]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
page allocator: move check for disabled anti-fragmentation out of fastpath
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
9ef9acb0
MG
167int page_group_by_mobility_disabled __read_mostly;
168
b2a0ac88
MG
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
49255c61
MG
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
b2a0ac88
MG
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177}
178
13e7444b 179#ifdef CONFIG_DEBUG_VM
c6a57e19 180static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 181{
bdc8cb98
DH
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
c6a57e19 185
bdc8cb98
DH
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
c6a57e19
DH
195}
196
197static int page_is_consistent(struct zone *zone, struct page *page)
198{
14e07298 199 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 200 return 0;
1da177e4 201 if (zone != page_zone(page))
c6a57e19
DH
202 return 0;
203
204 return 1;
205}
206/*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209static int bad_range(struct zone *zone, struct page *page)
210{
211 if (page_outside_zone_boundaries(zone, page))
1da177e4 212 return 1;
c6a57e19
DH
213 if (!page_is_consistent(zone, page))
214 return 1;
215
1da177e4
LT
216 return 0;
217}
13e7444b
NP
218#else
219static inline int bad_range(struct zone *zone, struct page *page)
220{
221 return 0;
222}
223#endif
224
224abf92 225static void bad_page(struct page *page)
1da177e4 226{
d936cf9b
HD
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
1e9e6365
HD
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
1e9e6365 251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 252 current->comm, page_to_pfn(page));
1e9e6365 253 printk(KERN_ALERT
3dc14741
HD
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
3dc14741 257
1da177e4 258 dump_stack();
d936cf9b 259out:
8cc3b392
HD
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
9f158333 262 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
263}
264
1da177e4
LT
265/*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
41d78ba5
HD
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
1da177e4 278 */
d98c7a09
HD
279
280static void free_compound_page(struct page *page)
281{
d85f3385 282 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
283}
284
01ad1c08 285void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
286{
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299}
300
301#ifdef CONFIG_HUGETLBFS
302void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
303{
304 int i;
305 int nr_pages = 1 << order;
6babc32c 306 struct page *p = page + 1;
1da177e4 307
33f2ef89 308 set_compound_page_dtor(page, free_compound_page);
d85f3385 309 set_compound_order(page, order);
6d777953 310 __SetPageHead(page);
18229df5 311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 312 __SetPageTail(p);
d85f3385 313 p->first_page = page;
1da177e4
LT
314 }
315}
18229df5 316#endif
1da177e4 317
8cc3b392 318static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
319{
320 int i;
321 int nr_pages = 1 << order;
8cc3b392 322 int bad = 0;
1da177e4 323
8cc3b392
HD
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
224abf92 326 bad_page(page);
8cc3b392
HD
327 bad++;
328 }
1da177e4 329
6d777953 330 __ClearPageHead(page);
8cc3b392 331
18229df5
AW
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
1da177e4 334
e713a21d 335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 336 bad_page(page);
8cc3b392
HD
337 bad++;
338 }
d85f3385 339 __ClearPageTail(p);
1da177e4 340 }
8cc3b392
HD
341
342 return bad;
1da177e4 343}
1da177e4 344
17cf4406
NP
345static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346{
347 int i;
348
6626c5d5
AM
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
725d704e 353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356}
357
6aa3001b
AM
358static inline void set_page_order(struct page *page, int order)
359{
4c21e2f2 360 set_page_private(page, order);
676165a8 361 __SetPageBuddy(page);
1da177e4
LT
362}
363
364static inline void rmv_page_order(struct page *page)
365{
676165a8 366 __ClearPageBuddy(page);
4c21e2f2 367 set_page_private(page, 0);
1da177e4
LT
368}
369
370/*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
d6e05edc 385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
386 */
387static inline struct page *
388__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389{
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393}
394
395static inline unsigned long
396__find_combined_index(unsigned long page_idx, unsigned int order)
397{
398 return (page_idx & ~(1 << order));
399}
400
401/*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
13e7444b 404 * (a) the buddy is not in a hole &&
676165a8 405 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
676165a8
NP
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 411 *
676165a8 412 * For recording page's order, we use page_private(page).
1da177e4 413 */
cb2b95e1
AW
414static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
1da177e4 416{
14e07298 417 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 418 return 0;
13e7444b 419
cb2b95e1
AW
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
6aa3001b 425 return 1;
676165a8 426 }
6aa3001b 427 return 0;
1da177e4
LT
428}
429
430/*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
676165a8 443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 444 * order is recorded in page_private(page) field.
1da177e4
LT
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
48db57f8 454static inline void __free_one_page(struct page *page,
1da177e4
LT
455 struct zone *zone, unsigned int order)
456{
457 unsigned long page_idx;
458 int order_size = 1 << order;
b2a0ac88 459 int migratetype = get_pageblock_migratetype(page);
1da177e4 460
224abf92 461 if (unlikely(PageCompound(page)))
8cc3b392
HD
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
1da177e4
LT
464
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
725d704e
NP
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
1da177e4 469
d23ad423 470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
1da177e4
LT
473 struct page *buddy;
474
1da177e4 475 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 476 if (!page_is_buddy(page, buddy, order))
3c82d0ce 477 break;
13e7444b 478
3c82d0ce 479 /* Our buddy is free, merge with it and move up one order. */
1da177e4 480 list_del(&buddy->lru);
b2a0ac88 481 zone->free_area[order].nr_free--;
1da177e4 482 rmv_page_order(buddy);
13e7444b 483 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
b2a0ac88
MG
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
491 zone->free_area[order].nr_free++;
492}
493
224abf92 494static inline int free_pages_check(struct page *page)
1da177e4 495{
985737cf 496 free_page_mlock(page);
92be2e33
NP
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
8cc3b392 500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 501 bad_page(page);
79f4b7bf 502 return 1;
8cc3b392 503 }
79f4b7bf
HD
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
1da177e4
LT
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
207f36ee 512 * count is the number of pages to free.
1da177e4
LT
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
48db57f8
NP
520static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
1da177e4 522{
c54ad30c 523 spin_lock(&zone->lock);
e815af95 524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 525 zone->pages_scanned = 0;
48db57f8
NP
526 while (count--) {
527 struct page *page;
528
725d704e 529 VM_BUG_ON(list_empty(list));
1da177e4 530 page = list_entry(list->prev, struct page, lru);
48db57f8 531 /* have to delete it as __free_one_page list manipulates */
1da177e4 532 list_del(&page->lru);
48db57f8 533 __free_one_page(page, zone, order);
1da177e4 534 }
c54ad30c 535 spin_unlock(&zone->lock);
1da177e4
LT
536}
537
48db57f8 538static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 539{
006d22d9 540 spin_lock(&zone->lock);
e815af95 541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 542 zone->pages_scanned = 0;
0798e519 543 __free_one_page(page, zone, order);
006d22d9 544 spin_unlock(&zone->lock);
48db57f8
NP
545}
546
547static void __free_pages_ok(struct page *page, unsigned int order)
548{
549 unsigned long flags;
1da177e4 550 int i;
8cc3b392 551 int bad = 0;
1da177e4 552
1da177e4 553 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
554 bad += free_pages_check(page + i);
555 if (bad)
689bcebf
HD
556 return;
557
3ac7fe5a 558 if (!PageHighMem(page)) {
9858db50 559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
562 }
dafb1367 563 arch_free_page(page, order);
48db57f8 564 kernel_map_pages(page, 1 << order, 0);
dafb1367 565
c54ad30c 566 local_irq_save(flags);
f8891e5e 567 __count_vm_events(PGFREE, 1 << order);
48db57f8 568 free_one_page(page_zone(page), page, order);
c54ad30c 569 local_irq_restore(flags);
1da177e4
LT
570}
571
a226f6c8
DH
572/*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
af370fb8 575void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
576{
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
7835e98b 580 set_page_refcounted(page);
545b1ea9 581 __free_page(page);
a226f6c8 582 } else {
a226f6c8
DH
583 int loop;
584
545b1ea9 585 prefetchw(page);
a226f6c8
DH
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
588
545b1ea9
NP
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
a226f6c8
DH
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
593 }
594
7835e98b 595 set_page_refcounted(page);
545b1ea9 596 __free_pages(page, order);
a226f6c8
DH
597 }
598}
599
1da177e4
LT
600
601/*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
085cc7d5 615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
616 int low, int high, struct free_area *area,
617 int migratetype)
1da177e4
LT
618{
619 unsigned long size = 1 << high;
620
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
725d704e 625 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 626 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
627 area->nr_free++;
628 set_page_order(&page[size], high);
629 }
1da177e4
LT
630}
631
1da177e4
LT
632/*
633 * This page is about to be returned from the page allocator
634 */
17cf4406 635static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 636{
92be2e33
NP
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
8cc3b392 640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 641 bad_page(page);
689bcebf 642 return 1;
8cc3b392 643 }
689bcebf 644
4c21e2f2 645 set_page_private(page, 0);
7835e98b 646 set_page_refcounted(page);
cc102509
NP
647
648 arch_alloc_page(page, order);
1da177e4 649 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
650
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
653
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
656
689bcebf 657 return 0;
1da177e4
LT
658}
659
56fd56b8
MG
660/*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
664static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665 int migratetype)
666{
667 unsigned int current_order;
668 struct free_area * area;
669 struct page *page;
670
671 /* Find a page of the appropriate size in the preferred list */
672 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673 area = &(zone->free_area[current_order]);
674 if (list_empty(&area->free_list[migratetype]))
675 continue;
676
677 page = list_entry(area->free_list[migratetype].next,
678 struct page, lru);
679 list_del(&page->lru);
680 rmv_page_order(page);
681 area->nr_free--;
682 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683 expand(zone, page, order, current_order, area, migratetype);
684 return page;
685 }
686
687 return NULL;
688}
689
690
b2a0ac88
MG
691/*
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
694 */
695static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
700};
701
c361be55
MG
702/*
703 * Move the free pages in a range to the free lists of the requested type.
d9c23400 704 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
705 * boundary. If alignment is required, use move_freepages_block()
706 */
b69a7288
AB
707static int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
c361be55
MG
710{
711 struct page *page;
712 unsigned long order;
d100313f 713 int pages_moved = 0;
c361be55
MG
714
715#ifndef CONFIG_HOLES_IN_ZONE
716 /*
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
ac0e5b7a 721 * grouping pages by mobility
c361be55
MG
722 */
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724#endif
725
726 for (page = start_page; page <= end_page;) {
344c790e
AL
727 /* Make sure we are not inadvertently changing nodes */
728 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729
c361be55
MG
730 if (!pfn_valid_within(page_to_pfn(page))) {
731 page++;
732 continue;
733 }
734
735 if (!PageBuddy(page)) {
736 page++;
737 continue;
738 }
739
740 order = page_order(page);
741 list_del(&page->lru);
742 list_add(&page->lru,
743 &zone->free_area[order].free_list[migratetype]);
744 page += 1 << order;
d100313f 745 pages_moved += 1 << order;
c361be55
MG
746 }
747
d100313f 748 return pages_moved;
c361be55
MG
749}
750
b69a7288
AB
751static int move_freepages_block(struct zone *zone, struct page *page,
752 int migratetype)
c361be55
MG
753{
754 unsigned long start_pfn, end_pfn;
755 struct page *start_page, *end_page;
756
757 start_pfn = page_to_pfn(page);
d9c23400 758 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 759 start_page = pfn_to_page(start_pfn);
d9c23400
MG
760 end_page = start_page + pageblock_nr_pages - 1;
761 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
762
763 /* Do not cross zone boundaries */
764 if (start_pfn < zone->zone_start_pfn)
765 start_page = page;
766 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767 return 0;
768
769 return move_freepages(zone, start_page, end_page, migratetype);
770}
771
b2a0ac88
MG
772/* Remove an element from the buddy allocator from the fallback list */
773static struct page *__rmqueue_fallback(struct zone *zone, int order,
774 int start_migratetype)
775{
776 struct free_area * area;
777 int current_order;
778 struct page *page;
779 int migratetype, i;
780
781 /* Find the largest possible block of pages in the other list */
782 for (current_order = MAX_ORDER-1; current_order >= order;
783 --current_order) {
784 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785 migratetype = fallbacks[start_migratetype][i];
786
56fd56b8
MG
787 /* MIGRATE_RESERVE handled later if necessary */
788 if (migratetype == MIGRATE_RESERVE)
789 continue;
e010487d 790
b2a0ac88
MG
791 area = &(zone->free_area[current_order]);
792 if (list_empty(&area->free_list[migratetype]))
793 continue;
794
795 page = list_entry(area->free_list[migratetype].next,
796 struct page, lru);
797 area->nr_free--;
798
799 /*
c361be55 800 * If breaking a large block of pages, move all free
46dafbca
MG
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
b2a0ac88 804 */
d9c23400 805 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
806 start_migratetype == MIGRATE_RECLAIMABLE) {
807 unsigned long pages;
808 pages = move_freepages_block(zone, page,
809 start_migratetype);
810
811 /* Claim the whole block if over half of it is free */
d9c23400 812 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
813 set_pageblock_migratetype(page,
814 start_migratetype);
815
b2a0ac88 816 migratetype = start_migratetype;
c361be55 817 }
b2a0ac88
MG
818
819 /* Remove the page from the freelists */
820 list_del(&page->lru);
821 rmv_page_order(page);
822 __mod_zone_page_state(zone, NR_FREE_PAGES,
823 -(1UL << order));
824
d9c23400 825 if (current_order == pageblock_order)
b2a0ac88
MG
826 set_pageblock_migratetype(page,
827 start_migratetype);
828
829 expand(zone, page, order, current_order, area, migratetype);
830 return page;
831 }
832 }
833
56fd56b8
MG
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
836}
837
56fd56b8 838/*
1da177e4
LT
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
b2a0ac88
MG
842static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
1da177e4 844{
1da177e4
LT
845 struct page *page;
846
56fd56b8 847 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 848
56fd56b8
MG
849 if (unlikely(!page))
850 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
851
852 return page;
1da177e4
LT
853}
854
855/*
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
859 */
860static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
861 unsigned long count, struct list_head *list,
862 int migratetype)
1da177e4 863{
1da177e4 864 int i;
1da177e4 865
c54ad30c 866 spin_lock(&zone->lock);
1da177e4 867 for (i = 0; i < count; ++i) {
b2a0ac88 868 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 869 if (unlikely(page == NULL))
1da177e4 870 break;
81eabcbe
MG
871
872 /*
873 * Split buddy pages returned by expand() are received here
874 * in physical page order. The page is added to the callers and
875 * list and the list head then moves forward. From the callers
876 * perspective, the linked list is ordered by page number in
877 * some conditions. This is useful for IO devices that can
878 * merge IO requests if the physical pages are ordered
879 * properly.
