]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page_alloc.c
mm/page_alloc: introduce post allocation processing on page allocator
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ef70b6f4
MG
289 int nid = early_pfn_to_nid(pfn);
290
291 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
292 return true;
293
294 return false;
295}
296
7e18adb4
MG
297static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298{
299 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
300 return true;
301
302 return false;
303}
304
3a80a7fa
MG
305/*
306 * Returns false when the remaining initialisation should be deferred until
307 * later in the boot cycle when it can be parallelised.
308 */
309static inline bool update_defer_init(pg_data_t *pgdat,
310 unsigned long pfn, unsigned long zone_end,
311 unsigned long *nr_initialised)
312{
987b3095
LZ
313 unsigned long max_initialise;
314
3a80a7fa
MG
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end < pgdat_end_pfn(pgdat))
317 return true;
987b3095
LZ
318 /*
319 * Initialise at least 2G of a node but also take into account that
320 * two large system hashes that can take up 1GB for 0.25TB/node.
321 */
322 max_initialise = max(2UL << (30 - PAGE_SHIFT),
323 (pgdat->node_spanned_pages >> 8));
3a80a7fa 324
3a80a7fa 325 (*nr_initialised)++;
987b3095 326 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
327 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
328 pgdat->first_deferred_pfn = pfn;
329 return false;
330 }
331
332 return true;
333}
334#else
335static inline void reset_deferred_meminit(pg_data_t *pgdat)
336{
337}
338
339static inline bool early_page_uninitialised(unsigned long pfn)
340{
341 return false;
342}
343
7e18adb4
MG
344static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
345{
346 return false;
347}
348
3a80a7fa
MG
349static inline bool update_defer_init(pg_data_t *pgdat,
350 unsigned long pfn, unsigned long zone_end,
351 unsigned long *nr_initialised)
352{
353 return true;
354}
355#endif
356
0b423ca2
MG
357/* Return a pointer to the bitmap storing bits affecting a block of pages */
358static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 unsigned long pfn)
360{
361#ifdef CONFIG_SPARSEMEM
362 return __pfn_to_section(pfn)->pageblock_flags;
363#else
364 return page_zone(page)->pageblock_flags;
365#endif /* CONFIG_SPARSEMEM */
366}
367
368static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 pfn &= (PAGES_PER_SECTION-1);
372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373#else
374 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
375 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
376#endif /* CONFIG_SPARSEMEM */
377}
378
379/**
380 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381 * @page: The page within the block of interest
382 * @pfn: The target page frame number
383 * @end_bitidx: The last bit of interest to retrieve
384 * @mask: mask of bits that the caller is interested in
385 *
386 * Return: pageblock_bits flags
387 */
388static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long pfn,
390 unsigned long end_bitidx,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 bitmap = get_pageblock_bitmap(page, pfn);
398 bitidx = pfn_to_bitidx(page, pfn);
399 word_bitidx = bitidx / BITS_PER_LONG;
400 bitidx &= (BITS_PER_LONG-1);
401
402 word = bitmap[word_bitidx];
403 bitidx += end_bitidx;
404 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405}
406
407unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410{
411 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412}
413
414static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415{
416 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
417}
418
419/**
420 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421 * @page: The page within the block of interest
422 * @flags: The flags to set
423 * @pfn: The target page frame number
424 * @end_bitidx: The last bit of interest
425 * @mask: mask of bits that the caller is interested in
426 */
427void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long pfn,
429 unsigned long end_bitidx,
430 unsigned long mask)
431{
432 unsigned long *bitmap;
433 unsigned long bitidx, word_bitidx;
434 unsigned long old_word, word;
435
436 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437
438 bitmap = get_pageblock_bitmap(page, pfn);
439 bitidx = pfn_to_bitidx(page, pfn);
440 word_bitidx = bitidx / BITS_PER_LONG;
441 bitidx &= (BITS_PER_LONG-1);
442
443 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444
445 bitidx += end_bitidx;
446 mask <<= (BITS_PER_LONG - bitidx - 1);
447 flags <<= (BITS_PER_LONG - bitidx - 1);
448
449 word = READ_ONCE(bitmap[word_bitidx]);
450 for (;;) {
451 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
452 if (word == old_word)
453 break;
454 word = old_word;
455 }
456}
3a80a7fa 457
ee6f509c 458void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 459{
5d0f3f72
KM
460 if (unlikely(page_group_by_mobility_disabled &&
461 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
462 migratetype = MIGRATE_UNMOVABLE;
463
b2a0ac88
MG
464 set_pageblock_flags_group(page, (unsigned long)migratetype,
465 PB_migrate, PB_migrate_end);
466}
467
13e7444b 468#ifdef CONFIG_DEBUG_VM
c6a57e19 469static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 470{
bdc8cb98
DH
471 int ret = 0;
472 unsigned seq;
473 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 474 unsigned long sp, start_pfn;
c6a57e19 475
bdc8cb98
DH
476 do {
477 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
478 start_pfn = zone->zone_start_pfn;
479 sp = zone->spanned_pages;
108bcc96 480 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
481 ret = 1;
482 } while (zone_span_seqretry(zone, seq));
483
b5e6a5a2 484 if (ret)
613813e8
DH
485 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 pfn, zone_to_nid(zone), zone->name,
487 start_pfn, start_pfn + sp);
b5e6a5a2 488
bdc8cb98 489 return ret;
c6a57e19
DH
490}
491
492static int page_is_consistent(struct zone *zone, struct page *page)
493{
14e07298 494 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 495 return 0;
1da177e4 496 if (zone != page_zone(page))
c6a57e19
DH
497 return 0;
498
499 return 1;
500}
501/*
502 * Temporary debugging check for pages not lying within a given zone.
503 */
504static int bad_range(struct zone *zone, struct page *page)
505{
506 if (page_outside_zone_boundaries(zone, page))
1da177e4 507 return 1;
c6a57e19
DH
508 if (!page_is_consistent(zone, page))
509 return 1;
510
1da177e4
LT
511 return 0;
512}
13e7444b
NP
513#else
514static inline int bad_range(struct zone *zone, struct page *page)
515{
516 return 0;
517}
518#endif
519
d230dec1
KS
520static void bad_page(struct page *page, const char *reason,
521 unsigned long bad_flags)
1da177e4 522{
d936cf9b
HD
523 static unsigned long resume;
524 static unsigned long nr_shown;
525 static unsigned long nr_unshown;
526
527 /*
528 * Allow a burst of 60 reports, then keep quiet for that minute;
529 * or allow a steady drip of one report per second.
530 */
531 if (nr_shown == 60) {
532 if (time_before(jiffies, resume)) {
533 nr_unshown++;
534 goto out;
535 }
536 if (nr_unshown) {
ff8e8116 537 pr_alert(
1e9e6365 538 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
539 nr_unshown);
540 nr_unshown = 0;
541 }
542 nr_shown = 0;
543 }
544 if (nr_shown++ == 0)
545 resume = jiffies + 60 * HZ;
546
ff8e8116 547 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 548 current->comm, page_to_pfn(page));
ff8e8116
VB
549 __dump_page(page, reason);
550 bad_flags &= page->flags;
551 if (bad_flags)
552 pr_alert("bad because of flags: %#lx(%pGp)\n",
553 bad_flags, &bad_flags);
4e462112 554 dump_page_owner(page);
3dc14741 555
4f31888c 556 print_modules();
1da177e4 557 dump_stack();
d936cf9b 558out:
8cc3b392 559 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 560 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
562}
563
1da177e4
LT
564/*
565 * Higher-order pages are called "compound pages". They are structured thusly:
566 *
1d798ca3 567 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 568 *
1d798ca3
KS
569 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 571 *
1d798ca3
KS
572 * The first tail page's ->compound_dtor holds the offset in array of compound
573 * page destructors. See compound_page_dtors.
1da177e4 574 *
1d798ca3 575 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 576 * This usage means that zero-order pages may not be compound.
1da177e4 577 */
d98c7a09 578
9a982250 579void free_compound_page(struct page *page)
d98c7a09 580{
d85f3385 581 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
582}
583
d00181b9 584void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
585{
586 int i;
587 int nr_pages = 1 << order;
588
f1e61557 589 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
590 set_compound_order(page, order);
591 __SetPageHead(page);
592 for (i = 1; i < nr_pages; i++) {
593 struct page *p = page + i;
58a84aa9 594 set_page_count(p, 0);
1c290f64 595 p->mapping = TAIL_MAPPING;
1d798ca3 596 set_compound_head(p, page);
18229df5 597 }
53f9263b 598 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
599}
600
c0a32fc5
SG
601#ifdef CONFIG_DEBUG_PAGEALLOC
602unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
603bool _debug_pagealloc_enabled __read_mostly
604 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 605EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
606bool _debug_guardpage_enabled __read_mostly;
607
031bc574
JK
608static int __init early_debug_pagealloc(char *buf)
609{
610 if (!buf)
611 return -EINVAL;
2a138dc7 612 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
613}
614early_param("debug_pagealloc", early_debug_pagealloc);
615
e30825f1
JK
616static bool need_debug_guardpage(void)
617{
031bc574
JK
618 /* If we don't use debug_pagealloc, we don't need guard page */
619 if (!debug_pagealloc_enabled())
620 return false;
621
e30825f1
JK
622 return true;
623}
624
625static void init_debug_guardpage(void)
626{
031bc574
JK
627 if (!debug_pagealloc_enabled())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
650__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
651
2847cf95
JK
652static inline void set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return;
659
660 page_ext = lookup_page_ext(page);
f86e4271
YS
661 if (unlikely(!page_ext))
662 return;
663
e30825f1
JK
664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665
2847cf95
JK
666 INIT_LIST_HEAD(&page->lru);
667 set_page_private(page, order);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
670}
671
2847cf95
JK
672static inline void clear_page_guard(struct zone *zone, struct page *page,
673 unsigned int order, int migratetype)
c0a32fc5 674{
e30825f1
JK
675 struct page_ext *page_ext;
676
677 if (!debug_guardpage_enabled())
678 return;
679
680 page_ext = lookup_page_ext(page);
f86e4271
YS
681 if (unlikely(!page_ext))
682 return;
683
e30825f1
JK
684 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685
2847cf95
JK
686 set_page_private(page, 0);
687 if (!is_migrate_isolate(migratetype))
688 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
689}
690#else
e30825f1 691struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
692static inline void set_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694static inline void clear_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype) {}
c0a32fc5
SG
696#endif
697
7aeb09f9 698static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 699{
4c21e2f2 700 set_page_private(page, order);
676165a8 701 __SetPageBuddy(page);
1da177e4
LT
702}
703
704static inline void rmv_page_order(struct page *page)
705{
676165a8 706 __ClearPageBuddy(page);
4c21e2f2 707 set_page_private(page, 0);
1da177e4
LT
708}
709
1da177e4
LT
710/*
711 * This function checks whether a page is free && is the buddy
712 * we can do coalesce a page and its buddy if
13e7444b 713 * (a) the buddy is not in a hole &&
676165a8 714 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
715 * (c) a page and its buddy have the same order &&
716 * (d) a page and its buddy are in the same zone.
676165a8 717 *
cf6fe945
WSH
718 * For recording whether a page is in the buddy system, we set ->_mapcount
719 * PAGE_BUDDY_MAPCOUNT_VALUE.
720 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721 * serialized by zone->lock.
1da177e4 722 *
676165a8 723 * For recording page's order, we use page_private(page).
1da177e4 724 */
cb2b95e1 725static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 726 unsigned int order)
1da177e4 727{
14e07298 728 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 729 return 0;
13e7444b 730
c0a32fc5 731 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
732 if (page_zone_id(page) != page_zone_id(buddy))
733 return 0;
734
4c5018ce
WY
735 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
736
c0a32fc5
SG
737 return 1;
738 }
739
cb2b95e1 740 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
741 /*
742 * zone check is done late to avoid uselessly
743 * calculating zone/node ids for pages that could
744 * never merge.
745 */
746 if (page_zone_id(page) != page_zone_id(buddy))
747 return 0;
748
4c5018ce
WY
749 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
750
6aa3001b 751 return 1;
676165a8 752 }
6aa3001b 753 return 0;
1da177e4
LT
754}
755
756/*
757 * Freeing function for a buddy system allocator.
758 *
759 * The concept of a buddy system is to maintain direct-mapped table
760 * (containing bit values) for memory blocks of various "orders".
761 * The bottom level table contains the map for the smallest allocatable
762 * units of memory (here, pages), and each level above it describes
763 * pairs of units from the levels below, hence, "buddies".
764 * At a high level, all that happens here is marking the table entry
765 * at the bottom level available, and propagating the changes upward
766 * as necessary, plus some accounting needed to play nicely with other
767 * parts of the VM system.
768 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
769 * free pages of length of (1 << order) and marked with _mapcount
770 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
771 * field.
1da177e4 772 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
773 * other. That is, if we allocate a small block, and both were
774 * free, the remainder of the region must be split into blocks.
1da177e4 775 * If a block is freed, and its buddy is also free, then this
5f63b720 776 * triggers coalescing into a block of larger size.
1da177e4 777 *
6d49e352 778 * -- nyc
1da177e4
LT
779 */
780
48db57f8 781static inline void __free_one_page(struct page *page,
dc4b0caf 782 unsigned long pfn,
ed0ae21d
MG
783 struct zone *zone, unsigned int order,
784 int migratetype)
1da177e4
LT
785{
786 unsigned long page_idx;
6dda9d55 787 unsigned long combined_idx;
43506fad 788 unsigned long uninitialized_var(buddy_idx);
6dda9d55 789 struct page *buddy;
d9dddbf5
VB
790 unsigned int max_order;
791
792 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 793
d29bb978 794 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 795 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 796
ed0ae21d 797 VM_BUG_ON(migratetype == -1);
d9dddbf5 798 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 799 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 800
d9dddbf5 801 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 802
309381fe
SL
803 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
804 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 805
d9dddbf5 806continue_merging:
3c605096 807 while (order < max_order - 1) {
43506fad
KC
808 buddy_idx = __find_buddy_index(page_idx, order);
809 buddy = page + (buddy_idx - page_idx);
cb2b95e1 810 if (!page_is_buddy(page, buddy, order))
d9dddbf5 811 goto done_merging;
c0a32fc5
SG
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
816 if (page_is_guard(buddy)) {
2847cf95 817 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
818 } else {
819 list_del(&buddy->lru);
820 zone->free_area[order].nr_free--;
821 rmv_page_order(buddy);
822 }
43506fad 823 combined_idx = buddy_idx & page_idx;
1da177e4
LT
824 page = page + (combined_idx - page_idx);
825 page_idx = combined_idx;
826 order++;
827 }
d9dddbf5
VB
828 if (max_order < MAX_ORDER) {
829 /* If we are here, it means order is >= pageblock_order.
830 * We want to prevent merge between freepages on isolate
831 * pageblock and normal pageblock. Without this, pageblock
832 * isolation could cause incorrect freepage or CMA accounting.
833 *
834 * We don't want to hit this code for the more frequent
835 * low-order merging.
836 */
837 if (unlikely(has_isolate_pageblock(zone))) {
838 int buddy_mt;
839
840 buddy_idx = __find_buddy_index(page_idx, order);
841 buddy = page + (buddy_idx - page_idx);
842 buddy_mt = get_pageblock_migratetype(buddy);
843
844 if (migratetype != buddy_mt
845 && (is_migrate_isolate(migratetype) ||
846 is_migrate_isolate(buddy_mt)))
847 goto done_merging;
848 }
849 max_order++;
850 goto continue_merging;
851 }
852
853done_merging:
1da177e4 854 set_page_order(page, order);
6dda9d55
CZ
855
856 /*
857 * If this is not the largest possible page, check if the buddy
858 * of the next-highest order is free. If it is, it's possible
859 * that pages are being freed that will coalesce soon. In case,
860 * that is happening, add the free page to the tail of the list
861 * so it's less likely to be used soon and more likely to be merged
862 * as a higher order page
863 */
b7f50cfa 864 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 865 struct page *higher_page, *higher_buddy;
43506fad
KC
866 combined_idx = buddy_idx & page_idx;
867 higher_page = page + (combined_idx - page_idx);
868 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 869 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
870 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
871 list_add_tail(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 goto out;
874 }
875 }
876
877 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878out:
1da177e4
LT
879 zone->free_area[order].nr_free++;
880}
881
7bfec6f4
MG
882/*
883 * A bad page could be due to a number of fields. Instead of multiple branches,
884 * try and check multiple fields with one check. The caller must do a detailed
885 * check if necessary.
886 */
887static inline bool page_expected_state(struct page *page,
888 unsigned long check_flags)
889{
890 if (unlikely(atomic_read(&page->_mapcount) != -1))
891 return false;
892
893 if (unlikely((unsigned long)page->mapping |
894 page_ref_count(page) |
895#ifdef CONFIG_MEMCG
896 (unsigned long)page->mem_cgroup |
897#endif
898 (page->flags & check_flags)))
899 return false;
900
901 return true;
902}
903
bb552ac6 904static void free_pages_check_bad(struct page *page)
1da177e4 905{
7bfec6f4
MG
906 const char *bad_reason;
907 unsigned long bad_flags;
908
7bfec6f4
MG
909 bad_reason = NULL;
910 bad_flags = 0;
f0b791a3 911
53f9263b 912 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
913 bad_reason = "nonzero mapcount";
914 if (unlikely(page->mapping != NULL))
915 bad_reason = "non-NULL mapping";
fe896d18 916 if (unlikely(page_ref_count(page) != 0))
0139aa7b 917 bad_reason = "nonzero _refcount";
f0b791a3
DH
918 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
919 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
921 }
9edad6ea
JW
922#ifdef CONFIG_MEMCG
923 if (unlikely(page->mem_cgroup))
924 bad_reason = "page still charged to cgroup";
925#endif
7bfec6f4 926 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
927}
928
929static inline int free_pages_check(struct page *page)
930{
da838d4f 931 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 932 return 0;
bb552ac6
MG
933
934 /* Something has gone sideways, find it */
935 free_pages_check_bad(page);
7bfec6f4 936 return 1;
1da177e4
LT
937}
938
4db7548c
MG
939static int free_tail_pages_check(struct page *head_page, struct page *page)
940{
941 int ret = 1;
942
943 /*
944 * We rely page->lru.next never has bit 0 set, unless the page
945 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 */
947 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948
949 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
950 ret = 0;
951 goto out;
952 }
953 switch (page - head_page) {
954 case 1:
955 /* the first tail page: ->mapping is compound_mapcount() */
956 if (unlikely(compound_mapcount(page))) {
957 bad_page(page, "nonzero compound_mapcount", 0);
958 goto out;
959 }
960 break;
961 case 2:
962 /*
963 * the second tail page: ->mapping is
964 * page_deferred_list().next -- ignore value.
965 */
966 break;
967 default:
968 if (page->mapping != TAIL_MAPPING) {
969 bad_page(page, "corrupted mapping in tail page", 0);
970 goto out;
971 }
972 break;
973 }
974 if (unlikely(!PageTail(page))) {
975 bad_page(page, "PageTail not set", 0);
976 goto out;
977 }
978 if (unlikely(compound_head(page) != head_page)) {
979 bad_page(page, "compound_head not consistent", 0);
980 goto out;
981 }
982 ret = 0;
983out:
984 page->mapping = NULL;
985 clear_compound_head(page);
986 return ret;
987}
988
e2769dbd
MG
989static __always_inline bool free_pages_prepare(struct page *page,
990 unsigned int order, bool check_free)
4db7548c 991{
e2769dbd 992 int bad = 0;
4db7548c 993
4db7548c
MG
994 VM_BUG_ON_PAGE(PageTail(page), page);
995
e2769dbd
MG
996 trace_mm_page_free(page, order);
997 kmemcheck_free_shadow(page, order);
e2769dbd
MG
998
999 /*
1000 * Check tail pages before head page information is cleared to
1001 * avoid checking PageCompound for order-0 pages.
1002 */
1003 if (unlikely(order)) {
1004 bool compound = PageCompound(page);
1005 int i;
1006
1007 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1008
e2769dbd
MG
1009 for (i = 1; i < (1 << order); i++) {
1010 if (compound)
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1013 bad++;
1014 continue;
1015 }
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 }
1018 }
bda807d4 1019 if (PageMappingFlags(page))
4db7548c 1020 page->mapping = NULL;
e2769dbd
MG
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
4db7548c 1025
e2769dbd
MG
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
4db7548c
MG
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 debug_check_no_obj_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 }
e2769dbd
MG
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
29b52de1 1039 kasan_free_pages(page, order);
4db7548c 1040
4db7548c
MG
1041 return true;
1042}
1043
e2769dbd
MG
1044#ifdef CONFIG_DEBUG_VM
1045static inline bool free_pcp_prepare(struct page *page)
1046{
1047 return free_pages_prepare(page, 0, true);
1048}
1049
1050static inline bool bulkfree_pcp_prepare(struct page *page)
1051{
1052 return false;
1053}
1054#else
1055static bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, false);
1058}
1059
4db7548c
MG
1060static bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return free_pages_check(page);
1063}
1064#endif /* CONFIG_DEBUG_VM */
1065
1da177e4 1066/*
5f8dcc21 1067 * Frees a number of pages from the PCP lists
1da177e4 1068 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1069 * count is the number of pages to free.
1da177e4
LT
1070 *
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1073 *
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1076 */
5f8dcc21
MG
1077static void free_pcppages_bulk(struct zone *zone, int count,
1078 struct per_cpu_pages *pcp)
1da177e4 1079{
5f8dcc21 1080 int migratetype = 0;
a6f9edd6 1081 int batch_free = 0;
0d5d823a 1082 unsigned long nr_scanned;
3777999d 1083 bool isolated_pageblocks;
5f8dcc21 1084
c54ad30c 1085 spin_lock(&zone->lock);
3777999d 1086 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1087 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1088 if (nr_scanned)
1089 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1090
e5b31ac2 1091 while (count) {
48db57f8 1092 struct page *page;
5f8dcc21
MG
1093 struct list_head *list;
1094
1095 /*
a6f9edd6
MG
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1100 * lists
5f8dcc21
MG
1101 */
1102 do {
a6f9edd6 1103 batch_free++;
5f8dcc21
MG
1104 if (++migratetype == MIGRATE_PCPTYPES)
1105 migratetype = 0;
1106 list = &pcp->lists[migratetype];
1107 } while (list_empty(list));
48db57f8 1108
1d16871d
NK
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1111 batch_free = count;
1d16871d 1112
a6f9edd6 1113 do {
770c8aaa
BZ
1114 int mt; /* migratetype of the to-be-freed page */
1115
a16601c5 1116 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page->lru);
aa016d14 1119
bb14c2c7 1120 mt = get_pcppage_migratetype(page);
aa016d14
VB
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 /* Pageblock could have been isolated meanwhile */
3777999d 1124 if (unlikely(isolated_pageblocks))
51bb1a40 1125 mt = get_pageblock_migratetype(page);
51bb1a40 1126
4db7548c
MG
1127 if (bulkfree_pcp_prepare(page))
1128 continue;
1129
dc4b0caf 1130 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1131 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1132 } while (--count && --batch_free && !list_empty(list));
1da177e4 1133 }
c54ad30c 1134 spin_unlock(&zone->lock);
1da177e4
LT
1135}
1136
dc4b0caf
MG
1137static void free_one_page(struct zone *zone,
1138 struct page *page, unsigned long pfn,
7aeb09f9 1139 unsigned int order,
ed0ae21d 1140 int migratetype)
1da177e4 1141{
0d5d823a 1142 unsigned long nr_scanned;
006d22d9 1143 spin_lock(&zone->lock);
0d5d823a
MG
1144 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1145 if (nr_scanned)
1146 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1147
ad53f92e
JK
1148 if (unlikely(has_isolate_pageblock(zone) ||
1149 is_migrate_isolate(migratetype))) {
1150 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1151 }
dc4b0caf 1152 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1153 spin_unlock(&zone->lock);
48db57f8
NP
1154}
1155
1e8ce83c
RH
1156static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 unsigned long zone, int nid)
1158{
1e8ce83c 1159 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1160 init_page_count(page);
1161 page_mapcount_reset(page);
1162 page_cpupid_reset_last(page);
1e8ce83c 1163
1e8ce83c
RH
1164 INIT_LIST_HEAD(&page->lru);
1165#ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone))
1168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1169#endif
1170}
1171
1172static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 int nid)
1174{
1175 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176}
1177
7e18adb4
MG
1178#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179static void init_reserved_page(unsigned long pfn)
1180{
1181 pg_data_t *pgdat;
1182 int nid, zid;
1183
1184 if (!early_page_uninitialised(pfn))
1185 return;
1186
1187 nid = early_pfn_to_nid(pfn);
1188 pgdat = NODE_DATA(nid);
1189
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 struct zone *zone = &pgdat->node_zones[zid];
1192
1193 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196 __init_single_pfn(pfn, zid, nid);
1197}
1198#else
1199static inline void init_reserved_page(unsigned long pfn)
1200{
1201}
1202#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203
92923ca3
NZ
1204/*
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1209 */
4b50bcc7 1210void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1211{
1212 unsigned long start_pfn = PFN_DOWN(start);
1213 unsigned long end_pfn = PFN_UP(end);
1214
7e18adb4
MG
1215 for (; start_pfn < end_pfn; start_pfn++) {
1216 if (pfn_valid(start_pfn)) {
1217 struct page *page = pfn_to_page(start_pfn);
1218
1219 init_reserved_page(start_pfn);
1d798ca3
KS
1220
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page->lru);
1223
7e18adb4
MG
1224 SetPageReserved(page);
1225 }
1226 }
92923ca3
NZ
1227}
1228
ec95f53a
KM
1229static void __free_pages_ok(struct page *page, unsigned int order)
1230{
1231 unsigned long flags;
95e34412 1232 int migratetype;
dc4b0caf 1233 unsigned long pfn = page_to_pfn(page);
ec95f53a 1234
e2769dbd 1235 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1236 return;
1237
cfc47a28 1238 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1239 local_irq_save(flags);
f8891e5e 1240 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1241 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1242 local_irq_restore(flags);
1da177e4
LT
1243}
1244
949698a3 1245static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1246{
c3993076 1247 unsigned int nr_pages = 1 << order;
e2d0bd2b 1248 struct page *p = page;
c3993076 1249 unsigned int loop;
a226f6c8 1250
e2d0bd2b
YL
1251 prefetchw(p);
1252 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1253 prefetchw(p + 1);
c3993076
JW
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
a226f6c8 1256 }
e2d0bd2b
YL
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
c3993076 1259
e2d0bd2b 1260 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1261 set_page_refcounted(page);
1262 __free_pages(page, order);
a226f6c8
DH
1263}
1264
75a592a4
MG
1265#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1267
75a592a4
MG
1268static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1269
1270int __meminit early_pfn_to_nid(unsigned long pfn)
1271{
7ace9917 1272 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1273 int nid;
1274
7ace9917 1275 spin_lock(&early_pfn_lock);
75a592a4 1276 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1277 if (nid < 0)
e4568d38 1278 nid = first_online_node;
7ace9917
MG
1279 spin_unlock(&early_pfn_lock);
1280
1281 return nid;
75a592a4
MG
1282}
1283#endif
1284
1285#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1287 struct mminit_pfnnid_cache *state)
1288{
1289 int nid;
1290
1291 nid = __early_pfn_to_nid(pfn, state);
1292 if (nid >= 0 && nid != node)
1293 return false;
1294 return true;
1295}
1296
1297/* Only safe to use early in boot when initialisation is single-threaded */
1298static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1299{
1300 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301}
1302
1303#else
1304
1305static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306{
1307 return true;
1308}
1309static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311{
1312 return true;
1313}
1314#endif
1315
1316
0e1cc95b 1317void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1318 unsigned int order)
1319{
1320 if (early_page_uninitialised(pfn))
1321 return;
949698a3 1322 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1323}
1324
7cf91a98
JK
1325/*
1326 * Check that the whole (or subset of) a pageblock given by the interval of
1327 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328 * with the migration of free compaction scanner. The scanners then need to
1329 * use only pfn_valid_within() check for arches that allow holes within
1330 * pageblocks.
