]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm: update callers to use HASH_ZERO flag
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
1da177e4 69
7ee3d4e8 70#include <asm/sections.h>
1da177e4 71#include <asm/tlbflush.h>
ac924c60 72#include <asm/div64.h>
1da177e4
LT
73#include "internal.h"
74
c8e251fa
CS
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 77#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 78
72812019
LS
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
7aac7898
LS
84#ifdef CONFIG_HAVE_MEMORYLESS_NODES
85/*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 93int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
94#endif
95
bd233f53
MG
96/* work_structs for global per-cpu drains */
97DEFINE_MUTEX(pcpu_drain_mutex);
98DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
38addce8 100#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 101volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
102EXPORT_SYMBOL(latent_entropy);
103#endif
104
1da177e4 105/*
13808910 106 * Array of node states.
1da177e4 107 */
13808910
CL
108nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111#ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113#ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
115#endif
116#ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118#endif
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
bb14c2c7
VB
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
452aa699
RW
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
c9e664f1
RW
161
162static gfp_t saved_gfp_mask;
163
164void pm_restore_gfp_mask(void)
452aa699
RW
165{
166 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
452aa699
RW
171}
172
c9e664f1 173void pm_restrict_gfp_mask(void)
452aa699 174{
452aa699 175 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
d0164adc 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 179}
f90ac398
MG
180
181bool pm_suspended_storage(void)
182{
d0164adc 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
184 return false;
185 return true;
186}
452aa699
RW
187#endif /* CONFIG_PM_SLEEP */
188
d9c23400 189#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 190unsigned int pageblock_order __read_mostly;
d9c23400
MG
191#endif
192
d98c7a09 193static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 194
1da177e4
LT
195/*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
1da177e4 205 */
2f1b6248 206int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 207#ifdef CONFIG_ZONE_DMA
2f1b6248 208 256,
4b51d669 209#endif
fb0e7942 210#ifdef CONFIG_ZONE_DMA32
2f1b6248 211 256,
fb0e7942 212#endif
e53ef38d 213#ifdef CONFIG_HIGHMEM
2a1e274a 214 32,
e53ef38d 215#endif
2a1e274a 216 32,
2f1b6248 217};
1da177e4
LT
218
219EXPORT_SYMBOL(totalram_pages);
1da177e4 220
15ad7cdc 221static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 222#ifdef CONFIG_ZONE_DMA
2f1b6248 223 "DMA",
4b51d669 224#endif
fb0e7942 225#ifdef CONFIG_ZONE_DMA32
2f1b6248 226 "DMA32",
fb0e7942 227#endif
2f1b6248 228 "Normal",
e53ef38d 229#ifdef CONFIG_HIGHMEM
2a1e274a 230 "HighMem",
e53ef38d 231#endif
2a1e274a 232 "Movable",
033fbae9
DW
233#ifdef CONFIG_ZONE_DEVICE
234 "Device",
235#endif
2f1b6248
CL
236};
237
60f30350
VB
238char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243#ifdef CONFIG_CMA
244 "CMA",
245#endif
246#ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248#endif
249};
250
f1e61557
KS
251compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254#ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256#endif
9a982250
KS
257#ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259#endif
f1e61557
KS
260};
261
1da177e4 262int min_free_kbytes = 1024;
42aa83cb 263int user_min_free_kbytes = -1;
795ae7a0 264int watermark_scale_factor = 10;
1da177e4 265
2c85f51d
JB
266static unsigned long __meminitdata nr_kernel_pages;
267static unsigned long __meminitdata nr_all_pages;
a3142c8e 268static unsigned long __meminitdata dma_reserve;
1da177e4 269
0ee332c1
TH
270#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273static unsigned long __initdata required_kernelcore;
274static unsigned long __initdata required_movablecore;
275static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 276static bool mirrored_kernelcore;
0ee332c1
TH
277
278/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279int movable_zone;
280EXPORT_SYMBOL(movable_zone);
281#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 282
418508c1
MS
283#if MAX_NUMNODES > 1
284int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 285int nr_online_nodes __read_mostly = 1;
418508c1 286EXPORT_SYMBOL(nr_node_ids);
62bc62a8 287EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
288#endif
289
9ef9acb0
MG
290int page_group_by_mobility_disabled __read_mostly;
291
3a80a7fa
MG
292#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293static inline void reset_deferred_meminit(pg_data_t *pgdat)
294{
864b9a39
MH
295 unsigned long max_initialise;
296 unsigned long reserved_lowmem;
297
298 /*
299 * Initialise at least 2G of a node but also take into account that
300 * two large system hashes that can take up 1GB for 0.25TB/node.
301 */
302 max_initialise = max(2UL << (30 - PAGE_SHIFT),
303 (pgdat->node_spanned_pages >> 8));
304
305 /*
306 * Compensate the all the memblock reservations (e.g. crash kernel)
307 * from the initial estimation to make sure we will initialize enough
308 * memory to boot.
309 */
310 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
311 pgdat->node_start_pfn + max_initialise);
312 max_initialise += reserved_lowmem;
313
314 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
315 pgdat->first_deferred_pfn = ULONG_MAX;
316}
317
318/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 319static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 320{
ef70b6f4
MG
321 int nid = early_pfn_to_nid(pfn);
322
323 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
324 return true;
325
326 return false;
327}
328
329/*
330 * Returns false when the remaining initialisation should be deferred until
331 * later in the boot cycle when it can be parallelised.
332 */
333static inline bool update_defer_init(pg_data_t *pgdat,
334 unsigned long pfn, unsigned long zone_end,
335 unsigned long *nr_initialised)
336{
337 /* Always populate low zones for address-contrained allocations */
338 if (zone_end < pgdat_end_pfn(pgdat))
339 return true;
3a80a7fa 340 (*nr_initialised)++;
864b9a39 341 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
342 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
343 pgdat->first_deferred_pfn = pfn;
344 return false;
345 }
346
347 return true;
348}
349#else
350static inline void reset_deferred_meminit(pg_data_t *pgdat)
351{
352}
353
354static inline bool early_page_uninitialised(unsigned long pfn)
355{
356 return false;
357}
358
359static inline bool update_defer_init(pg_data_t *pgdat,
360 unsigned long pfn, unsigned long zone_end,
361 unsigned long *nr_initialised)
362{
363 return true;
364}
365#endif
366
0b423ca2
MG
367/* Return a pointer to the bitmap storing bits affecting a block of pages */
368static inline unsigned long *get_pageblock_bitmap(struct page *page,
369 unsigned long pfn)
370{
371#ifdef CONFIG_SPARSEMEM
372 return __pfn_to_section(pfn)->pageblock_flags;
373#else
374 return page_zone(page)->pageblock_flags;
375#endif /* CONFIG_SPARSEMEM */
376}
377
378static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
379{
380#ifdef CONFIG_SPARSEMEM
381 pfn &= (PAGES_PER_SECTION-1);
382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
383#else
384 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386#endif /* CONFIG_SPARSEMEM */
387}
388
389/**
390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @pfn: The target page frame number
393 * @end_bitidx: The last bit of interest to retrieve
394 * @mask: mask of bits that the caller is interested in
395 *
396 * Return: pageblock_bits flags
397 */
398static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
399 unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402{
403 unsigned long *bitmap;
404 unsigned long bitidx, word_bitidx;
405 unsigned long word;
406
407 bitmap = get_pageblock_bitmap(page, pfn);
408 bitidx = pfn_to_bitidx(page, pfn);
409 word_bitidx = bitidx / BITS_PER_LONG;
410 bitidx &= (BITS_PER_LONG-1);
411
412 word = bitmap[word_bitidx];
413 bitidx += end_bitidx;
414 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
415}
416
417unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
418 unsigned long end_bitidx,
419 unsigned long mask)
420{
421 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
422}
423
424static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
425{
426 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
427}
428
429/**
430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431 * @page: The page within the block of interest
432 * @flags: The flags to set
433 * @pfn: The target page frame number
434 * @end_bitidx: The last bit of interest
435 * @mask: mask of bits that the caller is interested in
436 */
437void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
438 unsigned long pfn,
439 unsigned long end_bitidx,
440 unsigned long mask)
441{
442 unsigned long *bitmap;
443 unsigned long bitidx, word_bitidx;
444 unsigned long old_word, word;
445
446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
447
448 bitmap = get_pageblock_bitmap(page, pfn);
449 bitidx = pfn_to_bitidx(page, pfn);
450 word_bitidx = bitidx / BITS_PER_LONG;
451 bitidx &= (BITS_PER_LONG-1);
452
453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
454
455 bitidx += end_bitidx;
456 mask <<= (BITS_PER_LONG - bitidx - 1);
457 flags <<= (BITS_PER_LONG - bitidx - 1);
458
459 word = READ_ONCE(bitmap[word_bitidx]);
460 for (;;) {
461 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
462 if (word == old_word)
463 break;
464 word = old_word;
465 }
466}
3a80a7fa 467
ee6f509c 468void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 469{
5d0f3f72
KM
470 if (unlikely(page_group_by_mobility_disabled &&
471 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
472 migratetype = MIGRATE_UNMOVABLE;
473
b2a0ac88
MG
474 set_pageblock_flags_group(page, (unsigned long)migratetype,
475 PB_migrate, PB_migrate_end);
476}
477
13e7444b 478#ifdef CONFIG_DEBUG_VM
c6a57e19 479static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 480{
bdc8cb98
DH
481 int ret = 0;
482 unsigned seq;
483 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 484 unsigned long sp, start_pfn;
c6a57e19 485
bdc8cb98
DH
486 do {
487 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
488 start_pfn = zone->zone_start_pfn;
489 sp = zone->spanned_pages;
108bcc96 490 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
491 ret = 1;
492 } while (zone_span_seqretry(zone, seq));
493
b5e6a5a2 494 if (ret)
613813e8
DH
495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 pfn, zone_to_nid(zone), zone->name,
497 start_pfn, start_pfn + sp);
b5e6a5a2 498
bdc8cb98 499 return ret;
c6a57e19
DH
500}
501
502static int page_is_consistent(struct zone *zone, struct page *page)
503{
14e07298 504 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 505 return 0;
1da177e4 506 if (zone != page_zone(page))
c6a57e19
DH
507 return 0;
508
509 return 1;
510}
511/*
512 * Temporary debugging check for pages not lying within a given zone.
513 */
514static int bad_range(struct zone *zone, struct page *page)
515{
516 if (page_outside_zone_boundaries(zone, page))
1da177e4 517 return 1;
c6a57e19
DH
518 if (!page_is_consistent(zone, page))
519 return 1;
520
1da177e4
LT
521 return 0;
522}
13e7444b
NP
523#else
524static inline int bad_range(struct zone *zone, struct page *page)
525{
526 return 0;
527}
528#endif
529
d230dec1
KS
530static void bad_page(struct page *page, const char *reason,
531 unsigned long bad_flags)
1da177e4 532{
d936cf9b
HD
533 static unsigned long resume;
534 static unsigned long nr_shown;
535 static unsigned long nr_unshown;
536
537 /*
538 * Allow a burst of 60 reports, then keep quiet for that minute;
539 * or allow a steady drip of one report per second.
540 */
541 if (nr_shown == 60) {
542 if (time_before(jiffies, resume)) {
543 nr_unshown++;
544 goto out;
545 }
546 if (nr_unshown) {
ff8e8116 547 pr_alert(
1e9e6365 548 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
549 nr_unshown);
550 nr_unshown = 0;
551 }
552 nr_shown = 0;
553 }
554 if (nr_shown++ == 0)
555 resume = jiffies + 60 * HZ;
556
ff8e8116 557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 558 current->comm, page_to_pfn(page));
ff8e8116
VB
559 __dump_page(page, reason);
560 bad_flags &= page->flags;
561 if (bad_flags)
562 pr_alert("bad because of flags: %#lx(%pGp)\n",
563 bad_flags, &bad_flags);
4e462112 564 dump_page_owner(page);
3dc14741 565
4f31888c 566 print_modules();
1da177e4 567 dump_stack();
d936cf9b 568out:
8cc3b392 569 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 570 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
572}
573
1da177e4
LT
574/*
575 * Higher-order pages are called "compound pages". They are structured thusly:
576 *
1d798ca3 577 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 578 *
1d798ca3
KS
579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 581 *
1d798ca3
KS
582 * The first tail page's ->compound_dtor holds the offset in array of compound
583 * page destructors. See compound_page_dtors.
1da177e4 584 *
1d798ca3 585 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 586 * This usage means that zero-order pages may not be compound.
1da177e4 587 */
d98c7a09 588
9a982250 589void free_compound_page(struct page *page)
d98c7a09 590{
d85f3385 591 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
592}
593
d00181b9 594void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
595{
596 int i;
597 int nr_pages = 1 << order;
598
f1e61557 599 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
600 set_compound_order(page, order);
601 __SetPageHead(page);
602 for (i = 1; i < nr_pages; i++) {
603 struct page *p = page + i;
58a84aa9 604 set_page_count(p, 0);
1c290f64 605 p->mapping = TAIL_MAPPING;
1d798ca3 606 set_compound_head(p, page);
18229df5 607 }
53f9263b 608 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
609}
610
c0a32fc5
SG
611#ifdef CONFIG_DEBUG_PAGEALLOC
612unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
613bool _debug_pagealloc_enabled __read_mostly
614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 615EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
616bool _debug_guardpage_enabled __read_mostly;
617
031bc574
JK
618static int __init early_debug_pagealloc(char *buf)
619{
620 if (!buf)
621 return -EINVAL;
2a138dc7 622 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
623}
624early_param("debug_pagealloc", early_debug_pagealloc);
625
e30825f1
JK
626static bool need_debug_guardpage(void)
627{
031bc574
JK
628 /* If we don't use debug_pagealloc, we don't need guard page */
629 if (!debug_pagealloc_enabled())
630 return false;
631
f1c1e9f7
JK
632 if (!debug_guardpage_minorder())
633 return false;
634
e30825f1
JK
635 return true;
636}
637
638static void init_debug_guardpage(void)
639{
031bc574
JK
640 if (!debug_pagealloc_enabled())
641 return;
642
f1c1e9f7
JK
643 if (!debug_guardpage_minorder())
644 return;
645
e30825f1
JK
646 _debug_guardpage_enabled = true;
647}
648
649struct page_ext_operations debug_guardpage_ops = {
650 .need = need_debug_guardpage,
651 .init = init_debug_guardpage,
652};
c0a32fc5
SG
653
654static int __init debug_guardpage_minorder_setup(char *buf)
655{
656 unsigned long res;
657
658 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 659 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
660 return 0;
661 }
662 _debug_guardpage_minorder = res;
1170532b 663 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
664 return 0;
665}
f1c1e9f7 666early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 667
acbc15a4 668static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 669 unsigned int order, int migratetype)
c0a32fc5 670{
e30825f1
JK
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
acbc15a4
JK
674 return false;
675
676 if (order >= debug_guardpage_minorder())
677 return false;
e30825f1
JK
678
679 page_ext = lookup_page_ext(page);
f86e4271 680 if (unlikely(!page_ext))
acbc15a4 681 return false;
f86e4271 682
e30825f1
JK
683 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
2847cf95
JK
685 INIT_LIST_HEAD(&page->lru);
686 set_page_private(page, order);
687 /* Guard pages are not available for any usage */
688 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
689
690 return true;
c0a32fc5
SG
691}
692
2847cf95
JK
693static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype)
c0a32fc5 695{
e30825f1
JK
696 struct page_ext *page_ext;
697
698 if (!debug_guardpage_enabled())
699 return;
700
701 page_ext = lookup_page_ext(page);
f86e4271
YS
702 if (unlikely(!page_ext))
703 return;
704
e30825f1
JK
705 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
706
2847cf95
JK
707 set_page_private(page, 0);
708 if (!is_migrate_isolate(migratetype))
709 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
710}
711#else
980ac167 712struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
713static inline bool set_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) { return false; }
2847cf95
JK
715static inline void clear_page_guard(struct zone *zone, struct page *page,
716 unsigned int order, int migratetype) {}
c0a32fc5
SG
717#endif
718
7aeb09f9 719static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 720{
4c21e2f2 721 set_page_private(page, order);
676165a8 722 __SetPageBuddy(page);
1da177e4
LT
723}
724
725static inline void rmv_page_order(struct page *page)
726{
676165a8 727 __ClearPageBuddy(page);
4c21e2f2 728 set_page_private(page, 0);
1da177e4
LT
729}
730
1da177e4
LT
731/*
732 * This function checks whether a page is free && is the buddy
733 * we can do coalesce a page and its buddy if
13ad59df 734 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 735 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
736 * (c) a page and its buddy have the same order &&
737 * (d) a page and its buddy are in the same zone.
676165a8 738 *
cf6fe945
WSH
739 * For recording whether a page is in the buddy system, we set ->_mapcount
740 * PAGE_BUDDY_MAPCOUNT_VALUE.
741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742 * serialized by zone->lock.
1da177e4 743 *
676165a8 744 * For recording page's order, we use page_private(page).
1da177e4 745 */
cb2b95e1 746static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 747 unsigned int order)
1da177e4 748{
c0a32fc5 749 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
4c5018ce
WY
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
c0a32fc5
SG
755 return 1;
756 }
757
cb2b95e1 758 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
759 /*
760 * zone check is done late to avoid uselessly
761 * calculating zone/node ids for pages that could
762 * never merge.
763 */
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
6aa3001b 769 return 1;
676165a8 770 }
6aa3001b 771 return 0;
1da177e4
LT
772}
773
774/*
775 * Freeing function for a buddy system allocator.
776 *
777 * The concept of a buddy system is to maintain direct-mapped table
778 * (containing bit values) for memory blocks of various "orders".
779 * The bottom level table contains the map for the smallest allocatable
780 * units of memory (here, pages), and each level above it describes
781 * pairs of units from the levels below, hence, "buddies".
782 * At a high level, all that happens here is marking the table entry
783 * at the bottom level available, and propagating the changes upward
784 * as necessary, plus some accounting needed to play nicely with other
785 * parts of the VM system.
786 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
787 * free pages of length of (1 << order) and marked with _mapcount
788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
789 * field.
1da177e4 790 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
1da177e4 793 * If a block is freed, and its buddy is also free, then this
5f63b720 794 * triggers coalescing into a block of larger size.
1da177e4 795 *
6d49e352 796 * -- nyc
1da177e4
LT
797 */
798
48db57f8 799static inline void __free_one_page(struct page *page,
dc4b0caf 800 unsigned long pfn,
ed0ae21d
MG
801 struct zone *zone, unsigned int order,
802 int migratetype)
1da177e4 803{
76741e77
VB
804 unsigned long combined_pfn;
805 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 806 struct page *buddy;
d9dddbf5
VB
807 unsigned int max_order;
808
809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 810
d29bb978 811 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 813
ed0ae21d 814 VM_BUG_ON(migratetype == -1);
d9dddbf5 815 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 816 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 817
76741e77 818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 820
d9dddbf5 821continue_merging:
3c605096 822 while (order < max_order - 1) {
76741e77
VB
823 buddy_pfn = __find_buddy_pfn(pfn, order);
824 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
825
826 if (!pfn_valid_within(buddy_pfn))
827 goto done_merging;
cb2b95e1 828 if (!page_is_buddy(page, buddy, order))
d9dddbf5 829 goto done_merging;
c0a32fc5
SG
830 /*
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
833 */
834 if (page_is_guard(buddy)) {
2847cf95 835 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
836 } else {
837 list_del(&buddy->lru);
838 zone->free_area[order].nr_free--;
839 rmv_page_order(buddy);
840 }
76741e77
VB
841 combined_pfn = buddy_pfn & pfn;
842 page = page + (combined_pfn - pfn);
843 pfn = combined_pfn;
1da177e4
LT
844 order++;
845 }
d9dddbf5
VB
846 if (max_order < MAX_ORDER) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
851 *
852 * We don't want to hit this code for the more frequent
853 * low-order merging.
854 */
855 if (unlikely(has_isolate_pageblock(zone))) {
856 int buddy_mt;
857
76741e77
VB
858 buddy_pfn = __find_buddy_pfn(pfn, order);
859 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
860 buddy_mt = get_pageblock_migratetype(buddy);
861
862 if (migratetype != buddy_mt
863 && (is_migrate_isolate(migratetype) ||
864 is_migrate_isolate(buddy_mt)))
865 goto done_merging;
866 }
867 max_order++;
868 goto continue_merging;
869 }
870
871done_merging:
1da177e4 872 set_page_order(page, order);
6dda9d55
CZ
873
874 /*
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
881 */
13ad59df 882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 883 struct page *higher_page, *higher_buddy;
76741e77
VB
884 combined_pfn = buddy_pfn & pfn;
885 higher_page = page + (combined_pfn - pfn);
886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
888 if (pfn_valid_within(buddy_pfn) &&
889 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
890 list_add_tail(&page->lru,
891 &zone->free_area[order].free_list[migratetype]);
892 goto out;
893 }
894 }
895
896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
897out:
1da177e4
LT
898 zone->free_area[order].nr_free++;
899}
900
7bfec6f4
MG
901/*
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
905 */
906static inline bool page_expected_state(struct page *page,
907 unsigned long check_flags)
908{
909 if (unlikely(atomic_read(&page->_mapcount) != -1))
910 return false;
911
912 if (unlikely((unsigned long)page->mapping |
913 page_ref_count(page) |
914#ifdef CONFIG_MEMCG
915 (unsigned long)page->mem_cgroup |
916#endif
917 (page->flags & check_flags)))
918 return false;
919
920 return true;
921}
922
bb552ac6 923static void free_pages_check_bad(struct page *page)
1da177e4 924{
7bfec6f4
MG
925 const char *bad_reason;
926 unsigned long bad_flags;
927
7bfec6f4
MG
928 bad_reason = NULL;
929 bad_flags = 0;
f0b791a3 930
53f9263b 931 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
fe896d18 935 if (unlikely(page_ref_count(page) != 0))
0139aa7b 936 bad_reason = "nonzero _refcount";
f0b791a3
DH
937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
940 }
9edad6ea
JW
941#ifdef CONFIG_MEMCG
942 if (unlikely(page->mem_cgroup))
943 bad_reason = "page still charged to cgroup";
944#endif
7bfec6f4 945 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
946}
947
948static inline int free_pages_check(struct page *page)
949{
da838d4f 950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 951 return 0;
bb552ac6
MG
952
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page);
7bfec6f4 955 return 1;
1da177e4
LT
956}
957
4db7548c
MG
958static int free_tail_pages_check(struct page *head_page, struct page *page)
959{
960 int ret = 1;
961
962 /*
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 */
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967
968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
969 ret = 0;
970 goto out;
971 }
972 switch (page - head_page) {
973 case 1:
974 /* the first tail page: ->mapping is compound_mapcount() */
975 if (unlikely(compound_mapcount(page))) {
976 bad_page(page, "nonzero compound_mapcount", 0);
977 goto out;
978 }
979 break;
980 case 2:
981 /*
982 * the second tail page: ->mapping is
983 * page_deferred_list().next -- ignore value.
984 */
985 break;
986 default:
987 if (page->mapping != TAIL_MAPPING) {
988 bad_page(page, "corrupted mapping in tail page", 0);
989 goto out;
990 }
991 break;
992 }
993 if (unlikely(!PageTail(page))) {
994 bad_page(page, "PageTail not set", 0);
995 goto out;
996 }
997 if (unlikely(compound_head(page) != head_page)) {
998 bad_page(page, "compound_head not consistent", 0);
999 goto out;
1000 }
1001 ret = 0;
1002out:
1003 page->mapping = NULL;
1004 clear_compound_head(page);
1005 return ret;
1006}
1007
e2769dbd
MG
1008static __always_inline bool free_pages_prepare(struct page *page,
1009 unsigned int order, bool check_free)
4db7548c 1010{
e2769dbd 1011 int bad = 0;
4db7548c 1012
4db7548c
MG
1013 VM_BUG_ON_PAGE(PageTail(page), page);
1014
e2769dbd
MG
1015 trace_mm_page_free(page, order);
1016 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1017
1018 /*
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1021 */
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1024 int i;
1025
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1027
9a73f61b
KS
1028 if (compound)
1029 ClearPageDoubleMap(page);
e2769dbd
MG
1030 for (i = 1; i < (1 << order); i++) {
1031 if (compound)
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1034 bad++;
1035 continue;
1036 }
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 }
1039 }
bda807d4 1040 if (PageMappingFlags(page))
4db7548c 1041 page->mapping = NULL;
c4159a75 1042 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1043 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1044 if (check_free)
1045 bad += free_pages_check(page);
1046 if (bad)
1047 return false;
4db7548c 1048
e2769dbd
MG
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
4db7548c
MG
1052
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 debug_check_no_obj_freed(page_address(page),
e2769dbd 1057 PAGE_SIZE << order);
4db7548c 1058 }
e2769dbd
MG
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
29b52de1 1062 kasan_free_pages(page, order);
4db7548c 1063
4db7548c
MG
1064 return true;
1065}
1066
e2769dbd
MG
1067#ifdef CONFIG_DEBUG_VM
1068static inline bool free_pcp_prepare(struct page *page)
1069{
1070 return free_pages_prepare(page, 0, true);
1071}
1072
1073static inline bool bulkfree_pcp_prepare(struct page *page)
1074{
1075 return false;
1076}
1077#else
1078static bool free_pcp_prepare(struct page *page)
1079{
1080 return free_pages_prepare(page, 0, false);
1081}
1082
4db7548c
MG
1083static bool bulkfree_pcp_prepare(struct page *page)
1084{
1085 return free_pages_check(page);
1086}
1087#endif /* CONFIG_DEBUG_VM */
1088
1da177e4 1089/*
5f8dcc21 1090 * Frees a number of pages from the PCP lists
1da177e4 1091 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1092 * count is the number of pages to free.
1da177e4
LT
1093 *
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1096 *
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1099 */
5f8dcc21
MG
1100static void free_pcppages_bulk(struct zone *zone, int count,
1101 struct per_cpu_pages *pcp)
1da177e4 1102{
5f8dcc21 1103 int migratetype = 0;
a6f9edd6 1104 int batch_free = 0;
3777999d 1105 bool isolated_pageblocks;
5f8dcc21 1106
d34b0733 1107 spin_lock(&zone->lock);
3777999d 1108 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1109
e5b31ac2 1110 while (count) {
48db57f8 1111 struct page *page;
5f8dcc21
MG
1112 struct list_head *list;
1113
1114 /*
a6f9edd6
MG
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1119 * lists
5f8dcc21
MG
1120 */
1121 do {
a6f9edd6 1122 batch_free++;
5f8dcc21
MG
1123 if (++migratetype == MIGRATE_PCPTYPES)
1124 migratetype = 0;
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
48db57f8 1127
1d16871d
NK
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1130 batch_free = count;
1d16871d 1131
a6f9edd6 1132 do {
770c8aaa
BZ
1133 int mt; /* migratetype of the to-be-freed page */
1134
a16601c5 1135 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
aa016d14 1138
bb14c2c7 1139 mt = get_pcppage_migratetype(page);
aa016d14
VB
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
3777999d 1143 if (unlikely(isolated_pageblocks))
51bb1a40 1144 mt = get_pageblock_migratetype(page);
51bb1a40 1145
4db7548c
MG
1146 if (bulkfree_pcp_prepare(page))
1147 continue;
1148
dc4b0caf 1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1150 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1151 } while (--count && --batch_free && !list_empty(list));
1da177e4 1152 }
d34b0733 1153 spin_unlock(&zone->lock);
1da177e4
LT
1154}
1155
dc4b0caf
MG
1156static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
7aeb09f9 1158 unsigned int order,
ed0ae21d 1159 int migratetype)
1da177e4 1160{
d34b0733 1161 spin_lock(&zone->lock);
ad53f92e
JK
1162 if (unlikely(has_isolate_pageblock(zone) ||
1163 is_migrate_isolate(migratetype))) {
1164 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1165 }
dc4b0caf 1166 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1167 spin_unlock(&zone->lock);
48db57f8
NP
1168}
1169
1e8ce83c
RH
1170static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 unsigned long zone, int nid)
1172{
1e8ce83c 1173 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1174 init_page_count(page);
1175 page_mapcount_reset(page);
1176 page_cpupid_reset_last(page);
1e8ce83c 1177
1e8ce83c
RH
1178 INIT_LIST_HEAD(&page->lru);
1179#ifdef WANT_PAGE_VIRTUAL
1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 if (!is_highmem_idx(zone))
1182 set_page_address(page, __va(pfn << PAGE_SHIFT));
1183#endif
1184}
1185
1186static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1187 int nid)
1188{
1189 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1190}
1191
7e18adb4
MG
1192#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193static void init_reserved_page(unsigned long pfn)
1194{
1195 pg_data_t *pgdat;
1196 int nid, zid;
1197
1198 if (!early_page_uninitialised(pfn))
1199 return;
1200
1201 nid = early_pfn_to_nid(pfn);
1202 pgdat = NODE_DATA(nid);
1203
1204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1205 struct zone *zone = &pgdat->node_zones[zid];
1206
1207 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1208 break;
1209 }
1210 __init_single_pfn(pfn, zid, nid);
1211}
1212#else
1213static inline void init_reserved_page(unsigned long pfn)
1214{
1215}
1216#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1217
92923ca3
NZ
1218/*
1219 * Initialised pages do not have PageReserved set. This function is
1220 * called for each range allocated by the bootmem allocator and
1221 * marks the pages PageReserved. The remaining valid pages are later
1222 * sent to the buddy page allocator.