880 */
535131e6
MG
881 list_add(&page->lru, list);
882 set_page_private(page, migratetype);
81eabcbe 883 list = &page->lru;
1da177e4 884 }
c54ad30c 885 spin_unlock(&zone->lock);
085cc7d5 886 return i;
1da177e4
LT
887}
888
4ae7c039 889#ifdef CONFIG_NUMA
8fce4d8e 890/*
4037d452
CL
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
893 * expired.
894 *
879336c3
CL
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
8fce4d8e 897 */
4037d452 898void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 899{
4ae7c039 900 unsigned long flags;
4037d452 901 int to_drain;
4ae7c039 902
4037d452
CL
903 local_irq_save(flags);
904 if (pcp->count >= pcp->batch)
905 to_drain = pcp->batch;
906 else
907 to_drain = pcp->count;
908 free_pages_bulk(zone, to_drain, &pcp->list, 0);
909 pcp->count -= to_drain;
910 local_irq_restore(flags);
4ae7c039
CL
911}
912#endif
913
9f8f2172
CL
914/*
915 * Drain pages of the indicated processor.
916 *
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
919 * is not online.
920 */
921static void drain_pages(unsigned int cpu)
1da177e4 922{
c54ad30c 923 unsigned long flags;
1da177e4 924 struct zone *zone;
1da177e4 925
ee99c71c 926 for_each_populated_zone(zone) {
1da177e4 927 struct per_cpu_pageset *pset;
3dfa5721 928 struct per_cpu_pages *pcp;
1da177e4 929
e7c8d5c9 930 pset = zone_pcp(zone, cpu);
3dfa5721
CL
931
932 pcp = &pset->pcp;
933 local_irq_save(flags);
934 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
935 pcp->count = 0;
936 local_irq_restore(flags);
1da177e4
LT
937 }
938}
1da177e4 939
9f8f2172
CL
940/*
941 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
942 */
943void drain_local_pages(void *arg)
944{
945 drain_pages(smp_processor_id());
946}
947
948/*
949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
950 */
951void drain_all_pages(void)
952{
15c8b6c1 953 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
954}
955
296699de 956#ifdef CONFIG_HIBERNATION
1da177e4
LT
957
958void mark_free_pages(struct zone *zone)
959{
f623f0db
RW
960 unsigned long pfn, max_zone_pfn;
961 unsigned long flags;
b2a0ac88 962 int order, t;
1da177e4
LT
963 struct list_head *curr;
964
965 if (!zone->spanned_pages)
966 return;
967
968 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
969
970 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
971 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
972 if (pfn_valid(pfn)) {
973 struct page *page = pfn_to_page(pfn);
974
7be98234
RW
975 if (!swsusp_page_is_forbidden(page))
976 swsusp_unset_page_free(page);
f623f0db 977 }
1da177e4 978
b2a0ac88
MG
979 for_each_migratetype_order(order, t) {
980 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 981 unsigned long i;
1da177e4 982
f623f0db
RW
983 pfn = page_to_pfn(list_entry(curr, struct page, lru));
984 for (i = 0; i < (1UL << order); i++)
7be98234 985 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 986 }
b2a0ac88 987 }
1da177e4
LT
988 spin_unlock_irqrestore(&zone->lock, flags);
989}
e2c55dc8 990#endif /* CONFIG_PM */
1da177e4 991
1da177e4
LT
992/*
993 * Free a 0-order page
994 */
920c7a5d 995static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
996{
997 struct zone *zone = page_zone(page);
998 struct per_cpu_pages *pcp;
999 unsigned long flags;
1000
1da177e4
LT
1001 if (PageAnon(page))
1002 page->mapping = NULL;
224abf92 1003 if (free_pages_check(page))
689bcebf
HD
1004 return;
1005
3ac7fe5a 1006 if (!PageHighMem(page)) {
9858db50 1007 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1008 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1009 }
dafb1367 1010 arch_free_page(page, 0);
689bcebf
HD
1011 kernel_map_pages(page, 1, 0);
1012
3dfa5721 1013 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1014 local_irq_save(flags);
f8891e5e 1015 __count_vm_event(PGFREE);
3dfa5721
CL
1016 if (cold)
1017 list_add_tail(&page->lru, &pcp->list);
1018 else
1019 list_add(&page->lru, &pcp->list);
535131e6 1020 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1021 pcp->count++;
48db57f8
NP
1022 if (pcp->count >= pcp->high) {
1023 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1024 pcp->count -= pcp->batch;
1025 }
1da177e4
LT
1026 local_irq_restore(flags);
1027 put_cpu();
1028}
1029
920c7a5d 1030void free_hot_page(struct page *page)
1da177e4
LT
1031{
1032 free_hot_cold_page(page, 0);
1033}
1034
920c7a5d 1035void free_cold_page(struct page *page)
1da177e4
LT
1036{
1037 free_hot_cold_page(page, 1);
1038}
1039
8dfcc9ba
NP
1040/*
1041 * split_page takes a non-compound higher-order page, and splits it into
1042 * n (1<<order) sub-pages: page[0..n]
1043 * Each sub-page must be freed individually.
1044 *
1045 * Note: this is probably too low level an operation for use in drivers.
1046 * Please consult with lkml before using this in your driver.
1047 */
1048void split_page(struct page *page, unsigned int order)
1049{
1050 int i;
1051
725d704e
NP
1052 VM_BUG_ON(PageCompound(page));
1053 VM_BUG_ON(!page_count(page));
7835e98b
NP
1054 for (i = 1; i < (1 << order); i++)
1055 set_page_refcounted(page + i);
8dfcc9ba 1056}
8dfcc9ba 1057
1da177e4
LT
1058/*
1059 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1060 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1061 * or two.
1062 */
18ea7e71 1063static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1064 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1065{
1066 unsigned long flags;
689bcebf 1067 struct page *page;
1da177e4 1068 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1069 int cpu;
64c5e135 1070 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1071
689bcebf 1072again:
a74609fa 1073 cpu = get_cpu();
48db57f8 1074 if (likely(order == 0)) {
1da177e4
LT
1075 struct per_cpu_pages *pcp;
1076
3dfa5721 1077 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1078 local_irq_save(flags);
a74609fa 1079 if (!pcp->count) {
941c7105 1080 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1081 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1082 if (unlikely(!pcp->count))
1083 goto failed;
1da177e4 1084 }
b92a6edd 1085
535131e6 1086 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1087 if (cold) {
1088 list_for_each_entry_reverse(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1091 } else {
1092 list_for_each_entry(page, &pcp->list, lru)
1093 if (page_private(page) == migratetype)
1094 break;
1095 }
535131e6 1096
b92a6edd
MG
1097 /* Allocate more to the pcp list if necessary */
1098 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1099 pcp->count += rmqueue_bulk(zone, 0,
1100 pcp->batch, &pcp->list, migratetype);
1101 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1102 }
b92a6edd
MG
1103
1104 list_del(&page->lru);
1105 pcp->count--;
7fb1d9fc 1106 } else {
1da177e4 1107 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1108 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1109 spin_unlock(&zone->lock);
1110 if (!page)
1111 goto failed;
1da177e4
LT
1112 }
1113
f8891e5e 1114 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1115 zone_statistics(preferred_zone, zone);
a74609fa
NP
1116 local_irq_restore(flags);
1117 put_cpu();
1da177e4 1118
725d704e 1119 VM_BUG_ON(bad_range(zone, page));
17cf4406 1120 if (prep_new_page(page, order, gfp_flags))
a74609fa 1121 goto again;
1da177e4 1122 return page;
a74609fa
NP
1123
1124failed:
1125 local_irq_restore(flags);
1126 put_cpu();
1127 return NULL;
1da177e4
LT
1128}
1129
7fb1d9fc 1130#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1131#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1132#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1133#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1134#define ALLOC_HARDER 0x10 /* try to alloc harder */
1135#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1136#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1137
933e312e
AM
1138#ifdef CONFIG_FAIL_PAGE_ALLOC
1139
1140static struct fail_page_alloc_attr {
1141 struct fault_attr attr;
1142
1143 u32 ignore_gfp_highmem;
1144 u32 ignore_gfp_wait;
54114994 1145 u32 min_order;
933e312e
AM
1146
1147#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1148
1149 struct dentry *ignore_gfp_highmem_file;
1150 struct dentry *ignore_gfp_wait_file;
54114994 1151 struct dentry *min_order_file;
933e312e
AM
1152
1153#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1154
1155} fail_page_alloc = {
1156 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1157 .ignore_gfp_wait = 1,
1158 .ignore_gfp_highmem = 1,
54114994 1159 .min_order = 1,
933e312e
AM
1160};
1161
1162static int __init setup_fail_page_alloc(char *str)
1163{
1164 return setup_fault_attr(&fail_page_alloc.attr, str);
1165}
1166__setup("fail_page_alloc=", setup_fail_page_alloc);
1167
1168static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1169{
54114994
AM
1170 if (order < fail_page_alloc.min_order)
1171 return 0;
933e312e
AM
1172 if (gfp_mask & __GFP_NOFAIL)
1173 return 0;
1174 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1177 return 0;
1178
1179 return should_fail(&fail_page_alloc.attr, 1 << order);
1180}
1181
1182#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1183
1184static int __init fail_page_alloc_debugfs(void)
1185{
1186 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1187 struct dentry *dir;
1188 int err;
1189
1190 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1191 "fail_page_alloc");
1192 if (err)
1193 return err;
1194 dir = fail_page_alloc.attr.dentries.dir;
1195
1196 fail_page_alloc.ignore_gfp_wait_file =
1197 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1198 &fail_page_alloc.ignore_gfp_wait);
1199
1200 fail_page_alloc.ignore_gfp_highmem_file =
1201 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1202 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1203 fail_page_alloc.min_order_file =
1204 debugfs_create_u32("min-order", mode, dir,
1205 &fail_page_alloc.min_order);
933e312e
AM
1206
1207 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1208 !fail_page_alloc.ignore_gfp_highmem_file ||
1209 !fail_page_alloc.min_order_file) {
933e312e
AM
1210 err = -ENOMEM;
1211 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1212 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1213 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1214 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1215 }
1216
1217 return err;
1218}
1219
1220late_initcall(fail_page_alloc_debugfs);
1221
1222#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1223
1224#else /* CONFIG_FAIL_PAGE_ALLOC */
1225
1226static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1227{
1228 return 0;
1229}
1230
1231#endif /* CONFIG_FAIL_PAGE_ALLOC */
1232
1da177e4
LT
1233/*
1234 * Return 1 if free pages are above 'mark'. This takes into account the order
1235 * of the allocation.
1236 */
1237int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1238 int classzone_idx, int alloc_flags)
1da177e4
LT
1239{
1240 /* free_pages my go negative - that's OK */
d23ad423
CL
1241 long min = mark;
1242 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1243 int o;
1244
7fb1d9fc 1245 if (alloc_flags & ALLOC_HIGH)
1da177e4 1246 min -= min / 2;
7fb1d9fc 1247 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1248 min -= min / 4;
1249
1250 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1251 return 0;
1252 for (o = 0; o < order; o++) {
1253 /* At the next order, this order's pages become unavailable */
1254 free_pages -= z->free_area[o].nr_free << o;
1255
1256 /* Require fewer higher order pages to be free */
1257 min >>= 1;
1258
1259 if (free_pages <= min)
1260 return 0;
1261 }
1262 return 1;
1263}
1264
9276b1bc
PJ
1265#ifdef CONFIG_NUMA
1266/*
1267 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1268 * skip over zones that are not allowed by the cpuset, or that have
1269 * been recently (in last second) found to be nearly full. See further
1270 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1271 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1272 *
1273 * If the zonelist cache is present in the passed in zonelist, then
1274 * returns a pointer to the allowed node mask (either the current
37b07e41 1275 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1276 *
1277 * If the zonelist cache is not available for this zonelist, does
1278 * nothing and returns NULL.
1279 *
1280 * If the fullzones BITMAP in the zonelist cache is stale (more than
1281 * a second since last zap'd) then we zap it out (clear its bits.)
1282 *
1283 * We hold off even calling zlc_setup, until after we've checked the
1284 * first zone in the zonelist, on the theory that most allocations will
1285 * be satisfied from that first zone, so best to examine that zone as
1286 * quickly as we can.
1287 */
1288static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1289{
1290 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1291 nodemask_t *allowednodes; /* zonelist_cache approximation */
1292
1293 zlc = zonelist->zlcache_ptr;
1294 if (!zlc)
1295 return NULL;
1296
f05111f5 1297 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1298 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1299 zlc->last_full_zap = jiffies;
1300 }
1301
1302 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1303 &cpuset_current_mems_allowed :
37b07e41 1304 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1305 return allowednodes;
1306}
1307
1308/*
1309 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1310 * if it is worth looking at further for free memory:
1311 * 1) Check that the zone isn't thought to be full (doesn't have its
1312 * bit set in the zonelist_cache fullzones BITMAP).
1313 * 2) Check that the zones node (obtained from the zonelist_cache
1314 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1315 * Return true (non-zero) if zone is worth looking at further, or
1316 * else return false (zero) if it is not.