1331 *
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333 *
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1341 */
1342struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1343 unsigned long end_pfn, struct zone *zone)
1344{
1345 struct page *start_page;
1346 struct page *end_page;
1347
1348 /* end_pfn is one past the range we are checking */
1349 end_pfn--;
1350
1351 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1352 return NULL;
1353
1354 start_page = pfn_to_page(start_pfn);
1355
1356 if (page_zone(start_page) != zone)
1357 return NULL;
1358
1359 end_page = pfn_to_page(end_pfn);
1360
1361 /* This gives a shorter code than deriving page_zone(end_page) */
1362 if (page_zone_id(start_page) != page_zone_id(end_page))
1363 return NULL;
1364
1365 return start_page;
1366}
1367
1368void set_zone_contiguous(struct zone *zone)
1369{
1370 unsigned long block_start_pfn = zone->zone_start_pfn;
1371 unsigned long block_end_pfn;
1372
1373 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1374 for (; block_start_pfn < zone_end_pfn(zone);
1375 block_start_pfn = block_end_pfn,
1376 block_end_pfn += pageblock_nr_pages) {
1377
1378 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1379
1380 if (!__pageblock_pfn_to_page(block_start_pfn,
1381 block_end_pfn, zone))
1382 return;
1383 }
1384
1385 /* We confirm that there is no hole */
1386 zone->contiguous = true;
1387}
1388
1389void clear_zone_contiguous(struct zone *zone)
1390{
1391 zone->contiguous = false;
1392}
1393
7e18adb4 1394#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1395static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1396 unsigned long pfn, int nr_pages)
1397{
1398 int i;
1399
1400 if (!page)
1401 return;
1402
1403 /* Free a large naturally-aligned chunk if possible */
1404 if (nr_pages == MAX_ORDER_NR_PAGES &&
1405 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1406 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1407 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1408 return;
1409 }
1410
949698a3
LZ
1411 for (i = 0; i < nr_pages; i++, page++)
1412 __free_pages_boot_core(page, 0);
a4de83dd
MG
1413}
1414
d3cd131d
NS
1415/* Completion tracking for deferred_init_memmap() threads */
1416static atomic_t pgdat_init_n_undone __initdata;
1417static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418
1419static inline void __init pgdat_init_report_one_done(void)
1420{
1421 if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 complete(&pgdat_init_all_done_comp);
1423}
0e1cc95b 1424
7e18adb4 1425/* Initialise remaining memory on a node */
0e1cc95b 1426static int __init deferred_init_memmap(void *data)
7e18adb4 1427{
0e1cc95b
MG
1428 pg_data_t *pgdat = data;
1429 int nid = pgdat->node_id;
7e18adb4
MG
1430 struct mminit_pfnnid_cache nid_init_state = { };
1431 unsigned long start = jiffies;
1432 unsigned long nr_pages = 0;
1433 unsigned long walk_start, walk_end;
1434 int i, zid;
1435 struct zone *zone;
7e18adb4 1436 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1437 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1438
0e1cc95b 1439 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1440 pgdat_init_report_one_done();
0e1cc95b
MG
1441 return 0;
1442 }
1443
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask))
1446 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1447
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 pgdat->first_deferred_pfn = ULONG_MAX;
1452
1453 /* Only the highest zone is deferred so find it */
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 zone = pgdat->node_zones + zid;
1456 if (first_init_pfn < zone_end_pfn(zone))
1457 break;
1458 }
1459
1460 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 unsigned long pfn, end_pfn;
54608c3f 1462 struct page *page = NULL;
a4de83dd
MG
1463 struct page *free_base_page = NULL;
1464 unsigned long free_base_pfn = 0;
1465 int nr_to_free = 0;
7e18adb4
MG
1466
1467 end_pfn = min(walk_end, zone_end_pfn(zone));
1468 pfn = first_init_pfn;
1469 if (pfn < walk_start)
1470 pfn = walk_start;
1471 if (pfn < zone->zone_start_pfn)
1472 pfn = zone->zone_start_pfn;
1473
1474 for (; pfn < end_pfn; pfn++) {
54608c3f 1475 if (!pfn_valid_within(pfn))
a4de83dd 1476 goto free_range;
7e18adb4 1477
54608c3f
MG
1478 /*
1479 * Ensure pfn_valid is checked every
1480 * MAX_ORDER_NR_PAGES for memory holes
1481 */
1482 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1483 if (!pfn_valid(pfn)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487 }
1488
1489 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493
1494 /* Minimise pfn page lookups and scheduler checks */
1495 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1496 page++;
1497 } else {
a4de83dd
MG
1498 nr_pages += nr_to_free;
1499 deferred_free_range(free_base_page,
1500 free_base_pfn, nr_to_free);
1501 free_base_page = NULL;
1502 free_base_pfn = nr_to_free = 0;
1503
54608c3f
MG
1504 page = pfn_to_page(pfn);
1505 cond_resched();
1506 }
7e18adb4
MG
1507
1508 if (page->flags) {
1509 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1510 goto free_range;
7e18adb4
MG
1511 }
1512
1513 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1514 if (!free_base_page) {
1515 free_base_page = page;
1516 free_base_pfn = pfn;
1517 nr_to_free = 0;
1518 }
1519 nr_to_free++;
1520
1521 /* Where possible, batch up pages for a single free */
1522 continue;
1523free_range:
1524 /* Free the current block of pages to allocator */
1525 nr_pages += nr_to_free;
1526 deferred_free_range(free_base_page, free_base_pfn,
1527 nr_to_free);
1528 free_base_page = NULL;
1529 free_base_pfn = nr_to_free = 0;
7e18adb4 1530 }
a4de83dd 1531
7e18adb4
MG
1532 first_init_pfn = max(end_pfn, first_init_pfn);
1533 }
1534
1535 /* Sanity check that the next zone really is unpopulated */
1536 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1537
0e1cc95b 1538 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1539 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1540
1541 pgdat_init_report_one_done();
0e1cc95b
MG
1542 return 0;
1543}
7cf91a98 1544#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1545
1546void __init page_alloc_init_late(void)
1547{
7cf91a98
JK
1548 struct zone *zone;
1549
1550#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1551 int nid;
1552
d3cd131d
NS
1553 /* There will be num_node_state(N_MEMORY) threads */
1554 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1555 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1556 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 }
1558
1559 /* Block until all are initialised */
d3cd131d 1560 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1561
1562 /* Reinit limits that are based on free pages after the kernel is up */
1563 files_maxfiles_init();
7cf91a98
JK
1564#endif
1565
1566 for_each_populated_zone(zone)
1567 set_zone_contiguous(zone);
7e18adb4 1568}
7e18adb4 1569
47118af0 1570#ifdef CONFIG_CMA
9cf510a5 1571/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1572void __init init_cma_reserved_pageblock(struct page *page)
1573{
1574 unsigned i = pageblock_nr_pages;
1575 struct page *p = page;
1576
1577 do {
1578 __ClearPageReserved(p);
1579 set_page_count(p, 0);
1580 } while (++p, --i);
1581
47118af0 1582 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1583
1584 if (pageblock_order >= MAX_ORDER) {
1585 i = pageblock_nr_pages;
1586 p = page;
1587 do {
1588 set_page_refcounted(p);
1589 __free_pages(p, MAX_ORDER - 1);
1590 p += MAX_ORDER_NR_PAGES;
1591 } while (i -= MAX_ORDER_NR_PAGES);
1592 } else {
1593 set_page_refcounted(page);
1594 __free_pages(page, pageblock_order);
1595 }
1596
3dcc0571 1597 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1598}
1599#endif
1da177e4
LT
1600
1601/*
1602 * The order of subdivision here is critical for the IO subsystem.
1603 * Please do not alter this order without good reasons and regression
1604 * testing. Specifically, as large blocks of memory are subdivided,
1605 * the order in which smaller blocks are delivered depends on the order
1606 * they're subdivided in this function. This is the primary factor
1607 * influencing the order in which pages are delivered to the IO
1608 * subsystem according to empirical testing, and this is also justified
1609 * by considering the behavior of a buddy system containing a single
1610 * large block of memory acted on by a series of small allocations.
1611 * This behavior is a critical factor in sglist merging's success.
1612 *
6d49e352 1613 * -- nyc
1da177e4 1614 */
085cc7d5 1615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1616 int low, int high, struct free_area *area,
1617 int migratetype)
1da177e4
LT
1618{
1619 unsigned long size = 1 << high;
1620
1621 while (high > low) {
1622 area--;
1623 high--;
1624 size >>= 1;
309381fe 1625 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1626
2847cf95 1627 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1628 debug_guardpage_enabled() &&
2847cf95 1629 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1630 /*
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1635 */
2847cf95 1636 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1637 continue;
1638 }
b2a0ac88 1639 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1640 area->nr_free++;
1641 set_page_order(&page[size], high);
1642 }
1da177e4
LT
1643}
1644
4e611801 1645static void check_new_page_bad(struct page *page)
1da177e4 1646{
4e611801
VB
1647 const char *bad_reason = NULL;
1648 unsigned long bad_flags = 0;
7bfec6f4 1649
53f9263b 1650 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1651 bad_reason = "nonzero mapcount";
1652 if (unlikely(page->mapping != NULL))
1653 bad_reason = "non-NULL mapping";
fe896d18 1654 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1655 bad_reason = "nonzero _count";
f4c18e6f
NH
1656 if (unlikely(page->flags & __PG_HWPOISON)) {
1657 bad_reason = "HWPoisoned (hardware-corrupted)";
1658 bad_flags = __PG_HWPOISON;
e570f56c
NH
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page); /* remove PageBuddy */
1661 return;
f4c18e6f 1662 }
f0b791a3
DH
1663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 }
9edad6ea
JW
1667#ifdef CONFIG_MEMCG
1668 if (unlikely(page->mem_cgroup))
1669 bad_reason = "page still charged to cgroup";
1670#endif
4e611801
VB
1671 bad_page(page, bad_reason, bad_flags);
1672}
1673
1674/*
1675 * This page is about to be returned from the page allocator
1676 */
1677static inline int check_new_page(struct page *page)
1678{
1679 if (likely(page_expected_state(page,
1680 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 return 0;
1682
1683 check_new_page_bad(page);
1684 return 1;
2a7684a2
WF
1685}
1686
1414c7f4
LA
1687static inline bool free_pages_prezeroed(bool poisoned)
1688{
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 page_poisoning_enabled() && poisoned;
1691}
1692
479f854a
MG
1693#ifdef CONFIG_DEBUG_VM
1694static bool check_pcp_refill(struct page *page)
1695{
1696 return false;
1697}
1698
1699static bool check_new_pcp(struct page *page)
1700{
1701 return check_new_page(page);
1702}
1703#else
1704static bool check_pcp_refill(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708static bool check_new_pcp(struct page *page)
1709{
1710 return false;
1711}
1712#endif /* CONFIG_DEBUG_VM */
1713
1714static bool check_new_pages(struct page *page, unsigned int order)
1715{
1716 int i;
1717 for (i = 0; i < (1 << order); i++) {
1718 struct page *p = page + i;
1719
1720 if (unlikely(check_new_page(p)))
1721 return true;
1722 }
1723
1724 return false;
1725}
1726
46f24fd8
JK
1727inline void post_alloc_hook(struct page *page, unsigned int order,
1728 gfp_t gfp_flags)
1729{
1730 set_page_private(page, 0);
1731 set_page_refcounted(page);
1732
1733 arch_alloc_page(page, order);
1734 kernel_map_pages(page, 1 << order, 1);
1735 kernel_poison_pages(page, 1 << order, 1);
1736 kasan_alloc_pages(page, order);
1737 set_page_owner(page, order, gfp_flags);
1738}
1739
479f854a 1740static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1741 unsigned int alloc_flags)
2a7684a2
WF
1742{
1743 int i;
1414c7f4 1744 bool poisoned = true;
2a7684a2
WF
1745
1746 for (i = 0; i < (1 << order); i++) {
1747 struct page *p = page + i;
1414c7f4
LA
1748 if (poisoned)
1749 poisoned &= page_is_poisoned(p);
2a7684a2 1750 }
689bcebf 1751
46f24fd8 1752 post_alloc_hook(page, order, gfp_flags);
17cf4406 1753
1414c7f4 1754 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1755 for (i = 0; i < (1 << order); i++)
1756 clear_highpage(page + i);
17cf4406
NP
1757
1758 if (order && (gfp_flags & __GFP_COMP))
1759 prep_compound_page(page, order);
1760
75379191 1761 /*
2f064f34 1762 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1763 * allocate the page. The expectation is that the caller is taking
1764 * steps that will free more memory. The caller should avoid the page
1765 * being used for !PFMEMALLOC purposes.
1766 */
2f064f34
MH
1767 if (alloc_flags & ALLOC_NO_WATERMARKS)
1768 set_page_pfmemalloc(page);
1769 else
1770 clear_page_pfmemalloc(page);
1da177e4
LT
1771}
1772
56fd56b8
MG
1773/*
1774 * Go through the free lists for the given migratetype and remove
1775 * the smallest available page from the freelists
1776 */
728ec980
MG
1777static inline
1778struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1779 int migratetype)
1780{
1781 unsigned int current_order;
b8af2941 1782 struct free_area *area;
56fd56b8
MG
1783 struct page *page;
1784
1785 /* Find a page of the appropriate size in the preferred list */
1786 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1787 area = &(zone->free_area[current_order]);
a16601c5 1788 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1789 struct page, lru);
a16601c5
GT
1790 if (!page)
1791 continue;
56fd56b8
MG
1792 list_del(&page->lru);
1793 rmv_page_order(page);
1794 area->nr_free--;
56fd56b8 1795 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1796 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1797 return page;
1798 }
1799
1800 return NULL;
1801}
1802
1803
b2a0ac88
MG
1804/*
1805 * This array describes the order lists are fallen back to when
1806 * the free lists for the desirable migrate type are depleted
1807 */
47118af0 1808static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1809 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1810 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1811 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1812#ifdef CONFIG_CMA
974a786e 1813 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1814#endif
194159fb 1815#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1816 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1817#endif
b2a0ac88
MG
1818};
1819
dc67647b
JK
1820#ifdef CONFIG_CMA
1821static struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 unsigned int order)
1823{
1824 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1825}
1826#else
1827static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order) { return NULL; }
1829#endif
1830
c361be55
MG
1831/*
1832 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1833 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1834 * boundary. If alignment is required, use move_freepages_block()
1835 */
435b405c 1836int move_freepages(struct zone *zone,
b69a7288
AB
1837 struct page *start_page, struct page *end_page,
1838 int migratetype)
c361be55
MG
1839{
1840 struct page *page;
d00181b9 1841 unsigned int order;
d100313f 1842 int pages_moved = 0;
c361be55
MG
1843
1844#ifndef CONFIG_HOLES_IN_ZONE
1845 /*
1846 * page_zone is not safe to call in this context when
1847 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1848 * anyway as we check zone boundaries in move_freepages_block().
1849 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1850 * grouping pages by mobility
c361be55 1851 */
97ee4ba7 1852 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1853#endif
1854
1855 for (page = start_page; page <= end_page;) {
344c790e 1856 /* Make sure we are not inadvertently changing nodes */
309381fe 1857 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1858
c361be55
MG
1859 if (!pfn_valid_within(page_to_pfn(page))) {
1860 page++;
1861 continue;
1862 }
1863
1864 if (!PageBuddy(page)) {
1865 page++;
1866 continue;
1867 }
1868
1869 order = page_order(page);
84be48d8
KS
1870 list_move(&page->lru,
1871 &zone->free_area[order].free_list[migratetype]);
c361be55 1872 page += 1 << order;
d100313f 1873 pages_moved += 1 << order;
c361be55
MG
1874 }
1875
d100313f 1876 return pages_moved;
c361be55
MG
1877}
1878
ee6f509c 1879int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1880 int migratetype)
c361be55
MG
1881{
1882 unsigned long start_pfn, end_pfn;
1883 struct page *start_page, *end_page;
1884
1885 start_pfn = page_to_pfn(page);
d9c23400 1886 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1887 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1888 end_page = start_page + pageblock_nr_pages - 1;
1889 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1890
1891 /* Do not cross zone boundaries */
108bcc96 1892 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1893 start_page = page;
108bcc96 1894 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1895 return 0;
1896
1897 return move_freepages(zone, start_page, end_page, migratetype);
1898}
1899
2f66a68f
MG
1900static void change_pageblock_range(struct page *pageblock_page,
1901 int start_order, int migratetype)
1902{
1903 int nr_pageblocks = 1 << (start_order - pageblock_order);
1904
1905 while (nr_pageblocks--) {
1906 set_pageblock_migratetype(pageblock_page, migratetype);
1907 pageblock_page += pageblock_nr_pages;
1908 }
1909}
1910
fef903ef 1911/*
9c0415eb
VB
1912 * When we are falling back to another migratetype during allocation, try to
1913 * steal extra free pages from the same pageblocks to satisfy further
1914 * allocations, instead of polluting multiple pageblocks.
1915 *
1916 * If we are stealing a relatively large buddy page, it is likely there will
1917 * be more free pages in the pageblock, so try to steal them all. For
1918 * reclaimable and unmovable allocations, we steal regardless of page size,
1919 * as fragmentation caused by those allocations polluting movable pageblocks
1920 * is worse than movable allocations stealing from unmovable and reclaimable
1921 * pageblocks.
fef903ef 1922 */
4eb7dce6
JK
1923static bool can_steal_fallback(unsigned int order, int start_mt)
1924{
1925 /*
1926 * Leaving this order check is intended, although there is
1927 * relaxed order check in next check. The reason is that
1928 * we can actually steal whole pageblock if this condition met,
1929 * but, below check doesn't guarantee it and that is just heuristic
1930 * so could be changed anytime.
1931 */
1932 if (order >= pageblock_order)
1933 return true;
1934
1935 if (order >= pageblock_order / 2 ||
1936 start_mt == MIGRATE_RECLAIMABLE ||
1937 start_mt == MIGRATE_UNMOVABLE ||
1938 page_group_by_mobility_disabled)
1939 return true;
1940
1941 return false;
1942}
1943
1944/*
1945 * This function implements actual steal behaviour. If order is large enough,
1946 * we can steal whole pageblock. If not, we first move freepages in this
1947 * pageblock and check whether half of pages are moved or not. If half of
1948 * pages are moved, we can change migratetype of pageblock and permanently
1949 * use it's pages as requested migratetype in the future.
1950 */
1951static void steal_suitable_fallback(struct zone *zone, struct page *page,
1952 int start_type)
fef903ef 1953{
d00181b9 1954 unsigned int current_order = page_order(page);
4eb7dce6 1955 int pages;
fef903ef 1956
fef903ef
SB
1957 /* Take ownership for orders >= pageblock_order */
1958 if (current_order >= pageblock_order) {
1959 change_pageblock_range(page, current_order, start_type);
3a1086fb 1960 return;
fef903ef
SB
1961 }
1962
4eb7dce6 1963 pages = move_freepages_block(zone, page, start_type);
fef903ef 1964
4eb7dce6
JK
1965 /* Claim the whole block if over half of it is free */
1966 if (pages >= (1 << (pageblock_order-1)) ||
1967 page_group_by_mobility_disabled)
1968 set_pageblock_migratetype(page, start_type);
1969}
1970
2149cdae
JK
1971/*
1972 * Check whether there is a suitable fallback freepage with requested order.
1973 * If only_stealable is true, this function returns fallback_mt only if
1974 * we can steal other freepages all together. This would help to reduce
1975 * fragmentation due to mixed migratetype pages in one pageblock.
1976 */
1977int find_suitable_fallback(struct free_area *area, unsigned int order,
1978 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1979{
1980 int i;
1981 int fallback_mt;
1982
1983 if (area->nr_free == 0)
1984 return -1;
1985
1986 *can_steal = false;
1987 for (i = 0;; i++) {
1988 fallback_mt = fallbacks[migratetype][i];
974a786e 1989 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1990 break;
1991
1992 if (list_empty(&area->free_list[fallback_mt]))
1993 continue;
fef903ef 1994
4eb7dce6
JK
1995 if (can_steal_fallback(order, migratetype))
1996 *can_steal = true;
1997
2149cdae
JK
1998 if (!only_stealable)
1999 return fallback_mt;
2000
2001 if (*can_steal)
2002 return fallback_mt;
fef903ef 2003 }
4eb7dce6
JK
2004
2005 return -1;
fef903ef
SB
2006}
2007
0aaa29a5
MG
2008/*
2009 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2010 * there are no empty page blocks that contain a page with a suitable order
2011 */
2012static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2013 unsigned int alloc_order)
2014{
2015 int mt;
2016 unsigned long max_managed, flags;
2017
2018 /*
2019 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2020 * Check is race-prone but harmless.
2021 */
2022 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2023 if (zone->nr_reserved_highatomic >= max_managed)
2024 return;
2025
2026 spin_lock_irqsave(&zone->lock, flags);
2027
2028 /* Recheck the nr_reserved_highatomic limit under the lock */
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 goto out_unlock;
2031
2032 /* Yoink! */
2033 mt = get_pageblock_migratetype(page);
2034 if (mt != MIGRATE_HIGHATOMIC &&
2035 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2036 zone->nr_reserved_highatomic += pageblock_nr_pages;
2037 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2038 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2039 }
2040
2041out_unlock:
2042 spin_unlock_irqrestore(&zone->lock, flags);
2043}
2044
2045/*
2046 * Used when an allocation is about to fail under memory pressure. This
2047 * potentially hurts the reliability of high-order allocations when under
2048 * intense memory pressure but failed atomic allocations should be easier
2049 * to recover from than an OOM.
2050 */
2051static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2052{
2053 struct zonelist *zonelist = ac->zonelist;
2054 unsigned long flags;
2055 struct zoneref *z;
2056 struct zone *zone;
2057 struct page *page;
2058 int order;
2059
2060 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2061 ac->nodemask) {
2062 /* Preserve at least one pageblock */
2063 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2064 continue;
2065
2066 spin_lock_irqsave(&zone->lock, flags);
2067 for (order = 0; order < MAX_ORDER; order++) {
2068 struct free_area *area = &(zone->free_area[order]);
2069
a16601c5
GT
2070 page = list_first_entry_or_null(
2071 &area->free_list[MIGRATE_HIGHATOMIC],
2072 struct page, lru);
2073 if (!page)
0aaa29a5
MG
2074 continue;
2075
0aaa29a5
MG
2076 /*
2077 * It should never happen but changes to locking could
2078 * inadvertently allow a per-cpu drain to add pages
2079 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2080 * and watch for underflows.
2081 */
2082 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2083 zone->nr_reserved_highatomic);
2084
2085 /*
2086 * Convert to ac->migratetype and avoid the normal
2087 * pageblock stealing heuristics. Minimally, the caller
2088 * is doing the work and needs the pages. More
2089 * importantly, if the block was always converted to
2090 * MIGRATE_UNMOVABLE or another type then the number
2091 * of pageblocks that cannot be completely freed
2092 * may increase.
2093 */
2094 set_pageblock_migratetype(page, ac->migratetype);
2095 move_freepages_block(zone, page, ac->migratetype);
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 return;
2098 }
2099 spin_unlock_irqrestore(&zone->lock, flags);
2100 }
2101}
2102
b2a0ac88 2103/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2104static inline struct page *
7aeb09f9 2105__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2106{
b8af2941 2107 struct free_area *area;
7aeb09f9 2108 unsigned int current_order;
b2a0ac88 2109 struct page *page;
4eb7dce6
JK
2110 int fallback_mt;
2111 bool can_steal;
b2a0ac88
MG
2112
2113 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2114 for (current_order = MAX_ORDER-1;
2115 current_order >= order && current_order <= MAX_ORDER-1;
2116 --current_order) {
4eb7dce6
JK
2117 area = &(zone->free_area[current_order]);
2118 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2119 start_migratetype, false, &can_steal);
4eb7dce6
JK
2120 if (fallback_mt == -1)
2121 continue;
b2a0ac88 2122
a16601c5 2123 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2124 struct page, lru);
2125 if (can_steal)
2126 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2127
4eb7dce6
JK
2128 /* Remove the page from the freelists */
2129 area->nr_free--;
2130 list_del(&page->lru);
2131 rmv_page_order(page);
3a1086fb 2132
4eb7dce6
JK
2133 expand(zone, page, order, current_order, area,
2134 start_migratetype);
2135 /*
bb14c2c7 2136 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2137 * migratetype depending on the decisions in
bb14c2c7
VB
2138 * find_suitable_fallback(). This is OK as long as it does not
2139 * differ for MIGRATE_CMA pageblocks. Those can be used as
2140 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2141 */
bb14c2c7 2142 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2143
4eb7dce6
JK
2144 trace_mm_page_alloc_extfrag(page, order, current_order,
2145 start_migratetype, fallback_mt);
e0fff1bd 2146
4eb7dce6 2147 return page;
b2a0ac88
MG
2148 }
2149
728ec980 2150 return NULL;
b2a0ac88
MG
2151}
2152
56fd56b8 2153/*
1da177e4
LT
2154 * Do the hard work of removing an element from the buddy allocator.
2155 * Call me with the zone->lock already held.
2156 */
b2a0ac88 2157static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2158 int migratetype)
1da177e4 2159{
1da177e4
LT
2160 struct page *page;
2161
56fd56b8 2162 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2163 if (unlikely(!page)) {
dc67647b
JK
2164 if (migratetype == MIGRATE_MOVABLE)
2165 page = __rmqueue_cma_fallback(zone, order);
2166
2167 if (!page)
2168 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2169 }
2170
0d3d062a 2171 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2172 return page;
1da177e4
LT
2173}
2174
5f63b720 2175/*
1da177e4
LT
2176 * Obtain a specified number of elements from the buddy allocator, all under
2177 * a single hold of the lock, for efficiency. Add them to the supplied list.
2178 * Returns the number of new pages which were placed at *list.
2179 */
5f63b720 2180static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2181 unsigned long count, struct list_head *list,
b745bc85 2182 int migratetype, bool cold)
1da177e4 2183{
5bcc9f86 2184 int i;
5f63b720 2185
c54ad30c 2186 spin_lock(&zone->lock);
1da177e4 2187 for (i = 0; i < count; ++i) {
6ac0206b 2188 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2189 if (unlikely(page == NULL))
1da177e4 2190 break;
81eabcbe 2191
479f854a
MG
2192 if (unlikely(check_pcp_refill(page)))
2193 continue;
2194
81eabcbe
MG
2195 /*
2196 * Split buddy pages returned by expand() are received here
2197 * in physical page order. The page is added to the callers and
2198 * list and the list head then moves forward. From the callers
2199 * perspective, the linked list is ordered by page number in
2200 * some conditions. This is useful for IO devices that can
2201 * merge IO requests if the physical pages are ordered
2202 * properly.
2203 */
b745bc85 2204 if (likely(!cold))
e084b2d9
MG
2205 list_add(&page->lru, list);
2206 else
2207 list_add_tail(&page->lru, list);
81eabcbe 2208 list = &page->lru;
bb14c2c7 2209 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2210 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2211 -(1 << order));
1da177e4 2212 }
f2260e6b 2213 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2214 spin_unlock(&zone->lock);
085cc7d5 2215 return i;
1da177e4
LT
2216}
2217
4ae7c039 2218#ifdef CONFIG_NUMA
8fce4d8e 2219/*
4037d452
CL
2220 * Called from the vmstat counter updater to drain pagesets of this
2221 * currently executing processor on remote nodes after they have
2222 * expired.
2223 *
879336c3
CL
2224 * Note that this function must be called with the thread pinned to
2225 * a single processor.
8fce4d8e 2226 */
4037d452 2227void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2228{
4ae7c039 2229 unsigned long flags;
7be12fc9 2230 int to_drain, batch;
4ae7c039 2231
4037d452 2232 local_irq_save(flags);
4db0c3c2 2233 batch = READ_ONCE(pcp->batch);
7be12fc9 2234 to_drain = min(pcp->count, batch);
2a13515c
KM
2235 if (to_drain > 0) {
2236 free_pcppages_bulk(zone, to_drain, pcp);
2237 pcp->count -= to_drain;
2238 }
4037d452 2239 local_irq_restore(flags);
4ae7c039
CL
2240}
2241#endif
2242
9f8f2172 2243/*
93481ff0 2244 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2245 *
2246 * The processor must either be the current processor and the
2247 * thread pinned to the current processor or a processor that
2248 * is not online.
2249 */
93481ff0 2250static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2251{
c54ad30c 2252 unsigned long flags;
93481ff0
VB
2253 struct per_cpu_pageset *pset;
2254 struct per_cpu_pages *pcp;
1da177e4 2255
93481ff0
VB
2256 local_irq_save(flags);
2257 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2258
93481ff0
VB
2259 pcp = &pset->pcp;
2260 if (pcp->count) {
2261 free_pcppages_bulk(zone, pcp->count, pcp);
2262 pcp->count = 0;
2263 }
2264 local_irq_restore(flags);
2265}
3dfa5721 2266
93481ff0
VB
2267/*
2268 * Drain pcplists of all zones on the indicated processor.
