to ac->migratetype. So we should
2193 * adjust the count once.
0aaa29a5 2194 */
a6ffdc07 2195 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2196 /*
2197 * It should never happen but changes to
2198 * locking could inadvertently allow a per-cpu
2199 * drain to add pages to MIGRATE_HIGHATOMIC
2200 * while unreserving so be safe and watch for
2201 * underflows.
2202 */
2203 zone->nr_reserved_highatomic -= min(
2204 pageblock_nr_pages,
2205 zone->nr_reserved_highatomic);
2206 }
0aaa29a5
MG
2207
2208 /*
2209 * Convert to ac->migratetype and avoid the normal
2210 * pageblock stealing heuristics. Minimally, the caller
2211 * is doing the work and needs the pages. More
2212 * importantly, if the block was always converted to
2213 * MIGRATE_UNMOVABLE or another type then the number
2214 * of pageblocks that cannot be completely freed
2215 * may increase.
2216 */
2217 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2218 ret = move_freepages_block(zone, page, ac->migratetype,
2219 NULL);
29fac03b
MK
2220 if (ret) {
2221 spin_unlock_irqrestore(&zone->lock, flags);
2222 return ret;
2223 }
0aaa29a5
MG
2224 }
2225 spin_unlock_irqrestore(&zone->lock, flags);
2226 }
04c8716f
MK
2227
2228 return false;
0aaa29a5
MG
2229}
2230
3bc48f96
VB
2231/*
2232 * Try finding a free buddy page on the fallback list and put it on the free
2233 * list of requested migratetype, possibly along with other pages from the same
2234 * block, depending on fragmentation avoidance heuristics. Returns true if
2235 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2236 *
2237 * The use of signed ints for order and current_order is a deliberate
2238 * deviation from the rest of this file, to make the for loop
2239 * condition simpler.
3bc48f96 2240 */
85ccc8fa 2241static __always_inline bool
b002529d 2242__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2243{
b8af2941 2244 struct free_area *area;
b002529d 2245 int current_order;
b2a0ac88 2246 struct page *page;
4eb7dce6
JK
2247 int fallback_mt;
2248 bool can_steal;
b2a0ac88 2249
7a8f58f3
VB
2250 /*
2251 * Find the largest available free page in the other list. This roughly
2252 * approximates finding the pageblock with the most free pages, which
2253 * would be too costly to do exactly.
2254 */
b002529d 2255 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2256 --current_order) {
4eb7dce6
JK
2257 area = &(zone->free_area[current_order]);
2258 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2259 start_migratetype, false, &can_steal);
4eb7dce6
JK
2260 if (fallback_mt == -1)
2261 continue;
b2a0ac88 2262
7a8f58f3
VB
2263 /*
2264 * We cannot steal all free pages from the pageblock and the
2265 * requested migratetype is movable. In that case it's better to
2266 * steal and split the smallest available page instead of the
2267 * largest available page, because even if the next movable
2268 * allocation falls back into a different pageblock than this
2269 * one, it won't cause permanent fragmentation.
2270 */
2271 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2272 && current_order > order)
2273 goto find_smallest;
b2a0ac88 2274
7a8f58f3
VB
2275 goto do_steal;
2276 }
e0fff1bd 2277
7a8f58f3 2278 return false;
e0fff1bd 2279
7a8f58f3
VB
2280find_smallest:
2281 for (current_order = order; current_order < MAX_ORDER;
2282 current_order++) {
2283 area = &(zone->free_area[current_order]);
2284 fallback_mt = find_suitable_fallback(area, current_order,
2285 start_migratetype, false, &can_steal);
2286 if (fallback_mt != -1)
2287 break;
b2a0ac88
MG
2288 }
2289
7a8f58f3
VB
2290 /*
2291 * This should not happen - we already found a suitable fallback
2292 * when looking for the largest page.
2293 */
2294 VM_BUG_ON(current_order == MAX_ORDER);
2295
2296do_steal:
2297 page = list_first_entry(&area->free_list[fallback_mt],
2298 struct page, lru);
2299
2300 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2301
2302 trace_mm_page_alloc_extfrag(page, order, current_order,
2303 start_migratetype, fallback_mt);
2304
2305 return true;
2306
b2a0ac88
MG
2307}
2308
56fd56b8 2309/*
1da177e4
LT
2310 * Do the hard work of removing an element from the buddy allocator.
2311 * Call me with the zone->lock already held.
2312 */
85ccc8fa
AL
2313static __always_inline struct page *
2314__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2315{
1da177e4
LT
2316 struct page *page;
2317
3bc48f96 2318retry:
56fd56b8 2319 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2320 if (unlikely(!page)) {
dc67647b
JK
2321 if (migratetype == MIGRATE_MOVABLE)
2322 page = __rmqueue_cma_fallback(zone, order);
2323
3bc48f96
VB
2324 if (!page && __rmqueue_fallback(zone, order, migratetype))
2325 goto retry;
728ec980
MG
2326 }
2327
0d3d062a 2328 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2329 return page;
1da177e4
LT
2330}
2331
5f63b720 2332/*
1da177e4
LT
2333 * Obtain a specified number of elements from the buddy allocator, all under
2334 * a single hold of the lock, for efficiency. Add them to the supplied list.
2335 * Returns the number of new pages which were placed at *list.
2336 */
5f63b720 2337static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2338 unsigned long count, struct list_head *list,
b745bc85 2339 int migratetype, bool cold)
1da177e4 2340{
a6de734b 2341 int i, alloced = 0;
5f63b720 2342
d34b0733 2343 spin_lock(&zone->lock);
1da177e4 2344 for (i = 0; i < count; ++i) {
6ac0206b 2345 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2346 if (unlikely(page == NULL))
1da177e4 2347 break;
81eabcbe 2348
479f854a
MG
2349 if (unlikely(check_pcp_refill(page)))
2350 continue;
2351
81eabcbe
MG
2352 /*
2353 * Split buddy pages returned by expand() are received here
2354 * in physical page order. The page is added to the callers and
2355 * list and the list head then moves forward. From the callers
2356 * perspective, the linked list is ordered by page number in
2357 * some conditions. This is useful for IO devices that can
2358 * merge IO requests if the physical pages are ordered
2359 * properly.
2360 */
b745bc85 2361 if (likely(!cold))
e084b2d9
MG
2362 list_add(&page->lru, list);
2363 else
2364 list_add_tail(&page->lru, list);
81eabcbe 2365 list = &page->lru;
a6de734b 2366 alloced++;
bb14c2c7 2367 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2368 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2369 -(1 << order));
1da177e4 2370 }
a6de734b
MG
2371
2372 /*
2373 * i pages were removed from the buddy list even if some leak due
2374 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2375 * on i. Do not confuse with 'alloced' which is the number of
2376 * pages added to the pcp list.
2377 */
f2260e6b 2378 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2379 spin_unlock(&zone->lock);
a6de734b 2380 return alloced;
1da177e4
LT
2381}
2382
4ae7c039 2383#ifdef CONFIG_NUMA
8fce4d8e 2384/*
4037d452
CL
2385 * Called from the vmstat counter updater to drain pagesets of this
2386 * currently executing processor on remote nodes after they have
2387 * expired.
2388 *
879336c3
CL
2389 * Note that this function must be called with the thread pinned to
2390 * a single processor.
8fce4d8e 2391 */
4037d452 2392void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2393{
4ae7c039 2394 unsigned long flags;
7be12fc9 2395 int to_drain, batch;
4ae7c039 2396
4037d452 2397 local_irq_save(flags);
4db0c3c2 2398 batch = READ_ONCE(pcp->batch);
7be12fc9 2399 to_drain = min(pcp->count, batch);
2a13515c
KM
2400 if (to_drain > 0) {
2401 free_pcppages_bulk(zone, to_drain, pcp);
2402 pcp->count -= to_drain;
2403 }
4037d452 2404 local_irq_restore(flags);
4ae7c039
CL
2405}
2406#endif
2407
9f8f2172 2408/*
93481ff0 2409 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2410 *
2411 * The processor must either be the current processor and the
2412 * thread pinned to the current processor or a processor that
2413 * is not online.
2414 */
93481ff0 2415static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2416{
c54ad30c 2417 unsigned long flags;
93481ff0
VB
2418 struct per_cpu_pageset *pset;
2419 struct per_cpu_pages *pcp;
1da177e4 2420
93481ff0
VB
2421 local_irq_save(flags);
2422 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2423
93481ff0
VB
2424 pcp = &pset->pcp;
2425 if (pcp->count) {
2426 free_pcppages_bulk(zone, pcp->count, pcp);
2427 pcp->count = 0;
2428 }
2429 local_irq_restore(flags);
2430}
3dfa5721 2431
93481ff0
VB
2432/*
2433 * Drain pcplists of all zones on the indicated processor.
2434 *
2435 * The processor must either be the current processor and the
2436 * thread pinned to the current processor or a processor that
2437 * is not online.
2438 */
2439static void drain_pages(unsigned int cpu)
2440{
2441 struct zone *zone;
2442
2443 for_each_populated_zone(zone) {
2444 drain_pages_zone(cpu, zone);
1da177e4
LT
2445 }
2446}
1da177e4 2447
9f8f2172
CL
2448/*
2449 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2450 *
2451 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2452 * the single zone's pages.
9f8f2172 2453 */
93481ff0 2454void drain_local_pages(struct zone *zone)
9f8f2172 2455{
93481ff0
VB
2456 int cpu = smp_processor_id();
2457
2458 if (zone)
2459 drain_pages_zone(cpu, zone);
2460 else
2461 drain_pages(cpu);
9f8f2172
CL
2462}
2463
0ccce3b9
MG
2464static void drain_local_pages_wq(struct work_struct *work)
2465{
a459eeb7
MH
2466 /*
2467 * drain_all_pages doesn't use proper cpu hotplug protection so
2468 * we can race with cpu offline when the WQ can move this from
2469 * a cpu pinned worker to an unbound one. We can operate on a different
2470 * cpu which is allright but we also have to make sure to not move to
2471 * a different one.
2472 */
2473 preempt_disable();
0ccce3b9 2474 drain_local_pages(NULL);
a459eeb7 2475 preempt_enable();
0ccce3b9
MG
2476}
2477
9f8f2172 2478/*
74046494
GBY
2479 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2480 *
93481ff0
VB
2481 * When zone parameter is non-NULL, spill just the single zone's pages.
2482 *
0ccce3b9 2483 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2484 */
93481ff0 2485void drain_all_pages(struct zone *zone)
9f8f2172 2486{
74046494 2487 int cpu;
74046494
GBY
2488
2489 /*
2490 * Allocate in the BSS so we wont require allocation in
2491 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2492 */
2493 static cpumask_t cpus_with_pcps;
2494
ce612879
MH
2495 /*
2496 * Make sure nobody triggers this path before mm_percpu_wq is fully
2497 * initialized.
2498 */
2499 if (WARN_ON_ONCE(!mm_percpu_wq))
2500 return;
2501
0ccce3b9
MG
2502 /* Workqueues cannot recurse */
2503 if (current->flags & PF_WQ_WORKER)
2504 return;
2505
bd233f53
MG
2506 /*
2507 * Do not drain if one is already in progress unless it's specific to
2508 * a zone. Such callers are primarily CMA and memory hotplug and need
2509 * the drain to be complete when the call returns.
2510 */
2511 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2512 if (!zone)
2513 return;
2514 mutex_lock(&pcpu_drain_mutex);
2515 }
0ccce3b9 2516
74046494
GBY
2517 /*
2518 * We don't care about racing with CPU hotplug event
2519 * as offline notification will cause the notified
2520 * cpu to drain that CPU pcps and on_each_cpu_mask
2521 * disables preemption as part of its processing
2522 */
2523 for_each_online_cpu(cpu) {
93481ff0
VB
2524 struct per_cpu_pageset *pcp;
2525 struct zone *z;
74046494 2526 bool has_pcps = false;
93481ff0
VB
2527
2528 if (zone) {
74046494 2529 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2530 if (pcp->pcp.count)
74046494 2531 has_pcps = true;
93481ff0
VB
2532 } else {
2533 for_each_populated_zone(z) {
2534 pcp = per_cpu_ptr(z->pageset, cpu);
2535 if (pcp->pcp.count) {
2536 has_pcps = true;
2537 break;
2538 }
74046494
GBY
2539 }
2540 }
93481ff0 2541
74046494
GBY
2542 if (has_pcps)
2543 cpumask_set_cpu(cpu, &cpus_with_pcps);
2544 else
2545 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2546 }
0ccce3b9 2547
bd233f53
MG
2548 for_each_cpu(cpu, &cpus_with_pcps) {
2549 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2550 INIT_WORK(work, drain_local_pages_wq);
ce612879 2551 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2552 }
bd233f53
MG
2553 for_each_cpu(cpu, &cpus_with_pcps)
2554 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2555
2556 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2557}
2558
296699de 2559#ifdef CONFIG_HIBERNATION
1da177e4 2560
556b969a
CY
2561/*
2562 * Touch the watchdog for every WD_PAGE_COUNT pages.
2563 */
2564#define WD_PAGE_COUNT (128*1024)
2565
1da177e4
LT
2566void mark_free_pages(struct zone *zone)
2567{
556b969a 2568 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2569 unsigned long flags;
7aeb09f9 2570 unsigned int order, t;
86760a2c 2571 struct page *page;
1da177e4 2572
8080fc03 2573 if (zone_is_empty(zone))
1da177e4
LT
2574 return;
2575
2576 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2577
108bcc96 2578 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2579 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2580 if (pfn_valid(pfn)) {
86760a2c 2581 page = pfn_to_page(pfn);
ba6b0979 2582
556b969a
CY
2583 if (!--page_count) {
2584 touch_nmi_watchdog();
2585 page_count = WD_PAGE_COUNT;
2586 }
2587
ba6b0979
JK
2588 if (page_zone(page) != zone)
2589 continue;
2590
7be98234
RW
2591 if (!swsusp_page_is_forbidden(page))
2592 swsusp_unset_page_free(page);
f623f0db 2593 }
1da177e4 2594
b2a0ac88 2595 for_each_migratetype_order(order, t) {
86760a2c
GT
2596 list_for_each_entry(page,
2597 &zone->free_area[order].free_list[t], lru) {
f623f0db 2598 unsigned long i;
1da177e4 2599
86760a2c 2600 pfn = page_to_pfn(page);
556b969a
CY
2601 for (i = 0; i < (1UL << order); i++) {
2602 if (!--page_count) {
2603 touch_nmi_watchdog();
2604 page_count = WD_PAGE_COUNT;
2605 }
7be98234 2606 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2607 }
f623f0db 2608 }
b2a0ac88 2609 }
1da177e4
LT
2610 spin_unlock_irqrestore(&zone->lock, flags);
2611}
e2c55dc8 2612#endif /* CONFIG_PM */
1da177e4 2613
2d4894b5 2614static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2615{
5f8dcc21 2616 int migratetype;
1da177e4 2617
4db7548c 2618 if (!free_pcp_prepare(page))
9cca35d4 2619 return false;
689bcebf 2620
dc4b0caf 2621 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2622 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2623 return true;
2624}
2625
2d4894b5 2626static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2627{
2628 struct zone *zone = page_zone(page);
2629 struct per_cpu_pages *pcp;
2630 int migratetype;
2631
2632 migratetype = get_pcppage_migratetype(page);
d34b0733 2633 __count_vm_event(PGFREE);
da456f14 2634
5f8dcc21
MG
2635 /*
2636 * We only track unmovable, reclaimable and movable on pcp lists.
2637 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2638 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2639 * areas back if necessary. Otherwise, we may have to free
2640 * excessively into the page allocator
2641 */
2642 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2643 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2644 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2645 return;
5f8dcc21
MG
2646 }
2647 migratetype = MIGRATE_MOVABLE;
2648 }
2649
99dcc3e5 2650 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2651 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2652 pcp->count++;
48db57f8 2653 if (pcp->count >= pcp->high) {
4db0c3c2 2654 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2655 free_pcppages_bulk(zone, batch, pcp);
2656 pcp->count -= batch;
48db57f8 2657 }
9cca35d4 2658}
5f8dcc21 2659
9cca35d4
MG
2660/*
2661 * Free a 0-order page
9cca35d4 2662 */
2d4894b5 2663void free_unref_page(struct page *page)
9cca35d4
MG
2664{
2665 unsigned long flags;
2666 unsigned long pfn = page_to_pfn(page);
2667
2d4894b5 2668 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2669 return;
2670
2671 local_irq_save(flags);
2d4894b5 2672 free_unref_page_commit(page, pfn);
d34b0733 2673 local_irq_restore(flags);
1da177e4
LT
2674}
2675
cc59850e
KK
2676/*
2677 * Free a list of 0-order pages
2678 */
2d4894b5 2679void free_unref_page_list(struct list_head *list)
cc59850e
KK
2680{
2681 struct page *page, *next;
9cca35d4
MG
2682 unsigned long flags, pfn;
2683
2684 /* Prepare pages for freeing */
2685 list_for_each_entry_safe(page, next, list, lru) {
2686 pfn = page_to_pfn(page);
2d4894b5 2687 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2688 list_del(&page->lru);
2689 set_page_private(page, pfn);
2690 }
cc59850e 2691
9cca35d4 2692 local_irq_save(flags);
cc59850e 2693 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2694 unsigned long pfn = page_private(page);
2695
2696 set_page_private(page, 0);
2d4894b5
MG
2697 trace_mm_page_free_batched(page);
2698 free_unref_page_commit(page, pfn);
cc59850e 2699 }
9cca35d4 2700 local_irq_restore(flags);
cc59850e
KK
2701}
2702
8dfcc9ba
NP
2703/*
2704 * split_page takes a non-compound higher-order page, and splits it into
2705 * n (1<<order) sub-pages: page[0..n]
2706 * Each sub-page must be freed individually.
2707 *
2708 * Note: this is probably too low level an operation for use in drivers.
2709 * Please consult with lkml before using this in your driver.
2710 */
2711void split_page(struct page *page, unsigned int order)
2712{
2713 int i;
2714
309381fe
SL
2715 VM_BUG_ON_PAGE(PageCompound(page), page);
2716 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2717
a9627bc5 2718 for (i = 1; i < (1 << order); i++)
7835e98b 2719 set_page_refcounted(page + i);
a9627bc5 2720 split_page_owner(page, order);
8dfcc9ba 2721}
5853ff23 2722EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2723
3c605096 2724int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2725{
748446bb
MG
2726 unsigned long watermark;
2727 struct zone *zone;
2139cbe6 2728 int mt;
748446bb
MG
2729
2730 BUG_ON(!PageBuddy(page));
2731
2732 zone = page_zone(page);
2e30abd1 2733 mt = get_pageblock_migratetype(page);
748446bb 2734
194159fb 2735 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2736 /*
2737 * Obey watermarks as if the page was being allocated. We can
2738 * emulate a high-order watermark check with a raised order-0
2739 * watermark, because we already know our high-order page
2740 * exists.
2741 */
2742 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2743 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2744 return 0;
2745
8fb74b9f 2746 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2747 }
748446bb
MG
2748
2749 /* Remove page from free list */
2750 list_del(&page->lru);
2751 zone->free_area[order].nr_free--;
2752 rmv_page_order(page);
2139cbe6 2753
400bc7fd 2754 /*
2755 * Set the pageblock if the isolated page is at least half of a
2756 * pageblock
2757 */
748446bb
MG
2758 if (order >= pageblock_order - 1) {
2759 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2760 for (; page < endpage; page += pageblock_nr_pages) {
2761 int mt = get_pageblock_migratetype(page);
88ed365e 2762 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2763 && !is_migrate_highatomic(mt))
47118af0
MN
2764 set_pageblock_migratetype(page,
2765 MIGRATE_MOVABLE);
2766 }
748446bb
MG
2767 }
2768
f3a14ced 2769
8fb74b9f 2770 return 1UL << order;
1fb3f8ca
MG
2771}
2772
060e7417
MG
2773/*
2774 * Update NUMA hit/miss statistics
2775 *
2776 * Must be called with interrupts disabled.
060e7417 2777 */
41b6167e 2778static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2779{
2780#ifdef CONFIG_NUMA
3a321d2a 2781 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2782
2df26639 2783 if (z->node != numa_node_id())
060e7417 2784 local_stat = NUMA_OTHER;
060e7417 2785
2df26639 2786 if (z->node == preferred_zone->node)
3a321d2a 2787 __inc_numa_state(z, NUMA_HIT);
2df26639 2788 else {
3a321d2a
KW
2789 __inc_numa_state(z, NUMA_MISS);
2790 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2791 }
3a321d2a 2792 __inc_numa_state(z, local_stat);
060e7417
MG
2793#endif
2794}
2795
066b2393
MG
2796/* Remove page from the per-cpu list, caller must protect the list */
2797static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2798 bool cold, struct per_cpu_pages *pcp,
2799 struct list_head *list)
2800{
2801 struct page *page;
2802
2803 do {
2804 if (list_empty(list)) {
2805 pcp->count += rmqueue_bulk(zone, 0,
2806 pcp->batch, list,
2807 migratetype, cold);
2808 if (unlikely(list_empty(list)))
2809 return NULL;
2810 }
2811
2812 if (cold)
2813 page = list_last_entry(list, struct page, lru);
2814 else
2815 page = list_first_entry(list, struct page, lru);
2816
2817 list_del(&page->lru);
2818 pcp->count--;
2819 } while (check_new_pcp(page));
2820
2821 return page;
2822}
2823
2824/* Lock and remove page from the per-cpu list */
2825static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2826 struct zone *zone, unsigned int order,
2827 gfp_t gfp_flags, int migratetype)
2828{
2829 struct per_cpu_pages *pcp;
2830 struct list_head *list;
2831 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2832 struct page *page;
d34b0733 2833 unsigned long flags;
066b2393 2834
d34b0733 2835 local_irq_save(flags);
066b2393
MG
2836 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2837 list = &pcp->lists[migratetype];
2838 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2839 if (page) {
2840 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2841 zone_statistics(preferred_zone, zone);
2842 }
d34b0733 2843 local_irq_restore(flags);
066b2393
MG
2844 return page;
2845}
2846
1da177e4 2847/*
75379191 2848 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2849 */
0a15c3e9 2850static inline
066b2393 2851struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2852 struct zone *zone, unsigned int order,
c603844b
MG
2853 gfp_t gfp_flags, unsigned int alloc_flags,
2854 int migratetype)
1da177e4
LT
2855{
2856 unsigned long flags;
689bcebf 2857 struct page *page;
1da177e4 2858
d34b0733 2859 if (likely(order == 0)) {
066b2393
MG
2860 page = rmqueue_pcplist(preferred_zone, zone, order,
2861 gfp_flags, migratetype);
2862 goto out;
2863 }
83b9355b 2864
066b2393
MG
2865 /*
2866 * We most definitely don't want callers attempting to
2867 * allocate greater than order-1 page units with __GFP_NOFAIL.