1317 *
1318 * This check -ignores- the distinction between various watermarks,
1319 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1320 * found to be full for any variation of these watermarks, it will
1321 * be considered full for up to one second by all requests, unless
1322 * we are so low on memory on all allowed nodes that we are forced
1323 * into the second scan of the zonelist.
1324 *
1325 * In the second scan we ignore this zonelist cache and exactly
1326 * apply the watermarks to all zones, even it is slower to do so.
1327 * We are low on memory in the second scan, and should leave no stone
1328 * unturned looking for a free page.
1329 */
dd1a239f 1330static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1331 nodemask_t *allowednodes)
1332{
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335 int n; /* node that zone *z is on */
1336
1337 zlc = zonelist->zlcache_ptr;
1338 if (!zlc)
1339 return 1;
1340
dd1a239f 1341 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1342 n = zlc->z_to_n[i];
1343
1344 /* This zone is worth trying if it is allowed but not full */
1345 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1346}
1347
1348/*
1349 * Given 'z' scanning a zonelist, set the corresponding bit in
1350 * zlc->fullzones, so that subsequent attempts to allocate a page
1351 * from that zone don't waste time re-examining it.
1352 */
dd1a239f 1353static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1354{
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 int i; /* index of *z in zonelist zones */
1357
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return;
1361
dd1a239f 1362 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1363
1364 set_bit(i, zlc->fullzones);
1365}
1366
1367#else /* CONFIG_NUMA */
1368
1369static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1370{
1371 return NULL;
1372}
1373
dd1a239f 1374static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1375 nodemask_t *allowednodes)
1376{
1377 return 1;
1378}
1379
dd1a239f 1380static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1381{
1382}
1383#endif /* CONFIG_NUMA */
1384
7fb1d9fc 1385/*
0798e519 1386 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1387 * a page.
1388 */
1389static struct page *
19770b32 1390get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
54a6eb5c 1391 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1392{
dd1a239f 1393 struct zoneref *z;
7fb1d9fc 1394 struct page *page = NULL;
54a6eb5c 1395 int classzone_idx;
18ea7e71 1396 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1397 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1398 int zlc_active = 0; /* set if using zonelist_cache */
1399 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1400
19770b32
MG
1401 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1402 &preferred_zone);
7eb54824
AW
1403 if (!preferred_zone)
1404 return NULL;
1405
19770b32 1406 classzone_idx = zone_idx(preferred_zone);
7fb1d9fc 1407
b3c466ce
MG
1408 if (WARN_ON_ONCE(order >= MAX_ORDER))
1409 return NULL;
1410
9276b1bc 1411zonelist_scan:
7fb1d9fc 1412 /*
9276b1bc 1413 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1414 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1415 */
19770b32
MG
1416 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1417 high_zoneidx, nodemask) {
9276b1bc
PJ
1418 if (NUMA_BUILD && zlc_active &&
1419 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1420 continue;
7fb1d9fc 1421 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1422 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1423 goto try_next_zone;
7fb1d9fc
RS
1424
1425 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1426 unsigned long mark;
1427 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1428 mark = zone->pages_min;
3148890b 1429 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1430 mark = zone->pages_low;
3148890b 1431 else
1192d526 1432 mark = zone->pages_high;
0798e519
PJ
1433 if (!zone_watermark_ok(zone, order, mark,
1434 classzone_idx, alloc_flags)) {
9eeff239 1435 if (!zone_reclaim_mode ||
1192d526 1436 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1437 goto this_zone_full;
0798e519 1438 }
7fb1d9fc
RS
1439 }
1440
18ea7e71 1441 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1442 if (page)
7fb1d9fc 1443 break;
9276b1bc
PJ
1444this_zone_full:
1445 if (NUMA_BUILD)
1446 zlc_mark_zone_full(zonelist, z);
1447try_next_zone:
1448 if (NUMA_BUILD && !did_zlc_setup) {
1449 /* we do zlc_setup after the first zone is tried */
1450 allowednodes = zlc_setup(zonelist, alloc_flags);
1451 zlc_active = 1;
1452 did_zlc_setup = 1;
1453 }
54a6eb5c 1454 }
9276b1bc
PJ
1455
1456 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1457 /* Disable zlc cache for second zonelist scan */
1458 zlc_active = 0;
1459 goto zonelist_scan;
1460 }
7fb1d9fc 1461 return page;
753ee728
MH
1462}
1463
11e33f6a
MG
1464static inline int
1465should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1466 unsigned long pages_reclaimed)
1da177e4 1467{
11e33f6a
MG
1468 /* Do not loop if specifically requested */
1469 if (gfp_mask & __GFP_NORETRY)
1470 return 0;
1da177e4 1471
11e33f6a
MG
1472 /*
1473 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1474 * means __GFP_NOFAIL, but that may not be true in other
1475 * implementations.
1476 */
1477 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1478 return 1;
1479
1480 /*
1481 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1482 * specified, then we retry until we no longer reclaim any pages
1483 * (above), or we've reclaimed an order of pages at least as
1484 * large as the allocation's order. In both cases, if the
1485 * allocation still fails, we stop retrying.
1486 */
1487 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1488 return 1;
cf40bd16 1489
11e33f6a
MG
1490 /*
1491 * Don't let big-order allocations loop unless the caller
1492 * explicitly requests that.
1493 */
1494 if (gfp_mask & __GFP_NOFAIL)
1495 return 1;
1da177e4 1496
11e33f6a
MG
1497 return 0;
1498}
933e312e 1499
11e33f6a
MG
1500static inline struct page *
1501__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1502 struct zonelist *zonelist, enum zone_type high_zoneidx,
1503 nodemask_t *nodemask)
1504{
1505 struct page *page;
1506
1507 /* Acquire the OOM killer lock for the zones in zonelist */
1508 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1509 schedule_timeout_uninterruptible(1);
1da177e4
LT
1510 return NULL;
1511 }
6b1de916 1512
11e33f6a
MG
1513 /*
1514 * Go through the zonelist yet one more time, keep very high watermark
1515 * here, this is only to catch a parallel oom killing, we must fail if
1516 * we're still under heavy pressure.
1517 */
1518 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1519 order, zonelist, high_zoneidx,
1520 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc 1521 if (page)
11e33f6a
MG
1522 goto out;
1523
1524 /* The OOM killer will not help higher order allocs */
1525 if (order > PAGE_ALLOC_COSTLY_ORDER)
1526 goto out;
1527
1528 /* Exhausted what can be done so it's blamo time */
1529 out_of_memory(zonelist, gfp_mask, order);
1530
1531out:
1532 clear_zonelist_oom(zonelist, gfp_mask);
1533 return page;
1534}
1535
1536/* The really slow allocator path where we enter direct reclaim */
1537static inline struct page *
1538__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1539 struct zonelist *zonelist, enum zone_type high_zoneidx,
1540 nodemask_t *nodemask, int alloc_flags, unsigned long *did_some_progress)
1541{
1542 struct page *page = NULL;
1543 struct reclaim_state reclaim_state;
1544 struct task_struct *p = current;
1545
1546 cond_resched();
1547
1548 /* We now go into synchronous reclaim */
1549 cpuset_memory_pressure_bump();
1550
1551 /*
1552 * The task's cpuset might have expanded its set of allowable nodes
1553 */
1554 p->flags |= PF_MEMALLOC;
1555 lockdep_set_current_reclaim_state(gfp_mask);
1556 reclaim_state.reclaimed_slab = 0;
1557 p->reclaim_state = &reclaim_state;
1558
1559 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1560
1561 p->reclaim_state = NULL;
1562 lockdep_clear_current_reclaim_state();
1563 p->flags &= ~PF_MEMALLOC;
1564
1565 cond_resched();
1566
1567 if (order != 0)
1568 drain_all_pages();
1569
1570 if (likely(*did_some_progress))
1571 page = get_page_from_freelist(gfp_mask, nodemask, order,
1572 zonelist, high_zoneidx, alloc_flags);
1573 return page;
1574}
1575
1576static inline int
1577is_allocation_high_priority(struct task_struct *p, gfp_t gfp_mask)
1578{
1579 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1580 && !in_interrupt())
1581 return 1;
1582 return 0;
1583}
1584
1585/*
1586 * This is called in the allocator slow-path if the allocation request is of
1587 * sufficient urgency to ignore watermarks and take other desperate measures
1588 */
1589static inline struct page *
1590__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1591 struct zonelist *zonelist, enum zone_type high_zoneidx,
1592 nodemask_t *nodemask)
1593{
1594 struct page *page;
1595
1596 do {
1597 page = get_page_from_freelist(gfp_mask, nodemask, order,
1598 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1599
1600 if (!page && gfp_mask & __GFP_NOFAIL)
1601 congestion_wait(WRITE, HZ/50);
1602 } while (!page && (gfp_mask & __GFP_NOFAIL));
1603
1604 return page;
1605}
1606
1607static inline
1608void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1609 enum zone_type high_zoneidx)
1610{
1611 struct zoneref *z;
1612 struct zone *zone;
1613
1614 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1615 wakeup_kswapd(zone, order);
1616}
1617
1618static inline struct page *
1619__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1620 struct zonelist *zonelist, enum zone_type high_zoneidx,
1621 nodemask_t *nodemask)
1622{
1623 const gfp_t wait = gfp_mask & __GFP_WAIT;
1624 struct page *page = NULL;
1625 int alloc_flags;
1626 unsigned long pages_reclaimed = 0;
1627 unsigned long did_some_progress;
1628 struct task_struct *p = current;
1da177e4 1629
952f3b51
CL
1630 /*
1631 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1632 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1633 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1634 * using a larger set of nodes after it has established that the
1635 * allowed per node queues are empty and that nodes are
1636 * over allocated.
1637 */
1638 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1639 goto nopage;
1640
11e33f6a 1641 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1642
9bf2229f 1643 /*
7fb1d9fc
RS
1644 * OK, we're below the kswapd watermark and have kicked background
1645 * reclaim. Now things get more complex, so set up alloc_flags according
1646 * to how we want to proceed.
1647 *
1648 * The caller may dip into page reserves a bit more if the caller
1649 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1650 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1651 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1652 */
3148890b 1653 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1654 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1655 alloc_flags |= ALLOC_HARDER;
1656 if (gfp_mask & __GFP_HIGH)
1657 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1658 if (wait)
1659 alloc_flags |= ALLOC_CPUSET;
1da177e4 1660
11e33f6a 1661restart:
1da177e4
LT
1662 /*
1663 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1664 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1665 *
1666 * This is the last chance, in general, before the goto nopage.
1667 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1668 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1669 */
19770b32 1670 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
54a6eb5c 1671 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1672 if (page)
1673 goto got_pg;
1da177e4 1674
b43a57bb 1675rebalance:
11e33f6a
MG
1676 /* Allocate without watermarks if the context allows */
1677 if (is_allocation_high_priority(p, gfp_mask)) {
1678 /* Do not dip into emergency reserves if specified */
b84a35be 1679 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
11e33f6a
MG
1680 page = __alloc_pages_high_priority(gfp_mask, order,
1681 zonelist, high_zoneidx, nodemask);
7fb1d9fc
RS
1682 if (page)
1683 goto got_pg;
1da177e4 1684 }
11e33f6a
MG
1685
1686 /* Ensure no recursion into the allocator */
1da177e4
LT
1687 goto nopage;
1688 }
1689
1690 /* Atomic allocations - we can't balance anything */
1691 if (!wait)
1692 goto nopage;
1693
11e33f6a
MG
1694 /* Try direct reclaim and then allocating */
1695 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1696 zonelist, high_zoneidx,
1697 nodemask,
1698 alloc_flags, &did_some_progress);
1699 if (page)
1700 goto got_pg;
1da177e4 1701
11e33f6a
MG
1702 /*
1703 * If we failed to make any progress reclaiming, then we are
1704 * running out of options and have to consider going OOM
1705 */
1706 if (!did_some_progress) {
1707 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1708 page = __alloc_pages_may_oom(gfp_mask, order,
1709 zonelist, high_zoneidx,
1710 nodemask);
1711 if (page)
1712 goto got_pg;
1da177e4 1713
11e33f6a
MG
1714 /*
1715 * The OOM killer does not trigger for high-order allocations
1716 * but if no progress is being made, there are no other
1717 * options and retrying is unlikely to help
1718 */
1719 if (order > PAGE_ALLOC_COSTLY_ORDER)
1720 goto nopage;
e2c55dc8 1721
ff0ceb9d
DR
1722 goto restart;
1723 }
1da177e4
LT
1724 }
1725
11e33f6a 1726 /* Check if we should retry the allocation */
a41f24ea 1727 pages_reclaimed += did_some_progress;
11e33f6a
MG
1728 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1729 /* Wait for some write requests to complete then retry */
3fcfab16 1730 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1731 goto rebalance;
1732 }
1733
1734nopage:
1735 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1736 printk(KERN_WARNING "%s: page allocation failure."
1737 " order:%d, mode:0x%x\n",
1738 p->comm, order, gfp_mask);
1739 dump_stack();
578c2fd6 1740 show_mem();
1da177e4 1741 }
1da177e4 1742got_pg:
1da177e4 1743 return page;
11e33f6a
MG
1744
1745}
1746
1747/*
1748 * This is the 'heart' of the zoned buddy allocator.
1749 */
1750struct page *
1751__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1752 struct zonelist *zonelist, nodemask_t *nodemask)
1753{
1754 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1755 struct page *page;
1756
1757 lockdep_trace_alloc(gfp_mask);
1758
1759 might_sleep_if(gfp_mask & __GFP_WAIT);
1760
1761 if (should_fail_alloc_page(gfp_mask, order))
1762 return NULL;
1763
1764 /*
1765 * Check the zones suitable for the gfp_mask contain at least one
1766 * valid zone. It's possible to have an empty zonelist as a result
1767 * of GFP_THISNODE and a memoryless node
1768 */
1769 if (unlikely(!zonelist->_zonerefs->zone))
1770 return NULL;
1771
1772 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1773 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1774 if (unlikely(!page))
1775 page = __alloc_pages_slowpath(gfp_mask, order,
1776 zonelist, high_zoneidx, nodemask);
1777
1778 return page;
1da177e4 1779}
d239171e 1780EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1781
1782/*
1783 * Common helper functions.