2269 *
2270 * The processor must either be the current processor and the
2271 * thread pinned to the current processor or a processor that
2272 * is not online.
2273 */
2274static void drain_pages(unsigned int cpu)
2275{
2276 struct zone *zone;
2277
2278 for_each_populated_zone(zone) {
2279 drain_pages_zone(cpu, zone);
1da177e4
LT
2280 }
2281}
1da177e4 2282
9f8f2172
CL
2283/*
2284 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2285 *
2286 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2287 * the single zone's pages.
9f8f2172 2288 */
93481ff0 2289void drain_local_pages(struct zone *zone)
9f8f2172 2290{
93481ff0
VB
2291 int cpu = smp_processor_id();
2292
2293 if (zone)
2294 drain_pages_zone(cpu, zone);
2295 else
2296 drain_pages(cpu);
9f8f2172
CL
2297}
2298
2299/*
74046494
GBY
2300 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2301 *
93481ff0
VB
2302 * When zone parameter is non-NULL, spill just the single zone's pages.
2303 *
74046494
GBY
2304 * Note that this code is protected against sending an IPI to an offline
2305 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2306 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2307 * nothing keeps CPUs from showing up after we populated the cpumask and
2308 * before the call to on_each_cpu_mask().
9f8f2172 2309 */
93481ff0 2310void drain_all_pages(struct zone *zone)
9f8f2172 2311{
74046494 2312 int cpu;
74046494
GBY
2313
2314 /*
2315 * Allocate in the BSS so we wont require allocation in
2316 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2317 */
2318 static cpumask_t cpus_with_pcps;
2319
2320 /*
2321 * We don't care about racing with CPU hotplug event
2322 * as offline notification will cause the notified
2323 * cpu to drain that CPU pcps and on_each_cpu_mask
2324 * disables preemption as part of its processing
2325 */
2326 for_each_online_cpu(cpu) {
93481ff0
VB
2327 struct per_cpu_pageset *pcp;
2328 struct zone *z;
74046494 2329 bool has_pcps = false;
93481ff0
VB
2330
2331 if (zone) {
74046494 2332 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2333 if (pcp->pcp.count)
74046494 2334 has_pcps = true;
93481ff0
VB
2335 } else {
2336 for_each_populated_zone(z) {
2337 pcp = per_cpu_ptr(z->pageset, cpu);
2338 if (pcp->pcp.count) {
2339 has_pcps = true;
2340 break;
2341 }
74046494
GBY
2342 }
2343 }
93481ff0 2344
74046494
GBY
2345 if (has_pcps)
2346 cpumask_set_cpu(cpu, &cpus_with_pcps);
2347 else
2348 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2349 }
93481ff0
VB
2350 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2351 zone, 1);
9f8f2172
CL
2352}
2353
296699de 2354#ifdef CONFIG_HIBERNATION
1da177e4
LT
2355
2356void mark_free_pages(struct zone *zone)
2357{
f623f0db
RW
2358 unsigned long pfn, max_zone_pfn;
2359 unsigned long flags;
7aeb09f9 2360 unsigned int order, t;
86760a2c 2361 struct page *page;
1da177e4 2362
8080fc03 2363 if (zone_is_empty(zone))
1da177e4
LT
2364 return;
2365
2366 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2367
108bcc96 2368 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2369 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2370 if (pfn_valid(pfn)) {
86760a2c 2371 page = pfn_to_page(pfn);
ba6b0979
JK
2372
2373 if (page_zone(page) != zone)
2374 continue;
2375
7be98234
RW
2376 if (!swsusp_page_is_forbidden(page))
2377 swsusp_unset_page_free(page);
f623f0db 2378 }
1da177e4 2379
b2a0ac88 2380 for_each_migratetype_order(order, t) {
86760a2c
GT
2381 list_for_each_entry(page,
2382 &zone->free_area[order].free_list[t], lru) {
f623f0db 2383 unsigned long i;
1da177e4 2384
86760a2c 2385 pfn = page_to_pfn(page);
f623f0db 2386 for (i = 0; i < (1UL << order); i++)
7be98234 2387 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2388 }
b2a0ac88 2389 }
1da177e4
LT
2390 spin_unlock_irqrestore(&zone->lock, flags);
2391}
e2c55dc8 2392#endif /* CONFIG_PM */
1da177e4 2393
1da177e4
LT
2394/*
2395 * Free a 0-order page
b745bc85 2396 * cold == true ? free a cold page : free a hot page
1da177e4 2397 */
b745bc85 2398void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2399{
2400 struct zone *zone = page_zone(page);
2401 struct per_cpu_pages *pcp;
2402 unsigned long flags;
dc4b0caf 2403 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2404 int migratetype;
1da177e4 2405
4db7548c 2406 if (!free_pcp_prepare(page))
689bcebf
HD
2407 return;
2408
dc4b0caf 2409 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2410 set_pcppage_migratetype(page, migratetype);
1da177e4 2411 local_irq_save(flags);
f8891e5e 2412 __count_vm_event(PGFREE);
da456f14 2413
5f8dcc21
MG
2414 /*
2415 * We only track unmovable, reclaimable and movable on pcp lists.
2416 * Free ISOLATE pages back to the allocator because they are being
2417 * offlined but treat RESERVE as movable pages so we can get those
2418 * areas back if necessary. Otherwise, we may have to free
2419 * excessively into the page allocator
2420 */
2421 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2422 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2423 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2424 goto out;
2425 }
2426 migratetype = MIGRATE_MOVABLE;
2427 }
2428
99dcc3e5 2429 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2430 if (!cold)
5f8dcc21 2431 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2432 else
2433 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2434 pcp->count++;
48db57f8 2435 if (pcp->count >= pcp->high) {
4db0c3c2 2436 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2437 free_pcppages_bulk(zone, batch, pcp);
2438 pcp->count -= batch;
48db57f8 2439 }
5f8dcc21
MG
2440
2441out:
1da177e4 2442 local_irq_restore(flags);
1da177e4
LT
2443}
2444
cc59850e
KK
2445/*
2446 * Free a list of 0-order pages
2447 */
b745bc85 2448void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2449{
2450 struct page *page, *next;
2451
2452 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2453 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2454 free_hot_cold_page(page, cold);
2455 }
2456}
2457
8dfcc9ba
NP
2458/*
2459 * split_page takes a non-compound higher-order page, and splits it into
2460 * n (1<<order) sub-pages: page[0..n]
2461 * Each sub-page must be freed individually.
2462 *
2463 * Note: this is probably too low level an operation for use in drivers.
2464 * Please consult with lkml before using this in your driver.
2465 */
2466void split_page(struct page *page, unsigned int order)
2467{
2468 int i;
2469
309381fe
SL
2470 VM_BUG_ON_PAGE(PageCompound(page), page);
2471 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2472
2473#ifdef CONFIG_KMEMCHECK
2474 /*
2475 * Split shadow pages too, because free(page[0]) would
2476 * otherwise free the whole shadow.
2477 */
2478 if (kmemcheck_page_is_tracked(page))
2479 split_page(virt_to_page(page[0].shadow), order);
2480#endif
2481
a9627bc5 2482 for (i = 1; i < (1 << order); i++)
7835e98b 2483 set_page_refcounted(page + i);
a9627bc5 2484 split_page_owner(page, order);
8dfcc9ba 2485}
5853ff23 2486EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2487
3c605096 2488int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2489{
748446bb
MG
2490 unsigned long watermark;
2491 struct zone *zone;
2139cbe6 2492 int mt;
748446bb
MG
2493
2494 BUG_ON(!PageBuddy(page));
2495
2496 zone = page_zone(page);
2e30abd1 2497 mt = get_pageblock_migratetype(page);
748446bb 2498
194159fb 2499 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2500 /* Obey watermarks as if the page was being allocated */
2501 watermark = low_wmark_pages(zone) + (1 << order);
2502 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2503 return 0;
2504
8fb74b9f 2505 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2506 }
748446bb
MG
2507
2508 /* Remove page from free list */
2509 list_del(&page->lru);
2510 zone->free_area[order].nr_free--;
2511 rmv_page_order(page);
2139cbe6 2512
8fb74b9f 2513 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2514 if (order >= pageblock_order - 1) {
2515 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2516 for (; page < endpage; page += pageblock_nr_pages) {
2517 int mt = get_pageblock_migratetype(page);
194159fb 2518 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2519 set_pageblock_migratetype(page,
2520 MIGRATE_MOVABLE);
2521 }
748446bb
MG
2522 }
2523
f3a14ced 2524
8fb74b9f 2525 return 1UL << order;
1fb3f8ca
MG
2526}
2527
060e7417
MG
2528/*
2529 * Update NUMA hit/miss statistics
2530 *
2531 * Must be called with interrupts disabled.
2532 *
2533 * When __GFP_OTHER_NODE is set assume the node of the preferred
2534 * zone is the local node. This is useful for daemons who allocate
2535 * memory on behalf of other processes.
2536 */
2537static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2538 gfp_t flags)
2539{
2540#ifdef CONFIG_NUMA
2541 int local_nid = numa_node_id();
2542 enum zone_stat_item local_stat = NUMA_LOCAL;
2543
2544 if (unlikely(flags & __GFP_OTHER_NODE)) {
2545 local_stat = NUMA_OTHER;
2546 local_nid = preferred_zone->node;
2547 }
2548
2549 if (z->node == local_nid) {
2550 __inc_zone_state(z, NUMA_HIT);
2551 __inc_zone_state(z, local_stat);
2552 } else {
2553 __inc_zone_state(z, NUMA_MISS);
2554 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2555 }
2556#endif
2557}
2558
1da177e4 2559/*
75379191 2560 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2561 */
0a15c3e9
MG
2562static inline
2563struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2564 struct zone *zone, unsigned int order,
c603844b
MG
2565 gfp_t gfp_flags, unsigned int alloc_flags,
2566 int migratetype)
1da177e4
LT
2567{
2568 unsigned long flags;
689bcebf 2569 struct page *page;
b745bc85 2570 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2571
48db57f8 2572 if (likely(order == 0)) {
1da177e4 2573 struct per_cpu_pages *pcp;
5f8dcc21 2574 struct list_head *list;
1da177e4 2575
1da177e4 2576 local_irq_save(flags);
479f854a
MG
2577 do {
2578 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2579 list = &pcp->lists[migratetype];
2580 if (list_empty(list)) {
2581 pcp->count += rmqueue_bulk(zone, 0,
2582 pcp->batch, list,
2583 migratetype, cold);
2584 if (unlikely(list_empty(list)))
2585 goto failed;
2586 }
b92a6edd 2587
479f854a
MG
2588 if (cold)
2589 page = list_last_entry(list, struct page, lru);
2590 else
2591 page = list_first_entry(list, struct page, lru);
5f8dcc21 2592
83b9355b
VB
2593 __dec_zone_state(zone, NR_ALLOC_BATCH);
2594 list_del(&page->lru);
2595 pcp->count--;
2596
2597 } while (check_new_pcp(page));
7fb1d9fc 2598 } else {
0f352e53
MH
2599 /*
2600 * We most definitely don't want callers attempting to
2601 * allocate greater than order-1 page units with __GFP_NOFAIL.
2602 */
2603 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2604 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2605
479f854a
MG
2606 do {
2607 page = NULL;
2608 if (alloc_flags & ALLOC_HARDER) {
2609 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2610 if (page)
2611 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2612 }
2613 if (!page)
2614 page = __rmqueue(zone, order, migratetype);
2615 } while (page && check_new_pages(page, order));
a74609fa
NP
2616 spin_unlock(&zone->lock);
2617 if (!page)
2618 goto failed;
754078eb 2619 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2620 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2621 get_pcppage_migratetype(page));
1da177e4
LT
2622 }
2623
abe5f972 2624 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2625 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2626 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2627
f8891e5e 2628 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2629 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2630 local_irq_restore(flags);
1da177e4 2631
309381fe 2632 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2633 return page;
a74609fa
NP
2634
2635failed:
2636 local_irq_restore(flags);
a74609fa 2637 return NULL;
1da177e4
LT
2638}
2639
933e312e
AM
2640#ifdef CONFIG_FAIL_PAGE_ALLOC
2641
b2588c4b 2642static struct {
933e312e
AM
2643 struct fault_attr attr;
2644
621a5f7a 2645 bool ignore_gfp_highmem;
71baba4b 2646 bool ignore_gfp_reclaim;
54114994 2647 u32 min_order;
933e312e
AM
2648} fail_page_alloc = {
2649 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2650 .ignore_gfp_reclaim = true,
621a5f7a 2651 .ignore_gfp_highmem = true,
54114994 2652 .min_order = 1,
933e312e
AM
2653};
2654
2655static int __init setup_fail_page_alloc(char *str)
2656{
2657 return setup_fault_attr(&fail_page_alloc.attr, str);
2658}
2659__setup("fail_page_alloc=", setup_fail_page_alloc);
2660
deaf386e 2661static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2662{
54114994 2663 if (order < fail_page_alloc.min_order)
deaf386e 2664 return false;
933e312e 2665 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2666 return false;
933e312e 2667 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2668 return false;
71baba4b
MG
2669 if (fail_page_alloc.ignore_gfp_reclaim &&
2670 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2671 return false;
933e312e
AM
2672
2673 return should_fail(&fail_page_alloc.attr, 1 << order);
2674}
2675
2676#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2677
2678static int __init fail_page_alloc_debugfs(void)
2679{
f4ae40a6 2680 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2681 struct dentry *dir;
933e312e 2682
dd48c085
AM
2683 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2684 &fail_page_alloc.attr);
2685 if (IS_ERR(dir))
2686 return PTR_ERR(dir);
933e312e 2687
b2588c4b 2688 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2689 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2690 goto fail;
2691 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2692 &fail_page_alloc.ignore_gfp_highmem))
2693 goto fail;
2694 if (!debugfs_create_u32("min-order", mode, dir,
2695 &fail_page_alloc.min_order))
2696 goto fail;
2697
2698 return 0;
2699fail:
dd48c085 2700 debugfs_remove_recursive(dir);
933e312e 2701
b2588c4b 2702 return -ENOMEM;
933e312e
AM
2703}
2704
2705late_initcall(fail_page_alloc_debugfs);
2706
2707#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2708
2709#else /* CONFIG_FAIL_PAGE_ALLOC */
2710
deaf386e 2711static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2712{
deaf386e 2713 return false;
933e312e
AM
2714}
2715
2716#endif /* CONFIG_FAIL_PAGE_ALLOC */
2717
1da177e4 2718/*
97a16fc8
MG
2719 * Return true if free base pages are above 'mark'. For high-order checks it
2720 * will return true of the order-0 watermark is reached and there is at least
2721 * one free page of a suitable size. Checking now avoids taking the zone lock
2722 * to check in the allocation paths if no pages are free.
1da177e4 2723 */
86a294a8
MH
2724bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2725 int classzone_idx, unsigned int alloc_flags,
2726 long free_pages)
1da177e4 2727{
d23ad423 2728 long min = mark;
1da177e4 2729 int o;
c603844b 2730 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2731
0aaa29a5 2732 /* free_pages may go negative - that's OK */
df0a6daa 2733 free_pages -= (1 << order) - 1;
0aaa29a5 2734
7fb1d9fc 2735 if (alloc_flags & ALLOC_HIGH)
1da177e4 2736 min -= min / 2;
0aaa29a5
MG
2737
2738 /*
2739 * If the caller does not have rights to ALLOC_HARDER then subtract
2740 * the high-atomic reserves. This will over-estimate the size of the
2741 * atomic reserve but it avoids a search.
2742 */
97a16fc8 2743 if (likely(!alloc_harder))
0aaa29a5
MG
2744 free_pages -= z->nr_reserved_highatomic;
2745 else
1da177e4 2746 min -= min / 4;
e2b19197 2747
d95ea5d1
BZ
2748#ifdef CONFIG_CMA
2749 /* If allocation can't use CMA areas don't use free CMA pages */
2750 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2751 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2752#endif
026b0814 2753
97a16fc8
MG
2754 /*
2755 * Check watermarks for an order-0 allocation request. If these
2756 * are not met, then a high-order request also cannot go ahead
2757 * even if a suitable page happened to be free.
2758 */
2759 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2760 return false;
1da177e4 2761
97a16fc8
MG
2762 /* If this is an order-0 request then the watermark is fine */
2763 if (!order)
2764 return true;
2765
2766 /* For a high-order request, check at least one suitable page is free */
2767 for (o = order; o < MAX_ORDER; o++) {
2768 struct free_area *area = &z->free_area[o];
2769 int mt;
2770
2771 if (!area->nr_free)
2772 continue;
2773
2774 if (alloc_harder)
2775 return true;
1da177e4 2776
97a16fc8
MG
2777 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2778 if (!list_empty(&area->free_list[mt]))
2779 return true;
2780 }
2781
2782#ifdef CONFIG_CMA
2783 if ((alloc_flags & ALLOC_CMA) &&
2784 !list_empty(&area->free_list[MIGRATE_CMA])) {
2785 return true;
2786 }
2787#endif
1da177e4 2788 }
97a16fc8 2789 return false;
88f5acf8
MG
2790}
2791
7aeb09f9 2792bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2793 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2794{
2795 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2796 zone_page_state(z, NR_FREE_PAGES));
2797}
2798
48ee5f36
MG
2799static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2800 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2801{
2802 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2803 long cma_pages = 0;
2804
2805#ifdef CONFIG_CMA
2806 /* If allocation can't use CMA areas don't use free CMA pages */
2807 if (!(alloc_flags & ALLOC_CMA))
2808 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2809#endif
2810
2811 /*
2812 * Fast check for order-0 only. If this fails then the reserves
2813 * need to be calculated. There is a corner case where the check
2814 * passes but only the high-order atomic reserve are free. If
2815 * the caller is !atomic then it'll uselessly search the free
2816 * list. That corner case is then slower but it is harmless.
2817 */
2818 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2819 return true;
2820
2821 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2822 free_pages);
2823}
2824
7aeb09f9 2825bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2826 unsigned long mark, int classzone_idx)
88f5acf8
MG
2827{
2828 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2829
2830 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2831 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2832
e2b19197 2833 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2834 free_pages);
1da177e4
LT
2835}
2836
9276b1bc 2837#ifdef CONFIG_NUMA
81c0a2bb
JW
2838static bool zone_local(struct zone *local_zone, struct zone *zone)
2839{
fff4068c 2840 return local_zone->node == zone->node;
81c0a2bb
JW
2841}
2842
957f822a
DR
2843static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2844{
5f7a75ac
MG
2845 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2846 RECLAIM_DISTANCE;
957f822a 2847}
9276b1bc 2848#else /* CONFIG_NUMA */
81c0a2bb
JW
2849static bool zone_local(struct zone *local_zone, struct zone *zone)
2850{
2851 return true;
2852}
2853
957f822a
DR
2854static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2855{
2856 return true;
2857}
9276b1bc
PJ
2858#endif /* CONFIG_NUMA */
2859
4ffeaf35
MG
2860static void reset_alloc_batches(struct zone *preferred_zone)
2861{
2862 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2863
2864 do {
2865 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2866 high_wmark_pages(zone) - low_wmark_pages(zone) -
2867 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2868 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2869 } while (zone++ != preferred_zone);
2870}
2871
7fb1d9fc 2872/*
0798e519 2873 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2874 * a page.
2875 */
2876static struct page *
a9263751
VB
2877get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2878 const struct alloc_context *ac)
753ee728 2879{
c33d6c06 2880 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2881 struct zone *zone;
30534755
MG
2882 bool fair_skipped = false;
2883 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2884
9276b1bc 2885zonelist_scan:
7fb1d9fc 2886 /*
9276b1bc 2887 * Scan zonelist, looking for a zone with enough free.
344736f2 2888 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2889 */
c33d6c06 2890 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2891 ac->nodemask) {
be06af00 2892 struct page *page;
e085dbc5
JW
2893 unsigned long mark;
2894
664eedde
MG
2895 if (cpusets_enabled() &&
2896 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2897 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2898 continue;
81c0a2bb
JW
2899 /*
2900 * Distribute pages in proportion to the individual
2901 * zone size to ensure fair page aging. The zone a
2902 * page was allocated in should have no effect on the
2903 * time the page has in memory before being reclaimed.
81c0a2bb 2904 */
30534755 2905 if (apply_fair) {
57054651 2906 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2907 fair_skipped = true;
3a025760 2908 continue;
4ffeaf35 2909 }
c33d6c06 2910 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2911 if (fair_skipped)
2912 goto reset_fair;
2913 apply_fair = false;
2914 }
81c0a2bb 2915 }
a756cf59
JW
2916 /*
2917 * When allocating a page cache page for writing, we
2918 * want to get it from a zone that is within its dirty
2919 * limit, such that no single zone holds more than its
2920 * proportional share of globally allowed dirty pages.
2921 * The dirty limits take into account the zone's
2922 * lowmem reserves and high watermark so that kswapd
2923 * should be able to balance it without having to
2924 * write pages from its LRU list.
2925 *
2926 * This may look like it could increase pressure on
2927 * lower zones by failing allocations in higher zones
2928 * before they are full. But the pages that do spill
2929 * over are limited as the lower zones are protected
2930 * by this very same mechanism. It should not become
2931 * a practical burden to them.
2932 *
2933 * XXX: For now, allow allocations to potentially
2934 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2935 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2936 * which is important when on a NUMA setup the allowed
2937 * zones are together not big enough to reach the
2938 * global limit. The proper fix for these situations
2939 * will require awareness of zones in the
2940 * dirty-throttling and the flusher threads.
2941 */
c9ab0c4f 2942 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2943 continue;
7fb1d9fc 2944
e085dbc5 2945 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2946 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2947 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2948 int ret;
2949
5dab2911
MG
2950 /* Checked here to keep the fast path fast */
2951 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2952 if (alloc_flags & ALLOC_NO_WATERMARKS)
2953 goto try_this_zone;
2954
957f822a 2955 if (zone_reclaim_mode == 0 ||
c33d6c06 2956 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2957 continue;
2958
fa5e084e
MG
2959 ret = zone_reclaim(zone, gfp_mask, order);
2960 switch (ret) {
2961 case ZONE_RECLAIM_NOSCAN:
2962 /* did not scan */
cd38b115 2963 continue;
fa5e084e
MG
2964 case ZONE_RECLAIM_FULL:
2965 /* scanned but unreclaimable */
cd38b115 2966 continue;
fa5e084e
MG
2967 default:
2968 /* did we reclaim enough */
fed2719e 2969 if (zone_watermark_ok(zone, order, mark,
93ea9964 2970 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2971 goto try_this_zone;
2972
fed2719e 2973 continue;
0798e519 2974 }
7fb1d9fc
RS
2975 }
2976
fa5e084e 2977try_this_zone:
c33d6c06 2978 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2979 gfp_mask, alloc_flags, ac->migratetype);
75379191 2980 if (page) {
479f854a 2981 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2982
2983 /*
2984 * If this is a high-order atomic allocation then check
2985 * if the pageblock should be reserved for the future
2986 */
2987 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2988 reserve_highatomic_pageblock(page, zone, order);
2989
75379191
VB
2990 return page;
2991 }
54a6eb5c 2992 }
9276b1bc 2993
4ffeaf35
MG
2994 /*
2995 * The first pass makes sure allocations are spread fairly within the
2996 * local node. However, the local node might have free pages left
2997 * after the fairness batches are exhausted, and remote zones haven't
2998 * even been considered yet. Try once more without fairness, and
2999 * include remote zones now, before entering the slowpath and waking
3000 * kswapd: prefer spilling to a remote zone over swapping locally.
3001 */
30534755
MG
3002 if (fair_skipped) {
3003reset_fair:
3004 apply_fair = false;
3005 fair_skipped = false;
c33d6c06 3006 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3007 z = ac->preferred_zoneref;
4ffeaf35 3008 goto zonelist_scan;
30534755 3009 }
4ffeaf35
MG
3010
3011 return NULL;
753ee728
MH
3012}
3013
29423e77
DR
3014/*
3015 * Large machines with many possible nodes should not always dump per-node
3016 * meminfo in irq context.
3017 */
3018static inline bool should_suppress_show_mem(void)
3019{
3020 bool ret = false;
3021
3022#if NODES_SHIFT > 8
3023 ret = in_interrupt();
3024#endif
3025 return ret;
3026}
3027
a238ab5b
DH
3028static DEFINE_RATELIMIT_STATE(nopage_rs,
3029 DEFAULT_RATELIMIT_INTERVAL,
3030 DEFAULT_RATELIMIT_BURST);
3031
d00181b9 3032void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3033{
a238ab5b
DH
3034 unsigned int filter = SHOW_MEM_FILTER_NODES;
3035
c0a32fc5
SG
3036 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3037 debug_guardpage_minorder() > 0)
a238ab5b
DH
3038 return;
3039
3040 /*
3041 * This documents exceptions given to allocations in certain
3042 * contexts that are allowed to allocate outside current's set
3043 * of allowed nodes.
3044 */
3045 if (!(gfp_mask & __GFP_NOMEMALLOC))
3046 if (test_thread_flag(TIF_MEMDIE) ||
3047 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3048 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3049 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3050 filter &= ~SHOW_MEM_FILTER_NODES;
3051
3052 if (fmt) {
3ee9a4f0
JP
3053 struct va_format vaf;
3054 va_list args;
3055
a238ab5b 3056 va_start(args, fmt);
3ee9a4f0
JP
3057
3058 vaf.fmt = fmt;
3059 vaf.va = &args;
3060
3061 pr_warn("%pV", &vaf);
3062
a238ab5b
DH
3063 va_end(args);
3064 }
3065
c5c990e8
VB
3066 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3067 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3068 dump_stack();
3069 if (!should_suppress_show_mem())
3070 show_mem(filter);
3071}
3072
11e33f6a
MG
3073static inline struct page *
3074__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3075 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3076{
6e0fc46d
DR
3077 struct oom_control oc = {
3078 .zonelist = ac->zonelist,
3079 .nodemask = ac->nodemask,
2a966b77 3080 .memcg = NULL,
6e0fc46d
DR
3081 .gfp_mask = gfp_mask,
3082 .order = order,
6e0fc46d 3083 };
11e33f6a
MG
3084 struct page *page;
3085
9879de73
JW
3086 *did_some_progress = 0;
3087
9879de73 3088 /*
dc56401f
JW
3089 * Acquire the oom lock. If that fails, somebody else is
3090 * making progress for us.
9879de73 3091 */
dc56401f 3092 if (!mutex_trylock(&oom_lock)) {
9879de73 3093 *did_some_progress = 1;
11e33f6a 3094 schedule_timeout_uninterruptible(1);
1da177e4
LT
3095 return NULL;
3096 }
6b1de916 3097
11e33f6a
MG
3098 /*
3099 * Go through the zonelist yet one more time, keep very high watermark
3100 * here, this is only to catch a parallel oom killing, we must fail if
3101 * we're still under heavy pressure.
3102 */
a9263751
VB
3103 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3104 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3105 if (page)
11e33f6a
MG
3106 goto out;
3107
4365a567 3108 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3109 /* Coredumps can quickly deplete all memory reserves */
3110 if (current->flags & PF_DUMPCORE)
3111 goto out;
4365a567
KH
3112 /* The OOM killer will not help higher order allocs */
3113 if (order > PAGE_ALLOC_COSTLY_ORDER)
3114 goto out;
03668b3c 3115 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3116 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3117 goto out;
9083905a
JW
3118 if (pm_suspended_storage())
3119 goto out;
3da88fb3
MH
3120 /*
3121 * XXX: GFP_NOFS allocations should rather fail than rely on
3122 * other request to make a forward progress.
3123 * We are in an unfortunate situation where out_of_memory cannot
3124 * do much for this context but let's try it to at least get
3125 * access to memory reserved if the current task is killed (see
3126 * out_of_memory). Once filesystems are ready to handle allocation
3127 * failures more gracefully we should just bail out here.