2868 */
2869 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2870 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2871
066b2393
MG
2872 do {
2873 page = NULL;
2874 if (alloc_flags & ALLOC_HARDER) {
2875 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2876 if (page)
2877 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2878 }
a74609fa 2879 if (!page)
066b2393
MG
2880 page = __rmqueue(zone, order, migratetype);
2881 } while (page && check_new_pages(page, order));
2882 spin_unlock(&zone->lock);
2883 if (!page)
2884 goto failed;
2885 __mod_zone_freepage_state(zone, -(1 << order),
2886 get_pcppage_migratetype(page));
1da177e4 2887
16709d1d 2888 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2889 zone_statistics(preferred_zone, zone);
a74609fa 2890 local_irq_restore(flags);
1da177e4 2891
066b2393
MG
2892out:
2893 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2894 return page;
a74609fa
NP
2895
2896failed:
2897 local_irq_restore(flags);
a74609fa 2898 return NULL;
1da177e4
LT
2899}
2900
933e312e
AM
2901#ifdef CONFIG_FAIL_PAGE_ALLOC
2902
b2588c4b 2903static struct {
933e312e
AM
2904 struct fault_attr attr;
2905
621a5f7a 2906 bool ignore_gfp_highmem;
71baba4b 2907 bool ignore_gfp_reclaim;
54114994 2908 u32 min_order;
933e312e
AM
2909} fail_page_alloc = {
2910 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2911 .ignore_gfp_reclaim = true,
621a5f7a 2912 .ignore_gfp_highmem = true,
54114994 2913 .min_order = 1,
933e312e
AM
2914};
2915
2916static int __init setup_fail_page_alloc(char *str)
2917{
2918 return setup_fault_attr(&fail_page_alloc.attr, str);
2919}
2920__setup("fail_page_alloc=", setup_fail_page_alloc);
2921
deaf386e 2922static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2923{
54114994 2924 if (order < fail_page_alloc.min_order)
deaf386e 2925 return false;
933e312e 2926 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2927 return false;
933e312e 2928 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2929 return false;
71baba4b
MG
2930 if (fail_page_alloc.ignore_gfp_reclaim &&
2931 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2932 return false;
933e312e
AM
2933
2934 return should_fail(&fail_page_alloc.attr, 1 << order);
2935}
2936
2937#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2938
2939static int __init fail_page_alloc_debugfs(void)
2940{
f4ae40a6 2941 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2942 struct dentry *dir;
933e312e 2943
dd48c085
AM
2944 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2945 &fail_page_alloc.attr);
2946 if (IS_ERR(dir))
2947 return PTR_ERR(dir);
933e312e 2948
b2588c4b 2949 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2950 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2951 goto fail;
2952 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2953 &fail_page_alloc.ignore_gfp_highmem))
2954 goto fail;
2955 if (!debugfs_create_u32("min-order", mode, dir,
2956 &fail_page_alloc.min_order))
2957 goto fail;
2958
2959 return 0;
2960fail:
dd48c085 2961 debugfs_remove_recursive(dir);
933e312e 2962
b2588c4b 2963 return -ENOMEM;
933e312e
AM
2964}
2965
2966late_initcall(fail_page_alloc_debugfs);
2967
2968#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2969
2970#else /* CONFIG_FAIL_PAGE_ALLOC */
2971
deaf386e 2972static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2973{
deaf386e 2974 return false;
933e312e
AM
2975}
2976
2977#endif /* CONFIG_FAIL_PAGE_ALLOC */
2978
1da177e4 2979/*
97a16fc8
MG
2980 * Return true if free base pages are above 'mark'. For high-order checks it
2981 * will return true of the order-0 watermark is reached and there is at least
2982 * one free page of a suitable size. Checking now avoids taking the zone lock
2983 * to check in the allocation paths if no pages are free.
1da177e4 2984 */
86a294a8
MH
2985bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2986 int classzone_idx, unsigned int alloc_flags,
2987 long free_pages)
1da177e4 2988{
d23ad423 2989 long min = mark;
1da177e4 2990 int o;
cd04ae1e 2991 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 2992
0aaa29a5 2993 /* free_pages may go negative - that's OK */
df0a6daa 2994 free_pages -= (1 << order) - 1;
0aaa29a5 2995
7fb1d9fc 2996 if (alloc_flags & ALLOC_HIGH)
1da177e4 2997 min -= min / 2;
0aaa29a5
MG
2998
2999 /*
3000 * If the caller does not have rights to ALLOC_HARDER then subtract
3001 * the high-atomic reserves. This will over-estimate the size of the
3002 * atomic reserve but it avoids a search.
3003 */
cd04ae1e 3004 if (likely(!alloc_harder)) {
0aaa29a5 3005 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3006 } else {
3007 /*
3008 * OOM victims can try even harder than normal ALLOC_HARDER
3009 * users on the grounds that it's definitely going to be in
3010 * the exit path shortly and free memory. Any allocation it
3011 * makes during the free path will be small and short-lived.
3012 */
3013 if (alloc_flags & ALLOC_OOM)
3014 min -= min / 2;
3015 else
3016 min -= min / 4;
3017 }
3018
e2b19197 3019
d95ea5d1
BZ
3020#ifdef CONFIG_CMA
3021 /* If allocation can't use CMA areas don't use free CMA pages */
3022 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3023 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3024#endif
026b0814 3025
97a16fc8
MG
3026 /*
3027 * Check watermarks for an order-0 allocation request. If these
3028 * are not met, then a high-order request also cannot go ahead
3029 * even if a suitable page happened to be free.
3030 */
3031 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3032 return false;
1da177e4 3033
97a16fc8
MG
3034 /* If this is an order-0 request then the watermark is fine */
3035 if (!order)
3036 return true;
3037
3038 /* For a high-order request, check at least one suitable page is free */
3039 for (o = order; o < MAX_ORDER; o++) {
3040 struct free_area *area = &z->free_area[o];
3041 int mt;
3042
3043 if (!area->nr_free)
3044 continue;
3045
3046 if (alloc_harder)
3047 return true;
1da177e4 3048
97a16fc8
MG
3049 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3050 if (!list_empty(&area->free_list[mt]))
3051 return true;
3052 }
3053
3054#ifdef CONFIG_CMA
3055 if ((alloc_flags & ALLOC_CMA) &&
3056 !list_empty(&area->free_list[MIGRATE_CMA])) {
3057 return true;
3058 }
3059#endif
1da177e4 3060 }
97a16fc8 3061 return false;
88f5acf8
MG
3062}
3063
7aeb09f9 3064bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3065 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3066{
3067 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3068 zone_page_state(z, NR_FREE_PAGES));
3069}
3070
48ee5f36
MG
3071static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3072 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3073{
3074 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3075 long cma_pages = 0;
3076
3077#ifdef CONFIG_CMA
3078 /* If allocation can't use CMA areas don't use free CMA pages */
3079 if (!(alloc_flags & ALLOC_CMA))
3080 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3081#endif
3082
3083 /*
3084 * Fast check for order-0 only. If this fails then the reserves
3085 * need to be calculated. There is a corner case where the check
3086 * passes but only the high-order atomic reserve are free. If
3087 * the caller is !atomic then it'll uselessly search the free
3088 * list. That corner case is then slower but it is harmless.
3089 */
3090 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3091 return true;
3092
3093 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3094 free_pages);
3095}
3096
7aeb09f9 3097bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3098 unsigned long mark, int classzone_idx)
88f5acf8
MG
3099{
3100 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3101
3102 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3103 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3104
e2b19197 3105 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3106 free_pages);
1da177e4
LT
3107}
3108
9276b1bc 3109#ifdef CONFIG_NUMA
957f822a
DR
3110static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3111{
e02dc017 3112 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3113 RECLAIM_DISTANCE;
957f822a 3114}
9276b1bc 3115#else /* CONFIG_NUMA */
957f822a
DR
3116static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3117{
3118 return true;
3119}
9276b1bc
PJ
3120#endif /* CONFIG_NUMA */
3121
7fb1d9fc 3122/*
0798e519 3123 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3124 * a page.
3125 */
3126static struct page *
a9263751
VB
3127get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3128 const struct alloc_context *ac)
753ee728 3129{
c33d6c06 3130 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3131 struct zone *zone;
3b8c0be4
MG
3132 struct pglist_data *last_pgdat_dirty_limit = NULL;
3133
7fb1d9fc 3134 /*
9276b1bc 3135 * Scan zonelist, looking for a zone with enough free.
344736f2 3136 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3137 */
c33d6c06 3138 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3139 ac->nodemask) {
be06af00 3140 struct page *page;
e085dbc5
JW
3141 unsigned long mark;
3142
664eedde
MG
3143 if (cpusets_enabled() &&
3144 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3145 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3146 continue;
a756cf59
JW
3147 /*
3148 * When allocating a page cache page for writing, we
281e3726
MG
3149 * want to get it from a node that is within its dirty
3150 * limit, such that no single node holds more than its
a756cf59 3151 * proportional share of globally allowed dirty pages.
281e3726 3152 * The dirty limits take into account the node's
a756cf59
JW
3153 * lowmem reserves and high watermark so that kswapd
3154 * should be able to balance it without having to
3155 * write pages from its LRU list.
3156 *
a756cf59 3157 * XXX: For now, allow allocations to potentially
281e3726 3158 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3159 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3160 * which is important when on a NUMA setup the allowed
281e3726 3161 * nodes are together not big enough to reach the
a756cf59 3162 * global limit. The proper fix for these situations
281e3726 3163 * will require awareness of nodes in the
a756cf59
JW
3164 * dirty-throttling and the flusher threads.
3165 */
3b8c0be4
MG
3166 if (ac->spread_dirty_pages) {
3167 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3168 continue;
3169
3170 if (!node_dirty_ok(zone->zone_pgdat)) {
3171 last_pgdat_dirty_limit = zone->zone_pgdat;
3172 continue;
3173 }
3174 }
7fb1d9fc 3175
e085dbc5 3176 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3177 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3178 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3179 int ret;
3180
5dab2911
MG
3181 /* Checked here to keep the fast path fast */
3182 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3183 if (alloc_flags & ALLOC_NO_WATERMARKS)
3184 goto try_this_zone;
3185
a5f5f91d 3186 if (node_reclaim_mode == 0 ||
c33d6c06 3187 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3188 continue;
3189
a5f5f91d 3190 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3191 switch (ret) {
a5f5f91d 3192 case NODE_RECLAIM_NOSCAN:
fa5e084e 3193 /* did not scan */
cd38b115 3194 continue;
a5f5f91d 3195 case NODE_RECLAIM_FULL:
fa5e084e 3196 /* scanned but unreclaimable */
cd38b115 3197 continue;
fa5e084e
MG
3198 default:
3199 /* did we reclaim enough */
fed2719e 3200 if (zone_watermark_ok(zone, order, mark,
93ea9964 3201 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3202 goto try_this_zone;
3203
fed2719e 3204 continue;
0798e519 3205 }
7fb1d9fc
RS
3206 }
3207
fa5e084e 3208try_this_zone:
066b2393 3209 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3210 gfp_mask, alloc_flags, ac->migratetype);
75379191 3211 if (page) {
479f854a 3212 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3213
3214 /*
3215 * If this is a high-order atomic allocation then check
3216 * if the pageblock should be reserved for the future
3217 */
3218 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3219 reserve_highatomic_pageblock(page, zone, order);
3220
75379191
VB
3221 return page;
3222 }
54a6eb5c 3223 }
9276b1bc 3224
4ffeaf35 3225 return NULL;
753ee728
MH
3226}
3227
29423e77
DR
3228/*
3229 * Large machines with many possible nodes should not always dump per-node
3230 * meminfo in irq context.
3231 */
3232static inline bool should_suppress_show_mem(void)
3233{
3234 bool ret = false;
3235
3236#if NODES_SHIFT > 8
3237 ret = in_interrupt();
3238#endif
3239 return ret;
3240}
3241
9af744d7 3242static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3243{
a238ab5b 3244 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3245 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3246
aa187507 3247 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3248 return;
3249
3250 /*
3251 * This documents exceptions given to allocations in certain
3252 * contexts that are allowed to allocate outside current's set
3253 * of allowed nodes.
3254 */
3255 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3256 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3257 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3258 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3259 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3260 filter &= ~SHOW_MEM_FILTER_NODES;
3261
9af744d7 3262 show_mem(filter, nodemask);
aa187507
MH
3263}
3264
a8e99259 3265void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3266{
3267 struct va_format vaf;
3268 va_list args;
3269 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3270 DEFAULT_RATELIMIT_BURST);
3271
0f7896f1 3272 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3273 return;
3274
7877cdcc 3275 pr_warn("%s: ", current->comm);
3ee9a4f0 3276
7877cdcc
MH
3277 va_start(args, fmt);
3278 vaf.fmt = fmt;
3279 vaf.va = &args;
3280 pr_cont("%pV", &vaf);
3281 va_end(args);
3ee9a4f0 3282
685dbf6f
DR
3283 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3284 if (nodemask)
3285 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3286 else
3287 pr_cont("(null)\n");
3288
a8e99259 3289 cpuset_print_current_mems_allowed();
3ee9a4f0 3290
a238ab5b 3291 dump_stack();
685dbf6f 3292 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3293}
3294
6c18ba7a
MH
3295static inline struct page *
3296__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3297 unsigned int alloc_flags,
3298 const struct alloc_context *ac)
3299{
3300 struct page *page;
3301
3302 page = get_page_from_freelist(gfp_mask, order,
3303 alloc_flags|ALLOC_CPUSET, ac);
3304 /*
3305 * fallback to ignore cpuset restriction if our nodes
3306 * are depleted
3307 */
3308 if (!page)
3309 page = get_page_from_freelist(gfp_mask, order,
3310 alloc_flags, ac);
3311
3312 return page;
3313}
3314
11e33f6a
MG
3315static inline struct page *
3316__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3317 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3318{
6e0fc46d
DR
3319 struct oom_control oc = {
3320 .zonelist = ac->zonelist,
3321 .nodemask = ac->nodemask,
2a966b77 3322 .memcg = NULL,
6e0fc46d
DR
3323 .gfp_mask = gfp_mask,
3324 .order = order,
6e0fc46d 3325 };
11e33f6a
MG
3326 struct page *page;
3327
9879de73
JW
3328 *did_some_progress = 0;
3329
9879de73 3330 /*
dc56401f
JW
3331 * Acquire the oom lock. If that fails, somebody else is
3332 * making progress for us.
9879de73 3333 */
dc56401f 3334 if (!mutex_trylock(&oom_lock)) {
9879de73 3335 *did_some_progress = 1;
11e33f6a 3336 schedule_timeout_uninterruptible(1);
1da177e4
LT
3337 return NULL;
3338 }
6b1de916 3339
11e33f6a
MG
3340 /*
3341 * Go through the zonelist yet one more time, keep very high watermark
3342 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3343 * we're still under heavy pressure. But make sure that this reclaim
3344 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3345 * allocation which will never fail due to oom_lock already held.
11e33f6a 3346 */
e746bf73
TH
3347 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3348 ~__GFP_DIRECT_RECLAIM, order,
3349 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3350 if (page)
11e33f6a
MG
3351 goto out;
3352
06ad276a
MH
3353 /* Coredumps can quickly deplete all memory reserves */
3354 if (current->flags & PF_DUMPCORE)
3355 goto out;
3356 /* The OOM killer will not help higher order allocs */
3357 if (order > PAGE_ALLOC_COSTLY_ORDER)
3358 goto out;
dcda9b04
MH
3359 /*
3360 * We have already exhausted all our reclaim opportunities without any
3361 * success so it is time to admit defeat. We will skip the OOM killer
3362 * because it is very likely that the caller has a more reasonable
3363 * fallback than shooting a random task.
3364 */
3365 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3366 goto out;
06ad276a
MH
3367 /* The OOM killer does not needlessly kill tasks for lowmem */
3368 if (ac->high_zoneidx < ZONE_NORMAL)
3369 goto out;
3370 if (pm_suspended_storage())
3371 goto out;
3372 /*
3373 * XXX: GFP_NOFS allocations should rather fail than rely on
3374 * other request to make a forward progress.
3375 * We are in an unfortunate situation where out_of_memory cannot
3376 * do much for this context but let's try it to at least get
3377 * access to memory reserved if the current task is killed (see
3378 * out_of_memory). Once filesystems are ready to handle allocation
3379 * failures more gracefully we should just bail out here.
3380 */
3381
3382 /* The OOM killer may not free memory on a specific node */
3383 if (gfp_mask & __GFP_THISNODE)
3384 goto out;
3da88fb3 3385
11e33f6a 3386 /* Exhausted what can be done so it's blamo time */
5020e285 3387 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3388 *did_some_progress = 1;
5020e285 3389
6c18ba7a
MH
3390 /*
3391 * Help non-failing allocations by giving them access to memory
3392 * reserves
3393 */
3394 if (gfp_mask & __GFP_NOFAIL)
3395 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3396 ALLOC_NO_WATERMARKS, ac);
5020e285 3397 }
11e33f6a 3398out:
dc56401f 3399 mutex_unlock(&oom_lock);
11e33f6a
MG
3400 return page;
3401}
3402
33c2d214
MH
3403/*
3404 * Maximum number of compaction retries wit a progress before OOM
3405 * killer is consider as the only way to move forward.
3406 */
3407#define MAX_COMPACT_RETRIES 16
3408
56de7263
MG
3409#ifdef CONFIG_COMPACTION
3410/* Try memory compaction for high-order allocations before reclaim */
3411static struct page *
3412__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3413 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3414 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3415{
98dd3b48 3416 struct page *page;
499118e9 3417 unsigned int noreclaim_flag;
53853e2d
VB
3418
3419 if (!order)
66199712 3420 return NULL;
66199712 3421
499118e9 3422 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3423 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3424 prio);
499118e9 3425 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3426
c5d01d0d 3427 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3428 return NULL;
53853e2d 3429
98dd3b48
VB
3430 /*
3431 * At least in one zone compaction wasn't deferred or skipped, so let's
3432 * count a compaction stall
3433 */
3434 count_vm_event(COMPACTSTALL);
8fb74b9f 3435
31a6c190 3436 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3437
98dd3b48
VB
3438 if (page) {
3439 struct zone *zone = page_zone(page);
53853e2d 3440
98dd3b48
VB
3441 zone->compact_blockskip_flush = false;
3442 compaction_defer_reset(zone, order, true);
3443 count_vm_event(COMPACTSUCCESS);
3444 return page;
3445 }
56de7263 3446
98dd3b48
VB
3447 /*
3448 * It's bad if compaction run occurs and fails. The most likely reason
3449 * is that pages exist, but not enough to satisfy watermarks.
3450 */
3451 count_vm_event(COMPACTFAIL);
66199712 3452
98dd3b48 3453 cond_resched();
56de7263
MG
3454
3455 return NULL;
3456}
33c2d214 3457
3250845d
VB
3458static inline bool
3459should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3460 enum compact_result compact_result,
3461 enum compact_priority *compact_priority,
d9436498 3462 int *compaction_retries)
3250845d
VB
3463{
3464 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3465 int min_priority;
65190cff
MH
3466 bool ret = false;
3467 int retries = *compaction_retries;
3468 enum compact_priority priority = *compact_priority;
3250845d
VB
3469
3470 if (!order)
3471 return false;
3472
d9436498
VB
3473 if (compaction_made_progress(compact_result))
3474 (*compaction_retries)++;
3475
3250845d
VB
3476 /*
3477 * compaction considers all the zone as desperately out of memory
3478 * so it doesn't really make much sense to retry except when the
3479 * failure could be caused by insufficient priority
3480 */
d9436498
VB
3481 if (compaction_failed(compact_result))
3482 goto check_priority;
3250845d
VB
3483
3484 /*
3485 * make sure the compaction wasn't deferred or didn't bail out early
3486 * due to locks contention before we declare that we should give up.
3487 * But do not retry if the given zonelist is not suitable for
3488 * compaction.
3489 */
65190cff
MH
3490 if (compaction_withdrawn(compact_result)) {
3491 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3492 goto out;
3493 }
3250845d
VB
3494
3495 /*
dcda9b04 3496 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3497 * costly ones because they are de facto nofail and invoke OOM
3498 * killer to move on while costly can fail and users are ready
3499 * to cope with that. 1/4 retries is rather arbitrary but we
3500 * would need much more detailed feedback from compaction to
3501 * make a better decision.
3502 */
3503 if (order > PAGE_ALLOC_COSTLY_ORDER)
3504 max_retries /= 4;
65190cff
MH
3505 if (*compaction_retries <= max_retries) {
3506 ret = true;
3507 goto out;
3508 }
3250845d 3509
d9436498
VB
3510 /*
3511 * Make sure there are attempts at the highest priority if we exhausted
3512 * all retries or failed at the lower priorities.
3513 */
3514check_priority:
c2033b00
VB
3515 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3516 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3517
c2033b00 3518 if (*compact_priority > min_priority) {
d9436498
VB
3519 (*compact_priority)--;
3520 *compaction_retries = 0;
65190cff 3521 ret = true;
d9436498 3522 }
65190cff
MH
3523out:
3524 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3525 return ret;
3250845d 3526}
56de7263
MG
3527#else
3528static inline struct page *
3529__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3530 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3531 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3532{
33c2d214 3533 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3534 return NULL;
3535}
33c2d214
MH
3536
3537static inline bool
86a294a8
MH
3538should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3539 enum compact_result compact_result,
a5508cd8 3540 enum compact_priority *compact_priority,
d9436498 3541 int *compaction_retries)
33c2d214 3542{
31e49bfd
MH
3543 struct zone *zone;
3544 struct zoneref *z;
3545
3546 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3547 return false;
3548
3549 /*
3550 * There are setups with compaction disabled which would prefer to loop
3551 * inside the allocator rather than hit the oom killer prematurely.
3552 * Let's give them a good hope and keep retrying while the order-0
3553 * watermarks are OK.