1223 */
4b50bcc7 1224void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1225{
1226 unsigned long start_pfn = PFN_DOWN(start);
1227 unsigned long end_pfn = PFN_UP(end);
1228
7e18adb4
MG
1229 for (; start_pfn < end_pfn; start_pfn++) {
1230 if (pfn_valid(start_pfn)) {
1231 struct page *page = pfn_to_page(start_pfn);
1232
1233 init_reserved_page(start_pfn);
1d798ca3
KS
1234
1235 /* Avoid false-positive PageTail() */
1236 INIT_LIST_HEAD(&page->lru);
1237
7e18adb4
MG
1238 SetPageReserved(page);
1239 }
1240 }
92923ca3
NZ
1241}
1242
ec95f53a
KM
1243static void __free_pages_ok(struct page *page, unsigned int order)
1244{
d34b0733 1245 unsigned long flags;
95e34412 1246 int migratetype;
dc4b0caf 1247 unsigned long pfn = page_to_pfn(page);
ec95f53a 1248
e2769dbd 1249 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1250 return;
1251
cfc47a28 1252 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1253 local_irq_save(flags);
1254 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1255 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1256 local_irq_restore(flags);
1da177e4
LT
1257}
1258
949698a3 1259static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1260{
c3993076 1261 unsigned int nr_pages = 1 << order;
e2d0bd2b 1262 struct page *p = page;
c3993076 1263 unsigned int loop;
a226f6c8 1264
e2d0bd2b
YL
1265 prefetchw(p);
1266 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1267 prefetchw(p + 1);
c3993076
JW
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
a226f6c8 1270 }
e2d0bd2b
YL
1271 __ClearPageReserved(p);
1272 set_page_count(p, 0);
c3993076 1273
e2d0bd2b 1274 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1275 set_page_refcounted(page);
1276 __free_pages(page, order);
a226f6c8
DH
1277}
1278
75a592a4
MG
1279#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1281
75a592a4
MG
1282static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1283
1284int __meminit early_pfn_to_nid(unsigned long pfn)
1285{
7ace9917 1286 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1287 int nid;
1288
7ace9917 1289 spin_lock(&early_pfn_lock);
75a592a4 1290 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1291 if (nid < 0)
e4568d38 1292 nid = first_online_node;
7ace9917
MG
1293 spin_unlock(&early_pfn_lock);
1294
1295 return nid;
75a592a4
MG
1296}
1297#endif
1298
1299#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1300static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
1302{
1303 int nid;
1304
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1307 return false;
1308 return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321 return true;
1322}
1323static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1324 struct mminit_pfnnid_cache *state)
1325{
1326 return true;
1327}
1328#endif
1329
1330
0e1cc95b 1331void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1332 unsigned int order)
1333{
1334 if (early_page_uninitialised(pfn))
1335 return;
949698a3 1336 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1337}
1338
7cf91a98
JK
1339/*
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1344 * pageblocks.
1345 *
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347 *
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1355 */
1356struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 unsigned long end_pfn, struct zone *zone)
1358{
1359 struct page *start_page;
1360 struct page *end_page;
1361
1362 /* end_pfn is one past the range we are checking */
1363 end_pfn--;
1364
1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 return NULL;
1367
2d070eab
MH
1368 start_page = pfn_to_online_page(start_pfn);
1369 if (!start_page)
1370 return NULL;
7cf91a98
JK
1371
1372 if (page_zone(start_page) != zone)
1373 return NULL;
1374
1375 end_page = pfn_to_page(end_pfn);
1376
1377 /* This gives a shorter code than deriving page_zone(end_page) */
1378 if (page_zone_id(start_page) != page_zone_id(end_page))
1379 return NULL;
1380
1381 return start_page;
1382}
1383
1384void set_zone_contiguous(struct zone *zone)
1385{
1386 unsigned long block_start_pfn = zone->zone_start_pfn;
1387 unsigned long block_end_pfn;
1388
1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 for (; block_start_pfn < zone_end_pfn(zone);
1391 block_start_pfn = block_end_pfn,
1392 block_end_pfn += pageblock_nr_pages) {
1393
1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1395
1396 if (!__pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, zone))
1398 return;
1399 }
1400
1401 /* We confirm that there is no hole */
1402 zone->contiguous = true;
1403}
1404
1405void clear_zone_contiguous(struct zone *zone)
1406{
1407 zone->contiguous = false;
1408}
1409
7e18adb4 1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1411static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1412 unsigned long pfn, int nr_pages)
1413{
1414 int i;
1415
1416 if (!page)
1417 return;
1418
1419 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1420 if (nr_pages == pageblock_nr_pages &&
1421 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1423 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1424 return;
1425 }
1426
e780149b
XQ
1427 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1428 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1430 __free_pages_boot_core(page, 0);
e780149b 1431 }
a4de83dd
MG
1432}
1433
d3cd131d
NS
1434/* Completion tracking for deferred_init_memmap() threads */
1435static atomic_t pgdat_init_n_undone __initdata;
1436static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1437
1438static inline void __init pgdat_init_report_one_done(void)
1439{
1440 if (atomic_dec_and_test(&pgdat_init_n_undone))
1441 complete(&pgdat_init_all_done_comp);
1442}
0e1cc95b 1443
7e18adb4 1444/* Initialise remaining memory on a node */
0e1cc95b 1445static int __init deferred_init_memmap(void *data)
7e18adb4 1446{
0e1cc95b
MG
1447 pg_data_t *pgdat = data;
1448 int nid = pgdat->node_id;
7e18adb4
MG
1449 struct mminit_pfnnid_cache nid_init_state = { };
1450 unsigned long start = jiffies;
1451 unsigned long nr_pages = 0;
1452 unsigned long walk_start, walk_end;
1453 int i, zid;
1454 struct zone *zone;
7e18adb4 1455 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1456 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1457
0e1cc95b 1458 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1459 pgdat_init_report_one_done();
0e1cc95b
MG
1460 return 0;
1461 }
1462
1463 /* Bind memory initialisation thread to a local node if possible */
1464 if (!cpumask_empty(cpumask))
1465 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1466
1467 /* Sanity check boundaries */
1468 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1469 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1470 pgdat->first_deferred_pfn = ULONG_MAX;
1471
1472 /* Only the highest zone is deferred so find it */
1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 zone = pgdat->node_zones + zid;
1475 if (first_init_pfn < zone_end_pfn(zone))
1476 break;
1477 }
1478
1479 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1480 unsigned long pfn, end_pfn;
54608c3f 1481 struct page *page = NULL;
a4de83dd
MG
1482 struct page *free_base_page = NULL;
1483 unsigned long free_base_pfn = 0;
1484 int nr_to_free = 0;
7e18adb4
MG
1485
1486 end_pfn = min(walk_end, zone_end_pfn(zone));
1487 pfn = first_init_pfn;
1488 if (pfn < walk_start)
1489 pfn = walk_start;
1490 if (pfn < zone->zone_start_pfn)
1491 pfn = zone->zone_start_pfn;
1492
1493 for (; pfn < end_pfn; pfn++) {
54608c3f 1494 if (!pfn_valid_within(pfn))
a4de83dd 1495 goto free_range;
7e18adb4 1496
54608c3f
MG
1497 /*
1498 * Ensure pfn_valid is checked every
e780149b 1499 * pageblock_nr_pages for memory holes
54608c3f 1500 */
e780149b 1501 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1502 if (!pfn_valid(pfn)) {
1503 page = NULL;
a4de83dd 1504 goto free_range;
54608c3f
MG
1505 }
1506 }
1507
1508 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1509 page = NULL;
a4de83dd 1510 goto free_range;
54608c3f
MG
1511 }
1512
1513 /* Minimise pfn page lookups and scheduler checks */
e780149b 1514 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1515 page++;
1516 } else {
a4de83dd
MG
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page,
1519 free_base_pfn, nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
1522
54608c3f
MG
1523 page = pfn_to_page(pfn);
1524 cond_resched();
1525 }
7e18adb4
MG
1526
1527 if (page->flags) {
1528 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1529 goto free_range;
7e18adb4
MG
1530 }
1531
1532 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1533 if (!free_base_page) {
1534 free_base_page = page;
1535 free_base_pfn = pfn;
1536 nr_to_free = 0;
1537 }
1538 nr_to_free++;
1539
1540 /* Where possible, batch up pages for a single free */
1541 continue;
1542free_range:
1543 /* Free the current block of pages to allocator */
1544 nr_pages += nr_to_free;
1545 deferred_free_range(free_base_page, free_base_pfn,
1546 nr_to_free);
1547 free_base_page = NULL;
1548 free_base_pfn = nr_to_free = 0;
7e18adb4 1549 }
e780149b
XQ
1550 /* Free the last block of pages to allocator */
1551 nr_pages += nr_to_free;
1552 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1553
7e18adb4
MG
1554 first_init_pfn = max(end_pfn, first_init_pfn);
1555 }
1556
1557 /* Sanity check that the next zone really is unpopulated */
1558 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1559
0e1cc95b 1560 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1561 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1562
1563 pgdat_init_report_one_done();
0e1cc95b
MG
1564 return 0;
1565}
7cf91a98 1566#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1567
1568void __init page_alloc_init_late(void)
1569{
7cf91a98
JK
1570 struct zone *zone;
1571
1572#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1573 int nid;
1574
d3cd131d
NS
1575 /* There will be num_node_state(N_MEMORY) threads */
1576 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1577 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1578 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1579 }
1580
1581 /* Block until all are initialised */
d3cd131d 1582 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1583
1584 /* Reinit limits that are based on free pages after the kernel is up */
1585 files_maxfiles_init();
7cf91a98
JK
1586#endif
1587
1588 for_each_populated_zone(zone)
1589 set_zone_contiguous(zone);
7e18adb4 1590}
7e18adb4 1591
47118af0 1592#ifdef CONFIG_CMA
9cf510a5 1593/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1594void __init init_cma_reserved_pageblock(struct page *page)
1595{
1596 unsigned i = pageblock_nr_pages;
1597 struct page *p = page;
1598
1599 do {
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
1602 } while (++p, --i);
1603
47118af0 1604 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1605
1606 if (pageblock_order >= MAX_ORDER) {
1607 i = pageblock_nr_pages;
1608 p = page;
1609 do {
1610 set_page_refcounted(p);
1611 __free_pages(p, MAX_ORDER - 1);
1612 p += MAX_ORDER_NR_PAGES;
1613 } while (i -= MAX_ORDER_NR_PAGES);
1614 } else {
1615 set_page_refcounted(page);
1616 __free_pages(page, pageblock_order);
1617 }
1618
3dcc0571 1619 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1620}
1621#endif
1da177e4
LT
1622
1623/*
1624 * The order of subdivision here is critical for the IO subsystem.
1625 * Please do not alter this order without good reasons and regression
1626 * testing. Specifically, as large blocks of memory are subdivided,
1627 * the order in which smaller blocks are delivered depends on the order
1628 * they're subdivided in this function. This is the primary factor
1629 * influencing the order in which pages are delivered to the IO
1630 * subsystem according to empirical testing, and this is also justified
1631 * by considering the behavior of a buddy system containing a single
1632 * large block of memory acted on by a series of small allocations.
1633 * This behavior is a critical factor in sglist merging's success.
1634 *
6d49e352 1635 * -- nyc
1da177e4 1636 */
085cc7d5 1637static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1638 int low, int high, struct free_area *area,
1639 int migratetype)
1da177e4
LT
1640{
1641 unsigned long size = 1 << high;
1642
1643 while (high > low) {
1644 area--;
1645 high--;
1646 size >>= 1;
309381fe 1647 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1648
acbc15a4
JK
1649 /*
1650 * Mark as guard pages (or page), that will allow to
1651 * merge back to allocator when buddy will be freed.
1652 * Corresponding page table entries will not be touched,
1653 * pages will stay not present in virtual address space
1654 */
1655 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1656 continue;
acbc15a4 1657
b2a0ac88 1658 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1659 area->nr_free++;
1660 set_page_order(&page[size], high);
1661 }
1da177e4
LT
1662}
1663
4e611801 1664static void check_new_page_bad(struct page *page)
1da177e4 1665{
4e611801
VB
1666 const char *bad_reason = NULL;
1667 unsigned long bad_flags = 0;
7bfec6f4 1668
53f9263b 1669 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1670 bad_reason = "nonzero mapcount";
1671 if (unlikely(page->mapping != NULL))
1672 bad_reason = "non-NULL mapping";
fe896d18 1673 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1674 bad_reason = "nonzero _count";
f4c18e6f
NH
1675 if (unlikely(page->flags & __PG_HWPOISON)) {
1676 bad_reason = "HWPoisoned (hardware-corrupted)";
1677 bad_flags = __PG_HWPOISON;
e570f56c
NH
1678 /* Don't complain about hwpoisoned pages */
1679 page_mapcount_reset(page); /* remove PageBuddy */
1680 return;
f4c18e6f 1681 }
f0b791a3
DH
1682 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1683 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1684 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1685 }
9edad6ea
JW
1686#ifdef CONFIG_MEMCG
1687 if (unlikely(page->mem_cgroup))
1688 bad_reason = "page still charged to cgroup";
1689#endif
4e611801
VB
1690 bad_page(page, bad_reason, bad_flags);
1691}
1692
1693/*
1694 * This page is about to be returned from the page allocator
1695 */
1696static inline int check_new_page(struct page *page)
1697{
1698 if (likely(page_expected_state(page,
1699 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1700 return 0;
1701
1702 check_new_page_bad(page);
1703 return 1;
2a7684a2
WF
1704}
1705
bd33ef36 1706static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1707{
1708 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1709 page_poisoning_enabled();
1414c7f4
LA
1710}
1711
479f854a
MG
1712#ifdef CONFIG_DEBUG_VM
1713static bool check_pcp_refill(struct page *page)
1714{
1715 return false;
1716}
1717
1718static bool check_new_pcp(struct page *page)
1719{
1720 return check_new_page(page);
1721}
1722#else
1723static bool check_pcp_refill(struct page *page)
1724{
1725 return check_new_page(page);
1726}
1727static bool check_new_pcp(struct page *page)
1728{
1729 return false;
1730}
1731#endif /* CONFIG_DEBUG_VM */
1732
1733static bool check_new_pages(struct page *page, unsigned int order)
1734{
1735 int i;
1736 for (i = 0; i < (1 << order); i++) {
1737 struct page *p = page + i;
1738
1739 if (unlikely(check_new_page(p)))
1740 return true;
1741 }
1742
1743 return false;
1744}
1745
46f24fd8
JK
1746inline void post_alloc_hook(struct page *page, unsigned int order,
1747 gfp_t gfp_flags)
1748{
1749 set_page_private(page, 0);
1750 set_page_refcounted(page);
1751
1752 arch_alloc_page(page, order);
1753 kernel_map_pages(page, 1 << order, 1);
1754 kernel_poison_pages(page, 1 << order, 1);
1755 kasan_alloc_pages(page, order);
1756 set_page_owner(page, order, gfp_flags);
1757}
1758
479f854a 1759static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1760 unsigned int alloc_flags)
2a7684a2
WF
1761{
1762 int i;
689bcebf 1763
46f24fd8 1764 post_alloc_hook(page, order, gfp_flags);
17cf4406 1765
bd33ef36 1766 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1767 for (i = 0; i < (1 << order); i++)
1768 clear_highpage(page + i);
17cf4406
NP
1769
1770 if (order && (gfp_flags & __GFP_COMP))
1771 prep_compound_page(page, order);
1772
75379191 1773 /*
2f064f34 1774 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1775 * allocate the page. The expectation is that the caller is taking
1776 * steps that will free more memory. The caller should avoid the page
1777 * being used for !PFMEMALLOC purposes.
1778 */
2f064f34
MH
1779 if (alloc_flags & ALLOC_NO_WATERMARKS)
1780 set_page_pfmemalloc(page);
1781 else
1782 clear_page_pfmemalloc(page);
1da177e4
LT
1783}
1784
56fd56b8
MG
1785/*
1786 * Go through the free lists for the given migratetype and remove
1787 * the smallest available page from the freelists
1788 */
728ec980
MG
1789static inline
1790struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1791 int migratetype)
1792{
1793 unsigned int current_order;
b8af2941 1794 struct free_area *area;
56fd56b8
MG
1795 struct page *page;
1796
1797 /* Find a page of the appropriate size in the preferred list */
1798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1799 area = &(zone->free_area[current_order]);
a16601c5 1800 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1801 struct page, lru);
a16601c5
GT
1802 if (!page)
1803 continue;
56fd56b8
MG
1804 list_del(&page->lru);
1805 rmv_page_order(page);
1806 area->nr_free--;
56fd56b8 1807 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1808 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1809 return page;
1810 }
1811
1812 return NULL;
1813}
1814
1815
b2a0ac88
MG
1816/*
1817 * This array describes the order lists are fallen back to when
1818 * the free lists for the desirable migrate type are depleted
1819 */
47118af0 1820static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1824#ifdef CONFIG_CMA
974a786e 1825 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1826#endif
194159fb 1827#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1828 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1829#endif
b2a0ac88
MG
1830};
1831
dc67647b
JK
1832#ifdef CONFIG_CMA
1833static struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order)
1835{
1836 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1837}
1838#else
1839static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 unsigned int order) { return NULL; }
1841#endif
1842
c361be55
MG
1843/*
1844 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1845 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1846 * boundary. If alignment is required, use move_freepages_block()
1847 */
02aa0cdd 1848static int move_freepages(struct zone *zone,
b69a7288 1849 struct page *start_page, struct page *end_page,
02aa0cdd 1850 int migratetype, int *num_movable)
c361be55
MG
1851{
1852 struct page *page;
d00181b9 1853 unsigned int order;
d100313f 1854 int pages_moved = 0;
c361be55
MG
1855
1856#ifndef CONFIG_HOLES_IN_ZONE
1857 /*
1858 * page_zone is not safe to call in this context when
1859 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1860 * anyway as we check zone boundaries in move_freepages_block().
1861 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1862 * grouping pages by mobility
c361be55 1863 */
97ee4ba7 1864 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1865#endif
1866
02aa0cdd
VB
1867 if (num_movable)
1868 *num_movable = 0;
1869
c361be55
MG
1870 for (page = start_page; page <= end_page;) {
1871 if (!pfn_valid_within(page_to_pfn(page))) {
1872 page++;
1873 continue;
1874 }
1875
f073bdc5
AB
1876 /* Make sure we are not inadvertently changing nodes */
1877 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1878
c361be55 1879 if (!PageBuddy(page)) {
02aa0cdd
VB
1880 /*
1881 * We assume that pages that could be isolated for
1882 * migration are movable. But we don't actually try
1883 * isolating, as that would be expensive.
1884 */
1885 if (num_movable &&
1886 (PageLRU(page) || __PageMovable(page)))
1887 (*num_movable)++;
1888
c361be55
MG
1889 page++;
1890 continue;
1891 }
1892
1893 order = page_order(page);
84be48d8
KS
1894 list_move(&page->lru,
1895 &zone->free_area[order].free_list[migratetype]);
c361be55 1896 page += 1 << order;
d100313f 1897 pages_moved += 1 << order;
c361be55
MG
1898 }
1899
d100313f 1900 return pages_moved;
c361be55
MG
1901}
1902
ee6f509c 1903int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1904 int migratetype, int *num_movable)
c361be55
MG
1905{
1906 unsigned long start_pfn, end_pfn;
1907 struct page *start_page, *end_page;
1908
1909 start_pfn = page_to_pfn(page);
d9c23400 1910 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1911 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1912 end_page = start_page + pageblock_nr_pages - 1;
1913 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1914
1915 /* Do not cross zone boundaries */
108bcc96 1916 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1917 start_page = page;
108bcc96 1918 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1919 return 0;
1920
02aa0cdd
VB
1921 return move_freepages(zone, start_page, end_page, migratetype,
1922 num_movable);
c361be55
MG
1923}
1924
2f66a68f
MG
1925static void change_pageblock_range(struct page *pageblock_page,
1926 int start_order, int migratetype)
1927{
1928 int nr_pageblocks = 1 << (start_order - pageblock_order);
1929
1930 while (nr_pageblocks--) {
1931 set_pageblock_migratetype(pageblock_page, migratetype);
1932 pageblock_page += pageblock_nr_pages;
1933 }
1934}
1935
fef903ef 1936/*
9c0415eb
VB
1937 * When we are falling back to another migratetype during allocation, try to
1938 * steal extra free pages from the same pageblocks to satisfy further
1939 * allocations, instead of polluting multiple pageblocks.
1940 *
1941 * If we are stealing a relatively large buddy page, it is likely there will
1942 * be more free pages in the pageblock, so try to steal them all. For
1943 * reclaimable and unmovable allocations, we steal regardless of page size,
1944 * as fragmentation caused by those allocations polluting movable pageblocks
1945 * is worse than movable allocations stealing from unmovable and reclaimable
1946 * pageblocks.
fef903ef 1947 */
4eb7dce6
JK
1948static bool can_steal_fallback(unsigned int order, int start_mt)
1949{
1950 /*
1951 * Leaving this order check is intended, although there is
1952 * relaxed order check in next check. The reason is that
1953 * we can actually steal whole pageblock if this condition met,
1954 * but, below check doesn't guarantee it and that is just heuristic
1955 * so could be changed anytime.
1956 */
1957 if (order >= pageblock_order)
1958 return true;
1959
1960 if (order >= pageblock_order / 2 ||
1961 start_mt == MIGRATE_RECLAIMABLE ||
1962 start_mt == MIGRATE_UNMOVABLE ||
1963 page_group_by_mobility_disabled)
1964 return true;
1965
1966 return false;
1967}
1968
1969/*
1970 * This function implements actual steal behaviour. If order is large enough,
1971 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1972 * pageblock to our migratetype and determine how many already-allocated pages
1973 * are there in the pageblock with a compatible migratetype. If at least half
1974 * of pages are free or compatible, we can change migratetype of the pageblock
1975 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1976 */
1977static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 1978 int start_type, bool whole_block)
fef903ef 1979{
d00181b9 1980 unsigned int current_order = page_order(page);
3bc48f96 1981 struct free_area *area;
02aa0cdd
VB
1982 int free_pages, movable_pages, alike_pages;
1983 int old_block_type;
1984
1985 old_block_type = get_pageblock_migratetype(page);
fef903ef 1986
3bc48f96
VB
1987 /*
1988 * This can happen due to races and we want to prevent broken
1989 * highatomic accounting.
1990 */
02aa0cdd 1991 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1992 goto single_page;
1993
fef903ef
SB
1994 /* Take ownership for orders >= pageblock_order */
1995 if (current_order >= pageblock_order) {
1996 change_pageblock_range(page, current_order, start_type);
3bc48f96 1997 goto single_page;
fef903ef
SB
1998 }
1999
3bc48f96
VB
2000 /* We are not allowed to try stealing from the whole block */
2001 if (!whole_block)
2002 goto single_page;
2003
02aa0cdd
VB
2004 free_pages = move_freepages_block(zone, page, start_type,
2005 &movable_pages);
2006 /*
2007 * Determine how many pages are compatible with our allocation.
2008 * For movable allocation, it's the number of movable pages which
2009 * we just obtained. For other types it's a bit more tricky.
2010 */
2011 if (start_type == MIGRATE_MOVABLE) {
2012 alike_pages = movable_pages;
2013 } else {
2014 /*
2015 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2016 * to MOVABLE pageblock, consider all non-movable pages as
2017 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2018 * vice versa, be conservative since we can't distinguish the
2019 * exact migratetype of non-movable pages.
2020 */
2021 if (old_block_type == MIGRATE_MOVABLE)
2022 alike_pages = pageblock_nr_pages
2023 - (free_pages + movable_pages);
2024 else
2025 alike_pages = 0;
2026 }
2027
3bc48f96 2028 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2029 if (!free_pages)
3bc48f96 2030 goto single_page;
fef903ef 2031
02aa0cdd
VB
2032 /*
2033 * If a sufficient number of pages in the block are either free or of
2034 * comparable migratability as our allocation, claim the whole block.
2035 */
2036 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2037 page_group_by_mobility_disabled)
2038 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2039
2040 return;
2041
2042single_page:
2043 area = &zone->free_area[current_order];
2044 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2045}
2046
2149cdae
JK
2047/*
2048 * Check whether there is a suitable fallback freepage with requested order.
2049 * If only_stealable is true, this function returns fallback_mt only if
2050 * we can steal other freepages all together. This would help to reduce
2051 * fragmentation due to mixed migratetype pages in one pageblock.
2052 */
2053int find_suitable_fallback(struct free_area *area, unsigned int order,
2054 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2055{
2056 int i;
2057 int fallback_mt;
2058
2059 if (area->nr_free == 0)
2060 return -1;
2061
2062 *can_steal = false;
2063 for (i = 0;; i++) {
2064 fallback_mt = fallbacks[migratetype][i];
974a786e 2065 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2066 break;
2067
2068 if (list_empty(&area->free_list[fallback_mt]))
2069 continue;
fef903ef 2070
4eb7dce6
JK
2071 if (can_steal_fallback(order, migratetype))
2072 *can_steal = true;
2073
2149cdae
JK
2074 if (!only_stealable)
2075 return fallback_mt;
2076
2077 if (*can_steal)
2078 return fallback_mt;
fef903ef 2079 }
4eb7dce6
JK
2080
2081 return -1;
fef903ef
SB
2082}
2083
0aaa29a5
MG
2084/*
2085 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2086 * there are no empty page blocks that contain a page with a suitable order
2087 */
2088static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2089 unsigned int alloc_order)
2090{
2091 int mt;
2092 unsigned long max_managed, flags;
2093
2094 /*
2095 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2096 * Check is race-prone but harmless.
2097 */
2098 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2099 if (zone->nr_reserved_highatomic >= max_managed)
2100 return;
2101
2102 spin_lock_irqsave(&zone->lock, flags);
2103
2104 /* Recheck the nr_reserved_highatomic limit under the lock */
2105 if (zone->nr_reserved_highatomic >= max_managed)
2106 goto out_unlock;
2107
2108 /* Yoink! */
2109 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2110 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2111 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2112 zone->nr_reserved_highatomic += pageblock_nr_pages;
2113 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2114 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2115 }
2116
2117out_unlock:
2118 spin_unlock_irqrestore(&zone->lock, flags);
2119}
2120
2121/*
2122 * Used when an allocation is about to fail under memory pressure. This
2123 * potentially hurts the reliability of high-order allocations when under
2124 * intense memory pressure but failed atomic allocations should be easier
2125 * to recover from than an OOM.
29fac03b
MK
2126 *
2127 * If @force is true, try to unreserve a pageblock even though highatomic
2128 * pageblock is exhausted.
0aaa29a5 2129 */
29fac03b
MK
2130static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2131 bool force)
0aaa29a5
MG
2132{
2133 struct zonelist *zonelist = ac->zonelist;
2134 unsigned long flags;
2135 struct zoneref *z;
2136 struct zone *zone;
2137 struct page *page;
2138 int order;
04c8716f 2139 bool ret;
0aaa29a5
MG
2140
2141 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2142 ac->nodemask) {
29fac03b
MK
2143 /*
2144 * Preserve at least one pageblock unless memory pressure
2145 * is really high.
2146 */
2147 if (!force && zone->nr_reserved_highatomic <=
2148 pageblock_nr_pages)
0aaa29a5
MG
2149 continue;
2150
2151 spin_lock_irqsave(&zone->lock, flags);
2152 for (order = 0; order < MAX_ORDER; order++) {
2153 struct free_area *area = &(zone->free_area[order]);
2154
a16601c5
GT
2155 page = list_first_entry_or_null(
2156 &area->free_list[MIGRATE_HIGHATOMIC],
2157 struct page, lru);
2158 if (!page)
0aaa29a5
MG
2159 continue;
2160
0aaa29a5 2161 /*
4855e4a7
MK
2162 * In page freeing path, migratetype change is racy so
2163 * we can counter several free pages in a pageblock
2164 * in this loop althoug we changed the pageblock type
2165 * from highatomic to ac->migratetype. So we should
2166 * adjust the count once.
0aaa29a5 2167 */
a6ffdc07 2168 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2169 /*
2170 * It should never happen but changes to
2171 * locking could inadvertently allow a per-cpu
2172 * drain to add pages to MIGRATE_HIGHATOMIC
2173 * while unreserving so be safe and watch for
2174 * underflows.
2175 */
2176 zone->nr_reserved_highatomic -= min(
2177 pageblock_nr_pages,
2178 zone->nr_reserved_highatomic);
2179 }
0aaa29a5
MG
2180
2181 /*
2182 * Convert to ac->migratetype and avoid the normal
2183 * pageblock stealing heuristics. Minimally, the caller
2184 * is doing the work and needs the pages. More
2185 * importantly, if the block was always converted to
2186 * MIGRATE_UNMOVABLE or another type then the number
2187 * of pageblocks that cannot be completely freed
2188 * may increase.
2189 */
2190 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2191 ret = move_freepages_block(zone, page, ac->migratetype,
2192 NULL);
29fac03b
MK
2193 if (ret) {
2194 spin_unlock_irqrestore(&zone->lock, flags);
2195 return ret;
2196 }
0aaa29a5
MG
2197 }
2198 spin_unlock_irqrestore(&zone->lock, flags);
2199 }
04c8716f
MK
2200
2201 return false;
0aaa29a5
MG
2202}
2203
3bc48f96
VB
2204/*
2205 * Try finding a free buddy page on the fallback list and put it on the free
2206 * list of requested migratetype, possibly along with other pages from the same
2207 * block, depending on fragmentation avoidance heuristics. Returns true if
2208 * fallback was found so that __rmqueue_smallest() can grab it.