1784 */
920c7a5d 1785unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1786{
1787 struct page * page;
1788 page = alloc_pages(gfp_mask, order);
1789 if (!page)
1790 return 0;
1791 return (unsigned long) page_address(page);
1792}
1793
1794EXPORT_SYMBOL(__get_free_pages);
1795
920c7a5d 1796unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1797{
1798 struct page * page;
1799
1800 /*
1801 * get_zeroed_page() returns a 32-bit address, which cannot represent
1802 * a highmem page
1803 */
725d704e 1804 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1805
1806 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1807 if (page)
1808 return (unsigned long) page_address(page);
1809 return 0;
1810}
1811
1812EXPORT_SYMBOL(get_zeroed_page);
1813
1814void __pagevec_free(struct pagevec *pvec)
1815{
1816 int i = pagevec_count(pvec);
1817
1818 while (--i >= 0)
1819 free_hot_cold_page(pvec->pages[i], pvec->cold);
1820}
1821
920c7a5d 1822void __free_pages(struct page *page, unsigned int order)
1da177e4 1823{
b5810039 1824 if (put_page_testzero(page)) {
1da177e4
LT
1825 if (order == 0)
1826 free_hot_page(page);
1827 else
1828 __free_pages_ok(page, order);
1829 }
1830}
1831
1832EXPORT_SYMBOL(__free_pages);
1833
920c7a5d 1834void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1835{
1836 if (addr != 0) {
725d704e 1837 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1838 __free_pages(virt_to_page((void *)addr), order);
1839 }
1840}
1841
1842EXPORT_SYMBOL(free_pages);
1843
2be0ffe2
TT
1844/**
1845 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1846 * @size: the number of bytes to allocate
1847 * @gfp_mask: GFP flags for the allocation
1848 *
1849 * This function is similar to alloc_pages(), except that it allocates the
1850 * minimum number of pages to satisfy the request. alloc_pages() can only
1851 * allocate memory in power-of-two pages.
1852 *
1853 * This function is also limited by MAX_ORDER.
1854 *
1855 * Memory allocated by this function must be released by free_pages_exact().
1856 */
1857void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1858{
1859 unsigned int order = get_order(size);
1860 unsigned long addr;
1861
1862 addr = __get_free_pages(gfp_mask, order);
1863 if (addr) {
1864 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1865 unsigned long used = addr + PAGE_ALIGN(size);
1866
1867 split_page(virt_to_page(addr), order);
1868 while (used < alloc_end) {
1869 free_page(used);
1870 used += PAGE_SIZE;
1871 }
1872 }
1873
1874 return (void *)addr;
1875}
1876EXPORT_SYMBOL(alloc_pages_exact);
1877
1878/**
1879 * free_pages_exact - release memory allocated via alloc_pages_exact()
1880 * @virt: the value returned by alloc_pages_exact.
1881 * @size: size of allocation, same value as passed to alloc_pages_exact().
1882 *
1883 * Release the memory allocated by a previous call to alloc_pages_exact.
1884 */
1885void free_pages_exact(void *virt, size_t size)
1886{
1887 unsigned long addr = (unsigned long)virt;
1888 unsigned long end = addr + PAGE_ALIGN(size);
1889
1890 while (addr < end) {
1891 free_page(addr);
1892 addr += PAGE_SIZE;
1893 }
1894}
1895EXPORT_SYMBOL(free_pages_exact);
1896
1da177e4
LT
1897static unsigned int nr_free_zone_pages(int offset)
1898{
dd1a239f 1899 struct zoneref *z;
54a6eb5c
MG
1900 struct zone *zone;
1901
e310fd43 1902 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1903 unsigned int sum = 0;
1904
0e88460d 1905 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1906
54a6eb5c 1907 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1908 unsigned long size = zone->present_pages;
1909 unsigned long high = zone->pages_high;
1910 if (size > high)
1911 sum += size - high;
1da177e4
LT
1912 }
1913
1914 return sum;
1915}
1916
1917/*
1918 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1919 */
1920unsigned int nr_free_buffer_pages(void)
1921{
af4ca457 1922 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1923}
c2f1a551 1924EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1925
1926/*
1927 * Amount of free RAM allocatable within all zones
1928 */
1929unsigned int nr_free_pagecache_pages(void)
1930{
2a1e274a 1931 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1932}
08e0f6a9
CL
1933
1934static inline void show_node(struct zone *zone)
1da177e4 1935{
08e0f6a9 1936 if (NUMA_BUILD)
25ba77c1 1937 printk("Node %d ", zone_to_nid(zone));
1da177e4 1938}
1da177e4 1939
1da177e4
LT
1940void si_meminfo(struct sysinfo *val)
1941{
1942 val->totalram = totalram_pages;
1943 val->sharedram = 0;
d23ad423 1944 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1945 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1946 val->totalhigh = totalhigh_pages;
1947 val->freehigh = nr_free_highpages();
1da177e4
LT
1948 val->mem_unit = PAGE_SIZE;
1949}
1950
1951EXPORT_SYMBOL(si_meminfo);
1952
1953#ifdef CONFIG_NUMA
1954void si_meminfo_node(struct sysinfo *val, int nid)
1955{
1956 pg_data_t *pgdat = NODE_DATA(nid);
1957
1958 val->totalram = pgdat->node_present_pages;
d23ad423 1959 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1960#ifdef CONFIG_HIGHMEM
1da177e4 1961 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1962 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1963 NR_FREE_PAGES);
98d2b0eb
CL
1964#else
1965 val->totalhigh = 0;
1966 val->freehigh = 0;
1967#endif
1da177e4
LT
1968 val->mem_unit = PAGE_SIZE;
1969}
1970#endif
1971
1972#define K(x) ((x) << (PAGE_SHIFT-10))
1973
1974/*
1975 * Show free area list (used inside shift_scroll-lock stuff)
1976 * We also calculate the percentage fragmentation. We do this by counting the
1977 * memory on each free list with the exception of the first item on the list.
1978 */
1979void show_free_areas(void)
1980{
c7241913 1981 int cpu;
1da177e4
LT
1982 struct zone *zone;
1983
ee99c71c 1984 for_each_populated_zone(zone) {
c7241913
JS
1985 show_node(zone);
1986 printk("%s per-cpu:\n", zone->name);
1da177e4 1987
6b482c67 1988 for_each_online_cpu(cpu) {
1da177e4
LT
1989 struct per_cpu_pageset *pageset;
1990
e7c8d5c9 1991 pageset = zone_pcp(zone, cpu);
1da177e4 1992
3dfa5721
CL
1993 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1994 cpu, pageset->pcp.high,
1995 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1996 }
1997 }
1998
7b854121
LS
1999 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2000 " inactive_file:%lu"
2001//TODO: check/adjust line lengths
2002#ifdef CONFIG_UNEVICTABLE_LRU
2003 " unevictable:%lu"
2004#endif
2005 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2006 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2007 global_page_state(NR_ACTIVE_ANON),
2008 global_page_state(NR_ACTIVE_FILE),
2009 global_page_state(NR_INACTIVE_ANON),
2010 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
2011#ifdef CONFIG_UNEVICTABLE_LRU
2012 global_page_state(NR_UNEVICTABLE),
2013#endif
b1e7a8fd 2014 global_page_state(NR_FILE_DIRTY),
ce866b34 2015 global_page_state(NR_WRITEBACK),
fd39fc85 2016 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2017 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2018 global_page_state(NR_SLAB_RECLAIMABLE) +
2019 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2020 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2021 global_page_state(NR_PAGETABLE),
2022 global_page_state(NR_BOUNCE));
1da177e4 2023
ee99c71c 2024 for_each_populated_zone(zone) {
1da177e4
LT
2025 int i;
2026
2027 show_node(zone);
2028 printk("%s"
2029 " free:%lukB"
2030 " min:%lukB"
2031 " low:%lukB"
2032 " high:%lukB"
4f98a2fe
RR
2033 " active_anon:%lukB"
2034 " inactive_anon:%lukB"
2035 " active_file:%lukB"
2036 " inactive_file:%lukB"
7b854121
LS
2037#ifdef CONFIG_UNEVICTABLE_LRU
2038 " unevictable:%lukB"
2039#endif
1da177e4
LT
2040 " present:%lukB"
2041 " pages_scanned:%lu"
2042 " all_unreclaimable? %s"
2043 "\n",
2044 zone->name,
d23ad423 2045 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
2046 K(zone->pages_min),
2047 K(zone->pages_low),
2048 K(zone->pages_high),
4f98a2fe
RR
2049 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2050 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2051 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2052 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
2053#ifdef CONFIG_UNEVICTABLE_LRU
2054 K(zone_page_state(zone, NR_UNEVICTABLE)),
2055#endif
1da177e4
LT
2056 K(zone->present_pages),
2057 zone->pages_scanned,
e815af95 2058 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2059 );
2060 printk("lowmem_reserve[]:");
2061 for (i = 0; i < MAX_NR_ZONES; i++)
2062 printk(" %lu", zone->lowmem_reserve[i]);
2063 printk("\n");
2064 }
2065
ee99c71c 2066 for_each_populated_zone(zone) {
8f9de51a 2067 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2068
2069 show_node(zone);
2070 printk("%s: ", zone->name);
1da177e4
LT
2071
2072 spin_lock_irqsave(&zone->lock, flags);
2073 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2074 nr[order] = zone->free_area[order].nr_free;
2075 total += nr[order] << order;
1da177e4
LT
2076 }
2077 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2078 for (order = 0; order < MAX_ORDER; order++)
2079 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2080 printk("= %lukB\n", K(total));
2081 }
2082
e6f3602d
LW
2083 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2084
1da177e4
LT
2085 show_swap_cache_info();
2086}
2087
19770b32
MG
2088static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2089{
2090 zoneref->zone = zone;
2091 zoneref->zone_idx = zone_idx(zone);
2092}
2093
1da177e4
LT
2094/*
2095 * Builds allocation fallback zone lists.
1a93205b
CL
2096 *
2097 * Add all populated zones of a node to the zonelist.
1da177e4 2098 */
f0c0b2b8
KH
2099static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2100 int nr_zones, enum zone_type zone_type)
1da177e4 2101{
1a93205b
CL
2102 struct zone *zone;
2103
98d2b0eb 2104 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2105 zone_type++;
02a68a5e
CL
2106
2107 do {
2f6726e5 2108 zone_type--;
070f8032 2109 zone = pgdat->node_zones + zone_type;
1a93205b 2110 if (populated_zone(zone)) {
dd1a239f
MG
2111 zoneref_set_zone(zone,
2112 &zonelist->_zonerefs[nr_zones++]);
070f8032 2113 check_highest_zone(zone_type);
1da177e4 2114 }
02a68a5e 2115
2f6726e5 2116 } while (zone_type);
070f8032 2117 return nr_zones;
1da177e4
LT
2118}
2119
f0c0b2b8
KH
2120
2121/*
2122 * zonelist_order:
2123 * 0 = automatic detection of better ordering.
2124 * 1 = order by ([node] distance, -zonetype)
2125 * 2 = order by (-zonetype, [node] distance)
2126 *
2127 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2128 * the same zonelist. So only NUMA can configure this param.
2129 */
2130#define ZONELIST_ORDER_DEFAULT 0
2131#define ZONELIST_ORDER_NODE 1
2132#define ZONELIST_ORDER_ZONE 2
2133
2134/* zonelist order in the kernel.
2135 * set_zonelist_order() will set this to NODE or ZONE.
2136 */
2137static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2138static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2139
2140
1da177e4 2141#ifdef CONFIG_NUMA
f0c0b2b8
KH
2142/* The value user specified ....changed by config */
2143static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2144/* string for sysctl */
2145#define NUMA_ZONELIST_ORDER_LEN 16
2146char numa_zonelist_order[16] = "default";
2147
2148/*
2149 * interface for configure zonelist ordering.
2150 * command line option "numa_zonelist_order"
2151 * = "[dD]efault - default, automatic configuration.
2152 * = "[nN]ode - order by node locality, then by zone within node
2153 * = "[zZ]one - order by zone, then by locality within zone
2154 */
2155
2156static int __parse_numa_zonelist_order(char *s)
2157{
2158 if (*s == 'd' || *s == 'D') {
2159 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2160 } else if (*s == 'n' || *s == 'N') {
2161 user_zonelist_order = ZONELIST_ORDER_NODE;
2162 } else if (*s == 'z' || *s == 'Z') {
2163 user_zonelist_order = ZONELIST_ORDER_ZONE;
2164 } else {
2165 printk(KERN_WARNING
2166 "Ignoring invalid numa_zonelist_order value: "
2167 "%s\n", s);
2168 return -EINVAL;
2169 }
2170 return 0;
2171}
2172
2173static __init int setup_numa_zonelist_order(char *s)
2174{
2175 if (s)
2176 return __parse_numa_zonelist_order(s);
2177 return 0;
2178}
2179early_param("numa_zonelist_order", setup_numa_zonelist_order);
2180
2181/*
2182 * sysctl handler for numa_zonelist_order
2183 */
2184int numa_zonelist_order_handler(ctl_table *table, int write,
2185 struct file *file, void __user *buffer, size_t *length,
2186 loff_t *ppos)
2187{
2188 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2189 int ret;
2190
2191 if (write)
2192 strncpy(saved_string, (char*)table->data,
2193 NUMA_ZONELIST_ORDER_LEN);
2194 ret = proc_dostring(table, write, file, buffer, length, ppos);
2195 if (ret)
2196 return ret;
2197 if (write) {
2198 int oldval = user_zonelist_order;
2199 if (__parse_numa_zonelist_order((char*)table->data)) {
2200 /*
2201 * bogus value. restore saved string
2202 */
2203 strncpy((char*)table->data, saved_string,
2204 NUMA_ZONELIST_ORDER_LEN);
2205 user_zonelist_order = oldval;
2206 } else if (oldval != user_zonelist_order)
2207 build_all_zonelists();
2208 }
2209 return 0;
2210}
2211
2212
1da177e4 2213#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2214static int node_load[MAX_NUMNODES];
2215
1da177e4 2216/**
4dc3b16b 2217 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2218 * @node: node whose fallback list we're appending
2219 * @used_node_mask: nodemask_t of already used nodes
2220 *
2221 * We use a number of factors to determine which is the next node that should
2222 * appear on a given node's fallback list. The node should not have appeared
2223 * already in @node's fallback list, and it should be the next closest node
2224 * according to the distance array (which contains arbitrary distance values
2225 * from each node to each node in the system), and should also prefer nodes
2226 * with no CPUs, since presumably they'll have very little allocation pressure
2227 * on them otherwise.