3554 */
3555 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3556 ac->nodemask) {
3557 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3558 ac_classzone_idx(ac), alloc_flags))
3559 return true;
3560 }
33c2d214
MH
3561 return false;
3562}
3250845d 3563#endif /* CONFIG_COMPACTION */
56de7263 3564
d92a8cfc
PZ
3565#ifdef CONFIG_LOCKDEP
3566struct lockdep_map __fs_reclaim_map =
3567 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3568
3569static bool __need_fs_reclaim(gfp_t gfp_mask)
3570{
3571 gfp_mask = current_gfp_context(gfp_mask);
3572
3573 /* no reclaim without waiting on it */
3574 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3575 return false;
3576
3577 /* this guy won't enter reclaim */
3578 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3579 return false;
3580
3581 /* We're only interested __GFP_FS allocations for now */
3582 if (!(gfp_mask & __GFP_FS))
3583 return false;
3584
3585 if (gfp_mask & __GFP_NOLOCKDEP)
3586 return false;
3587
3588 return true;
3589}
3590
3591void fs_reclaim_acquire(gfp_t gfp_mask)
3592{
3593 if (__need_fs_reclaim(gfp_mask))
3594 lock_map_acquire(&__fs_reclaim_map);
3595}
3596EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3597
3598void fs_reclaim_release(gfp_t gfp_mask)
3599{
3600 if (__need_fs_reclaim(gfp_mask))
3601 lock_map_release(&__fs_reclaim_map);
3602}
3603EXPORT_SYMBOL_GPL(fs_reclaim_release);
3604#endif
3605
bba90710
MS
3606/* Perform direct synchronous page reclaim */
3607static int
a9263751
VB
3608__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3609 const struct alloc_context *ac)
11e33f6a 3610{
11e33f6a 3611 struct reclaim_state reclaim_state;
bba90710 3612 int progress;
499118e9 3613 unsigned int noreclaim_flag;
11e33f6a
MG
3614
3615 cond_resched();
3616
3617 /* We now go into synchronous reclaim */
3618 cpuset_memory_pressure_bump();
499118e9 3619 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3620 fs_reclaim_acquire(gfp_mask);
11e33f6a 3621 reclaim_state.reclaimed_slab = 0;
c06b1fca 3622 current->reclaim_state = &reclaim_state;
11e33f6a 3623
a9263751
VB
3624 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3625 ac->nodemask);
11e33f6a 3626
c06b1fca 3627 current->reclaim_state = NULL;
d92a8cfc 3628 fs_reclaim_release(gfp_mask);
499118e9 3629 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3630
3631 cond_resched();
3632
bba90710
MS
3633 return progress;
3634}
3635
3636/* The really slow allocator path where we enter direct reclaim */
3637static inline struct page *
3638__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3639 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3640 unsigned long *did_some_progress)
bba90710
MS
3641{
3642 struct page *page = NULL;
3643 bool drained = false;
3644
a9263751 3645 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3646 if (unlikely(!(*did_some_progress)))
3647 return NULL;
11e33f6a 3648
9ee493ce 3649retry:
31a6c190 3650 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3651
3652 /*
3653 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3654 * pages are pinned on the per-cpu lists or in high alloc reserves.
3655 * Shrink them them and try again
9ee493ce
MG
3656 */
3657 if (!page && !drained) {
29fac03b 3658 unreserve_highatomic_pageblock(ac, false);
93481ff0 3659 drain_all_pages(NULL);
9ee493ce
MG
3660 drained = true;
3661 goto retry;
3662 }
3663
11e33f6a
MG
3664 return page;
3665}
3666
a9263751 3667static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3668{
3669 struct zoneref *z;
3670 struct zone *zone;
e1a55637 3671 pg_data_t *last_pgdat = NULL;
3a025760 3672
a9263751 3673 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3674 ac->high_zoneidx, ac->nodemask) {
3675 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3676 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3677 last_pgdat = zone->zone_pgdat;
3678 }
3a025760
JW
3679}
3680
c603844b 3681static inline unsigned int
341ce06f
PZ
3682gfp_to_alloc_flags(gfp_t gfp_mask)
3683{
c603844b 3684 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3685
a56f57ff 3686 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3687 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3688
341ce06f
PZ
3689 /*
3690 * The caller may dip into page reserves a bit more if the caller
3691 * cannot run direct reclaim, or if the caller has realtime scheduling
3692 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3693 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3694 */
e6223a3b 3695 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3696
d0164adc 3697 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3698 /*
b104a35d
DR
3699 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3700 * if it can't schedule.
5c3240d9 3701 */
b104a35d 3702 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3703 alloc_flags |= ALLOC_HARDER;
523b9458 3704 /*
b104a35d 3705 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3706 * comment for __cpuset_node_allowed().
523b9458 3707 */
341ce06f 3708 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3709 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3710 alloc_flags |= ALLOC_HARDER;
3711
d95ea5d1 3712#ifdef CONFIG_CMA
43e7a34d 3713 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3714 alloc_flags |= ALLOC_CMA;
3715#endif
341ce06f
PZ
3716 return alloc_flags;
3717}
3718
cd04ae1e 3719static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3720{
cd04ae1e
MH
3721 if (!tsk_is_oom_victim(tsk))
3722 return false;
3723
3724 /*
3725 * !MMU doesn't have oom reaper so give access to memory reserves
3726 * only to the thread with TIF_MEMDIE set
3727 */
3728 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3729 return false;
3730
cd04ae1e
MH
3731 return true;
3732}
3733
3734/*
3735 * Distinguish requests which really need access to full memory
3736 * reserves from oom victims which can live with a portion of it
3737 */
3738static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3739{
3740 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3741 return 0;
31a6c190 3742 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3743 return ALLOC_NO_WATERMARKS;
31a6c190 3744 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3745 return ALLOC_NO_WATERMARKS;
3746 if (!in_interrupt()) {
3747 if (current->flags & PF_MEMALLOC)
3748 return ALLOC_NO_WATERMARKS;
3749 else if (oom_reserves_allowed(current))
3750 return ALLOC_OOM;
3751 }
31a6c190 3752
cd04ae1e
MH
3753 return 0;
3754}
3755
3756bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3757{
3758 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3759}
3760
0a0337e0
MH
3761/*
3762 * Checks whether it makes sense to retry the reclaim to make a forward progress
3763 * for the given allocation request.
491d79ae
JW
3764 *
3765 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3766 * without success, or when we couldn't even meet the watermark if we
3767 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3768 *
3769 * Returns true if a retry is viable or false to enter the oom path.
3770 */
3771static inline bool
3772should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3773 struct alloc_context *ac, int alloc_flags,
423b452e 3774 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3775{
3776 struct zone *zone;
3777 struct zoneref *z;
3778
423b452e
VB
3779 /*
3780 * Costly allocations might have made a progress but this doesn't mean
3781 * their order will become available due to high fragmentation so
3782 * always increment the no progress counter for them
3783 */
3784 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3785 *no_progress_loops = 0;
3786 else
3787 (*no_progress_loops)++;
3788
0a0337e0
MH
3789 /*
3790 * Make sure we converge to OOM if we cannot make any progress
3791 * several times in the row.
3792 */
04c8716f
MK
3793 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3794 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3795 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3796 }
0a0337e0 3797
bca67592
MG
3798 /*
3799 * Keep reclaiming pages while there is a chance this will lead
3800 * somewhere. If none of the target zones can satisfy our allocation
3801 * request even if all reclaimable pages are considered then we are
3802 * screwed and have to go OOM.
0a0337e0
MH
3803 */
3804 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3805 ac->nodemask) {
3806 unsigned long available;
ede37713 3807 unsigned long reclaimable;
d379f01d
MH
3808 unsigned long min_wmark = min_wmark_pages(zone);
3809 bool wmark;
0a0337e0 3810
5a1c84b4 3811 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3812 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3813
3814 /*
491d79ae
JW
3815 * Would the allocation succeed if we reclaimed all
3816 * reclaimable pages?
0a0337e0 3817 */
d379f01d
MH
3818 wmark = __zone_watermark_ok(zone, order, min_wmark,
3819 ac_classzone_idx(ac), alloc_flags, available);
3820 trace_reclaim_retry_zone(z, order, reclaimable,
3821 available, min_wmark, *no_progress_loops, wmark);
3822 if (wmark) {
ede37713
MH
3823 /*
3824 * If we didn't make any progress and have a lot of
3825 * dirty + writeback pages then we should wait for
3826 * an IO to complete to slow down the reclaim and
3827 * prevent from pre mature OOM
3828 */
3829 if (!did_some_progress) {
11fb9989 3830 unsigned long write_pending;
ede37713 3831
5a1c84b4
MG
3832 write_pending = zone_page_state_snapshot(zone,
3833 NR_ZONE_WRITE_PENDING);
ede37713 3834
11fb9989 3835 if (2 * write_pending > reclaimable) {
ede37713
MH
3836 congestion_wait(BLK_RW_ASYNC, HZ/10);
3837 return true;
3838 }
3839 }
5a1c84b4 3840
ede37713
MH
3841 /*
3842 * Memory allocation/reclaim might be called from a WQ
3843 * context and the current implementation of the WQ
3844 * concurrency control doesn't recognize that
3845 * a particular WQ is congested if the worker thread is
3846 * looping without ever sleeping. Therefore we have to
3847 * do a short sleep here rather than calling
3848 * cond_resched().
3849 */
3850 if (current->flags & PF_WQ_WORKER)
3851 schedule_timeout_uninterruptible(1);
3852 else
3853 cond_resched();
3854
0a0337e0
MH
3855 return true;
3856 }
3857 }
3858
3859 return false;
3860}
3861
902b6281
VB
3862static inline bool
3863check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3864{
3865 /*
3866 * It's possible that cpuset's mems_allowed and the nodemask from
3867 * mempolicy don't intersect. This should be normally dealt with by
3868 * policy_nodemask(), but it's possible to race with cpuset update in
3869 * such a way the check therein was true, and then it became false
3870 * before we got our cpuset_mems_cookie here.
3871 * This assumes that for all allocations, ac->nodemask can come only
3872 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3873 * when it does not intersect with the cpuset restrictions) or the
3874 * caller can deal with a violated nodemask.
3875 */
3876 if (cpusets_enabled() && ac->nodemask &&
3877 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3878 ac->nodemask = NULL;
3879 return true;
3880 }
3881
3882 /*
3883 * When updating a task's mems_allowed or mempolicy nodemask, it is
3884 * possible to race with parallel threads in such a way that our
3885 * allocation can fail while the mask is being updated. If we are about
3886 * to fail, check if the cpuset changed during allocation and if so,
3887 * retry.
3888 */
3889 if (read_mems_allowed_retry(cpuset_mems_cookie))
3890 return true;
3891
3892 return false;
3893}
3894
11e33f6a
MG
3895static inline struct page *
3896__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3897 struct alloc_context *ac)
11e33f6a 3898{
d0164adc 3899 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3900 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3901 struct page *page = NULL;
c603844b 3902 unsigned int alloc_flags;
11e33f6a 3903 unsigned long did_some_progress;
5ce9bfef 3904 enum compact_priority compact_priority;
c5d01d0d 3905 enum compact_result compact_result;
5ce9bfef
VB
3906 int compaction_retries;
3907 int no_progress_loops;
63f53dea
MH
3908 unsigned long alloc_start = jiffies;
3909 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3910 unsigned int cpuset_mems_cookie;
cd04ae1e 3911 int reserve_flags;
1da177e4 3912
72807a74
MG
3913 /*
3914 * In the slowpath, we sanity check order to avoid ever trying to
3915 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3916 * be using allocators in order of preference for an area that is
3917 * too large.
3918 */
1fc28b70
MG
3919 if (order >= MAX_ORDER) {
3920 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3921 return NULL;
1fc28b70 3922 }
1da177e4 3923
d0164adc
MG
3924 /*
3925 * We also sanity check to catch abuse of atomic reserves being used by
3926 * callers that are not in atomic context.
3927 */
3928 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3929 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3930 gfp_mask &= ~__GFP_ATOMIC;
3931
5ce9bfef
VB
3932retry_cpuset:
3933 compaction_retries = 0;
3934 no_progress_loops = 0;
3935 compact_priority = DEF_COMPACT_PRIORITY;
3936 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3937
3938 /*
3939 * The fast path uses conservative alloc_flags to succeed only until
3940 * kswapd needs to be woken up, and to avoid the cost of setting up
3941 * alloc_flags precisely. So we do that now.
3942 */
3943 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3944
e47483bc
VB
3945 /*
3946 * We need to recalculate the starting point for the zonelist iterator
3947 * because we might have used different nodemask in the fast path, or
3948 * there was a cpuset modification and we are retrying - otherwise we
3949 * could end up iterating over non-eligible zones endlessly.
3950 */
3951 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3952 ac->high_zoneidx, ac->nodemask);
3953 if (!ac->preferred_zoneref->zone)
3954 goto nopage;
3955
23771235
VB
3956 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3957 wake_all_kswapds(order, ac);
3958
3959 /*
3960 * The adjusted alloc_flags might result in immediate success, so try
3961 * that first
3962 */
3963 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3964 if (page)
3965 goto got_pg;
3966
a8161d1e
VB
3967 /*
3968 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3969 * that we have enough base pages and don't need to reclaim. For non-
3970 * movable high-order allocations, do that as well, as compaction will
3971 * try prevent permanent fragmentation by migrating from blocks of the
3972 * same migratetype.
3973 * Don't try this for allocations that are allowed to ignore
3974 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3975 */
282722b0
VB
3976 if (can_direct_reclaim &&
3977 (costly_order ||
3978 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3979 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3980 page = __alloc_pages_direct_compact(gfp_mask, order,
3981 alloc_flags, ac,
a5508cd8 3982 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3983 &compact_result);
3984 if (page)
3985 goto got_pg;
3986
3eb2771b
VB
3987 /*
3988 * Checks for costly allocations with __GFP_NORETRY, which
3989 * includes THP page fault allocations
3990 */
282722b0 3991 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3992 /*
3993 * If compaction is deferred for high-order allocations,
3994 * it is because sync compaction recently failed. If
3995 * this is the case and the caller requested a THP
3996 * allocation, we do not want to heavily disrupt the
3997 * system, so we fail the allocation instead of entering
3998 * direct reclaim.
3999 */
4000 if (compact_result == COMPACT_DEFERRED)
4001 goto nopage;
4002
a8161d1e 4003 /*
3eb2771b
VB
4004 * Looks like reclaim/compaction is worth trying, but
4005 * sync compaction could be very expensive, so keep
25160354 4006 * using async compaction.
a8161d1e 4007 */
a5508cd8 4008 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4009 }
4010 }
23771235 4011
31a6c190 4012retry:
23771235 4013 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4014 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4015 wake_all_kswapds(order, ac);
4016
cd04ae1e
MH
4017 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4018 if (reserve_flags)
4019 alloc_flags = reserve_flags;
23771235 4020
e46e7b77
MG
4021 /*
4022 * Reset the zonelist iterators if memory policies can be ignored.
4023 * These allocations are high priority and system rather than user
4024 * orientated.
4025 */
cd04ae1e 4026 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4027 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4028 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4029 ac->high_zoneidx, ac->nodemask);
4030 }
4031
23771235 4032 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4033 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4034 if (page)
4035 goto got_pg;
1da177e4 4036
d0164adc 4037 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4038 if (!can_direct_reclaim)
1da177e4
LT
4039 goto nopage;
4040
9a67f648
MH
4041 /* Make sure we know about allocations which stall for too long */
4042 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 4043 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
4044 "page allocation stalls for %ums, order:%u",
4045 jiffies_to_msecs(jiffies-alloc_start), order);
4046 stall_timeout += 10 * HZ;
33d53103 4047 }
341ce06f 4048
9a67f648
MH
4049 /* Avoid recursion of direct reclaim */
4050 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4051 goto nopage;
4052
a8161d1e
VB
4053 /* Try direct reclaim and then allocating */
4054 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4055 &did_some_progress);
4056 if (page)
4057 goto got_pg;
4058
4059 /* Try direct compaction and then allocating */
a9263751 4060 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4061 compact_priority, &compact_result);
56de7263
MG
4062 if (page)
4063 goto got_pg;
75f30861 4064
9083905a
JW
4065 /* Do not loop if specifically requested */
4066 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4067 goto nopage;
9083905a 4068
0a0337e0
MH
4069 /*
4070 * Do not retry costly high order allocations unless they are
dcda9b04 4071 * __GFP_RETRY_MAYFAIL
0a0337e0 4072 */
dcda9b04 4073 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4074 goto nopage;
0a0337e0 4075
0a0337e0 4076 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4077 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4078 goto retry;
4079
33c2d214
MH
4080 /*
4081 * It doesn't make any sense to retry for the compaction if the order-0
4082 * reclaim is not able to make any progress because the current
4083 * implementation of the compaction depends on the sufficient amount
4084 * of free memory (see __compaction_suitable)
4085 */
4086 if (did_some_progress > 0 &&
86a294a8 4087 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4088 compact_result, &compact_priority,
d9436498 4089 &compaction_retries))
33c2d214
MH
4090 goto retry;
4091
902b6281
VB
4092
4093 /* Deal with possible cpuset update races before we start OOM killing */
4094 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4095 goto retry_cpuset;
4096
9083905a
JW
4097 /* Reclaim has failed us, start killing things */
4098 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4099 if (page)
4100 goto got_pg;
4101
9a67f648 4102 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4103 if (tsk_is_oom_victim(current) &&
4104 (alloc_flags == ALLOC_OOM ||
c288983d 4105 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4106 goto nopage;
4107
9083905a 4108 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4109 if (did_some_progress) {
4110 no_progress_loops = 0;
9083905a 4111 goto retry;
0a0337e0 4112 }
9083905a 4113
1da177e4 4114nopage:
902b6281
VB
4115 /* Deal with possible cpuset update races before we fail */
4116 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4117 goto retry_cpuset;
4118
9a67f648
MH
4119 /*
4120 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4121 * we always retry
4122 */
4123 if (gfp_mask & __GFP_NOFAIL) {
4124 /*
4125 * All existing users of the __GFP_NOFAIL are blockable, so warn
4126 * of any new users that actually require GFP_NOWAIT
4127 */
4128 if (WARN_ON_ONCE(!can_direct_reclaim))
4129 goto fail;
4130
4131 /*
4132 * PF_MEMALLOC request from this context is rather bizarre
4133 * because we cannot reclaim anything and only can loop waiting
4134 * for somebody to do a work for us
4135 */
4136 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4137
4138 /*
4139 * non failing costly orders are a hard requirement which we
4140 * are not prepared for much so let's warn about these users
4141 * so that we can identify them and convert them to something
4142 * else.
4143 */
4144 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4145
6c18ba7a
MH
4146 /*
4147 * Help non-failing allocations by giving them access to memory
4148 * reserves but do not use ALLOC_NO_WATERMARKS because this
4149 * could deplete whole memory reserves which would just make
4150 * the situation worse
4151 */
4152 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4153 if (page)
4154 goto got_pg;
4155
9a67f648
MH
4156 cond_resched();
4157 goto retry;
4158 }
4159fail:
a8e99259 4160 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4161 "page allocation failure: order:%u", order);
1da177e4 4162got_pg:
072bb0aa 4163 return page;
1da177e4 4164}
11e33f6a 4165
9cd75558 4166static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4167 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4168 struct alloc_context *ac, gfp_t *alloc_mask,
4169 unsigned int *alloc_flags)
11e33f6a 4170{
9cd75558 4171 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4172 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4173 ac->nodemask = nodemask;
4174 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4175
682a3385 4176 if (cpusets_enabled()) {
9cd75558 4177 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4178 if (!ac->nodemask)
4179 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4180 else
4181 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4182 }
4183
d92a8cfc
PZ
4184 fs_reclaim_acquire(gfp_mask);
4185 fs_reclaim_release(gfp_mask);
11e33f6a 4186
d0164adc 4187 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4188
4189 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4190 return false;
11e33f6a 4191
9cd75558
MG
4192 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4193 *alloc_flags |= ALLOC_CMA;
4194
4195 return true;
4196}
21bb9bd1 4197
9cd75558
MG
4198/* Determine whether to spread dirty pages and what the first usable zone */
4199static inline void finalise_ac(gfp_t gfp_mask,
4200 unsigned int order, struct alloc_context *ac)
4201{
c9ab0c4f 4202 /* Dirty zone balancing only done in the fast path */
9cd75558 4203 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4204
e46e7b77
MG
4205 /*
4206 * The preferred zone is used for statistics but crucially it is
4207 * also used as the starting point for the zonelist iterator. It
4208 * may get reset for allocations that ignore memory policies.
4209 */
9cd75558
MG
4210 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4211 ac->high_zoneidx, ac->nodemask);
4212}
4213
4214/*
4215 * This is the 'heart' of the zoned buddy allocator.
4216 */
4217struct page *
04ec6264
VB
4218__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4219 nodemask_t *nodemask)
9cd75558
MG
4220{
4221 struct page *page;
4222 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4223 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4224 struct alloc_context ac = { };
4225
4226 gfp_mask &= gfp_allowed_mask;
f19360f0 4227 alloc_mask = gfp_mask;
04ec6264 4228 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4229 return NULL;
4230
4231 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4232
5117f45d 4233 /* First allocation attempt */
a9263751 4234 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4235 if (likely(page))
4236 goto out;
11e33f6a 4237
4fcb0971 4238 /*
7dea19f9
MH
4239 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4240 * resp. GFP_NOIO which has to be inherited for all allocation requests
4241 * from a particular context which has been marked by
4242 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4243 */
7dea19f9 4244 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4245 ac.spread_dirty_pages = false;
23f086f9 4246
4741526b
MG
4247 /*
4248 * Restore the original nodemask if it was potentially replaced with
4249 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4250 */
e47483bc 4251 if (unlikely(ac.nodemask != nodemask))
4741526b 4252 ac.nodemask = nodemask;
16096c25 4253
4fcb0971 4254 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4255
4fcb0971 4256out:
c4159a75
VD
4257 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4258 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4259 __free_pages(page, order);
4260 page = NULL;
4949148a
VD
4261 }
4262
4fcb0971
MG
4263 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4264
11e33f6a 4265 return page;
1da177e4 4266}
d239171e 4267EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4268
4269/*
4270 * Common helper functions.
4271 */
920c7a5d 4272unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4273{
945a1113
AM
4274 struct page *page;
4275
4276 /*
4277 * __get_free_pages() returns a 32-bit address, which cannot represent
4278 * a highmem page
4279 */
4280 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4281
1da177e4
LT
4282 page = alloc_pages(gfp_mask, order);
4283 if (!page)
4284 return 0;
4285 return (unsigned long) page_address(page);
4286}
1da177e4
LT
4287EXPORT_SYMBOL(__get_free_pages);
4288
920c7a5d 4289unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4290{
945a1113 4291 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4292}
1da177e4
LT
4293EXPORT_SYMBOL(get_zeroed_page);
4294
920c7a5d 4295void __free_pages(struct page *page, unsigned int order)
1da177e4 4296{
b5810039 4297 if (put_page_testzero(page)) {
1da177e4 4298 if (order == 0)
2d4894b5 4299 free_unref_page(page);
1da177e4
LT
4300 else
4301 __free_pages_ok(page, order);
4302 }
4303}
4304
4305EXPORT_SYMBOL(__free_pages);
4306
920c7a5d 4307void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4308{
4309 if (addr != 0) {
725d704e 4310 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4311 __free_pages(virt_to_page((void *)addr), order);
4312 }
4313}
4314
4315EXPORT_SYMBOL(free_pages);
4316
b63ae8ca
AD
4317/*
4318 * Page Fragment:
4319 * An arbitrary-length arbitrary-offset area of memory which resides
4320 * within a 0 or higher order page. Multiple fragments within that page
4321 * are individually refcounted, in the page's reference counter.