2209 */
2210static inline bool
7aeb09f9 2211__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2212{
b8af2941 2213 struct free_area *area;
7aeb09f9 2214 unsigned int current_order;
b2a0ac88 2215 struct page *page;
4eb7dce6
JK
2216 int fallback_mt;
2217 bool can_steal;
b2a0ac88
MG
2218
2219 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2220 for (current_order = MAX_ORDER-1;
2221 current_order >= order && current_order <= MAX_ORDER-1;
2222 --current_order) {
4eb7dce6
JK
2223 area = &(zone->free_area[current_order]);
2224 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2225 start_migratetype, false, &can_steal);
4eb7dce6
JK
2226 if (fallback_mt == -1)
2227 continue;
b2a0ac88 2228
a16601c5 2229 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2230 struct page, lru);
b2a0ac88 2231
3bc48f96
VB
2232 steal_suitable_fallback(zone, page, start_migratetype,
2233 can_steal);
e0fff1bd 2234
4eb7dce6
JK
2235 trace_mm_page_alloc_extfrag(page, order, current_order,
2236 start_migratetype, fallback_mt);
e0fff1bd 2237
3bc48f96 2238 return true;
b2a0ac88
MG
2239 }
2240
3bc48f96 2241 return false;
b2a0ac88
MG
2242}
2243
56fd56b8 2244/*
1da177e4
LT
2245 * Do the hard work of removing an element from the buddy allocator.
2246 * Call me with the zone->lock already held.
2247 */
b2a0ac88 2248static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2249 int migratetype)
1da177e4 2250{
1da177e4
LT
2251 struct page *page;
2252
3bc48f96 2253retry:
56fd56b8 2254 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2255 if (unlikely(!page)) {
dc67647b
JK
2256 if (migratetype == MIGRATE_MOVABLE)
2257 page = __rmqueue_cma_fallback(zone, order);
2258
3bc48f96
VB
2259 if (!page && __rmqueue_fallback(zone, order, migratetype))
2260 goto retry;
728ec980
MG
2261 }
2262
0d3d062a 2263 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2264 return page;
1da177e4
LT
2265}
2266
5f63b720 2267/*
1da177e4
LT
2268 * Obtain a specified number of elements from the buddy allocator, all under
2269 * a single hold of the lock, for efficiency. Add them to the supplied list.
2270 * Returns the number of new pages which were placed at *list.
2271 */
5f63b720 2272static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2273 unsigned long count, struct list_head *list,
b745bc85 2274 int migratetype, bool cold)
1da177e4 2275{
a6de734b 2276 int i, alloced = 0;
5f63b720 2277
d34b0733 2278 spin_lock(&zone->lock);
1da177e4 2279 for (i = 0; i < count; ++i) {
6ac0206b 2280 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2281 if (unlikely(page == NULL))
1da177e4 2282 break;
81eabcbe 2283
479f854a
MG
2284 if (unlikely(check_pcp_refill(page)))
2285 continue;
2286
81eabcbe
MG
2287 /*
2288 * Split buddy pages returned by expand() are received here
2289 * in physical page order. The page is added to the callers and
2290 * list and the list head then moves forward. From the callers
2291 * perspective, the linked list is ordered by page number in
2292 * some conditions. This is useful for IO devices that can
2293 * merge IO requests if the physical pages are ordered
2294 * properly.
2295 */
b745bc85 2296 if (likely(!cold))
e084b2d9
MG
2297 list_add(&page->lru, list);
2298 else
2299 list_add_tail(&page->lru, list);
81eabcbe 2300 list = &page->lru;
a6de734b 2301 alloced++;
bb14c2c7 2302 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2303 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2304 -(1 << order));
1da177e4 2305 }
a6de734b
MG
2306
2307 /*
2308 * i pages were removed from the buddy list even if some leak due
2309 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2310 * on i. Do not confuse with 'alloced' which is the number of
2311 * pages added to the pcp list.
2312 */
f2260e6b 2313 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2314 spin_unlock(&zone->lock);
a6de734b 2315 return alloced;
1da177e4
LT
2316}
2317
4ae7c039 2318#ifdef CONFIG_NUMA
8fce4d8e 2319/*
4037d452
CL
2320 * Called from the vmstat counter updater to drain pagesets of this
2321 * currently executing processor on remote nodes after they have
2322 * expired.
2323 *
879336c3
CL
2324 * Note that this function must be called with the thread pinned to
2325 * a single processor.
8fce4d8e 2326 */
4037d452 2327void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2328{
4ae7c039 2329 unsigned long flags;
7be12fc9 2330 int to_drain, batch;
4ae7c039 2331
4037d452 2332 local_irq_save(flags);
4db0c3c2 2333 batch = READ_ONCE(pcp->batch);
7be12fc9 2334 to_drain = min(pcp->count, batch);
2a13515c
KM
2335 if (to_drain > 0) {
2336 free_pcppages_bulk(zone, to_drain, pcp);
2337 pcp->count -= to_drain;
2338 }
4037d452 2339 local_irq_restore(flags);
4ae7c039
CL
2340}
2341#endif
2342
9f8f2172 2343/*
93481ff0 2344 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2345 *
2346 * The processor must either be the current processor and the
2347 * thread pinned to the current processor or a processor that
2348 * is not online.
2349 */
93481ff0 2350static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2351{
c54ad30c 2352 unsigned long flags;
93481ff0
VB
2353 struct per_cpu_pageset *pset;
2354 struct per_cpu_pages *pcp;
1da177e4 2355
93481ff0
VB
2356 local_irq_save(flags);
2357 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2358
93481ff0
VB
2359 pcp = &pset->pcp;
2360 if (pcp->count) {
2361 free_pcppages_bulk(zone, pcp->count, pcp);
2362 pcp->count = 0;
2363 }
2364 local_irq_restore(flags);
2365}
3dfa5721 2366
93481ff0
VB
2367/*
2368 * Drain pcplists of all zones on the indicated processor.
2369 *
2370 * The processor must either be the current processor and the
2371 * thread pinned to the current processor or a processor that
2372 * is not online.
2373 */
2374static void drain_pages(unsigned int cpu)
2375{
2376 struct zone *zone;
2377
2378 for_each_populated_zone(zone) {
2379 drain_pages_zone(cpu, zone);
1da177e4
LT
2380 }
2381}
1da177e4 2382
9f8f2172
CL
2383/*
2384 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2385 *
2386 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2387 * the single zone's pages.
9f8f2172 2388 */
93481ff0 2389void drain_local_pages(struct zone *zone)
9f8f2172 2390{
93481ff0
VB
2391 int cpu = smp_processor_id();
2392
2393 if (zone)
2394 drain_pages_zone(cpu, zone);
2395 else
2396 drain_pages(cpu);
9f8f2172
CL
2397}
2398
0ccce3b9
MG
2399static void drain_local_pages_wq(struct work_struct *work)
2400{
a459eeb7
MH
2401 /*
2402 * drain_all_pages doesn't use proper cpu hotplug protection so
2403 * we can race with cpu offline when the WQ can move this from
2404 * a cpu pinned worker to an unbound one. We can operate on a different
2405 * cpu which is allright but we also have to make sure to not move to
2406 * a different one.
2407 */
2408 preempt_disable();
0ccce3b9 2409 drain_local_pages(NULL);
a459eeb7 2410 preempt_enable();
0ccce3b9
MG
2411}
2412
9f8f2172 2413/*
74046494
GBY
2414 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2415 *
93481ff0
VB
2416 * When zone parameter is non-NULL, spill just the single zone's pages.
2417 *
0ccce3b9 2418 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2419 */
93481ff0 2420void drain_all_pages(struct zone *zone)
9f8f2172 2421{
74046494 2422 int cpu;
74046494
GBY
2423
2424 /*
2425 * Allocate in the BSS so we wont require allocation in
2426 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2427 */
2428 static cpumask_t cpus_with_pcps;
2429
ce612879
MH
2430 /*
2431 * Make sure nobody triggers this path before mm_percpu_wq is fully
2432 * initialized.
2433 */
2434 if (WARN_ON_ONCE(!mm_percpu_wq))
2435 return;
2436
0ccce3b9
MG
2437 /* Workqueues cannot recurse */
2438 if (current->flags & PF_WQ_WORKER)
2439 return;
2440
bd233f53
MG
2441 /*
2442 * Do not drain if one is already in progress unless it's specific to
2443 * a zone. Such callers are primarily CMA and memory hotplug and need
2444 * the drain to be complete when the call returns.
2445 */
2446 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2447 if (!zone)
2448 return;
2449 mutex_lock(&pcpu_drain_mutex);
2450 }
0ccce3b9 2451
74046494
GBY
2452 /*
2453 * We don't care about racing with CPU hotplug event
2454 * as offline notification will cause the notified
2455 * cpu to drain that CPU pcps and on_each_cpu_mask
2456 * disables preemption as part of its processing
2457 */
2458 for_each_online_cpu(cpu) {
93481ff0
VB
2459 struct per_cpu_pageset *pcp;
2460 struct zone *z;
74046494 2461 bool has_pcps = false;
93481ff0
VB
2462
2463 if (zone) {
74046494 2464 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2465 if (pcp->pcp.count)
74046494 2466 has_pcps = true;
93481ff0
VB
2467 } else {
2468 for_each_populated_zone(z) {
2469 pcp = per_cpu_ptr(z->pageset, cpu);
2470 if (pcp->pcp.count) {
2471 has_pcps = true;
2472 break;
2473 }
74046494
GBY
2474 }
2475 }
93481ff0 2476
74046494
GBY
2477 if (has_pcps)
2478 cpumask_set_cpu(cpu, &cpus_with_pcps);
2479 else
2480 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2481 }
0ccce3b9 2482
bd233f53
MG
2483 for_each_cpu(cpu, &cpus_with_pcps) {
2484 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2485 INIT_WORK(work, drain_local_pages_wq);
ce612879 2486 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2487 }
bd233f53
MG
2488 for_each_cpu(cpu, &cpus_with_pcps)
2489 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2490
2491 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2492}
2493
296699de 2494#ifdef CONFIG_HIBERNATION
1da177e4
LT
2495
2496void mark_free_pages(struct zone *zone)
2497{
f623f0db
RW
2498 unsigned long pfn, max_zone_pfn;
2499 unsigned long flags;
7aeb09f9 2500 unsigned int order, t;
86760a2c 2501 struct page *page;
1da177e4 2502
8080fc03 2503 if (zone_is_empty(zone))
1da177e4
LT
2504 return;
2505
2506 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2507
108bcc96 2508 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2509 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2510 if (pfn_valid(pfn)) {
86760a2c 2511 page = pfn_to_page(pfn);
ba6b0979
JK
2512
2513 if (page_zone(page) != zone)
2514 continue;
2515
7be98234
RW
2516 if (!swsusp_page_is_forbidden(page))
2517 swsusp_unset_page_free(page);
f623f0db 2518 }
1da177e4 2519
b2a0ac88 2520 for_each_migratetype_order(order, t) {
86760a2c
GT
2521 list_for_each_entry(page,
2522 &zone->free_area[order].free_list[t], lru) {
f623f0db 2523 unsigned long i;
1da177e4 2524
86760a2c 2525 pfn = page_to_pfn(page);
f623f0db 2526 for (i = 0; i < (1UL << order); i++)
7be98234 2527 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2528 }
b2a0ac88 2529 }
1da177e4
LT
2530 spin_unlock_irqrestore(&zone->lock, flags);
2531}
e2c55dc8 2532#endif /* CONFIG_PM */
1da177e4 2533
1da177e4
LT
2534/*
2535 * Free a 0-order page
b745bc85 2536 * cold == true ? free a cold page : free a hot page
1da177e4 2537 */
b745bc85 2538void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2539{
2540 struct zone *zone = page_zone(page);
2541 struct per_cpu_pages *pcp;
d34b0733 2542 unsigned long flags;
dc4b0caf 2543 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2544 int migratetype;
1da177e4 2545
4db7548c 2546 if (!free_pcp_prepare(page))
689bcebf
HD
2547 return;
2548
dc4b0caf 2549 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2550 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2551 local_irq_save(flags);
2552 __count_vm_event(PGFREE);
da456f14 2553
5f8dcc21
MG
2554 /*
2555 * We only track unmovable, reclaimable and movable on pcp lists.
2556 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2557 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2558 * areas back if necessary. Otherwise, we may have to free
2559 * excessively into the page allocator
2560 */
2561 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2562 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2563 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2564 goto out;
2565 }
2566 migratetype = MIGRATE_MOVABLE;
2567 }
2568
99dcc3e5 2569 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2570 if (!cold)
5f8dcc21 2571 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2572 else
2573 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2574 pcp->count++;
48db57f8 2575 if (pcp->count >= pcp->high) {
4db0c3c2 2576 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2577 free_pcppages_bulk(zone, batch, pcp);
2578 pcp->count -= batch;
48db57f8 2579 }
5f8dcc21
MG
2580
2581out:
d34b0733 2582 local_irq_restore(flags);
1da177e4
LT
2583}
2584
cc59850e
KK
2585/*
2586 * Free a list of 0-order pages
2587 */
b745bc85 2588void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2589{
2590 struct page *page, *next;
2591
2592 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2593 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2594 free_hot_cold_page(page, cold);
2595 }
2596}
2597
8dfcc9ba
NP
2598/*
2599 * split_page takes a non-compound higher-order page, and splits it into
2600 * n (1<<order) sub-pages: page[0..n]
2601 * Each sub-page must be freed individually.
2602 *
2603 * Note: this is probably too low level an operation for use in drivers.
2604 * Please consult with lkml before using this in your driver.
2605 */
2606void split_page(struct page *page, unsigned int order)
2607{
2608 int i;
2609
309381fe
SL
2610 VM_BUG_ON_PAGE(PageCompound(page), page);
2611 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2612
2613#ifdef CONFIG_KMEMCHECK
2614 /*
2615 * Split shadow pages too, because free(page[0]) would
2616 * otherwise free the whole shadow.
2617 */
2618 if (kmemcheck_page_is_tracked(page))
2619 split_page(virt_to_page(page[0].shadow), order);
2620#endif
2621
a9627bc5 2622 for (i = 1; i < (1 << order); i++)
7835e98b 2623 set_page_refcounted(page + i);
a9627bc5 2624 split_page_owner(page, order);
8dfcc9ba 2625}
5853ff23 2626EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2627
3c605096 2628int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2629{
748446bb
MG
2630 unsigned long watermark;
2631 struct zone *zone;
2139cbe6 2632 int mt;
748446bb
MG
2633
2634 BUG_ON(!PageBuddy(page));
2635
2636 zone = page_zone(page);
2e30abd1 2637 mt = get_pageblock_migratetype(page);
748446bb 2638
194159fb 2639 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2640 /*
2641 * Obey watermarks as if the page was being allocated. We can
2642 * emulate a high-order watermark check with a raised order-0
2643 * watermark, because we already know our high-order page
2644 * exists.
2645 */
2646 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2647 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2648 return 0;
2649
8fb74b9f 2650 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2651 }
748446bb
MG
2652
2653 /* Remove page from free list */
2654 list_del(&page->lru);
2655 zone->free_area[order].nr_free--;
2656 rmv_page_order(page);
2139cbe6 2657
400bc7fd 2658 /*
2659 * Set the pageblock if the isolated page is at least half of a
2660 * pageblock
2661 */
748446bb
MG
2662 if (order >= pageblock_order - 1) {
2663 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2664 for (; page < endpage; page += pageblock_nr_pages) {
2665 int mt = get_pageblock_migratetype(page);
88ed365e 2666 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2667 && !is_migrate_highatomic(mt))
47118af0
MN
2668 set_pageblock_migratetype(page,
2669 MIGRATE_MOVABLE);
2670 }
748446bb
MG
2671 }
2672
f3a14ced 2673
8fb74b9f 2674 return 1UL << order;
1fb3f8ca
MG
2675}
2676
060e7417
MG
2677/*
2678 * Update NUMA hit/miss statistics
2679 *
2680 * Must be called with interrupts disabled.
060e7417 2681 */
41b6167e 2682static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2683{
2684#ifdef CONFIG_NUMA
060e7417
MG
2685 enum zone_stat_item local_stat = NUMA_LOCAL;
2686
2df26639 2687 if (z->node != numa_node_id())
060e7417 2688 local_stat = NUMA_OTHER;
060e7417 2689
2df26639 2690 if (z->node == preferred_zone->node)
060e7417 2691 __inc_zone_state(z, NUMA_HIT);
2df26639 2692 else {
060e7417
MG
2693 __inc_zone_state(z, NUMA_MISS);
2694 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2695 }
2df26639 2696 __inc_zone_state(z, local_stat);
060e7417
MG
2697#endif
2698}
2699
066b2393
MG
2700/* Remove page from the per-cpu list, caller must protect the list */
2701static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2702 bool cold, struct per_cpu_pages *pcp,
2703 struct list_head *list)
2704{
2705 struct page *page;
2706
2707 do {
2708 if (list_empty(list)) {
2709 pcp->count += rmqueue_bulk(zone, 0,
2710 pcp->batch, list,
2711 migratetype, cold);
2712 if (unlikely(list_empty(list)))
2713 return NULL;
2714 }
2715
2716 if (cold)
2717 page = list_last_entry(list, struct page, lru);
2718 else
2719 page = list_first_entry(list, struct page, lru);
2720
2721 list_del(&page->lru);
2722 pcp->count--;
2723 } while (check_new_pcp(page));
2724
2725 return page;
2726}
2727
2728/* Lock and remove page from the per-cpu list */
2729static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2730 struct zone *zone, unsigned int order,
2731 gfp_t gfp_flags, int migratetype)
2732{
2733 struct per_cpu_pages *pcp;
2734 struct list_head *list;
2735 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2736 struct page *page;
d34b0733 2737 unsigned long flags;
066b2393 2738
d34b0733 2739 local_irq_save(flags);
066b2393
MG
2740 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2741 list = &pcp->lists[migratetype];
2742 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2743 if (page) {
2744 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2745 zone_statistics(preferred_zone, zone);
2746 }
d34b0733 2747 local_irq_restore(flags);
066b2393
MG
2748 return page;
2749}
2750
1da177e4 2751/*
75379191 2752 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2753 */
0a15c3e9 2754static inline
066b2393 2755struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2756 struct zone *zone, unsigned int order,
c603844b
MG
2757 gfp_t gfp_flags, unsigned int alloc_flags,
2758 int migratetype)
1da177e4
LT
2759{
2760 unsigned long flags;
689bcebf 2761 struct page *page;
1da177e4 2762
d34b0733 2763 if (likely(order == 0)) {
066b2393
MG
2764 page = rmqueue_pcplist(preferred_zone, zone, order,
2765 gfp_flags, migratetype);
2766 goto out;
2767 }
83b9355b 2768
066b2393
MG
2769 /*
2770 * We most definitely don't want callers attempting to
2771 * allocate greater than order-1 page units with __GFP_NOFAIL.
2772 */
2773 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2774 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2775
066b2393
MG
2776 do {
2777 page = NULL;
2778 if (alloc_flags & ALLOC_HARDER) {
2779 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2780 if (page)
2781 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2782 }
a74609fa 2783 if (!page)
066b2393
MG
2784 page = __rmqueue(zone, order, migratetype);
2785 } while (page && check_new_pages(page, order));
2786 spin_unlock(&zone->lock);
2787 if (!page)
2788 goto failed;
2789 __mod_zone_freepage_state(zone, -(1 << order),
2790 get_pcppage_migratetype(page));
1da177e4 2791
16709d1d 2792 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2793 zone_statistics(preferred_zone, zone);
a74609fa 2794 local_irq_restore(flags);
1da177e4 2795
066b2393
MG
2796out:
2797 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2798 return page;
a74609fa
NP
2799
2800failed:
2801 local_irq_restore(flags);
a74609fa 2802 return NULL;
1da177e4
LT
2803}
2804
933e312e
AM
2805#ifdef CONFIG_FAIL_PAGE_ALLOC
2806
b2588c4b 2807static struct {
933e312e
AM
2808 struct fault_attr attr;
2809
621a5f7a 2810 bool ignore_gfp_highmem;
71baba4b 2811 bool ignore_gfp_reclaim;
54114994 2812 u32 min_order;
933e312e
AM
2813} fail_page_alloc = {
2814 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2815 .ignore_gfp_reclaim = true,
621a5f7a 2816 .ignore_gfp_highmem = true,
54114994 2817 .min_order = 1,
933e312e
AM
2818};
2819
2820static int __init setup_fail_page_alloc(char *str)
2821{
2822 return setup_fault_attr(&fail_page_alloc.attr, str);
2823}
2824__setup("fail_page_alloc=", setup_fail_page_alloc);
2825
deaf386e 2826static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2827{
54114994 2828 if (order < fail_page_alloc.min_order)
deaf386e 2829 return false;
933e312e 2830 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2831 return false;
933e312e 2832 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2833 return false;
71baba4b
MG
2834 if (fail_page_alloc.ignore_gfp_reclaim &&
2835 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2836 return false;
933e312e
AM
2837
2838 return should_fail(&fail_page_alloc.attr, 1 << order);
2839}
2840
2841#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2842
2843static int __init fail_page_alloc_debugfs(void)
2844{
f4ae40a6 2845 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2846 struct dentry *dir;
933e312e 2847
dd48c085
AM
2848 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2849 &fail_page_alloc.attr);
2850 if (IS_ERR(dir))
2851 return PTR_ERR(dir);
933e312e 2852
b2588c4b 2853 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2854 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2855 goto fail;
2856 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2857 &fail_page_alloc.ignore_gfp_highmem))
2858 goto fail;
2859 if (!debugfs_create_u32("min-order", mode, dir,
2860 &fail_page_alloc.min_order))
2861 goto fail;
2862
2863 return 0;
2864fail:
dd48c085 2865 debugfs_remove_recursive(dir);
933e312e 2866
b2588c4b 2867 return -ENOMEM;
933e312e
AM
2868}
2869
2870late_initcall(fail_page_alloc_debugfs);
2871
2872#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2873
2874#else /* CONFIG_FAIL_PAGE_ALLOC */
2875
deaf386e 2876static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2877{
deaf386e 2878 return false;
933e312e
AM
2879}
2880
2881#endif /* CONFIG_FAIL_PAGE_ALLOC */
2882
1da177e4 2883/*
97a16fc8
MG
2884 * Return true if free base pages are above 'mark'. For high-order checks it
2885 * will return true of the order-0 watermark is reached and there is at least
2886 * one free page of a suitable size. Checking now avoids taking the zone lock
2887 * to check in the allocation paths if no pages are free.
1da177e4 2888 */
86a294a8
MH
2889bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2890 int classzone_idx, unsigned int alloc_flags,
2891 long free_pages)
1da177e4 2892{
d23ad423 2893 long min = mark;
1da177e4 2894 int o;
c603844b 2895 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2896
0aaa29a5 2897 /* free_pages may go negative - that's OK */
df0a6daa 2898 free_pages -= (1 << order) - 1;
0aaa29a5 2899
7fb1d9fc 2900 if (alloc_flags & ALLOC_HIGH)
1da177e4 2901 min -= min / 2;
0aaa29a5
MG
2902
2903 /*
2904 * If the caller does not have rights to ALLOC_HARDER then subtract
2905 * the high-atomic reserves. This will over-estimate the size of the
2906 * atomic reserve but it avoids a search.
2907 */
97a16fc8 2908 if (likely(!alloc_harder))
0aaa29a5
MG
2909 free_pages -= z->nr_reserved_highatomic;
2910 else
1da177e4 2911 min -= min / 4;
e2b19197 2912
d95ea5d1
BZ
2913#ifdef CONFIG_CMA
2914 /* If allocation can't use CMA areas don't use free CMA pages */
2915 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2916 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2917#endif
026b0814 2918
97a16fc8
MG
2919 /*
2920 * Check watermarks for an order-0 allocation request. If these
2921 * are not met, then a high-order request also cannot go ahead
2922 * even if a suitable page happened to be free.
2923 */
2924 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2925 return false;
1da177e4 2926
97a16fc8
MG
2927 /* If this is an order-0 request then the watermark is fine */
2928 if (!order)
2929 return true;
2930
2931 /* For a high-order request, check at least one suitable page is free */
2932 for (o = order; o < MAX_ORDER; o++) {
2933 struct free_area *area = &z->free_area[o];
2934 int mt;
2935
2936 if (!area->nr_free)
2937 continue;
2938
2939 if (alloc_harder)
2940 return true;
1da177e4 2941
97a16fc8
MG
2942 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2943 if (!list_empty(&area->free_list[mt]))
2944 return true;
2945 }
2946
2947#ifdef CONFIG_CMA
2948 if ((alloc_flags & ALLOC_CMA) &&
2949 !list_empty(&area->free_list[MIGRATE_CMA])) {
2950 return true;
2951 }
2952#endif
1da177e4 2953 }
97a16fc8 2954 return false;
88f5acf8
MG
2955}
2956
7aeb09f9 2957bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2958 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2959{
2960 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2961 zone_page_state(z, NR_FREE_PAGES));
2962}
2963
48ee5f36
MG
2964static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2965 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2966{
2967 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2968 long cma_pages = 0;
2969
2970#ifdef CONFIG_CMA
2971 /* If allocation can't use CMA areas don't use free CMA pages */
2972 if (!(alloc_flags & ALLOC_CMA))
2973 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2974#endif
2975
2976 /*
2977 * Fast check for order-0 only. If this fails then the reserves
2978 * need to be calculated. There is a corner case where the check
2979 * passes but only the high-order atomic reserve are free. If
2980 * the caller is !atomic then it'll uselessly search the free
2981 * list. That corner case is then slower but it is harmless.
2982 */
2983 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2984 return true;
2985
2986 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2987 free_pages);
2988}
2989
7aeb09f9 2990bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2991 unsigned long mark, int classzone_idx)
88f5acf8
MG
2992{
2993 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2994
2995 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2996 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2997
e2b19197 2998 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2999 free_pages);
1da177e4
LT
3000}
3001
9276b1bc 3002#ifdef CONFIG_NUMA
957f822a
DR
3003static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3004{
e02dc017 3005 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3006 RECLAIM_DISTANCE;
957f822a 3007}
9276b1bc 3008#else /* CONFIG_NUMA */
957f822a
DR
3009static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3010{
3011 return true;
3012}
9276b1bc
PJ
3013#endif /* CONFIG_NUMA */
3014
7fb1d9fc 3015/*
0798e519 3016 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3017 * a page.
3018 */
3019static struct page *
a9263751
VB
3020get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3021 const struct alloc_context *ac)
753ee728 3022{
c33d6c06 3023 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3024 struct zone *zone;
3b8c0be4
MG
3025 struct pglist_data *last_pgdat_dirty_limit = NULL;
3026
7fb1d9fc 3027 /*
9276b1bc 3028 * Scan zonelist, looking for a zone with enough free.
344736f2 3029 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3030 */
c33d6c06 3031 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3032 ac->nodemask) {
be06af00 3033 struct page *page;
e085dbc5
JW
3034 unsigned long mark;
3035
664eedde
MG
3036 if (cpusets_enabled() &&
3037 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3038 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3039 continue;
a756cf59
JW
3040 /*
3041 * When allocating a page cache page for writing, we
281e3726
MG
3042 * want to get it from a node that is within its dirty
3043 * limit, such that no single node holds more than its
a756cf59 3044 * proportional share of globally allowed dirty pages.
281e3726 3045 * The dirty limits take into account the node's
a756cf59
JW
3046 * lowmem reserves and high watermark so that kswapd
3047 * should be able to balance it without having to
3048 * write pages from its LRU list.
3049 *
a756cf59 3050 * XXX: For now, allow allocations to potentially
281e3726 3051 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3052 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3053 * which is important when on a NUMA setup the allowed
281e3726 3054 * nodes are together not big enough to reach the
a756cf59 3055 * global limit. The proper fix for these situations
281e3726 3056 * will require awareness of nodes in the
a756cf59
JW
3057 * dirty-throttling and the flusher threads.
3058 */
3b8c0be4
MG
3059 if (ac->spread_dirty_pages) {
3060 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3061 continue;
3062
3063 if (!node_dirty_ok(zone->zone_pgdat)) {
3064 last_pgdat_dirty_limit = zone->zone_pgdat;
3065 continue;
3066 }
3067 }
7fb1d9fc 3068
e085dbc5 3069 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3070 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3071 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3072 int ret;
3073
5dab2911
MG
3074 /* Checked here to keep the fast path fast */
3075 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3076 if (alloc_flags & ALLOC_NO_WATERMARKS)
3077 goto try_this_zone;
3078
a5f5f91d 3079 if (node_reclaim_mode == 0 ||
c33d6c06 3080 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3081 continue;
3082
a5f5f91d 3083 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3084 switch (ret) {
a5f5f91d 3085 case NODE_RECLAIM_NOSCAN:
fa5e084e 3086 /* did not scan */
cd38b115 3087 continue;
a5f5f91d 3088 case NODE_RECLAIM_FULL:
fa5e084e 3089 /* scanned but unreclaimable */
cd38b115 3090 continue;
fa5e084e
MG
3091 default:
3092 /* did we reclaim enough */
fed2719e 3093 if (zone_watermark_ok(zone, order, mark,
93ea9964 3094 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3095 goto try_this_zone;
3096
fed2719e 3097 continue;
0798e519 3098 }
7fb1d9fc
RS
3099 }
3100
fa5e084e 3101try_this_zone:
066b2393 3102 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3103 gfp_mask, alloc_flags, ac->migratetype);
75379191 3104 if (page) {
479f854a 3105 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3106
3107 /*
3108 * If this is a high-order atomic allocation then check
3109 * if the pageblock should be reserved for the future
3110 */
3111 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3112 reserve_highatomic_pageblock(page, zone, order);
3113
75379191
VB
3114 return page;
3115 }
54a6eb5c 3116 }
9276b1bc 3117
4ffeaf35 3118 return NULL;
753ee728
MH
3119}
3120
29423e77
DR
3121/*
3122 * Large machines with many possible nodes should not always dump per-node
3123 * meminfo in irq context.