3128 */
3129
4167e9b2 3130 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3131 if (gfp_mask & __GFP_THISNODE)
3132 goto out;
3133 }
11e33f6a 3134 /* Exhausted what can be done so it's blamo time */
5020e285 3135 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3136 *did_some_progress = 1;
5020e285
MH
3137
3138 if (gfp_mask & __GFP_NOFAIL) {
3139 page = get_page_from_freelist(gfp_mask, order,
3140 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3141 /*
3142 * fallback to ignore cpuset restriction if our nodes
3143 * are depleted
3144 */
3145 if (!page)
3146 page = get_page_from_freelist(gfp_mask, order,
3147 ALLOC_NO_WATERMARKS, ac);
3148 }
3149 }
11e33f6a 3150out:
dc56401f 3151 mutex_unlock(&oom_lock);
11e33f6a
MG
3152 return page;
3153}
3154
33c2d214
MH
3155
3156/*
3157 * Maximum number of compaction retries wit a progress before OOM
3158 * killer is consider as the only way to move forward.
3159 */
3160#define MAX_COMPACT_RETRIES 16
3161
56de7263
MG
3162#ifdef CONFIG_COMPACTION
3163/* Try memory compaction for high-order allocations before reclaim */
3164static struct page *
3165__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3166 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3167 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3168{
98dd3b48 3169 struct page *page;
c5d01d0d 3170 int contended_compaction;
53853e2d
VB
3171
3172 if (!order)
66199712 3173 return NULL;
66199712 3174
c06b1fca 3175 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3176 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3177 mode, &contended_compaction);
c06b1fca 3178 current->flags &= ~PF_MEMALLOC;
56de7263 3179
c5d01d0d 3180 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3181 return NULL;
53853e2d 3182
98dd3b48
VB
3183 /*
3184 * At least in one zone compaction wasn't deferred or skipped, so let's
3185 * count a compaction stall
3186 */
3187 count_vm_event(COMPACTSTALL);
8fb74b9f 3188
a9263751
VB
3189 page = get_page_from_freelist(gfp_mask, order,
3190 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3191
98dd3b48
VB
3192 if (page) {
3193 struct zone *zone = page_zone(page);
53853e2d 3194
98dd3b48
VB
3195 zone->compact_blockskip_flush = false;
3196 compaction_defer_reset(zone, order, true);
3197 count_vm_event(COMPACTSUCCESS);
3198 return page;
3199 }
56de7263 3200
98dd3b48
VB
3201 /*
3202 * It's bad if compaction run occurs and fails. The most likely reason
3203 * is that pages exist, but not enough to satisfy watermarks.
3204 */
3205 count_vm_event(COMPACTFAIL);
66199712 3206
c5d01d0d
MH
3207 /*
3208 * In all zones where compaction was attempted (and not
3209 * deferred or skipped), lock contention has been detected.
3210 * For THP allocation we do not want to disrupt the others
3211 * so we fallback to base pages instead.
3212 */
3213 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3214 *compact_result = COMPACT_CONTENDED;
3215
3216 /*
3217 * If compaction was aborted due to need_resched(), we do not
3218 * want to further increase allocation latency, unless it is
3219 * khugepaged trying to collapse.
3220 */
3221 if (contended_compaction == COMPACT_CONTENDED_SCHED
3222 && !(current->flags & PF_KTHREAD))
3223 *compact_result = COMPACT_CONTENDED;
3224
98dd3b48 3225 cond_resched();
56de7263
MG
3226
3227 return NULL;
3228}
33c2d214
MH
3229
3230static inline bool
86a294a8
MH
3231should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3232 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3233 int compaction_retries)
3234{
7854ea6c
MH
3235 int max_retries = MAX_COMPACT_RETRIES;
3236
33c2d214
MH
3237 if (!order)
3238 return false;
3239
3240 /*
3241 * compaction considers all the zone as desperately out of memory
3242 * so it doesn't really make much sense to retry except when the
3243 * failure could be caused by weak migration mode.
3244 */
3245 if (compaction_failed(compact_result)) {
3246 if (*migrate_mode == MIGRATE_ASYNC) {
3247 *migrate_mode = MIGRATE_SYNC_LIGHT;
3248 return true;
3249 }
3250 return false;
3251 }
3252
3253 /*
7854ea6c
MH
3254 * make sure the compaction wasn't deferred or didn't bail out early
3255 * due to locks contention before we declare that we should give up.
86a294a8
MH
3256 * But do not retry if the given zonelist is not suitable for
3257 * compaction.
33c2d214 3258 */
7854ea6c 3259 if (compaction_withdrawn(compact_result))
86a294a8 3260 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3261
3262 /*
3263 * !costly requests are much more important than __GFP_REPEAT
3264 * costly ones because they are de facto nofail and invoke OOM
3265 * killer to move on while costly can fail and users are ready
3266 * to cope with that. 1/4 retries is rather arbitrary but we
3267 * would need much more detailed feedback from compaction to
3268 * make a better decision.
3269 */
3270 if (order > PAGE_ALLOC_COSTLY_ORDER)
3271 max_retries /= 4;
3272 if (compaction_retries <= max_retries)
3273 return true;
33c2d214
MH
3274
3275 return false;
3276}
56de7263
MG
3277#else
3278static inline struct page *
3279__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3280 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3281 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3282{
33c2d214 3283 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3284 return NULL;
3285}
33c2d214
MH
3286
3287static inline bool
86a294a8
MH
3288should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3289 enum compact_result compact_result,
33c2d214
MH
3290 enum migrate_mode *migrate_mode,
3291 int compaction_retries)
3292{
31e49bfd
MH
3293 struct zone *zone;
3294 struct zoneref *z;
3295
3296 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3297 return false;
3298
3299 /*
3300 * There are setups with compaction disabled which would prefer to loop
3301 * inside the allocator rather than hit the oom killer prematurely.
3302 * Let's give them a good hope and keep retrying while the order-0
3303 * watermarks are OK.
3304 */
3305 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3306 ac->nodemask) {
3307 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3308 ac_classzone_idx(ac), alloc_flags))
3309 return true;
3310 }
33c2d214
MH
3311 return false;
3312}
56de7263
MG
3313#endif /* CONFIG_COMPACTION */
3314
bba90710
MS
3315/* Perform direct synchronous page reclaim */
3316static int
a9263751
VB
3317__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3318 const struct alloc_context *ac)
11e33f6a 3319{
11e33f6a 3320 struct reclaim_state reclaim_state;
bba90710 3321 int progress;
11e33f6a
MG
3322
3323 cond_resched();
3324
3325 /* We now go into synchronous reclaim */
3326 cpuset_memory_pressure_bump();
c06b1fca 3327 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3328 lockdep_set_current_reclaim_state(gfp_mask);
3329 reclaim_state.reclaimed_slab = 0;
c06b1fca 3330 current->reclaim_state = &reclaim_state;
11e33f6a 3331
a9263751
VB
3332 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3333 ac->nodemask);
11e33f6a 3334
c06b1fca 3335 current->reclaim_state = NULL;
11e33f6a 3336 lockdep_clear_current_reclaim_state();
c06b1fca 3337 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3338
3339 cond_resched();
3340
bba90710
MS
3341 return progress;
3342}
3343
3344/* The really slow allocator path where we enter direct reclaim */
3345static inline struct page *
3346__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3347 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3348 unsigned long *did_some_progress)
bba90710
MS
3349{
3350 struct page *page = NULL;
3351 bool drained = false;
3352
a9263751 3353 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3354 if (unlikely(!(*did_some_progress)))
3355 return NULL;
11e33f6a 3356
9ee493ce 3357retry:
a9263751
VB
3358 page = get_page_from_freelist(gfp_mask, order,
3359 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3360
3361 /*
3362 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3363 * pages are pinned on the per-cpu lists or in high alloc reserves.
3364 * Shrink them them and try again
9ee493ce
MG
3365 */
3366 if (!page && !drained) {
0aaa29a5 3367 unreserve_highatomic_pageblock(ac);
93481ff0 3368 drain_all_pages(NULL);
9ee493ce
MG
3369 drained = true;
3370 goto retry;
3371 }
3372
11e33f6a
MG
3373 return page;
3374}
3375
a9263751 3376static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3377{
3378 struct zoneref *z;
3379 struct zone *zone;
3380
a9263751
VB
3381 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3382 ac->high_zoneidx, ac->nodemask)
93ea9964 3383 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3384}
3385
c603844b 3386static inline unsigned int
341ce06f
PZ
3387gfp_to_alloc_flags(gfp_t gfp_mask)
3388{
c603844b 3389 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3390
a56f57ff 3391 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3392 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3393
341ce06f
PZ
3394 /*
3395 * The caller may dip into page reserves a bit more if the caller
3396 * cannot run direct reclaim, or if the caller has realtime scheduling
3397 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3398 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3399 */
e6223a3b 3400 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3401
d0164adc 3402 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3403 /*
b104a35d
DR
3404 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3405 * if it can't schedule.
5c3240d9 3406 */
b104a35d 3407 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3408 alloc_flags |= ALLOC_HARDER;
523b9458 3409 /*
b104a35d 3410 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3411 * comment for __cpuset_node_allowed().
523b9458 3412 */
341ce06f 3413 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3414 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3415 alloc_flags |= ALLOC_HARDER;
3416
b37f1dd0
MG
3417 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3418 if (gfp_mask & __GFP_MEMALLOC)
3419 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3420 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3421 alloc_flags |= ALLOC_NO_WATERMARKS;
3422 else if (!in_interrupt() &&
3423 ((current->flags & PF_MEMALLOC) ||
3424 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3425 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3426 }
d95ea5d1 3427#ifdef CONFIG_CMA
43e7a34d 3428 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3429 alloc_flags |= ALLOC_CMA;
3430#endif
341ce06f
PZ
3431 return alloc_flags;
3432}
3433
072bb0aa
MG
3434bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3435{
b37f1dd0 3436 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3437}
3438
d0164adc
MG
3439static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3440{
3441 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3442}
3443
0a0337e0
MH
3444/*
3445 * Maximum number of reclaim retries without any progress before OOM killer
3446 * is consider as the only way to move forward.
3447 */
3448#define MAX_RECLAIM_RETRIES 16
3449
3450/*
3451 * Checks whether it makes sense to retry the reclaim to make a forward progress
3452 * for the given allocation request.
3453 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3454 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3455 * any progress in a row) is considered as well as the reclaimable pages on the
3456 * applicable zone list (with a backoff mechanism which is a function of
3457 * no_progress_loops).
0a0337e0
MH
3458 *
3459 * Returns true if a retry is viable or false to enter the oom path.
3460 */
3461static inline bool
3462should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3463 struct alloc_context *ac, int alloc_flags,
7854ea6c 3464 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3465{
3466 struct zone *zone;
3467 struct zoneref *z;
3468
3469 /*
3470 * Make sure we converge to OOM if we cannot make any progress
3471 * several times in the row.
3472 */
3473 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3474 return false;
3475
0a0337e0
MH
3476 /*
3477 * Keep reclaiming pages while there is a chance this will lead somewhere.
3478 * If none of the target zones can satisfy our allocation request even
3479 * if all reclaimable pages are considered then we are screwed and have
3480 * to go OOM.
3481 */
3482 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3483 ac->nodemask) {
3484 unsigned long available;
ede37713 3485 unsigned long reclaimable;
0a0337e0 3486
ede37713 3487 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3488 available -= DIV_ROUND_UP(no_progress_loops * available,
3489 MAX_RECLAIM_RETRIES);
3490 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3491
3492 /*
3493 * Would the allocation succeed if we reclaimed the whole
3494 * available?
3495 */
3496 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3497 ac_classzone_idx(ac), alloc_flags, available)) {
3498 /*
3499 * If we didn't make any progress and have a lot of
3500 * dirty + writeback pages then we should wait for
3501 * an IO to complete to slow down the reclaim and
3502 * prevent from pre mature OOM
3503 */
3504 if (!did_some_progress) {
3505 unsigned long writeback;
3506 unsigned long dirty;
3507
3508 writeback = zone_page_state_snapshot(zone,
3509 NR_WRITEBACK);
3510 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3511
3512 if (2*(writeback + dirty) > reclaimable) {
3513 congestion_wait(BLK_RW_ASYNC, HZ/10);
3514 return true;
3515 }
3516 }
3517
3518 /*
3519 * Memory allocation/reclaim might be called from a WQ
3520 * context and the current implementation of the WQ
3521 * concurrency control doesn't recognize that
3522 * a particular WQ is congested if the worker thread is
3523 * looping without ever sleeping. Therefore we have to
3524 * do a short sleep here rather than calling
3525 * cond_resched().
3526 */
3527 if (current->flags & PF_WQ_WORKER)
3528 schedule_timeout_uninterruptible(1);
3529 else
3530 cond_resched();
3531
0a0337e0
MH
3532 return true;
3533 }
3534 }
3535
3536 return false;
3537}
3538
11e33f6a
MG
3539static inline struct page *
3540__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3541 struct alloc_context *ac)
11e33f6a 3542{
d0164adc 3543 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3544 struct page *page = NULL;
c603844b 3545 unsigned int alloc_flags;
11e33f6a 3546 unsigned long did_some_progress;
e0b9daeb 3547 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3548 enum compact_result compact_result;
33c2d214 3549 int compaction_retries = 0;
0a0337e0 3550 int no_progress_loops = 0;
1da177e4 3551
72807a74
MG
3552 /*
3553 * In the slowpath, we sanity check order to avoid ever trying to
3554 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3555 * be using allocators in order of preference for an area that is
3556 * too large.
3557 */
1fc28b70
MG
3558 if (order >= MAX_ORDER) {
3559 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3560 return NULL;
1fc28b70 3561 }
1da177e4 3562
d0164adc
MG
3563 /*
3564 * We also sanity check to catch abuse of atomic reserves being used by
3565 * callers that are not in atomic context.
3566 */
3567 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3568 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3569 gfp_mask &= ~__GFP_ATOMIC;
3570
9879de73 3571retry:
d0164adc 3572 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3573 wake_all_kswapds(order, ac);
1da177e4 3574
9bf2229f 3575 /*
7fb1d9fc
RS
3576 * OK, we're below the kswapd watermark and have kicked background
3577 * reclaim. Now things get more complex, so set up alloc_flags according
3578 * to how we want to proceed.
9bf2229f 3579 */
341ce06f 3580 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3581
e46e7b77
MG
3582 /*
3583 * Reset the zonelist iterators if memory policies can be ignored.
3584 * These allocations are high priority and system rather than user
3585 * orientated.
3586 */
3587 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3588 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3589 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3590 ac->high_zoneidx, ac->nodemask);
3591 }
3592
341ce06f 3593 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3594 page = get_page_from_freelist(gfp_mask, order,
3595 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3596 if (page)
3597 goto got_pg;
1da177e4 3598
11e33f6a 3599 /* Allocate without watermarks if the context allows */
341ce06f 3600 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3601 page = get_page_from_freelist(gfp_mask, order,
3602 ALLOC_NO_WATERMARKS, ac);
3603 if (page)
3604 goto got_pg;
1da177e4
LT
3605 }
3606
d0164adc
MG
3607 /* Caller is not willing to reclaim, we can't balance anything */
3608 if (!can_direct_reclaim) {
aed0a0e3 3609 /*
33d53103
MH
3610 * All existing users of the __GFP_NOFAIL are blockable, so warn
3611 * of any new users that actually allow this type of allocation
3612 * to fail.
aed0a0e3
DR
3613 */
3614 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3615 goto nopage;
aed0a0e3 3616 }
1da177e4 3617
341ce06f 3618 /* Avoid recursion of direct reclaim */
33d53103
MH
3619 if (current->flags & PF_MEMALLOC) {
3620 /*
3621 * __GFP_NOFAIL request from this context is rather bizarre
3622 * because we cannot reclaim anything and only can loop waiting
3623 * for somebody to do a work for us.
3624 */
3625 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3626 cond_resched();
3627 goto retry;
3628 }
341ce06f 3629 goto nopage;
33d53103 3630 }
341ce06f 3631
6583bb64
DR
3632 /* Avoid allocations with no watermarks from looping endlessly */
3633 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3634 goto nopage;
3635
77f1fe6b
MG
3636 /*
3637 * Try direct compaction. The first pass is asynchronous. Subsequent
3638 * attempts after direct reclaim are synchronous
3639 */
a9263751
VB
3640 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3641 migration_mode,
c5d01d0d 3642 &compact_result);
56de7263
MG
3643 if (page)
3644 goto got_pg;
75f30861 3645
1f9efdef 3646 /* Checks for THP-specific high-order allocations */
d0164adc 3647 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3648 /*
3649 * If compaction is deferred for high-order allocations, it is
3650 * because sync compaction recently failed. If this is the case
3651 * and the caller requested a THP allocation, we do not want
3652 * to heavily disrupt the system, so we fail the allocation
3653 * instead of entering direct reclaim.
3654 */
c5d01d0d 3655 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3656 goto nopage;
3657
3658 /*
c5d01d0d
MH
3659 * Compaction is contended so rather back off than cause
3660 * excessive stalls.
1f9efdef 3661 */
c5d01d0d 3662 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3663 goto nopage;
3664 }
66199712 3665
33c2d214
MH
3666 if (order && compaction_made_progress(compact_result))
3667 compaction_retries++;
8fe78048 3668
11e33f6a 3669 /* Try direct reclaim and then allocating */
a9263751
VB
3670 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3671 &did_some_progress);
11e33f6a
MG
3672 if (page)
3673 goto got_pg;
1da177e4 3674
9083905a
JW
3675 /* Do not loop if specifically requested */
3676 if (gfp_mask & __GFP_NORETRY)
3677 goto noretry;
3678
0a0337e0
MH
3679 /*
3680 * Do not retry costly high order allocations unless they are
3681 * __GFP_REPEAT
3682 */
3683 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3684 goto noretry;
3685
7854ea6c
MH
3686 /*
3687 * Costly allocations might have made a progress but this doesn't mean
3688 * their order will become available due to high fragmentation so
3689 * always increment the no progress counter for them
3690 */
3691 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3692 no_progress_loops = 0;
7854ea6c 3693 else
0a0337e0 3694 no_progress_loops++;
1da177e4 3695
0a0337e0 3696 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3697 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3698 goto retry;
3699
33c2d214
MH
3700 /*
3701 * It doesn't make any sense to retry for the compaction if the order-0
3702 * reclaim is not able to make any progress because the current
3703 * implementation of the compaction depends on the sufficient amount
3704 * of free memory (see __compaction_suitable)
3705 */
3706 if (did_some_progress > 0 &&
86a294a8
MH
3707 should_compact_retry(ac, order, alloc_flags,
3708 compact_result, &migration_mode,
3709 compaction_retries))
33c2d214
MH
3710 goto retry;
3711
9083905a
JW
3712 /* Reclaim has failed us, start killing things */
3713 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3714 if (page)
3715 goto got_pg;
3716
3717 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3718 if (did_some_progress) {
3719 no_progress_loops = 0;
9083905a 3720 goto retry;
0a0337e0 3721 }
9083905a
JW
3722
3723noretry:
3724 /*
33c2d214
MH
3725 * High-order allocations do not necessarily loop after direct reclaim
3726 * and reclaim/compaction depends on compaction being called after
3727 * reclaim so call directly if necessary.
3728 * It can become very expensive to allocate transparent hugepages at
3729 * fault, so use asynchronous memory compaction for THP unless it is
3730 * khugepaged trying to collapse. All other requests should tolerate
3731 * at least light sync migration.
9083905a 3732 */
33c2d214
MH
3733 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3734 migration_mode = MIGRATE_ASYNC;
3735 else
3736 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3737 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3738 ac, migration_mode,
c5d01d0d 3739 &compact_result);
9083905a
JW
3740 if (page)
3741 goto got_pg;
1da177e4 3742nopage:
a238ab5b 3743 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3744got_pg:
072bb0aa 3745 return page;
1da177e4 3746}
11e33f6a
MG
3747
3748/*
3749 * This is the 'heart' of the zoned buddy allocator.
3750 */
3751struct page *
3752__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3753 struct zonelist *zonelist, nodemask_t *nodemask)
3754{
5bb1b169 3755 struct page *page;
cc9a6c87 3756 unsigned int cpuset_mems_cookie;
c603844b 3757 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3758 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3759 struct alloc_context ac = {
3760 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3761 .zonelist = zonelist,
a9263751
VB
3762 .nodemask = nodemask,
3763 .migratetype = gfpflags_to_migratetype(gfp_mask),
3764 };
11e33f6a 3765
682a3385 3766 if (cpusets_enabled()) {
83d4ca81 3767 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3768 alloc_flags |= ALLOC_CPUSET;
3769 if (!ac.nodemask)
3770 ac.nodemask = &cpuset_current_mems_allowed;
3771 }
3772
dcce284a
BH
3773 gfp_mask &= gfp_allowed_mask;
3774
11e33f6a
MG
3775 lockdep_trace_alloc(gfp_mask);
3776
d0164adc 3777 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3778
3779 if (should_fail_alloc_page(gfp_mask, order))
3780 return NULL;
3781
3782 /*
3783 * Check the zones suitable for the gfp_mask contain at least one
3784 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3785 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3786 */
3787 if (unlikely(!zonelist->_zonerefs->zone))
3788 return NULL;
3789
a9263751 3790 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3791 alloc_flags |= ALLOC_CMA;
3792
cc9a6c87 3793retry_cpuset:
d26914d1 3794 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3795
c9ab0c4f
MG
3796 /* Dirty zone balancing only done in the fast path */
3797 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3798
e46e7b77
MG
3799 /*
3800 * The preferred zone is used for statistics but crucially it is
3801 * also used as the starting point for the zonelist iterator. It
3802 * may get reset for allocations that ignore memory policies.
3803 */
c33d6c06
MG
3804 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3805 ac.high_zoneidx, ac.nodemask);
3806 if (!ac.preferred_zoneref) {
5bb1b169 3807 page = NULL;
4fcb0971 3808 goto no_zone;
5bb1b169
MG
3809 }
3810
5117f45d 3811 /* First allocation attempt */
a9263751 3812 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3813 if (likely(page))
3814 goto out;
11e33f6a 3815
4fcb0971
MG
3816 /*
3817 * Runtime PM, block IO and its error handling path can deadlock
3818 * because I/O on the device might not complete.
3819 */
3820 alloc_mask = memalloc_noio_flags(gfp_mask);
3821 ac.spread_dirty_pages = false;
23f086f9 3822
4741526b
MG
3823 /*
3824 * Restore the original nodemask if it was potentially replaced with
3825 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3826 */
3827 if (cpusets_enabled())
3828 ac.nodemask = nodemask;
4fcb0971 3829 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3830
4fcb0971 3831no_zone:
cc9a6c87
MG
3832 /*
3833 * When updating a task's mems_allowed, it is possible to race with
3834 * parallel threads in such a way that an allocation can fail while
3835 * the mask is being updated. If a page allocation is about to fail,
3836 * check if the cpuset changed during allocation and if so, retry.
3837 */
83d4ca81
MG
3838 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3839 alloc_mask = gfp_mask;
cc9a6c87 3840 goto retry_cpuset;
83d4ca81 3841 }
cc9a6c87 3842
4fcb0971
MG
3843out:
3844 if (kmemcheck_enabled && page)
3845 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3846
3847 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3848
11e33f6a 3849 return page;
1da177e4 3850}
d239171e 3851EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3852
3853/*
3854 * Common helper functions.
3855 */
920c7a5d 3856unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3857{
945a1113
AM
3858 struct page *page;
3859
3860 /*
3861 * __get_free_pages() returns a 32-bit address, which cannot represent
3862 * a highmem page
3863 */
3864 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3865
1da177e4
LT
3866 page = alloc_pages(gfp_mask, order);
3867 if (!page)
3868 return 0;
3869 return (unsigned long) page_address(page);
3870}
1da177e4
LT
3871EXPORT_SYMBOL(__get_free_pages);
3872
920c7a5d 3873unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3874{
945a1113 3875 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3876}
1da177e4
LT
3877EXPORT_SYMBOL(get_zeroed_page);
3878
920c7a5d 3879void __free_pages(struct page *page, unsigned int order)
1da177e4 3880{
b5810039 3881 if (put_page_testzero(page)) {
1da177e4 3882 if (order == 0)
b745bc85 3883 free_hot_cold_page(page, false);
1da177e4
LT
3884 else
3885 __free_pages_ok(page, order);
3886 }
3887}
3888
3889EXPORT_SYMBOL(__free_pages);
3890
920c7a5d 3891void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3892{
3893 if (addr != 0) {
725d704e 3894 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3895 __free_pages(virt_to_page((void *)addr), order);
3896 }
3897}
3898
3899EXPORT_SYMBOL(free_pages);
3900
b63ae8ca
AD
3901/*
3902 * Page Fragment:
3903 * An arbitrary-length arbitrary-offset area of memory which resides
3904 * within a 0 or higher order page. Multiple fragments within that page
3905 * are individually refcounted, in the page's reference counter.
3906 *
3907 * The page_frag functions below provide a simple allocation framework for
3908 * page fragments. This is used by the network stack and network device
3909 * drivers to provide a backing region of memory for use as either an
3910 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3911 */
3912static struct page *__page_frag_refill(struct page_frag_cache *nc,
3913 gfp_t gfp_mask)
3914{
3915 struct page *page = NULL;
3916 gfp_t gfp = gfp_mask;
3917
3918#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3919 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3920 __GFP_NOMEMALLOC;
3921 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3922 PAGE_FRAG_CACHE_MAX_ORDER);
3923 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3924#endif
3925 if (unlikely(!page))
3926 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3927
3928 nc->va = page ? page_address(page) : NULL;
3929
3930 return page;
3931}
3932
3933void *__alloc_page_frag(struct page_frag_cache *nc,
3934 unsigned int fragsz, gfp_t gfp_mask)
3935{
3936 unsigned int size = PAGE_SIZE;
3937 struct page *page;
3938 int offset;
3939
3940 if (unlikely(!nc->va)) {
3941refill:
3942 page = __page_frag_refill(nc, gfp_mask);
3943 if (!page)
3944 return NULL;
3945
3946#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3947 /* if size can vary use size else just use PAGE_SIZE */
3948 size = nc->size;
3949#endif
3950 /* Even if we own the page, we do not use atomic_set().
3951 * This would break get_page_unless_zero() users.
3952 */
fe896d18 3953 page_ref_add(page, size - 1);
b63ae8ca
AD
3954
3955 /* reset page count bias and offset to start of new frag */
2f064f34 3956 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3957 nc->pagecnt_bias = size;
3958 nc->offset = size;
3959 }
3960
3961 offset = nc->offset - fragsz;
3962 if (unlikely(offset < 0)) {
3963 page = virt_to_page(nc->va);
3964
fe896d18 3965 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3966 goto refill;
3967
3968#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3969 /* if size can vary use size else just use PAGE_SIZE */
3970 size = nc->size;
3971#endif
3972 /* OK, page count is 0, we can safely set it */
fe896d18 3973 set_page_count(page, size);
b63ae8ca
AD
3974
3975 /* reset page count bias and offset to start of new frag */
3976 nc->pagecnt_bias = size;
3977 offset = size - fragsz;
3978 }
3979
3980 nc->pagecnt_bias--;
3981 nc->offset = offset;
3982
3983 return nc->va + offset;
3984}
3985EXPORT_SYMBOL(__alloc_page_frag);
3986
3987/*
3988 * Frees a page fragment allocated out of either a compound or order 0 page.
3989 */
3990void __free_page_frag(void *addr)
3991{
3992 struct page *page = virt_to_head_page(addr);
3993
3994 if (unlikely(put_page_testzero(page)))
3995 __free_pages_ok(page, compound_order(page));
3996}
3997EXPORT_SYMBOL(__free_page_frag);
3998
6a1a0d3b 3999/*
52383431 4000 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
4001 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4002 * equivalent to alloc_pages.
6a1a0d3b 4003 *
52383431
VD
4004 * It should be used when the caller would like to use kmalloc, but since the
4005 * allocation is large, it has to fall back to the page allocator.
4006 */
4007struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4008{
4009 struct page *page;
52383431 4010
52383431 4011 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4012 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4013 __free_pages(page, order);
4014 page = NULL;
4015 }
52383431
VD
4016 return page;
4017}
4018
4019struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4020{
4021 struct page *page;
52383431 4022
52383431 4023 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4024 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4025 __free_pages(page, order);
4026 page = NULL;
4027 }
52383431
VD
4028 return page;
4029}
4030
4031/*
4032 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4033 * alloc_kmem_pages.