4322 *
4323 * The page_frag functions below provide a simple allocation framework for
4324 * page fragments. This is used by the network stack and network device
4325 * drivers to provide a backing region of memory for use as either an
4326 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4327 */
2976db80
AD
4328static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4329 gfp_t gfp_mask)
b63ae8ca
AD
4330{
4331 struct page *page = NULL;
4332 gfp_t gfp = gfp_mask;
4333
4334#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4335 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4336 __GFP_NOMEMALLOC;
4337 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4338 PAGE_FRAG_CACHE_MAX_ORDER);
4339 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4340#endif
4341 if (unlikely(!page))
4342 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4343
4344 nc->va = page ? page_address(page) : NULL;
4345
4346 return page;
4347}
4348
2976db80 4349void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4350{
4351 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4352
4353 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4354 unsigned int order = compound_order(page);
4355
44fdffd7 4356 if (order == 0)
2d4894b5 4357 free_unref_page(page);
44fdffd7
AD
4358 else
4359 __free_pages_ok(page, order);
4360 }
4361}
2976db80 4362EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4363
8c2dd3e4
AD
4364void *page_frag_alloc(struct page_frag_cache *nc,
4365 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4366{
4367 unsigned int size = PAGE_SIZE;
4368 struct page *page;
4369 int offset;
4370
4371 if (unlikely(!nc->va)) {
4372refill:
2976db80 4373 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4374 if (!page)
4375 return NULL;
4376
4377#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4378 /* if size can vary use size else just use PAGE_SIZE */
4379 size = nc->size;
4380#endif
4381 /* Even if we own the page, we do not use atomic_set().
4382 * This would break get_page_unless_zero() users.
4383 */
fe896d18 4384 page_ref_add(page, size - 1);
b63ae8ca
AD
4385
4386 /* reset page count bias and offset to start of new frag */
2f064f34 4387 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4388 nc->pagecnt_bias = size;
4389 nc->offset = size;
4390 }
4391
4392 offset = nc->offset - fragsz;
4393 if (unlikely(offset < 0)) {
4394 page = virt_to_page(nc->va);
4395
fe896d18 4396 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4397 goto refill;
4398
4399#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4400 /* if size can vary use size else just use PAGE_SIZE */
4401 size = nc->size;
4402#endif
4403 /* OK, page count is 0, we can safely set it */
fe896d18 4404 set_page_count(page, size);
b63ae8ca
AD
4405
4406 /* reset page count bias and offset to start of new frag */
4407 nc->pagecnt_bias = size;
4408 offset = size - fragsz;
4409 }
4410
4411 nc->pagecnt_bias--;
4412 nc->offset = offset;
4413
4414 return nc->va + offset;
4415}
8c2dd3e4 4416EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4417
4418/*
4419 * Frees a page fragment allocated out of either a compound or order 0 page.
4420 */
8c2dd3e4 4421void page_frag_free(void *addr)
b63ae8ca
AD
4422{
4423 struct page *page = virt_to_head_page(addr);
4424
4425 if (unlikely(put_page_testzero(page)))
4426 __free_pages_ok(page, compound_order(page));
4427}
8c2dd3e4 4428EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4429
d00181b9
KS
4430static void *make_alloc_exact(unsigned long addr, unsigned int order,
4431 size_t size)
ee85c2e1
AK
4432{
4433 if (addr) {
4434 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4435 unsigned long used = addr + PAGE_ALIGN(size);
4436
4437 split_page(virt_to_page((void *)addr), order);
4438 while (used < alloc_end) {
4439 free_page(used);
4440 used += PAGE_SIZE;
4441 }
4442 }
4443 return (void *)addr;
4444}
4445
2be0ffe2
TT
4446/**
4447 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4448 * @size: the number of bytes to allocate
4449 * @gfp_mask: GFP flags for the allocation
4450 *
4451 * This function is similar to alloc_pages(), except that it allocates the
4452 * minimum number of pages to satisfy the request. alloc_pages() can only
4453 * allocate memory in power-of-two pages.
4454 *
4455 * This function is also limited by MAX_ORDER.
4456 *
4457 * Memory allocated by this function must be released by free_pages_exact().
4458 */
4459void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4460{
4461 unsigned int order = get_order(size);
4462 unsigned long addr;
4463
4464 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4465 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4466}
4467EXPORT_SYMBOL(alloc_pages_exact);
4468
ee85c2e1
AK
4469/**
4470 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4471 * pages on a node.
b5e6ab58 4472 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4473 * @size: the number of bytes to allocate
4474 * @gfp_mask: GFP flags for the allocation
4475 *
4476 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4477 * back.
ee85c2e1 4478 */
e1931811 4479void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4480{
d00181b9 4481 unsigned int order = get_order(size);
ee85c2e1
AK
4482 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4483 if (!p)
4484 return NULL;
4485 return make_alloc_exact((unsigned long)page_address(p), order, size);
4486}
ee85c2e1 4487
2be0ffe2
TT
4488/**
4489 * free_pages_exact - release memory allocated via alloc_pages_exact()
4490 * @virt: the value returned by alloc_pages_exact.
4491 * @size: size of allocation, same value as passed to alloc_pages_exact().
4492 *
4493 * Release the memory allocated by a previous call to alloc_pages_exact.
4494 */
4495void free_pages_exact(void *virt, size_t size)
4496{
4497 unsigned long addr = (unsigned long)virt;
4498 unsigned long end = addr + PAGE_ALIGN(size);
4499
4500 while (addr < end) {
4501 free_page(addr);
4502 addr += PAGE_SIZE;
4503 }
4504}
4505EXPORT_SYMBOL(free_pages_exact);
4506
e0fb5815
ZY
4507/**
4508 * nr_free_zone_pages - count number of pages beyond high watermark
4509 * @offset: The zone index of the highest zone
4510 *
4511 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4512 * high watermark within all zones at or below a given zone index. For each
4513 * zone, the number of pages is calculated as:
0e056eb5
MCC
4514 *
4515 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4516 */
ebec3862 4517static unsigned long nr_free_zone_pages(int offset)
1da177e4 4518{
dd1a239f 4519 struct zoneref *z;
54a6eb5c
MG
4520 struct zone *zone;
4521
e310fd43 4522 /* Just pick one node, since fallback list is circular */
ebec3862 4523 unsigned long sum = 0;
1da177e4 4524
0e88460d 4525 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4526
54a6eb5c 4527 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4528 unsigned long size = zone->managed_pages;
41858966 4529 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4530 if (size > high)
4531 sum += size - high;
1da177e4
LT
4532 }
4533
4534 return sum;
4535}
4536
e0fb5815
ZY
4537/**
4538 * nr_free_buffer_pages - count number of pages beyond high watermark
4539 *
4540 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4541 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4542 */
ebec3862 4543unsigned long nr_free_buffer_pages(void)
1da177e4 4544{
af4ca457 4545 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4546}
c2f1a551 4547EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4548
e0fb5815
ZY
4549/**
4550 * nr_free_pagecache_pages - count number of pages beyond high watermark
4551 *
4552 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4553 * high watermark within all zones.
1da177e4 4554 */
ebec3862 4555unsigned long nr_free_pagecache_pages(void)
1da177e4 4556{
2a1e274a 4557 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4558}
08e0f6a9
CL
4559
4560static inline void show_node(struct zone *zone)
1da177e4 4561{
e5adfffc 4562 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4563 printk("Node %d ", zone_to_nid(zone));
1da177e4 4564}
1da177e4 4565
d02bd27b
IR
4566long si_mem_available(void)
4567{
4568 long available;
4569 unsigned long pagecache;
4570 unsigned long wmark_low = 0;
4571 unsigned long pages[NR_LRU_LISTS];
4572 struct zone *zone;
4573 int lru;
4574
4575 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4576 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4577
4578 for_each_zone(zone)
4579 wmark_low += zone->watermark[WMARK_LOW];
4580
4581 /*
4582 * Estimate the amount of memory available for userspace allocations,
4583 * without causing swapping.
4584 */
c41f012a 4585 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4586
4587 /*
4588 * Not all the page cache can be freed, otherwise the system will
4589 * start swapping. Assume at least half of the page cache, or the
4590 * low watermark worth of cache, needs to stay.
4591 */
4592 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4593 pagecache -= min(pagecache / 2, wmark_low);
4594 available += pagecache;
4595
4596 /*
4597 * Part of the reclaimable slab consists of items that are in use,
4598 * and cannot be freed. Cap this estimate at the low watermark.
4599 */
d507e2eb
JW
4600 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4601 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4602 wmark_low);
d02bd27b
IR
4603
4604 if (available < 0)
4605 available = 0;
4606 return available;
4607}
4608EXPORT_SYMBOL_GPL(si_mem_available);
4609
1da177e4
LT
4610void si_meminfo(struct sysinfo *val)
4611{
4612 val->totalram = totalram_pages;
11fb9989 4613 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4614 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4615 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4616 val->totalhigh = totalhigh_pages;
4617 val->freehigh = nr_free_highpages();
1da177e4
LT
4618 val->mem_unit = PAGE_SIZE;
4619}
4620
4621EXPORT_SYMBOL(si_meminfo);
4622
4623#ifdef CONFIG_NUMA
4624void si_meminfo_node(struct sysinfo *val, int nid)
4625{
cdd91a77
JL
4626 int zone_type; /* needs to be signed */
4627 unsigned long managed_pages = 0;
fc2bd799
JK
4628 unsigned long managed_highpages = 0;
4629 unsigned long free_highpages = 0;
1da177e4
LT
4630 pg_data_t *pgdat = NODE_DATA(nid);
4631
cdd91a77
JL
4632 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4633 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4634 val->totalram = managed_pages;
11fb9989 4635 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4636 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4637#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4638 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4639 struct zone *zone = &pgdat->node_zones[zone_type];
4640
4641 if (is_highmem(zone)) {
4642 managed_highpages += zone->managed_pages;
4643 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4644 }
4645 }
4646 val->totalhigh = managed_highpages;
4647 val->freehigh = free_highpages;
98d2b0eb 4648#else
fc2bd799
JK
4649 val->totalhigh = managed_highpages;
4650 val->freehigh = free_highpages;
98d2b0eb 4651#endif
1da177e4
LT
4652 val->mem_unit = PAGE_SIZE;
4653}
4654#endif
4655
ddd588b5 4656/*
7bf02ea2
DR
4657 * Determine whether the node should be displayed or not, depending on whether
4658 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4659 */
9af744d7 4660static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4661{
ddd588b5 4662 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4663 return false;
ddd588b5 4664
9af744d7
MH
4665 /*
4666 * no node mask - aka implicit memory numa policy. Do not bother with
4667 * the synchronization - read_mems_allowed_begin - because we do not
4668 * have to be precise here.
4669 */
4670 if (!nodemask)
4671 nodemask = &cpuset_current_mems_allowed;
4672
4673 return !node_isset(nid, *nodemask);
ddd588b5
DR
4674}
4675
1da177e4
LT
4676#define K(x) ((x) << (PAGE_SHIFT-10))
4677
377e4f16
RV
4678static void show_migration_types(unsigned char type)
4679{
4680 static const char types[MIGRATE_TYPES] = {
4681 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4682 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4683 [MIGRATE_RECLAIMABLE] = 'E',
4684 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4685#ifdef CONFIG_CMA
4686 [MIGRATE_CMA] = 'C',
4687#endif
194159fb 4688#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4689 [MIGRATE_ISOLATE] = 'I',
194159fb 4690#endif
377e4f16
RV
4691 };
4692 char tmp[MIGRATE_TYPES + 1];
4693 char *p = tmp;
4694 int i;
4695
4696 for (i = 0; i < MIGRATE_TYPES; i++) {
4697 if (type & (1 << i))
4698 *p++ = types[i];
4699 }
4700
4701 *p = '\0';
1f84a18f 4702 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4703}
4704
1da177e4
LT
4705/*
4706 * Show free area list (used inside shift_scroll-lock stuff)
4707 * We also calculate the percentage fragmentation. We do this by counting the
4708 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4709 *
4710 * Bits in @filter:
4711 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4712 * cpuset.
1da177e4 4713 */
9af744d7 4714void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4715{
d1bfcdb8 4716 unsigned long free_pcp = 0;
c7241913 4717 int cpu;
1da177e4 4718 struct zone *zone;
599d0c95 4719 pg_data_t *pgdat;
1da177e4 4720
ee99c71c 4721 for_each_populated_zone(zone) {
9af744d7 4722 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4723 continue;
d1bfcdb8 4724
761b0677
KK
4725 for_each_online_cpu(cpu)
4726 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4727 }
4728
a731286d
KM
4729 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4730 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4731 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4732 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4733 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4734 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4735 global_node_page_state(NR_ACTIVE_ANON),
4736 global_node_page_state(NR_INACTIVE_ANON),
4737 global_node_page_state(NR_ISOLATED_ANON),
4738 global_node_page_state(NR_ACTIVE_FILE),
4739 global_node_page_state(NR_INACTIVE_FILE),
4740 global_node_page_state(NR_ISOLATED_FILE),
4741 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4742 global_node_page_state(NR_FILE_DIRTY),
4743 global_node_page_state(NR_WRITEBACK),
4744 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4745 global_node_page_state(NR_SLAB_RECLAIMABLE),
4746 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4747 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4748 global_node_page_state(NR_SHMEM),
c41f012a
MH
4749 global_zone_page_state(NR_PAGETABLE),
4750 global_zone_page_state(NR_BOUNCE),
4751 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4752 free_pcp,
c41f012a 4753 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4754
599d0c95 4755 for_each_online_pgdat(pgdat) {
9af744d7 4756 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4757 continue;
4758
599d0c95
MG
4759 printk("Node %d"
4760 " active_anon:%lukB"
4761 " inactive_anon:%lukB"
4762 " active_file:%lukB"
4763 " inactive_file:%lukB"
4764 " unevictable:%lukB"
4765 " isolated(anon):%lukB"
4766 " isolated(file):%lukB"
50658e2e 4767 " mapped:%lukB"
11fb9989
MG
4768 " dirty:%lukB"
4769 " writeback:%lukB"
4770 " shmem:%lukB"
4771#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4772 " shmem_thp: %lukB"
4773 " shmem_pmdmapped: %lukB"
4774 " anon_thp: %lukB"
4775#endif
4776 " writeback_tmp:%lukB"
4777 " unstable:%lukB"
599d0c95
MG
4778 " all_unreclaimable? %s"
4779 "\n",
4780 pgdat->node_id,
4781 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4782 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4783 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4784 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4785 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4786 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4787 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4788 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4789 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4790 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4791 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4793 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4794 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4795 * HPAGE_PMD_NR),
4796 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4797#endif
11fb9989
MG
4798 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4799 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4800 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4801 "yes" : "no");
599d0c95
MG
4802 }
4803
ee99c71c 4804 for_each_populated_zone(zone) {
1da177e4
LT
4805 int i;
4806
9af744d7 4807 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4808 continue;
d1bfcdb8
KK
4809
4810 free_pcp = 0;
4811 for_each_online_cpu(cpu)
4812 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4813
1da177e4 4814 show_node(zone);
1f84a18f
JP
4815 printk(KERN_CONT
4816 "%s"
1da177e4
LT
4817 " free:%lukB"
4818 " min:%lukB"
4819 " low:%lukB"
4820 " high:%lukB"
71c799f4
MK
4821 " active_anon:%lukB"
4822 " inactive_anon:%lukB"
4823 " active_file:%lukB"
4824 " inactive_file:%lukB"
4825 " unevictable:%lukB"
5a1c84b4 4826 " writepending:%lukB"
1da177e4 4827 " present:%lukB"
9feedc9d 4828 " managed:%lukB"
4a0aa73f 4829 " mlocked:%lukB"
c6a7f572 4830 " kernel_stack:%lukB"
4a0aa73f 4831 " pagetables:%lukB"
4a0aa73f 4832 " bounce:%lukB"
d1bfcdb8
KK
4833 " free_pcp:%lukB"
4834 " local_pcp:%ukB"
d1ce749a 4835 " free_cma:%lukB"
1da177e4
LT
4836 "\n",
4837 zone->name,
88f5acf8 4838 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4839 K(min_wmark_pages(zone)),
4840 K(low_wmark_pages(zone)),
4841 K(high_wmark_pages(zone)),
71c799f4
MK
4842 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4843 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4844 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4845 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4846 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4847 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4848 K(zone->present_pages),
9feedc9d 4849 K(zone->managed_pages),
4a0aa73f 4850 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4851 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4852 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4853 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4854 K(free_pcp),
4855 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4856 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4857 printk("lowmem_reserve[]:");
4858 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4859 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4860 printk(KERN_CONT "\n");
1da177e4
LT
4861 }
4862
ee99c71c 4863 for_each_populated_zone(zone) {
d00181b9
KS
4864 unsigned int order;
4865 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4866 unsigned char types[MAX_ORDER];
1da177e4 4867
9af744d7 4868 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4869 continue;
1da177e4 4870 show_node(zone);
1f84a18f 4871 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4872
4873 spin_lock_irqsave(&zone->lock, flags);
4874 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4875 struct free_area *area = &zone->free_area[order];
4876 int type;
4877
4878 nr[order] = area->nr_free;
8f9de51a 4879 total += nr[order] << order;
377e4f16
RV
4880
4881 types[order] = 0;
4882 for (type = 0; type < MIGRATE_TYPES; type++) {
4883 if (!list_empty(&area->free_list[type]))
4884 types[order] |= 1 << type;
4885 }
1da177e4
LT
4886 }
4887 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4888 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4889 printk(KERN_CONT "%lu*%lukB ",
4890 nr[order], K(1UL) << order);
377e4f16
RV
4891 if (nr[order])
4892 show_migration_types(types[order]);
4893 }
1f84a18f 4894 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4895 }
4896
949f7ec5
DR
4897 hugetlb_show_meminfo();
4898
11fb9989 4899 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4900
1da177e4
LT
4901 show_swap_cache_info();
4902}
4903
19770b32
MG
4904static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4905{
4906 zoneref->zone = zone;
4907 zoneref->zone_idx = zone_idx(zone);
4908}
4909
1da177e4
LT
4910/*
4911 * Builds allocation fallback zone lists.
1a93205b
CL
4912 *
4913 * Add all populated zones of a node to the zonelist.
1da177e4 4914 */
9d3be21b 4915static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4916{
1a93205b 4917 struct zone *zone;
bc732f1d 4918 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4919 int nr_zones = 0;
02a68a5e
CL
4920
4921 do {
2f6726e5 4922 zone_type--;
070f8032 4923 zone = pgdat->node_zones + zone_type;
6aa303de 4924 if (managed_zone(zone)) {
9d3be21b 4925 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4926 check_highest_zone(zone_type);
1da177e4 4927 }
2f6726e5 4928 } while (zone_type);
bc732f1d 4929
070f8032 4930 return nr_zones;
1da177e4
LT
4931}
4932
4933#ifdef CONFIG_NUMA
f0c0b2b8
KH
4934
4935static int __parse_numa_zonelist_order(char *s)
4936{
c9bff3ee
MH
4937 /*
4938 * We used to support different zonlists modes but they turned
4939 * out to be just not useful. Let's keep the warning in place
4940 * if somebody still use the cmd line parameter so that we do
4941 * not fail it silently
4942 */
4943 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4944 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4945 return -EINVAL;
4946 }
4947 return 0;
4948}
4949
4950static __init int setup_numa_zonelist_order(char *s)
4951{
ecb256f8
VL
4952 if (!s)
4953 return 0;
4954
c9bff3ee 4955 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4956}
4957early_param("numa_zonelist_order", setup_numa_zonelist_order);
4958
c9bff3ee
MH
4959char numa_zonelist_order[] = "Node";
4960
f0c0b2b8
KH
4961/*
4962 * sysctl handler for numa_zonelist_order
4963 */
cccad5b9 4964int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4965 void __user *buffer, size_t *length,
f0c0b2b8
KH
4966 loff_t *ppos)
4967{
c9bff3ee 4968 char *str;
f0c0b2b8
KH
4969 int ret;
4970
c9bff3ee
MH
4971 if (!write)
4972 return proc_dostring(table, write, buffer, length, ppos);
4973 str = memdup_user_nul(buffer, 16);
4974 if (IS_ERR(str))
4975 return PTR_ERR(str);
dacbde09 4976
c9bff3ee
MH
4977 ret = __parse_numa_zonelist_order(str);
4978 kfree(str);
443c6f14 4979 return ret;
f0c0b2b8
KH
4980}
4981
4982
62bc62a8 4983#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4984static int node_load[MAX_NUMNODES];
4985
1da177e4 4986/**
4dc3b16b 4987 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4988 * @node: node whose fallback list we're appending
4989 * @used_node_mask: nodemask_t of already used nodes
4990 *
4991 * We use a number of factors to determine which is the next node that should
4992 * appear on a given node's fallback list. The node should not have appeared
4993 * already in @node's fallback list, and it should be the next closest node
4994 * according to the distance array (which contains arbitrary distance values
4995 * from each node to each node in the system), and should also prefer nodes
4996 * with no CPUs, since presumably they'll have very little allocation pressure
4997 * on them otherwise.
4998 * It returns -1 if no node is found.
4999 */
f0c0b2b8 5000static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5001{
4cf808eb 5002 int n, val;
1da177e4 5003 int min_val = INT_MAX;
00ef2d2f 5004 int best_node = NUMA_NO_NODE;
a70f7302 5005 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5006
4cf808eb
LT
5007 /* Use the local node if we haven't already */
5008 if (!node_isset(node, *used_node_mask)) {
5009 node_set(node, *used_node_mask);
5010 return node;
5011 }
1da177e4 5012
4b0ef1fe 5013 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5014
5015 /* Don't want a node to appear more than once */
5016 if (node_isset(n, *used_node_mask))
5017 continue;
5018
1da177e4
LT
5019 /* Use the distance array to find the distance */
5020 val = node_distance(node, n);
5021
4cf808eb
LT
5022 /* Penalize nodes under us ("prefer the next node") */
5023 val += (n < node);
5024
1da177e4 5025 /* Give preference to headless and unused nodes */
a70f7302
RR
5026 tmp = cpumask_of_node(n);
5027 if (!cpumask_empty(tmp))
1da177e4
LT
5028 val += PENALTY_FOR_NODE_WITH_CPUS;
5029
5030 /* Slight preference for less loaded node */
5031 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5032 val += node_load[n];
5033
5034 if (val < min_val) {
5035 min_val = val;
5036 best_node = n;
5037 }
5038 }
5039
5040 if (best_node >= 0)
5041 node_set(best_node, *used_node_mask);
5042
5043 return best_node;
5044}
5045
f0c0b2b8
KH
5046
5047/*
5048 * Build zonelists ordered by node and zones within node.
5049 * This results in maximum locality--normal zone overflows into local
5050 * DMA zone, if any--but risks exhausting DMA zone.