3124 */
3125static inline bool should_suppress_show_mem(void)
3126{
3127 bool ret = false;
3128
3129#if NODES_SHIFT > 8
3130 ret = in_interrupt();
3131#endif
3132 return ret;
3133}
3134
9af744d7 3135static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3136{
a238ab5b 3137 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3138 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3139
aa187507 3140 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3141 return;
3142
3143 /*
3144 * This documents exceptions given to allocations in certain
3145 * contexts that are allowed to allocate outside current's set
3146 * of allowed nodes.
3147 */
3148 if (!(gfp_mask & __GFP_NOMEMALLOC))
3149 if (test_thread_flag(TIF_MEMDIE) ||
3150 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3151 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3152 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3153 filter &= ~SHOW_MEM_FILTER_NODES;
3154
9af744d7 3155 show_mem(filter, nodemask);
aa187507
MH
3156}
3157
a8e99259 3158void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3159{
3160 struct va_format vaf;
3161 va_list args;
3162 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3163 DEFAULT_RATELIMIT_BURST);
3164
0f7896f1 3165 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3166 return;
3167
7877cdcc 3168 pr_warn("%s: ", current->comm);
3ee9a4f0 3169
7877cdcc
MH
3170 va_start(args, fmt);
3171 vaf.fmt = fmt;
3172 vaf.va = &args;
3173 pr_cont("%pV", &vaf);
3174 va_end(args);
3ee9a4f0 3175
685dbf6f
DR
3176 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3177 if (nodemask)
3178 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3179 else
3180 pr_cont("(null)\n");
3181
a8e99259 3182 cpuset_print_current_mems_allowed();
3ee9a4f0 3183
a238ab5b 3184 dump_stack();
685dbf6f 3185 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3186}
3187
6c18ba7a
MH
3188static inline struct page *
3189__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3190 unsigned int alloc_flags,
3191 const struct alloc_context *ac)
3192{
3193 struct page *page;
3194
3195 page = get_page_from_freelist(gfp_mask, order,
3196 alloc_flags|ALLOC_CPUSET, ac);
3197 /*
3198 * fallback to ignore cpuset restriction if our nodes
3199 * are depleted
3200 */
3201 if (!page)
3202 page = get_page_from_freelist(gfp_mask, order,
3203 alloc_flags, ac);
3204
3205 return page;
3206}
3207
11e33f6a
MG
3208static inline struct page *
3209__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3210 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3211{
6e0fc46d
DR
3212 struct oom_control oc = {
3213 .zonelist = ac->zonelist,
3214 .nodemask = ac->nodemask,
2a966b77 3215 .memcg = NULL,
6e0fc46d
DR
3216 .gfp_mask = gfp_mask,
3217 .order = order,
6e0fc46d 3218 };
11e33f6a
MG
3219 struct page *page;
3220
9879de73
JW
3221 *did_some_progress = 0;
3222
9879de73 3223 /*
dc56401f
JW
3224 * Acquire the oom lock. If that fails, somebody else is
3225 * making progress for us.
9879de73 3226 */
dc56401f 3227 if (!mutex_trylock(&oom_lock)) {
9879de73 3228 *did_some_progress = 1;
11e33f6a 3229 schedule_timeout_uninterruptible(1);
1da177e4
LT
3230 return NULL;
3231 }
6b1de916 3232
11e33f6a
MG
3233 /*
3234 * Go through the zonelist yet one more time, keep very high watermark
3235 * here, this is only to catch a parallel oom killing, we must fail if
3236 * we're still under heavy pressure.
3237 */
a9263751
VB
3238 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3239 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3240 if (page)
11e33f6a
MG
3241 goto out;
3242
06ad276a
MH
3243 /* Coredumps can quickly deplete all memory reserves */
3244 if (current->flags & PF_DUMPCORE)
3245 goto out;
3246 /* The OOM killer will not help higher order allocs */
3247 if (order > PAGE_ALLOC_COSTLY_ORDER)
3248 goto out;
3249 /* The OOM killer does not needlessly kill tasks for lowmem */
3250 if (ac->high_zoneidx < ZONE_NORMAL)
3251 goto out;
3252 if (pm_suspended_storage())
3253 goto out;
3254 /*
3255 * XXX: GFP_NOFS allocations should rather fail than rely on
3256 * other request to make a forward progress.
3257 * We are in an unfortunate situation where out_of_memory cannot
3258 * do much for this context but let's try it to at least get
3259 * access to memory reserved if the current task is killed (see
3260 * out_of_memory). Once filesystems are ready to handle allocation
3261 * failures more gracefully we should just bail out here.
3262 */
3263
3264 /* The OOM killer may not free memory on a specific node */
3265 if (gfp_mask & __GFP_THISNODE)
3266 goto out;
3da88fb3 3267
11e33f6a 3268 /* Exhausted what can be done so it's blamo time */
5020e285 3269 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3270 *did_some_progress = 1;
5020e285 3271
6c18ba7a
MH
3272 /*
3273 * Help non-failing allocations by giving them access to memory
3274 * reserves
3275 */
3276 if (gfp_mask & __GFP_NOFAIL)
3277 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3278 ALLOC_NO_WATERMARKS, ac);
5020e285 3279 }
11e33f6a 3280out:
dc56401f 3281 mutex_unlock(&oom_lock);
11e33f6a
MG
3282 return page;
3283}
3284
33c2d214
MH
3285/*
3286 * Maximum number of compaction retries wit a progress before OOM
3287 * killer is consider as the only way to move forward.
3288 */
3289#define MAX_COMPACT_RETRIES 16
3290
56de7263
MG
3291#ifdef CONFIG_COMPACTION
3292/* Try memory compaction for high-order allocations before reclaim */
3293static struct page *
3294__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3295 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3296 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3297{
98dd3b48 3298 struct page *page;
499118e9 3299 unsigned int noreclaim_flag;
53853e2d
VB
3300
3301 if (!order)
66199712 3302 return NULL;
66199712 3303
499118e9 3304 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3305 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3306 prio);
499118e9 3307 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3308
c5d01d0d 3309 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3310 return NULL;
53853e2d 3311
98dd3b48
VB
3312 /*
3313 * At least in one zone compaction wasn't deferred or skipped, so let's
3314 * count a compaction stall
3315 */
3316 count_vm_event(COMPACTSTALL);
8fb74b9f 3317
31a6c190 3318 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3319
98dd3b48
VB
3320 if (page) {
3321 struct zone *zone = page_zone(page);
53853e2d 3322
98dd3b48
VB
3323 zone->compact_blockskip_flush = false;
3324 compaction_defer_reset(zone, order, true);
3325 count_vm_event(COMPACTSUCCESS);
3326 return page;
3327 }
56de7263 3328
98dd3b48
VB
3329 /*
3330 * It's bad if compaction run occurs and fails. The most likely reason
3331 * is that pages exist, but not enough to satisfy watermarks.
3332 */
3333 count_vm_event(COMPACTFAIL);
66199712 3334
98dd3b48 3335 cond_resched();
56de7263
MG
3336
3337 return NULL;
3338}
33c2d214 3339
3250845d
VB
3340static inline bool
3341should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3342 enum compact_result compact_result,
3343 enum compact_priority *compact_priority,
d9436498 3344 int *compaction_retries)
3250845d
VB
3345{
3346 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3347 int min_priority;
65190cff
MH
3348 bool ret = false;
3349 int retries = *compaction_retries;
3350 enum compact_priority priority = *compact_priority;
3250845d
VB
3351
3352 if (!order)
3353 return false;
3354
d9436498
VB
3355 if (compaction_made_progress(compact_result))
3356 (*compaction_retries)++;
3357
3250845d
VB
3358 /*
3359 * compaction considers all the zone as desperately out of memory
3360 * so it doesn't really make much sense to retry except when the
3361 * failure could be caused by insufficient priority
3362 */
d9436498
VB
3363 if (compaction_failed(compact_result))
3364 goto check_priority;
3250845d
VB
3365
3366 /*
3367 * make sure the compaction wasn't deferred or didn't bail out early
3368 * due to locks contention before we declare that we should give up.
3369 * But do not retry if the given zonelist is not suitable for
3370 * compaction.
3371 */
65190cff
MH
3372 if (compaction_withdrawn(compact_result)) {
3373 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3374 goto out;
3375 }
3250845d
VB
3376
3377 /*
3378 * !costly requests are much more important than __GFP_REPEAT
3379 * costly ones because they are de facto nofail and invoke OOM
3380 * killer to move on while costly can fail and users are ready
3381 * to cope with that. 1/4 retries is rather arbitrary but we
3382 * would need much more detailed feedback from compaction to
3383 * make a better decision.
3384 */
3385 if (order > PAGE_ALLOC_COSTLY_ORDER)
3386 max_retries /= 4;
65190cff
MH
3387 if (*compaction_retries <= max_retries) {
3388 ret = true;
3389 goto out;
3390 }
3250845d 3391
d9436498
VB
3392 /*
3393 * Make sure there are attempts at the highest priority if we exhausted
3394 * all retries or failed at the lower priorities.
3395 */
3396check_priority:
c2033b00
VB
3397 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3398 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3399
c2033b00 3400 if (*compact_priority > min_priority) {
d9436498
VB
3401 (*compact_priority)--;
3402 *compaction_retries = 0;
65190cff 3403 ret = true;
d9436498 3404 }
65190cff
MH
3405out:
3406 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3407 return ret;
3250845d 3408}
56de7263
MG
3409#else
3410static inline struct page *
3411__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3412 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3413 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3414{
33c2d214 3415 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3416 return NULL;
3417}
33c2d214
MH
3418
3419static inline bool
86a294a8
MH
3420should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3421 enum compact_result compact_result,
a5508cd8 3422 enum compact_priority *compact_priority,
d9436498 3423 int *compaction_retries)
33c2d214 3424{
31e49bfd
MH
3425 struct zone *zone;
3426 struct zoneref *z;
3427
3428 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3429 return false;
3430
3431 /*
3432 * There are setups with compaction disabled which would prefer to loop
3433 * inside the allocator rather than hit the oom killer prematurely.
3434 * Let's give them a good hope and keep retrying while the order-0
3435 * watermarks are OK.
3436 */
3437 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3438 ac->nodemask) {
3439 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3440 ac_classzone_idx(ac), alloc_flags))
3441 return true;
3442 }
33c2d214
MH
3443 return false;
3444}
3250845d 3445#endif /* CONFIG_COMPACTION */
56de7263 3446
bba90710
MS
3447/* Perform direct synchronous page reclaim */
3448static int
a9263751
VB
3449__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3450 const struct alloc_context *ac)
11e33f6a 3451{
11e33f6a 3452 struct reclaim_state reclaim_state;
bba90710 3453 int progress;
499118e9 3454 unsigned int noreclaim_flag;
11e33f6a
MG
3455
3456 cond_resched();
3457
3458 /* We now go into synchronous reclaim */
3459 cpuset_memory_pressure_bump();
499118e9 3460 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a
MG
3461 lockdep_set_current_reclaim_state(gfp_mask);
3462 reclaim_state.reclaimed_slab = 0;
c06b1fca 3463 current->reclaim_state = &reclaim_state;
11e33f6a 3464
a9263751
VB
3465 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3466 ac->nodemask);
11e33f6a 3467
c06b1fca 3468 current->reclaim_state = NULL;
11e33f6a 3469 lockdep_clear_current_reclaim_state();
499118e9 3470 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3471
3472 cond_resched();
3473
bba90710
MS
3474 return progress;
3475}
3476
3477/* The really slow allocator path where we enter direct reclaim */
3478static inline struct page *
3479__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3480 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3481 unsigned long *did_some_progress)
bba90710
MS
3482{
3483 struct page *page = NULL;
3484 bool drained = false;
3485
a9263751 3486 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3487 if (unlikely(!(*did_some_progress)))
3488 return NULL;
11e33f6a 3489
9ee493ce 3490retry:
31a6c190 3491 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3492
3493 /*
3494 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3495 * pages are pinned on the per-cpu lists or in high alloc reserves.
3496 * Shrink them them and try again
9ee493ce
MG
3497 */
3498 if (!page && !drained) {
29fac03b 3499 unreserve_highatomic_pageblock(ac, false);
93481ff0 3500 drain_all_pages(NULL);
9ee493ce
MG
3501 drained = true;
3502 goto retry;
3503 }
3504
11e33f6a
MG
3505 return page;
3506}
3507
a9263751 3508static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3509{
3510 struct zoneref *z;
3511 struct zone *zone;
e1a55637 3512 pg_data_t *last_pgdat = NULL;
3a025760 3513
a9263751 3514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3515 ac->high_zoneidx, ac->nodemask) {
3516 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3517 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3518 last_pgdat = zone->zone_pgdat;
3519 }
3a025760
JW
3520}
3521
c603844b 3522static inline unsigned int
341ce06f
PZ
3523gfp_to_alloc_flags(gfp_t gfp_mask)
3524{
c603844b 3525 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3526
a56f57ff 3527 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3528 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3529
341ce06f
PZ
3530 /*
3531 * The caller may dip into page reserves a bit more if the caller
3532 * cannot run direct reclaim, or if the caller has realtime scheduling
3533 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3534 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3535 */
e6223a3b 3536 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3537
d0164adc 3538 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3539 /*
b104a35d
DR
3540 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3541 * if it can't schedule.
5c3240d9 3542 */
b104a35d 3543 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3544 alloc_flags |= ALLOC_HARDER;
523b9458 3545 /*
b104a35d 3546 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3547 * comment for __cpuset_node_allowed().
523b9458 3548 */
341ce06f 3549 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3550 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3551 alloc_flags |= ALLOC_HARDER;
3552
d95ea5d1 3553#ifdef CONFIG_CMA
43e7a34d 3554 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3555 alloc_flags |= ALLOC_CMA;
3556#endif
341ce06f
PZ
3557 return alloc_flags;
3558}
3559
072bb0aa
MG
3560bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3561{
31a6c190
VB
3562 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3563 return false;
3564
3565 if (gfp_mask & __GFP_MEMALLOC)
3566 return true;
3567 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3568 return true;
3569 if (!in_interrupt() &&
3570 ((current->flags & PF_MEMALLOC) ||
3571 unlikely(test_thread_flag(TIF_MEMDIE))))
3572 return true;
3573
3574 return false;
072bb0aa
MG
3575}
3576
0a0337e0
MH
3577/*
3578 * Checks whether it makes sense to retry the reclaim to make a forward progress
3579 * for the given allocation request.
491d79ae
JW
3580 *
3581 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3582 * without success, or when we couldn't even meet the watermark if we
3583 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3584 *
3585 * Returns true if a retry is viable or false to enter the oom path.
3586 */
3587static inline bool
3588should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3589 struct alloc_context *ac, int alloc_flags,
423b452e 3590 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3591{
3592 struct zone *zone;
3593 struct zoneref *z;
3594
423b452e
VB
3595 /*
3596 * Costly allocations might have made a progress but this doesn't mean
3597 * their order will become available due to high fragmentation so
3598 * always increment the no progress counter for them
3599 */
3600 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3601 *no_progress_loops = 0;
3602 else
3603 (*no_progress_loops)++;
3604
0a0337e0
MH
3605 /*
3606 * Make sure we converge to OOM if we cannot make any progress
3607 * several times in the row.
3608 */
04c8716f
MK
3609 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3610 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3611 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3612 }
0a0337e0 3613
bca67592
MG
3614 /*
3615 * Keep reclaiming pages while there is a chance this will lead
3616 * somewhere. If none of the target zones can satisfy our allocation
3617 * request even if all reclaimable pages are considered then we are
3618 * screwed and have to go OOM.
0a0337e0
MH
3619 */
3620 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3621 ac->nodemask) {
3622 unsigned long available;
ede37713 3623 unsigned long reclaimable;
d379f01d
MH
3624 unsigned long min_wmark = min_wmark_pages(zone);
3625 bool wmark;
0a0337e0 3626
5a1c84b4 3627 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3628 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3629
3630 /*
491d79ae
JW
3631 * Would the allocation succeed if we reclaimed all
3632 * reclaimable pages?
0a0337e0 3633 */
d379f01d
MH
3634 wmark = __zone_watermark_ok(zone, order, min_wmark,
3635 ac_classzone_idx(ac), alloc_flags, available);
3636 trace_reclaim_retry_zone(z, order, reclaimable,
3637 available, min_wmark, *no_progress_loops, wmark);
3638 if (wmark) {
ede37713
MH
3639 /*
3640 * If we didn't make any progress and have a lot of
3641 * dirty + writeback pages then we should wait for
3642 * an IO to complete to slow down the reclaim and
3643 * prevent from pre mature OOM
3644 */
3645 if (!did_some_progress) {
11fb9989 3646 unsigned long write_pending;
ede37713 3647
5a1c84b4
MG
3648 write_pending = zone_page_state_snapshot(zone,
3649 NR_ZONE_WRITE_PENDING);
ede37713 3650
11fb9989 3651 if (2 * write_pending > reclaimable) {
ede37713
MH
3652 congestion_wait(BLK_RW_ASYNC, HZ/10);
3653 return true;
3654 }
3655 }
5a1c84b4 3656
ede37713
MH
3657 /*
3658 * Memory allocation/reclaim might be called from a WQ
3659 * context and the current implementation of the WQ
3660 * concurrency control doesn't recognize that
3661 * a particular WQ is congested if the worker thread is
3662 * looping without ever sleeping. Therefore we have to
3663 * do a short sleep here rather than calling
3664 * cond_resched().
3665 */
3666 if (current->flags & PF_WQ_WORKER)
3667 schedule_timeout_uninterruptible(1);
3668 else
3669 cond_resched();
3670
0a0337e0
MH
3671 return true;
3672 }
3673 }
3674
3675 return false;
3676}
3677
11e33f6a
MG
3678static inline struct page *
3679__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3680 struct alloc_context *ac)
11e33f6a 3681{
d0164adc 3682 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3683 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3684 struct page *page = NULL;
c603844b 3685 unsigned int alloc_flags;
11e33f6a 3686 unsigned long did_some_progress;
5ce9bfef 3687 enum compact_priority compact_priority;
c5d01d0d 3688 enum compact_result compact_result;
5ce9bfef
VB
3689 int compaction_retries;
3690 int no_progress_loops;
63f53dea
MH
3691 unsigned long alloc_start = jiffies;
3692 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3693 unsigned int cpuset_mems_cookie;
1da177e4 3694
72807a74
MG
3695 /*
3696 * In the slowpath, we sanity check order to avoid ever trying to
3697 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3698 * be using allocators in order of preference for an area that is
3699 * too large.
3700 */
1fc28b70
MG
3701 if (order >= MAX_ORDER) {
3702 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3703 return NULL;
1fc28b70 3704 }
1da177e4 3705
d0164adc
MG
3706 /*
3707 * We also sanity check to catch abuse of atomic reserves being used by
3708 * callers that are not in atomic context.
3709 */
3710 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3711 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3712 gfp_mask &= ~__GFP_ATOMIC;
3713
5ce9bfef
VB
3714retry_cpuset:
3715 compaction_retries = 0;
3716 no_progress_loops = 0;
3717 compact_priority = DEF_COMPACT_PRIORITY;
3718 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3719
3720 /*
3721 * The fast path uses conservative alloc_flags to succeed only until
3722 * kswapd needs to be woken up, and to avoid the cost of setting up
3723 * alloc_flags precisely. So we do that now.
3724 */
3725 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3726
e47483bc
VB
3727 /*
3728 * We need to recalculate the starting point for the zonelist iterator
3729 * because we might have used different nodemask in the fast path, or
3730 * there was a cpuset modification and we are retrying - otherwise we
3731 * could end up iterating over non-eligible zones endlessly.
3732 */
3733 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3734 ac->high_zoneidx, ac->nodemask);
3735 if (!ac->preferred_zoneref->zone)
3736 goto nopage;
3737
23771235
VB
3738 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3739 wake_all_kswapds(order, ac);
3740
3741 /*
3742 * The adjusted alloc_flags might result in immediate success, so try
3743 * that first
3744 */
3745 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3746 if (page)
3747 goto got_pg;
3748
a8161d1e
VB
3749 /*
3750 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3751 * that we have enough base pages and don't need to reclaim. For non-
3752 * movable high-order allocations, do that as well, as compaction will
3753 * try prevent permanent fragmentation by migrating from blocks of the
3754 * same migratetype.
3755 * Don't try this for allocations that are allowed to ignore
3756 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3757 */
282722b0
VB
3758 if (can_direct_reclaim &&
3759 (costly_order ||
3760 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3761 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3762 page = __alloc_pages_direct_compact(gfp_mask, order,
3763 alloc_flags, ac,
a5508cd8 3764 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3765 &compact_result);
3766 if (page)
3767 goto got_pg;
3768
3eb2771b
VB
3769 /*
3770 * Checks for costly allocations with __GFP_NORETRY, which
3771 * includes THP page fault allocations
3772 */
282722b0 3773 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3774 /*
3775 * If compaction is deferred for high-order allocations,
3776 * it is because sync compaction recently failed. If
3777 * this is the case and the caller requested a THP
3778 * allocation, we do not want to heavily disrupt the
3779 * system, so we fail the allocation instead of entering
3780 * direct reclaim.
3781 */
3782 if (compact_result == COMPACT_DEFERRED)
3783 goto nopage;
3784
a8161d1e 3785 /*
3eb2771b
VB
3786 * Looks like reclaim/compaction is worth trying, but
3787 * sync compaction could be very expensive, so keep
25160354 3788 * using async compaction.
a8161d1e 3789 */
a5508cd8 3790 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3791 }
3792 }
23771235 3793
31a6c190 3794retry:
23771235 3795 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3796 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3797 wake_all_kswapds(order, ac);
3798
23771235
VB
3799 if (gfp_pfmemalloc_allowed(gfp_mask))
3800 alloc_flags = ALLOC_NO_WATERMARKS;
3801
e46e7b77
MG
3802 /*
3803 * Reset the zonelist iterators if memory policies can be ignored.
3804 * These allocations are high priority and system rather than user
3805 * orientated.
3806 */
23771235 3807 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3808 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3809 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3810 ac->high_zoneidx, ac->nodemask);
3811 }
3812
23771235 3813 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3814 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3815 if (page)
3816 goto got_pg;
1da177e4 3817
d0164adc 3818 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3819 if (!can_direct_reclaim)
1da177e4
LT
3820 goto nopage;
3821
9a67f648
MH
3822 /* Make sure we know about allocations which stall for too long */
3823 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 3824 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
3825 "page allocation stalls for %ums, order:%u",
3826 jiffies_to_msecs(jiffies-alloc_start), order);
3827 stall_timeout += 10 * HZ;
33d53103 3828 }
341ce06f 3829
9a67f648
MH
3830 /* Avoid recursion of direct reclaim */
3831 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3832 goto nopage;
3833
a8161d1e
VB
3834 /* Try direct reclaim and then allocating */
3835 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3836 &did_some_progress);
3837 if (page)
3838 goto got_pg;
3839
3840 /* Try direct compaction and then allocating */
a9263751 3841 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3842 compact_priority, &compact_result);
56de7263
MG
3843 if (page)
3844 goto got_pg;
75f30861 3845
9083905a
JW
3846 /* Do not loop if specifically requested */
3847 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3848 goto nopage;
9083905a 3849
0a0337e0
MH
3850 /*
3851 * Do not retry costly high order allocations unless they are
3852 * __GFP_REPEAT
3853 */
282722b0 3854 if (costly_order && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3855 goto nopage;
0a0337e0 3856
0a0337e0 3857 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3858 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3859 goto retry;
3860
33c2d214
MH
3861 /*
3862 * It doesn't make any sense to retry for the compaction if the order-0
3863 * reclaim is not able to make any progress because the current
3864 * implementation of the compaction depends on the sufficient amount
3865 * of free memory (see __compaction_suitable)
3866 */
3867 if (did_some_progress > 0 &&
86a294a8 3868 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3869 compact_result, &compact_priority,
d9436498 3870 &compaction_retries))
33c2d214
MH
3871 goto retry;
3872
e47483bc
VB
3873 /*
3874 * It's possible we raced with cpuset update so the OOM would be
3875 * premature (see below the nopage: label for full explanation).
3876 */
3877 if (read_mems_allowed_retry(cpuset_mems_cookie))
3878 goto retry_cpuset;
3879
9083905a
JW
3880 /* Reclaim has failed us, start killing things */
3881 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3882 if (page)
3883 goto got_pg;
3884
9a67f648 3885 /* Avoid allocations with no watermarks from looping endlessly */
c288983d
TH
3886 if (test_thread_flag(TIF_MEMDIE) &&
3887 (alloc_flags == ALLOC_NO_WATERMARKS ||
3888 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
3889 goto nopage;
3890
9083905a 3891 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3892 if (did_some_progress) {
3893 no_progress_loops = 0;
9083905a 3894 goto retry;
0a0337e0 3895 }
9083905a 3896
1da177e4 3897nopage:
5ce9bfef 3898 /*
e47483bc
VB
3899 * When updating a task's mems_allowed or mempolicy nodemask, it is
3900 * possible to race with parallel threads in such a way that our
3901 * allocation can fail while the mask is being updated. If we are about
3902 * to fail, check if the cpuset changed during allocation and if so,
3903 * retry.
5ce9bfef
VB
3904 */
3905 if (read_mems_allowed_retry(cpuset_mems_cookie))
3906 goto retry_cpuset;
3907
9a67f648
MH
3908 /*
3909 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3910 * we always retry
3911 */
3912 if (gfp_mask & __GFP_NOFAIL) {
3913 /*
3914 * All existing users of the __GFP_NOFAIL are blockable, so warn
3915 * of any new users that actually require GFP_NOWAIT
3916 */
3917 if (WARN_ON_ONCE(!can_direct_reclaim))
3918 goto fail;
3919
3920 /*
3921 * PF_MEMALLOC request from this context is rather bizarre
3922 * because we cannot reclaim anything and only can loop waiting
3923 * for somebody to do a work for us
3924 */
3925 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3926
3927 /*
3928 * non failing costly orders are a hard requirement which we
3929 * are not prepared for much so let's warn about these users
3930 * so that we can identify them and convert them to something
3931 * else.
3932 */
3933 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3934
6c18ba7a
MH
3935 /*
3936 * Help non-failing allocations by giving them access to memory
3937 * reserves but do not use ALLOC_NO_WATERMARKS because this
3938 * could deplete whole memory reserves which would just make
3939 * the situation worse
3940 */
3941 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3942 if (page)
3943 goto got_pg;
3944
9a67f648
MH
3945 cond_resched();
3946 goto retry;
3947 }
3948fail:
a8e99259 3949 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3950 "page allocation failure: order:%u", order);
1da177e4 3951got_pg:
072bb0aa 3952 return page;
1da177e4 3953}
11e33f6a 3954
9cd75558
MG
3955static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3956 struct zonelist *zonelist, nodemask_t *nodemask,
3957 struct alloc_context *ac, gfp_t *alloc_mask,
3958 unsigned int *alloc_flags)
11e33f6a 3959{
9cd75558
MG
3960 ac->high_zoneidx = gfp_zone(gfp_mask);
3961 ac->zonelist = zonelist;
3962 ac->nodemask = nodemask;
3963 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3964
682a3385 3965 if (cpusets_enabled()) {
9cd75558 3966 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
3967 if (!ac->nodemask)
3968 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
3969 else
3970 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
3971 }
3972
11e33f6a
MG
3973 lockdep_trace_alloc(gfp_mask);
3974
d0164adc 3975 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3976
3977 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 3978 return false;
11e33f6a 3979
9cd75558
MG
3980 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3981 *alloc_flags |= ALLOC_CMA;
3982
3983 return true;
3984}
21bb9bd1 3985
9cd75558
MG
3986/* Determine whether to spread dirty pages and what the first usable zone */
3987static inline void finalise_ac(gfp_t gfp_mask,
3988 unsigned int order, struct alloc_context *ac)
3989{
c9ab0c4f 3990 /* Dirty zone balancing only done in the fast path */
9cd75558 3991 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 3992
e46e7b77
MG
3993 /*
3994 * The preferred zone is used for statistics but crucially it is
3995 * also used as the starting point for the zonelist iterator. It
3996 * may get reset for allocations that ignore memory policies.
3997 */
9cd75558
MG
3998 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3999 ac->high_zoneidx, ac->nodemask);
4000}
4001
4002/*
4003 * This is the 'heart' of the zoned buddy allocator.
4004 */
4005struct page *
4006__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
4007 struct zonelist *zonelist, nodemask_t *nodemask)
4008{
4009 struct page *page;
4010 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4011 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4012 struct alloc_context ac = { };
4013
4014 gfp_mask &= gfp_allowed_mask;
4015 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
4016 return NULL;
4017
4018 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4019
5117f45d 4020 /* First allocation attempt */
a9263751 4021 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4022 if (likely(page))
4023 goto out;
11e33f6a 4024
4fcb0971 4025 /*
7dea19f9
MH
4026 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4027 * resp. GFP_NOIO which has to be inherited for all allocation requests
4028 * from a particular context which has been marked by
4029 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4030 */
7dea19f9 4031 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4032 ac.spread_dirty_pages = false;
23f086f9 4033
4741526b
MG
4034 /*
4035 * Restore the original nodemask if it was potentially replaced with
4036 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4037 */
e47483bc 4038 if (unlikely(ac.nodemask != nodemask))
4741526b 4039 ac.nodemask = nodemask;
16096c25 4040
4fcb0971 4041 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4042
4fcb0971 4043out:
c4159a75
VD
4044 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4045 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4046 __free_pages(page, order);
4047 page = NULL;
4949148a
VD
4048 }
4049
4fcb0971
MG
4050 if (kmemcheck_enabled && page)
4051 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4052
4053 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4054
11e33f6a 4055 return page;
1da177e4 4056}
d239171e 4057EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4058
4059/*
4060 * Common helper functions.