2228 * It returns -1 if no node is found.
2229 */
f0c0b2b8 2230static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2231{
4cf808eb 2232 int n, val;
1da177e4
LT
2233 int min_val = INT_MAX;
2234 int best_node = -1;
a70f7302 2235 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2236
4cf808eb
LT
2237 /* Use the local node if we haven't already */
2238 if (!node_isset(node, *used_node_mask)) {
2239 node_set(node, *used_node_mask);
2240 return node;
2241 }
1da177e4 2242
37b07e41 2243 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2244
2245 /* Don't want a node to appear more than once */
2246 if (node_isset(n, *used_node_mask))
2247 continue;
2248
1da177e4
LT
2249 /* Use the distance array to find the distance */
2250 val = node_distance(node, n);
2251
4cf808eb
LT
2252 /* Penalize nodes under us ("prefer the next node") */
2253 val += (n < node);
2254
1da177e4 2255 /* Give preference to headless and unused nodes */
a70f7302
RR
2256 tmp = cpumask_of_node(n);
2257 if (!cpumask_empty(tmp))
1da177e4
LT
2258 val += PENALTY_FOR_NODE_WITH_CPUS;
2259
2260 /* Slight preference for less loaded node */
2261 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2262 val += node_load[n];
2263
2264 if (val < min_val) {
2265 min_val = val;
2266 best_node = n;
2267 }
2268 }
2269
2270 if (best_node >= 0)
2271 node_set(best_node, *used_node_mask);
2272
2273 return best_node;
2274}
2275
f0c0b2b8
KH
2276
2277/*
2278 * Build zonelists ordered by node and zones within node.
2279 * This results in maximum locality--normal zone overflows into local
2280 * DMA zone, if any--but risks exhausting DMA zone.
2281 */
2282static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2283{
f0c0b2b8 2284 int j;
1da177e4 2285 struct zonelist *zonelist;
f0c0b2b8 2286
54a6eb5c 2287 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2288 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2289 ;
2290 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2291 MAX_NR_ZONES - 1);
dd1a239f
MG
2292 zonelist->_zonerefs[j].zone = NULL;
2293 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2294}
2295
523b9458
CL
2296/*
2297 * Build gfp_thisnode zonelists
2298 */
2299static void build_thisnode_zonelists(pg_data_t *pgdat)
2300{
523b9458
CL
2301 int j;
2302 struct zonelist *zonelist;
2303
54a6eb5c
MG
2304 zonelist = &pgdat->node_zonelists[1];
2305 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2306 zonelist->_zonerefs[j].zone = NULL;
2307 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2308}
2309
f0c0b2b8
KH
2310/*
2311 * Build zonelists ordered by zone and nodes within zones.
2312 * This results in conserving DMA zone[s] until all Normal memory is
2313 * exhausted, but results in overflowing to remote node while memory
2314 * may still exist in local DMA zone.
2315 */
2316static int node_order[MAX_NUMNODES];
2317
2318static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2319{
f0c0b2b8
KH
2320 int pos, j, node;
2321 int zone_type; /* needs to be signed */
2322 struct zone *z;
2323 struct zonelist *zonelist;
2324
54a6eb5c
MG
2325 zonelist = &pgdat->node_zonelists[0];
2326 pos = 0;
2327 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2328 for (j = 0; j < nr_nodes; j++) {
2329 node = node_order[j];
2330 z = &NODE_DATA(node)->node_zones[zone_type];
2331 if (populated_zone(z)) {
dd1a239f
MG
2332 zoneref_set_zone(z,
2333 &zonelist->_zonerefs[pos++]);
54a6eb5c 2334 check_highest_zone(zone_type);
f0c0b2b8
KH
2335 }
2336 }
f0c0b2b8 2337 }
dd1a239f
MG
2338 zonelist->_zonerefs[pos].zone = NULL;
2339 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2340}
2341
2342static int default_zonelist_order(void)
2343{
2344 int nid, zone_type;
2345 unsigned long low_kmem_size,total_size;
2346 struct zone *z;
2347 int average_size;
2348 /*
2349 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2350 * If they are really small and used heavily, the system can fall
2351 * into OOM very easily.
2352 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2353 */
2354 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2355 low_kmem_size = 0;
2356 total_size = 0;
2357 for_each_online_node(nid) {
2358 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2359 z = &NODE_DATA(nid)->node_zones[zone_type];
2360 if (populated_zone(z)) {
2361 if (zone_type < ZONE_NORMAL)
2362 low_kmem_size += z->present_pages;
2363 total_size += z->present_pages;
2364 }
2365 }
2366 }
2367 if (!low_kmem_size || /* there are no DMA area. */
2368 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2369 return ZONELIST_ORDER_NODE;
2370 /*
2371 * look into each node's config.
2372 * If there is a node whose DMA/DMA32 memory is very big area on
2373 * local memory, NODE_ORDER may be suitable.
2374 */
37b07e41
LS
2375 average_size = total_size /
2376 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2377 for_each_online_node(nid) {
2378 low_kmem_size = 0;
2379 total_size = 0;
2380 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2381 z = &NODE_DATA(nid)->node_zones[zone_type];
2382 if (populated_zone(z)) {
2383 if (zone_type < ZONE_NORMAL)
2384 low_kmem_size += z->present_pages;
2385 total_size += z->present_pages;
2386 }
2387 }
2388 if (low_kmem_size &&
2389 total_size > average_size && /* ignore small node */
2390 low_kmem_size > total_size * 70/100)
2391 return ZONELIST_ORDER_NODE;
2392 }
2393 return ZONELIST_ORDER_ZONE;
2394}
2395
2396static void set_zonelist_order(void)
2397{
2398 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2399 current_zonelist_order = default_zonelist_order();
2400 else
2401 current_zonelist_order = user_zonelist_order;
2402}
2403
2404static void build_zonelists(pg_data_t *pgdat)
2405{
2406 int j, node, load;
2407 enum zone_type i;
1da177e4 2408 nodemask_t used_mask;
f0c0b2b8
KH
2409 int local_node, prev_node;
2410 struct zonelist *zonelist;
2411 int order = current_zonelist_order;
1da177e4
LT
2412
2413 /* initialize zonelists */
523b9458 2414 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2415 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2416 zonelist->_zonerefs[0].zone = NULL;
2417 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2418 }
2419
2420 /* NUMA-aware ordering of nodes */
2421 local_node = pgdat->node_id;
2422 load = num_online_nodes();
2423 prev_node = local_node;
2424 nodes_clear(used_mask);
f0c0b2b8
KH
2425
2426 memset(node_load, 0, sizeof(node_load));
2427 memset(node_order, 0, sizeof(node_order));
2428 j = 0;
2429
1da177e4 2430 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2431 int distance = node_distance(local_node, node);
2432
2433 /*
2434 * If another node is sufficiently far away then it is better
2435 * to reclaim pages in a zone before going off node.
2436 */
2437 if (distance > RECLAIM_DISTANCE)
2438 zone_reclaim_mode = 1;
2439
1da177e4
LT
2440 /*
2441 * We don't want to pressure a particular node.
2442 * So adding penalty to the first node in same
2443 * distance group to make it round-robin.
2444 */
9eeff239 2445 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2446 node_load[node] = load;
2447
1da177e4
LT
2448 prev_node = node;
2449 load--;
f0c0b2b8
KH
2450 if (order == ZONELIST_ORDER_NODE)
2451 build_zonelists_in_node_order(pgdat, node);
2452 else
2453 node_order[j++] = node; /* remember order */
2454 }
1da177e4 2455
f0c0b2b8
KH
2456 if (order == ZONELIST_ORDER_ZONE) {
2457 /* calculate node order -- i.e., DMA last! */
2458 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2459 }
523b9458
CL
2460
2461 build_thisnode_zonelists(pgdat);
1da177e4
LT
2462}
2463
9276b1bc 2464/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2465static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2466{
54a6eb5c
MG
2467 struct zonelist *zonelist;
2468 struct zonelist_cache *zlc;
dd1a239f 2469 struct zoneref *z;
9276b1bc 2470
54a6eb5c
MG
2471 zonelist = &pgdat->node_zonelists[0];
2472 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2473 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2474 for (z = zonelist->_zonerefs; z->zone; z++)
2475 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2476}
2477
f0c0b2b8 2478
1da177e4
LT
2479#else /* CONFIG_NUMA */
2480
f0c0b2b8
KH
2481static void set_zonelist_order(void)
2482{
2483 current_zonelist_order = ZONELIST_ORDER_ZONE;
2484}
2485
2486static void build_zonelists(pg_data_t *pgdat)
1da177e4 2487{
19655d34 2488 int node, local_node;
54a6eb5c
MG
2489 enum zone_type j;
2490 struct zonelist *zonelist;
1da177e4
LT
2491
2492 local_node = pgdat->node_id;
1da177e4 2493
54a6eb5c
MG
2494 zonelist = &pgdat->node_zonelists[0];
2495 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2496
54a6eb5c
MG
2497 /*
2498 * Now we build the zonelist so that it contains the zones
2499 * of all the other nodes.
2500 * We don't want to pressure a particular node, so when
2501 * building the zones for node N, we make sure that the
2502 * zones coming right after the local ones are those from
2503 * node N+1 (modulo N)
2504 */
2505 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2506 if (!node_online(node))
2507 continue;
2508 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2509 MAX_NR_ZONES - 1);
1da177e4 2510 }
54a6eb5c
MG
2511 for (node = 0; node < local_node; node++) {
2512 if (!node_online(node))
2513 continue;
2514 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2515 MAX_NR_ZONES - 1);
2516 }
2517
dd1a239f
MG
2518 zonelist->_zonerefs[j].zone = NULL;
2519 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2520}
2521
9276b1bc 2522/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2523static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2524{
54a6eb5c 2525 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2526}
2527
1da177e4
LT
2528#endif /* CONFIG_NUMA */
2529
9b1a4d38 2530/* return values int ....just for stop_machine() */
f0c0b2b8 2531static int __build_all_zonelists(void *dummy)
1da177e4 2532{
6811378e 2533 int nid;
9276b1bc
PJ
2534
2535 for_each_online_node(nid) {
7ea1530a
CL
2536 pg_data_t *pgdat = NODE_DATA(nid);
2537
2538 build_zonelists(pgdat);
2539 build_zonelist_cache(pgdat);
9276b1bc 2540 }
6811378e
YG
2541 return 0;
2542}
2543
f0c0b2b8 2544void build_all_zonelists(void)
6811378e 2545{
f0c0b2b8
KH
2546 set_zonelist_order();
2547
6811378e 2548 if (system_state == SYSTEM_BOOTING) {
423b41d7 2549 __build_all_zonelists(NULL);
68ad8df4 2550 mminit_verify_zonelist();
6811378e
YG
2551 cpuset_init_current_mems_allowed();
2552 } else {
183ff22b 2553 /* we have to stop all cpus to guarantee there is no user
6811378e 2554 of zonelist */
9b1a4d38 2555 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2556 /* cpuset refresh routine should be here */
2557 }
bd1e22b8 2558 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2559 /*
2560 * Disable grouping by mobility if the number of pages in the
2561 * system is too low to allow the mechanism to work. It would be
2562 * more accurate, but expensive to check per-zone. This check is
2563 * made on memory-hotadd so a system can start with mobility
2564 * disabled and enable it later
2565 */
d9c23400 2566 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2567 page_group_by_mobility_disabled = 1;
2568 else
2569 page_group_by_mobility_disabled = 0;
2570
2571 printk("Built %i zonelists in %s order, mobility grouping %s. "
2572 "Total pages: %ld\n",
f0c0b2b8
KH
2573 num_online_nodes(),
2574 zonelist_order_name[current_zonelist_order],
9ef9acb0 2575 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2576 vm_total_pages);
2577#ifdef CONFIG_NUMA
2578 printk("Policy zone: %s\n", zone_names[policy_zone]);
2579#endif
1da177e4
LT
2580}
2581
2582/*
2583 * Helper functions to size the waitqueue hash table.
2584 * Essentially these want to choose hash table sizes sufficiently
2585 * large so that collisions trying to wait on pages are rare.
2586 * But in fact, the number of active page waitqueues on typical
2587 * systems is ridiculously low, less than 200. So this is even
2588 * conservative, even though it seems large.
2589 *
2590 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2591 * waitqueues, i.e. the size of the waitq table given the number of pages.
2592 */
2593#define PAGES_PER_WAITQUEUE 256
2594
cca448fe 2595#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2596static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2597{
2598 unsigned long size = 1;
2599
2600 pages /= PAGES_PER_WAITQUEUE;
2601
2602 while (size < pages)
2603 size <<= 1;
2604
2605 /*
2606 * Once we have dozens or even hundreds of threads sleeping
2607 * on IO we've got bigger problems than wait queue collision.
2608 * Limit the size of the wait table to a reasonable size.