5051 */
9d3be21b
MH
5052static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5053 unsigned nr_nodes)
1da177e4 5054{
9d3be21b
MH
5055 struct zoneref *zonerefs;
5056 int i;
5057
5058 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5059
5060 for (i = 0; i < nr_nodes; i++) {
5061 int nr_zones;
5062
5063 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5064
9d3be21b
MH
5065 nr_zones = build_zonerefs_node(node, zonerefs);
5066 zonerefs += nr_zones;
5067 }
5068 zonerefs->zone = NULL;
5069 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5070}
5071
523b9458
CL
5072/*
5073 * Build gfp_thisnode zonelists
5074 */
5075static void build_thisnode_zonelists(pg_data_t *pgdat)
5076{
9d3be21b
MH
5077 struct zoneref *zonerefs;
5078 int nr_zones;
523b9458 5079
9d3be21b
MH
5080 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5081 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5082 zonerefs += nr_zones;
5083 zonerefs->zone = NULL;
5084 zonerefs->zone_idx = 0;
523b9458
CL
5085}
5086
f0c0b2b8
KH
5087/*
5088 * Build zonelists ordered by zone and nodes within zones.
5089 * This results in conserving DMA zone[s] until all Normal memory is
5090 * exhausted, but results in overflowing to remote node while memory
5091 * may still exist in local DMA zone.
5092 */
f0c0b2b8 5093
f0c0b2b8
KH
5094static void build_zonelists(pg_data_t *pgdat)
5095{
9d3be21b
MH
5096 static int node_order[MAX_NUMNODES];
5097 int node, load, nr_nodes = 0;
1da177e4 5098 nodemask_t used_mask;
f0c0b2b8 5099 int local_node, prev_node;
1da177e4
LT
5100
5101 /* NUMA-aware ordering of nodes */
5102 local_node = pgdat->node_id;
62bc62a8 5103 load = nr_online_nodes;
1da177e4
LT
5104 prev_node = local_node;
5105 nodes_clear(used_mask);
f0c0b2b8 5106
f0c0b2b8 5107 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5108 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5109 /*
5110 * We don't want to pressure a particular node.
5111 * So adding penalty to the first node in same
5112 * distance group to make it round-robin.
5113 */
957f822a
DR
5114 if (node_distance(local_node, node) !=
5115 node_distance(local_node, prev_node))
f0c0b2b8
KH
5116 node_load[node] = load;
5117
9d3be21b 5118 node_order[nr_nodes++] = node;
1da177e4
LT
5119 prev_node = node;
5120 load--;
1da177e4 5121 }
523b9458 5122
9d3be21b 5123 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5124 build_thisnode_zonelists(pgdat);
1da177e4
LT
5125}
5126
7aac7898
LS
5127#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5128/*
5129 * Return node id of node used for "local" allocations.
5130 * I.e., first node id of first zone in arg node's generic zonelist.
5131 * Used for initializing percpu 'numa_mem', which is used primarily
5132 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5133 */
5134int local_memory_node(int node)
5135{
c33d6c06 5136 struct zoneref *z;
7aac7898 5137
c33d6c06 5138 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5139 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5140 NULL);
5141 return z->zone->node;
7aac7898
LS
5142}
5143#endif
f0c0b2b8 5144
6423aa81
JK
5145static void setup_min_unmapped_ratio(void);
5146static void setup_min_slab_ratio(void);
1da177e4
LT
5147#else /* CONFIG_NUMA */
5148
f0c0b2b8 5149static void build_zonelists(pg_data_t *pgdat)
1da177e4 5150{
19655d34 5151 int node, local_node;
9d3be21b
MH
5152 struct zoneref *zonerefs;
5153 int nr_zones;
1da177e4
LT
5154
5155 local_node = pgdat->node_id;
1da177e4 5156
9d3be21b
MH
5157 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5158 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5159 zonerefs += nr_zones;
1da177e4 5160
54a6eb5c
MG
5161 /*
5162 * Now we build the zonelist so that it contains the zones
5163 * of all the other nodes.
5164 * We don't want to pressure a particular node, so when
5165 * building the zones for node N, we make sure that the
5166 * zones coming right after the local ones are those from
5167 * node N+1 (modulo N)
5168 */
5169 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5170 if (!node_online(node))
5171 continue;
9d3be21b
MH
5172 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5173 zonerefs += nr_zones;
1da177e4 5174 }
54a6eb5c
MG
5175 for (node = 0; node < local_node; node++) {
5176 if (!node_online(node))
5177 continue;
9d3be21b
MH
5178 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5179 zonerefs += nr_zones;
54a6eb5c
MG
5180 }
5181
9d3be21b
MH
5182 zonerefs->zone = NULL;
5183 zonerefs->zone_idx = 0;
1da177e4
LT
5184}
5185
5186#endif /* CONFIG_NUMA */
5187
99dcc3e5
CL
5188/*
5189 * Boot pageset table. One per cpu which is going to be used for all
5190 * zones and all nodes. The parameters will be set in such a way
5191 * that an item put on a list will immediately be handed over to
5192 * the buddy list. This is safe since pageset manipulation is done
5193 * with interrupts disabled.
5194 *
5195 * The boot_pagesets must be kept even after bootup is complete for
5196 * unused processors and/or zones. They do play a role for bootstrapping
5197 * hotplugged processors.
5198 *
5199 * zoneinfo_show() and maybe other functions do
5200 * not check if the processor is online before following the pageset pointer.
5201 * Other parts of the kernel may not check if the zone is available.
5202 */
5203static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5204static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5205static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5206
11cd8638 5207static void __build_all_zonelists(void *data)
1da177e4 5208{
6811378e 5209 int nid;
afb6ebb3 5210 int __maybe_unused cpu;
9adb62a5 5211 pg_data_t *self = data;
b93e0f32
MH
5212 static DEFINE_SPINLOCK(lock);
5213
5214 spin_lock(&lock);
9276b1bc 5215
7f9cfb31
BL
5216#ifdef CONFIG_NUMA
5217 memset(node_load, 0, sizeof(node_load));
5218#endif
9adb62a5 5219
c1152583
WY
5220 /*
5221 * This node is hotadded and no memory is yet present. So just
5222 * building zonelists is fine - no need to touch other nodes.
5223 */
9adb62a5
JL
5224 if (self && !node_online(self->node_id)) {
5225 build_zonelists(self);
c1152583
WY
5226 } else {
5227 for_each_online_node(nid) {
5228 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5229
c1152583
WY
5230 build_zonelists(pgdat);
5231 }
99dcc3e5 5232
7aac7898
LS
5233#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5234 /*
5235 * We now know the "local memory node" for each node--
5236 * i.e., the node of the first zone in the generic zonelist.
5237 * Set up numa_mem percpu variable for on-line cpus. During
5238 * boot, only the boot cpu should be on-line; we'll init the
5239 * secondary cpus' numa_mem as they come on-line. During
5240 * node/memory hotplug, we'll fixup all on-line cpus.
5241 */
d9c9a0b9 5242 for_each_online_cpu(cpu)
7aac7898 5243 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5244#endif
d9c9a0b9 5245 }
b93e0f32
MH
5246
5247 spin_unlock(&lock);
6811378e
YG
5248}
5249
061f67bc
RV
5250static noinline void __init
5251build_all_zonelists_init(void)
5252{
afb6ebb3
MH
5253 int cpu;
5254
061f67bc 5255 __build_all_zonelists(NULL);
afb6ebb3
MH
5256
5257 /*
5258 * Initialize the boot_pagesets that are going to be used
5259 * for bootstrapping processors. The real pagesets for
5260 * each zone will be allocated later when the per cpu
5261 * allocator is available.
5262 *
5263 * boot_pagesets are used also for bootstrapping offline
5264 * cpus if the system is already booted because the pagesets
5265 * are needed to initialize allocators on a specific cpu too.
5266 * F.e. the percpu allocator needs the page allocator which
5267 * needs the percpu allocator in order to allocate its pagesets
5268 * (a chicken-egg dilemma).
5269 */
5270 for_each_possible_cpu(cpu)
5271 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5272
061f67bc
RV
5273 mminit_verify_zonelist();
5274 cpuset_init_current_mems_allowed();
5275}
5276
4eaf3f64 5277/*
4eaf3f64 5278 * unless system_state == SYSTEM_BOOTING.
061f67bc 5279 *
72675e13 5280 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5281 * [protected by SYSTEM_BOOTING].
4eaf3f64 5282 */
72675e13 5283void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5284{
5285 if (system_state == SYSTEM_BOOTING) {
061f67bc 5286 build_all_zonelists_init();
6811378e 5287 } else {
11cd8638 5288 __build_all_zonelists(pgdat);
6811378e
YG
5289 /* cpuset refresh routine should be here */
5290 }
bd1e22b8 5291 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5292 /*
5293 * Disable grouping by mobility if the number of pages in the
5294 * system is too low to allow the mechanism to work. It would be
5295 * more accurate, but expensive to check per-zone. This check is
5296 * made on memory-hotadd so a system can start with mobility
5297 * disabled and enable it later
5298 */
d9c23400 5299 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5300 page_group_by_mobility_disabled = 1;
5301 else
5302 page_group_by_mobility_disabled = 0;
5303
c9bff3ee 5304 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5305 nr_online_nodes,
756a025f
JP
5306 page_group_by_mobility_disabled ? "off" : "on",
5307 vm_total_pages);
f0c0b2b8 5308#ifdef CONFIG_NUMA
f88dfff5 5309 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5310#endif
1da177e4
LT
5311}
5312
1da177e4
LT
5313/*
5314 * Initially all pages are reserved - free ones are freed
5315 * up by free_all_bootmem() once the early boot process is
5316 * done. Non-atomic initialization, single-pass.
5317 */
c09b4240 5318void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5319 unsigned long start_pfn, enum memmap_context context)
1da177e4 5320{
4b94ffdc 5321 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5322 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5323 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5324 unsigned long pfn;
3a80a7fa 5325 unsigned long nr_initialised = 0;
342332e6
TI
5326#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5327 struct memblock_region *r = NULL, *tmp;
5328#endif
1da177e4 5329
22b31eec
HD
5330 if (highest_memmap_pfn < end_pfn - 1)
5331 highest_memmap_pfn = end_pfn - 1;
5332
4b94ffdc
DW
5333 /*
5334 * Honor reservation requested by the driver for this ZONE_DEVICE
5335 * memory
5336 */
5337 if (altmap && start_pfn == altmap->base_pfn)
5338 start_pfn += altmap->reserve;
5339
cbe8dd4a 5340 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5341 /*
b72d0ffb
AM
5342 * There can be holes in boot-time mem_map[]s handed to this
5343 * function. They do not exist on hotplugged memory.
a2f3aa02 5344 */
b72d0ffb
AM
5345 if (context != MEMMAP_EARLY)
5346 goto not_early;
5347
b92df1de
PB
5348 if (!early_pfn_valid(pfn)) {
5349#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5350 /*
5351 * Skip to the pfn preceding the next valid one (or
5352 * end_pfn), such that we hit a valid pfn (or end_pfn)
5353 * on our next iteration of the loop.
5354 */
5355 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5356#endif
b72d0ffb 5357 continue;
b92df1de 5358 }
b72d0ffb
AM
5359 if (!early_pfn_in_nid(pfn, nid))
5360 continue;
5361 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5362 break;
342332e6
TI
5363
5364#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5365 /*
5366 * Check given memblock attribute by firmware which can affect
5367 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5368 * mirrored, it's an overlapped memmap init. skip it.
5369 */
5370 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5371 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5372 for_each_memblock(memory, tmp)
5373 if (pfn < memblock_region_memory_end_pfn(tmp))
5374 break;
5375 r = tmp;
5376 }
5377 if (pfn >= memblock_region_memory_base_pfn(r) &&
5378 memblock_is_mirror(r)) {
5379 /* already initialized as NORMAL */
5380 pfn = memblock_region_memory_end_pfn(r);
5381 continue;
342332e6 5382 }
a2f3aa02 5383 }
b72d0ffb 5384#endif
ac5d2539 5385
b72d0ffb 5386not_early:
ac5d2539
MG
5387 /*
5388 * Mark the block movable so that blocks are reserved for
5389 * movable at startup. This will force kernel allocations
5390 * to reserve their blocks rather than leaking throughout
5391 * the address space during boot when many long-lived
974a786e 5392 * kernel allocations are made.
ac5d2539
MG
5393 *
5394 * bitmap is created for zone's valid pfn range. but memmap
5395 * can be created for invalid pages (for alignment)
5396 * check here not to call set_pageblock_migratetype() against
5397 * pfn out of zone.
5398 */
5399 if (!(pfn & (pageblock_nr_pages - 1))) {
5400 struct page *page = pfn_to_page(pfn);
5401
5402 __init_single_page(page, pfn, zone, nid);
5403 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5404 cond_resched();
ac5d2539
MG
5405 } else {
5406 __init_single_pfn(pfn, zone, nid);
5407 }
1da177e4
LT
5408 }
5409}
5410
1e548deb 5411static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5412{
7aeb09f9 5413 unsigned int order, t;
b2a0ac88
MG
5414 for_each_migratetype_order(order, t) {
5415 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5416 zone->free_area[order].nr_free = 0;
5417 }
5418}
5419
5420#ifndef __HAVE_ARCH_MEMMAP_INIT
5421#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5422 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5423#endif
5424
7cd2b0a3 5425static int zone_batchsize(struct zone *zone)
e7c8d5c9 5426{
3a6be87f 5427#ifdef CONFIG_MMU
e7c8d5c9
CL
5428 int batch;
5429
5430 /*
5431 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5432 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5433 *
5434 * OK, so we don't know how big the cache is. So guess.
5435 */
b40da049 5436 batch = zone->managed_pages / 1024;
ba56e91c
SR
5437 if (batch * PAGE_SIZE > 512 * 1024)
5438 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5439 batch /= 4; /* We effectively *= 4 below */
5440 if (batch < 1)
5441 batch = 1;
5442
5443 /*
0ceaacc9
NP
5444 * Clamp the batch to a 2^n - 1 value. Having a power
5445 * of 2 value was found to be more likely to have
5446 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5447 *
0ceaacc9
NP
5448 * For example if 2 tasks are alternately allocating
5449 * batches of pages, one task can end up with a lot
5450 * of pages of one half of the possible page colors
5451 * and the other with pages of the other colors.
e7c8d5c9 5452 */
9155203a 5453 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5454
e7c8d5c9 5455 return batch;
3a6be87f
DH
5456
5457#else
5458 /* The deferral and batching of frees should be suppressed under NOMMU
5459 * conditions.
5460 *
5461 * The problem is that NOMMU needs to be able to allocate large chunks
5462 * of contiguous memory as there's no hardware page translation to
5463 * assemble apparent contiguous memory from discontiguous pages.
5464 *
5465 * Queueing large contiguous runs of pages for batching, however,
5466 * causes the pages to actually be freed in smaller chunks. As there
5467 * can be a significant delay between the individual batches being
5468 * recycled, this leads to the once large chunks of space being
5469 * fragmented and becoming unavailable for high-order allocations.
5470 */
5471 return 0;
5472#endif
e7c8d5c9
CL
5473}
5474
8d7a8fa9
CS
5475/*
5476 * pcp->high and pcp->batch values are related and dependent on one another:
5477 * ->batch must never be higher then ->high.
5478 * The following function updates them in a safe manner without read side
5479 * locking.
5480 *
5481 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5482 * those fields changing asynchronously (acording the the above rule).
5483 *
5484 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5485 * outside of boot time (or some other assurance that no concurrent updaters
5486 * exist).
5487 */
5488static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5489 unsigned long batch)
5490{
5491 /* start with a fail safe value for batch */
5492 pcp->batch = 1;
5493 smp_wmb();
5494
5495 /* Update high, then batch, in order */
5496 pcp->high = high;
5497 smp_wmb();
5498
5499 pcp->batch = batch;
5500}
5501
3664033c 5502/* a companion to pageset_set_high() */
4008bab7
CS
5503static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5504{
8d7a8fa9 5505 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5506}
5507
88c90dbc 5508static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5509{
5510 struct per_cpu_pages *pcp;
5f8dcc21 5511 int migratetype;
2caaad41 5512
1c6fe946
MD
5513 memset(p, 0, sizeof(*p));
5514
3dfa5721 5515 pcp = &p->pcp;
2caaad41 5516 pcp->count = 0;
5f8dcc21
MG
5517 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5518 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5519}
5520
88c90dbc
CS
5521static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5522{
5523 pageset_init(p);
5524 pageset_set_batch(p, batch);
5525}
5526
8ad4b1fb 5527/*
3664033c 5528 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5529 * to the value high for the pageset p.
5530 */
3664033c 5531static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5532 unsigned long high)
5533{
8d7a8fa9
CS
5534 unsigned long batch = max(1UL, high / 4);
5535 if ((high / 4) > (PAGE_SHIFT * 8))
5536 batch = PAGE_SHIFT * 8;
8ad4b1fb 5537
8d7a8fa9 5538 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5539}
5540
7cd2b0a3
DR
5541static void pageset_set_high_and_batch(struct zone *zone,
5542 struct per_cpu_pageset *pcp)
56cef2b8 5543{
56cef2b8 5544 if (percpu_pagelist_fraction)
3664033c 5545 pageset_set_high(pcp,
56cef2b8
CS
5546 (zone->managed_pages /
5547 percpu_pagelist_fraction));
5548 else
5549 pageset_set_batch(pcp, zone_batchsize(zone));
5550}
5551
169f6c19
CS
5552static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5553{
5554 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5555
5556 pageset_init(pcp);
5557 pageset_set_high_and_batch(zone, pcp);
5558}
5559
72675e13 5560void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5561{
5562 int cpu;
319774e2 5563 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5564 for_each_possible_cpu(cpu)
5565 zone_pageset_init(zone, cpu);
319774e2
WF
5566}
5567
2caaad41 5568/*
99dcc3e5
CL
5569 * Allocate per cpu pagesets and initialize them.
5570 * Before this call only boot pagesets were available.
e7c8d5c9 5571 */
99dcc3e5 5572void __init setup_per_cpu_pageset(void)
e7c8d5c9 5573{
b4911ea2 5574 struct pglist_data *pgdat;
99dcc3e5 5575 struct zone *zone;
e7c8d5c9 5576
319774e2
WF
5577 for_each_populated_zone(zone)
5578 setup_zone_pageset(zone);
b4911ea2
MG
5579
5580 for_each_online_pgdat(pgdat)
5581 pgdat->per_cpu_nodestats =
5582 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5583}
5584
c09b4240 5585static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5586{
99dcc3e5
CL
5587 /*
5588 * per cpu subsystem is not up at this point. The following code
5589 * relies on the ability of the linker to provide the
5590 * offset of a (static) per cpu variable into the per cpu area.
5591 */
5592 zone->pageset = &boot_pageset;
ed8ece2e 5593
b38a8725 5594 if (populated_zone(zone))
99dcc3e5
CL
5595 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5596 zone->name, zone->present_pages,
5597 zone_batchsize(zone));
ed8ece2e
DH
5598}
5599
dc0bbf3b 5600void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5601 unsigned long zone_start_pfn,
b171e409 5602 unsigned long size)
ed8ece2e
DH
5603{
5604 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5605
ed8ece2e
DH
5606 pgdat->nr_zones = zone_idx(zone) + 1;
5607
ed8ece2e
DH
5608 zone->zone_start_pfn = zone_start_pfn;
5609
708614e6
MG
5610 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5611 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5612 pgdat->node_id,
5613 (unsigned long)zone_idx(zone),
5614 zone_start_pfn, (zone_start_pfn + size));
5615
1e548deb 5616 zone_init_free_lists(zone);
9dcb8b68 5617 zone->initialized = 1;
ed8ece2e
DH
5618}
5619
0ee332c1 5620#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5621#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5622
c713216d
MG
5623/*
5624 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5625 */
8a942fde
MG
5626int __meminit __early_pfn_to_nid(unsigned long pfn,
5627 struct mminit_pfnnid_cache *state)
c713216d 5628{
c13291a5 5629 unsigned long start_pfn, end_pfn;
e76b63f8 5630 int nid;
7c243c71 5631
8a942fde
MG
5632 if (state->last_start <= pfn && pfn < state->last_end)
5633 return state->last_nid;
c713216d 5634
e76b63f8
YL
5635 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5636 if (nid != -1) {
8a942fde
MG
5637 state->last_start = start_pfn;
5638 state->last_end = end_pfn;
5639 state->last_nid = nid;
e76b63f8
YL
5640 }
5641
5642 return nid;
c713216d
MG
5643}
5644#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5645
c713216d 5646/**
6782832e 5647 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5648 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5649 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5650 *
7d018176
ZZ
5651 * If an architecture guarantees that all ranges registered contain no holes
5652 * and may be freed, this this function may be used instead of calling
5653 * memblock_free_early_nid() manually.
c713216d 5654 */
c13291a5 5655void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5656{
c13291a5
TH
5657 unsigned long start_pfn, end_pfn;
5658 int i, this_nid;
edbe7d23 5659
c13291a5
TH
5660 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5661 start_pfn = min(start_pfn, max_low_pfn);
5662 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5663
c13291a5 5664 if (start_pfn < end_pfn)
6782832e
SS
5665 memblock_free_early_nid(PFN_PHYS(start_pfn),
5666 (end_pfn - start_pfn) << PAGE_SHIFT,
5667 this_nid);
edbe7d23 5668 }
edbe7d23 5669}
edbe7d23 5670
c713216d
MG
5671/**
5672 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5673 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5674 *
7d018176
ZZ
5675 * If an architecture guarantees that all ranges registered contain no holes and may
5676 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5677 */
5678void __init sparse_memory_present_with_active_regions(int nid)
5679{
c13291a5
TH
5680 unsigned long start_pfn, end_pfn;
5681 int i, this_nid;
c713216d 5682
c13291a5
TH
5683 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5684 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5685}
5686
5687/**
5688 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5689 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5690 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5691 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5692 *
5693 * It returns the start and end page frame of a node based on information
7d018176 5694 * provided by memblock_set_node(). If called for a node
c713216d 5695 * with no available memory, a warning is printed and the start and end
88ca3b94 5696 * PFNs will be 0.