4061 */
920c7a5d 4062unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4063{
945a1113
AM
4064 struct page *page;
4065
4066 /*
4067 * __get_free_pages() returns a 32-bit address, which cannot represent
4068 * a highmem page
4069 */
4070 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4071
1da177e4
LT
4072 page = alloc_pages(gfp_mask, order);
4073 if (!page)
4074 return 0;
4075 return (unsigned long) page_address(page);
4076}
1da177e4
LT
4077EXPORT_SYMBOL(__get_free_pages);
4078
920c7a5d 4079unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4080{
945a1113 4081 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4082}
1da177e4
LT
4083EXPORT_SYMBOL(get_zeroed_page);
4084
920c7a5d 4085void __free_pages(struct page *page, unsigned int order)
1da177e4 4086{
b5810039 4087 if (put_page_testzero(page)) {
1da177e4 4088 if (order == 0)
b745bc85 4089 free_hot_cold_page(page, false);
1da177e4
LT
4090 else
4091 __free_pages_ok(page, order);
4092 }
4093}
4094
4095EXPORT_SYMBOL(__free_pages);
4096
920c7a5d 4097void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4098{
4099 if (addr != 0) {
725d704e 4100 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4101 __free_pages(virt_to_page((void *)addr), order);
4102 }
4103}
4104
4105EXPORT_SYMBOL(free_pages);
4106
b63ae8ca
AD
4107/*
4108 * Page Fragment:
4109 * An arbitrary-length arbitrary-offset area of memory which resides
4110 * within a 0 or higher order page. Multiple fragments within that page
4111 * are individually refcounted, in the page's reference counter.
4112 *
4113 * The page_frag functions below provide a simple allocation framework for
4114 * page fragments. This is used by the network stack and network device
4115 * drivers to provide a backing region of memory for use as either an
4116 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4117 */
2976db80
AD
4118static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4119 gfp_t gfp_mask)
b63ae8ca
AD
4120{
4121 struct page *page = NULL;
4122 gfp_t gfp = gfp_mask;
4123
4124#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4125 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4126 __GFP_NOMEMALLOC;
4127 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4128 PAGE_FRAG_CACHE_MAX_ORDER);
4129 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4130#endif
4131 if (unlikely(!page))
4132 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4133
4134 nc->va = page ? page_address(page) : NULL;
4135
4136 return page;
4137}
4138
2976db80 4139void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4140{
4141 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4142
4143 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4144 unsigned int order = compound_order(page);
4145
44fdffd7
AD
4146 if (order == 0)
4147 free_hot_cold_page(page, false);
4148 else
4149 __free_pages_ok(page, order);
4150 }
4151}
2976db80 4152EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4153
8c2dd3e4
AD
4154void *page_frag_alloc(struct page_frag_cache *nc,
4155 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4156{
4157 unsigned int size = PAGE_SIZE;
4158 struct page *page;
4159 int offset;
4160
4161 if (unlikely(!nc->va)) {
4162refill:
2976db80 4163 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4164 if (!page)
4165 return NULL;
4166
4167#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4168 /* if size can vary use size else just use PAGE_SIZE */
4169 size = nc->size;
4170#endif
4171 /* Even if we own the page, we do not use atomic_set().
4172 * This would break get_page_unless_zero() users.
4173 */
fe896d18 4174 page_ref_add(page, size - 1);
b63ae8ca
AD
4175
4176 /* reset page count bias and offset to start of new frag */
2f064f34 4177 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4178 nc->pagecnt_bias = size;
4179 nc->offset = size;
4180 }
4181
4182 offset = nc->offset - fragsz;
4183 if (unlikely(offset < 0)) {
4184 page = virt_to_page(nc->va);
4185
fe896d18 4186 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4187 goto refill;
4188
4189#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4190 /* if size can vary use size else just use PAGE_SIZE */
4191 size = nc->size;
4192#endif
4193 /* OK, page count is 0, we can safely set it */
fe896d18 4194 set_page_count(page, size);
b63ae8ca
AD
4195
4196 /* reset page count bias and offset to start of new frag */
4197 nc->pagecnt_bias = size;
4198 offset = size - fragsz;
4199 }
4200
4201 nc->pagecnt_bias--;
4202 nc->offset = offset;
4203
4204 return nc->va + offset;
4205}
8c2dd3e4 4206EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4207
4208/*
4209 * Frees a page fragment allocated out of either a compound or order 0 page.
4210 */
8c2dd3e4 4211void page_frag_free(void *addr)
b63ae8ca
AD
4212{
4213 struct page *page = virt_to_head_page(addr);
4214
4215 if (unlikely(put_page_testzero(page)))
4216 __free_pages_ok(page, compound_order(page));
4217}
8c2dd3e4 4218EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4219
d00181b9
KS
4220static void *make_alloc_exact(unsigned long addr, unsigned int order,
4221 size_t size)
ee85c2e1
AK
4222{
4223 if (addr) {
4224 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4225 unsigned long used = addr + PAGE_ALIGN(size);
4226
4227 split_page(virt_to_page((void *)addr), order);
4228 while (used < alloc_end) {
4229 free_page(used);
4230 used += PAGE_SIZE;
4231 }
4232 }
4233 return (void *)addr;
4234}
4235
2be0ffe2
TT
4236/**
4237 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4238 * @size: the number of bytes to allocate
4239 * @gfp_mask: GFP flags for the allocation
4240 *
4241 * This function is similar to alloc_pages(), except that it allocates the
4242 * minimum number of pages to satisfy the request. alloc_pages() can only
4243 * allocate memory in power-of-two pages.
4244 *
4245 * This function is also limited by MAX_ORDER.
4246 *
4247 * Memory allocated by this function must be released by free_pages_exact().
4248 */
4249void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4250{
4251 unsigned int order = get_order(size);
4252 unsigned long addr;
4253
4254 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4255 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4256}
4257EXPORT_SYMBOL(alloc_pages_exact);
4258
ee85c2e1
AK
4259/**
4260 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4261 * pages on a node.
b5e6ab58 4262 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4263 * @size: the number of bytes to allocate
4264 * @gfp_mask: GFP flags for the allocation
4265 *
4266 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4267 * back.
ee85c2e1 4268 */
e1931811 4269void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4270{
d00181b9 4271 unsigned int order = get_order(size);
ee85c2e1
AK
4272 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4273 if (!p)
4274 return NULL;
4275 return make_alloc_exact((unsigned long)page_address(p), order, size);
4276}
ee85c2e1 4277
2be0ffe2
TT
4278/**
4279 * free_pages_exact - release memory allocated via alloc_pages_exact()
4280 * @virt: the value returned by alloc_pages_exact.
4281 * @size: size of allocation, same value as passed to alloc_pages_exact().
4282 *
4283 * Release the memory allocated by a previous call to alloc_pages_exact.
4284 */
4285void free_pages_exact(void *virt, size_t size)
4286{
4287 unsigned long addr = (unsigned long)virt;
4288 unsigned long end = addr + PAGE_ALIGN(size);
4289
4290 while (addr < end) {
4291 free_page(addr);
4292 addr += PAGE_SIZE;
4293 }
4294}
4295EXPORT_SYMBOL(free_pages_exact);
4296
e0fb5815
ZY
4297/**
4298 * nr_free_zone_pages - count number of pages beyond high watermark
4299 * @offset: The zone index of the highest zone
4300 *
4301 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4302 * high watermark within all zones at or below a given zone index. For each
4303 * zone, the number of pages is calculated as:
0e056eb5
MCC
4304 *
4305 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4306 */
ebec3862 4307static unsigned long nr_free_zone_pages(int offset)
1da177e4 4308{
dd1a239f 4309 struct zoneref *z;
54a6eb5c
MG
4310 struct zone *zone;
4311
e310fd43 4312 /* Just pick one node, since fallback list is circular */
ebec3862 4313 unsigned long sum = 0;
1da177e4 4314
0e88460d 4315 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4316
54a6eb5c 4317 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4318 unsigned long size = zone->managed_pages;
41858966 4319 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4320 if (size > high)
4321 sum += size - high;
1da177e4
LT
4322 }
4323
4324 return sum;
4325}
4326
e0fb5815
ZY
4327/**
4328 * nr_free_buffer_pages - count number of pages beyond high watermark
4329 *
4330 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4331 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4332 */
ebec3862 4333unsigned long nr_free_buffer_pages(void)
1da177e4 4334{
af4ca457 4335 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4336}
c2f1a551 4337EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4338
e0fb5815
ZY
4339/**
4340 * nr_free_pagecache_pages - count number of pages beyond high watermark
4341 *
4342 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4343 * high watermark within all zones.
1da177e4 4344 */
ebec3862 4345unsigned long nr_free_pagecache_pages(void)
1da177e4 4346{
2a1e274a 4347 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4348}
08e0f6a9
CL
4349
4350static inline void show_node(struct zone *zone)
1da177e4 4351{
e5adfffc 4352 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4353 printk("Node %d ", zone_to_nid(zone));
1da177e4 4354}
1da177e4 4355
d02bd27b
IR
4356long si_mem_available(void)
4357{
4358 long available;
4359 unsigned long pagecache;
4360 unsigned long wmark_low = 0;
4361 unsigned long pages[NR_LRU_LISTS];
4362 struct zone *zone;
4363 int lru;
4364
4365 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4366 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4367
4368 for_each_zone(zone)
4369 wmark_low += zone->watermark[WMARK_LOW];
4370
4371 /*
4372 * Estimate the amount of memory available for userspace allocations,
4373 * without causing swapping.
4374 */
4375 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4376
4377 /*
4378 * Not all the page cache can be freed, otherwise the system will
4379 * start swapping. Assume at least half of the page cache, or the
4380 * low watermark worth of cache, needs to stay.
4381 */
4382 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4383 pagecache -= min(pagecache / 2, wmark_low);
4384 available += pagecache;
4385
4386 /*
4387 * Part of the reclaimable slab consists of items that are in use,
4388 * and cannot be freed. Cap this estimate at the low watermark.
4389 */
4390 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4391 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4392
4393 if (available < 0)
4394 available = 0;
4395 return available;
4396}
4397EXPORT_SYMBOL_GPL(si_mem_available);
4398
1da177e4
LT
4399void si_meminfo(struct sysinfo *val)
4400{
4401 val->totalram = totalram_pages;
11fb9989 4402 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4403 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4404 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4405 val->totalhigh = totalhigh_pages;
4406 val->freehigh = nr_free_highpages();
1da177e4
LT
4407 val->mem_unit = PAGE_SIZE;
4408}
4409
4410EXPORT_SYMBOL(si_meminfo);
4411
4412#ifdef CONFIG_NUMA
4413void si_meminfo_node(struct sysinfo *val, int nid)
4414{
cdd91a77
JL
4415 int zone_type; /* needs to be signed */
4416 unsigned long managed_pages = 0;
fc2bd799
JK
4417 unsigned long managed_highpages = 0;
4418 unsigned long free_highpages = 0;
1da177e4
LT
4419 pg_data_t *pgdat = NODE_DATA(nid);
4420
cdd91a77
JL
4421 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4422 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4423 val->totalram = managed_pages;
11fb9989 4424 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4425 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4426#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4427 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4428 struct zone *zone = &pgdat->node_zones[zone_type];
4429
4430 if (is_highmem(zone)) {
4431 managed_highpages += zone->managed_pages;
4432 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4433 }
4434 }
4435 val->totalhigh = managed_highpages;
4436 val->freehigh = free_highpages;
98d2b0eb 4437#else
fc2bd799
JK
4438 val->totalhigh = managed_highpages;
4439 val->freehigh = free_highpages;
98d2b0eb 4440#endif
1da177e4
LT
4441 val->mem_unit = PAGE_SIZE;
4442}
4443#endif
4444
ddd588b5 4445/*
7bf02ea2
DR
4446 * Determine whether the node should be displayed or not, depending on whether
4447 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4448 */
9af744d7 4449static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4450{
ddd588b5 4451 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4452 return false;
ddd588b5 4453
9af744d7
MH
4454 /*
4455 * no node mask - aka implicit memory numa policy. Do not bother with
4456 * the synchronization - read_mems_allowed_begin - because we do not
4457 * have to be precise here.
4458 */
4459 if (!nodemask)
4460 nodemask = &cpuset_current_mems_allowed;
4461
4462 return !node_isset(nid, *nodemask);
ddd588b5
DR
4463}
4464
1da177e4
LT
4465#define K(x) ((x) << (PAGE_SHIFT-10))
4466
377e4f16
RV
4467static void show_migration_types(unsigned char type)
4468{
4469 static const char types[MIGRATE_TYPES] = {
4470 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4471 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4472 [MIGRATE_RECLAIMABLE] = 'E',
4473 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4474#ifdef CONFIG_CMA
4475 [MIGRATE_CMA] = 'C',
4476#endif
194159fb 4477#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4478 [MIGRATE_ISOLATE] = 'I',
194159fb 4479#endif
377e4f16
RV
4480 };
4481 char tmp[MIGRATE_TYPES + 1];
4482 char *p = tmp;
4483 int i;
4484
4485 for (i = 0; i < MIGRATE_TYPES; i++) {
4486 if (type & (1 << i))
4487 *p++ = types[i];
4488 }
4489
4490 *p = '\0';
1f84a18f 4491 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4492}
4493
1da177e4
LT
4494/*
4495 * Show free area list (used inside shift_scroll-lock stuff)
4496 * We also calculate the percentage fragmentation. We do this by counting the
4497 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4498 *
4499 * Bits in @filter:
4500 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4501 * cpuset.
1da177e4 4502 */
9af744d7 4503void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4504{
d1bfcdb8 4505 unsigned long free_pcp = 0;
c7241913 4506 int cpu;
1da177e4 4507 struct zone *zone;
599d0c95 4508 pg_data_t *pgdat;
1da177e4 4509
ee99c71c 4510 for_each_populated_zone(zone) {
9af744d7 4511 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4512 continue;
d1bfcdb8 4513
761b0677
KK
4514 for_each_online_cpu(cpu)
4515 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4516 }
4517
a731286d
KM
4518 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4519 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4520 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4521 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4522 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4523 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4524 global_node_page_state(NR_ACTIVE_ANON),
4525 global_node_page_state(NR_INACTIVE_ANON),
4526 global_node_page_state(NR_ISOLATED_ANON),
4527 global_node_page_state(NR_ACTIVE_FILE),
4528 global_node_page_state(NR_INACTIVE_FILE),
4529 global_node_page_state(NR_ISOLATED_FILE),
4530 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4531 global_node_page_state(NR_FILE_DIRTY),
4532 global_node_page_state(NR_WRITEBACK),
4533 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4534 global_page_state(NR_SLAB_RECLAIMABLE),
4535 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4536 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4537 global_node_page_state(NR_SHMEM),
a25700a5 4538 global_page_state(NR_PAGETABLE),
d1ce749a 4539 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4540 global_page_state(NR_FREE_PAGES),
4541 free_pcp,
d1ce749a 4542 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4543
599d0c95 4544 for_each_online_pgdat(pgdat) {
9af744d7 4545 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4546 continue;
4547
599d0c95
MG
4548 printk("Node %d"
4549 " active_anon:%lukB"
4550 " inactive_anon:%lukB"
4551 " active_file:%lukB"
4552 " inactive_file:%lukB"
4553 " unevictable:%lukB"
4554 " isolated(anon):%lukB"
4555 " isolated(file):%lukB"
50658e2e 4556 " mapped:%lukB"
11fb9989
MG
4557 " dirty:%lukB"
4558 " writeback:%lukB"
4559 " shmem:%lukB"
4560#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4561 " shmem_thp: %lukB"
4562 " shmem_pmdmapped: %lukB"
4563 " anon_thp: %lukB"
4564#endif
4565 " writeback_tmp:%lukB"
4566 " unstable:%lukB"
599d0c95
MG
4567 " all_unreclaimable? %s"
4568 "\n",
4569 pgdat->node_id,
4570 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4571 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4572 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4573 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4574 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4575 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4576 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4577 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4578 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4579 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4580 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4581#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4582 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4583 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4584 * HPAGE_PMD_NR),
4585 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4586#endif
11fb9989
MG
4587 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4588 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4589 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4590 "yes" : "no");
599d0c95
MG
4591 }
4592
ee99c71c 4593 for_each_populated_zone(zone) {
1da177e4
LT
4594 int i;
4595
9af744d7 4596 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4597 continue;
d1bfcdb8
KK
4598
4599 free_pcp = 0;
4600 for_each_online_cpu(cpu)
4601 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4602
1da177e4 4603 show_node(zone);
1f84a18f
JP
4604 printk(KERN_CONT
4605 "%s"
1da177e4
LT
4606 " free:%lukB"
4607 " min:%lukB"
4608 " low:%lukB"
4609 " high:%lukB"
71c799f4
MK
4610 " active_anon:%lukB"
4611 " inactive_anon:%lukB"
4612 " active_file:%lukB"
4613 " inactive_file:%lukB"
4614 " unevictable:%lukB"
5a1c84b4 4615 " writepending:%lukB"
1da177e4 4616 " present:%lukB"
9feedc9d 4617 " managed:%lukB"
4a0aa73f 4618 " mlocked:%lukB"
4a0aa73f
KM
4619 " slab_reclaimable:%lukB"
4620 " slab_unreclaimable:%lukB"
c6a7f572 4621 " kernel_stack:%lukB"
4a0aa73f 4622 " pagetables:%lukB"
4a0aa73f 4623 " bounce:%lukB"
d1bfcdb8
KK
4624 " free_pcp:%lukB"
4625 " local_pcp:%ukB"
d1ce749a 4626 " free_cma:%lukB"
1da177e4
LT
4627 "\n",
4628 zone->name,
88f5acf8 4629 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4630 K(min_wmark_pages(zone)),
4631 K(low_wmark_pages(zone)),
4632 K(high_wmark_pages(zone)),
71c799f4
MK
4633 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4634 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4635 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4636 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4637 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4638 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4639 K(zone->present_pages),
9feedc9d 4640 K(zone->managed_pages),
4a0aa73f 4641 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4642 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4643 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4644 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4645 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4646 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4647 K(free_pcp),
4648 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4649 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4650 printk("lowmem_reserve[]:");
4651 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4652 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4653 printk(KERN_CONT "\n");
1da177e4
LT
4654 }
4655
ee99c71c 4656 for_each_populated_zone(zone) {
d00181b9
KS
4657 unsigned int order;
4658 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4659 unsigned char types[MAX_ORDER];
1da177e4 4660
9af744d7 4661 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4662 continue;
1da177e4 4663 show_node(zone);
1f84a18f 4664 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4665
4666 spin_lock_irqsave(&zone->lock, flags);
4667 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4668 struct free_area *area = &zone->free_area[order];
4669 int type;
4670
4671 nr[order] = area->nr_free;
8f9de51a 4672 total += nr[order] << order;
377e4f16
RV
4673
4674 types[order] = 0;
4675 for (type = 0; type < MIGRATE_TYPES; type++) {
4676 if (!list_empty(&area->free_list[type]))
4677 types[order] |= 1 << type;
4678 }
1da177e4
LT
4679 }
4680 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4681 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4682 printk(KERN_CONT "%lu*%lukB ",
4683 nr[order], K(1UL) << order);
377e4f16
RV
4684 if (nr[order])
4685 show_migration_types(types[order]);
4686 }
1f84a18f 4687 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4688 }
4689
949f7ec5
DR
4690 hugetlb_show_meminfo();
4691
11fb9989 4692 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4693
1da177e4
LT
4694 show_swap_cache_info();
4695}
4696
19770b32
MG
4697static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4698{
4699 zoneref->zone = zone;
4700 zoneref->zone_idx = zone_idx(zone);
4701}
4702
1da177e4
LT
4703/*
4704 * Builds allocation fallback zone lists.
1a93205b
CL
4705 *
4706 * Add all populated zones of a node to the zonelist.
1da177e4 4707 */
f0c0b2b8 4708static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4709 int nr_zones)
1da177e4 4710{
1a93205b 4711 struct zone *zone;
bc732f1d 4712 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4713
4714 do {
2f6726e5 4715 zone_type--;
070f8032 4716 zone = pgdat->node_zones + zone_type;
6aa303de 4717 if (managed_zone(zone)) {
dd1a239f
MG
4718 zoneref_set_zone(zone,
4719 &zonelist->_zonerefs[nr_zones++]);
070f8032 4720 check_highest_zone(zone_type);
1da177e4 4721 }
2f6726e5 4722 } while (zone_type);
bc732f1d 4723
070f8032 4724 return nr_zones;
1da177e4
LT
4725}
4726
f0c0b2b8
KH
4727
4728/*
4729 * zonelist_order:
4730 * 0 = automatic detection of better ordering.
4731 * 1 = order by ([node] distance, -zonetype)
4732 * 2 = order by (-zonetype, [node] distance)
4733 *
4734 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4735 * the same zonelist. So only NUMA can configure this param.
4736 */
4737#define ZONELIST_ORDER_DEFAULT 0
4738#define ZONELIST_ORDER_NODE 1
4739#define ZONELIST_ORDER_ZONE 2
4740
4741/* zonelist order in the kernel.
4742 * set_zonelist_order() will set this to NODE or ZONE.
4743 */
4744static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4745static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4746
4747
1da177e4 4748#ifdef CONFIG_NUMA
f0c0b2b8
KH
4749/* The value user specified ....changed by config */
4750static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4751/* string for sysctl */
4752#define NUMA_ZONELIST_ORDER_LEN 16
4753char numa_zonelist_order[16] = "default";
4754
4755/*
4756 * interface for configure zonelist ordering.
4757 * command line option "numa_zonelist_order"
4758 * = "[dD]efault - default, automatic configuration.
4759 * = "[nN]ode - order by node locality, then by zone within node
4760 * = "[zZ]one - order by zone, then by locality within zone
4761 */
4762
4763static int __parse_numa_zonelist_order(char *s)
4764{
4765 if (*s == 'd' || *s == 'D') {
4766 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4767 } else if (*s == 'n' || *s == 'N') {
4768 user_zonelist_order = ZONELIST_ORDER_NODE;
4769 } else if (*s == 'z' || *s == 'Z') {
4770 user_zonelist_order = ZONELIST_ORDER_ZONE;
4771 } else {
1170532b 4772 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4773 return -EINVAL;
4774 }
4775 return 0;
4776}
4777
4778static __init int setup_numa_zonelist_order(char *s)
4779{
ecb256f8
VL
4780 int ret;
4781
4782 if (!s)
4783 return 0;
4784
4785 ret = __parse_numa_zonelist_order(s);
4786 if (ret == 0)
4787 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4788
4789 return ret;
f0c0b2b8
KH
4790}
4791early_param("numa_zonelist_order", setup_numa_zonelist_order);
4792
4793/*
4794 * sysctl handler for numa_zonelist_order
4795 */
cccad5b9 4796int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4797 void __user *buffer, size_t *length,
f0c0b2b8
KH
4798 loff_t *ppos)
4799{
4800 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4801 int ret;
443c6f14 4802 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4803
443c6f14 4804 mutex_lock(&zl_order_mutex);
dacbde09
CG
4805 if (write) {
4806 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4807 ret = -EINVAL;
4808 goto out;
4809 }
4810 strcpy(saved_string, (char *)table->data);
4811 }
8d65af78 4812 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4813 if (ret)
443c6f14 4814 goto out;
f0c0b2b8
KH
4815 if (write) {
4816 int oldval = user_zonelist_order;
dacbde09
CG
4817
4818 ret = __parse_numa_zonelist_order((char *)table->data);
4819 if (ret) {
f0c0b2b8
KH
4820 /*
4821 * bogus value. restore saved string
4822 */
dacbde09 4823 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4824 NUMA_ZONELIST_ORDER_LEN);
4825 user_zonelist_order = oldval;
4eaf3f64
HL
4826 } else if (oldval != user_zonelist_order) {
4827 mutex_lock(&zonelists_mutex);
9adb62a5 4828 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4829 mutex_unlock(&zonelists_mutex);
4830 }
f0c0b2b8 4831 }
443c6f14
AK
4832out:
4833 mutex_unlock(&zl_order_mutex);
4834 return ret;
f0c0b2b8
KH
4835}
4836
4837
62bc62a8 4838#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4839static int node_load[MAX_NUMNODES];
4840
1da177e4 4841/**
4dc3b16b 4842 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4843 * @node: node whose fallback list we're appending
4844 * @used_node_mask: nodemask_t of already used nodes
4845 *
4846 * We use a number of factors to determine which is the next node that should
4847 * appear on a given node's fallback list. The node should not have appeared
4848 * already in @node's fallback list, and it should be the next closest node
4849 * according to the distance array (which contains arbitrary distance values
4850 * from each node to each node in the system), and should also prefer nodes
4851 * with no CPUs, since presumably they'll have very little allocation pressure
4852 * on them otherwise.
4853 * It returns -1 if no node is found.
4854 */
f0c0b2b8 4855static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4856{
4cf808eb 4857 int n, val;
1da177e4 4858 int min_val = INT_MAX;
00ef2d2f 4859 int best_node = NUMA_NO_NODE;
a70f7302 4860 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4861
4cf808eb
LT
4862 /* Use the local node if we haven't already */
4863 if (!node_isset(node, *used_node_mask)) {
4864 node_set(node, *used_node_mask);
4865 return node;
4866 }
1da177e4 4867
4b0ef1fe 4868 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4869
4870 /* Don't want a node to appear more than once */
4871 if (node_isset(n, *used_node_mask))
4872 continue;
4873
1da177e4
LT
4874 /* Use the distance array to find the distance */
4875 val = node_distance(node, n);
4876
4cf808eb
LT
4877 /* Penalize nodes under us ("prefer the next node") */
4878 val += (n < node);
4879
1da177e4 4880 /* Give preference to headless and unused nodes */
a70f7302
RR
4881 tmp = cpumask_of_node(n);
4882 if (!cpumask_empty(tmp))
1da177e4
LT
4883 val += PENALTY_FOR_NODE_WITH_CPUS;
4884
4885 /* Slight preference for less loaded node */
4886 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4887 val += node_load[n];
4888
4889 if (val < min_val) {
4890 min_val = val;
4891 best_node = n;
4892 }
4893 }
4894
4895 if (best_node >= 0)
4896 node_set(best_node, *used_node_mask);
4897
4898 return best_node;
4899}
4900
f0c0b2b8
KH
4901
4902/*
4903 * Build zonelists ordered by node and zones within node.
4904 * This results in maximum locality--normal zone overflows into local
4905 * DMA zone, if any--but risks exhausting DMA zone.
4906 */
4907static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4908{
f0c0b2b8 4909 int j;
1da177e4 4910 struct zonelist *zonelist;
f0c0b2b8 4911
c9634cf0 4912 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4913 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4914 ;
bc732f1d 4915 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4916 zonelist->_zonerefs[j].zone = NULL;
4917 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4918}
4919
523b9458
CL
4920/*
4921 * Build gfp_thisnode zonelists
4922 */
4923static void build_thisnode_zonelists(pg_data_t *pgdat)
4924{
523b9458
CL
4925 int j;
4926 struct zonelist *zonelist;
4927
c9634cf0 4928 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4929 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4930 zonelist->_zonerefs[j].zone = NULL;
4931 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4932}
4933
f0c0b2b8
KH
4934/*
4935 * Build zonelists ordered by zone and nodes within zones.
4936 * This results in conserving DMA zone[s] until all Normal memory is
4937 * exhausted, but results in overflowing to remote node while memory
4938 * may still exist in local DMA zone.
4939 */
4940static int node_order[MAX_NUMNODES];
4941
4942static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4943{
f0c0b2b8
KH
4944 int pos, j, node;
4945 int zone_type; /* needs to be signed */
4946 struct zone *z;
4947 struct zonelist *zonelist;
4948
c9634cf0 4949 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4950 pos = 0;
4951 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4952 for (j = 0; j < nr_nodes; j++) {
4953 node = node_order[j];
4954 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4955 if (managed_zone(z)) {
dd1a239f
MG
4956 zoneref_set_zone(z,
4957 &zonelist->_zonerefs[pos++]);
54a6eb5c 4958 check_highest_zone(zone_type);
f0c0b2b8
KH
4959 }
4960 }
f0c0b2b8 4961 }
dd1a239f
MG
4962 zonelist->_zonerefs[pos].zone = NULL;
4963 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4964}
4965
3193913c
MG
4966#if defined(CONFIG_64BIT)
4967/*
4968 * Devices that require DMA32/DMA are relatively rare and do not justify a
4969 * penalty to every machine in case the specialised case applies. Default
4970 * to Node-ordering on 64-bit NUMA machines
4971 */
4972static int default_zonelist_order(void)
4973{
4974 return ZONELIST_ORDER_NODE;
4975}
4976#else
4977/*
4978 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4979 * by the kernel. If processes running on node 0 deplete the low memory zone
4980 * then reclaim will occur more frequency increasing stalls and potentially
4981 * be easier to OOM if a large percentage of the zone is under writeback or
4982 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4983 * Hence, default to zone ordering on 32-bit.