6a1a0d3b 4034 */
52383431 4035void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4036{
d05e83a6 4037 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4038 __free_pages(page, order);
4039}
4040
52383431 4041void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4042{
4043 if (addr != 0) {
4044 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4045 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4046 }
4047}
4048
d00181b9
KS
4049static void *make_alloc_exact(unsigned long addr, unsigned int order,
4050 size_t size)
ee85c2e1
AK
4051{
4052 if (addr) {
4053 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4054 unsigned long used = addr + PAGE_ALIGN(size);
4055
4056 split_page(virt_to_page((void *)addr), order);
4057 while (used < alloc_end) {
4058 free_page(used);
4059 used += PAGE_SIZE;
4060 }
4061 }
4062 return (void *)addr;
4063}
4064
2be0ffe2
TT
4065/**
4066 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4067 * @size: the number of bytes to allocate
4068 * @gfp_mask: GFP flags for the allocation
4069 *
4070 * This function is similar to alloc_pages(), except that it allocates the
4071 * minimum number of pages to satisfy the request. alloc_pages() can only
4072 * allocate memory in power-of-two pages.
4073 *
4074 * This function is also limited by MAX_ORDER.
4075 *
4076 * Memory allocated by this function must be released by free_pages_exact().
4077 */
4078void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4079{
4080 unsigned int order = get_order(size);
4081 unsigned long addr;
4082
4083 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4084 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4085}
4086EXPORT_SYMBOL(alloc_pages_exact);
4087
ee85c2e1
AK
4088/**
4089 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4090 * pages on a node.
b5e6ab58 4091 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4092 * @size: the number of bytes to allocate
4093 * @gfp_mask: GFP flags for the allocation
4094 *
4095 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4096 * back.
ee85c2e1 4097 */
e1931811 4098void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4099{
d00181b9 4100 unsigned int order = get_order(size);
ee85c2e1
AK
4101 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4102 if (!p)
4103 return NULL;
4104 return make_alloc_exact((unsigned long)page_address(p), order, size);
4105}
ee85c2e1 4106
2be0ffe2
TT
4107/**
4108 * free_pages_exact - release memory allocated via alloc_pages_exact()
4109 * @virt: the value returned by alloc_pages_exact.
4110 * @size: size of allocation, same value as passed to alloc_pages_exact().
4111 *
4112 * Release the memory allocated by a previous call to alloc_pages_exact.
4113 */
4114void free_pages_exact(void *virt, size_t size)
4115{
4116 unsigned long addr = (unsigned long)virt;
4117 unsigned long end = addr + PAGE_ALIGN(size);
4118
4119 while (addr < end) {
4120 free_page(addr);
4121 addr += PAGE_SIZE;
4122 }
4123}
4124EXPORT_SYMBOL(free_pages_exact);
4125
e0fb5815
ZY
4126/**
4127 * nr_free_zone_pages - count number of pages beyond high watermark
4128 * @offset: The zone index of the highest zone
4129 *
4130 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4131 * high watermark within all zones at or below a given zone index. For each
4132 * zone, the number of pages is calculated as:
834405c3 4133 * managed_pages - high_pages
e0fb5815 4134 */
ebec3862 4135static unsigned long nr_free_zone_pages(int offset)
1da177e4 4136{
dd1a239f 4137 struct zoneref *z;
54a6eb5c
MG
4138 struct zone *zone;
4139
e310fd43 4140 /* Just pick one node, since fallback list is circular */
ebec3862 4141 unsigned long sum = 0;
1da177e4 4142
0e88460d 4143 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4144
54a6eb5c 4145 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4146 unsigned long size = zone->managed_pages;
41858966 4147 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4148 if (size > high)
4149 sum += size - high;
1da177e4
LT
4150 }
4151
4152 return sum;
4153}
4154
e0fb5815
ZY
4155/**
4156 * nr_free_buffer_pages - count number of pages beyond high watermark
4157 *
4158 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4159 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4160 */
ebec3862 4161unsigned long nr_free_buffer_pages(void)
1da177e4 4162{
af4ca457 4163 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4164}
c2f1a551 4165EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4166
e0fb5815
ZY
4167/**
4168 * nr_free_pagecache_pages - count number of pages beyond high watermark
4169 *
4170 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4171 * high watermark within all zones.
1da177e4 4172 */
ebec3862 4173unsigned long nr_free_pagecache_pages(void)
1da177e4 4174{
2a1e274a 4175 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4176}
08e0f6a9
CL
4177
4178static inline void show_node(struct zone *zone)
1da177e4 4179{
e5adfffc 4180 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4181 printk("Node %d ", zone_to_nid(zone));
1da177e4 4182}
1da177e4 4183
d02bd27b
IR
4184long si_mem_available(void)
4185{
4186 long available;
4187 unsigned long pagecache;
4188 unsigned long wmark_low = 0;
4189 unsigned long pages[NR_LRU_LISTS];
4190 struct zone *zone;
4191 int lru;
4192
4193 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4194 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4195
4196 for_each_zone(zone)
4197 wmark_low += zone->watermark[WMARK_LOW];
4198
4199 /*
4200 * Estimate the amount of memory available for userspace allocations,
4201 * without causing swapping.
4202 */
4203 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4204
4205 /*
4206 * Not all the page cache can be freed, otherwise the system will
4207 * start swapping. Assume at least half of the page cache, or the
4208 * low watermark worth of cache, needs to stay.
4209 */
4210 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4211 pagecache -= min(pagecache / 2, wmark_low);
4212 available += pagecache;
4213
4214 /*
4215 * Part of the reclaimable slab consists of items that are in use,
4216 * and cannot be freed. Cap this estimate at the low watermark.
4217 */
4218 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4219 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4220
4221 if (available < 0)
4222 available = 0;
4223 return available;
4224}
4225EXPORT_SYMBOL_GPL(si_mem_available);
4226
1da177e4
LT
4227void si_meminfo(struct sysinfo *val)
4228{
4229 val->totalram = totalram_pages;
cc7452b6 4230 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4231 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4232 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4233 val->totalhigh = totalhigh_pages;
4234 val->freehigh = nr_free_highpages();
1da177e4
LT
4235 val->mem_unit = PAGE_SIZE;
4236}
4237
4238EXPORT_SYMBOL(si_meminfo);
4239
4240#ifdef CONFIG_NUMA
4241void si_meminfo_node(struct sysinfo *val, int nid)
4242{
cdd91a77
JL
4243 int zone_type; /* needs to be signed */
4244 unsigned long managed_pages = 0;
fc2bd799
JK
4245 unsigned long managed_highpages = 0;
4246 unsigned long free_highpages = 0;
1da177e4
LT
4247 pg_data_t *pgdat = NODE_DATA(nid);
4248
cdd91a77
JL
4249 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4250 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4251 val->totalram = managed_pages;
cc7452b6 4252 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4253 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4254#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4255 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4256 struct zone *zone = &pgdat->node_zones[zone_type];
4257
4258 if (is_highmem(zone)) {
4259 managed_highpages += zone->managed_pages;
4260 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4261 }
4262 }
4263 val->totalhigh = managed_highpages;
4264 val->freehigh = free_highpages;
98d2b0eb 4265#else
fc2bd799
JK
4266 val->totalhigh = managed_highpages;
4267 val->freehigh = free_highpages;
98d2b0eb 4268#endif
1da177e4
LT
4269 val->mem_unit = PAGE_SIZE;
4270}
4271#endif
4272
ddd588b5 4273/*
7bf02ea2
DR
4274 * Determine whether the node should be displayed or not, depending on whether
4275 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4276 */
7bf02ea2 4277bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4278{
4279 bool ret = false;
cc9a6c87 4280 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4281
4282 if (!(flags & SHOW_MEM_FILTER_NODES))
4283 goto out;
4284
cc9a6c87 4285 do {
d26914d1 4286 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4287 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4288 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4289out:
4290 return ret;
4291}
4292
1da177e4
LT
4293#define K(x) ((x) << (PAGE_SHIFT-10))
4294
377e4f16
RV
4295static void show_migration_types(unsigned char type)
4296{
4297 static const char types[MIGRATE_TYPES] = {
4298 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4299 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4300 [MIGRATE_RECLAIMABLE] = 'E',
4301 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4302#ifdef CONFIG_CMA
4303 [MIGRATE_CMA] = 'C',
4304#endif
194159fb 4305#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4306 [MIGRATE_ISOLATE] = 'I',
194159fb 4307#endif
377e4f16
RV
4308 };
4309 char tmp[MIGRATE_TYPES + 1];
4310 char *p = tmp;
4311 int i;
4312
4313 for (i = 0; i < MIGRATE_TYPES; i++) {
4314 if (type & (1 << i))
4315 *p++ = types[i];
4316 }
4317
4318 *p = '\0';
4319 printk("(%s) ", tmp);
4320}
4321
1da177e4
LT
4322/*
4323 * Show free area list (used inside shift_scroll-lock stuff)
4324 * We also calculate the percentage fragmentation. We do this by counting the
4325 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4326 *
4327 * Bits in @filter:
4328 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4329 * cpuset.
1da177e4 4330 */
7bf02ea2 4331void show_free_areas(unsigned int filter)
1da177e4 4332{
d1bfcdb8 4333 unsigned long free_pcp = 0;
c7241913 4334 int cpu;
1da177e4
LT
4335 struct zone *zone;
4336
ee99c71c 4337 for_each_populated_zone(zone) {
7bf02ea2 4338 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4339 continue;
d1bfcdb8 4340
761b0677
KK
4341 for_each_online_cpu(cpu)
4342 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4343 }
4344
a731286d
KM
4345 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4346 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4347 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4348 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4349 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4350 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4351 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4352 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4353 global_page_state(NR_ISOLATED_ANON),
4354 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4355 global_page_state(NR_INACTIVE_FILE),
a731286d 4356 global_page_state(NR_ISOLATED_FILE),
7b854121 4357 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4358 global_page_state(NR_FILE_DIRTY),
ce866b34 4359 global_page_state(NR_WRITEBACK),
fd39fc85 4360 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4361 global_page_state(NR_SLAB_RECLAIMABLE),
4362 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4363 global_page_state(NR_FILE_MAPPED),
4b02108a 4364 global_page_state(NR_SHMEM),
a25700a5 4365 global_page_state(NR_PAGETABLE),
d1ce749a 4366 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4367 global_page_state(NR_FREE_PAGES),
4368 free_pcp,
d1ce749a 4369 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4370
ee99c71c 4371 for_each_populated_zone(zone) {
1da177e4
LT
4372 int i;
4373
7bf02ea2 4374 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4375 continue;
d1bfcdb8
KK
4376
4377 free_pcp = 0;
4378 for_each_online_cpu(cpu)
4379 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4380
1da177e4
LT
4381 show_node(zone);
4382 printk("%s"
4383 " free:%lukB"
4384 " min:%lukB"
4385 " low:%lukB"
4386 " high:%lukB"
4f98a2fe
RR
4387 " active_anon:%lukB"
4388 " inactive_anon:%lukB"
4389 " active_file:%lukB"
4390 " inactive_file:%lukB"
7b854121 4391 " unevictable:%lukB"
a731286d
KM
4392 " isolated(anon):%lukB"
4393 " isolated(file):%lukB"
1da177e4 4394 " present:%lukB"
9feedc9d 4395 " managed:%lukB"
4a0aa73f
KM
4396 " mlocked:%lukB"
4397 " dirty:%lukB"
4398 " writeback:%lukB"
4399 " mapped:%lukB"
4b02108a 4400 " shmem:%lukB"
4a0aa73f
KM
4401 " slab_reclaimable:%lukB"
4402 " slab_unreclaimable:%lukB"
c6a7f572 4403 " kernel_stack:%lukB"
4a0aa73f
KM
4404 " pagetables:%lukB"
4405 " unstable:%lukB"
4406 " bounce:%lukB"
d1bfcdb8
KK
4407 " free_pcp:%lukB"
4408 " local_pcp:%ukB"
d1ce749a 4409 " free_cma:%lukB"
4a0aa73f 4410 " writeback_tmp:%lukB"
1da177e4
LT
4411 " pages_scanned:%lu"
4412 " all_unreclaimable? %s"
4413 "\n",
4414 zone->name,
88f5acf8 4415 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4416 K(min_wmark_pages(zone)),
4417 K(low_wmark_pages(zone)),
4418 K(high_wmark_pages(zone)),
4f98a2fe
RR
4419 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4420 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4421 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4422 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4423 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4424 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4425 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4426 K(zone->present_pages),
9feedc9d 4427 K(zone->managed_pages),
4a0aa73f
KM
4428 K(zone_page_state(zone, NR_MLOCK)),
4429 K(zone_page_state(zone, NR_FILE_DIRTY)),
4430 K(zone_page_state(zone, NR_WRITEBACK)),
4431 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4432 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4433 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4434 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4435 zone_page_state(zone, NR_KERNEL_STACK) *
4436 THREAD_SIZE / 1024,
4a0aa73f
KM
4437 K(zone_page_state(zone, NR_PAGETABLE)),
4438 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4439 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4440 K(free_pcp),
4441 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4442 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4443 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4444 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4445 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4446 );
4447 printk("lowmem_reserve[]:");
4448 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4449 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4450 printk("\n");
4451 }
4452
ee99c71c 4453 for_each_populated_zone(zone) {
d00181b9
KS
4454 unsigned int order;
4455 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4456 unsigned char types[MAX_ORDER];
1da177e4 4457
7bf02ea2 4458 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4459 continue;
1da177e4
LT
4460 show_node(zone);
4461 printk("%s: ", zone->name);
1da177e4
LT
4462
4463 spin_lock_irqsave(&zone->lock, flags);
4464 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4465 struct free_area *area = &zone->free_area[order];
4466 int type;
4467
4468 nr[order] = area->nr_free;
8f9de51a 4469 total += nr[order] << order;
377e4f16
RV
4470
4471 types[order] = 0;
4472 for (type = 0; type < MIGRATE_TYPES; type++) {
4473 if (!list_empty(&area->free_list[type]))
4474 types[order] |= 1 << type;
4475 }
1da177e4
LT
4476 }
4477 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4478 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4479 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4480 if (nr[order])
4481 show_migration_types(types[order]);
4482 }
1da177e4
LT
4483 printk("= %lukB\n", K(total));
4484 }
4485
949f7ec5
DR
4486 hugetlb_show_meminfo();
4487
e6f3602d
LW
4488 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4489
1da177e4
LT
4490 show_swap_cache_info();
4491}
4492
19770b32
MG
4493static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4494{
4495 zoneref->zone = zone;
4496 zoneref->zone_idx = zone_idx(zone);
4497}
4498
1da177e4
LT
4499/*
4500 * Builds allocation fallback zone lists.
1a93205b
CL
4501 *
4502 * Add all populated zones of a node to the zonelist.
1da177e4 4503 */
f0c0b2b8 4504static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4505 int nr_zones)
1da177e4 4506{
1a93205b 4507 struct zone *zone;
bc732f1d 4508 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4509
4510 do {
2f6726e5 4511 zone_type--;
070f8032 4512 zone = pgdat->node_zones + zone_type;
1a93205b 4513 if (populated_zone(zone)) {
dd1a239f
MG
4514 zoneref_set_zone(zone,
4515 &zonelist->_zonerefs[nr_zones++]);
070f8032 4516 check_highest_zone(zone_type);
1da177e4 4517 }
2f6726e5 4518 } while (zone_type);
bc732f1d 4519
070f8032 4520 return nr_zones;
1da177e4
LT
4521}
4522
f0c0b2b8
KH
4523
4524/*
4525 * zonelist_order:
4526 * 0 = automatic detection of better ordering.
4527 * 1 = order by ([node] distance, -zonetype)
4528 * 2 = order by (-zonetype, [node] distance)
4529 *
4530 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4531 * the same zonelist. So only NUMA can configure this param.
4532 */
4533#define ZONELIST_ORDER_DEFAULT 0
4534#define ZONELIST_ORDER_NODE 1
4535#define ZONELIST_ORDER_ZONE 2
4536
4537/* zonelist order in the kernel.
4538 * set_zonelist_order() will set this to NODE or ZONE.
4539 */
4540static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4541static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4542
4543
1da177e4 4544#ifdef CONFIG_NUMA
f0c0b2b8
KH
4545/* The value user specified ....changed by config */
4546static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4547/* string for sysctl */
4548#define NUMA_ZONELIST_ORDER_LEN 16
4549char numa_zonelist_order[16] = "default";
4550
4551/*
4552 * interface for configure zonelist ordering.
4553 * command line option "numa_zonelist_order"
4554 * = "[dD]efault - default, automatic configuration.
4555 * = "[nN]ode - order by node locality, then by zone within node
4556 * = "[zZ]one - order by zone, then by locality within zone
4557 */
4558
4559static int __parse_numa_zonelist_order(char *s)
4560{
4561 if (*s == 'd' || *s == 'D') {
4562 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4563 } else if (*s == 'n' || *s == 'N') {
4564 user_zonelist_order = ZONELIST_ORDER_NODE;
4565 } else if (*s == 'z' || *s == 'Z') {
4566 user_zonelist_order = ZONELIST_ORDER_ZONE;
4567 } else {
1170532b 4568 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4569 return -EINVAL;
4570 }
4571 return 0;
4572}
4573
4574static __init int setup_numa_zonelist_order(char *s)
4575{
ecb256f8
VL
4576 int ret;
4577
4578 if (!s)
4579 return 0;
4580
4581 ret = __parse_numa_zonelist_order(s);
4582 if (ret == 0)
4583 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4584
4585 return ret;
f0c0b2b8
KH
4586}
4587early_param("numa_zonelist_order", setup_numa_zonelist_order);
4588
4589/*
4590 * sysctl handler for numa_zonelist_order
4591 */
cccad5b9 4592int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4593 void __user *buffer, size_t *length,
f0c0b2b8
KH
4594 loff_t *ppos)
4595{
4596 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4597 int ret;
443c6f14 4598 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4599
443c6f14 4600 mutex_lock(&zl_order_mutex);
dacbde09
CG
4601 if (write) {
4602 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4603 ret = -EINVAL;
4604 goto out;
4605 }
4606 strcpy(saved_string, (char *)table->data);
4607 }
8d65af78 4608 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4609 if (ret)
443c6f14 4610 goto out;
f0c0b2b8
KH
4611 if (write) {
4612 int oldval = user_zonelist_order;
dacbde09
CG
4613
4614 ret = __parse_numa_zonelist_order((char *)table->data);
4615 if (ret) {
f0c0b2b8
KH
4616 /*
4617 * bogus value. restore saved string
4618 */
dacbde09 4619 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4620 NUMA_ZONELIST_ORDER_LEN);
4621 user_zonelist_order = oldval;
4eaf3f64
HL
4622 } else if (oldval != user_zonelist_order) {
4623 mutex_lock(&zonelists_mutex);
9adb62a5 4624 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4625 mutex_unlock(&zonelists_mutex);
4626 }
f0c0b2b8 4627 }
443c6f14
AK
4628out:
4629 mutex_unlock(&zl_order_mutex);
4630 return ret;
f0c0b2b8
KH
4631}
4632
4633
62bc62a8 4634#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4635static int node_load[MAX_NUMNODES];
4636
1da177e4 4637/**
4dc3b16b 4638 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4639 * @node: node whose fallback list we're appending
4640 * @used_node_mask: nodemask_t of already used nodes
4641 *
4642 * We use a number of factors to determine which is the next node that should
4643 * appear on a given node's fallback list. The node should not have appeared
4644 * already in @node's fallback list, and it should be the next closest node
4645 * according to the distance array (which contains arbitrary distance values
4646 * from each node to each node in the system), and should also prefer nodes
4647 * with no CPUs, since presumably they'll have very little allocation pressure
4648 * on them otherwise.
4649 * It returns -1 if no node is found.
4650 */
f0c0b2b8 4651static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4652{
4cf808eb 4653 int n, val;
1da177e4 4654 int min_val = INT_MAX;
00ef2d2f 4655 int best_node = NUMA_NO_NODE;
a70f7302 4656 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4657
4cf808eb
LT
4658 /* Use the local node if we haven't already */
4659 if (!node_isset(node, *used_node_mask)) {
4660 node_set(node, *used_node_mask);
4661 return node;
4662 }
1da177e4 4663
4b0ef1fe 4664 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4665
4666 /* Don't want a node to appear more than once */
4667 if (node_isset(n, *used_node_mask))
4668 continue;
4669
1da177e4
LT
4670 /* Use the distance array to find the distance */
4671 val = node_distance(node, n);
4672
4cf808eb
LT
4673 /* Penalize nodes under us ("prefer the next node") */
4674 val += (n < node);
4675
1da177e4 4676 /* Give preference to headless and unused nodes */
a70f7302
RR
4677 tmp = cpumask_of_node(n);
4678 if (!cpumask_empty(tmp))
1da177e4
LT
4679 val += PENALTY_FOR_NODE_WITH_CPUS;
4680
4681 /* Slight preference for less loaded node */
4682 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4683 val += node_load[n];
4684
4685 if (val < min_val) {
4686 min_val = val;
4687 best_node = n;
4688 }
4689 }
4690
4691 if (best_node >= 0)
4692 node_set(best_node, *used_node_mask);
4693
4694 return best_node;
4695}
4696
f0c0b2b8
KH
4697
4698/*
4699 * Build zonelists ordered by node and zones within node.
4700 * This results in maximum locality--normal zone overflows into local
4701 * DMA zone, if any--but risks exhausting DMA zone.
4702 */
4703static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4704{
f0c0b2b8 4705 int j;
1da177e4 4706 struct zonelist *zonelist;
f0c0b2b8 4707
54a6eb5c 4708 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4709 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4710 ;
bc732f1d 4711 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4712 zonelist->_zonerefs[j].zone = NULL;
4713 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4714}
4715
523b9458
CL
4716/*
4717 * Build gfp_thisnode zonelists
4718 */
4719static void build_thisnode_zonelists(pg_data_t *pgdat)
4720{
523b9458
CL
4721 int j;
4722 struct zonelist *zonelist;
4723
54a6eb5c 4724 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4725 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4726 zonelist->_zonerefs[j].zone = NULL;
4727 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4728}
4729
f0c0b2b8
KH
4730/*
4731 * Build zonelists ordered by zone and nodes within zones.
4732 * This results in conserving DMA zone[s] until all Normal memory is
4733 * exhausted, but results in overflowing to remote node while memory
4734 * may still exist in local DMA zone.
4735 */
4736static int node_order[MAX_NUMNODES];
4737
4738static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4739{
f0c0b2b8
KH
4740 int pos, j, node;
4741 int zone_type; /* needs to be signed */
4742 struct zone *z;
4743 struct zonelist *zonelist;
4744
54a6eb5c
MG
4745 zonelist = &pgdat->node_zonelists[0];
4746 pos = 0;
4747 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4748 for (j = 0; j < nr_nodes; j++) {
4749 node = node_order[j];
4750 z = &NODE_DATA(node)->node_zones[zone_type];
4751 if (populated_zone(z)) {
dd1a239f
MG
4752 zoneref_set_zone(z,
4753 &zonelist->_zonerefs[pos++]);
54a6eb5c 4754 check_highest_zone(zone_type);
f0c0b2b8
KH
4755 }
4756 }
f0c0b2b8 4757 }
dd1a239f
MG
4758 zonelist->_zonerefs[pos].zone = NULL;
4759 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4760}
4761
3193913c
MG
4762#if defined(CONFIG_64BIT)
4763/*
4764 * Devices that require DMA32/DMA are relatively rare and do not justify a
4765 * penalty to every machine in case the specialised case applies. Default
4766 * to Node-ordering on 64-bit NUMA machines
4767 */
4768static int default_zonelist_order(void)
4769{
4770 return ZONELIST_ORDER_NODE;
4771}
4772#else
4773/*
4774 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4775 * by the kernel. If processes running on node 0 deplete the low memory zone
4776 * then reclaim will occur more frequency increasing stalls and potentially
4777 * be easier to OOM if a large percentage of the zone is under writeback or
4778 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4779 * Hence, default to zone ordering on 32-bit.
4780 */
f0c0b2b8
KH
4781static int default_zonelist_order(void)
4782{
f0c0b2b8
KH
4783 return ZONELIST_ORDER_ZONE;
4784}
3193913c 4785#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4786
4787static void set_zonelist_order(void)
4788{
4789 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4790 current_zonelist_order = default_zonelist_order();
4791 else
4792 current_zonelist_order = user_zonelist_order;
4793}
4794
4795static void build_zonelists(pg_data_t *pgdat)
4796{
c00eb15a 4797 int i, node, load;
1da177e4 4798 nodemask_t used_mask;
f0c0b2b8
KH
4799 int local_node, prev_node;
4800 struct zonelist *zonelist;
d00181b9 4801 unsigned int order = current_zonelist_order;
1da177e4
LT
4802
4803 /* initialize zonelists */
523b9458 4804 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4805 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4806 zonelist->_zonerefs[0].zone = NULL;
4807 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4808 }
4809
4810 /* NUMA-aware ordering of nodes */
4811 local_node = pgdat->node_id;
62bc62a8 4812 load = nr_online_nodes;
1da177e4
LT
4813 prev_node = local_node;
4814 nodes_clear(used_mask);
f0c0b2b8 4815
f0c0b2b8 4816 memset(node_order, 0, sizeof(node_order));
c00eb15a 4817 i = 0;
f0c0b2b8 4818
1da177e4
LT
4819 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4820 /*
4821 * We don't want to pressure a particular node.
4822 * So adding penalty to the first node in same
4823 * distance group to make it round-robin.
4824 */
957f822a
DR
4825 if (node_distance(local_node, node) !=
4826 node_distance(local_node, prev_node))
f0c0b2b8
KH
4827 node_load[node] = load;
4828
1da177e4
LT
4829 prev_node = node;
4830 load--;
f0c0b2b8
KH
4831 if (order == ZONELIST_ORDER_NODE)
4832 build_zonelists_in_node_order(pgdat, node);
4833 else
c00eb15a 4834 node_order[i++] = node; /* remember order */
f0c0b2b8 4835 }
1da177e4 4836
f0c0b2b8
KH
4837 if (order == ZONELIST_ORDER_ZONE) {
4838 /* calculate node order -- i.e., DMA last! */
c00eb15a 4839 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4840 }
523b9458
CL
4841
4842 build_thisnode_zonelists(pgdat);
1da177e4
LT
4843}
4844
7aac7898
LS
4845#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4846/*
4847 * Return node id of node used for "local" allocations.
4848 * I.e., first node id of first zone in arg node's generic zonelist.
4849 * Used for initializing percpu 'numa_mem', which is used primarily
4850 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4851 */
4852int local_memory_node(int node)
4853{
c33d6c06 4854 struct zoneref *z;
7aac7898 4855
c33d6c06 4856 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4857 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4858 NULL);
4859 return z->zone->node;
7aac7898
LS
4860}
4861#endif
f0c0b2b8 4862
1da177e4
LT
4863#else /* CONFIG_NUMA */
4864
f0c0b2b8
KH
4865static void set_zonelist_order(void)
4866{
4867 current_zonelist_order = ZONELIST_ORDER_ZONE;
4868}
4869
4870static void build_zonelists(pg_data_t *pgdat)
1da177e4 4871{
19655d34 4872 int node, local_node;
54a6eb5c
MG
4873 enum zone_type j;
4874 struct zonelist *zonelist;
1da177e4
LT
4875
4876 local_node = pgdat->node_id;
1da177e4 4877
54a6eb5c 4878 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4879 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4880
54a6eb5c
MG
4881 /*
4882 * Now we build the zonelist so that it contains the zones
4883 * of all the other nodes.
4884 * We don't want to pressure a particular node, so when
4885 * building the zones for node N, we make sure that the
4886 * zones coming right after the local ones are those from
4887 * node N+1 (modulo N)
4888 */
4889 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4890 if (!node_online(node))
4891 continue;
bc732f1d 4892 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4893 }
54a6eb5c
MG
4894 for (node = 0; node < local_node; node++) {
4895 if (!node_online(node))
4896 continue;
bc732f1d 4897 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4898 }
4899
dd1a239f
MG
4900 zonelist->_zonerefs[j].zone = NULL;
4901 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4902}
4903
4904#endif /* CONFIG_NUMA */
4905
99dcc3e5
CL
4906/*
4907 * Boot pageset table. One per cpu which is going to be used for all
4908 * zones and all nodes. The parameters will be set in such a way
4909 * that an item put on a list will immediately be handed over to
4910 * the buddy list. This is safe since pageset manipulation is done
4911 * with interrupts disabled.
4912 *
4913 * The boot_pagesets must be kept even after bootup is complete for
4914 * unused processors and/or zones. They do play a role for bootstrapping
4915 * hotplugged processors.
4916 *
4917 * zoneinfo_show() and maybe other functions do
4918 * not check if the processor is online before following the pageset pointer.
4919 * Other parts of the kernel may not check if the zone is available.