c713216d 5697 */
a3142c8e 5698void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5699 unsigned long *start_pfn, unsigned long *end_pfn)
5700{
c13291a5 5701 unsigned long this_start_pfn, this_end_pfn;
c713216d 5702 int i;
c13291a5 5703
c713216d
MG
5704 *start_pfn = -1UL;
5705 *end_pfn = 0;
5706
c13291a5
TH
5707 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5708 *start_pfn = min(*start_pfn, this_start_pfn);
5709 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5710 }
5711
633c0666 5712 if (*start_pfn == -1UL)
c713216d 5713 *start_pfn = 0;
c713216d
MG
5714}
5715
2a1e274a
MG
5716/*
5717 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5718 * assumption is made that zones within a node are ordered in monotonic
5719 * increasing memory addresses so that the "highest" populated zone is used
5720 */
b69a7288 5721static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5722{
5723 int zone_index;
5724 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5725 if (zone_index == ZONE_MOVABLE)
5726 continue;
5727
5728 if (arch_zone_highest_possible_pfn[zone_index] >
5729 arch_zone_lowest_possible_pfn[zone_index])
5730 break;
5731 }
5732
5733 VM_BUG_ON(zone_index == -1);
5734 movable_zone = zone_index;
5735}
5736
5737/*
5738 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5739 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5740 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5741 * in each node depending on the size of each node and how evenly kernelcore
5742 * is distributed. This helper function adjusts the zone ranges
5743 * provided by the architecture for a given node by using the end of the
5744 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5745 * zones within a node are in order of monotonic increases memory addresses
5746 */
b69a7288 5747static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5748 unsigned long zone_type,
5749 unsigned long node_start_pfn,
5750 unsigned long node_end_pfn,
5751 unsigned long *zone_start_pfn,
5752 unsigned long *zone_end_pfn)
5753{
5754 /* Only adjust if ZONE_MOVABLE is on this node */
5755 if (zone_movable_pfn[nid]) {
5756 /* Size ZONE_MOVABLE */
5757 if (zone_type == ZONE_MOVABLE) {
5758 *zone_start_pfn = zone_movable_pfn[nid];
5759 *zone_end_pfn = min(node_end_pfn,
5760 arch_zone_highest_possible_pfn[movable_zone]);
5761
e506b996
XQ
5762 /* Adjust for ZONE_MOVABLE starting within this range */
5763 } else if (!mirrored_kernelcore &&
5764 *zone_start_pfn < zone_movable_pfn[nid] &&
5765 *zone_end_pfn > zone_movable_pfn[nid]) {
5766 *zone_end_pfn = zone_movable_pfn[nid];
5767
2a1e274a
MG
5768 /* Check if this whole range is within ZONE_MOVABLE */
5769 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5770 *zone_start_pfn = *zone_end_pfn;
5771 }
5772}
5773
c713216d
MG
5774/*
5775 * Return the number of pages a zone spans in a node, including holes
5776 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5777 */
6ea6e688 5778static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5779 unsigned long zone_type,
7960aedd
ZY
5780 unsigned long node_start_pfn,
5781 unsigned long node_end_pfn,
d91749c1
TI
5782 unsigned long *zone_start_pfn,
5783 unsigned long *zone_end_pfn,
c713216d
MG
5784 unsigned long *ignored)
5785{
b5685e92 5786 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5787 if (!node_start_pfn && !node_end_pfn)
5788 return 0;
5789
7960aedd 5790 /* Get the start and end of the zone */
d91749c1
TI
5791 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5792 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5793 adjust_zone_range_for_zone_movable(nid, zone_type,
5794 node_start_pfn, node_end_pfn,
d91749c1 5795 zone_start_pfn, zone_end_pfn);
c713216d
MG
5796
5797 /* Check that this node has pages within the zone's required range */
d91749c1 5798 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5799 return 0;
5800
5801 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5802 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5803 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5804
5805 /* Return the spanned pages */
d91749c1 5806 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5807}
5808
5809/*
5810 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5811 * then all holes in the requested range will be accounted for.
c713216d 5812 */
32996250 5813unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5814 unsigned long range_start_pfn,
5815 unsigned long range_end_pfn)
5816{
96e907d1
TH
5817 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5818 unsigned long start_pfn, end_pfn;
5819 int i;
c713216d 5820
96e907d1
TH
5821 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5822 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5823 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5824 nr_absent -= end_pfn - start_pfn;
c713216d 5825 }
96e907d1 5826 return nr_absent;
c713216d
MG
5827}
5828
5829/**
5830 * absent_pages_in_range - Return number of page frames in holes within a range
5831 * @start_pfn: The start PFN to start searching for holes
5832 * @end_pfn: The end PFN to stop searching for holes
5833 *
88ca3b94 5834 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5835 */
5836unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5837 unsigned long end_pfn)
5838{
5839 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5840}
5841
5842/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5843static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5844 unsigned long zone_type,
7960aedd
ZY
5845 unsigned long node_start_pfn,
5846 unsigned long node_end_pfn,
c713216d
MG
5847 unsigned long *ignored)
5848{
96e907d1
TH
5849 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5850 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5851 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5852 unsigned long nr_absent;
9c7cd687 5853
b5685e92 5854 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5855 if (!node_start_pfn && !node_end_pfn)
5856 return 0;
5857
96e907d1
TH
5858 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5859 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5860
2a1e274a
MG
5861 adjust_zone_range_for_zone_movable(nid, zone_type,
5862 node_start_pfn, node_end_pfn,
5863 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5864 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5865
5866 /*
5867 * ZONE_MOVABLE handling.
5868 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5869 * and vice versa.
5870 */
e506b996
XQ
5871 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5872 unsigned long start_pfn, end_pfn;
5873 struct memblock_region *r;
5874
5875 for_each_memblock(memory, r) {
5876 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5877 zone_start_pfn, zone_end_pfn);
5878 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5879 zone_start_pfn, zone_end_pfn);
5880
5881 if (zone_type == ZONE_MOVABLE &&
5882 memblock_is_mirror(r))
5883 nr_absent += end_pfn - start_pfn;
5884
5885 if (zone_type == ZONE_NORMAL &&
5886 !memblock_is_mirror(r))
5887 nr_absent += end_pfn - start_pfn;
342332e6
TI
5888 }
5889 }
5890
5891 return nr_absent;
c713216d 5892}
0e0b864e 5893
0ee332c1 5894#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5895static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5896 unsigned long zone_type,
7960aedd
ZY
5897 unsigned long node_start_pfn,
5898 unsigned long node_end_pfn,
d91749c1
TI
5899 unsigned long *zone_start_pfn,
5900 unsigned long *zone_end_pfn,
c713216d
MG
5901 unsigned long *zones_size)
5902{
d91749c1
TI
5903 unsigned int zone;
5904
5905 *zone_start_pfn = node_start_pfn;
5906 for (zone = 0; zone < zone_type; zone++)
5907 *zone_start_pfn += zones_size[zone];
5908
5909 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5910
c713216d
MG
5911 return zones_size[zone_type];
5912}
5913
6ea6e688 5914static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5915 unsigned long zone_type,
7960aedd
ZY
5916 unsigned long node_start_pfn,
5917 unsigned long node_end_pfn,
c713216d
MG
5918 unsigned long *zholes_size)
5919{
5920 if (!zholes_size)
5921 return 0;
5922
5923 return zholes_size[zone_type];
5924}
20e6926d 5925
0ee332c1 5926#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5927
a3142c8e 5928static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5929 unsigned long node_start_pfn,
5930 unsigned long node_end_pfn,
5931 unsigned long *zones_size,
5932 unsigned long *zholes_size)
c713216d 5933{
febd5949 5934 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5935 enum zone_type i;
5936
febd5949
GZ
5937 for (i = 0; i < MAX_NR_ZONES; i++) {
5938 struct zone *zone = pgdat->node_zones + i;
d91749c1 5939 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5940 unsigned long size, real_size;
c713216d 5941
febd5949
GZ
5942 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5943 node_start_pfn,
5944 node_end_pfn,
d91749c1
TI
5945 &zone_start_pfn,
5946 &zone_end_pfn,
febd5949
GZ
5947 zones_size);
5948 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5949 node_start_pfn, node_end_pfn,
5950 zholes_size);
d91749c1
TI
5951 if (size)
5952 zone->zone_start_pfn = zone_start_pfn;
5953 else
5954 zone->zone_start_pfn = 0;
febd5949
GZ
5955 zone->spanned_pages = size;
5956 zone->present_pages = real_size;
5957
5958 totalpages += size;
5959 realtotalpages += real_size;
5960 }
5961
5962 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5963 pgdat->node_present_pages = realtotalpages;
5964 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5965 realtotalpages);
5966}
5967
835c134e
MG
5968#ifndef CONFIG_SPARSEMEM
5969/*
5970 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5971 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5972 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5973 * round what is now in bits to nearest long in bits, then return it in
5974 * bytes.
5975 */
7c45512d 5976static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5977{
5978 unsigned long usemapsize;
5979
7c45512d 5980 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5981 usemapsize = roundup(zonesize, pageblock_nr_pages);
5982 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5983 usemapsize *= NR_PAGEBLOCK_BITS;
5984 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5985
5986 return usemapsize / 8;
5987}
5988
5989static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5990 struct zone *zone,
5991 unsigned long zone_start_pfn,
5992 unsigned long zonesize)
835c134e 5993{
7c45512d 5994 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5995 zone->pageblock_flags = NULL;
58a01a45 5996 if (usemapsize)
6782832e
SS
5997 zone->pageblock_flags =
5998 memblock_virt_alloc_node_nopanic(usemapsize,
5999 pgdat->node_id);
835c134e
MG
6000}
6001#else
7c45512d
LT
6002static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6003 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6004#endif /* CONFIG_SPARSEMEM */
6005
d9c23400 6006#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6007
d9c23400 6008/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6009void __paginginit set_pageblock_order(void)
d9c23400 6010{
955c1cd7
AM
6011 unsigned int order;
6012
d9c23400
MG
6013 /* Check that pageblock_nr_pages has not already been setup */
6014 if (pageblock_order)
6015 return;
6016
955c1cd7
AM
6017 if (HPAGE_SHIFT > PAGE_SHIFT)
6018 order = HUGETLB_PAGE_ORDER;
6019 else
6020 order = MAX_ORDER - 1;
6021
d9c23400
MG
6022 /*
6023 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6024 * This value may be variable depending on boot parameters on IA64 and
6025 * powerpc.
d9c23400
MG
6026 */
6027 pageblock_order = order;
6028}
6029#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6030
ba72cb8c
MG
6031/*
6032 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6033 * is unused as pageblock_order is set at compile-time. See
6034 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6035 * the kernel config
ba72cb8c 6036 */
15ca220e 6037void __paginginit set_pageblock_order(void)
ba72cb8c 6038{
ba72cb8c 6039}
d9c23400
MG
6040
6041#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6042
01cefaef
JL
6043static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6044 unsigned long present_pages)
6045{
6046 unsigned long pages = spanned_pages;
6047
6048 /*
6049 * Provide a more accurate estimation if there are holes within
6050 * the zone and SPARSEMEM is in use. If there are holes within the
6051 * zone, each populated memory region may cost us one or two extra
6052 * memmap pages due to alignment because memmap pages for each
89d790ab 6053 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6054 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6055 */
6056 if (spanned_pages > present_pages + (present_pages >> 4) &&
6057 IS_ENABLED(CONFIG_SPARSEMEM))
6058 pages = present_pages;
6059
6060 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6061}
6062
1da177e4
LT
6063/*
6064 * Set up the zone data structures:
6065 * - mark all pages reserved
6066 * - mark all memory queues empty
6067 * - clear the memory bitmaps
6527af5d
MK
6068 *
6069 * NOTE: pgdat should get zeroed by caller.
1da177e4 6070 */
7f3eb55b 6071static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6072{
2f1b6248 6073 enum zone_type j;
ed8ece2e 6074 int nid = pgdat->node_id;
1da177e4 6075
208d54e5 6076 pgdat_resize_init(pgdat);
8177a420
AA
6077#ifdef CONFIG_NUMA_BALANCING
6078 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6079 pgdat->numabalancing_migrate_nr_pages = 0;
6080 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6081#endif
6082#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6083 spin_lock_init(&pgdat->split_queue_lock);
6084 INIT_LIST_HEAD(&pgdat->split_queue);
6085 pgdat->split_queue_len = 0;
8177a420 6086#endif
1da177e4 6087 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6088 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6089#ifdef CONFIG_COMPACTION
6090 init_waitqueue_head(&pgdat->kcompactd_wait);
6091#endif
eefa864b 6092 pgdat_page_ext_init(pgdat);
a52633d8 6093 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6094 lruvec_init(node_lruvec(pgdat));
5f63b720 6095
385386cf
JW
6096 pgdat->per_cpu_nodestats = &boot_nodestats;
6097
1da177e4
LT
6098 for (j = 0; j < MAX_NR_ZONES; j++) {
6099 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6100 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6101 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6102
febd5949
GZ
6103 size = zone->spanned_pages;
6104 realsize = freesize = zone->present_pages;
1da177e4 6105
0e0b864e 6106 /*
9feedc9d 6107 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6108 * is used by this zone for memmap. This affects the watermark
6109 * and per-cpu initialisations
6110 */
01cefaef 6111 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6112 if (!is_highmem_idx(j)) {
6113 if (freesize >= memmap_pages) {
6114 freesize -= memmap_pages;
6115 if (memmap_pages)
6116 printk(KERN_DEBUG
6117 " %s zone: %lu pages used for memmap\n",
6118 zone_names[j], memmap_pages);
6119 } else
1170532b 6120 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6121 zone_names[j], memmap_pages, freesize);
6122 }
0e0b864e 6123
6267276f 6124 /* Account for reserved pages */
9feedc9d
JL
6125 if (j == 0 && freesize > dma_reserve) {
6126 freesize -= dma_reserve;
d903ef9f 6127 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6128 zone_names[0], dma_reserve);
0e0b864e
MG
6129 }
6130
98d2b0eb 6131 if (!is_highmem_idx(j))
9feedc9d 6132 nr_kernel_pages += freesize;
01cefaef
JL
6133 /* Charge for highmem memmap if there are enough kernel pages */
6134 else if (nr_kernel_pages > memmap_pages * 2)
6135 nr_kernel_pages -= memmap_pages;
9feedc9d 6136 nr_all_pages += freesize;
1da177e4 6137
9feedc9d
JL
6138 /*
6139 * Set an approximate value for lowmem here, it will be adjusted
6140 * when the bootmem allocator frees pages into the buddy system.
6141 * And all highmem pages will be managed by the buddy system.
6142 */
6143 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6144#ifdef CONFIG_NUMA
d5f541ed 6145 zone->node = nid;
9614634f 6146#endif
1da177e4 6147 zone->name = zone_names[j];
a52633d8 6148 zone->zone_pgdat = pgdat;
1da177e4 6149 spin_lock_init(&zone->lock);
bdc8cb98 6150 zone_seqlock_init(zone);
ed8ece2e 6151 zone_pcp_init(zone);
81c0a2bb 6152
1da177e4
LT
6153 if (!size)
6154 continue;
6155
955c1cd7 6156 set_pageblock_order();
7c45512d 6157 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6158 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6159 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6160 }
6161}
6162
bd721ea7 6163static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6164{
b0aeba74 6165 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6166 unsigned long __maybe_unused offset = 0;
6167
1da177e4
LT
6168 /* Skip empty nodes */
6169 if (!pgdat->node_spanned_pages)
6170 return;
6171
d41dee36 6172#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6173 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6174 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6175 /* ia64 gets its own node_mem_map, before this, without bootmem */
6176 if (!pgdat->node_mem_map) {
b0aeba74 6177 unsigned long size, end;
d41dee36
AW
6178 struct page *map;
6179
e984bb43
BP
6180 /*
6181 * The zone's endpoints aren't required to be MAX_ORDER
6182 * aligned but the node_mem_map endpoints must be in order
6183 * for the buddy allocator to function correctly.
6184 */
108bcc96 6185 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6186 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6187 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6188 map = alloc_remap(pgdat->node_id, size);
6189 if (!map)
6782832e
SS
6190 map = memblock_virt_alloc_node_nopanic(size,
6191 pgdat->node_id);
a1c34a3b 6192 pgdat->node_mem_map = map + offset;
1da177e4 6193 }
12d810c1 6194#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6195 /*
6196 * With no DISCONTIG, the global mem_map is just set as node 0's
6197 */
c713216d 6198 if (pgdat == NODE_DATA(0)) {
1da177e4 6199 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6200#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6201 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6202 mem_map -= offset;
0ee332c1 6203#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6204 }
1da177e4 6205#endif
d41dee36 6206#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6207}
6208
9109fb7b
JW
6209void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6210 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6211{
9109fb7b 6212 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6213 unsigned long start_pfn = 0;
6214 unsigned long end_pfn = 0;
9109fb7b 6215
88fdf75d 6216 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6217 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6218
1da177e4
LT
6219 pgdat->node_id = nid;
6220 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6221 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6222#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6223 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6224 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6225 (u64)start_pfn << PAGE_SHIFT,
6226 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6227#else
6228 start_pfn = node_start_pfn;
7960aedd
ZY
6229#endif
6230 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6231 zones_size, zholes_size);
1da177e4
LT
6232
6233 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6234#ifdef CONFIG_FLAT_NODE_MEM_MAP
6235 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6236 nid, (unsigned long)pgdat,
6237 (unsigned long)pgdat->node_mem_map);
6238#endif
1da177e4 6239
864b9a39 6240 reset_deferred_meminit(pgdat);
7f3eb55b 6241 free_area_init_core(pgdat);
1da177e4
LT
6242}
6243
a4a3ede2
PT
6244#ifdef CONFIG_HAVE_MEMBLOCK
6245/*
6246 * Only struct pages that are backed by physical memory are zeroed and
6247 * initialized by going through __init_single_page(). But, there are some
6248 * struct pages which are reserved in memblock allocator and their fields
6249 * may be accessed (for example page_to_pfn() on some configuration accesses
6250 * flags). We must explicitly zero those struct pages.
6251 */
6252void __paginginit zero_resv_unavail(void)
6253{
6254 phys_addr_t start, end;
6255 unsigned long pfn;
6256 u64 i, pgcnt;
6257
6258 /*
6259 * Loop through ranges that are reserved, but do not have reported
6260 * physical memory backing.
6261 */
6262 pgcnt = 0;
6263 for_each_resv_unavail_range(i, &start, &end) {
6264 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6265 mm_zero_struct_page(pfn_to_page(pfn));
6266 pgcnt++;
6267 }
6268 }
6269
6270 /*
6271 * Struct pages that do not have backing memory. This could be because
6272 * firmware is using some of this memory, or for some other reasons.
6273 * Once memblock is changed so such behaviour is not allowed: i.e.
6274 * list of "reserved" memory must be a subset of list of "memory", then
6275 * this code can be removed.
6276 */
6277 if (pgcnt)
6278 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6279}
6280#endif /* CONFIG_HAVE_MEMBLOCK */
6281
0ee332c1 6282#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6283
6284#if MAX_NUMNODES > 1
6285/*
6286 * Figure out the number of possible node ids.
6287 */
f9872caf 6288void __init setup_nr_node_ids(void)
418508c1 6289{
904a9553 6290 unsigned int highest;
418508c1 6291
904a9553 6292 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6293 nr_node_ids = highest + 1;
6294}
418508c1
MS
6295#endif
6296
1e01979c
TH
6297/**
6298 * node_map_pfn_alignment - determine the maximum internode alignment
6299 *
6300 * This function should be called after node map is populated and sorted.
6301 * It calculates the maximum power of two alignment which can distinguish
6302 * all the nodes.
6303 *
6304 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6305 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6306 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6307 * shifted, 1GiB is enough and this function will indicate so.
6308 *
6309 * This is used to test whether pfn -> nid mapping of the chosen memory
6310 * model has fine enough granularity to avoid incorrect mapping for the
6311 * populated node map.
6312 *
6313 * Returns the determined alignment in pfn's. 0 if there is no alignment
6314 * requirement (single node).
6315 */
6316unsigned long __init node_map_pfn_alignment(void)
6317{
6318 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6319 unsigned long start, end, mask;
1e01979c 6320 int last_nid = -1;
c13291a5 6321 int i, nid;
1e01979c 6322
c13291a5 6323 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6324 if (!start || last_nid < 0 || last_nid == nid) {
6325 last_nid = nid;
6326 last_end = end;
6327 continue;
6328 }
6329
6330 /*
6331 * Start with a mask granular enough to pin-point to the
6332 * start pfn and tick off bits one-by-one until it becomes
6333 * too coarse to separate the current node from the last.
6334 */
6335 mask = ~((1 << __ffs(start)) - 1);
6336 while (mask && last_end <= (start & (mask << 1)))
6337 mask <<= 1;
6338
6339 /* accumulate all internode masks */
6340 accl_mask |= mask;
6341 }
6342
6343 /* convert mask to number of pages */
6344 return ~accl_mask + 1;
6345}
6346
a6af2bc3 6347/* Find the lowest pfn for a node */
b69a7288 6348static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6349{
a6af2bc3 6350 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6351 unsigned long start_pfn;
6352 int i;
1abbfb41 6353
c13291a5
TH
6354 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6355 min_pfn = min(min_pfn, start_pfn);
c713216d 6356
a6af2bc3 6357 if (min_pfn == ULONG_MAX) {
1170532b 6358 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6359 return 0;
6360 }
6361
6362 return min_pfn;
c713216d
MG
6363}
6364
6365/**
6366 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6367 *
6368 * It returns the minimum PFN based on information provided via
7d018176 6369 * memblock_set_node().
c713216d
MG
6370 */
6371unsigned long __init find_min_pfn_with_active_regions(void)
6372{
6373 return find_min_pfn_for_node(MAX_NUMNODES);
6374}
6375
37b07e41
LS
6376/*
6377 * early_calculate_totalpages()
6378 * Sum pages in active regions for movable zone.
4b0ef1fe 6379 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6380 */
484f51f8 6381static unsigned long __init early_calculate_totalpages(void)
7e63efef 6382{
7e63efef 6383 unsigned long totalpages = 0;
c13291a5
TH
6384 unsigned long start_pfn, end_pfn;
6385 int i, nid;
6386
6387 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6388 unsigned long pages = end_pfn - start_pfn;
7e63efef 6389
37b07e41
LS
6390 totalpages += pages;
6391 if (pages)
4b0ef1fe 6392 node_set_state(nid, N_MEMORY);
37b07e41 6393 }
b8af2941 6394 return totalpages;
7e63efef
MG
6395}
6396
2a1e274a
MG
6397/*
6398 * Find the PFN the Movable zone begins in each node. Kernel memory
6399 * is spread evenly between nodes as long as the nodes have enough
6400 * memory. When they don't, some nodes will have more kernelcore than
6401 * others
6402 */
b224ef85 6403static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6404{
6405 int i, nid;
6406 unsigned long usable_startpfn;
6407 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6408 /* save the state before borrow the nodemask */
4b0ef1fe 6409 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6410 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6411 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6412 struct memblock_region *r;
b2f3eebe
TC
6413
6414 /* Need to find movable_zone earlier when movable_node is specified. */
6415 find_usable_zone_for_movable();
6416
6417 /*
6418 * If movable_node is specified, ignore kernelcore and movablecore
6419 * options.
6420 */
6421 if (movable_node_is_enabled()) {
136199f0
EM
6422 for_each_memblock(memory, r) {
6423 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6424 continue;
6425
136199f0 6426 nid = r->nid;
b2f3eebe 6427
136199f0 6428 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6429 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6430 min(usable_startpfn, zone_movable_pfn[nid]) :
6431 usable_startpfn;
6432 }
6433
6434 goto out2;
6435 }
2a1e274a 6436
342332e6
TI
6437 /*
6438 * If kernelcore=mirror is specified, ignore movablecore option
6439 */
6440 if (mirrored_kernelcore) {
6441 bool mem_below_4gb_not_mirrored = false;
6442
6443 for_each_memblock(memory, r) {
6444 if (memblock_is_mirror(r))
6445 continue;
6446
6447 nid = r->nid;
6448
6449 usable_startpfn = memblock_region_memory_base_pfn(r);
6450
6451 if (usable_startpfn < 0x100000) {
6452 mem_below_4gb_not_mirrored = true;
6453 continue;
6454 }
6455
6456 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6457 min(usable_startpfn, zone_movable_pfn[nid]) :
6458 usable_startpfn;
6459 }
6460
6461 if (mem_below_4gb_not_mirrored)
6462 pr_warn("This configuration results in unmirrored kernel memory.");
6463
6464 goto out2;
6465 }
6466
7e63efef 6467 /*
b2f3eebe 6468 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6469 * kernelcore that corresponds so that memory usable for
6470 * any allocation type is evenly spread. If both kernelcore
6471 * and movablecore are specified, then the value of kernelcore
6472 * will be used for required_kernelcore if it's greater than
6473 * what movablecore would have allowed.