2609 */
2610 size = min(size, 4096UL);
2611
2612 return max(size, 4UL);
2613}
cca448fe
YG
2614#else
2615/*
2616 * A zone's size might be changed by hot-add, so it is not possible to determine
2617 * a suitable size for its wait_table. So we use the maximum size now.
2618 *
2619 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2620 *
2621 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2622 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2623 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2624 *
2625 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2626 * or more by the traditional way. (See above). It equals:
2627 *
2628 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2629 * ia64(16K page size) : = ( 8G + 4M)byte.
2630 * powerpc (64K page size) : = (32G +16M)byte.
2631 */
2632static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2633{
2634 return 4096UL;
2635}
2636#endif
1da177e4
LT
2637
2638/*
2639 * This is an integer logarithm so that shifts can be used later
2640 * to extract the more random high bits from the multiplicative
2641 * hash function before the remainder is taken.
2642 */
2643static inline unsigned long wait_table_bits(unsigned long size)
2644{
2645 return ffz(~size);
2646}
2647
2648#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2649
56fd56b8 2650/*
d9c23400 2651 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2652 * of blocks reserved is based on zone->pages_min. The memory within the
2653 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2654 * higher will lead to a bigger reserve which will get freed as contiguous
2655 * blocks as reclaim kicks in
2656 */
2657static void setup_zone_migrate_reserve(struct zone *zone)
2658{
2659 unsigned long start_pfn, pfn, end_pfn;
2660 struct page *page;
2661 unsigned long reserve, block_migratetype;
2662
2663 /* Get the start pfn, end pfn and the number of blocks to reserve */
2664 start_pfn = zone->zone_start_pfn;
2665 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2666 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2667 pageblock_order;
56fd56b8 2668
d9c23400 2669 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2670 if (!pfn_valid(pfn))
2671 continue;
2672 page = pfn_to_page(pfn);
2673
344c790e
AL
2674 /* Watch out for overlapping nodes */
2675 if (page_to_nid(page) != zone_to_nid(zone))
2676 continue;
2677
56fd56b8
MG
2678 /* Blocks with reserved pages will never free, skip them. */
2679 if (PageReserved(page))
2680 continue;
2681
2682 block_migratetype = get_pageblock_migratetype(page);
2683
2684 /* If this block is reserved, account for it */
2685 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2686 reserve--;
2687 continue;
2688 }
2689
2690 /* Suitable for reserving if this block is movable */
2691 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2692 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2693 move_freepages_block(zone, page, MIGRATE_RESERVE);
2694 reserve--;
2695 continue;
2696 }
2697
2698 /*
2699 * If the reserve is met and this is a previous reserved block,
2700 * take it back
2701 */
2702 if (block_migratetype == MIGRATE_RESERVE) {
2703 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2704 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2705 }
2706 }
2707}
ac0e5b7a 2708
1da177e4
LT
2709/*
2710 * Initially all pages are reserved - free ones are freed
2711 * up by free_all_bootmem() once the early boot process is
2712 * done. Non-atomic initialization, single-pass.
2713 */
c09b4240 2714void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2715 unsigned long start_pfn, enum memmap_context context)
1da177e4 2716{
1da177e4 2717 struct page *page;
29751f69
AW
2718 unsigned long end_pfn = start_pfn + size;
2719 unsigned long pfn;
86051ca5 2720 struct zone *z;
1da177e4 2721
22b31eec
HD
2722 if (highest_memmap_pfn < end_pfn - 1)
2723 highest_memmap_pfn = end_pfn - 1;
2724
86051ca5 2725 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2726 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2727 /*
2728 * There can be holes in boot-time mem_map[]s
2729 * handed to this function. They do not
2730 * exist on hotplugged memory.
2731 */
2732 if (context == MEMMAP_EARLY) {
2733 if (!early_pfn_valid(pfn))
2734 continue;
2735 if (!early_pfn_in_nid(pfn, nid))
2736 continue;
2737 }
d41dee36
AW
2738 page = pfn_to_page(pfn);
2739 set_page_links(page, zone, nid, pfn);
708614e6 2740 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2741 init_page_count(page);
1da177e4
LT
2742 reset_page_mapcount(page);
2743 SetPageReserved(page);
b2a0ac88
MG
2744 /*
2745 * Mark the block movable so that blocks are reserved for
2746 * movable at startup. This will force kernel allocations
2747 * to reserve their blocks rather than leaking throughout
2748 * the address space during boot when many long-lived
56fd56b8
MG
2749 * kernel allocations are made. Later some blocks near
2750 * the start are marked MIGRATE_RESERVE by
2751 * setup_zone_migrate_reserve()
86051ca5
KH
2752 *
2753 * bitmap is created for zone's valid pfn range. but memmap
2754 * can be created for invalid pages (for alignment)
2755 * check here not to call set_pageblock_migratetype() against
2756 * pfn out of zone.
b2a0ac88 2757 */
86051ca5
KH
2758 if ((z->zone_start_pfn <= pfn)
2759 && (pfn < z->zone_start_pfn + z->spanned_pages)
2760 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2761 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2762
1da177e4
LT
2763 INIT_LIST_HEAD(&page->lru);
2764#ifdef WANT_PAGE_VIRTUAL
2765 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2766 if (!is_highmem_idx(zone))
3212c6be 2767 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2768#endif
1da177e4
LT
2769 }
2770}
2771
1e548deb 2772static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2773{
b2a0ac88
MG
2774 int order, t;
2775 for_each_migratetype_order(order, t) {
2776 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2777 zone->free_area[order].nr_free = 0;
2778 }
2779}
2780
2781#ifndef __HAVE_ARCH_MEMMAP_INIT
2782#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2783 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2784#endif
2785
1d6f4e60 2786static int zone_batchsize(struct zone *zone)
e7c8d5c9 2787{
3a6be87f 2788#ifdef CONFIG_MMU
e7c8d5c9
CL
2789 int batch;
2790
2791 /*
2792 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2793 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2794 *
2795 * OK, so we don't know how big the cache is. So guess.
2796 */
2797 batch = zone->present_pages / 1024;
ba56e91c
SR
2798 if (batch * PAGE_SIZE > 512 * 1024)
2799 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2800 batch /= 4; /* We effectively *= 4 below */
2801 if (batch < 1)
2802 batch = 1;
2803
2804 /*
0ceaacc9
NP
2805 * Clamp the batch to a 2^n - 1 value. Having a power
2806 * of 2 value was found to be more likely to have
2807 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2808 *
0ceaacc9
NP
2809 * For example if 2 tasks are alternately allocating
2810 * batches of pages, one task can end up with a lot
2811 * of pages of one half of the possible page colors
2812 * and the other with pages of the other colors.
e7c8d5c9 2813 */
9155203a 2814 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2815
e7c8d5c9 2816 return batch;
3a6be87f
DH
2817
2818#else
2819 /* The deferral and batching of frees should be suppressed under NOMMU
2820 * conditions.
2821 *
2822 * The problem is that NOMMU needs to be able to allocate large chunks
2823 * of contiguous memory as there's no hardware page translation to
2824 * assemble apparent contiguous memory from discontiguous pages.
2825 *
2826 * Queueing large contiguous runs of pages for batching, however,
2827 * causes the pages to actually be freed in smaller chunks. As there
2828 * can be a significant delay between the individual batches being
2829 * recycled, this leads to the once large chunks of space being
2830 * fragmented and becoming unavailable for high-order allocations.
2831 */
2832 return 0;
2833#endif
e7c8d5c9
CL
2834}
2835
b69a7288 2836static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2837{
2838 struct per_cpu_pages *pcp;
2839
1c6fe946
MD
2840 memset(p, 0, sizeof(*p));
2841
3dfa5721 2842 pcp = &p->pcp;
2caaad41 2843 pcp->count = 0;
2caaad41
CL
2844 pcp->high = 6 * batch;
2845 pcp->batch = max(1UL, 1 * batch);
2846 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2847}
2848
8ad4b1fb
RS
2849/*
2850 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2851 * to the value high for the pageset p.
2852 */
2853
2854static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2855 unsigned long high)
2856{
2857 struct per_cpu_pages *pcp;
2858
3dfa5721 2859 pcp = &p->pcp;
8ad4b1fb
RS
2860 pcp->high = high;
2861 pcp->batch = max(1UL, high/4);
2862 if ((high/4) > (PAGE_SHIFT * 8))
2863 pcp->batch = PAGE_SHIFT * 8;
2864}
2865
2866
e7c8d5c9
CL
2867#ifdef CONFIG_NUMA
2868/*
2caaad41
CL
2869 * Boot pageset table. One per cpu which is going to be used for all
2870 * zones and all nodes. The parameters will be set in such a way
2871 * that an item put on a list will immediately be handed over to
2872 * the buddy list. This is safe since pageset manipulation is done
2873 * with interrupts disabled.
2874 *
2875 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2876 *
2877 * The boot_pagesets must be kept even after bootup is complete for
2878 * unused processors and/or zones. They do play a role for bootstrapping
2879 * hotplugged processors.
2880 *
2881 * zoneinfo_show() and maybe other functions do
2882 * not check if the processor is online before following the pageset pointer.
2883 * Other parts of the kernel may not check if the zone is available.
2caaad41 2884 */
88a2a4ac 2885static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2886
2887/*
2888 * Dynamically allocate memory for the
e7c8d5c9
CL
2889 * per cpu pageset array in struct zone.
2890 */
6292d9aa 2891static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2892{
2893 struct zone *zone, *dzone;
37c0708d
CL
2894 int node = cpu_to_node(cpu);
2895
2896 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2897
ee99c71c 2898 for_each_populated_zone(zone) {
23316bc8 2899 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2900 GFP_KERNEL, node);
23316bc8 2901 if (!zone_pcp(zone, cpu))
e7c8d5c9 2902 goto bad;
e7c8d5c9 2903
23316bc8 2904 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2905
2906 if (percpu_pagelist_fraction)
2907 setup_pagelist_highmark(zone_pcp(zone, cpu),
2908 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2909 }
2910
2911 return 0;
2912bad:
2913 for_each_zone(dzone) {
64191688
AM
2914 if (!populated_zone(dzone))
2915 continue;
e7c8d5c9
CL
2916 if (dzone == zone)
2917 break;
23316bc8
NP
2918 kfree(zone_pcp(dzone, cpu));
2919 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2920 }
2921 return -ENOMEM;
2922}
2923
2924static inline void free_zone_pagesets(int cpu)
2925{
e7c8d5c9
CL
2926 struct zone *zone;
2927
2928 for_each_zone(zone) {
2929 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2930
f3ef9ead
DR
2931 /* Free per_cpu_pageset if it is slab allocated */
2932 if (pset != &boot_pageset[cpu])
2933 kfree(pset);
e7c8d5c9 2934 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2935 }
e7c8d5c9
CL
2936}
2937
9c7b216d 2938static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2939 unsigned long action,
2940 void *hcpu)
2941{
2942 int cpu = (long)hcpu;
2943 int ret = NOTIFY_OK;
2944
2945 switch (action) {
ce421c79 2946 case CPU_UP_PREPARE:
8bb78442 2947 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2948 if (process_zones(cpu))
2949 ret = NOTIFY_BAD;
2950 break;
2951 case CPU_UP_CANCELED:
8bb78442 2952 case CPU_UP_CANCELED_FROZEN:
ce421c79 2953 case CPU_DEAD:
8bb78442 2954 case CPU_DEAD_FROZEN:
ce421c79
AW
2955 free_zone_pagesets(cpu);
2956 break;
2957 default:
2958 break;
e7c8d5c9
CL
2959 }
2960 return ret;
2961}
2962
74b85f37 2963static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2964 { &pageset_cpuup_callback, NULL, 0 };
2965
78d9955b 2966void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2967{
2968 int err;
2969
2970 /* Initialize per_cpu_pageset for cpu 0.
2971 * A cpuup callback will do this for every cpu
2972 * as it comes online
2973 */
2974 err = process_zones(smp_processor_id());
2975 BUG_ON(err);
2976 register_cpu_notifier(&pageset_notifier);
2977}
2978
2979#endif
2980
577a32f6 2981static noinline __init_refok
cca448fe 2982int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2983{
2984 int i;
2985 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2986 size_t alloc_size;
ed8ece2e
DH
2987
2988 /*
2989 * The per-page waitqueue mechanism uses hashed waitqueues
2990 * per zone.
2991 */
02b694de
YG
2992 zone->wait_table_hash_nr_entries =
2993 wait_table_hash_nr_entries(zone_size_pages);
2994 zone->wait_table_bits =
2995 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2996 alloc_size = zone->wait_table_hash_nr_entries
2997 * sizeof(wait_queue_head_t);
2998
cd94b9db 2999 if (!slab_is_available()) {
cca448fe
YG
3000 zone->wait_table = (wait_queue_head_t *)
3001 alloc_bootmem_node(pgdat, alloc_size);
3002 } else {
3003 /*
3004 * This case means that a zone whose size was 0 gets new memory
3005 * via memory hot-add.
3006 * But it may be the case that a new node was hot-added. In
3007 * this case vmalloc() will not be able to use this new node's
3008 * memory - this wait_table must be initialized to use this new
3009 * node itself as well.
3010 * To use this new node's memory, further consideration will be
3011 * necessary.