4920 */
4921static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4922static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4923static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4924
4eaf3f64
HL
4925/*
4926 * Global mutex to protect against size modification of zonelists
4927 * as well as to serialize pageset setup for the new populated zone.
4928 */
4929DEFINE_MUTEX(zonelists_mutex);
4930
9b1a4d38 4931/* return values int ....just for stop_machine() */
4ed7e022 4932static int __build_all_zonelists(void *data)
1da177e4 4933{
6811378e 4934 int nid;
99dcc3e5 4935 int cpu;
9adb62a5 4936 pg_data_t *self = data;
9276b1bc 4937
7f9cfb31
BL
4938#ifdef CONFIG_NUMA
4939 memset(node_load, 0, sizeof(node_load));
4940#endif
9adb62a5
JL
4941
4942 if (self && !node_online(self->node_id)) {
4943 build_zonelists(self);
9adb62a5
JL
4944 }
4945
9276b1bc 4946 for_each_online_node(nid) {
7ea1530a
CL
4947 pg_data_t *pgdat = NODE_DATA(nid);
4948
4949 build_zonelists(pgdat);
9276b1bc 4950 }
99dcc3e5
CL
4951
4952 /*
4953 * Initialize the boot_pagesets that are going to be used
4954 * for bootstrapping processors. The real pagesets for
4955 * each zone will be allocated later when the per cpu
4956 * allocator is available.
4957 *
4958 * boot_pagesets are used also for bootstrapping offline
4959 * cpus if the system is already booted because the pagesets
4960 * are needed to initialize allocators on a specific cpu too.
4961 * F.e. the percpu allocator needs the page allocator which
4962 * needs the percpu allocator in order to allocate its pagesets
4963 * (a chicken-egg dilemma).
4964 */
7aac7898 4965 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4966 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4967
7aac7898
LS
4968#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4969 /*
4970 * We now know the "local memory node" for each node--
4971 * i.e., the node of the first zone in the generic zonelist.
4972 * Set up numa_mem percpu variable for on-line cpus. During
4973 * boot, only the boot cpu should be on-line; we'll init the
4974 * secondary cpus' numa_mem as they come on-line. During
4975 * node/memory hotplug, we'll fixup all on-line cpus.
4976 */
4977 if (cpu_online(cpu))
4978 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4979#endif
4980 }
4981
6811378e
YG
4982 return 0;
4983}
4984
061f67bc
RV
4985static noinline void __init
4986build_all_zonelists_init(void)
4987{
4988 __build_all_zonelists(NULL);
4989 mminit_verify_zonelist();
4990 cpuset_init_current_mems_allowed();
4991}
4992
4eaf3f64
HL
4993/*
4994 * Called with zonelists_mutex held always
4995 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4996 *
4997 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4998 * [we're only called with non-NULL zone through __meminit paths] and
4999 * (2) call of __init annotated helper build_all_zonelists_init
5000 * [protected by SYSTEM_BOOTING].
4eaf3f64 5001 */
9adb62a5 5002void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5003{
f0c0b2b8
KH
5004 set_zonelist_order();
5005
6811378e 5006 if (system_state == SYSTEM_BOOTING) {
061f67bc 5007 build_all_zonelists_init();
6811378e 5008 } else {
e9959f0f 5009#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5010 if (zone)
5011 setup_zone_pageset(zone);
e9959f0f 5012#endif
dd1895e2
CS
5013 /* we have to stop all cpus to guarantee there is no user
5014 of zonelist */
9adb62a5 5015 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5016 /* cpuset refresh routine should be here */
5017 }
bd1e22b8 5018 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5019 /*
5020 * Disable grouping by mobility if the number of pages in the
5021 * system is too low to allow the mechanism to work. It would be
5022 * more accurate, but expensive to check per-zone. This check is
5023 * made on memory-hotadd so a system can start with mobility
5024 * disabled and enable it later
5025 */
d9c23400 5026 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5027 page_group_by_mobility_disabled = 1;
5028 else
5029 page_group_by_mobility_disabled = 0;
5030
756a025f
JP
5031 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5032 nr_online_nodes,
5033 zonelist_order_name[current_zonelist_order],
5034 page_group_by_mobility_disabled ? "off" : "on",
5035 vm_total_pages);
f0c0b2b8 5036#ifdef CONFIG_NUMA
f88dfff5 5037 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5038#endif
1da177e4
LT
5039}
5040
5041/*
5042 * Helper functions to size the waitqueue hash table.
5043 * Essentially these want to choose hash table sizes sufficiently
5044 * large so that collisions trying to wait on pages are rare.
5045 * But in fact, the number of active page waitqueues on typical
5046 * systems is ridiculously low, less than 200. So this is even
5047 * conservative, even though it seems large.
5048 *
5049 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5050 * waitqueues, i.e. the size of the waitq table given the number of pages.
5051 */
5052#define PAGES_PER_WAITQUEUE 256
5053
cca448fe 5054#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5055static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5056{
5057 unsigned long size = 1;
5058
5059 pages /= PAGES_PER_WAITQUEUE;
5060
5061 while (size < pages)
5062 size <<= 1;
5063
5064 /*
5065 * Once we have dozens or even hundreds of threads sleeping
5066 * on IO we've got bigger problems than wait queue collision.
5067 * Limit the size of the wait table to a reasonable size.
5068 */
5069 size = min(size, 4096UL);
5070
5071 return max(size, 4UL);
5072}
cca448fe
YG
5073#else
5074/*
5075 * A zone's size might be changed by hot-add, so it is not possible to determine
5076 * a suitable size for its wait_table. So we use the maximum size now.
5077 *
5078 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5079 *
5080 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5081 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5082 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5083 *
5084 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5085 * or more by the traditional way. (See above). It equals:
5086 *
5087 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5088 * ia64(16K page size) : = ( 8G + 4M)byte.
5089 * powerpc (64K page size) : = (32G +16M)byte.
5090 */
5091static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5092{
5093 return 4096UL;
5094}
5095#endif
1da177e4
LT
5096
5097/*
5098 * This is an integer logarithm so that shifts can be used later
5099 * to extract the more random high bits from the multiplicative
5100 * hash function before the remainder is taken.
5101 */
5102static inline unsigned long wait_table_bits(unsigned long size)
5103{
5104 return ffz(~size);
5105}
5106
1da177e4
LT
5107/*
5108 * Initially all pages are reserved - free ones are freed
5109 * up by free_all_bootmem() once the early boot process is
5110 * done. Non-atomic initialization, single-pass.
5111 */
c09b4240 5112void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5113 unsigned long start_pfn, enum memmap_context context)
1da177e4 5114{
4b94ffdc 5115 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5116 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5117 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5118 unsigned long pfn;
3a80a7fa 5119 unsigned long nr_initialised = 0;
342332e6
TI
5120#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5121 struct memblock_region *r = NULL, *tmp;
5122#endif
1da177e4 5123
22b31eec
HD
5124 if (highest_memmap_pfn < end_pfn - 1)
5125 highest_memmap_pfn = end_pfn - 1;
5126
4b94ffdc
DW
5127 /*
5128 * Honor reservation requested by the driver for this ZONE_DEVICE
5129 * memory
5130 */
5131 if (altmap && start_pfn == altmap->base_pfn)
5132 start_pfn += altmap->reserve;
5133
cbe8dd4a 5134 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5135 /*
b72d0ffb
AM
5136 * There can be holes in boot-time mem_map[]s handed to this
5137 * function. They do not exist on hotplugged memory.
a2f3aa02 5138 */
b72d0ffb
AM
5139 if (context != MEMMAP_EARLY)
5140 goto not_early;
5141
5142 if (!early_pfn_valid(pfn))
5143 continue;
5144 if (!early_pfn_in_nid(pfn, nid))
5145 continue;
5146 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5147 break;
342332e6
TI
5148
5149#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5150 /*
5151 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5152 * from zone_movable_pfn[nid] to end of each node should be
5153 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5154 */
5155 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5156 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5157 continue;
342332e6 5158
b72d0ffb
AM
5159 /*
5160 * Check given memblock attribute by firmware which can affect
5161 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5162 * mirrored, it's an overlapped memmap init. skip it.
5163 */
5164 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5165 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5166 for_each_memblock(memory, tmp)
5167 if (pfn < memblock_region_memory_end_pfn(tmp))
5168 break;
5169 r = tmp;
5170 }
5171 if (pfn >= memblock_region_memory_base_pfn(r) &&
5172 memblock_is_mirror(r)) {
5173 /* already initialized as NORMAL */
5174 pfn = memblock_region_memory_end_pfn(r);
5175 continue;
342332e6 5176 }
a2f3aa02 5177 }
b72d0ffb 5178#endif
ac5d2539 5179
b72d0ffb 5180not_early:
ac5d2539
MG
5181 /*
5182 * Mark the block movable so that blocks are reserved for
5183 * movable at startup. This will force kernel allocations
5184 * to reserve their blocks rather than leaking throughout
5185 * the address space during boot when many long-lived
974a786e 5186 * kernel allocations are made.
ac5d2539
MG
5187 *
5188 * bitmap is created for zone's valid pfn range. but memmap
5189 * can be created for invalid pages (for alignment)
5190 * check here not to call set_pageblock_migratetype() against
5191 * pfn out of zone.
5192 */
5193 if (!(pfn & (pageblock_nr_pages - 1))) {
5194 struct page *page = pfn_to_page(pfn);
5195
5196 __init_single_page(page, pfn, zone, nid);
5197 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5198 } else {
5199 __init_single_pfn(pfn, zone, nid);
5200 }
1da177e4
LT
5201 }
5202}
5203
1e548deb 5204static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5205{
7aeb09f9 5206 unsigned int order, t;
b2a0ac88
MG
5207 for_each_migratetype_order(order, t) {
5208 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5209 zone->free_area[order].nr_free = 0;
5210 }
5211}
5212
5213#ifndef __HAVE_ARCH_MEMMAP_INIT
5214#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5215 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5216#endif
5217
7cd2b0a3 5218static int zone_batchsize(struct zone *zone)
e7c8d5c9 5219{
3a6be87f 5220#ifdef CONFIG_MMU
e7c8d5c9
CL
5221 int batch;
5222
5223 /*
5224 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5225 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5226 *
5227 * OK, so we don't know how big the cache is. So guess.
5228 */
b40da049 5229 batch = zone->managed_pages / 1024;
ba56e91c
SR
5230 if (batch * PAGE_SIZE > 512 * 1024)
5231 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5232 batch /= 4; /* We effectively *= 4 below */
5233 if (batch < 1)
5234 batch = 1;
5235
5236 /*
0ceaacc9
NP
5237 * Clamp the batch to a 2^n - 1 value. Having a power
5238 * of 2 value was found to be more likely to have
5239 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5240 *
0ceaacc9
NP
5241 * For example if 2 tasks are alternately allocating
5242 * batches of pages, one task can end up with a lot
5243 * of pages of one half of the possible page colors
5244 * and the other with pages of the other colors.
e7c8d5c9 5245 */
9155203a 5246 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5247
e7c8d5c9 5248 return batch;
3a6be87f
DH
5249
5250#else
5251 /* The deferral and batching of frees should be suppressed under NOMMU
5252 * conditions.
5253 *
5254 * The problem is that NOMMU needs to be able to allocate large chunks
5255 * of contiguous memory as there's no hardware page translation to
5256 * assemble apparent contiguous memory from discontiguous pages.
5257 *
5258 * Queueing large contiguous runs of pages for batching, however,
5259 * causes the pages to actually be freed in smaller chunks. As there
5260 * can be a significant delay between the individual batches being
5261 * recycled, this leads to the once large chunks of space being
5262 * fragmented and becoming unavailable for high-order allocations.
5263 */
5264 return 0;
5265#endif
e7c8d5c9
CL
5266}
5267
8d7a8fa9
CS
5268/*
5269 * pcp->high and pcp->batch values are related and dependent on one another:
5270 * ->batch must never be higher then ->high.
5271 * The following function updates them in a safe manner without read side
5272 * locking.
5273 *
5274 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5275 * those fields changing asynchronously (acording the the above rule).
5276 *
5277 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5278 * outside of boot time (or some other assurance that no concurrent updaters
5279 * exist).
5280 */
5281static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5282 unsigned long batch)
5283{
5284 /* start with a fail safe value for batch */
5285 pcp->batch = 1;
5286 smp_wmb();
5287
5288 /* Update high, then batch, in order */
5289 pcp->high = high;
5290 smp_wmb();
5291
5292 pcp->batch = batch;
5293}
5294
3664033c 5295/* a companion to pageset_set_high() */
4008bab7
CS
5296static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5297{
8d7a8fa9 5298 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5299}
5300
88c90dbc 5301static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5302{
5303 struct per_cpu_pages *pcp;
5f8dcc21 5304 int migratetype;
2caaad41 5305
1c6fe946
MD
5306 memset(p, 0, sizeof(*p));
5307
3dfa5721 5308 pcp = &p->pcp;
2caaad41 5309 pcp->count = 0;
5f8dcc21
MG
5310 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5311 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5312}
5313
88c90dbc
CS
5314static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5315{
5316 pageset_init(p);
5317 pageset_set_batch(p, batch);
5318}
5319
8ad4b1fb 5320/*
3664033c 5321 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5322 * to the value high for the pageset p.
5323 */
3664033c 5324static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5325 unsigned long high)
5326{
8d7a8fa9
CS
5327 unsigned long batch = max(1UL, high / 4);
5328 if ((high / 4) > (PAGE_SHIFT * 8))
5329 batch = PAGE_SHIFT * 8;
8ad4b1fb 5330
8d7a8fa9 5331 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5332}
5333
7cd2b0a3
DR
5334static void pageset_set_high_and_batch(struct zone *zone,
5335 struct per_cpu_pageset *pcp)
56cef2b8 5336{
56cef2b8 5337 if (percpu_pagelist_fraction)
3664033c 5338 pageset_set_high(pcp,
56cef2b8
CS
5339 (zone->managed_pages /
5340 percpu_pagelist_fraction));
5341 else
5342 pageset_set_batch(pcp, zone_batchsize(zone));
5343}
5344
169f6c19
CS
5345static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5346{
5347 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5348
5349 pageset_init(pcp);
5350 pageset_set_high_and_batch(zone, pcp);
5351}
5352
4ed7e022 5353static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5354{
5355 int cpu;
319774e2 5356 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5357 for_each_possible_cpu(cpu)
5358 zone_pageset_init(zone, cpu);
319774e2
WF
5359}
5360
2caaad41 5361/*
99dcc3e5
CL
5362 * Allocate per cpu pagesets and initialize them.
5363 * Before this call only boot pagesets were available.
e7c8d5c9 5364 */
99dcc3e5 5365void __init setup_per_cpu_pageset(void)
e7c8d5c9 5366{
99dcc3e5 5367 struct zone *zone;
e7c8d5c9 5368
319774e2
WF
5369 for_each_populated_zone(zone)
5370 setup_zone_pageset(zone);
e7c8d5c9
CL
5371}
5372
577a32f6 5373static noinline __init_refok
cca448fe 5374int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5375{
5376 int i;
cca448fe 5377 size_t alloc_size;
ed8ece2e
DH
5378
5379 /*
5380 * The per-page waitqueue mechanism uses hashed waitqueues
5381 * per zone.
5382 */
02b694de
YG
5383 zone->wait_table_hash_nr_entries =
5384 wait_table_hash_nr_entries(zone_size_pages);
5385 zone->wait_table_bits =
5386 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5387 alloc_size = zone->wait_table_hash_nr_entries
5388 * sizeof(wait_queue_head_t);
5389
cd94b9db 5390 if (!slab_is_available()) {
cca448fe 5391 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5392 memblock_virt_alloc_node_nopanic(
5393 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5394 } else {
5395 /*
5396 * This case means that a zone whose size was 0 gets new memory
5397 * via memory hot-add.
5398 * But it may be the case that a new node was hot-added. In
5399 * this case vmalloc() will not be able to use this new node's
5400 * memory - this wait_table must be initialized to use this new
5401 * node itself as well.
5402 * To use this new node's memory, further consideration will be
5403 * necessary.
5404 */
8691f3a7 5405 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5406 }
5407 if (!zone->wait_table)
5408 return -ENOMEM;
ed8ece2e 5409
b8af2941 5410 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5411 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5412
5413 return 0;
ed8ece2e
DH
5414}
5415
c09b4240 5416static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5417{
99dcc3e5
CL
5418 /*
5419 * per cpu subsystem is not up at this point. The following code
5420 * relies on the ability of the linker to provide the
5421 * offset of a (static) per cpu variable into the per cpu area.
5422 */
5423 zone->pageset = &boot_pageset;
ed8ece2e 5424
b38a8725 5425 if (populated_zone(zone))
99dcc3e5
CL
5426 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5427 zone->name, zone->present_pages,
5428 zone_batchsize(zone));
ed8ece2e
DH
5429}
5430
4ed7e022 5431int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5432 unsigned long zone_start_pfn,
b171e409 5433 unsigned long size)
ed8ece2e
DH
5434{
5435 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5436 int ret;
5437 ret = zone_wait_table_init(zone, size);
5438 if (ret)
5439 return ret;
ed8ece2e
DH
5440 pgdat->nr_zones = zone_idx(zone) + 1;
5441
ed8ece2e
DH
5442 zone->zone_start_pfn = zone_start_pfn;
5443
708614e6
MG
5444 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5445 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5446 pgdat->node_id,
5447 (unsigned long)zone_idx(zone),
5448 zone_start_pfn, (zone_start_pfn + size));
5449
1e548deb 5450 zone_init_free_lists(zone);
718127cc
YG
5451
5452 return 0;
ed8ece2e
DH
5453}
5454
0ee332c1 5455#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5456#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5457
c713216d
MG
5458/*
5459 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5460 */
8a942fde
MG
5461int __meminit __early_pfn_to_nid(unsigned long pfn,
5462 struct mminit_pfnnid_cache *state)
c713216d 5463{
c13291a5 5464 unsigned long start_pfn, end_pfn;
e76b63f8 5465 int nid;
7c243c71 5466
8a942fde
MG
5467 if (state->last_start <= pfn && pfn < state->last_end)
5468 return state->last_nid;
c713216d 5469
e76b63f8
YL
5470 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5471 if (nid != -1) {
8a942fde
MG
5472 state->last_start = start_pfn;
5473 state->last_end = end_pfn;
5474 state->last_nid = nid;
e76b63f8
YL
5475 }
5476
5477 return nid;
c713216d
MG
5478}
5479#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5480
c713216d 5481/**
6782832e 5482 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5483 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5484 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5485 *
7d018176
ZZ
5486 * If an architecture guarantees that all ranges registered contain no holes
5487 * and may be freed, this this function may be used instead of calling
5488 * memblock_free_early_nid() manually.
c713216d 5489 */
c13291a5 5490void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5491{
c13291a5
TH
5492 unsigned long start_pfn, end_pfn;
5493 int i, this_nid;
edbe7d23 5494
c13291a5
TH
5495 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5496 start_pfn = min(start_pfn, max_low_pfn);
5497 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5498
c13291a5 5499 if (start_pfn < end_pfn)
6782832e
SS
5500 memblock_free_early_nid(PFN_PHYS(start_pfn),
5501 (end_pfn - start_pfn) << PAGE_SHIFT,
5502 this_nid);
edbe7d23 5503 }
edbe7d23 5504}
edbe7d23 5505
c713216d
MG
5506/**
5507 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5508 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5509 *
7d018176
ZZ
5510 * If an architecture guarantees that all ranges registered contain no holes and may
5511 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5512 */
5513void __init sparse_memory_present_with_active_regions(int nid)
5514{
c13291a5
TH
5515 unsigned long start_pfn, end_pfn;
5516 int i, this_nid;
c713216d 5517
c13291a5
TH
5518 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5519 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5520}
5521
5522/**
5523 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5524 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5525 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5526 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5527 *
5528 * It returns the start and end page frame of a node based on information
7d018176 5529 * provided by memblock_set_node(). If called for a node
c713216d 5530 * with no available memory, a warning is printed and the start and end
88ca3b94 5531 * PFNs will be 0.
c713216d 5532 */
a3142c8e 5533void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5534 unsigned long *start_pfn, unsigned long *end_pfn)
5535{
c13291a5 5536 unsigned long this_start_pfn, this_end_pfn;
c713216d 5537 int i;
c13291a5 5538
c713216d
MG
5539 *start_pfn = -1UL;
5540 *end_pfn = 0;
5541
c13291a5
TH
5542 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5543 *start_pfn = min(*start_pfn, this_start_pfn);
5544 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5545 }
5546
633c0666 5547 if (*start_pfn == -1UL)
c713216d 5548 *start_pfn = 0;
c713216d
MG
5549}
5550
2a1e274a
MG
5551/*
5552 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5553 * assumption is made that zones within a node are ordered in monotonic
5554 * increasing memory addresses so that the "highest" populated zone is used
5555 */
b69a7288 5556static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5557{
5558 int zone_index;
5559 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5560 if (zone_index == ZONE_MOVABLE)
5561 continue;
5562
5563 if (arch_zone_highest_possible_pfn[zone_index] >
5564 arch_zone_lowest_possible_pfn[zone_index])
5565 break;
5566 }
5567
5568 VM_BUG_ON(zone_index == -1);
5569 movable_zone = zone_index;
5570}
5571
5572/*
5573 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5574 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5575 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5576 * in each node depending on the size of each node and how evenly kernelcore
5577 * is distributed. This helper function adjusts the zone ranges
5578 * provided by the architecture for a given node by using the end of the
5579 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5580 * zones within a node are in order of monotonic increases memory addresses
5581 */
b69a7288 5582static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5583 unsigned long zone_type,
5584 unsigned long node_start_pfn,
5585 unsigned long node_end_pfn,
5586 unsigned long *zone_start_pfn,
5587 unsigned long *zone_end_pfn)
5588{
5589 /* Only adjust if ZONE_MOVABLE is on this node */
5590 if (zone_movable_pfn[nid]) {
5591 /* Size ZONE_MOVABLE */
5592 if (zone_type == ZONE_MOVABLE) {
5593 *zone_start_pfn = zone_movable_pfn[nid];
5594 *zone_end_pfn = min(node_end_pfn,
5595 arch_zone_highest_possible_pfn[movable_zone]);
5596
2a1e274a
MG
5597 /* Check if this whole range is within ZONE_MOVABLE */
5598 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5599 *zone_start_pfn = *zone_end_pfn;
5600 }
5601}
5602
c713216d
MG
5603/*
5604 * Return the number of pages a zone spans in a node, including holes
5605 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5606 */
6ea6e688 5607static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5608 unsigned long zone_type,
7960aedd
ZY
5609 unsigned long node_start_pfn,
5610 unsigned long node_end_pfn,
d91749c1
TI
5611 unsigned long *zone_start_pfn,
5612 unsigned long *zone_end_pfn,
c713216d
MG
5613 unsigned long *ignored)
5614{
b5685e92 5615 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5616 if (!node_start_pfn && !node_end_pfn)
5617 return 0;
5618
7960aedd 5619 /* Get the start and end of the zone */
d91749c1
TI
5620 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5621 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5622 adjust_zone_range_for_zone_movable(nid, zone_type,
5623 node_start_pfn, node_end_pfn,
d91749c1 5624 zone_start_pfn, zone_end_pfn);
c713216d
MG
5625
5626 /* Check that this node has pages within the zone's required range */
d91749c1 5627 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5628 return 0;
5629
5630 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5631 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5632 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5633
5634 /* Return the spanned pages */
d91749c1 5635 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5636}
5637
5638/*
5639 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5640 * then all holes in the requested range will be accounted for.
c713216d 5641 */
32996250 5642unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5643 unsigned long range_start_pfn,
5644 unsigned long range_end_pfn)
5645{
96e907d1
TH
5646 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5647 unsigned long start_pfn, end_pfn;
5648 int i;
c713216d 5649
96e907d1
TH
5650 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5651 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5652 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5653 nr_absent -= end_pfn - start_pfn;
c713216d 5654 }
96e907d1 5655 return nr_absent;
c713216d
MG
5656}
5657
5658/**
5659 * absent_pages_in_range - Return number of page frames in holes within a range
5660 * @start_pfn: The start PFN to start searching for holes
5661 * @end_pfn: The end PFN to stop searching for holes
5662 *
88ca3b94 5663 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5664 */
5665unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5666 unsigned long end_pfn)
5667{
5668 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5669}
5670
5671/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5672static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5673 unsigned long zone_type,
7960aedd
ZY
5674 unsigned long node_start_pfn,
5675 unsigned long node_end_pfn,
c713216d
MG
5676 unsigned long *ignored)
5677{
96e907d1
TH
5678 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5679 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5680 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5681 unsigned long nr_absent;
9c7cd687 5682
b5685e92 5683 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5684 if (!node_start_pfn && !node_end_pfn)
5685 return 0;
5686
96e907d1
TH
5687 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5688 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5689
2a1e274a
MG
5690 adjust_zone_range_for_zone_movable(nid, zone_type,
5691 node_start_pfn, node_end_pfn,
5692 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5693 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5694
5695 /*
5696 * ZONE_MOVABLE handling.
5697 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5698 * and vice versa.
5699 */
5700 if (zone_movable_pfn[nid]) {
5701 if (mirrored_kernelcore) {
5702 unsigned long start_pfn, end_pfn;
5703 struct memblock_region *r;
5704
5705 for_each_memblock(memory, r) {
5706 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5707 zone_start_pfn, zone_end_pfn);
5708 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5709 zone_start_pfn, zone_end_pfn);
5710
5711 if (zone_type == ZONE_MOVABLE &&
5712 memblock_is_mirror(r))
5713 nr_absent += end_pfn - start_pfn;
5714
5715 if (zone_type == ZONE_NORMAL &&
5716 !memblock_is_mirror(r))
5717 nr_absent += end_pfn - start_pfn;
5718 }
5719 } else {
5720 if (zone_type == ZONE_NORMAL)
5721 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5722 }
5723 }
5724
5725 return nr_absent;
c713216d 5726}
0e0b864e 5727
0ee332c1 5728#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5729static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5730 unsigned long zone_type,
7960aedd
ZY
5731 unsigned long node_start_pfn,
5732 unsigned long node_end_pfn,
d91749c1
TI
5733 unsigned long *zone_start_pfn,
5734 unsigned long *zone_end_pfn,
c713216d
MG
5735 unsigned long *zones_size)
5736{
d91749c1
TI
5737 unsigned int zone;
5738
5739 *zone_start_pfn = node_start_pfn;
5740 for (zone = 0; zone < zone_type; zone++)
5741 *zone_start_pfn += zones_size[zone];
5742
5743 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5744
c713216d
MG
5745 return zones_size[zone_type];
5746}
5747
6ea6e688 5748static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5749 unsigned long zone_type,
7960aedd
ZY
5750 unsigned long node_start_pfn,
5751 unsigned long node_end_pfn,
c713216d
MG
5752 unsigned long *zholes_size)
5753{
5754 if (!zholes_size)
5755 return 0;
5756
5757 return zholes_size[zone_type];
5758}
20e6926d 5759
0ee332c1 5760#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5761
a3142c8e 5762static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5763 unsigned long node_start_pfn,
5764 unsigned long node_end_pfn,
5765 unsigned long *zones_size,
5766 unsigned long *zholes_size)
c713216d 5767{
febd5949 5768 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5769 enum zone_type i;
5770
febd5949
GZ
5771 for (i = 0; i < MAX_NR_ZONES; i++) {
5772 struct zone *zone = pgdat->node_zones + i;
d91749c1 5773 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5774 unsigned long size, real_size;
c713216d 5775
febd5949
GZ
5776 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5777 node_start_pfn,
5778 node_end_pfn,
d91749c1
TI
5779 &zone_start_pfn,
5780 &zone_end_pfn,
febd5949
GZ
5781 zones_size);
5782 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5783 node_start_pfn, node_end_pfn,
5784 zholes_size);
d91749c1
TI
5785 if (size)
5786 zone->zone_start_pfn = zone_start_pfn;
5787 else
5788 zone->zone_start_pfn = 0;
febd5949
GZ
5789 zone->spanned_pages = size;
5790 zone->present_pages = real_size;
5791
5792 totalpages += size;
5793 realtotalpages += real_size;
5794 }
5795
5796 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5797 pgdat->node_present_pages = realtotalpages;
5798 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5799 realtotalpages);
5800}
5801
835c134e
MG
5802#ifndef CONFIG_SPARSEMEM
5803/*
5804 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5805 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5806 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5807 * round what is now in bits to nearest long in bits, then return it in
5808 * bytes.