6474 */
6475 if (required_movablecore) {
7e63efef
MG
6476 unsigned long corepages;
6477
6478 /*
6479 * Round-up so that ZONE_MOVABLE is at least as large as what
6480 * was requested by the user
6481 */
6482 required_movablecore =
6483 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6484 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6485 corepages = totalpages - required_movablecore;
6486
6487 required_kernelcore = max(required_kernelcore, corepages);
6488 }
6489
bde304bd
XQ
6490 /*
6491 * If kernelcore was not specified or kernelcore size is larger
6492 * than totalpages, there is no ZONE_MOVABLE.
6493 */
6494 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6495 goto out;
2a1e274a
MG
6496
6497 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6498 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6499
6500restart:
6501 /* Spread kernelcore memory as evenly as possible throughout nodes */
6502 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6503 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6504 unsigned long start_pfn, end_pfn;
6505
2a1e274a
MG
6506 /*
6507 * Recalculate kernelcore_node if the division per node
6508 * now exceeds what is necessary to satisfy the requested
6509 * amount of memory for the kernel
6510 */
6511 if (required_kernelcore < kernelcore_node)
6512 kernelcore_node = required_kernelcore / usable_nodes;
6513
6514 /*
6515 * As the map is walked, we track how much memory is usable
6516 * by the kernel using kernelcore_remaining. When it is
6517 * 0, the rest of the node is usable by ZONE_MOVABLE
6518 */
6519 kernelcore_remaining = kernelcore_node;
6520
6521 /* Go through each range of PFNs within this node */
c13291a5 6522 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6523 unsigned long size_pages;
6524
c13291a5 6525 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6526 if (start_pfn >= end_pfn)
6527 continue;
6528
6529 /* Account for what is only usable for kernelcore */
6530 if (start_pfn < usable_startpfn) {
6531 unsigned long kernel_pages;
6532 kernel_pages = min(end_pfn, usable_startpfn)
6533 - start_pfn;
6534
6535 kernelcore_remaining -= min(kernel_pages,
6536 kernelcore_remaining);
6537 required_kernelcore -= min(kernel_pages,
6538 required_kernelcore);
6539
6540 /* Continue if range is now fully accounted */
6541 if (end_pfn <= usable_startpfn) {
6542
6543 /*
6544 * Push zone_movable_pfn to the end so
6545 * that if we have to rebalance
6546 * kernelcore across nodes, we will
6547 * not double account here
6548 */
6549 zone_movable_pfn[nid] = end_pfn;
6550 continue;
6551 }
6552 start_pfn = usable_startpfn;
6553 }
6554
6555 /*
6556 * The usable PFN range for ZONE_MOVABLE is from
6557 * start_pfn->end_pfn. Calculate size_pages as the
6558 * number of pages used as kernelcore
6559 */
6560 size_pages = end_pfn - start_pfn;
6561 if (size_pages > kernelcore_remaining)
6562 size_pages = kernelcore_remaining;
6563 zone_movable_pfn[nid] = start_pfn + size_pages;
6564
6565 /*
6566 * Some kernelcore has been met, update counts and
6567 * break if the kernelcore for this node has been
b8af2941 6568 * satisfied
2a1e274a
MG
6569 */
6570 required_kernelcore -= min(required_kernelcore,
6571 size_pages);
6572 kernelcore_remaining -= size_pages;
6573 if (!kernelcore_remaining)
6574 break;
6575 }
6576 }
6577
6578 /*
6579 * If there is still required_kernelcore, we do another pass with one
6580 * less node in the count. This will push zone_movable_pfn[nid] further
6581 * along on the nodes that still have memory until kernelcore is
b8af2941 6582 * satisfied
2a1e274a
MG
6583 */
6584 usable_nodes--;
6585 if (usable_nodes && required_kernelcore > usable_nodes)
6586 goto restart;
6587
b2f3eebe 6588out2:
2a1e274a
MG
6589 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6590 for (nid = 0; nid < MAX_NUMNODES; nid++)
6591 zone_movable_pfn[nid] =
6592 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6593
20e6926d 6594out:
66918dcd 6595 /* restore the node_state */
4b0ef1fe 6596 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6597}
6598
4b0ef1fe
LJ
6599/* Any regular or high memory on that node ? */
6600static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6601{
37b07e41
LS
6602 enum zone_type zone_type;
6603
4b0ef1fe
LJ
6604 if (N_MEMORY == N_NORMAL_MEMORY)
6605 return;
6606
6607 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6608 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6609 if (populated_zone(zone)) {
4b0ef1fe
LJ
6610 node_set_state(nid, N_HIGH_MEMORY);
6611 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6612 zone_type <= ZONE_NORMAL)
6613 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6614 break;
6615 }
37b07e41 6616 }
37b07e41
LS
6617}
6618
c713216d
MG
6619/**
6620 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6621 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6622 *
6623 * This will call free_area_init_node() for each active node in the system.
7d018176 6624 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6625 * zone in each node and their holes is calculated. If the maximum PFN
6626 * between two adjacent zones match, it is assumed that the zone is empty.
6627 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6628 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6629 * starts where the previous one ended. For example, ZONE_DMA32 starts
6630 * at arch_max_dma_pfn.
6631 */
6632void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6633{
c13291a5
TH
6634 unsigned long start_pfn, end_pfn;
6635 int i, nid;
a6af2bc3 6636
c713216d
MG
6637 /* Record where the zone boundaries are */
6638 memset(arch_zone_lowest_possible_pfn, 0,
6639 sizeof(arch_zone_lowest_possible_pfn));
6640 memset(arch_zone_highest_possible_pfn, 0,
6641 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6642
6643 start_pfn = find_min_pfn_with_active_regions();
6644
6645 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6646 if (i == ZONE_MOVABLE)
6647 continue;
90cae1fe
OH
6648
6649 end_pfn = max(max_zone_pfn[i], start_pfn);
6650 arch_zone_lowest_possible_pfn[i] = start_pfn;
6651 arch_zone_highest_possible_pfn[i] = end_pfn;
6652
6653 start_pfn = end_pfn;
c713216d 6654 }
2a1e274a
MG
6655
6656 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6657 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6658 find_zone_movable_pfns_for_nodes();
c713216d 6659
c713216d 6660 /* Print out the zone ranges */
f88dfff5 6661 pr_info("Zone ranges:\n");
2a1e274a
MG
6662 for (i = 0; i < MAX_NR_ZONES; i++) {
6663 if (i == ZONE_MOVABLE)
6664 continue;
f88dfff5 6665 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6666 if (arch_zone_lowest_possible_pfn[i] ==
6667 arch_zone_highest_possible_pfn[i])
f88dfff5 6668 pr_cont("empty\n");
72f0ba02 6669 else
8d29e18a
JG
6670 pr_cont("[mem %#018Lx-%#018Lx]\n",
6671 (u64)arch_zone_lowest_possible_pfn[i]
6672 << PAGE_SHIFT,
6673 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6674 << PAGE_SHIFT) - 1);
2a1e274a
MG
6675 }
6676
6677 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6678 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6679 for (i = 0; i < MAX_NUMNODES; i++) {
6680 if (zone_movable_pfn[i])
8d29e18a
JG
6681 pr_info(" Node %d: %#018Lx\n", i,
6682 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6683 }
c713216d 6684
f2d52fe5 6685 /* Print out the early node map */
f88dfff5 6686 pr_info("Early memory node ranges\n");
c13291a5 6687 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6688 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6689 (u64)start_pfn << PAGE_SHIFT,
6690 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6691
6692 /* Initialise every node */
708614e6 6693 mminit_verify_pageflags_layout();
8ef82866 6694 setup_nr_node_ids();
c713216d
MG
6695 for_each_online_node(nid) {
6696 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6697 free_area_init_node(nid, NULL,
c713216d 6698 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6699
6700 /* Any memory on that node */
6701 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6702 node_set_state(nid, N_MEMORY);
6703 check_for_memory(pgdat, nid);
c713216d 6704 }
a4a3ede2 6705 zero_resv_unavail();
c713216d 6706}
2a1e274a 6707
7e63efef 6708static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6709{
6710 unsigned long long coremem;
6711 if (!p)
6712 return -EINVAL;
6713
6714 coremem = memparse(p, &p);
7e63efef 6715 *core = coremem >> PAGE_SHIFT;
2a1e274a 6716
7e63efef 6717 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6718 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6719
6720 return 0;
6721}
ed7ed365 6722
7e63efef
MG
6723/*
6724 * kernelcore=size sets the amount of memory for use for allocations that
6725 * cannot be reclaimed or migrated.
6726 */
6727static int __init cmdline_parse_kernelcore(char *p)
6728{
342332e6
TI
6729 /* parse kernelcore=mirror */
6730 if (parse_option_str(p, "mirror")) {
6731 mirrored_kernelcore = true;
6732 return 0;
6733 }
6734
7e63efef
MG
6735 return cmdline_parse_core(p, &required_kernelcore);
6736}
6737
6738/*
6739 * movablecore=size sets the amount of memory for use for allocations that
6740 * can be reclaimed or migrated.
6741 */
6742static int __init cmdline_parse_movablecore(char *p)
6743{
6744 return cmdline_parse_core(p, &required_movablecore);
6745}
6746
ed7ed365 6747early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6748early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6749
0ee332c1 6750#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6751
c3d5f5f0
JL
6752void adjust_managed_page_count(struct page *page, long count)
6753{
6754 spin_lock(&managed_page_count_lock);
6755 page_zone(page)->managed_pages += count;
6756 totalram_pages += count;
3dcc0571
JL
6757#ifdef CONFIG_HIGHMEM
6758 if (PageHighMem(page))
6759 totalhigh_pages += count;
6760#endif
c3d5f5f0
JL
6761 spin_unlock(&managed_page_count_lock);
6762}
3dcc0571 6763EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6764
11199692 6765unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6766{
11199692
JL
6767 void *pos;
6768 unsigned long pages = 0;
69afade7 6769
11199692
JL
6770 start = (void *)PAGE_ALIGN((unsigned long)start);
6771 end = (void *)((unsigned long)end & PAGE_MASK);
6772 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6773 if ((unsigned int)poison <= 0xFF)
11199692
JL
6774 memset(pos, poison, PAGE_SIZE);
6775 free_reserved_page(virt_to_page(pos));
69afade7
JL
6776 }
6777
6778 if (pages && s)
adb1fe9a
JP
6779 pr_info("Freeing %s memory: %ldK\n",
6780 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6781
6782 return pages;
6783}
11199692 6784EXPORT_SYMBOL(free_reserved_area);
69afade7 6785
cfa11e08
JL
6786#ifdef CONFIG_HIGHMEM
6787void free_highmem_page(struct page *page)
6788{
6789 __free_reserved_page(page);
6790 totalram_pages++;
7b4b2a0d 6791 page_zone(page)->managed_pages++;
cfa11e08
JL
6792 totalhigh_pages++;
6793}
6794#endif
6795
7ee3d4e8
JL
6796
6797void __init mem_init_print_info(const char *str)
6798{
6799 unsigned long physpages, codesize, datasize, rosize, bss_size;
6800 unsigned long init_code_size, init_data_size;
6801
6802 physpages = get_num_physpages();
6803 codesize = _etext - _stext;
6804 datasize = _edata - _sdata;
6805 rosize = __end_rodata - __start_rodata;
6806 bss_size = __bss_stop - __bss_start;
6807 init_data_size = __init_end - __init_begin;
6808 init_code_size = _einittext - _sinittext;
6809
6810 /*
6811 * Detect special cases and adjust section sizes accordingly:
6812 * 1) .init.* may be embedded into .data sections
6813 * 2) .init.text.* may be out of [__init_begin, __init_end],
6814 * please refer to arch/tile/kernel/vmlinux.lds.S.
6815 * 3) .rodata.* may be embedded into .text or .data sections.
6816 */
6817#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6818 do { \
6819 if (start <= pos && pos < end && size > adj) \
6820 size -= adj; \
6821 } while (0)
7ee3d4e8
JL
6822
6823 adj_init_size(__init_begin, __init_end, init_data_size,
6824 _sinittext, init_code_size);
6825 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6826 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6827 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6828 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6829
6830#undef adj_init_size
6831
756a025f 6832 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6833#ifdef CONFIG_HIGHMEM
756a025f 6834 ", %luK highmem"
7ee3d4e8 6835#endif
756a025f
JP
6836 "%s%s)\n",
6837 nr_free_pages() << (PAGE_SHIFT - 10),
6838 physpages << (PAGE_SHIFT - 10),
6839 codesize >> 10, datasize >> 10, rosize >> 10,
6840 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6841 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6842 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6843#ifdef CONFIG_HIGHMEM
756a025f 6844 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6845#endif
756a025f 6846 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6847}
6848
0e0b864e 6849/**
88ca3b94
RD
6850 * set_dma_reserve - set the specified number of pages reserved in the first zone
6851 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6852 *
013110a7 6853 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6854 * In the DMA zone, a significant percentage may be consumed by kernel image
6855 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6856 * function may optionally be used to account for unfreeable pages in the
6857 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6858 * smaller per-cpu batchsize.
0e0b864e
MG
6859 */
6860void __init set_dma_reserve(unsigned long new_dma_reserve)
6861{
6862 dma_reserve = new_dma_reserve;
6863}
6864
1da177e4
LT
6865void __init free_area_init(unsigned long *zones_size)
6866{
9109fb7b 6867 free_area_init_node(0, zones_size,
1da177e4 6868 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 6869 zero_resv_unavail();
1da177e4 6870}
1da177e4 6871
005fd4bb 6872static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6873{
1da177e4 6874
005fd4bb
SAS
6875 lru_add_drain_cpu(cpu);
6876 drain_pages(cpu);
9f8f2172 6877
005fd4bb
SAS
6878 /*
6879 * Spill the event counters of the dead processor
6880 * into the current processors event counters.
6881 * This artificially elevates the count of the current
6882 * processor.
6883 */
6884 vm_events_fold_cpu(cpu);
9f8f2172 6885
005fd4bb
SAS
6886 /*
6887 * Zero the differential counters of the dead processor
6888 * so that the vm statistics are consistent.
6889 *
6890 * This is only okay since the processor is dead and cannot
6891 * race with what we are doing.
6892 */
6893 cpu_vm_stats_fold(cpu);
6894 return 0;
1da177e4 6895}
1da177e4
LT
6896
6897void __init page_alloc_init(void)
6898{
005fd4bb
SAS
6899 int ret;
6900
6901 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6902 "mm/page_alloc:dead", NULL,
6903 page_alloc_cpu_dead);
6904 WARN_ON(ret < 0);
1da177e4
LT
6905}
6906
cb45b0e9 6907/*
34b10060 6908 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6909 * or min_free_kbytes changes.
6910 */
6911static void calculate_totalreserve_pages(void)
6912{
6913 struct pglist_data *pgdat;
6914 unsigned long reserve_pages = 0;
2f6726e5 6915 enum zone_type i, j;
cb45b0e9
HA
6916
6917 for_each_online_pgdat(pgdat) {
281e3726
MG
6918
6919 pgdat->totalreserve_pages = 0;
6920
cb45b0e9
HA
6921 for (i = 0; i < MAX_NR_ZONES; i++) {
6922 struct zone *zone = pgdat->node_zones + i;
3484b2de 6923 long max = 0;
cb45b0e9
HA
6924
6925 /* Find valid and maximum lowmem_reserve in the zone */
6926 for (j = i; j < MAX_NR_ZONES; j++) {
6927 if (zone->lowmem_reserve[j] > max)
6928 max = zone->lowmem_reserve[j];
6929 }
6930
41858966
MG
6931 /* we treat the high watermark as reserved pages. */
6932 max += high_wmark_pages(zone);
cb45b0e9 6933
b40da049
JL
6934 if (max > zone->managed_pages)
6935 max = zone->managed_pages;
a8d01437 6936
281e3726 6937 pgdat->totalreserve_pages += max;
a8d01437 6938
cb45b0e9
HA
6939 reserve_pages += max;
6940 }
6941 }
6942 totalreserve_pages = reserve_pages;
6943}
6944
1da177e4
LT
6945/*
6946 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6947 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6948 * has a correct pages reserved value, so an adequate number of
6949 * pages are left in the zone after a successful __alloc_pages().
6950 */
6951static void setup_per_zone_lowmem_reserve(void)
6952{
6953 struct pglist_data *pgdat;
2f6726e5 6954 enum zone_type j, idx;
1da177e4 6955
ec936fc5 6956 for_each_online_pgdat(pgdat) {
1da177e4
LT
6957 for (j = 0; j < MAX_NR_ZONES; j++) {
6958 struct zone *zone = pgdat->node_zones + j;
b40da049 6959 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6960
6961 zone->lowmem_reserve[j] = 0;
6962
2f6726e5
CL
6963 idx = j;
6964 while (idx) {
1da177e4
LT
6965 struct zone *lower_zone;
6966
2f6726e5
CL
6967 idx--;
6968
1da177e4
LT
6969 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6970 sysctl_lowmem_reserve_ratio[idx] = 1;
6971
6972 lower_zone = pgdat->node_zones + idx;
b40da049 6973 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6974 sysctl_lowmem_reserve_ratio[idx];
b40da049 6975 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6976 }
6977 }
6978 }
cb45b0e9
HA
6979
6980 /* update totalreserve_pages */
6981 calculate_totalreserve_pages();
1da177e4
LT
6982}
6983
cfd3da1e 6984static void __setup_per_zone_wmarks(void)
1da177e4
LT
6985{
6986 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6987 unsigned long lowmem_pages = 0;
6988 struct zone *zone;
6989 unsigned long flags;
6990
6991 /* Calculate total number of !ZONE_HIGHMEM pages */
6992 for_each_zone(zone) {
6993 if (!is_highmem(zone))
b40da049 6994 lowmem_pages += zone->managed_pages;
1da177e4
LT
6995 }
6996
6997 for_each_zone(zone) {
ac924c60
AM
6998 u64 tmp;
6999
1125b4e3 7000 spin_lock_irqsave(&zone->lock, flags);
b40da049 7001 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7002 do_div(tmp, lowmem_pages);
1da177e4
LT
7003 if (is_highmem(zone)) {
7004 /*
669ed175
NP
7005 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7006 * need highmem pages, so cap pages_min to a small
7007 * value here.
7008 *
41858966 7009 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7010 * deltas control asynch page reclaim, and so should
669ed175 7011 * not be capped for highmem.
1da177e4 7012 */
90ae8d67 7013 unsigned long min_pages;
1da177e4 7014
b40da049 7015 min_pages = zone->managed_pages / 1024;
90ae8d67 7016 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7017 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7018 } else {
669ed175
NP
7019 /*
7020 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7021 * proportionate to the zone's size.
7022 */
41858966 7023 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7024 }
7025
795ae7a0
JW
7026 /*
7027 * Set the kswapd watermarks distance according to the
7028 * scale factor in proportion to available memory, but
7029 * ensure a minimum size on small systems.
7030 */
7031 tmp = max_t(u64, tmp >> 2,
7032 mult_frac(zone->managed_pages,
7033 watermark_scale_factor, 10000));
7034
7035 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7036 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7037
1125b4e3 7038 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7039 }
cb45b0e9
HA
7040
7041 /* update totalreserve_pages */
7042 calculate_totalreserve_pages();
1da177e4
LT
7043}
7044
cfd3da1e
MG
7045/**
7046 * setup_per_zone_wmarks - called when min_free_kbytes changes
7047 * or when memory is hot-{added|removed}
7048 *
7049 * Ensures that the watermark[min,low,high] values for each zone are set
7050 * correctly with respect to min_free_kbytes.
7051 */
7052void setup_per_zone_wmarks(void)
7053{
b93e0f32
MH
7054 static DEFINE_SPINLOCK(lock);
7055
7056 spin_lock(&lock);
cfd3da1e 7057 __setup_per_zone_wmarks();
b93e0f32 7058 spin_unlock(&lock);
cfd3da1e
MG
7059}
7060
1da177e4
LT
7061/*
7062 * Initialise min_free_kbytes.
7063 *
7064 * For small machines we want it small (128k min). For large machines
7065 * we want it large (64MB max). But it is not linear, because network
7066 * bandwidth does not increase linearly with machine size. We use
7067 *
b8af2941 7068 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7069 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7070 *
7071 * which yields
7072 *
7073 * 16MB: 512k
7074 * 32MB: 724k
7075 * 64MB: 1024k
7076 * 128MB: 1448k
7077 * 256MB: 2048k
7078 * 512MB: 2896k
7079 * 1024MB: 4096k
7080 * 2048MB: 5792k
7081 * 4096MB: 8192k
7082 * 8192MB: 11584k
7083 * 16384MB: 16384k
7084 */
1b79acc9 7085int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7086{
7087 unsigned long lowmem_kbytes;
5f12733e 7088 int new_min_free_kbytes;
1da177e4
LT
7089
7090 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7091 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7092
7093 if (new_min_free_kbytes > user_min_free_kbytes) {
7094 min_free_kbytes = new_min_free_kbytes;
7095 if (min_free_kbytes < 128)
7096 min_free_kbytes = 128;
7097 if (min_free_kbytes > 65536)
7098 min_free_kbytes = 65536;
7099 } else {
7100 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7101 new_min_free_kbytes, user_min_free_kbytes);
7102 }
bc75d33f 7103 setup_per_zone_wmarks();
a6cccdc3 7104 refresh_zone_stat_thresholds();
1da177e4 7105 setup_per_zone_lowmem_reserve();
6423aa81
JK
7106
7107#ifdef CONFIG_NUMA
7108 setup_min_unmapped_ratio();
7109 setup_min_slab_ratio();
7110#endif
7111
1da177e4
LT
7112 return 0;
7113}
bc22af74 7114core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7115
7116/*
b8af2941 7117 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7118 * that we can call two helper functions whenever min_free_kbytes
7119 * changes.