3012 */
8691f3a7 3013 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3014 }
3015 if (!zone->wait_table)
3016 return -ENOMEM;
ed8ece2e 3017
02b694de 3018 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3019 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3020
3021 return 0;
ed8ece2e
DH
3022}
3023
c09b4240 3024static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3025{
3026 int cpu;
3027 unsigned long batch = zone_batchsize(zone);
3028
3029 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3030#ifdef CONFIG_NUMA
3031 /* Early boot. Slab allocator not functional yet */
23316bc8 3032 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3033 setup_pageset(&boot_pageset[cpu],0);
3034#else
3035 setup_pageset(zone_pcp(zone,cpu), batch);
3036#endif
3037 }
f5335c0f
AB
3038 if (zone->present_pages)
3039 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3040 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3041}
3042
718127cc
YG
3043__meminit int init_currently_empty_zone(struct zone *zone,
3044 unsigned long zone_start_pfn,
a2f3aa02
DH
3045 unsigned long size,
3046 enum memmap_context context)
ed8ece2e
DH
3047{
3048 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3049 int ret;
3050 ret = zone_wait_table_init(zone, size);
3051 if (ret)
3052 return ret;
ed8ece2e
DH
3053 pgdat->nr_zones = zone_idx(zone) + 1;
3054
ed8ece2e
DH
3055 zone->zone_start_pfn = zone_start_pfn;
3056
708614e6
MG
3057 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3058 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3059 pgdat->node_id,
3060 (unsigned long)zone_idx(zone),
3061 zone_start_pfn, (zone_start_pfn + size));
3062
1e548deb 3063 zone_init_free_lists(zone);
718127cc
YG
3064
3065 return 0;
ed8ece2e
DH
3066}
3067
c713216d
MG
3068#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3069/*
3070 * Basic iterator support. Return the first range of PFNs for a node
3071 * Note: nid == MAX_NUMNODES returns first region regardless of node
3072 */
a3142c8e 3073static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3074{
3075 int i;
3076
3077 for (i = 0; i < nr_nodemap_entries; i++)
3078 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3079 return i;
3080
3081 return -1;
3082}
3083
3084/*
3085 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3086 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3087 */
a3142c8e 3088static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3089{
3090 for (index = index + 1; index < nr_nodemap_entries; index++)
3091 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3092 return index;
3093
3094 return -1;
3095}
3096
3097#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3098/*
3099 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3100 * Architectures may implement their own version but if add_active_range()
3101 * was used and there are no special requirements, this is a convenient
3102 * alternative
3103 */
f2dbcfa7 3104int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3105{
3106 int i;
3107
3108 for (i = 0; i < nr_nodemap_entries; i++) {
3109 unsigned long start_pfn = early_node_map[i].start_pfn;
3110 unsigned long end_pfn = early_node_map[i].end_pfn;
3111
3112 if (start_pfn <= pfn && pfn < end_pfn)
3113 return early_node_map[i].nid;
3114 }
cc2559bc
KH
3115 /* This is a memory hole */
3116 return -1;
c713216d
MG
3117}
3118#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3119
f2dbcfa7
KH
3120int __meminit early_pfn_to_nid(unsigned long pfn)
3121{
cc2559bc
KH
3122 int nid;
3123
3124 nid = __early_pfn_to_nid(pfn);
3125 if (nid >= 0)
3126 return nid;
3127 /* just returns 0 */
3128 return 0;
f2dbcfa7
KH
3129}
3130
cc2559bc
KH
3131#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3132bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3133{
3134 int nid;
3135
3136 nid = __early_pfn_to_nid(pfn);
3137 if (nid >= 0 && nid != node)
3138 return false;
3139 return true;
3140}
3141#endif
f2dbcfa7 3142
c713216d
MG
3143/* Basic iterator support to walk early_node_map[] */
3144#define for_each_active_range_index_in_nid(i, nid) \
3145 for (i = first_active_region_index_in_nid(nid); i != -1; \
3146 i = next_active_region_index_in_nid(i, nid))
3147
3148/**
3149 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3150 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3151 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3152 *
3153 * If an architecture guarantees that all ranges registered with
3154 * add_active_ranges() contain no holes and may be freed, this
3155 * this function may be used instead of calling free_bootmem() manually.
3156 */
3157void __init free_bootmem_with_active_regions(int nid,
3158 unsigned long max_low_pfn)
3159{
3160 int i;
3161
3162 for_each_active_range_index_in_nid(i, nid) {
3163 unsigned long size_pages = 0;
3164 unsigned long end_pfn = early_node_map[i].end_pfn;
3165
3166 if (early_node_map[i].start_pfn >= max_low_pfn)
3167 continue;
3168
3169 if (end_pfn > max_low_pfn)
3170 end_pfn = max_low_pfn;
3171
3172 size_pages = end_pfn - early_node_map[i].start_pfn;
3173 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3174 PFN_PHYS(early_node_map[i].start_pfn),
3175 size_pages << PAGE_SHIFT);
3176 }
3177}
3178
b5bc6c0e
YL
3179void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3180{
3181 int i;
d52d53b8 3182 int ret;
b5bc6c0e 3183
d52d53b8
YL
3184 for_each_active_range_index_in_nid(i, nid) {
3185 ret = work_fn(early_node_map[i].start_pfn,
3186 early_node_map[i].end_pfn, data);
3187 if (ret)
3188 break;
3189 }
b5bc6c0e 3190}
c713216d
MG
3191/**
3192 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3193 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3194 *
3195 * If an architecture guarantees that all ranges registered with
3196 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3197 * function may be used instead of calling memory_present() manually.
c713216d
MG
3198 */
3199void __init sparse_memory_present_with_active_regions(int nid)
3200{
3201 int i;
3202
3203 for_each_active_range_index_in_nid(i, nid)
3204 memory_present(early_node_map[i].nid,
3205 early_node_map[i].start_pfn,
3206 early_node_map[i].end_pfn);
3207}
3208
3209/**
3210 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3211 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3212 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3213 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3214 *
3215 * It returns the start and end page frame of a node based on information
3216 * provided by an arch calling add_active_range(). If called for a node
3217 * with no available memory, a warning is printed and the start and end
88ca3b94 3218 * PFNs will be 0.
c713216d 3219 */
a3142c8e 3220void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3221 unsigned long *start_pfn, unsigned long *end_pfn)
3222{
3223 int i;
3224 *start_pfn = -1UL;
3225 *end_pfn = 0;
3226
3227 for_each_active_range_index_in_nid(i, nid) {
3228 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3229 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3230 }
3231
633c0666 3232 if (*start_pfn == -1UL)
c713216d 3233 *start_pfn = 0;
c713216d
MG
3234}
3235
2a1e274a
MG
3236/*
3237 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3238 * assumption is made that zones within a node are ordered in monotonic
3239 * increasing memory addresses so that the "highest" populated zone is used
3240 */
b69a7288 3241static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3242{
3243 int zone_index;
3244 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3245 if (zone_index == ZONE_MOVABLE)
3246 continue;
3247
3248 if (arch_zone_highest_possible_pfn[zone_index] >
3249 arch_zone_lowest_possible_pfn[zone_index])
3250 break;
3251 }
3252
3253 VM_BUG_ON(zone_index == -1);
3254 movable_zone = zone_index;
3255}
3256
3257/*
3258 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3259 * because it is sized independant of architecture. Unlike the other zones,
3260 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3261 * in each node depending on the size of each node and how evenly kernelcore
3262 * is distributed. This helper function adjusts the zone ranges
3263 * provided by the architecture for a given node by using the end of the
3264 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3265 * zones within a node are in order of monotonic increases memory addresses
3266 */
b69a7288 3267static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3268 unsigned long zone_type,
3269 unsigned long node_start_pfn,
3270 unsigned long node_end_pfn,
3271 unsigned long *zone_start_pfn,
3272 unsigned long *zone_end_pfn)
3273{
3274 /* Only adjust if ZONE_MOVABLE is on this node */
3275 if (zone_movable_pfn[nid]) {
3276 /* Size ZONE_MOVABLE */
3277 if (zone_type == ZONE_MOVABLE) {
3278 *zone_start_pfn = zone_movable_pfn[nid];
3279 *zone_end_pfn = min(node_end_pfn,
3280 arch_zone_highest_possible_pfn[movable_zone]);
3281
3282 /* Adjust for ZONE_MOVABLE starting within this range */
3283 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3284 *zone_end_pfn > zone_movable_pfn[nid]) {
3285 *zone_end_pfn = zone_movable_pfn[nid];
3286
3287 /* Check if this whole range is within ZONE_MOVABLE */
3288 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3289 *zone_start_pfn = *zone_end_pfn;
3290 }
3291}
3292
c713216d
MG
3293/*
3294 * Return the number of pages a zone spans in a node, including holes
3295 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3296 */
6ea6e688 3297static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3298 unsigned long zone_type,
3299 unsigned long *ignored)
3300{
3301 unsigned long node_start_pfn, node_end_pfn;
3302 unsigned long zone_start_pfn, zone_end_pfn;
3303
3304 /* Get the start and end of the node and zone */
3305 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3306 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3307 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3308 adjust_zone_range_for_zone_movable(nid, zone_type,
3309 node_start_pfn, node_end_pfn,
3310 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3311
3312 /* Check that this node has pages within the zone's required range */
3313 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3314 return 0;
3315
3316 /* Move the zone boundaries inside the node if necessary */
3317 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3318 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3319
3320 /* Return the spanned pages */
3321 return zone_end_pfn - zone_start_pfn;
3322}
3323
3324/*
3325 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3326 * then all holes in the requested range will be accounted for.
c713216d 3327 */
b69a7288 3328static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3329 unsigned long range_start_pfn,
3330 unsigned long range_end_pfn)
3331{
3332 int i = 0;
3333 unsigned long prev_end_pfn = 0, hole_pages = 0;
3334 unsigned long start_pfn;
3335
3336 /* Find the end_pfn of the first active range of pfns in the node */
3337 i = first_active_region_index_in_nid(nid);
3338 if (i == -1)
3339 return 0;
3340
b5445f95
MG
3341 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3342
9c7cd687
MG
3343 /* Account for ranges before physical memory on this node */
3344 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3345 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3346
3347 /* Find all holes for the zone within the node */
3348 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3349
3350 /* No need to continue if prev_end_pfn is outside the zone */
3351 if (prev_end_pfn >= range_end_pfn)
3352 break;
3353
3354 /* Make sure the end of the zone is not within the hole */
3355 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3356 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3357
3358 /* Update the hole size cound and move on */
3359 if (start_pfn > range_start_pfn) {
3360 BUG_ON(prev_end_pfn > start_pfn);
3361 hole_pages += start_pfn - prev_end_pfn;
3362 }
3363 prev_end_pfn = early_node_map[i].end_pfn;
3364 }
3365
9c7cd687
MG
3366 /* Account for ranges past physical memory on this node */
3367 if (range_end_pfn > prev_end_pfn)
0c6cb974 3368 hole_pages += range_end_pfn -
9c7cd687
MG
3369 max(range_start_pfn, prev_end_pfn);
3370
c713216d
MG
3371 return hole_pages;
3372}
3373
3374/**
3375 * absent_pages_in_range - Return number of page frames in holes within a range
3376 * @start_pfn: The start PFN to start searching for holes
3377 * @end_pfn: The end PFN to stop searching for holes
3378 *
88ca3b94 3379 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3380 */
3381unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3382 unsigned long end_pfn)
3383{
3384 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3385}
3386
3387/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3388static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3389 unsigned long zone_type,
3390 unsigned long *ignored)
3391{
9c7cd687
MG
3392 unsigned long node_start_pfn, node_end_pfn;
3393 unsigned long zone_start_pfn, zone_end_pfn;
3394
3395 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3396 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3397 node_start_pfn);
3398 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3399 node_end_pfn);
3400
2a1e274a
MG
3401 adjust_zone_range_for_zone_movable(nid, zone_type,
3402 node_start_pfn, node_end_pfn,
3403 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3404 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3405}
0e0b864e 3406
c713216d 3407#else
6ea6e688 3408static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3409 unsigned long zone_type,
3410 unsigned long *zones_size)
3411{
3412 return zones_size[zone_type];
3413}
3414
6ea6e688 3415static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3416 unsigned long zone_type,
3417 unsigned long *zholes_size)
3418{
3419 if (!zholes_size)
3420 return 0;
3421
3422 return zholes_size[zone_type];
3423}
0e0b864e 3424
c713216d
MG
3425#endif
3426
a3142c8e 3427static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3428 unsigned long *zones_size, unsigned long *zholes_size)
3429{
3430 unsigned long realtotalpages, totalpages = 0;
3431 enum zone_type i;
3432
3433 for (i = 0; i < MAX_NR_ZONES; i++)
3434 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3435 zones_size);
3436 pgdat->node_spanned_pages = totalpages;
3437
3438 realtotalpages = totalpages;
3439 for (i = 0; i < MAX_NR_ZONES; i++)
3440 realtotalpages -=
3441 zone_absent_pages_in_node(pgdat->node_id, i,
3442 zholes_size);
3443 pgdat->node_present_pages = realtotalpages;
3444 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3445 realtotalpages);
3446}
3447
835c134e
MG
3448#ifndef CONFIG_SPARSEMEM
3449/*
3450 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3451 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3452 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3453 * round what is now in bits to nearest long in bits, then return it in
3454 * bytes.
3455 */
3456static unsigned long __init usemap_size(unsigned long zonesize)
3457{
3458 unsigned long usemapsize;
3459
d9c23400
MG
3460 usemapsize = roundup(zonesize, pageblock_nr_pages);
3461 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3462 usemapsize *= NR_PAGEBLOCK_BITS;
3463 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3464
3465 return usemapsize / 8;
3466}
3467
3468static void __init setup_usemap(struct pglist_data *pgdat,
3469 struct zone *zone, unsigned long zonesize)
3470{
3471 unsigned long usemapsize = usemap_size(zonesize);
3472 zone->pageblock_flags = NULL;
58a01a45 3473 if (usemapsize)
835c134e 3474 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3475}
3476#else
3477static void inline setup_usemap(struct pglist_data *pgdat,
3478 struct zone *zone, unsigned long zonesize) {}
3479#endif /* CONFIG_SPARSEMEM */
3480
d9c23400 3481#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3482
3483/* Return a sensible default order for the pageblock size. */
3484static inline int pageblock_default_order(void)
3485{
3486 if (HPAGE_SHIFT > PAGE_SHIFT)
3487 return HUGETLB_PAGE_ORDER;
3488
3489 return MAX_ORDER-1;
3490}
3491
d9c23400
MG
3492/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3493static inline void __init set_pageblock_order(unsigned int order)
3494{
3495 /* Check that pageblock_nr_pages has not already been setup */
3496 if (pageblock_order)
3497 return;
3498
3499 /*
3500 * Assume the largest contiguous order of interest is a huge page.