4984 */
f0c0b2b8
KH
4985static int default_zonelist_order(void)
4986{
f0c0b2b8
KH
4987 return ZONELIST_ORDER_ZONE;
4988}
3193913c 4989#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4990
4991static void set_zonelist_order(void)
4992{
4993 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4994 current_zonelist_order = default_zonelist_order();
4995 else
4996 current_zonelist_order = user_zonelist_order;
4997}
4998
4999static void build_zonelists(pg_data_t *pgdat)
5000{
c00eb15a 5001 int i, node, load;
1da177e4 5002 nodemask_t used_mask;
f0c0b2b8
KH
5003 int local_node, prev_node;
5004 struct zonelist *zonelist;
d00181b9 5005 unsigned int order = current_zonelist_order;
1da177e4
LT
5006
5007 /* initialize zonelists */
523b9458 5008 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 5009 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
5010 zonelist->_zonerefs[0].zone = NULL;
5011 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
5012 }
5013
5014 /* NUMA-aware ordering of nodes */
5015 local_node = pgdat->node_id;
62bc62a8 5016 load = nr_online_nodes;
1da177e4
LT
5017 prev_node = local_node;
5018 nodes_clear(used_mask);
f0c0b2b8 5019
f0c0b2b8 5020 memset(node_order, 0, sizeof(node_order));
c00eb15a 5021 i = 0;
f0c0b2b8 5022
1da177e4
LT
5023 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5024 /*
5025 * We don't want to pressure a particular node.
5026 * So adding penalty to the first node in same
5027 * distance group to make it round-robin.
5028 */
957f822a
DR
5029 if (node_distance(local_node, node) !=
5030 node_distance(local_node, prev_node))
f0c0b2b8
KH
5031 node_load[node] = load;
5032
1da177e4
LT
5033 prev_node = node;
5034 load--;
f0c0b2b8
KH
5035 if (order == ZONELIST_ORDER_NODE)
5036 build_zonelists_in_node_order(pgdat, node);
5037 else
c00eb15a 5038 node_order[i++] = node; /* remember order */
f0c0b2b8 5039 }
1da177e4 5040
f0c0b2b8
KH
5041 if (order == ZONELIST_ORDER_ZONE) {
5042 /* calculate node order -- i.e., DMA last! */
c00eb15a 5043 build_zonelists_in_zone_order(pgdat, i);
1da177e4 5044 }
523b9458
CL
5045
5046 build_thisnode_zonelists(pgdat);
1da177e4
LT
5047}
5048
7aac7898
LS
5049#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5050/*
5051 * Return node id of node used for "local" allocations.
5052 * I.e., first node id of first zone in arg node's generic zonelist.
5053 * Used for initializing percpu 'numa_mem', which is used primarily
5054 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5055 */
5056int local_memory_node(int node)
5057{
c33d6c06 5058 struct zoneref *z;
7aac7898 5059
c33d6c06 5060 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5061 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5062 NULL);
5063 return z->zone->node;
7aac7898
LS
5064}
5065#endif
f0c0b2b8 5066
6423aa81
JK
5067static void setup_min_unmapped_ratio(void);
5068static void setup_min_slab_ratio(void);
1da177e4
LT
5069#else /* CONFIG_NUMA */
5070
f0c0b2b8
KH
5071static void set_zonelist_order(void)
5072{
5073 current_zonelist_order = ZONELIST_ORDER_ZONE;
5074}
5075
5076static void build_zonelists(pg_data_t *pgdat)
1da177e4 5077{
19655d34 5078 int node, local_node;
54a6eb5c
MG
5079 enum zone_type j;
5080 struct zonelist *zonelist;
1da177e4
LT
5081
5082 local_node = pgdat->node_id;
1da177e4 5083
c9634cf0 5084 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5085 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5086
54a6eb5c
MG
5087 /*
5088 * Now we build the zonelist so that it contains the zones
5089 * of all the other nodes.
5090 * We don't want to pressure a particular node, so when
5091 * building the zones for node N, we make sure that the
5092 * zones coming right after the local ones are those from
5093 * node N+1 (modulo N)
5094 */
5095 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5096 if (!node_online(node))
5097 continue;
bc732f1d 5098 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5099 }
54a6eb5c
MG
5100 for (node = 0; node < local_node; node++) {
5101 if (!node_online(node))
5102 continue;
bc732f1d 5103 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5104 }
5105
dd1a239f
MG
5106 zonelist->_zonerefs[j].zone = NULL;
5107 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5108}
5109
5110#endif /* CONFIG_NUMA */
5111
99dcc3e5
CL
5112/*
5113 * Boot pageset table. One per cpu which is going to be used for all
5114 * zones and all nodes. The parameters will be set in such a way
5115 * that an item put on a list will immediately be handed over to
5116 * the buddy list. This is safe since pageset manipulation is done
5117 * with interrupts disabled.
5118 *
5119 * The boot_pagesets must be kept even after bootup is complete for
5120 * unused processors and/or zones. They do play a role for bootstrapping
5121 * hotplugged processors.
5122 *
5123 * zoneinfo_show() and maybe other functions do
5124 * not check if the processor is online before following the pageset pointer.
5125 * Other parts of the kernel may not check if the zone is available.
5126 */
5127static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5128static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5129static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5130
4eaf3f64
HL
5131/*
5132 * Global mutex to protect against size modification of zonelists
5133 * as well as to serialize pageset setup for the new populated zone.
5134 */
5135DEFINE_MUTEX(zonelists_mutex);
5136
9b1a4d38 5137/* return values int ....just for stop_machine() */
4ed7e022 5138static int __build_all_zonelists(void *data)
1da177e4 5139{
6811378e 5140 int nid;
99dcc3e5 5141 int cpu;
9adb62a5 5142 pg_data_t *self = data;
9276b1bc 5143
7f9cfb31
BL
5144#ifdef CONFIG_NUMA
5145 memset(node_load, 0, sizeof(node_load));
5146#endif
9adb62a5
JL
5147
5148 if (self && !node_online(self->node_id)) {
5149 build_zonelists(self);
9adb62a5
JL
5150 }
5151
9276b1bc 5152 for_each_online_node(nid) {
7ea1530a
CL
5153 pg_data_t *pgdat = NODE_DATA(nid);
5154
5155 build_zonelists(pgdat);
9276b1bc 5156 }
99dcc3e5
CL
5157
5158 /*
5159 * Initialize the boot_pagesets that are going to be used
5160 * for bootstrapping processors. The real pagesets for
5161 * each zone will be allocated later when the per cpu
5162 * allocator is available.
5163 *
5164 * boot_pagesets are used also for bootstrapping offline
5165 * cpus if the system is already booted because the pagesets
5166 * are needed to initialize allocators on a specific cpu too.
5167 * F.e. the percpu allocator needs the page allocator which
5168 * needs the percpu allocator in order to allocate its pagesets
5169 * (a chicken-egg dilemma).
5170 */
7aac7898 5171 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5172 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5173
7aac7898
LS
5174#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5175 /*
5176 * We now know the "local memory node" for each node--
5177 * i.e., the node of the first zone in the generic zonelist.
5178 * Set up numa_mem percpu variable for on-line cpus. During
5179 * boot, only the boot cpu should be on-line; we'll init the
5180 * secondary cpus' numa_mem as they come on-line. During
5181 * node/memory hotplug, we'll fixup all on-line cpus.
5182 */
5183 if (cpu_online(cpu))
5184 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5185#endif
5186 }
5187
6811378e
YG
5188 return 0;
5189}
5190
061f67bc
RV
5191static noinline void __init
5192build_all_zonelists_init(void)
5193{
5194 __build_all_zonelists(NULL);
5195 mminit_verify_zonelist();
5196 cpuset_init_current_mems_allowed();
5197}
5198
4eaf3f64
HL
5199/*
5200 * Called with zonelists_mutex held always
5201 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5202 *
5203 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5204 * [we're only called with non-NULL zone through __meminit paths] and
5205 * (2) call of __init annotated helper build_all_zonelists_init
5206 * [protected by SYSTEM_BOOTING].
4eaf3f64 5207 */
9adb62a5 5208void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5209{
f0c0b2b8
KH
5210 set_zonelist_order();
5211
6811378e 5212 if (system_state == SYSTEM_BOOTING) {
061f67bc 5213 build_all_zonelists_init();
6811378e 5214 } else {
e9959f0f 5215#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5216 if (zone)
5217 setup_zone_pageset(zone);
e9959f0f 5218#endif
dd1895e2
CS
5219 /* we have to stop all cpus to guarantee there is no user
5220 of zonelist */
9adb62a5 5221 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5222 /* cpuset refresh routine should be here */
5223 }
bd1e22b8 5224 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5225 /*
5226 * Disable grouping by mobility if the number of pages in the
5227 * system is too low to allow the mechanism to work. It would be
5228 * more accurate, but expensive to check per-zone. This check is
5229 * made on memory-hotadd so a system can start with mobility
5230 * disabled and enable it later
5231 */
d9c23400 5232 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5233 page_group_by_mobility_disabled = 1;
5234 else
5235 page_group_by_mobility_disabled = 0;
5236
756a025f
JP
5237 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5238 nr_online_nodes,
5239 zonelist_order_name[current_zonelist_order],
5240 page_group_by_mobility_disabled ? "off" : "on",
5241 vm_total_pages);
f0c0b2b8 5242#ifdef CONFIG_NUMA
f88dfff5 5243 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5244#endif
1da177e4
LT
5245}
5246
1da177e4
LT
5247/*
5248 * Initially all pages are reserved - free ones are freed
5249 * up by free_all_bootmem() once the early boot process is
5250 * done. Non-atomic initialization, single-pass.
5251 */
c09b4240 5252void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5253 unsigned long start_pfn, enum memmap_context context)
1da177e4 5254{
4b94ffdc 5255 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5256 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5257 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5258 unsigned long pfn;
3a80a7fa 5259 unsigned long nr_initialised = 0;
342332e6
TI
5260#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5261 struct memblock_region *r = NULL, *tmp;
5262#endif
1da177e4 5263
22b31eec
HD
5264 if (highest_memmap_pfn < end_pfn - 1)
5265 highest_memmap_pfn = end_pfn - 1;
5266
4b94ffdc
DW
5267 /*
5268 * Honor reservation requested by the driver for this ZONE_DEVICE
5269 * memory
5270 */
5271 if (altmap && start_pfn == altmap->base_pfn)
5272 start_pfn += altmap->reserve;
5273
cbe8dd4a 5274 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5275 /*
b72d0ffb
AM
5276 * There can be holes in boot-time mem_map[]s handed to this
5277 * function. They do not exist on hotplugged memory.
a2f3aa02 5278 */
b72d0ffb
AM
5279 if (context != MEMMAP_EARLY)
5280 goto not_early;
5281
b92df1de
PB
5282 if (!early_pfn_valid(pfn)) {
5283#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5284 /*
5285 * Skip to the pfn preceding the next valid one (or
5286 * end_pfn), such that we hit a valid pfn (or end_pfn)
5287 * on our next iteration of the loop.
5288 */
5289 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5290#endif
b72d0ffb 5291 continue;
b92df1de 5292 }
b72d0ffb
AM
5293 if (!early_pfn_in_nid(pfn, nid))
5294 continue;
5295 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5296 break;
342332e6
TI
5297
5298#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5299 /*
5300 * Check given memblock attribute by firmware which can affect
5301 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5302 * mirrored, it's an overlapped memmap init. skip it.
5303 */
5304 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5305 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5306 for_each_memblock(memory, tmp)
5307 if (pfn < memblock_region_memory_end_pfn(tmp))
5308 break;
5309 r = tmp;
5310 }
5311 if (pfn >= memblock_region_memory_base_pfn(r) &&
5312 memblock_is_mirror(r)) {
5313 /* already initialized as NORMAL */
5314 pfn = memblock_region_memory_end_pfn(r);
5315 continue;
342332e6 5316 }
a2f3aa02 5317 }
b72d0ffb 5318#endif
ac5d2539 5319
b72d0ffb 5320not_early:
ac5d2539
MG
5321 /*
5322 * Mark the block movable so that blocks are reserved for
5323 * movable at startup. This will force kernel allocations
5324 * to reserve their blocks rather than leaking throughout
5325 * the address space during boot when many long-lived
974a786e 5326 * kernel allocations are made.
ac5d2539
MG
5327 *
5328 * bitmap is created for zone's valid pfn range. but memmap
5329 * can be created for invalid pages (for alignment)
5330 * check here not to call set_pageblock_migratetype() against
5331 * pfn out of zone.
5332 */
5333 if (!(pfn & (pageblock_nr_pages - 1))) {
5334 struct page *page = pfn_to_page(pfn);
5335
5336 __init_single_page(page, pfn, zone, nid);
5337 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5338 } else {
5339 __init_single_pfn(pfn, zone, nid);
5340 }
1da177e4
LT
5341 }
5342}
5343
1e548deb 5344static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5345{
7aeb09f9 5346 unsigned int order, t;
b2a0ac88
MG
5347 for_each_migratetype_order(order, t) {
5348 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5349 zone->free_area[order].nr_free = 0;
5350 }
5351}
5352
5353#ifndef __HAVE_ARCH_MEMMAP_INIT
5354#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5355 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5356#endif
5357
7cd2b0a3 5358static int zone_batchsize(struct zone *zone)
e7c8d5c9 5359{
3a6be87f 5360#ifdef CONFIG_MMU
e7c8d5c9
CL
5361 int batch;
5362
5363 /*
5364 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5365 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5366 *
5367 * OK, so we don't know how big the cache is. So guess.
5368 */
b40da049 5369 batch = zone->managed_pages / 1024;
ba56e91c
SR
5370 if (batch * PAGE_SIZE > 512 * 1024)
5371 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5372 batch /= 4; /* We effectively *= 4 below */
5373 if (batch < 1)
5374 batch = 1;
5375
5376 /*
0ceaacc9
NP
5377 * Clamp the batch to a 2^n - 1 value. Having a power
5378 * of 2 value was found to be more likely to have
5379 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5380 *
0ceaacc9
NP
5381 * For example if 2 tasks are alternately allocating
5382 * batches of pages, one task can end up with a lot
5383 * of pages of one half of the possible page colors
5384 * and the other with pages of the other colors.
e7c8d5c9 5385 */
9155203a 5386 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5387
e7c8d5c9 5388 return batch;
3a6be87f
DH
5389
5390#else
5391 /* The deferral and batching of frees should be suppressed under NOMMU
5392 * conditions.
5393 *
5394 * The problem is that NOMMU needs to be able to allocate large chunks
5395 * of contiguous memory as there's no hardware page translation to
5396 * assemble apparent contiguous memory from discontiguous pages.
5397 *
5398 * Queueing large contiguous runs of pages for batching, however,
5399 * causes the pages to actually be freed in smaller chunks. As there
5400 * can be a significant delay between the individual batches being
5401 * recycled, this leads to the once large chunks of space being
5402 * fragmented and becoming unavailable for high-order allocations.
5403 */
5404 return 0;
5405#endif
e7c8d5c9
CL
5406}
5407
8d7a8fa9
CS
5408/*
5409 * pcp->high and pcp->batch values are related and dependent on one another:
5410 * ->batch must never be higher then ->high.
5411 * The following function updates them in a safe manner without read side
5412 * locking.
5413 *
5414 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5415 * those fields changing asynchronously (acording the the above rule).
5416 *
5417 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5418 * outside of boot time (or some other assurance that no concurrent updaters
5419 * exist).
5420 */
5421static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5422 unsigned long batch)
5423{
5424 /* start with a fail safe value for batch */
5425 pcp->batch = 1;
5426 smp_wmb();
5427
5428 /* Update high, then batch, in order */
5429 pcp->high = high;
5430 smp_wmb();
5431
5432 pcp->batch = batch;
5433}
5434
3664033c 5435/* a companion to pageset_set_high() */
4008bab7
CS
5436static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5437{
8d7a8fa9 5438 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5439}
5440
88c90dbc 5441static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5442{
5443 struct per_cpu_pages *pcp;
5f8dcc21 5444 int migratetype;
2caaad41 5445
1c6fe946
MD
5446 memset(p, 0, sizeof(*p));
5447
3dfa5721 5448 pcp = &p->pcp;
2caaad41 5449 pcp->count = 0;
5f8dcc21
MG
5450 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5451 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5452}
5453
88c90dbc
CS
5454static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5455{
5456 pageset_init(p);
5457 pageset_set_batch(p, batch);
5458}
5459
8ad4b1fb 5460/*
3664033c 5461 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5462 * to the value high for the pageset p.
5463 */
3664033c 5464static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5465 unsigned long high)
5466{
8d7a8fa9
CS
5467 unsigned long batch = max(1UL, high / 4);
5468 if ((high / 4) > (PAGE_SHIFT * 8))
5469 batch = PAGE_SHIFT * 8;
8ad4b1fb 5470
8d7a8fa9 5471 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5472}
5473
7cd2b0a3
DR
5474static void pageset_set_high_and_batch(struct zone *zone,
5475 struct per_cpu_pageset *pcp)
56cef2b8 5476{
56cef2b8 5477 if (percpu_pagelist_fraction)
3664033c 5478 pageset_set_high(pcp,
56cef2b8
CS
5479 (zone->managed_pages /
5480 percpu_pagelist_fraction));
5481 else
5482 pageset_set_batch(pcp, zone_batchsize(zone));
5483}
5484
169f6c19
CS
5485static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5486{
5487 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5488
5489 pageset_init(pcp);
5490 pageset_set_high_and_batch(zone, pcp);
5491}
5492
4ed7e022 5493static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5494{
5495 int cpu;
319774e2 5496 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5497 for_each_possible_cpu(cpu)
5498 zone_pageset_init(zone, cpu);
319774e2
WF
5499}
5500
2caaad41 5501/*
99dcc3e5
CL
5502 * Allocate per cpu pagesets and initialize them.
5503 * Before this call only boot pagesets were available.
e7c8d5c9 5504 */
99dcc3e5 5505void __init setup_per_cpu_pageset(void)
e7c8d5c9 5506{
b4911ea2 5507 struct pglist_data *pgdat;
99dcc3e5 5508 struct zone *zone;
e7c8d5c9 5509
319774e2
WF
5510 for_each_populated_zone(zone)
5511 setup_zone_pageset(zone);
b4911ea2
MG
5512
5513 for_each_online_pgdat(pgdat)
5514 pgdat->per_cpu_nodestats =
5515 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5516}
5517
c09b4240 5518static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5519{
99dcc3e5
CL
5520 /*
5521 * per cpu subsystem is not up at this point. The following code
5522 * relies on the ability of the linker to provide the
5523 * offset of a (static) per cpu variable into the per cpu area.
5524 */
5525 zone->pageset = &boot_pageset;
ed8ece2e 5526
b38a8725 5527 if (populated_zone(zone))
99dcc3e5
CL
5528 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5529 zone->name, zone->present_pages,
5530 zone_batchsize(zone));
ed8ece2e
DH
5531}
5532
dc0bbf3b 5533void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5534 unsigned long zone_start_pfn,
b171e409 5535 unsigned long size)
ed8ece2e
DH
5536{
5537 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5538
ed8ece2e
DH
5539 pgdat->nr_zones = zone_idx(zone) + 1;
5540
ed8ece2e
DH
5541 zone->zone_start_pfn = zone_start_pfn;
5542
708614e6
MG
5543 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5544 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5545 pgdat->node_id,
5546 (unsigned long)zone_idx(zone),
5547 zone_start_pfn, (zone_start_pfn + size));
5548
1e548deb 5549 zone_init_free_lists(zone);
9dcb8b68 5550 zone->initialized = 1;
ed8ece2e
DH
5551}
5552
0ee332c1 5553#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5554#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5555
c713216d
MG
5556/*
5557 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5558 */
8a942fde
MG
5559int __meminit __early_pfn_to_nid(unsigned long pfn,
5560 struct mminit_pfnnid_cache *state)
c713216d 5561{
c13291a5 5562 unsigned long start_pfn, end_pfn;
e76b63f8 5563 int nid;
7c243c71 5564
8a942fde
MG
5565 if (state->last_start <= pfn && pfn < state->last_end)
5566 return state->last_nid;
c713216d 5567
e76b63f8
YL
5568 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5569 if (nid != -1) {
8a942fde
MG
5570 state->last_start = start_pfn;
5571 state->last_end = end_pfn;
5572 state->last_nid = nid;
e76b63f8
YL
5573 }
5574
5575 return nid;
c713216d
MG
5576}
5577#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5578
c713216d 5579/**
6782832e 5580 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5581 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5582 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5583 *
7d018176
ZZ
5584 * If an architecture guarantees that all ranges registered contain no holes
5585 * and may be freed, this this function may be used instead of calling
5586 * memblock_free_early_nid() manually.
c713216d 5587 */
c13291a5 5588void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5589{
c13291a5
TH
5590 unsigned long start_pfn, end_pfn;
5591 int i, this_nid;
edbe7d23 5592
c13291a5
TH
5593 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5594 start_pfn = min(start_pfn, max_low_pfn);
5595 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5596
c13291a5 5597 if (start_pfn < end_pfn)
6782832e
SS
5598 memblock_free_early_nid(PFN_PHYS(start_pfn),
5599 (end_pfn - start_pfn) << PAGE_SHIFT,
5600 this_nid);
edbe7d23 5601 }
edbe7d23 5602}
edbe7d23 5603
c713216d
MG
5604/**
5605 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5606 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5607 *
7d018176
ZZ
5608 * If an architecture guarantees that all ranges registered contain no holes and may
5609 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5610 */
5611void __init sparse_memory_present_with_active_regions(int nid)
5612{
c13291a5
TH
5613 unsigned long start_pfn, end_pfn;
5614 int i, this_nid;
c713216d 5615
c13291a5
TH
5616 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5617 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5618}
5619
5620/**
5621 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5622 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5623 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5624 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5625 *
5626 * It returns the start and end page frame of a node based on information
7d018176 5627 * provided by memblock_set_node(). If called for a node
c713216d 5628 * with no available memory, a warning is printed and the start and end
88ca3b94 5629 * PFNs will be 0.
c713216d 5630 */
a3142c8e 5631void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5632 unsigned long *start_pfn, unsigned long *end_pfn)
5633{
c13291a5 5634 unsigned long this_start_pfn, this_end_pfn;
c713216d 5635 int i;
c13291a5 5636
c713216d
MG
5637 *start_pfn = -1UL;
5638 *end_pfn = 0;
5639
c13291a5
TH
5640 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5641 *start_pfn = min(*start_pfn, this_start_pfn);
5642 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5643 }
5644
633c0666 5645 if (*start_pfn == -1UL)
c713216d 5646 *start_pfn = 0;
c713216d
MG
5647}
5648
2a1e274a
MG
5649/*
5650 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5651 * assumption is made that zones within a node are ordered in monotonic
5652 * increasing memory addresses so that the "highest" populated zone is used
5653 */
b69a7288 5654static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5655{
5656 int zone_index;
5657 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5658 if (zone_index == ZONE_MOVABLE)
5659 continue;
5660
5661 if (arch_zone_highest_possible_pfn[zone_index] >
5662 arch_zone_lowest_possible_pfn[zone_index])
5663 break;
5664 }
5665
5666 VM_BUG_ON(zone_index == -1);
5667 movable_zone = zone_index;
5668}
5669
5670/*
5671 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5672 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5673 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5674 * in each node depending on the size of each node and how evenly kernelcore
5675 * is distributed. This helper function adjusts the zone ranges
5676 * provided by the architecture for a given node by using the end of the
5677 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5678 * zones within a node are in order of monotonic increases memory addresses
5679 */
b69a7288 5680static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5681 unsigned long zone_type,
5682 unsigned long node_start_pfn,
5683 unsigned long node_end_pfn,
5684 unsigned long *zone_start_pfn,
5685 unsigned long *zone_end_pfn)
5686{
5687 /* Only adjust if ZONE_MOVABLE is on this node */
5688 if (zone_movable_pfn[nid]) {
5689 /* Size ZONE_MOVABLE */
5690 if (zone_type == ZONE_MOVABLE) {
5691 *zone_start_pfn = zone_movable_pfn[nid];
5692 *zone_end_pfn = min(node_end_pfn,
5693 arch_zone_highest_possible_pfn[movable_zone]);
5694
e506b996
XQ
5695 /* Adjust for ZONE_MOVABLE starting within this range */
5696 } else if (!mirrored_kernelcore &&
5697 *zone_start_pfn < zone_movable_pfn[nid] &&
5698 *zone_end_pfn > zone_movable_pfn[nid]) {
5699 *zone_end_pfn = zone_movable_pfn[nid];
5700
2a1e274a
MG
5701 /* Check if this whole range is within ZONE_MOVABLE */
5702 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5703 *zone_start_pfn = *zone_end_pfn;
5704 }
5705}
5706
c713216d
MG
5707/*
5708 * Return the number of pages a zone spans in a node, including holes
5709 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5710 */
6ea6e688 5711static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5712 unsigned long zone_type,
7960aedd
ZY
5713 unsigned long node_start_pfn,
5714 unsigned long node_end_pfn,
d91749c1
TI
5715 unsigned long *zone_start_pfn,
5716 unsigned long *zone_end_pfn,
c713216d
MG
5717 unsigned long *ignored)
5718{
b5685e92 5719 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5720 if (!node_start_pfn && !node_end_pfn)
5721 return 0;
5722
7960aedd 5723 /* Get the start and end of the zone */
d91749c1
TI
5724 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5725 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5726 adjust_zone_range_for_zone_movable(nid, zone_type,
5727 node_start_pfn, node_end_pfn,
d91749c1 5728 zone_start_pfn, zone_end_pfn);
c713216d
MG
5729
5730 /* Check that this node has pages within the zone's required range */
d91749c1 5731 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5732 return 0;
5733
5734 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5735 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5736 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5737
5738 /* Return the spanned pages */
d91749c1 5739 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5740}
5741
5742/*
5743 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5744 * then all holes in the requested range will be accounted for.
c713216d 5745 */
32996250 5746unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5747 unsigned long range_start_pfn,
5748 unsigned long range_end_pfn)
5749{
96e907d1
TH
5750 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5751 unsigned long start_pfn, end_pfn;
5752 int i;
c713216d 5753
96e907d1
TH
5754 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5755 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5756 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5757 nr_absent -= end_pfn - start_pfn;
c713216d 5758 }
96e907d1 5759 return nr_absent;
c713216d
MG
5760}
5761
5762/**
5763 * absent_pages_in_range - Return number of page frames in holes within a range
5764 * @start_pfn: The start PFN to start searching for holes
5765 * @end_pfn: The end PFN to stop searching for holes
5766 *
88ca3b94 5767 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5768 */
5769unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5770 unsigned long end_pfn)
5771{
5772 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5773}
5774
5775/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5776static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5777 unsigned long zone_type,
7960aedd
ZY
5778 unsigned long node_start_pfn,
5779 unsigned long node_end_pfn,
c713216d
MG
5780 unsigned long *ignored)
5781{
96e907d1
TH
5782 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5783 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5784 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5785 unsigned long nr_absent;
9c7cd687 5786
b5685e92 5787 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5788 if (!node_start_pfn && !node_end_pfn)
5789 return 0;
5790
96e907d1
TH
5791 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5792 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5793
2a1e274a
MG
5794 adjust_zone_range_for_zone_movable(nid, zone_type,
5795 node_start_pfn, node_end_pfn,
5796 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5797 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5798
5799 /*
5800 * ZONE_MOVABLE handling.
5801 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5802 * and vice versa.
5803 */
e506b996
XQ
5804 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5805 unsigned long start_pfn, end_pfn;
5806 struct memblock_region *r;
5807
5808 for_each_memblock(memory, r) {
5809 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5810 zone_start_pfn, zone_end_pfn);
5811 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5812 zone_start_pfn, zone_end_pfn);
5813
5814 if (zone_type == ZONE_MOVABLE &&
5815 memblock_is_mirror(r))
5816 nr_absent += end_pfn - start_pfn;
5817
5818 if (zone_type == ZONE_NORMAL &&
5819 !memblock_is_mirror(r))
5820 nr_absent += end_pfn - start_pfn;
342332e6
TI
5821 }
5822 }
5823
5824 return nr_absent;
c713216d 5825}
0e0b864e 5826
0ee332c1 5827#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5828static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5829 unsigned long zone_type,
7960aedd
ZY
5830 unsigned long node_start_pfn,
5831 unsigned long node_end_pfn,
d91749c1
TI
5832 unsigned long *zone_start_pfn,
5833 unsigned long *zone_end_pfn,
c713216d
MG
5834 unsigned long *zones_size)
5835{
d91749c1
TI
5836 unsigned int zone;
5837
5838 *zone_start_pfn = node_start_pfn;
5839 for (zone = 0; zone < zone_type; zone++)
5840 *zone_start_pfn += zones_size[zone];
5841
5842 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5843
c713216d
MG
5844 return zones_size[zone_type];
5845}
5846
6ea6e688 5847static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5848 unsigned long zone_type,
7960aedd
ZY
5849 unsigned long node_start_pfn,
5850 unsigned long node_end_pfn,
c713216d
MG
5851 unsigned long *zholes_size)
5852{
5853 if (!zholes_size)
5854 return 0;
5855
5856 return zholes_size[zone_type];
5857}
20e6926d 5858
0ee332c1 5859#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5860
a3142c8e 5861static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5862 unsigned long node_start_pfn,
5863 unsigned long node_end_pfn,
5864 unsigned long *zones_size,
5865 unsigned long *zholes_size)
c713216d 5866{
febd5949 5867 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5868 enum zone_type i;
5869
febd5949
GZ
5870 for (i = 0; i < MAX_NR_ZONES; i++) {
5871 struct zone *zone = pgdat->node_zones + i;
d91749c1 5872 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5873 unsigned long size, real_size;
c713216d 5874
febd5949
GZ
5875 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5876 node_start_pfn,
5877 node_end_pfn,
d91749c1
TI
5878 &zone_start_pfn,
5879 &zone_end_pfn,
febd5949
GZ
5880 zones_size);
5881 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5882 node_start_pfn, node_end_pfn,
5883 zholes_size);
d91749c1
TI
5884 if (size)
5885 zone->zone_start_pfn = zone_start_pfn;
5886 else
5887 zone->zone_start_pfn = 0;
febd5949
GZ
5888 zone->spanned_pages = size;
5889 zone->present_pages = real_size;
5890
5891 totalpages += size;
5892 realtotalpages += real_size;
5893 }
5894
5895 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5896 pgdat->node_present_pages = realtotalpages;
5897 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5898 realtotalpages);
5899}
5900
835c134e
MG
5901#ifndef CONFIG_SPARSEMEM
5902/*
5903 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5904 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5905 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5906 * round what is now in bits to nearest long in bits, then return it in
5907 * bytes.