7120 */
cccad5b9 7121int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7122 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7123{
da8c757b
HP
7124 int rc;
7125
7126 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7127 if (rc)
7128 return rc;
7129
5f12733e
MH
7130 if (write) {
7131 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7132 setup_per_zone_wmarks();
5f12733e 7133 }
1da177e4
LT
7134 return 0;
7135}
7136
795ae7a0
JW
7137int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7138 void __user *buffer, size_t *length, loff_t *ppos)
7139{
7140 int rc;
7141
7142 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7143 if (rc)
7144 return rc;
7145
7146 if (write)
7147 setup_per_zone_wmarks();
7148
7149 return 0;
7150}
7151
9614634f 7152#ifdef CONFIG_NUMA
6423aa81 7153static void setup_min_unmapped_ratio(void)
9614634f 7154{
6423aa81 7155 pg_data_t *pgdat;
9614634f 7156 struct zone *zone;
9614634f 7157
a5f5f91d 7158 for_each_online_pgdat(pgdat)
81cbcbc2 7159 pgdat->min_unmapped_pages = 0;
a5f5f91d 7160
9614634f 7161 for_each_zone(zone)
a5f5f91d 7162 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7163 sysctl_min_unmapped_ratio) / 100;
9614634f 7164}
0ff38490 7165
6423aa81
JK
7166
7167int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7168 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7169{
0ff38490
CL
7170 int rc;
7171
8d65af78 7172 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7173 if (rc)
7174 return rc;
7175
6423aa81
JK
7176 setup_min_unmapped_ratio();
7177
7178 return 0;
7179}
7180
7181static void setup_min_slab_ratio(void)
7182{
7183 pg_data_t *pgdat;
7184 struct zone *zone;
7185
a5f5f91d
MG
7186 for_each_online_pgdat(pgdat)
7187 pgdat->min_slab_pages = 0;
7188
0ff38490 7189 for_each_zone(zone)
a5f5f91d 7190 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7191 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7192}
7193
7194int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7195 void __user *buffer, size_t *length, loff_t *ppos)
7196{
7197 int rc;
7198
7199 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7200 if (rc)
7201 return rc;
7202
7203 setup_min_slab_ratio();
7204
0ff38490
CL
7205 return 0;
7206}
9614634f
CL
7207#endif
7208
1da177e4
LT
7209/*
7210 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7211 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7212 * whenever sysctl_lowmem_reserve_ratio changes.
7213 *
7214 * The reserve ratio obviously has absolutely no relation with the
41858966 7215 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7216 * if in function of the boot time zone sizes.
7217 */
cccad5b9 7218int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7219 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7220{
8d65af78 7221 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7222 setup_per_zone_lowmem_reserve();
7223 return 0;
7224}
7225
8ad4b1fb
RS
7226/*
7227 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7228 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7229 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7230 */
cccad5b9 7231int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7232 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7233{
7234 struct zone *zone;
7cd2b0a3 7235 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7236 int ret;
7237
7cd2b0a3
DR
7238 mutex_lock(&pcp_batch_high_lock);
7239 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7240
8d65af78 7241 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7242 if (!write || ret < 0)
7243 goto out;
7244
7245 /* Sanity checking to avoid pcp imbalance */
7246 if (percpu_pagelist_fraction &&
7247 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7248 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7249 ret = -EINVAL;
7250 goto out;
7251 }
7252
7253 /* No change? */
7254 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7255 goto out;
c8e251fa 7256
364df0eb 7257 for_each_populated_zone(zone) {
7cd2b0a3
DR
7258 unsigned int cpu;
7259
22a7f12b 7260 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7261 pageset_set_high_and_batch(zone,
7262 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7263 }
7cd2b0a3 7264out:
c8e251fa 7265 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7266 return ret;
8ad4b1fb
RS
7267}
7268
a9919c79 7269#ifdef CONFIG_NUMA
f034b5d4 7270int hashdist = HASHDIST_DEFAULT;
1da177e4 7271
1da177e4
LT
7272static int __init set_hashdist(char *str)
7273{
7274 if (!str)
7275 return 0;
7276 hashdist = simple_strtoul(str, &str, 0);
7277 return 1;
7278}
7279__setup("hashdist=", set_hashdist);
7280#endif
7281
f6f34b43
SD
7282#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7283/*
7284 * Returns the number of pages that arch has reserved but
7285 * is not known to alloc_large_system_hash().
7286 */
7287static unsigned long __init arch_reserved_kernel_pages(void)
7288{
7289 return 0;
7290}
7291#endif
7292
9017217b
PT
7293/*
7294 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7295 * machines. As memory size is increased the scale is also increased but at
7296 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7297 * quadruples the scale is increased by one, which means the size of hash table
7298 * only doubles, instead of quadrupling as well.
7299 * Because 32-bit systems cannot have large physical memory, where this scaling
7300 * makes sense, it is disabled on such platforms.
7301 */
7302#if __BITS_PER_LONG > 32
7303#define ADAPT_SCALE_BASE (64ul << 30)
7304#define ADAPT_SCALE_SHIFT 2
7305#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7306#endif
7307
1da177e4
LT
7308/*
7309 * allocate a large system hash table from bootmem
7310 * - it is assumed that the hash table must contain an exact power-of-2
7311 * quantity of entries
7312 * - limit is the number of hash buckets, not the total allocation size
7313 */
7314void *__init alloc_large_system_hash(const char *tablename,
7315 unsigned long bucketsize,
7316 unsigned long numentries,
7317 int scale,
7318 int flags,
7319 unsigned int *_hash_shift,
7320 unsigned int *_hash_mask,
31fe62b9
TB
7321 unsigned long low_limit,
7322 unsigned long high_limit)
1da177e4 7323{
31fe62b9 7324 unsigned long long max = high_limit;
1da177e4
LT
7325 unsigned long log2qty, size;
7326 void *table = NULL;
3749a8f0 7327 gfp_t gfp_flags;
1da177e4
LT
7328
7329 /* allow the kernel cmdline to have a say */
7330 if (!numentries) {
7331 /* round applicable memory size up to nearest megabyte */
04903664 7332 numentries = nr_kernel_pages;
f6f34b43 7333 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7334
7335 /* It isn't necessary when PAGE_SIZE >= 1MB */
7336 if (PAGE_SHIFT < 20)
7337 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7338
9017217b
PT
7339#if __BITS_PER_LONG > 32
7340 if (!high_limit) {
7341 unsigned long adapt;
7342
7343 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7344 adapt <<= ADAPT_SCALE_SHIFT)
7345 scale++;
7346 }
7347#endif
7348
1da177e4
LT
7349 /* limit to 1 bucket per 2^scale bytes of low memory */
7350 if (scale > PAGE_SHIFT)
7351 numentries >>= (scale - PAGE_SHIFT);
7352 else
7353 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7354
7355 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7356 if (unlikely(flags & HASH_SMALL)) {
7357 /* Makes no sense without HASH_EARLY */
7358 WARN_ON(!(flags & HASH_EARLY));
7359 if (!(numentries >> *_hash_shift)) {
7360 numentries = 1UL << *_hash_shift;
7361 BUG_ON(!numentries);
7362 }
7363 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7364 numentries = PAGE_SIZE / bucketsize;
1da177e4 7365 }
6e692ed3 7366 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7367
7368 /* limit allocation size to 1/16 total memory by default */
7369 if (max == 0) {
7370 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7371 do_div(max, bucketsize);
7372 }
074b8517 7373 max = min(max, 0x80000000ULL);
1da177e4 7374
31fe62b9
TB
7375 if (numentries < low_limit)
7376 numentries = low_limit;
1da177e4
LT
7377 if (numentries > max)
7378 numentries = max;
7379
f0d1b0b3 7380 log2qty = ilog2(numentries);
1da177e4 7381
3749a8f0 7382 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7383 do {
7384 size = bucketsize << log2qty;
ea1f5f37
PT
7385 if (flags & HASH_EARLY) {
7386 if (flags & HASH_ZERO)
7387 table = memblock_virt_alloc_nopanic(size, 0);
7388 else
7389 table = memblock_virt_alloc_raw(size, 0);
7390 } else if (hashdist) {
3749a8f0 7391 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7392 } else {
1037b83b
ED
7393 /*
7394 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7395 * some pages at the end of hash table which
7396 * alloc_pages_exact() automatically does
1037b83b 7397 */
264ef8a9 7398 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7399 table = alloc_pages_exact(size, gfp_flags);
7400 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7401 }
1da177e4
LT
7402 }
7403 } while (!table && size > PAGE_SIZE && --log2qty);
7404
7405 if (!table)
7406 panic("Failed to allocate %s hash table\n", tablename);
7407
1170532b
JP
7408 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7409 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7410
7411 if (_hash_shift)
7412 *_hash_shift = log2qty;
7413 if (_hash_mask)
7414 *_hash_mask = (1 << log2qty) - 1;
7415
7416 return table;
7417}
a117e66e 7418
a5d76b54 7419/*
80934513
MK
7420 * This function checks whether pageblock includes unmovable pages or not.
7421 * If @count is not zero, it is okay to include less @count unmovable pages
7422 *
b8af2941 7423 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7424 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7425 * check without lock_page also may miss some movable non-lru pages at
7426 * race condition. So you can't expect this function should be exact.
a5d76b54 7427 */
b023f468 7428bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7429 int migratetype,
b023f468 7430 bool skip_hwpoisoned_pages)
49ac8255
KH
7431{
7432 unsigned long pfn, iter, found;
47118af0 7433
49ac8255
KH
7434 /*
7435 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7436 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7437 */
7438 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7439 return false;
49ac8255 7440
4da2ce25
MH
7441 /*
7442 * CMA allocations (alloc_contig_range) really need to mark isolate
7443 * CMA pageblocks even when they are not movable in fact so consider
7444 * them movable here.
7445 */
7446 if (is_migrate_cma(migratetype) &&
7447 is_migrate_cma(get_pageblock_migratetype(page)))
7448 return false;
7449
49ac8255
KH
7450 pfn = page_to_pfn(page);
7451 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7452 unsigned long check = pfn + iter;
7453
29723fcc 7454 if (!pfn_valid_within(check))
49ac8255 7455 continue;
29723fcc 7456
49ac8255 7457 page = pfn_to_page(check);
c8721bbb 7458
d7ab3672
MH
7459 if (PageReserved(page))
7460 return true;
7461
c8721bbb
NH
7462 /*
7463 * Hugepages are not in LRU lists, but they're movable.
7464 * We need not scan over tail pages bacause we don't
7465 * handle each tail page individually in migration.
7466 */
7467 if (PageHuge(page)) {
7468 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7469 continue;
7470 }
7471
97d255c8
MK
7472 /*
7473 * We can't use page_count without pin a page
7474 * because another CPU can free compound page.
7475 * This check already skips compound tails of THP
0139aa7b 7476 * because their page->_refcount is zero at all time.
97d255c8 7477 */
fe896d18 7478 if (!page_ref_count(page)) {
49ac8255
KH
7479 if (PageBuddy(page))
7480 iter += (1 << page_order(page)) - 1;
7481 continue;
7482 }
97d255c8 7483
b023f468
WC
7484 /*
7485 * The HWPoisoned page may be not in buddy system, and
7486 * page_count() is not 0.
7487 */
7488 if (skip_hwpoisoned_pages && PageHWPoison(page))
7489 continue;
7490
0efadf48
YX
7491 if (__PageMovable(page))
7492 continue;
7493
49ac8255
KH
7494 if (!PageLRU(page))
7495 found++;
7496 /*
6b4f7799
JW
7497 * If there are RECLAIMABLE pages, we need to check
7498 * it. But now, memory offline itself doesn't call
7499 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7500 */
7501 /*
7502 * If the page is not RAM, page_count()should be 0.
7503 * we don't need more check. This is an _used_ not-movable page.
7504 *
7505 * The problematic thing here is PG_reserved pages. PG_reserved
7506 * is set to both of a memory hole page and a _used_ kernel
7507 * page at boot.
7508 */
7509 if (found > count)
80934513 7510 return true;
49ac8255 7511 }
80934513 7512 return false;
49ac8255
KH
7513}
7514
7515bool is_pageblock_removable_nolock(struct page *page)
7516{
656a0706
MH
7517 struct zone *zone;
7518 unsigned long pfn;
687875fb
MH
7519
7520 /*
7521 * We have to be careful here because we are iterating over memory
7522 * sections which are not zone aware so we might end up outside of
7523 * the zone but still within the section.
656a0706
MH
7524 * We have to take care about the node as well. If the node is offline
7525 * its NODE_DATA will be NULL - see page_zone.
687875fb 7526 */
656a0706
MH
7527 if (!node_online(page_to_nid(page)))
7528 return false;
7529
7530 zone = page_zone(page);
7531 pfn = page_to_pfn(page);
108bcc96 7532 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7533 return false;
7534
4da2ce25 7535 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7536}
0c0e6195 7537
080fe206 7538#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7539
7540static unsigned long pfn_max_align_down(unsigned long pfn)
7541{
7542 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7543 pageblock_nr_pages) - 1);
7544}
7545
7546static unsigned long pfn_max_align_up(unsigned long pfn)
7547{
7548 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7549 pageblock_nr_pages));
7550}
7551
041d3a8c 7552/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7553static int __alloc_contig_migrate_range(struct compact_control *cc,
7554 unsigned long start, unsigned long end)
041d3a8c
MN
7555{
7556 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7557 unsigned long nr_reclaimed;
041d3a8c
MN
7558 unsigned long pfn = start;
7559 unsigned int tries = 0;
7560 int ret = 0;
7561
be49a6e1 7562 migrate_prep();
041d3a8c 7563
bb13ffeb 7564 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7565 if (fatal_signal_pending(current)) {
7566 ret = -EINTR;
7567 break;
7568 }
7569
bb13ffeb
MG
7570 if (list_empty(&cc->migratepages)) {
7571 cc->nr_migratepages = 0;
edc2ca61 7572 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7573 if (!pfn) {
7574 ret = -EINTR;
7575 break;
7576 }
7577 tries = 0;
7578 } else if (++tries == 5) {
7579 ret = ret < 0 ? ret : -EBUSY;
7580 break;
7581 }
7582
beb51eaa
MK
7583 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7584 &cc->migratepages);
7585 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7586
9c620e2b 7587 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7588 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7589 }
2a6f5124
SP
7590 if (ret < 0) {
7591 putback_movable_pages(&cc->migratepages);
7592 return ret;
7593 }
7594 return 0;
041d3a8c
MN
7595}
7596
7597/**
7598 * alloc_contig_range() -- tries to allocate given range of pages
7599 * @start: start PFN to allocate
7600 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7601 * @migratetype: migratetype of the underlaying pageblocks (either
7602 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7603 * in range must have the same migratetype and it must
7604 * be either of the two.
ca96b625 7605 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7606 *
7607 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7608 * aligned, however it's the caller's responsibility to guarantee that
7609 * we are the only thread that changes migrate type of pageblocks the
7610 * pages fall in.
7611 *
7612 * The PFN range must belong to a single zone.
7613 *
7614 * Returns zero on success or negative error code. On success all
7615 * pages which PFN is in [start, end) are allocated for the caller and
7616 * need to be freed with free_contig_range().
7617 */
0815f3d8 7618int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7619 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7620{
041d3a8c 7621 unsigned long outer_start, outer_end;
d00181b9
KS
7622 unsigned int order;
7623 int ret = 0;
041d3a8c 7624
bb13ffeb
MG
7625 struct compact_control cc = {
7626 .nr_migratepages = 0,
7627 .order = -1,
7628 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7629 .mode = MIGRATE_SYNC,
bb13ffeb 7630 .ignore_skip_hint = true,
7dea19f9 7631 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7632 };
7633 INIT_LIST_HEAD(&cc.migratepages);
7634
041d3a8c
MN
7635 /*
7636 * What we do here is we mark all pageblocks in range as
7637 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7638 * have different sizes, and due to the way page allocator
7639 * work, we align the range to biggest of the two pages so
7640 * that page allocator won't try to merge buddies from
7641 * different pageblocks and change MIGRATE_ISOLATE to some
7642 * other migration type.
7643 *
7644 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7645 * migrate the pages from an unaligned range (ie. pages that
7646 * we are interested in). This will put all the pages in
7647 * range back to page allocator as MIGRATE_ISOLATE.
7648 *
7649 * When this is done, we take the pages in range from page
7650 * allocator removing them from the buddy system. This way
7651 * page allocator will never consider using them.
7652 *
7653 * This lets us mark the pageblocks back as
7654 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7655 * aligned range but not in the unaligned, original range are
7656 * put back to page allocator so that buddy can use them.
7657 */
7658
7659 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7660 pfn_max_align_up(end), migratetype,
7661 false);
041d3a8c 7662 if (ret)
86a595f9 7663 return ret;
041d3a8c 7664
8ef5849f
JK
7665 /*
7666 * In case of -EBUSY, we'd like to know which page causes problem.
7667 * So, just fall through. We will check it in test_pages_isolated().
7668 */
bb13ffeb 7669 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7670 if (ret && ret != -EBUSY)
041d3a8c
MN
7671 goto done;
7672
7673 /*
7674 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7675 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7676 * more, all pages in [start, end) are free in page allocator.
7677 * What we are going to do is to allocate all pages from
7678 * [start, end) (that is remove them from page allocator).
7679 *
7680 * The only problem is that pages at the beginning and at the
7681 * end of interesting range may be not aligned with pages that
7682 * page allocator holds, ie. they can be part of higher order
7683 * pages. Because of this, we reserve the bigger range and
7684 * once this is done free the pages we are not interested in.
7685 *
7686 * We don't have to hold zone->lock here because the pages are
7687 * isolated thus they won't get removed from buddy.
7688 */
7689
7690 lru_add_drain_all();
510f5507 7691 drain_all_pages(cc.zone);
041d3a8c
MN
7692
7693 order = 0;
7694 outer_start = start;
7695 while (!PageBuddy(pfn_to_page(outer_start))) {
7696 if (++order >= MAX_ORDER) {
8ef5849f
JK
7697 outer_start = start;
7698 break;
041d3a8c
MN
7699 }
7700 outer_start &= ~0UL << order;
7701 }
7702
8ef5849f
JK
7703 if (outer_start != start) {
7704 order = page_order(pfn_to_page(outer_start));
7705
7706 /*
7707 * outer_start page could be small order buddy page and
7708 * it doesn't include start page. Adjust outer_start
7709 * in this case to report failed page properly
7710 * on tracepoint in test_pages_isolated()
7711 */
7712 if (outer_start + (1UL << order) <= start)
7713 outer_start = start;
7714 }
7715
041d3a8c 7716 /* Make sure the range is really isolated. */
b023f468 7717 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7718 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7719 __func__, outer_start, end);
041d3a8c
MN
7720 ret = -EBUSY;
7721 goto done;
7722 }
7723
49f223a9 7724 /* Grab isolated pages from freelists. */
bb13ffeb 7725 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7726 if (!outer_end) {
7727 ret = -EBUSY;
7728 goto done;
7729 }
7730
7731 /* Free head and tail (if any) */
7732 if (start != outer_start)
7733 free_contig_range(outer_start, start - outer_start);
7734 if (end != outer_end)
7735 free_contig_range(end, outer_end - end);
7736
7737done:
7738 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7739 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7740 return ret;
7741}
7742
7743void free_contig_range(unsigned long pfn, unsigned nr_pages)
7744{
bcc2b02f
MS
7745 unsigned int count = 0;
7746
7747 for (; nr_pages--; pfn++) {
7748 struct page *page = pfn_to_page(pfn);
7749
7750 count += page_count(page) != 1;
7751 __free_page(page);
7752 }
7753 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7754}
7755#endif
7756
4ed7e022 7757#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7758/*
7759 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7760 * page high values need to be recalulated.
7761 */
4ed7e022
JL
7762void __meminit zone_pcp_update(struct zone *zone)
7763{
0a647f38 7764 unsigned cpu;
c8e251fa 7765 mutex_lock(&pcp_batch_high_lock);
0a647f38 7766 for_each_possible_cpu(cpu)
169f6c19
CS
7767 pageset_set_high_and_batch(zone,
7768 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7769 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7770}
7771#endif
7772
340175b7
JL
7773void zone_pcp_reset(struct zone *zone)
7774{
7775 unsigned long flags;
5a883813
MK
7776 int cpu;
7777 struct per_cpu_pageset *pset;
340175b7
JL
7778
7779 /* avoid races with drain_pages() */
7780 local_irq_save(flags);
7781 if (zone->pageset != &boot_pageset) {
5a883813
MK
7782 for_each_online_cpu(cpu) {
7783 pset = per_cpu_ptr(zone->pageset, cpu);
7784 drain_zonestat(zone, pset);
7785 }
340175b7
JL
7786 free_percpu(zone->pageset);
7787 zone->pageset = &boot_pageset;
7788 }
7789 local_irq_restore(flags);
7790}
7791
6dcd73d7 7792#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7793/*
b9eb6319
JK
7794 * All pages in the range must be in a single zone and isolated
7795 * before calling this.
0c0e6195
KH
7796 */
7797void
7798__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7799{
7800 struct page *page;
7801 struct zone *zone;
7aeb09f9 7802 unsigned int order, i;
0c0e6195
KH
7803 unsigned long pfn;
7804 unsigned long flags;
7805 /* find the first valid pfn */
7806 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7807 if (pfn_valid(pfn))
7808 break;
7809 if (pfn == end_pfn)
7810 return;
2d070eab 7811 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7812 zone = page_zone(pfn_to_page(pfn));
7813 spin_lock_irqsave(&zone->lock, flags);
7814 pfn = start_pfn;
7815 while (pfn < end_pfn) {
7816 if (!pfn_valid(pfn)) {
7817 pfn++;
7818 continue;
7819 }
7820 page = pfn_to_page(pfn);
b023f468
WC
7821 /*
7822 * The HWPoisoned page may be not in buddy system, and
7823 * page_count() is not 0.
7824 */
7825 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7826 pfn++;
7827 SetPageReserved(page);
7828 continue;
7829 }
7830
0c0e6195
KH
7831 BUG_ON(page_count(page));
7832 BUG_ON(!PageBuddy(page));
7833 order = page_order(page);
7834#ifdef CONFIG_DEBUG_VM
1170532b
JP
7835 pr_info("remove from free list %lx %d %lx\n",
7836 pfn, 1 << order, end_pfn);
0c0e6195
KH
7837#endif
7838 list_del(&page->lru);
7839 rmv_page_order(page);
7840 zone->free_area[order].nr_free--;
0c0e6195
KH
7841 for (i = 0; i < (1 << order); i++)
7842 SetPageReserved((page+i));
7843 pfn += (1 << order);
7844 }
7845 spin_unlock_irqrestore(&zone->lock, flags);
7846}
7847#endif
8d22ba1b 7848
8d22ba1b
WF
7849bool is_free_buddy_page(struct page *page)
7850{
7851 struct zone *zone = page_zone(page);
7852 unsigned long pfn = page_to_pfn(page);
7853 unsigned long flags;
7aeb09f9 7854 unsigned int order;
8d22ba1b
WF
7855
7856 spin_lock_irqsave(&zone->lock, flags);
7857 for (order = 0; order < MAX_ORDER; order++) {
7858 struct page *page_head = page - (pfn & ((1 << order) - 1));
7859
7860 if (PageBuddy(page_head) && page_order(page_head) >= order)
7861 break;
7862 }
7863 spin_unlock_irqrestore(&zone->lock, flags);
7864
7865 return order < MAX_ORDER;
7866}