5809 */
7c45512d 5810static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5811{
5812 unsigned long usemapsize;
5813
7c45512d 5814 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5815 usemapsize = roundup(zonesize, pageblock_nr_pages);
5816 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5817 usemapsize *= NR_PAGEBLOCK_BITS;
5818 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5819
5820 return usemapsize / 8;
5821}
5822
5823static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5824 struct zone *zone,
5825 unsigned long zone_start_pfn,
5826 unsigned long zonesize)
835c134e 5827{
7c45512d 5828 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5829 zone->pageblock_flags = NULL;
58a01a45 5830 if (usemapsize)
6782832e
SS
5831 zone->pageblock_flags =
5832 memblock_virt_alloc_node_nopanic(usemapsize,
5833 pgdat->node_id);
835c134e
MG
5834}
5835#else
7c45512d
LT
5836static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5837 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5838#endif /* CONFIG_SPARSEMEM */
5839
d9c23400 5840#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5841
d9c23400 5842/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5843void __paginginit set_pageblock_order(void)
d9c23400 5844{
955c1cd7
AM
5845 unsigned int order;
5846
d9c23400
MG
5847 /* Check that pageblock_nr_pages has not already been setup */
5848 if (pageblock_order)
5849 return;
5850
955c1cd7
AM
5851 if (HPAGE_SHIFT > PAGE_SHIFT)
5852 order = HUGETLB_PAGE_ORDER;
5853 else
5854 order = MAX_ORDER - 1;
5855
d9c23400
MG
5856 /*
5857 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5858 * This value may be variable depending on boot parameters on IA64 and
5859 * powerpc.
d9c23400
MG
5860 */
5861 pageblock_order = order;
5862}
5863#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5864
ba72cb8c
MG
5865/*
5866 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5867 * is unused as pageblock_order is set at compile-time. See
5868 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5869 * the kernel config
ba72cb8c 5870 */
15ca220e 5871void __paginginit set_pageblock_order(void)
ba72cb8c 5872{
ba72cb8c 5873}
d9c23400
MG
5874
5875#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5876
01cefaef
JL
5877static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5878 unsigned long present_pages)
5879{
5880 unsigned long pages = spanned_pages;
5881
5882 /*
5883 * Provide a more accurate estimation if there are holes within
5884 * the zone and SPARSEMEM is in use. If there are holes within the
5885 * zone, each populated memory region may cost us one or two extra
5886 * memmap pages due to alignment because memmap pages for each
5887 * populated regions may not naturally algined on page boundary.
5888 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5889 */
5890 if (spanned_pages > present_pages + (present_pages >> 4) &&
5891 IS_ENABLED(CONFIG_SPARSEMEM))
5892 pages = present_pages;
5893
5894 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5895}
5896
1da177e4
LT
5897/*
5898 * Set up the zone data structures:
5899 * - mark all pages reserved
5900 * - mark all memory queues empty
5901 * - clear the memory bitmaps
6527af5d
MK
5902 *
5903 * NOTE: pgdat should get zeroed by caller.
1da177e4 5904 */
7f3eb55b 5905static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5906{
2f1b6248 5907 enum zone_type j;
ed8ece2e 5908 int nid = pgdat->node_id;
718127cc 5909 int ret;
1da177e4 5910
208d54e5 5911 pgdat_resize_init(pgdat);
8177a420
AA
5912#ifdef CONFIG_NUMA_BALANCING
5913 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5914 pgdat->numabalancing_migrate_nr_pages = 0;
5915 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5916#endif
5917#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5918 spin_lock_init(&pgdat->split_queue_lock);
5919 INIT_LIST_HEAD(&pgdat->split_queue);
5920 pgdat->split_queue_len = 0;
8177a420 5921#endif
1da177e4 5922 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5923 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5924#ifdef CONFIG_COMPACTION
5925 init_waitqueue_head(&pgdat->kcompactd_wait);
5926#endif
eefa864b 5927 pgdat_page_ext_init(pgdat);
5f63b720 5928
1da177e4
LT
5929 for (j = 0; j < MAX_NR_ZONES; j++) {
5930 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5931 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5932 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5933
febd5949
GZ
5934 size = zone->spanned_pages;
5935 realsize = freesize = zone->present_pages;
1da177e4 5936
0e0b864e 5937 /*
9feedc9d 5938 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5939 * is used by this zone for memmap. This affects the watermark
5940 * and per-cpu initialisations
5941 */
01cefaef 5942 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5943 if (!is_highmem_idx(j)) {
5944 if (freesize >= memmap_pages) {
5945 freesize -= memmap_pages;
5946 if (memmap_pages)
5947 printk(KERN_DEBUG
5948 " %s zone: %lu pages used for memmap\n",
5949 zone_names[j], memmap_pages);
5950 } else
1170532b 5951 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5952 zone_names[j], memmap_pages, freesize);
5953 }
0e0b864e 5954
6267276f 5955 /* Account for reserved pages */
9feedc9d
JL
5956 if (j == 0 && freesize > dma_reserve) {
5957 freesize -= dma_reserve;
d903ef9f 5958 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5959 zone_names[0], dma_reserve);
0e0b864e
MG
5960 }
5961
98d2b0eb 5962 if (!is_highmem_idx(j))
9feedc9d 5963 nr_kernel_pages += freesize;
01cefaef
JL
5964 /* Charge for highmem memmap if there are enough kernel pages */
5965 else if (nr_kernel_pages > memmap_pages * 2)
5966 nr_kernel_pages -= memmap_pages;
9feedc9d 5967 nr_all_pages += freesize;
1da177e4 5968
9feedc9d
JL
5969 /*
5970 * Set an approximate value for lowmem here, it will be adjusted
5971 * when the bootmem allocator frees pages into the buddy system.
5972 * And all highmem pages will be managed by the buddy system.
5973 */
5974 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5975#ifdef CONFIG_NUMA
d5f541ed 5976 zone->node = nid;
9feedc9d 5977 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5978 / 100;
9feedc9d 5979 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5980#endif
1da177e4
LT
5981 zone->name = zone_names[j];
5982 spin_lock_init(&zone->lock);
5983 spin_lock_init(&zone->lru_lock);
bdc8cb98 5984 zone_seqlock_init(zone);
1da177e4 5985 zone->zone_pgdat = pgdat;
ed8ece2e 5986 zone_pcp_init(zone);
81c0a2bb
JW
5987
5988 /* For bootup, initialized properly in watermark setup */
5989 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5990
bea8c150 5991 lruvec_init(&zone->lruvec);
1da177e4
LT
5992 if (!size)
5993 continue;
5994
955c1cd7 5995 set_pageblock_order();
7c45512d 5996 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5997 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5998 BUG_ON(ret);
76cdd58e 5999 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6000 }
6001}
6002
577a32f6 6003static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6004{
b0aeba74 6005 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6006 unsigned long __maybe_unused offset = 0;
6007
1da177e4
LT
6008 /* Skip empty nodes */
6009 if (!pgdat->node_spanned_pages)
6010 return;
6011
d41dee36 6012#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6013 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6014 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6015 /* ia64 gets its own node_mem_map, before this, without bootmem */
6016 if (!pgdat->node_mem_map) {
b0aeba74 6017 unsigned long size, end;
d41dee36
AW
6018 struct page *map;
6019
e984bb43
BP
6020 /*
6021 * The zone's endpoints aren't required to be MAX_ORDER
6022 * aligned but the node_mem_map endpoints must be in order
6023 * for the buddy allocator to function correctly.
6024 */
108bcc96 6025 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6026 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6027 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6028 map = alloc_remap(pgdat->node_id, size);
6029 if (!map)
6782832e
SS
6030 map = memblock_virt_alloc_node_nopanic(size,
6031 pgdat->node_id);
a1c34a3b 6032 pgdat->node_mem_map = map + offset;
1da177e4 6033 }
12d810c1 6034#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6035 /*
6036 * With no DISCONTIG, the global mem_map is just set as node 0's
6037 */
c713216d 6038 if (pgdat == NODE_DATA(0)) {
1da177e4 6039 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6040#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6041 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6042 mem_map -= offset;
0ee332c1 6043#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6044 }
1da177e4 6045#endif
d41dee36 6046#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6047}
6048
9109fb7b
JW
6049void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6050 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6051{
9109fb7b 6052 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6053 unsigned long start_pfn = 0;
6054 unsigned long end_pfn = 0;
9109fb7b 6055
88fdf75d 6056 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6057 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6058
3a80a7fa 6059 reset_deferred_meminit(pgdat);
1da177e4
LT
6060 pgdat->node_id = nid;
6061 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6062#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6063 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6064 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6065 (u64)start_pfn << PAGE_SHIFT,
6066 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6067#else
6068 start_pfn = node_start_pfn;
7960aedd
ZY
6069#endif
6070 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6071 zones_size, zholes_size);
1da177e4
LT
6072
6073 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6074#ifdef CONFIG_FLAT_NODE_MEM_MAP
6075 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6076 nid, (unsigned long)pgdat,
6077 (unsigned long)pgdat->node_mem_map);
6078#endif
1da177e4 6079
7f3eb55b 6080 free_area_init_core(pgdat);
1da177e4
LT
6081}
6082
0ee332c1 6083#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6084
6085#if MAX_NUMNODES > 1
6086/*
6087 * Figure out the number of possible node ids.
6088 */
f9872caf 6089void __init setup_nr_node_ids(void)
418508c1 6090{
904a9553 6091 unsigned int highest;
418508c1 6092
904a9553 6093 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6094 nr_node_ids = highest + 1;
6095}
418508c1
MS
6096#endif
6097
1e01979c
TH
6098/**
6099 * node_map_pfn_alignment - determine the maximum internode alignment
6100 *
6101 * This function should be called after node map is populated and sorted.
6102 * It calculates the maximum power of two alignment which can distinguish
6103 * all the nodes.
6104 *
6105 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6106 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6107 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6108 * shifted, 1GiB is enough and this function will indicate so.
6109 *
6110 * This is used to test whether pfn -> nid mapping of the chosen memory
6111 * model has fine enough granularity to avoid incorrect mapping for the
6112 * populated node map.
6113 *
6114 * Returns the determined alignment in pfn's. 0 if there is no alignment
6115 * requirement (single node).
6116 */
6117unsigned long __init node_map_pfn_alignment(void)
6118{
6119 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6120 unsigned long start, end, mask;
1e01979c 6121 int last_nid = -1;
c13291a5 6122 int i, nid;
1e01979c 6123
c13291a5 6124 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6125 if (!start || last_nid < 0 || last_nid == nid) {
6126 last_nid = nid;
6127 last_end = end;
6128 continue;
6129 }
6130
6131 /*
6132 * Start with a mask granular enough to pin-point to the
6133 * start pfn and tick off bits one-by-one until it becomes
6134 * too coarse to separate the current node from the last.
6135 */
6136 mask = ~((1 << __ffs(start)) - 1);
6137 while (mask && last_end <= (start & (mask << 1)))
6138 mask <<= 1;
6139
6140 /* accumulate all internode masks */
6141 accl_mask |= mask;
6142 }
6143
6144 /* convert mask to number of pages */
6145 return ~accl_mask + 1;
6146}
6147
a6af2bc3 6148/* Find the lowest pfn for a node */
b69a7288 6149static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6150{
a6af2bc3 6151 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6152 unsigned long start_pfn;
6153 int i;
1abbfb41 6154
c13291a5
TH
6155 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6156 min_pfn = min(min_pfn, start_pfn);
c713216d 6157
a6af2bc3 6158 if (min_pfn == ULONG_MAX) {
1170532b 6159 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6160 return 0;
6161 }
6162
6163 return min_pfn;
c713216d
MG
6164}
6165
6166/**
6167 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6168 *
6169 * It returns the minimum PFN based on information provided via
7d018176 6170 * memblock_set_node().
c713216d
MG
6171 */
6172unsigned long __init find_min_pfn_with_active_regions(void)
6173{
6174 return find_min_pfn_for_node(MAX_NUMNODES);
6175}
6176
37b07e41
LS
6177/*
6178 * early_calculate_totalpages()
6179 * Sum pages in active regions for movable zone.
4b0ef1fe 6180 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6181 */
484f51f8 6182static unsigned long __init early_calculate_totalpages(void)
7e63efef 6183{
7e63efef 6184 unsigned long totalpages = 0;
c13291a5
TH
6185 unsigned long start_pfn, end_pfn;
6186 int i, nid;
6187
6188 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6189 unsigned long pages = end_pfn - start_pfn;
7e63efef 6190
37b07e41
LS
6191 totalpages += pages;
6192 if (pages)
4b0ef1fe 6193 node_set_state(nid, N_MEMORY);
37b07e41 6194 }
b8af2941 6195 return totalpages;
7e63efef
MG
6196}
6197
2a1e274a
MG
6198/*
6199 * Find the PFN the Movable zone begins in each node. Kernel memory
6200 * is spread evenly between nodes as long as the nodes have enough
6201 * memory. When they don't, some nodes will have more kernelcore than
6202 * others
6203 */
b224ef85 6204static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6205{
6206 int i, nid;
6207 unsigned long usable_startpfn;
6208 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6209 /* save the state before borrow the nodemask */
4b0ef1fe 6210 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6211 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6212 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6213 struct memblock_region *r;
b2f3eebe
TC
6214
6215 /* Need to find movable_zone earlier when movable_node is specified. */
6216 find_usable_zone_for_movable();
6217
6218 /*
6219 * If movable_node is specified, ignore kernelcore and movablecore
6220 * options.
6221 */
6222 if (movable_node_is_enabled()) {
136199f0
EM
6223 for_each_memblock(memory, r) {
6224 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6225 continue;
6226
136199f0 6227 nid = r->nid;
b2f3eebe 6228
136199f0 6229 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6230 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6231 min(usable_startpfn, zone_movable_pfn[nid]) :
6232 usable_startpfn;
6233 }
6234
6235 goto out2;
6236 }
2a1e274a 6237
342332e6
TI
6238 /*
6239 * If kernelcore=mirror is specified, ignore movablecore option
6240 */
6241 if (mirrored_kernelcore) {
6242 bool mem_below_4gb_not_mirrored = false;
6243
6244 for_each_memblock(memory, r) {
6245 if (memblock_is_mirror(r))
6246 continue;
6247
6248 nid = r->nid;
6249
6250 usable_startpfn = memblock_region_memory_base_pfn(r);
6251
6252 if (usable_startpfn < 0x100000) {
6253 mem_below_4gb_not_mirrored = true;
6254 continue;
6255 }
6256
6257 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6258 min(usable_startpfn, zone_movable_pfn[nid]) :
6259 usable_startpfn;
6260 }
6261
6262 if (mem_below_4gb_not_mirrored)
6263 pr_warn("This configuration results in unmirrored kernel memory.");
6264
6265 goto out2;
6266 }
6267
7e63efef 6268 /*
b2f3eebe 6269 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6270 * kernelcore that corresponds so that memory usable for
6271 * any allocation type is evenly spread. If both kernelcore
6272 * and movablecore are specified, then the value of kernelcore
6273 * will be used for required_kernelcore if it's greater than
6274 * what movablecore would have allowed.
6275 */
6276 if (required_movablecore) {
7e63efef
MG
6277 unsigned long corepages;
6278
6279 /*
6280 * Round-up so that ZONE_MOVABLE is at least as large as what
6281 * was requested by the user
6282 */
6283 required_movablecore =
6284 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6285 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6286 corepages = totalpages - required_movablecore;
6287
6288 required_kernelcore = max(required_kernelcore, corepages);
6289 }
6290
bde304bd
XQ
6291 /*
6292 * If kernelcore was not specified or kernelcore size is larger
6293 * than totalpages, there is no ZONE_MOVABLE.
6294 */
6295 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6296 goto out;
2a1e274a
MG
6297
6298 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6299 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6300
6301restart:
6302 /* Spread kernelcore memory as evenly as possible throughout nodes */
6303 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6304 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6305 unsigned long start_pfn, end_pfn;
6306
2a1e274a
MG
6307 /*
6308 * Recalculate kernelcore_node if the division per node
6309 * now exceeds what is necessary to satisfy the requested
6310 * amount of memory for the kernel
6311 */
6312 if (required_kernelcore < kernelcore_node)
6313 kernelcore_node = required_kernelcore / usable_nodes;
6314
6315 /*
6316 * As the map is walked, we track how much memory is usable
6317 * by the kernel using kernelcore_remaining. When it is
6318 * 0, the rest of the node is usable by ZONE_MOVABLE
6319 */
6320 kernelcore_remaining = kernelcore_node;
6321
6322 /* Go through each range of PFNs within this node */
c13291a5 6323 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6324 unsigned long size_pages;
6325
c13291a5 6326 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6327 if (start_pfn >= end_pfn)
6328 continue;
6329
6330 /* Account for what is only usable for kernelcore */
6331 if (start_pfn < usable_startpfn) {
6332 unsigned long kernel_pages;
6333 kernel_pages = min(end_pfn, usable_startpfn)
6334 - start_pfn;
6335
6336 kernelcore_remaining -= min(kernel_pages,
6337 kernelcore_remaining);
6338 required_kernelcore -= min(kernel_pages,
6339 required_kernelcore);
6340
6341 /* Continue if range is now fully accounted */
6342 if (end_pfn <= usable_startpfn) {
6343
6344 /*
6345 * Push zone_movable_pfn to the end so
6346 * that if we have to rebalance
6347 * kernelcore across nodes, we will
6348 * not double account here
6349 */
6350 zone_movable_pfn[nid] = end_pfn;
6351 continue;
6352 }
6353 start_pfn = usable_startpfn;
6354 }
6355
6356 /*
6357 * The usable PFN range for ZONE_MOVABLE is from
6358 * start_pfn->end_pfn. Calculate size_pages as the
6359 * number of pages used as kernelcore
6360 */
6361 size_pages = end_pfn - start_pfn;
6362 if (size_pages > kernelcore_remaining)
6363 size_pages = kernelcore_remaining;
6364 zone_movable_pfn[nid] = start_pfn + size_pages;
6365
6366 /*
6367 * Some kernelcore has been met, update counts and
6368 * break if the kernelcore for this node has been
b8af2941 6369 * satisfied
2a1e274a
MG
6370 */
6371 required_kernelcore -= min(required_kernelcore,
6372 size_pages);
6373 kernelcore_remaining -= size_pages;
6374 if (!kernelcore_remaining)
6375 break;
6376 }
6377 }
6378
6379 /*
6380 * If there is still required_kernelcore, we do another pass with one
6381 * less node in the count. This will push zone_movable_pfn[nid] further
6382 * along on the nodes that still have memory until kernelcore is
b8af2941 6383 * satisfied
2a1e274a
MG
6384 */
6385 usable_nodes--;
6386 if (usable_nodes && required_kernelcore > usable_nodes)
6387 goto restart;
6388
b2f3eebe 6389out2:
2a1e274a
MG
6390 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6391 for (nid = 0; nid < MAX_NUMNODES; nid++)
6392 zone_movable_pfn[nid] =
6393 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6394
20e6926d 6395out:
66918dcd 6396 /* restore the node_state */
4b0ef1fe 6397 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6398}
6399
4b0ef1fe
LJ
6400/* Any regular or high memory on that node ? */
6401static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6402{
37b07e41
LS
6403 enum zone_type zone_type;
6404
4b0ef1fe
LJ
6405 if (N_MEMORY == N_NORMAL_MEMORY)
6406 return;
6407
6408 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6409 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6410 if (populated_zone(zone)) {
4b0ef1fe
LJ
6411 node_set_state(nid, N_HIGH_MEMORY);
6412 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6413 zone_type <= ZONE_NORMAL)
6414 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6415 break;
6416 }
37b07e41 6417 }
37b07e41
LS
6418}
6419
c713216d
MG
6420/**
6421 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6422 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6423 *
6424 * This will call free_area_init_node() for each active node in the system.
7d018176 6425 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6426 * zone in each node and their holes is calculated. If the maximum PFN
6427 * between two adjacent zones match, it is assumed that the zone is empty.
6428 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6429 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6430 * starts where the previous one ended. For example, ZONE_DMA32 starts
6431 * at arch_max_dma_pfn.
6432 */
6433void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6434{
c13291a5
TH
6435 unsigned long start_pfn, end_pfn;
6436 int i, nid;
a6af2bc3 6437
c713216d
MG
6438 /* Record where the zone boundaries are */
6439 memset(arch_zone_lowest_possible_pfn, 0,
6440 sizeof(arch_zone_lowest_possible_pfn));
6441 memset(arch_zone_highest_possible_pfn, 0,
6442 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6443
6444 start_pfn = find_min_pfn_with_active_regions();
6445
6446 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6447 if (i == ZONE_MOVABLE)
6448 continue;
90cae1fe
OH
6449
6450 end_pfn = max(max_zone_pfn[i], start_pfn);
6451 arch_zone_lowest_possible_pfn[i] = start_pfn;
6452 arch_zone_highest_possible_pfn[i] = end_pfn;
6453
6454 start_pfn = end_pfn;
c713216d 6455 }
2a1e274a
MG
6456 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6457 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6458
6459 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6460 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6461 find_zone_movable_pfns_for_nodes();
c713216d 6462
c713216d 6463 /* Print out the zone ranges */
f88dfff5 6464 pr_info("Zone ranges:\n");
2a1e274a
MG
6465 for (i = 0; i < MAX_NR_ZONES; i++) {
6466 if (i == ZONE_MOVABLE)
6467 continue;
f88dfff5 6468 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6469 if (arch_zone_lowest_possible_pfn[i] ==
6470 arch_zone_highest_possible_pfn[i])
f88dfff5 6471 pr_cont("empty\n");
72f0ba02 6472 else
8d29e18a
JG
6473 pr_cont("[mem %#018Lx-%#018Lx]\n",
6474 (u64)arch_zone_lowest_possible_pfn[i]
6475 << PAGE_SHIFT,
6476 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6477 << PAGE_SHIFT) - 1);
2a1e274a
MG
6478 }
6479
6480 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6481 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6482 for (i = 0; i < MAX_NUMNODES; i++) {
6483 if (zone_movable_pfn[i])
8d29e18a
JG
6484 pr_info(" Node %d: %#018Lx\n", i,
6485 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6486 }
c713216d 6487
f2d52fe5 6488 /* Print out the early node map */
f88dfff5 6489 pr_info("Early memory node ranges\n");
c13291a5 6490 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6491 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6492 (u64)start_pfn << PAGE_SHIFT,
6493 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6494
6495 /* Initialise every node */
708614e6 6496 mminit_verify_pageflags_layout();
8ef82866 6497 setup_nr_node_ids();
c713216d
MG
6498 for_each_online_node(nid) {
6499 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6500 free_area_init_node(nid, NULL,
c713216d 6501 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6502
6503 /* Any memory on that node */
6504 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6505 node_set_state(nid, N_MEMORY);
6506 check_for_memory(pgdat, nid);
c713216d
MG
6507 }
6508}
2a1e274a 6509
7e63efef 6510static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6511{
6512 unsigned long long coremem;
6513 if (!p)
6514 return -EINVAL;
6515
6516 coremem = memparse(p, &p);
7e63efef 6517 *core = coremem >> PAGE_SHIFT;
2a1e274a 6518
7e63efef 6519 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6520 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6521
6522 return 0;
6523}
ed7ed365 6524
7e63efef
MG
6525/*
6526 * kernelcore=size sets the amount of memory for use for allocations that
6527 * cannot be reclaimed or migrated.
6528 */
6529static int __init cmdline_parse_kernelcore(char *p)
6530{
342332e6
TI
6531 /* parse kernelcore=mirror */
6532 if (parse_option_str(p, "mirror")) {
6533 mirrored_kernelcore = true;
6534 return 0;
6535 }
6536
7e63efef
MG
6537 return cmdline_parse_core(p, &required_kernelcore);
6538}
6539
6540/*
6541 * movablecore=size sets the amount of memory for use for allocations that
6542 * can be reclaimed or migrated.
6543 */
6544static int __init cmdline_parse_movablecore(char *p)
6545{
6546 return cmdline_parse_core(p, &required_movablecore);
6547}
6548
ed7ed365 6549early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6550early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6551
0ee332c1 6552#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6553
c3d5f5f0
JL
6554void adjust_managed_page_count(struct page *page, long count)
6555{
6556 spin_lock(&managed_page_count_lock);
6557 page_zone(page)->managed_pages += count;
6558 totalram_pages += count;
3dcc0571
JL
6559#ifdef CONFIG_HIGHMEM
6560 if (PageHighMem(page))
6561 totalhigh_pages += count;
6562#endif
c3d5f5f0
JL
6563 spin_unlock(&managed_page_count_lock);
6564}
3dcc0571 6565EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6566
11199692 6567unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6568{
11199692
JL
6569 void *pos;
6570 unsigned long pages = 0;
69afade7 6571
11199692
JL
6572 start = (void *)PAGE_ALIGN((unsigned long)start);
6573 end = (void *)((unsigned long)end & PAGE_MASK);
6574 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6575 if ((unsigned int)poison <= 0xFF)
11199692
JL
6576 memset(pos, poison, PAGE_SIZE);
6577 free_reserved_page(virt_to_page(pos));
69afade7
JL
6578 }
6579
6580 if (pages && s)
11199692 6581 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6582 s, pages << (PAGE_SHIFT - 10), start, end);
6583
6584 return pages;
6585}
11199692 6586EXPORT_SYMBOL(free_reserved_area);
69afade7 6587
cfa11e08
JL
6588#ifdef CONFIG_HIGHMEM
6589void free_highmem_page(struct page *page)
6590{
6591 __free_reserved_page(page);
6592 totalram_pages++;
7b4b2a0d 6593 page_zone(page)->managed_pages++;
cfa11e08
JL
6594 totalhigh_pages++;
6595}
6596#endif
6597
7ee3d4e8
JL
6598
6599void __init mem_init_print_info(const char *str)
6600{
6601 unsigned long physpages, codesize, datasize, rosize, bss_size;
6602 unsigned long init_code_size, init_data_size;
6603
6604 physpages = get_num_physpages();
6605 codesize = _etext - _stext;
6606 datasize = _edata - _sdata;
6607 rosize = __end_rodata - __start_rodata;
6608 bss_size = __bss_stop - __bss_start;
6609 init_data_size = __init_end - __init_begin;
6610 init_code_size = _einittext - _sinittext;
6611
6612 /*
6613 * Detect special cases and adjust section sizes accordingly:
6614 * 1) .init.* may be embedded into .data sections
6615 * 2) .init.text.* may be out of [__init_begin, __init_end],
6616 * please refer to arch/tile/kernel/vmlinux.lds.S.
6617 * 3) .rodata.* may be embedded into .text or .data sections.
6618 */
6619#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6620 do { \
6621 if (start <= pos && pos < end && size > adj) \
6622 size -= adj; \
6623 } while (0)
7ee3d4e8
JL
6624
6625 adj_init_size(__init_begin, __init_end, init_data_size,
6626 _sinittext, init_code_size);
6627 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6628 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6629 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6630 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6631
6632#undef adj_init_size
6633
756a025f 6634 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6635#ifdef CONFIG_HIGHMEM
756a025f 6636 ", %luK highmem"
7ee3d4e8 6637#endif
756a025f
JP
6638 "%s%s)\n",
6639 nr_free_pages() << (PAGE_SHIFT - 10),
6640 physpages << (PAGE_SHIFT - 10),
6641 codesize >> 10, datasize >> 10, rosize >> 10,
6642 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6643 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6644 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6645#ifdef CONFIG_HIGHMEM
756a025f 6646 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6647#endif
756a025f 6648 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6649}
6650
0e0b864e 6651/**
88ca3b94
RD
6652 * set_dma_reserve - set the specified number of pages reserved in the first zone
6653 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6654 *
013110a7 6655 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6656 * In the DMA zone, a significant percentage may be consumed by kernel image
6657 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6658 * function may optionally be used to account for unfreeable pages in the
6659 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6660 * smaller per-cpu batchsize.
0e0b864e
MG
6661 */
6662void __init set_dma_reserve(unsigned long new_dma_reserve)
6663{
6664 dma_reserve = new_dma_reserve;
6665}
6666
1da177e4
LT
6667void __init free_area_init(unsigned long *zones_size)
6668{
9109fb7b 6669 free_area_init_node(0, zones_size,
1da177e4
LT
6670 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6671}
1da177e4 6672
1da177e4
LT
6673static int page_alloc_cpu_notify(struct notifier_block *self,
6674 unsigned long action, void *hcpu)
6675{
6676 int cpu = (unsigned long)hcpu;
1da177e4 6677
8bb78442 6678 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6679 lru_add_drain_cpu(cpu);
9f8f2172
CL
6680 drain_pages(cpu);
6681
6682 /*
6683 * Spill the event counters of the dead processor
6684 * into the current processors event counters.