5908 */
7c45512d 5909static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5910{
5911 unsigned long usemapsize;
5912
7c45512d 5913 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5914 usemapsize = roundup(zonesize, pageblock_nr_pages);
5915 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5916 usemapsize *= NR_PAGEBLOCK_BITS;
5917 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5918
5919 return usemapsize / 8;
5920}
5921
5922static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5923 struct zone *zone,
5924 unsigned long zone_start_pfn,
5925 unsigned long zonesize)
835c134e 5926{
7c45512d 5927 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5928 zone->pageblock_flags = NULL;
58a01a45 5929 if (usemapsize)
6782832e
SS
5930 zone->pageblock_flags =
5931 memblock_virt_alloc_node_nopanic(usemapsize,
5932 pgdat->node_id);
835c134e
MG
5933}
5934#else
7c45512d
LT
5935static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5936 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5937#endif /* CONFIG_SPARSEMEM */
5938
d9c23400 5939#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5940
d9c23400 5941/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5942void __paginginit set_pageblock_order(void)
d9c23400 5943{
955c1cd7
AM
5944 unsigned int order;
5945
d9c23400
MG
5946 /* Check that pageblock_nr_pages has not already been setup */
5947 if (pageblock_order)
5948 return;
5949
955c1cd7
AM
5950 if (HPAGE_SHIFT > PAGE_SHIFT)
5951 order = HUGETLB_PAGE_ORDER;
5952 else
5953 order = MAX_ORDER - 1;
5954
d9c23400
MG
5955 /*
5956 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5957 * This value may be variable depending on boot parameters on IA64 and
5958 * powerpc.
d9c23400
MG
5959 */
5960 pageblock_order = order;
5961}
5962#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5963
ba72cb8c
MG
5964/*
5965 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5966 * is unused as pageblock_order is set at compile-time. See
5967 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5968 * the kernel config
ba72cb8c 5969 */
15ca220e 5970void __paginginit set_pageblock_order(void)
ba72cb8c 5971{
ba72cb8c 5972}
d9c23400
MG
5973
5974#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5975
01cefaef
JL
5976static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5977 unsigned long present_pages)
5978{
5979 unsigned long pages = spanned_pages;
5980
5981 /*
5982 * Provide a more accurate estimation if there are holes within
5983 * the zone and SPARSEMEM is in use. If there are holes within the
5984 * zone, each populated memory region may cost us one or two extra
5985 * memmap pages due to alignment because memmap pages for each
89d790ab 5986 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
5987 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5988 */
5989 if (spanned_pages > present_pages + (present_pages >> 4) &&
5990 IS_ENABLED(CONFIG_SPARSEMEM))
5991 pages = present_pages;
5992
5993 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5994}
5995
1da177e4
LT
5996/*
5997 * Set up the zone data structures:
5998 * - mark all pages reserved
5999 * - mark all memory queues empty
6000 * - clear the memory bitmaps
6527af5d
MK
6001 *
6002 * NOTE: pgdat should get zeroed by caller.
1da177e4 6003 */
7f3eb55b 6004static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6005{
2f1b6248 6006 enum zone_type j;
ed8ece2e 6007 int nid = pgdat->node_id;
1da177e4 6008
208d54e5 6009 pgdat_resize_init(pgdat);
8177a420
AA
6010#ifdef CONFIG_NUMA_BALANCING
6011 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6012 pgdat->numabalancing_migrate_nr_pages = 0;
6013 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6014#endif
6015#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6016 spin_lock_init(&pgdat->split_queue_lock);
6017 INIT_LIST_HEAD(&pgdat->split_queue);
6018 pgdat->split_queue_len = 0;
8177a420 6019#endif
1da177e4 6020 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6021 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6022#ifdef CONFIG_COMPACTION
6023 init_waitqueue_head(&pgdat->kcompactd_wait);
6024#endif
eefa864b 6025 pgdat_page_ext_init(pgdat);
a52633d8 6026 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6027 lruvec_init(node_lruvec(pgdat));
5f63b720 6028
1da177e4
LT
6029 for (j = 0; j < MAX_NR_ZONES; j++) {
6030 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6031 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6032 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6033
febd5949
GZ
6034 size = zone->spanned_pages;
6035 realsize = freesize = zone->present_pages;
1da177e4 6036
0e0b864e 6037 /*
9feedc9d 6038 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6039 * is used by this zone for memmap. This affects the watermark
6040 * and per-cpu initialisations
6041 */
01cefaef 6042 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6043 if (!is_highmem_idx(j)) {
6044 if (freesize >= memmap_pages) {
6045 freesize -= memmap_pages;
6046 if (memmap_pages)
6047 printk(KERN_DEBUG
6048 " %s zone: %lu pages used for memmap\n",
6049 zone_names[j], memmap_pages);
6050 } else
1170532b 6051 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6052 zone_names[j], memmap_pages, freesize);
6053 }
0e0b864e 6054
6267276f 6055 /* Account for reserved pages */
9feedc9d
JL
6056 if (j == 0 && freesize > dma_reserve) {
6057 freesize -= dma_reserve;
d903ef9f 6058 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6059 zone_names[0], dma_reserve);
0e0b864e
MG
6060 }
6061
98d2b0eb 6062 if (!is_highmem_idx(j))
9feedc9d 6063 nr_kernel_pages += freesize;
01cefaef
JL
6064 /* Charge for highmem memmap if there are enough kernel pages */
6065 else if (nr_kernel_pages > memmap_pages * 2)
6066 nr_kernel_pages -= memmap_pages;
9feedc9d 6067 nr_all_pages += freesize;
1da177e4 6068
9feedc9d
JL
6069 /*
6070 * Set an approximate value for lowmem here, it will be adjusted
6071 * when the bootmem allocator frees pages into the buddy system.
6072 * And all highmem pages will be managed by the buddy system.
6073 */
6074 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6075#ifdef CONFIG_NUMA
d5f541ed 6076 zone->node = nid;
9614634f 6077#endif
1da177e4 6078 zone->name = zone_names[j];
a52633d8 6079 zone->zone_pgdat = pgdat;
1da177e4 6080 spin_lock_init(&zone->lock);
bdc8cb98 6081 zone_seqlock_init(zone);
ed8ece2e 6082 zone_pcp_init(zone);
81c0a2bb 6083
1da177e4
LT
6084 if (!size)
6085 continue;
6086
955c1cd7 6087 set_pageblock_order();
7c45512d 6088 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6089 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6090 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6091 }
6092}
6093
bd721ea7 6094static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6095{
b0aeba74 6096 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6097 unsigned long __maybe_unused offset = 0;
6098
1da177e4
LT
6099 /* Skip empty nodes */
6100 if (!pgdat->node_spanned_pages)
6101 return;
6102
d41dee36 6103#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6104 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6105 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6106 /* ia64 gets its own node_mem_map, before this, without bootmem */
6107 if (!pgdat->node_mem_map) {
b0aeba74 6108 unsigned long size, end;
d41dee36
AW
6109 struct page *map;
6110
e984bb43
BP
6111 /*
6112 * The zone's endpoints aren't required to be MAX_ORDER
6113 * aligned but the node_mem_map endpoints must be in order
6114 * for the buddy allocator to function correctly.
6115 */
108bcc96 6116 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6117 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6118 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6119 map = alloc_remap(pgdat->node_id, size);
6120 if (!map)
6782832e
SS
6121 map = memblock_virt_alloc_node_nopanic(size,
6122 pgdat->node_id);
a1c34a3b 6123 pgdat->node_mem_map = map + offset;
1da177e4 6124 }
12d810c1 6125#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6126 /*
6127 * With no DISCONTIG, the global mem_map is just set as node 0's
6128 */
c713216d 6129 if (pgdat == NODE_DATA(0)) {
1da177e4 6130 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6131#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6132 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6133 mem_map -= offset;
0ee332c1 6134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6135 }
1da177e4 6136#endif
d41dee36 6137#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6138}
6139
9109fb7b
JW
6140void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6141 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6142{
9109fb7b 6143 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6144 unsigned long start_pfn = 0;
6145 unsigned long end_pfn = 0;
9109fb7b 6146
88fdf75d 6147 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6148 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6149
1da177e4
LT
6150 pgdat->node_id = nid;
6151 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6152 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6153#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6154 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6155 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6156 (u64)start_pfn << PAGE_SHIFT,
6157 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6158#else
6159 start_pfn = node_start_pfn;
7960aedd
ZY
6160#endif
6161 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6162 zones_size, zholes_size);
1da177e4
LT
6163
6164 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6165#ifdef CONFIG_FLAT_NODE_MEM_MAP
6166 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6167 nid, (unsigned long)pgdat,
6168 (unsigned long)pgdat->node_mem_map);
6169#endif
1da177e4 6170
864b9a39 6171 reset_deferred_meminit(pgdat);
7f3eb55b 6172 free_area_init_core(pgdat);
1da177e4
LT
6173}
6174
0ee332c1 6175#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6176
6177#if MAX_NUMNODES > 1
6178/*
6179 * Figure out the number of possible node ids.
6180 */
f9872caf 6181void __init setup_nr_node_ids(void)
418508c1 6182{
904a9553 6183 unsigned int highest;
418508c1 6184
904a9553 6185 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6186 nr_node_ids = highest + 1;
6187}
418508c1
MS
6188#endif
6189
1e01979c
TH
6190/**
6191 * node_map_pfn_alignment - determine the maximum internode alignment
6192 *
6193 * This function should be called after node map is populated and sorted.
6194 * It calculates the maximum power of two alignment which can distinguish
6195 * all the nodes.
6196 *
6197 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6198 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6199 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6200 * shifted, 1GiB is enough and this function will indicate so.
6201 *
6202 * This is used to test whether pfn -> nid mapping of the chosen memory
6203 * model has fine enough granularity to avoid incorrect mapping for the
6204 * populated node map.
6205 *
6206 * Returns the determined alignment in pfn's. 0 if there is no alignment
6207 * requirement (single node).
6208 */
6209unsigned long __init node_map_pfn_alignment(void)
6210{
6211 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6212 unsigned long start, end, mask;
1e01979c 6213 int last_nid = -1;
c13291a5 6214 int i, nid;
1e01979c 6215
c13291a5 6216 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6217 if (!start || last_nid < 0 || last_nid == nid) {
6218 last_nid = nid;
6219 last_end = end;
6220 continue;
6221 }
6222
6223 /*
6224 * Start with a mask granular enough to pin-point to the
6225 * start pfn and tick off bits one-by-one until it becomes
6226 * too coarse to separate the current node from the last.
6227 */
6228 mask = ~((1 << __ffs(start)) - 1);
6229 while (mask && last_end <= (start & (mask << 1)))
6230 mask <<= 1;
6231
6232 /* accumulate all internode masks */
6233 accl_mask |= mask;
6234 }
6235
6236 /* convert mask to number of pages */
6237 return ~accl_mask + 1;
6238}
6239
a6af2bc3 6240/* Find the lowest pfn for a node */
b69a7288 6241static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6242{
a6af2bc3 6243 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6244 unsigned long start_pfn;
6245 int i;
1abbfb41 6246
c13291a5
TH
6247 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6248 min_pfn = min(min_pfn, start_pfn);
c713216d 6249
a6af2bc3 6250 if (min_pfn == ULONG_MAX) {
1170532b 6251 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6252 return 0;
6253 }
6254
6255 return min_pfn;
c713216d
MG
6256}
6257
6258/**
6259 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6260 *
6261 * It returns the minimum PFN based on information provided via
7d018176 6262 * memblock_set_node().
c713216d
MG
6263 */
6264unsigned long __init find_min_pfn_with_active_regions(void)
6265{
6266 return find_min_pfn_for_node(MAX_NUMNODES);
6267}
6268
37b07e41
LS
6269/*
6270 * early_calculate_totalpages()
6271 * Sum pages in active regions for movable zone.
4b0ef1fe 6272 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6273 */
484f51f8 6274static unsigned long __init early_calculate_totalpages(void)
7e63efef 6275{
7e63efef 6276 unsigned long totalpages = 0;
c13291a5
TH
6277 unsigned long start_pfn, end_pfn;
6278 int i, nid;
6279
6280 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6281 unsigned long pages = end_pfn - start_pfn;
7e63efef 6282
37b07e41
LS
6283 totalpages += pages;
6284 if (pages)
4b0ef1fe 6285 node_set_state(nid, N_MEMORY);
37b07e41 6286 }
b8af2941 6287 return totalpages;
7e63efef
MG
6288}
6289
2a1e274a
MG
6290/*
6291 * Find the PFN the Movable zone begins in each node. Kernel memory
6292 * is spread evenly between nodes as long as the nodes have enough
6293 * memory. When they don't, some nodes will have more kernelcore than
6294 * others
6295 */
b224ef85 6296static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6297{
6298 int i, nid;
6299 unsigned long usable_startpfn;
6300 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6301 /* save the state before borrow the nodemask */
4b0ef1fe 6302 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6303 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6304 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6305 struct memblock_region *r;
b2f3eebe
TC
6306
6307 /* Need to find movable_zone earlier when movable_node is specified. */
6308 find_usable_zone_for_movable();
6309
6310 /*
6311 * If movable_node is specified, ignore kernelcore and movablecore
6312 * options.
6313 */
6314 if (movable_node_is_enabled()) {
136199f0
EM
6315 for_each_memblock(memory, r) {
6316 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6317 continue;
6318
136199f0 6319 nid = r->nid;
b2f3eebe 6320
136199f0 6321 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6322 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6323 min(usable_startpfn, zone_movable_pfn[nid]) :
6324 usable_startpfn;
6325 }
6326
6327 goto out2;
6328 }
2a1e274a 6329
342332e6
TI
6330 /*
6331 * If kernelcore=mirror is specified, ignore movablecore option
6332 */
6333 if (mirrored_kernelcore) {
6334 bool mem_below_4gb_not_mirrored = false;
6335
6336 for_each_memblock(memory, r) {
6337 if (memblock_is_mirror(r))
6338 continue;
6339
6340 nid = r->nid;
6341
6342 usable_startpfn = memblock_region_memory_base_pfn(r);
6343
6344 if (usable_startpfn < 0x100000) {
6345 mem_below_4gb_not_mirrored = true;
6346 continue;
6347 }
6348
6349 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6350 min(usable_startpfn, zone_movable_pfn[nid]) :
6351 usable_startpfn;
6352 }
6353
6354 if (mem_below_4gb_not_mirrored)
6355 pr_warn("This configuration results in unmirrored kernel memory.");
6356
6357 goto out2;
6358 }
6359
7e63efef 6360 /*
b2f3eebe 6361 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6362 * kernelcore that corresponds so that memory usable for
6363 * any allocation type is evenly spread. If both kernelcore
6364 * and movablecore are specified, then the value of kernelcore
6365 * will be used for required_kernelcore if it's greater than
6366 * what movablecore would have allowed.
6367 */
6368 if (required_movablecore) {
7e63efef
MG
6369 unsigned long corepages;
6370
6371 /*
6372 * Round-up so that ZONE_MOVABLE is at least as large as what
6373 * was requested by the user
6374 */
6375 required_movablecore =
6376 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6377 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6378 corepages = totalpages - required_movablecore;
6379
6380 required_kernelcore = max(required_kernelcore, corepages);
6381 }
6382
bde304bd
XQ
6383 /*
6384 * If kernelcore was not specified or kernelcore size is larger
6385 * than totalpages, there is no ZONE_MOVABLE.
6386 */
6387 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6388 goto out;
2a1e274a
MG
6389
6390 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6391 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6392
6393restart:
6394 /* Spread kernelcore memory as evenly as possible throughout nodes */
6395 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6396 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6397 unsigned long start_pfn, end_pfn;
6398
2a1e274a
MG
6399 /*
6400 * Recalculate kernelcore_node if the division per node
6401 * now exceeds what is necessary to satisfy the requested
6402 * amount of memory for the kernel
6403 */
6404 if (required_kernelcore < kernelcore_node)
6405 kernelcore_node = required_kernelcore / usable_nodes;
6406
6407 /*
6408 * As the map is walked, we track how much memory is usable
6409 * by the kernel using kernelcore_remaining. When it is
6410 * 0, the rest of the node is usable by ZONE_MOVABLE
6411 */
6412 kernelcore_remaining = kernelcore_node;
6413
6414 /* Go through each range of PFNs within this node */
c13291a5 6415 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6416 unsigned long size_pages;
6417
c13291a5 6418 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6419 if (start_pfn >= end_pfn)
6420 continue;
6421
6422 /* Account for what is only usable for kernelcore */
6423 if (start_pfn < usable_startpfn) {
6424 unsigned long kernel_pages;
6425 kernel_pages = min(end_pfn, usable_startpfn)
6426 - start_pfn;
6427
6428 kernelcore_remaining -= min(kernel_pages,
6429 kernelcore_remaining);
6430 required_kernelcore -= min(kernel_pages,
6431 required_kernelcore);
6432
6433 /* Continue if range is now fully accounted */
6434 if (end_pfn <= usable_startpfn) {
6435
6436 /*
6437 * Push zone_movable_pfn to the end so
6438 * that if we have to rebalance
6439 * kernelcore across nodes, we will
6440 * not double account here
6441 */
6442 zone_movable_pfn[nid] = end_pfn;
6443 continue;
6444 }
6445 start_pfn = usable_startpfn;
6446 }
6447
6448 /*
6449 * The usable PFN range for ZONE_MOVABLE is from
6450 * start_pfn->end_pfn. Calculate size_pages as the
6451 * number of pages used as kernelcore
6452 */
6453 size_pages = end_pfn - start_pfn;
6454 if (size_pages > kernelcore_remaining)
6455 size_pages = kernelcore_remaining;
6456 zone_movable_pfn[nid] = start_pfn + size_pages;
6457
6458 /*
6459 * Some kernelcore has been met, update counts and
6460 * break if the kernelcore for this node has been
b8af2941 6461 * satisfied
2a1e274a
MG
6462 */
6463 required_kernelcore -= min(required_kernelcore,
6464 size_pages);
6465 kernelcore_remaining -= size_pages;
6466 if (!kernelcore_remaining)
6467 break;
6468 }
6469 }
6470
6471 /*
6472 * If there is still required_kernelcore, we do another pass with one
6473 * less node in the count. This will push zone_movable_pfn[nid] further
6474 * along on the nodes that still have memory until kernelcore is
b8af2941 6475 * satisfied
2a1e274a
MG
6476 */
6477 usable_nodes--;
6478 if (usable_nodes && required_kernelcore > usable_nodes)
6479 goto restart;
6480
b2f3eebe 6481out2:
2a1e274a
MG
6482 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6483 for (nid = 0; nid < MAX_NUMNODES; nid++)
6484 zone_movable_pfn[nid] =
6485 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6486
20e6926d 6487out:
66918dcd 6488 /* restore the node_state */
4b0ef1fe 6489 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6490}
6491
4b0ef1fe
LJ
6492/* Any regular or high memory on that node ? */
6493static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6494{
37b07e41
LS
6495 enum zone_type zone_type;
6496
4b0ef1fe
LJ
6497 if (N_MEMORY == N_NORMAL_MEMORY)
6498 return;
6499
6500 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6501 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6502 if (populated_zone(zone)) {
4b0ef1fe
LJ
6503 node_set_state(nid, N_HIGH_MEMORY);
6504 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6505 zone_type <= ZONE_NORMAL)
6506 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6507 break;
6508 }
37b07e41 6509 }
37b07e41
LS
6510}
6511
c713216d
MG
6512/**
6513 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6514 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6515 *
6516 * This will call free_area_init_node() for each active node in the system.
7d018176 6517 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6518 * zone in each node and their holes is calculated. If the maximum PFN
6519 * between two adjacent zones match, it is assumed that the zone is empty.
6520 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6521 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6522 * starts where the previous one ended. For example, ZONE_DMA32 starts
6523 * at arch_max_dma_pfn.
6524 */
6525void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6526{
c13291a5
TH
6527 unsigned long start_pfn, end_pfn;
6528 int i, nid;
a6af2bc3 6529
c713216d
MG
6530 /* Record where the zone boundaries are */
6531 memset(arch_zone_lowest_possible_pfn, 0,
6532 sizeof(arch_zone_lowest_possible_pfn));
6533 memset(arch_zone_highest_possible_pfn, 0,
6534 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6535
6536 start_pfn = find_min_pfn_with_active_regions();
6537
6538 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6539 if (i == ZONE_MOVABLE)
6540 continue;
90cae1fe
OH
6541
6542 end_pfn = max(max_zone_pfn[i], start_pfn);
6543 arch_zone_lowest_possible_pfn[i] = start_pfn;
6544 arch_zone_highest_possible_pfn[i] = end_pfn;
6545
6546 start_pfn = end_pfn;
c713216d 6547 }
2a1e274a
MG
6548
6549 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6550 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6551 find_zone_movable_pfns_for_nodes();
c713216d 6552
c713216d 6553 /* Print out the zone ranges */
f88dfff5 6554 pr_info("Zone ranges:\n");
2a1e274a
MG
6555 for (i = 0; i < MAX_NR_ZONES; i++) {
6556 if (i == ZONE_MOVABLE)
6557 continue;
f88dfff5 6558 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6559 if (arch_zone_lowest_possible_pfn[i] ==
6560 arch_zone_highest_possible_pfn[i])
f88dfff5 6561 pr_cont("empty\n");
72f0ba02 6562 else
8d29e18a
JG
6563 pr_cont("[mem %#018Lx-%#018Lx]\n",
6564 (u64)arch_zone_lowest_possible_pfn[i]
6565 << PAGE_SHIFT,
6566 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6567 << PAGE_SHIFT) - 1);
2a1e274a
MG
6568 }
6569
6570 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6571 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6572 for (i = 0; i < MAX_NUMNODES; i++) {
6573 if (zone_movable_pfn[i])
8d29e18a
JG
6574 pr_info(" Node %d: %#018Lx\n", i,
6575 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6576 }
c713216d 6577
f2d52fe5 6578 /* Print out the early node map */
f88dfff5 6579 pr_info("Early memory node ranges\n");
c13291a5 6580 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6581 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6582 (u64)start_pfn << PAGE_SHIFT,
6583 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6584
6585 /* Initialise every node */
708614e6 6586 mminit_verify_pageflags_layout();
8ef82866 6587 setup_nr_node_ids();
c713216d
MG
6588 for_each_online_node(nid) {
6589 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6590 free_area_init_node(nid, NULL,
c713216d 6591 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6592
6593 /* Any memory on that node */
6594 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6595 node_set_state(nid, N_MEMORY);
6596 check_for_memory(pgdat, nid);
c713216d
MG
6597 }
6598}
2a1e274a 6599
7e63efef 6600static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6601{
6602 unsigned long long coremem;
6603 if (!p)
6604 return -EINVAL;
6605
6606 coremem = memparse(p, &p);
7e63efef 6607 *core = coremem >> PAGE_SHIFT;
2a1e274a 6608
7e63efef 6609 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6610 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6611
6612 return 0;
6613}
ed7ed365 6614
7e63efef
MG
6615/*
6616 * kernelcore=size sets the amount of memory for use for allocations that
6617 * cannot be reclaimed or migrated.
6618 */
6619static int __init cmdline_parse_kernelcore(char *p)
6620{
342332e6
TI
6621 /* parse kernelcore=mirror */
6622 if (parse_option_str(p, "mirror")) {
6623 mirrored_kernelcore = true;
6624 return 0;
6625 }
6626
7e63efef
MG
6627 return cmdline_parse_core(p, &required_kernelcore);
6628}
6629
6630/*
6631 * movablecore=size sets the amount of memory for use for allocations that
6632 * can be reclaimed or migrated.
6633 */
6634static int __init cmdline_parse_movablecore(char *p)
6635{
6636 return cmdline_parse_core(p, &required_movablecore);
6637}
6638
ed7ed365 6639early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6640early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6641
0ee332c1 6642#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6643
c3d5f5f0
JL
6644void adjust_managed_page_count(struct page *page, long count)
6645{
6646 spin_lock(&managed_page_count_lock);
6647 page_zone(page)->managed_pages += count;
6648 totalram_pages += count;
3dcc0571
JL
6649#ifdef CONFIG_HIGHMEM
6650 if (PageHighMem(page))
6651 totalhigh_pages += count;
6652#endif
c3d5f5f0
JL
6653 spin_unlock(&managed_page_count_lock);
6654}
3dcc0571 6655EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6656
11199692 6657unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6658{
11199692
JL
6659 void *pos;
6660 unsigned long pages = 0;
69afade7 6661
11199692
JL
6662 start = (void *)PAGE_ALIGN((unsigned long)start);
6663 end = (void *)((unsigned long)end & PAGE_MASK);
6664 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6665 if ((unsigned int)poison <= 0xFF)
11199692
JL
6666 memset(pos, poison, PAGE_SIZE);
6667 free_reserved_page(virt_to_page(pos));
69afade7
JL
6668 }
6669
6670 if (pages && s)
adb1fe9a
JP
6671 pr_info("Freeing %s memory: %ldK\n",
6672 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6673
6674 return pages;
6675}
11199692 6676EXPORT_SYMBOL(free_reserved_area);
69afade7 6677
cfa11e08
JL
6678#ifdef CONFIG_HIGHMEM
6679void free_highmem_page(struct page *page)
6680{
6681 __free_reserved_page(page);
6682 totalram_pages++;
7b4b2a0d 6683 page_zone(page)->managed_pages++;
cfa11e08
JL
6684 totalhigh_pages++;
6685}
6686#endif
6687
7ee3d4e8
JL
6688
6689void __init mem_init_print_info(const char *str)
6690{
6691 unsigned long physpages, codesize, datasize, rosize, bss_size;
6692 unsigned long init_code_size, init_data_size;
6693
6694 physpages = get_num_physpages();
6695 codesize = _etext - _stext;
6696 datasize = _edata - _sdata;
6697 rosize = __end_rodata - __start_rodata;
6698 bss_size = __bss_stop - __bss_start;
6699 init_data_size = __init_end - __init_begin;
6700 init_code_size = _einittext - _sinittext;
6701
6702 /*
6703 * Detect special cases and adjust section sizes accordingly:
6704 * 1) .init.* may be embedded into .data sections
6705 * 2) .init.text.* may be out of [__init_begin, __init_end],
6706 * please refer to arch/tile/kernel/vmlinux.lds.S.
6707 * 3) .rodata.* may be embedded into .text or .data sections.
6708 */
6709#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6710 do { \
6711 if (start <= pos && pos < end && size > adj) \
6712 size -= adj; \
6713 } while (0)
7ee3d4e8
JL
6714
6715 adj_init_size(__init_begin, __init_end, init_data_size,
6716 _sinittext, init_code_size);
6717 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6718 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6719 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6720 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6721
6722#undef adj_init_size
6723
756a025f 6724 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6725#ifdef CONFIG_HIGHMEM
756a025f 6726 ", %luK highmem"
7ee3d4e8 6727#endif
756a025f
JP
6728 "%s%s)\n",
6729 nr_free_pages() << (PAGE_SHIFT - 10),
6730 physpages << (PAGE_SHIFT - 10),
6731 codesize >> 10, datasize >> 10, rosize >> 10,
6732 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6733 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6734 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6735#ifdef CONFIG_HIGHMEM
756a025f 6736 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6737#endif
756a025f 6738 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6739}
6740
0e0b864e 6741/**
88ca3b94
RD
6742 * set_dma_reserve - set the specified number of pages reserved in the first zone
6743 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6744 *
013110a7 6745 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6746 * In the DMA zone, a significant percentage may be consumed by kernel image
6747 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6748 * function may optionally be used to account for unfreeable pages in the
6749 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6750 * smaller per-cpu batchsize.
0e0b864e
MG
6751 */
6752void __init set_dma_reserve(unsigned long new_dma_reserve)
6753{
6754 dma_reserve = new_dma_reserve;
6755}
6756
1da177e4
LT
6757void __init free_area_init(unsigned long *zones_size)
6758{
9109fb7b 6759 free_area_init_node(0, zones_size,
1da177e4
LT
6760 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6761}
1da177e4 6762
005fd4bb 6763static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6764{
1da177e4 6765
005fd4bb
SAS
6766 lru_add_drain_cpu(cpu);
6767 drain_pages(cpu);
9f8f2172 6768
005fd4bb
SAS
6769 /*
6770 * Spill the event counters of the dead processor
6771 * into the current processors event counters.
6772 * This artificially elevates the count of the current
6773 * processor.
6774 */
6775 vm_events_fold_cpu(cpu);
9f8f2172 6776
005fd4bb
SAS
6777 /*
6778 * Zero the differential counters of the dead processor
6779 * so that the vm statistics are consistent.
6780 *
6781 * This is only okay since the processor is dead and cannot
6782 * race with what we are doing.