6685 * This artificially elevates the count of the current
6686 * processor.
6687 */
f8891e5e 6688 vm_events_fold_cpu(cpu);
9f8f2172
CL
6689
6690 /*
6691 * Zero the differential counters of the dead processor
6692 * so that the vm statistics are consistent.
6693 *
6694 * This is only okay since the processor is dead and cannot
6695 * race with what we are doing.
6696 */
2bb921e5 6697 cpu_vm_stats_fold(cpu);
1da177e4
LT
6698 }
6699 return NOTIFY_OK;
6700}
1da177e4
LT
6701
6702void __init page_alloc_init(void)
6703{
6704 hotcpu_notifier(page_alloc_cpu_notify, 0);
6705}
6706
cb45b0e9 6707/*
34b10060 6708 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6709 * or min_free_kbytes changes.
6710 */
6711static void calculate_totalreserve_pages(void)
6712{
6713 struct pglist_data *pgdat;
6714 unsigned long reserve_pages = 0;
2f6726e5 6715 enum zone_type i, j;
cb45b0e9
HA
6716
6717 for_each_online_pgdat(pgdat) {
6718 for (i = 0; i < MAX_NR_ZONES; i++) {
6719 struct zone *zone = pgdat->node_zones + i;
3484b2de 6720 long max = 0;
cb45b0e9
HA
6721
6722 /* Find valid and maximum lowmem_reserve in the zone */
6723 for (j = i; j < MAX_NR_ZONES; j++) {
6724 if (zone->lowmem_reserve[j] > max)
6725 max = zone->lowmem_reserve[j];
6726 }
6727
41858966
MG
6728 /* we treat the high watermark as reserved pages. */
6729 max += high_wmark_pages(zone);
cb45b0e9 6730
b40da049
JL
6731 if (max > zone->managed_pages)
6732 max = zone->managed_pages;
a8d01437
JW
6733
6734 zone->totalreserve_pages = max;
6735
cb45b0e9
HA
6736 reserve_pages += max;
6737 }
6738 }
6739 totalreserve_pages = reserve_pages;
6740}
6741
1da177e4
LT
6742/*
6743 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6744 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6745 * has a correct pages reserved value, so an adequate number of
6746 * pages are left in the zone after a successful __alloc_pages().
6747 */
6748static void setup_per_zone_lowmem_reserve(void)
6749{
6750 struct pglist_data *pgdat;
2f6726e5 6751 enum zone_type j, idx;
1da177e4 6752
ec936fc5 6753 for_each_online_pgdat(pgdat) {
1da177e4
LT
6754 for (j = 0; j < MAX_NR_ZONES; j++) {
6755 struct zone *zone = pgdat->node_zones + j;
b40da049 6756 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6757
6758 zone->lowmem_reserve[j] = 0;
6759
2f6726e5
CL
6760 idx = j;
6761 while (idx) {
1da177e4
LT
6762 struct zone *lower_zone;
6763
2f6726e5
CL
6764 idx--;
6765
1da177e4
LT
6766 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6767 sysctl_lowmem_reserve_ratio[idx] = 1;
6768
6769 lower_zone = pgdat->node_zones + idx;
b40da049 6770 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6771 sysctl_lowmem_reserve_ratio[idx];
b40da049 6772 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6773 }
6774 }
6775 }
cb45b0e9
HA
6776
6777 /* update totalreserve_pages */
6778 calculate_totalreserve_pages();
1da177e4
LT
6779}
6780
cfd3da1e 6781static void __setup_per_zone_wmarks(void)
1da177e4
LT
6782{
6783 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6784 unsigned long lowmem_pages = 0;
6785 struct zone *zone;
6786 unsigned long flags;
6787
6788 /* Calculate total number of !ZONE_HIGHMEM pages */
6789 for_each_zone(zone) {
6790 if (!is_highmem(zone))
b40da049 6791 lowmem_pages += zone->managed_pages;
1da177e4
LT
6792 }
6793
6794 for_each_zone(zone) {
ac924c60
AM
6795 u64 tmp;
6796
1125b4e3 6797 spin_lock_irqsave(&zone->lock, flags);
b40da049 6798 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6799 do_div(tmp, lowmem_pages);
1da177e4
LT
6800 if (is_highmem(zone)) {
6801 /*
669ed175
NP
6802 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6803 * need highmem pages, so cap pages_min to a small
6804 * value here.
6805 *
41858966 6806 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6807 * deltas control asynch page reclaim, and so should
669ed175 6808 * not be capped for highmem.
1da177e4 6809 */
90ae8d67 6810 unsigned long min_pages;
1da177e4 6811
b40da049 6812 min_pages = zone->managed_pages / 1024;
90ae8d67 6813 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6814 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6815 } else {
669ed175
NP
6816 /*
6817 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6818 * proportionate to the zone's size.
6819 */
41858966 6820 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6821 }
6822
795ae7a0
JW
6823 /*
6824 * Set the kswapd watermarks distance according to the
6825 * scale factor in proportion to available memory, but
6826 * ensure a minimum size on small systems.
6827 */
6828 tmp = max_t(u64, tmp >> 2,
6829 mult_frac(zone->managed_pages,
6830 watermark_scale_factor, 10000));
6831
6832 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6833 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6834
81c0a2bb 6835 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6836 high_wmark_pages(zone) - low_wmark_pages(zone) -
6837 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6838
1125b4e3 6839 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6840 }
cb45b0e9
HA
6841
6842 /* update totalreserve_pages */
6843 calculate_totalreserve_pages();
1da177e4
LT
6844}
6845
cfd3da1e
MG
6846/**
6847 * setup_per_zone_wmarks - called when min_free_kbytes changes
6848 * or when memory is hot-{added|removed}
6849 *
6850 * Ensures that the watermark[min,low,high] values for each zone are set
6851 * correctly with respect to min_free_kbytes.
6852 */
6853void setup_per_zone_wmarks(void)
6854{
6855 mutex_lock(&zonelists_mutex);
6856 __setup_per_zone_wmarks();
6857 mutex_unlock(&zonelists_mutex);
6858}
6859
1da177e4
LT
6860/*
6861 * Initialise min_free_kbytes.
6862 *
6863 * For small machines we want it small (128k min). For large machines
6864 * we want it large (64MB max). But it is not linear, because network
6865 * bandwidth does not increase linearly with machine size. We use
6866 *
b8af2941 6867 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6868 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6869 *
6870 * which yields
6871 *
6872 * 16MB: 512k
6873 * 32MB: 724k
6874 * 64MB: 1024k
6875 * 128MB: 1448k
6876 * 256MB: 2048k
6877 * 512MB: 2896k
6878 * 1024MB: 4096k
6879 * 2048MB: 5792k
6880 * 4096MB: 8192k
6881 * 8192MB: 11584k
6882 * 16384MB: 16384k
6883 */
1b79acc9 6884int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6885{
6886 unsigned long lowmem_kbytes;
5f12733e 6887 int new_min_free_kbytes;
1da177e4
LT
6888
6889 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6890 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6891
6892 if (new_min_free_kbytes > user_min_free_kbytes) {
6893 min_free_kbytes = new_min_free_kbytes;
6894 if (min_free_kbytes < 128)
6895 min_free_kbytes = 128;
6896 if (min_free_kbytes > 65536)
6897 min_free_kbytes = 65536;
6898 } else {
6899 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6900 new_min_free_kbytes, user_min_free_kbytes);
6901 }
bc75d33f 6902 setup_per_zone_wmarks();
a6cccdc3 6903 refresh_zone_stat_thresholds();
1da177e4
LT
6904 setup_per_zone_lowmem_reserve();
6905 return 0;
6906}
bc22af74 6907core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6908
6909/*
b8af2941 6910 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6911 * that we can call two helper functions whenever min_free_kbytes
6912 * changes.
6913 */
cccad5b9 6914int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6915 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6916{
da8c757b
HP
6917 int rc;
6918
6919 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6920 if (rc)
6921 return rc;
6922
5f12733e
MH
6923 if (write) {
6924 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6925 setup_per_zone_wmarks();
5f12733e 6926 }
1da177e4
LT
6927 return 0;
6928}
6929
795ae7a0
JW
6930int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6931 void __user *buffer, size_t *length, loff_t *ppos)
6932{
6933 int rc;
6934
6935 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6936 if (rc)
6937 return rc;
6938
6939 if (write)
6940 setup_per_zone_wmarks();
6941
6942 return 0;
6943}
6944
9614634f 6945#ifdef CONFIG_NUMA
cccad5b9 6946int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6947 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6948{
6949 struct zone *zone;
6950 int rc;
6951
8d65af78 6952 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6953 if (rc)
6954 return rc;
6955
6956 for_each_zone(zone)
b40da049 6957 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6958 sysctl_min_unmapped_ratio) / 100;
6959 return 0;
6960}
0ff38490 6961
cccad5b9 6962int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6963 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6964{
6965 struct zone *zone;
6966 int rc;
6967
8d65af78 6968 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6969 if (rc)
6970 return rc;
6971
6972 for_each_zone(zone)
b40da049 6973 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6974 sysctl_min_slab_ratio) / 100;
6975 return 0;
6976}
9614634f
CL
6977#endif
6978
1da177e4
LT
6979/*
6980 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6981 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6982 * whenever sysctl_lowmem_reserve_ratio changes.
6983 *
6984 * The reserve ratio obviously has absolutely no relation with the
41858966 6985 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6986 * if in function of the boot time zone sizes.
6987 */
cccad5b9 6988int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6989 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6990{
8d65af78 6991 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6992 setup_per_zone_lowmem_reserve();
6993 return 0;
6994}
6995
8ad4b1fb
RS
6996/*
6997 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6998 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6999 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7000 */
cccad5b9 7001int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7002 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7003{
7004 struct zone *zone;
7cd2b0a3 7005 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7006 int ret;
7007
7cd2b0a3
DR
7008 mutex_lock(&pcp_batch_high_lock);
7009 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7010
8d65af78 7011 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7012 if (!write || ret < 0)
7013 goto out;
7014
7015 /* Sanity checking to avoid pcp imbalance */
7016 if (percpu_pagelist_fraction &&
7017 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7018 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7019 ret = -EINVAL;
7020 goto out;
7021 }
7022
7023 /* No change? */
7024 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7025 goto out;
c8e251fa 7026
364df0eb 7027 for_each_populated_zone(zone) {
7cd2b0a3
DR
7028 unsigned int cpu;
7029
22a7f12b 7030 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7031 pageset_set_high_and_batch(zone,
7032 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7033 }
7cd2b0a3 7034out:
c8e251fa 7035 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7036 return ret;
8ad4b1fb
RS
7037}
7038
a9919c79 7039#ifdef CONFIG_NUMA
f034b5d4 7040int hashdist = HASHDIST_DEFAULT;
1da177e4 7041
1da177e4
LT
7042static int __init set_hashdist(char *str)
7043{
7044 if (!str)
7045 return 0;
7046 hashdist = simple_strtoul(str, &str, 0);
7047 return 1;
7048}
7049__setup("hashdist=", set_hashdist);
7050#endif
7051
7052/*
7053 * allocate a large system hash table from bootmem
7054 * - it is assumed that the hash table must contain an exact power-of-2
7055 * quantity of entries
7056 * - limit is the number of hash buckets, not the total allocation size
7057 */
7058void *__init alloc_large_system_hash(const char *tablename,
7059 unsigned long bucketsize,
7060 unsigned long numentries,
7061 int scale,
7062 int flags,
7063 unsigned int *_hash_shift,
7064 unsigned int *_hash_mask,
31fe62b9
TB
7065 unsigned long low_limit,
7066 unsigned long high_limit)
1da177e4 7067{
31fe62b9 7068 unsigned long long max = high_limit;
1da177e4
LT
7069 unsigned long log2qty, size;
7070 void *table = NULL;
7071
7072 /* allow the kernel cmdline to have a say */
7073 if (!numentries) {
7074 /* round applicable memory size up to nearest megabyte */
04903664 7075 numentries = nr_kernel_pages;
a7e83318
JZ
7076
7077 /* It isn't necessary when PAGE_SIZE >= 1MB */
7078 if (PAGE_SHIFT < 20)
7079 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7080
7081 /* limit to 1 bucket per 2^scale bytes of low memory */
7082 if (scale > PAGE_SHIFT)
7083 numentries >>= (scale - PAGE_SHIFT);
7084 else
7085 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7086
7087 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7088 if (unlikely(flags & HASH_SMALL)) {
7089 /* Makes no sense without HASH_EARLY */
7090 WARN_ON(!(flags & HASH_EARLY));
7091 if (!(numentries >> *_hash_shift)) {
7092 numentries = 1UL << *_hash_shift;
7093 BUG_ON(!numentries);
7094 }
7095 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7096 numentries = PAGE_SIZE / bucketsize;
1da177e4 7097 }
6e692ed3 7098 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7099
7100 /* limit allocation size to 1/16 total memory by default */
7101 if (max == 0) {
7102 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7103 do_div(max, bucketsize);
7104 }
074b8517 7105 max = min(max, 0x80000000ULL);
1da177e4 7106
31fe62b9
TB
7107 if (numentries < low_limit)
7108 numentries = low_limit;
1da177e4
LT
7109 if (numentries > max)
7110 numentries = max;
7111
f0d1b0b3 7112 log2qty = ilog2(numentries);
1da177e4
LT
7113
7114 do {
7115 size = bucketsize << log2qty;
7116 if (flags & HASH_EARLY)
6782832e 7117 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7118 else if (hashdist)
7119 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7120 else {
1037b83b
ED
7121 /*
7122 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7123 * some pages at the end of hash table which
7124 * alloc_pages_exact() automatically does
1037b83b 7125 */
264ef8a9 7126 if (get_order(size) < MAX_ORDER) {
a1dd268c 7127 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7128 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7129 }
1da177e4
LT
7130 }
7131 } while (!table && size > PAGE_SIZE && --log2qty);
7132
7133 if (!table)
7134 panic("Failed to allocate %s hash table\n", tablename);
7135
1170532b
JP
7136 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7137 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7138
7139 if (_hash_shift)
7140 *_hash_shift = log2qty;
7141 if (_hash_mask)
7142 *_hash_mask = (1 << log2qty) - 1;
7143
7144 return table;
7145}
a117e66e 7146
a5d76b54 7147/*
80934513
MK
7148 * This function checks whether pageblock includes unmovable pages or not.
7149 * If @count is not zero, it is okay to include less @count unmovable pages
7150 *
b8af2941 7151 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7152 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7153 * expect this function should be exact.
a5d76b54 7154 */
b023f468
WC
7155bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7156 bool skip_hwpoisoned_pages)
49ac8255
KH
7157{
7158 unsigned long pfn, iter, found;
47118af0
MN
7159 int mt;
7160
49ac8255
KH
7161 /*
7162 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7163 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7164 */
7165 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7166 return false;
47118af0
MN
7167 mt = get_pageblock_migratetype(page);
7168 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7169 return false;
49ac8255
KH
7170
7171 pfn = page_to_pfn(page);
7172 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7173 unsigned long check = pfn + iter;
7174
29723fcc 7175 if (!pfn_valid_within(check))
49ac8255 7176 continue;
29723fcc 7177
49ac8255 7178 page = pfn_to_page(check);
c8721bbb
NH
7179
7180 /*
7181 * Hugepages are not in LRU lists, but they're movable.
7182 * We need not scan over tail pages bacause we don't
7183 * handle each tail page individually in migration.
7184 */
7185 if (PageHuge(page)) {
7186 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7187 continue;
7188 }
7189
97d255c8
MK
7190 /*
7191 * We can't use page_count without pin a page
7192 * because another CPU can free compound page.
7193 * This check already skips compound tails of THP
0139aa7b 7194 * because their page->_refcount is zero at all time.
97d255c8 7195 */
fe896d18 7196 if (!page_ref_count(page)) {
49ac8255
KH
7197 if (PageBuddy(page))
7198 iter += (1 << page_order(page)) - 1;
7199 continue;
7200 }
97d255c8 7201
b023f468
WC
7202 /*
7203 * The HWPoisoned page may be not in buddy system, and
7204 * page_count() is not 0.
7205 */
7206 if (skip_hwpoisoned_pages && PageHWPoison(page))
7207 continue;
7208
49ac8255
KH
7209 if (!PageLRU(page))
7210 found++;
7211 /*
6b4f7799
JW
7212 * If there are RECLAIMABLE pages, we need to check
7213 * it. But now, memory offline itself doesn't call
7214 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7215 */
7216 /*
7217 * If the page is not RAM, page_count()should be 0.
7218 * we don't need more check. This is an _used_ not-movable page.
7219 *
7220 * The problematic thing here is PG_reserved pages. PG_reserved
7221 * is set to both of a memory hole page and a _used_ kernel
7222 * page at boot.
7223 */
7224 if (found > count)
80934513 7225 return true;
49ac8255 7226 }
80934513 7227 return false;
49ac8255
KH
7228}
7229
7230bool is_pageblock_removable_nolock(struct page *page)
7231{
656a0706
MH
7232 struct zone *zone;
7233 unsigned long pfn;
687875fb
MH
7234
7235 /*
7236 * We have to be careful here because we are iterating over memory
7237 * sections which are not zone aware so we might end up outside of
7238 * the zone but still within the section.
656a0706
MH
7239 * We have to take care about the node as well. If the node is offline
7240 * its NODE_DATA will be NULL - see page_zone.
687875fb 7241 */
656a0706
MH
7242 if (!node_online(page_to_nid(page)))
7243 return false;
7244
7245 zone = page_zone(page);
7246 pfn = page_to_pfn(page);
108bcc96 7247 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7248 return false;
7249
b023f468 7250 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7251}
0c0e6195 7252
080fe206 7253#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7254
7255static unsigned long pfn_max_align_down(unsigned long pfn)
7256{
7257 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7258 pageblock_nr_pages) - 1);
7259}
7260
7261static unsigned long pfn_max_align_up(unsigned long pfn)
7262{
7263 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7264 pageblock_nr_pages));
7265}
7266
041d3a8c 7267/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7268static int __alloc_contig_migrate_range(struct compact_control *cc,
7269 unsigned long start, unsigned long end)
041d3a8c
MN
7270{
7271 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7272 unsigned long nr_reclaimed;
041d3a8c
MN
7273 unsigned long pfn = start;
7274 unsigned int tries = 0;
7275 int ret = 0;
7276
be49a6e1 7277 migrate_prep();
041d3a8c 7278
bb13ffeb 7279 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7280 if (fatal_signal_pending(current)) {
7281 ret = -EINTR;
7282 break;
7283 }
7284
bb13ffeb
MG
7285 if (list_empty(&cc->migratepages)) {
7286 cc->nr_migratepages = 0;
edc2ca61 7287 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7288 if (!pfn) {
7289 ret = -EINTR;
7290 break;
7291 }
7292 tries = 0;
7293 } else if (++tries == 5) {
7294 ret = ret < 0 ? ret : -EBUSY;
7295 break;
7296 }
7297
beb51eaa
MK
7298 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7299 &cc->migratepages);
7300 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7301
9c620e2b 7302 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7303 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7304 }
2a6f5124
SP
7305 if (ret < 0) {
7306 putback_movable_pages(&cc->migratepages);
7307 return ret;
7308 }
7309 return 0;
041d3a8c
MN
7310}
7311
7312/**
7313 * alloc_contig_range() -- tries to allocate given range of pages
7314 * @start: start PFN to allocate
7315 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7316 * @migratetype: migratetype of the underlaying pageblocks (either
7317 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7318 * in range must have the same migratetype and it must
7319 * be either of the two.
041d3a8c
MN
7320 *
7321 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7322 * aligned, however it's the caller's responsibility to guarantee that
7323 * we are the only thread that changes migrate type of pageblocks the
7324 * pages fall in.
7325 *
7326 * The PFN range must belong to a single zone.
7327 *
7328 * Returns zero on success or negative error code. On success all
7329 * pages which PFN is in [start, end) are allocated for the caller and
7330 * need to be freed with free_contig_range().
7331 */
0815f3d8
MN
7332int alloc_contig_range(unsigned long start, unsigned long end,
7333 unsigned migratetype)
041d3a8c 7334{
041d3a8c 7335 unsigned long outer_start, outer_end;
d00181b9
KS
7336 unsigned int order;
7337 int ret = 0;
041d3a8c 7338
bb13ffeb
MG
7339 struct compact_control cc = {
7340 .nr_migratepages = 0,
7341 .order = -1,
7342 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7343 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7344 .ignore_skip_hint = true,
7345 };
7346 INIT_LIST_HEAD(&cc.migratepages);
7347
041d3a8c
MN
7348 /*
7349 * What we do here is we mark all pageblocks in range as
7350 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7351 * have different sizes, and due to the way page allocator
7352 * work, we align the range to biggest of the two pages so
7353 * that page allocator won't try to merge buddies from
7354 * different pageblocks and change MIGRATE_ISOLATE to some
7355 * other migration type.
7356 *
7357 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7358 * migrate the pages from an unaligned range (ie. pages that
7359 * we are interested in). This will put all the pages in
7360 * range back to page allocator as MIGRATE_ISOLATE.
7361 *
7362 * When this is done, we take the pages in range from page
7363 * allocator removing them from the buddy system. This way
7364 * page allocator will never consider using them.
7365 *
7366 * This lets us mark the pageblocks back as
7367 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7368 * aligned range but not in the unaligned, original range are
7369 * put back to page allocator so that buddy can use them.
7370 */
7371
7372 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7373 pfn_max_align_up(end), migratetype,
7374 false);
041d3a8c 7375 if (ret)
86a595f9 7376 return ret;
041d3a8c 7377
8ef5849f
JK
7378 /*
7379 * In case of -EBUSY, we'd like to know which page causes problem.
7380 * So, just fall through. We will check it in test_pages_isolated().
7381 */
bb13ffeb 7382 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7383 if (ret && ret != -EBUSY)
041d3a8c
MN
7384 goto done;
7385
7386 /*
7387 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7388 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7389 * more, all pages in [start, end) are free in page allocator.
7390 * What we are going to do is to allocate all pages from
7391 * [start, end) (that is remove them from page allocator).
7392 *
7393 * The only problem is that pages at the beginning and at the
7394 * end of interesting range may be not aligned with pages that
7395 * page allocator holds, ie. they can be part of higher order
7396 * pages. Because of this, we reserve the bigger range and
7397 * once this is done free the pages we are not interested in.
7398 *
7399 * We don't have to hold zone->lock here because the pages are
7400 * isolated thus they won't get removed from buddy.
7401 */
7402
7403 lru_add_drain_all();
510f5507 7404 drain_all_pages(cc.zone);
041d3a8c
MN
7405
7406 order = 0;
7407 outer_start = start;
7408 while (!PageBuddy(pfn_to_page(outer_start))) {
7409 if (++order >= MAX_ORDER) {
8ef5849f
JK
7410 outer_start = start;
7411 break;
041d3a8c
MN
7412 }
7413 outer_start &= ~0UL << order;
7414 }
7415
8ef5849f
JK
7416 if (outer_start != start) {
7417 order = page_order(pfn_to_page(outer_start));
7418
7419 /*
7420 * outer_start page could be small order buddy page and
7421 * it doesn't include start page. Adjust outer_start
7422 * in this case to report failed page properly
7423 * on tracepoint in test_pages_isolated()
7424 */
7425 if (outer_start + (1UL << order) <= start)
7426 outer_start = start;
7427 }
7428
041d3a8c 7429 /* Make sure the range is really isolated. */
b023f468 7430 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7431 pr_info("%s: [%lx, %lx) PFNs busy\n",
7432 __func__, outer_start, end);
041d3a8c
MN
7433 ret = -EBUSY;
7434 goto done;
7435 }
7436
49f223a9 7437 /* Grab isolated pages from freelists. */
bb13ffeb 7438 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7439 if (!outer_end) {
7440 ret = -EBUSY;
7441 goto done;
7442 }
7443
7444 /* Free head and tail (if any) */
7445 if (start != outer_start)
7446 free_contig_range(outer_start, start - outer_start);
7447 if (end != outer_end)
7448 free_contig_range(end, outer_end - end);
7449
7450done:
7451 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7452 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7453 return ret;
7454}
7455
7456void free_contig_range(unsigned long pfn, unsigned nr_pages)
7457{
bcc2b02f
MS
7458 unsigned int count = 0;
7459
7460 for (; nr_pages--; pfn++) {
7461 struct page *page = pfn_to_page(pfn);
7462
7463 count += page_count(page) != 1;
7464 __free_page(page);
7465 }
7466 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7467}
7468#endif
7469
4ed7e022 7470#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7471/*
7472 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7473 * page high values need to be recalulated.
7474 */
4ed7e022
JL
7475void __meminit zone_pcp_update(struct zone *zone)
7476{
0a647f38 7477 unsigned cpu;
c8e251fa 7478 mutex_lock(&pcp_batch_high_lock);
0a647f38 7479 for_each_possible_cpu(cpu)
169f6c19
CS
7480 pageset_set_high_and_batch(zone,
7481 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7482 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7483}
7484#endif
7485
340175b7
JL
7486void zone_pcp_reset(struct zone *zone)
7487{
7488 unsigned long flags;
5a883813
MK
7489 int cpu;
7490 struct per_cpu_pageset *pset;
340175b7
JL
7491
7492 /* avoid races with drain_pages() */
7493 local_irq_save(flags);
7494 if (zone->pageset != &boot_pageset) {
5a883813
MK
7495 for_each_online_cpu(cpu) {
7496 pset = per_cpu_ptr(zone->pageset, cpu);
7497 drain_zonestat(zone, pset);
7498 }
340175b7
JL
7499 free_percpu(zone->pageset);
7500 zone->pageset = &boot_pageset;
7501 }
7502 local_irq_restore(flags);
7503}
7504
6dcd73d7 7505#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7506/*
b9eb6319
JK
7507 * All pages in the range must be in a single zone and isolated
7508 * before calling this.
0c0e6195
KH
7509 */
7510void
7511__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7512{
7513 struct page *page;
7514 struct zone *zone;
7aeb09f9 7515 unsigned int order, i;
0c0e6195
KH
7516 unsigned long pfn;
7517 unsigned long flags;
7518 /* find the first valid pfn */
7519 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7520 if (pfn_valid(pfn))
7521 break;
7522 if (pfn == end_pfn)
7523 return;
7524 zone = page_zone(pfn_to_page(pfn));
7525 spin_lock_irqsave(&zone->lock, flags);
7526 pfn = start_pfn;
7527 while (pfn < end_pfn) {
7528 if (!pfn_valid(pfn)) {
7529 pfn++;
7530 continue;
7531 }
7532 page = pfn_to_page(pfn);
b023f468
WC
7533 /*
7534 * The HWPoisoned page may be not in buddy system, and
7535 * page_count() is not 0.
7536 */
7537 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7538 pfn++;
7539 SetPageReserved(page);
7540 continue;
7541 }
7542
0c0e6195
KH
7543 BUG_ON(page_count(page));
7544 BUG_ON(!PageBuddy(page));
7545 order = page_order(page);
7546#ifdef CONFIG_DEBUG_VM
1170532b
JP
7547 pr_info("remove from free list %lx %d %lx\n",
7548 pfn, 1 << order, end_pfn);
0c0e6195
KH
7549#endif
7550 list_del(&page->lru);
7551 rmv_page_order(page);
7552 zone->free_area[order].nr_free--;
0c0e6195
KH
7553 for (i = 0; i < (1 << order); i++)
7554 SetPageReserved((page+i));
7555 pfn += (1 << order);
7556 }
7557 spin_unlock_irqrestore(&zone->lock, flags);
7558}
7559#endif
8d22ba1b 7560
8d22ba1b
WF
7561bool is_free_buddy_page(struct page *page)
7562{
7563 struct zone *zone = page_zone(page);
7564 unsigned long pfn = page_to_pfn(page);
7565 unsigned long flags;
7aeb09f9 7566 unsigned int order;
8d22ba1b
WF
7567
7568 spin_lock_irqsave(&zone->lock, flags);
7569 for (order = 0; order < MAX_ORDER; order++) {
7570 struct page *page_head = page - (pfn & ((1 << order) - 1));
7571
7572 if (PageBuddy(page_head) && page_order(page_head) >= order)
7573 break;
7574 }
7575 spin_unlock_irqrestore(&zone->lock, flags);
7576
7577 return order < MAX_ORDER;
7578}