6783 */
6784 cpu_vm_stats_fold(cpu);
6785 return 0;
1da177e4 6786}
1da177e4
LT
6787
6788void __init page_alloc_init(void)
6789{
005fd4bb
SAS
6790 int ret;
6791
6792 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6793 "mm/page_alloc:dead", NULL,
6794 page_alloc_cpu_dead);
6795 WARN_ON(ret < 0);
1da177e4
LT
6796}
6797
cb45b0e9 6798/*
34b10060 6799 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6800 * or min_free_kbytes changes.
6801 */
6802static void calculate_totalreserve_pages(void)
6803{
6804 struct pglist_data *pgdat;
6805 unsigned long reserve_pages = 0;
2f6726e5 6806 enum zone_type i, j;
cb45b0e9
HA
6807
6808 for_each_online_pgdat(pgdat) {
281e3726
MG
6809
6810 pgdat->totalreserve_pages = 0;
6811
cb45b0e9
HA
6812 for (i = 0; i < MAX_NR_ZONES; i++) {
6813 struct zone *zone = pgdat->node_zones + i;
3484b2de 6814 long max = 0;
cb45b0e9
HA
6815
6816 /* Find valid and maximum lowmem_reserve in the zone */
6817 for (j = i; j < MAX_NR_ZONES; j++) {
6818 if (zone->lowmem_reserve[j] > max)
6819 max = zone->lowmem_reserve[j];
6820 }
6821
41858966
MG
6822 /* we treat the high watermark as reserved pages. */
6823 max += high_wmark_pages(zone);
cb45b0e9 6824
b40da049
JL
6825 if (max > zone->managed_pages)
6826 max = zone->managed_pages;
a8d01437 6827
281e3726 6828 pgdat->totalreserve_pages += max;
a8d01437 6829
cb45b0e9
HA
6830 reserve_pages += max;
6831 }
6832 }
6833 totalreserve_pages = reserve_pages;
6834}
6835
1da177e4
LT
6836/*
6837 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6838 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6839 * has a correct pages reserved value, so an adequate number of
6840 * pages are left in the zone after a successful __alloc_pages().
6841 */
6842static void setup_per_zone_lowmem_reserve(void)
6843{
6844 struct pglist_data *pgdat;
2f6726e5 6845 enum zone_type j, idx;
1da177e4 6846
ec936fc5 6847 for_each_online_pgdat(pgdat) {
1da177e4
LT
6848 for (j = 0; j < MAX_NR_ZONES; j++) {
6849 struct zone *zone = pgdat->node_zones + j;
b40da049 6850 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6851
6852 zone->lowmem_reserve[j] = 0;
6853
2f6726e5
CL
6854 idx = j;
6855 while (idx) {
1da177e4
LT
6856 struct zone *lower_zone;
6857
2f6726e5
CL
6858 idx--;
6859
1da177e4
LT
6860 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6861 sysctl_lowmem_reserve_ratio[idx] = 1;
6862
6863 lower_zone = pgdat->node_zones + idx;
b40da049 6864 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6865 sysctl_lowmem_reserve_ratio[idx];
b40da049 6866 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6867 }
6868 }
6869 }
cb45b0e9
HA
6870
6871 /* update totalreserve_pages */
6872 calculate_totalreserve_pages();
1da177e4
LT
6873}
6874
cfd3da1e 6875static void __setup_per_zone_wmarks(void)
1da177e4
LT
6876{
6877 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6878 unsigned long lowmem_pages = 0;
6879 struct zone *zone;
6880 unsigned long flags;
6881
6882 /* Calculate total number of !ZONE_HIGHMEM pages */
6883 for_each_zone(zone) {
6884 if (!is_highmem(zone))
b40da049 6885 lowmem_pages += zone->managed_pages;
1da177e4
LT
6886 }
6887
6888 for_each_zone(zone) {
ac924c60
AM
6889 u64 tmp;
6890
1125b4e3 6891 spin_lock_irqsave(&zone->lock, flags);
b40da049 6892 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6893 do_div(tmp, lowmem_pages);
1da177e4
LT
6894 if (is_highmem(zone)) {
6895 /*
669ed175
NP
6896 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6897 * need highmem pages, so cap pages_min to a small
6898 * value here.
6899 *
41858966 6900 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6901 * deltas control asynch page reclaim, and so should
669ed175 6902 * not be capped for highmem.
1da177e4 6903 */
90ae8d67 6904 unsigned long min_pages;
1da177e4 6905
b40da049 6906 min_pages = zone->managed_pages / 1024;
90ae8d67 6907 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6908 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6909 } else {
669ed175
NP
6910 /*
6911 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6912 * proportionate to the zone's size.
6913 */
41858966 6914 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6915 }
6916
795ae7a0
JW
6917 /*
6918 * Set the kswapd watermarks distance according to the
6919 * scale factor in proportion to available memory, but
6920 * ensure a minimum size on small systems.
6921 */
6922 tmp = max_t(u64, tmp >> 2,
6923 mult_frac(zone->managed_pages,
6924 watermark_scale_factor, 10000));
6925
6926 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6927 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6928
1125b4e3 6929 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6930 }
cb45b0e9
HA
6931
6932 /* update totalreserve_pages */
6933 calculate_totalreserve_pages();
1da177e4
LT
6934}
6935
cfd3da1e
MG
6936/**
6937 * setup_per_zone_wmarks - called when min_free_kbytes changes
6938 * or when memory is hot-{added|removed}
6939 *
6940 * Ensures that the watermark[min,low,high] values for each zone are set
6941 * correctly with respect to min_free_kbytes.
6942 */
6943void setup_per_zone_wmarks(void)
6944{
6945 mutex_lock(&zonelists_mutex);
6946 __setup_per_zone_wmarks();
6947 mutex_unlock(&zonelists_mutex);
6948}
6949
1da177e4
LT
6950/*
6951 * Initialise min_free_kbytes.
6952 *
6953 * For small machines we want it small (128k min). For large machines
6954 * we want it large (64MB max). But it is not linear, because network
6955 * bandwidth does not increase linearly with machine size. We use
6956 *
b8af2941 6957 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6958 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6959 *
6960 * which yields
6961 *
6962 * 16MB: 512k
6963 * 32MB: 724k
6964 * 64MB: 1024k
6965 * 128MB: 1448k
6966 * 256MB: 2048k
6967 * 512MB: 2896k
6968 * 1024MB: 4096k
6969 * 2048MB: 5792k
6970 * 4096MB: 8192k
6971 * 8192MB: 11584k
6972 * 16384MB: 16384k
6973 */
1b79acc9 6974int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6975{
6976 unsigned long lowmem_kbytes;
5f12733e 6977 int new_min_free_kbytes;
1da177e4
LT
6978
6979 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6980 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6981
6982 if (new_min_free_kbytes > user_min_free_kbytes) {
6983 min_free_kbytes = new_min_free_kbytes;
6984 if (min_free_kbytes < 128)
6985 min_free_kbytes = 128;
6986 if (min_free_kbytes > 65536)
6987 min_free_kbytes = 65536;
6988 } else {
6989 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6990 new_min_free_kbytes, user_min_free_kbytes);
6991 }
bc75d33f 6992 setup_per_zone_wmarks();
a6cccdc3 6993 refresh_zone_stat_thresholds();
1da177e4 6994 setup_per_zone_lowmem_reserve();
6423aa81
JK
6995
6996#ifdef CONFIG_NUMA
6997 setup_min_unmapped_ratio();
6998 setup_min_slab_ratio();
6999#endif
7000
1da177e4
LT
7001 return 0;
7002}
bc22af74 7003core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7004
7005/*
b8af2941 7006 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7007 * that we can call two helper functions whenever min_free_kbytes
7008 * changes.
7009 */
cccad5b9 7010int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7011 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7012{
da8c757b
HP
7013 int rc;
7014
7015 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7016 if (rc)
7017 return rc;
7018
5f12733e
MH
7019 if (write) {
7020 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7021 setup_per_zone_wmarks();
5f12733e 7022 }
1da177e4
LT
7023 return 0;
7024}
7025
795ae7a0
JW
7026int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7027 void __user *buffer, size_t *length, loff_t *ppos)
7028{
7029 int rc;
7030
7031 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7032 if (rc)
7033 return rc;
7034
7035 if (write)
7036 setup_per_zone_wmarks();
7037
7038 return 0;
7039}
7040
9614634f 7041#ifdef CONFIG_NUMA
6423aa81 7042static void setup_min_unmapped_ratio(void)
9614634f 7043{
6423aa81 7044 pg_data_t *pgdat;
9614634f 7045 struct zone *zone;
9614634f 7046
a5f5f91d 7047 for_each_online_pgdat(pgdat)
81cbcbc2 7048 pgdat->min_unmapped_pages = 0;
a5f5f91d 7049
9614634f 7050 for_each_zone(zone)
a5f5f91d 7051 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7052 sysctl_min_unmapped_ratio) / 100;
9614634f 7053}
0ff38490 7054
6423aa81
JK
7055
7056int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7057 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7058{
0ff38490
CL
7059 int rc;
7060
8d65af78 7061 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7062 if (rc)
7063 return rc;
7064
6423aa81
JK
7065 setup_min_unmapped_ratio();
7066
7067 return 0;
7068}
7069
7070static void setup_min_slab_ratio(void)
7071{
7072 pg_data_t *pgdat;
7073 struct zone *zone;
7074
a5f5f91d
MG
7075 for_each_online_pgdat(pgdat)
7076 pgdat->min_slab_pages = 0;
7077
0ff38490 7078 for_each_zone(zone)
a5f5f91d 7079 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7080 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7081}
7082
7083int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7084 void __user *buffer, size_t *length, loff_t *ppos)
7085{
7086 int rc;
7087
7088 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7089 if (rc)
7090 return rc;
7091
7092 setup_min_slab_ratio();
7093
0ff38490
CL
7094 return 0;
7095}
9614634f
CL
7096#endif
7097
1da177e4
LT
7098/*
7099 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7100 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7101 * whenever sysctl_lowmem_reserve_ratio changes.
7102 *
7103 * The reserve ratio obviously has absolutely no relation with the
41858966 7104 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7105 * if in function of the boot time zone sizes.
7106 */
cccad5b9 7107int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7108 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7109{
8d65af78 7110 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7111 setup_per_zone_lowmem_reserve();
7112 return 0;
7113}
7114
8ad4b1fb
RS
7115/*
7116 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7117 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7118 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7119 */
cccad5b9 7120int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7121 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7122{
7123 struct zone *zone;
7cd2b0a3 7124 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7125 int ret;
7126
7cd2b0a3
DR
7127 mutex_lock(&pcp_batch_high_lock);
7128 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7129
8d65af78 7130 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7131 if (!write || ret < 0)
7132 goto out;
7133
7134 /* Sanity checking to avoid pcp imbalance */
7135 if (percpu_pagelist_fraction &&
7136 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7137 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7138 ret = -EINVAL;
7139 goto out;
7140 }
7141
7142 /* No change? */
7143 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7144 goto out;
c8e251fa 7145
364df0eb 7146 for_each_populated_zone(zone) {
7cd2b0a3
DR
7147 unsigned int cpu;
7148
22a7f12b 7149 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7150 pageset_set_high_and_batch(zone,
7151 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7152 }
7cd2b0a3 7153out:
c8e251fa 7154 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7155 return ret;
8ad4b1fb
RS
7156}
7157
a9919c79 7158#ifdef CONFIG_NUMA
f034b5d4 7159int hashdist = HASHDIST_DEFAULT;
1da177e4 7160
1da177e4
LT
7161static int __init set_hashdist(char *str)
7162{
7163 if (!str)
7164 return 0;
7165 hashdist = simple_strtoul(str, &str, 0);
7166 return 1;
7167}
7168__setup("hashdist=", set_hashdist);
7169#endif
7170
f6f34b43
SD
7171#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7172/*
7173 * Returns the number of pages that arch has reserved but
7174 * is not known to alloc_large_system_hash().
7175 */
7176static unsigned long __init arch_reserved_kernel_pages(void)
7177{
7178 return 0;
7179}
7180#endif
7181
1da177e4
LT
7182/*
7183 * allocate a large system hash table from bootmem
7184 * - it is assumed that the hash table must contain an exact power-of-2
7185 * quantity of entries
7186 * - limit is the number of hash buckets, not the total allocation size
7187 */
7188void *__init alloc_large_system_hash(const char *tablename,
7189 unsigned long bucketsize,
7190 unsigned long numentries,
7191 int scale,
7192 int flags,
7193 unsigned int *_hash_shift,
7194 unsigned int *_hash_mask,
31fe62b9
TB
7195 unsigned long low_limit,
7196 unsigned long high_limit)
1da177e4 7197{
31fe62b9 7198 unsigned long long max = high_limit;
1da177e4
LT
7199 unsigned long log2qty, size;
7200 void *table = NULL;
3749a8f0 7201 gfp_t gfp_flags;
1da177e4
LT
7202
7203 /* allow the kernel cmdline to have a say */
7204 if (!numentries) {
7205 /* round applicable memory size up to nearest megabyte */
04903664 7206 numentries = nr_kernel_pages;
f6f34b43 7207 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7208
7209 /* It isn't necessary when PAGE_SIZE >= 1MB */
7210 if (PAGE_SHIFT < 20)
7211 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7212
7213 /* limit to 1 bucket per 2^scale bytes of low memory */
7214 if (scale > PAGE_SHIFT)
7215 numentries >>= (scale - PAGE_SHIFT);
7216 else
7217 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7218
7219 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7220 if (unlikely(flags & HASH_SMALL)) {
7221 /* Makes no sense without HASH_EARLY */
7222 WARN_ON(!(flags & HASH_EARLY));
7223 if (!(numentries >> *_hash_shift)) {
7224 numentries = 1UL << *_hash_shift;
7225 BUG_ON(!numentries);
7226 }
7227 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7228 numentries = PAGE_SIZE / bucketsize;
1da177e4 7229 }
6e692ed3 7230 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7231
7232 /* limit allocation size to 1/16 total memory by default */
7233 if (max == 0) {
7234 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7235 do_div(max, bucketsize);
7236 }
074b8517 7237 max = min(max, 0x80000000ULL);
1da177e4 7238
31fe62b9
TB
7239 if (numentries < low_limit)
7240 numentries = low_limit;
1da177e4
LT
7241 if (numentries > max)
7242 numentries = max;
7243
f0d1b0b3 7244 log2qty = ilog2(numentries);
1da177e4 7245
3749a8f0
PT
7246 /*
7247 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7248 * currently not used when HASH_EARLY is specified.
7249 */
7250 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7251 do {
7252 size = bucketsize << log2qty;
7253 if (flags & HASH_EARLY)
6782832e 7254 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4 7255 else if (hashdist)
3749a8f0 7256 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
1da177e4 7257 else {
1037b83b
ED
7258 /*
7259 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7260 * some pages at the end of hash table which
7261 * alloc_pages_exact() automatically does
1037b83b 7262 */
264ef8a9 7263 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7264 table = alloc_pages_exact(size, gfp_flags);
7265 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7266 }
1da177e4
LT
7267 }
7268 } while (!table && size > PAGE_SIZE && --log2qty);
7269
7270 if (!table)
7271 panic("Failed to allocate %s hash table\n", tablename);
7272
1170532b
JP
7273 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7274 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7275
7276 if (_hash_shift)
7277 *_hash_shift = log2qty;
7278 if (_hash_mask)
7279 *_hash_mask = (1 << log2qty) - 1;
7280
7281 return table;
7282}
a117e66e 7283
a5d76b54 7284/*
80934513
MK
7285 * This function checks whether pageblock includes unmovable pages or not.
7286 * If @count is not zero, it is okay to include less @count unmovable pages
7287 *
b8af2941 7288 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7289 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7290 * check without lock_page also may miss some movable non-lru pages at
7291 * race condition. So you can't expect this function should be exact.
a5d76b54 7292 */
b023f468
WC
7293bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7294 bool skip_hwpoisoned_pages)
49ac8255
KH
7295{
7296 unsigned long pfn, iter, found;
47118af0
MN
7297 int mt;
7298
49ac8255
KH
7299 /*
7300 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7301 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7302 */
7303 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7304 return false;
47118af0
MN
7305 mt = get_pageblock_migratetype(page);
7306 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7307 return false;
49ac8255
KH
7308
7309 pfn = page_to_pfn(page);
7310 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7311 unsigned long check = pfn + iter;
7312
29723fcc 7313 if (!pfn_valid_within(check))
49ac8255 7314 continue;
29723fcc 7315
49ac8255 7316 page = pfn_to_page(check);
c8721bbb
NH
7317
7318 /*
7319 * Hugepages are not in LRU lists, but they're movable.
7320 * We need not scan over tail pages bacause we don't
7321 * handle each tail page individually in migration.
7322 */
7323 if (PageHuge(page)) {
7324 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7325 continue;
7326 }
7327
97d255c8
MK
7328 /*
7329 * We can't use page_count without pin a page
7330 * because another CPU can free compound page.
7331 * This check already skips compound tails of THP
0139aa7b 7332 * because their page->_refcount is zero at all time.
97d255c8 7333 */
fe896d18 7334 if (!page_ref_count(page)) {
49ac8255
KH
7335 if (PageBuddy(page))
7336 iter += (1 << page_order(page)) - 1;
7337 continue;
7338 }
97d255c8 7339
b023f468
WC
7340 /*
7341 * The HWPoisoned page may be not in buddy system, and
7342 * page_count() is not 0.
7343 */
7344 if (skip_hwpoisoned_pages && PageHWPoison(page))
7345 continue;
7346
0efadf48
YX
7347 if (__PageMovable(page))
7348 continue;
7349
49ac8255
KH
7350 if (!PageLRU(page))
7351 found++;
7352 /*
6b4f7799
JW
7353 * If there are RECLAIMABLE pages, we need to check
7354 * it. But now, memory offline itself doesn't call
7355 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7356 */
7357 /*
7358 * If the page is not RAM, page_count()should be 0.
7359 * we don't need more check. This is an _used_ not-movable page.
7360 *
7361 * The problematic thing here is PG_reserved pages. PG_reserved
7362 * is set to both of a memory hole page and a _used_ kernel
7363 * page at boot.
7364 */
7365 if (found > count)
80934513 7366 return true;
49ac8255 7367 }
80934513 7368 return false;
49ac8255
KH
7369}
7370
7371bool is_pageblock_removable_nolock(struct page *page)
7372{
656a0706
MH
7373 struct zone *zone;
7374 unsigned long pfn;
687875fb
MH
7375
7376 /*
7377 * We have to be careful here because we are iterating over memory
7378 * sections which are not zone aware so we might end up outside of
7379 * the zone but still within the section.
656a0706
MH
7380 * We have to take care about the node as well. If the node is offline
7381 * its NODE_DATA will be NULL - see page_zone.
687875fb 7382 */
656a0706
MH
7383 if (!node_online(page_to_nid(page)))
7384 return false;
7385
7386 zone = page_zone(page);
7387 pfn = page_to_pfn(page);
108bcc96 7388 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7389 return false;
7390
b023f468 7391 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7392}
0c0e6195 7393
080fe206 7394#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7395
7396static unsigned long pfn_max_align_down(unsigned long pfn)
7397{
7398 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7399 pageblock_nr_pages) - 1);
7400}
7401
7402static unsigned long pfn_max_align_up(unsigned long pfn)
7403{
7404 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7405 pageblock_nr_pages));
7406}
7407
041d3a8c 7408/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7409static int __alloc_contig_migrate_range(struct compact_control *cc,
7410 unsigned long start, unsigned long end)
041d3a8c
MN
7411{
7412 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7413 unsigned long nr_reclaimed;
041d3a8c
MN
7414 unsigned long pfn = start;
7415 unsigned int tries = 0;
7416 int ret = 0;
7417
be49a6e1 7418 migrate_prep();
041d3a8c 7419
bb13ffeb 7420 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7421 if (fatal_signal_pending(current)) {
7422 ret = -EINTR;
7423 break;
7424 }
7425
bb13ffeb
MG
7426 if (list_empty(&cc->migratepages)) {
7427 cc->nr_migratepages = 0;
edc2ca61 7428 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7429 if (!pfn) {
7430 ret = -EINTR;
7431 break;
7432 }
7433 tries = 0;
7434 } else if (++tries == 5) {
7435 ret = ret < 0 ? ret : -EBUSY;
7436 break;
7437 }
7438
beb51eaa
MK
7439 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7440 &cc->migratepages);
7441 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7442
9c620e2b 7443 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7444 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7445 }
2a6f5124
SP
7446 if (ret < 0) {
7447 putback_movable_pages(&cc->migratepages);
7448 return ret;
7449 }
7450 return 0;
041d3a8c
MN
7451}
7452
7453/**
7454 * alloc_contig_range() -- tries to allocate given range of pages
7455 * @start: start PFN to allocate
7456 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7457 * @migratetype: migratetype of the underlaying pageblocks (either
7458 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7459 * in range must have the same migratetype and it must
7460 * be either of the two.
ca96b625 7461 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7462 *
7463 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7464 * aligned, however it's the caller's responsibility to guarantee that
7465 * we are the only thread that changes migrate type of pageblocks the
7466 * pages fall in.
7467 *
7468 * The PFN range must belong to a single zone.
7469 *
7470 * Returns zero on success or negative error code. On success all
7471 * pages which PFN is in [start, end) are allocated for the caller and
7472 * need to be freed with free_contig_range().
7473 */
0815f3d8 7474int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7475 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7476{
041d3a8c 7477 unsigned long outer_start, outer_end;
d00181b9
KS
7478 unsigned int order;
7479 int ret = 0;
041d3a8c 7480
bb13ffeb
MG
7481 struct compact_control cc = {
7482 .nr_migratepages = 0,
7483 .order = -1,
7484 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7485 .mode = MIGRATE_SYNC,
bb13ffeb 7486 .ignore_skip_hint = true,
7dea19f9 7487 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7488 };
7489 INIT_LIST_HEAD(&cc.migratepages);
7490
041d3a8c
MN
7491 /*
7492 * What we do here is we mark all pageblocks in range as
7493 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7494 * have different sizes, and due to the way page allocator
7495 * work, we align the range to biggest of the two pages so
7496 * that page allocator won't try to merge buddies from
7497 * different pageblocks and change MIGRATE_ISOLATE to some
7498 * other migration type.
7499 *
7500 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7501 * migrate the pages from an unaligned range (ie. pages that
7502 * we are interested in). This will put all the pages in
7503 * range back to page allocator as MIGRATE_ISOLATE.
7504 *
7505 * When this is done, we take the pages in range from page
7506 * allocator removing them from the buddy system. This way
7507 * page allocator will never consider using them.
7508 *
7509 * This lets us mark the pageblocks back as
7510 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7511 * aligned range but not in the unaligned, original range are
7512 * put back to page allocator so that buddy can use them.
7513 */
7514
7515 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7516 pfn_max_align_up(end), migratetype,
7517 false);
041d3a8c 7518 if (ret)
86a595f9 7519 return ret;
041d3a8c 7520
8ef5849f
JK
7521 /*
7522 * In case of -EBUSY, we'd like to know which page causes problem.
7523 * So, just fall through. We will check it in test_pages_isolated().
7524 */
bb13ffeb 7525 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7526 if (ret && ret != -EBUSY)
041d3a8c
MN
7527 goto done;
7528
7529 /*
7530 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7531 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7532 * more, all pages in [start, end) are free in page allocator.
7533 * What we are going to do is to allocate all pages from
7534 * [start, end) (that is remove them from page allocator).
7535 *
7536 * The only problem is that pages at the beginning and at the
7537 * end of interesting range may be not aligned with pages that
7538 * page allocator holds, ie. they can be part of higher order
7539 * pages. Because of this, we reserve the bigger range and
7540 * once this is done free the pages we are not interested in.
7541 *
7542 * We don't have to hold zone->lock here because the pages are
7543 * isolated thus they won't get removed from buddy.
7544 */
7545
7546 lru_add_drain_all();
510f5507 7547 drain_all_pages(cc.zone);
041d3a8c
MN
7548
7549 order = 0;
7550 outer_start = start;
7551 while (!PageBuddy(pfn_to_page(outer_start))) {
7552 if (++order >= MAX_ORDER) {
8ef5849f
JK
7553 outer_start = start;
7554 break;
041d3a8c
MN
7555 }
7556 outer_start &= ~0UL << order;
7557 }
7558
8ef5849f
JK
7559 if (outer_start != start) {
7560 order = page_order(pfn_to_page(outer_start));
7561
7562 /*
7563 * outer_start page could be small order buddy page and
7564 * it doesn't include start page. Adjust outer_start
7565 * in this case to report failed page properly
7566 * on tracepoint in test_pages_isolated()
7567 */
7568 if (outer_start + (1UL << order) <= start)
7569 outer_start = start;
7570 }
7571
041d3a8c 7572 /* Make sure the range is really isolated. */
b023f468 7573 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7574 pr_info("%s: [%lx, %lx) PFNs busy\n",
7575 __func__, outer_start, end);
041d3a8c
MN
7576 ret = -EBUSY;
7577 goto done;
7578 }
7579
49f223a9 7580 /* Grab isolated pages from freelists. */
bb13ffeb 7581 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7582 if (!outer_end) {
7583 ret = -EBUSY;
7584 goto done;
7585 }
7586
7587 /* Free head and tail (if any) */
7588 if (start != outer_start)
7589 free_contig_range(outer_start, start - outer_start);
7590 if (end != outer_end)
7591 free_contig_range(end, outer_end - end);
7592
7593done:
7594 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7595 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7596 return ret;
7597}
7598
7599void free_contig_range(unsigned long pfn, unsigned nr_pages)
7600{
bcc2b02f
MS
7601 unsigned int count = 0;
7602
7603 for (; nr_pages--; pfn++) {
7604 struct page *page = pfn_to_page(pfn);
7605
7606 count += page_count(page) != 1;
7607 __free_page(page);
7608 }
7609 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7610}
7611#endif
7612
4ed7e022 7613#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7614/*
7615 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7616 * page high values need to be recalulated.
7617 */
4ed7e022
JL
7618void __meminit zone_pcp_update(struct zone *zone)
7619{
0a647f38 7620 unsigned cpu;
c8e251fa 7621 mutex_lock(&pcp_batch_high_lock);
0a647f38 7622 for_each_possible_cpu(cpu)
169f6c19
CS
7623 pageset_set_high_and_batch(zone,
7624 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7625 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7626}
7627#endif
7628
340175b7
JL
7629void zone_pcp_reset(struct zone *zone)
7630{
7631 unsigned long flags;
5a883813
MK
7632 int cpu;
7633 struct per_cpu_pageset *pset;
340175b7
JL
7634
7635 /* avoid races with drain_pages() */
7636 local_irq_save(flags);
7637 if (zone->pageset != &boot_pageset) {
5a883813
MK
7638 for_each_online_cpu(cpu) {
7639 pset = per_cpu_ptr(zone->pageset, cpu);
7640 drain_zonestat(zone, pset);
7641 }
340175b7
JL
7642 free_percpu(zone->pageset);
7643 zone->pageset = &boot_pageset;
7644 }
7645 local_irq_restore(flags);
7646}
7647
6dcd73d7 7648#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7649/*
b9eb6319
JK
7650 * All pages in the range must be in a single zone and isolated
7651 * before calling this.
0c0e6195
KH
7652 */
7653void
7654__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7655{
7656 struct page *page;
7657 struct zone *zone;
7aeb09f9 7658 unsigned int order, i;
0c0e6195
KH
7659 unsigned long pfn;
7660 unsigned long flags;
7661 /* find the first valid pfn */
7662 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7663 if (pfn_valid(pfn))
7664 break;
7665 if (pfn == end_pfn)
7666 return;
2d070eab 7667 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7668 zone = page_zone(pfn_to_page(pfn));
7669 spin_lock_irqsave(&zone->lock, flags);
7670 pfn = start_pfn;
7671 while (pfn < end_pfn) {
7672 if (!pfn_valid(pfn)) {
7673 pfn++;
7674 continue;
7675 }
7676 page = pfn_to_page(pfn);
b023f468
WC
7677 /*
7678 * The HWPoisoned page may be not in buddy system, and
7679 * page_count() is not 0.
7680 */
7681 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7682 pfn++;
7683 SetPageReserved(page);
7684 continue;
7685 }
7686
0c0e6195
KH
7687 BUG_ON(page_count(page));
7688 BUG_ON(!PageBuddy(page));
7689 order = page_order(page);
7690#ifdef CONFIG_DEBUG_VM
1170532b
JP
7691 pr_info("remove from free list %lx %d %lx\n",
7692 pfn, 1 << order, end_pfn);
0c0e6195
KH
7693#endif
7694 list_del(&page->lru);
7695 rmv_page_order(page);
7696 zone->free_area[order].nr_free--;
0c0e6195
KH
7697 for (i = 0; i < (1 << order); i++)
7698 SetPageReserved((page+i));
7699 pfn += (1 << order);
7700 }
7701 spin_unlock_irqrestore(&zone->lock, flags);
7702}
7703#endif
8d22ba1b 7704
8d22ba1b
WF
7705bool is_free_buddy_page(struct page *page)
7706{
7707 struct zone *zone = page_zone(page);
7708 unsigned long pfn = page_to_pfn(page);
7709 unsigned long flags;
7aeb09f9 7710 unsigned int order;
8d22ba1b
WF
7711
7712 spin_lock_irqsave(&zone->lock, flags);
7713 for (order = 0; order < MAX_ORDER; order++) {
7714 struct page *page_head = page - (pfn & ((1 << order) - 1));
7715
7716 if (PageBuddy(page_head) && page_order(page_head) >= order)
7717 break;
7718 }
7719 spin_unlock_irqrestore(&zone->lock, flags);
7720
7721 return order < MAX_ORDER;
7722}