3501 * This value may be variable depending on boot parameters on IA64
3502 */
3503 pageblock_order = order;
3504}
3505#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3506
ba72cb8c
MG
3507/*
3508 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3509 * and pageblock_default_order() are unused as pageblock_order is set
3510 * at compile-time. See include/linux/pageblock-flags.h for the values of
3511 * pageblock_order based on the kernel config
3512 */
3513static inline int pageblock_default_order(unsigned int order)
3514{
3515 return MAX_ORDER-1;
3516}
d9c23400
MG
3517#define set_pageblock_order(x) do {} while (0)
3518
3519#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3520
1da177e4
LT
3521/*
3522 * Set up the zone data structures:
3523 * - mark all pages reserved
3524 * - mark all memory queues empty
3525 * - clear the memory bitmaps
3526 */
b5a0e011 3527static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3528 unsigned long *zones_size, unsigned long *zholes_size)
3529{
2f1b6248 3530 enum zone_type j;
ed8ece2e 3531 int nid = pgdat->node_id;
1da177e4 3532 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3533 int ret;
1da177e4 3534
208d54e5 3535 pgdat_resize_init(pgdat);
1da177e4
LT
3536 pgdat->nr_zones = 0;
3537 init_waitqueue_head(&pgdat->kswapd_wait);
3538 pgdat->kswapd_max_order = 0;
52d4b9ac 3539 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3540
3541 for (j = 0; j < MAX_NR_ZONES; j++) {
3542 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3543 unsigned long size, realsize, memmap_pages;
b69408e8 3544 enum lru_list l;
1da177e4 3545
c713216d
MG
3546 size = zone_spanned_pages_in_node(nid, j, zones_size);
3547 realsize = size - zone_absent_pages_in_node(nid, j,
3548 zholes_size);
1da177e4 3549
0e0b864e
MG
3550 /*
3551 * Adjust realsize so that it accounts for how much memory
3552 * is used by this zone for memmap. This affects the watermark
3553 * and per-cpu initialisations
3554 */
f7232154
JW
3555 memmap_pages =
3556 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3557 if (realsize >= memmap_pages) {
3558 realsize -= memmap_pages;
5594c8c8
YL
3559 if (memmap_pages)
3560 printk(KERN_DEBUG
3561 " %s zone: %lu pages used for memmap\n",
3562 zone_names[j], memmap_pages);
0e0b864e
MG
3563 } else
3564 printk(KERN_WARNING
3565 " %s zone: %lu pages exceeds realsize %lu\n",
3566 zone_names[j], memmap_pages, realsize);
3567
6267276f
CL
3568 /* Account for reserved pages */
3569 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3570 realsize -= dma_reserve;
d903ef9f 3571 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3572 zone_names[0], dma_reserve);
0e0b864e
MG
3573 }
3574
98d2b0eb 3575 if (!is_highmem_idx(j))
1da177e4
LT
3576 nr_kernel_pages += realsize;
3577 nr_all_pages += realsize;
3578
3579 zone->spanned_pages = size;
3580 zone->present_pages = realsize;
9614634f 3581#ifdef CONFIG_NUMA
d5f541ed 3582 zone->node = nid;
8417bba4 3583 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3584 / 100;
0ff38490 3585 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3586#endif
1da177e4
LT
3587 zone->name = zone_names[j];
3588 spin_lock_init(&zone->lock);
3589 spin_lock_init(&zone->lru_lock);
bdc8cb98 3590 zone_seqlock_init(zone);
1da177e4 3591 zone->zone_pgdat = pgdat;
1da177e4 3592
3bb1a852 3593 zone->prev_priority = DEF_PRIORITY;
1da177e4 3594
ed8ece2e 3595 zone_pcp_init(zone);
b69408e8
CL
3596 for_each_lru(l) {
3597 INIT_LIST_HEAD(&zone->lru[l].list);
3598 zone->lru[l].nr_scan = 0;
3599 }
6e901571
KM
3600 zone->reclaim_stat.recent_rotated[0] = 0;
3601 zone->reclaim_stat.recent_rotated[1] = 0;
3602 zone->reclaim_stat.recent_scanned[0] = 0;
3603 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3604 zap_zone_vm_stats(zone);
e815af95 3605 zone->flags = 0;
1da177e4
LT
3606 if (!size)
3607 continue;
3608
ba72cb8c 3609 set_pageblock_order(pageblock_default_order());
835c134e 3610 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3611 ret = init_currently_empty_zone(zone, zone_start_pfn,
3612 size, MEMMAP_EARLY);
718127cc 3613 BUG_ON(ret);
76cdd58e 3614 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3615 zone_start_pfn += size;
1da177e4
LT
3616 }
3617}
3618
577a32f6 3619static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3620{
1da177e4
LT
3621 /* Skip empty nodes */
3622 if (!pgdat->node_spanned_pages)
3623 return;
3624
d41dee36 3625#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3626 /* ia64 gets its own node_mem_map, before this, without bootmem */
3627 if (!pgdat->node_mem_map) {
e984bb43 3628 unsigned long size, start, end;
d41dee36
AW
3629 struct page *map;
3630
e984bb43
BP
3631 /*
3632 * The zone's endpoints aren't required to be MAX_ORDER
3633 * aligned but the node_mem_map endpoints must be in order
3634 * for the buddy allocator to function correctly.
3635 */
3636 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3637 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3638 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3639 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3640 map = alloc_remap(pgdat->node_id, size);
3641 if (!map)
3642 map = alloc_bootmem_node(pgdat, size);
e984bb43 3643 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3644 }
12d810c1 3645#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3646 /*
3647 * With no DISCONTIG, the global mem_map is just set as node 0's
3648 */
c713216d 3649 if (pgdat == NODE_DATA(0)) {
1da177e4 3650 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3651#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3652 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3653 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3654#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3655 }
1da177e4 3656#endif
d41dee36 3657#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3658}
3659
9109fb7b
JW
3660void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3661 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3662{
9109fb7b
JW
3663 pg_data_t *pgdat = NODE_DATA(nid);
3664
1da177e4
LT
3665 pgdat->node_id = nid;
3666 pgdat->node_start_pfn = node_start_pfn;
c713216d 3667 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3668
3669 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3670#ifdef CONFIG_FLAT_NODE_MEM_MAP
3671 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3672 nid, (unsigned long)pgdat,
3673 (unsigned long)pgdat->node_mem_map);
3674#endif
1da177e4
LT
3675
3676 free_area_init_core(pgdat, zones_size, zholes_size);
3677}
3678
c713216d 3679#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3680
3681#if MAX_NUMNODES > 1
3682/*
3683 * Figure out the number of possible node ids.
3684 */
3685static void __init setup_nr_node_ids(void)
3686{
3687 unsigned int node;
3688 unsigned int highest = 0;
3689
3690 for_each_node_mask(node, node_possible_map)
3691 highest = node;
3692 nr_node_ids = highest + 1;
3693}
3694#else
3695static inline void setup_nr_node_ids(void)
3696{
3697}
3698#endif
3699
c713216d
MG
3700/**
3701 * add_active_range - Register a range of PFNs backed by physical memory
3702 * @nid: The node ID the range resides on
3703 * @start_pfn: The start PFN of the available physical memory
3704 * @end_pfn: The end PFN of the available physical memory
3705 *
3706 * These ranges are stored in an early_node_map[] and later used by
3707 * free_area_init_nodes() to calculate zone sizes and holes. If the
3708 * range spans a memory hole, it is up to the architecture to ensure
3709 * the memory is not freed by the bootmem allocator. If possible
3710 * the range being registered will be merged with existing ranges.
3711 */
3712void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3713 unsigned long end_pfn)
3714{
3715 int i;
3716
6b74ab97
MG
3717 mminit_dprintk(MMINIT_TRACE, "memory_register",
3718 "Entering add_active_range(%d, %#lx, %#lx) "
3719 "%d entries of %d used\n",
3720 nid, start_pfn, end_pfn,
3721 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3722
2dbb51c4
MG
3723 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3724
c713216d
MG
3725 /* Merge with existing active regions if possible */
3726 for (i = 0; i < nr_nodemap_entries; i++) {
3727 if (early_node_map[i].nid != nid)
3728 continue;
3729
3730 /* Skip if an existing region covers this new one */
3731 if (start_pfn >= early_node_map[i].start_pfn &&
3732 end_pfn <= early_node_map[i].end_pfn)
3733 return;
3734
3735 /* Merge forward if suitable */
3736 if (start_pfn <= early_node_map[i].end_pfn &&
3737 end_pfn > early_node_map[i].end_pfn) {
3738 early_node_map[i].end_pfn = end_pfn;
3739 return;
3740 }
3741
3742 /* Merge backward if suitable */
3743 if (start_pfn < early_node_map[i].end_pfn &&
3744 end_pfn >= early_node_map[i].start_pfn) {
3745 early_node_map[i].start_pfn = start_pfn;
3746 return;
3747 }
3748 }
3749
3750 /* Check that early_node_map is large enough */
3751 if (i >= MAX_ACTIVE_REGIONS) {
3752 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3753 MAX_ACTIVE_REGIONS);
3754 return;
3755 }
3756
3757 early_node_map[i].nid = nid;
3758 early_node_map[i].start_pfn = start_pfn;
3759 early_node_map[i].end_pfn = end_pfn;
3760 nr_nodemap_entries = i + 1;
3761}
3762
3763/**
cc1050ba 3764 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3765 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3766 * @start_pfn: The new PFN of the range
3767 * @end_pfn: The new PFN of the range
c713216d
MG
3768 *
3769 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3770 * The map is kept near the end physical page range that has already been
3771 * registered. This function allows an arch to shrink an existing registered
3772 * range.
c713216d 3773 */
cc1050ba
YL
3774void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3775 unsigned long end_pfn)
c713216d 3776{
cc1a9d86
YL
3777 int i, j;
3778 int removed = 0;
c713216d 3779
cc1050ba
YL
3780 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3781 nid, start_pfn, end_pfn);
3782
c713216d 3783 /* Find the old active region end and shrink */
cc1a9d86 3784 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3785 if (early_node_map[i].start_pfn >= start_pfn &&
3786 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3787 /* clear it */
cc1050ba 3788 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3789 early_node_map[i].end_pfn = 0;
3790 removed = 1;
3791 continue;
3792 }
cc1050ba
YL
3793 if (early_node_map[i].start_pfn < start_pfn &&
3794 early_node_map[i].end_pfn > start_pfn) {
3795 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3796 early_node_map[i].end_pfn = start_pfn;
3797 if (temp_end_pfn > end_pfn)
3798 add_active_range(nid, end_pfn, temp_end_pfn);
3799 continue;
3800 }
3801 if (early_node_map[i].start_pfn >= start_pfn &&
3802 early_node_map[i].end_pfn > end_pfn &&
3803 early_node_map[i].start_pfn < end_pfn) {
3804 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3805 continue;
c713216d 3806 }
cc1a9d86
YL
3807 }
3808
3809 if (!removed)
3810 return;
3811
3812 /* remove the blank ones */
3813 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3814 if (early_node_map[i].nid != nid)
3815 continue;
3816 if (early_node_map[i].end_pfn)
3817 continue;
3818 /* we found it, get rid of it */
3819 for (j = i; j < nr_nodemap_entries - 1; j++)
3820 memcpy(&early_node_map[j], &early_node_map[j+1],
3821 sizeof(early_node_map[j]));
3822 j = nr_nodemap_entries - 1;
3823 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3824 nr_nodemap_entries--;
3825 }
c713216d
MG
3826}
3827
3828/**
3829 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3830 *
c713216d
MG
3831 * During discovery, it may be found that a table like SRAT is invalid
3832 * and an alternative discovery method must be used. This function removes
3833 * all currently registered regions.
3834 */
88ca3b94 3835void __init remove_all_active_ranges(void)
c713216d
MG
3836{
3837 memset(early_node_map, 0, sizeof(early_node_map));
3838 nr_nodemap_entries = 0;
3839}
3840
3841/* Compare two active node_active_regions */
3842static int __init cmp_node_active_region(const void *a, const void *b)
3843{
3844 struct node_active_region *arange = (struct node_active_region *)a;
3845 struct node_active_region *brange = (struct node_active_region *)b;
3846
3847 /* Done this way to avoid overflows */
3848 if (arange->start_pfn > brange->start_pfn)
3849 return 1;
3850 if (arange->start_pfn < brange->start_pfn)
3851 return -1;
3852
3853 return 0;
3854}
3855
3856/* sort the node_map by start_pfn */
3857static void __init sort_node_map(void)
3858{
3859 sort(early_node_map, (size_t)nr_nodemap_entries,
3860 sizeof(struct node_active_region),
3861 cmp_node_active_region, NULL);
3862}
3863
a6af2bc3 3864/* Find the lowest pfn for a node */
b69a7288 3865static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3866{
3867 int i;
a6af2bc3 3868 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3869
c713216d
MG
3870 /* Assuming a sorted map, the first range found has the starting pfn */
3871 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3872 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3873
a6af2bc3
MG
3874 if (min_pfn == ULONG_MAX) {
3875 printk(KERN_WARNING
2bc0d261 3876 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3877 return 0;
3878 }
3879
3880 return min_pfn;
c713216d
MG
3881}
3882
3883/**
3884 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3885 *
3886 * It returns the minimum PFN based on information provided via
88ca3b94 3887 * add_active_range().
c713216d
MG
3888 */
3889unsigned long __init find_min_pfn_with_active_regions(void)
3890{
3891 return find_min_pfn_for_node(MAX_NUMNODES);
3892}
3893
37b07e41
LS
3894/*
3895 * early_calculate_totalpages()
3896 * Sum pages in active regions for movable zone.
3897 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3898 */
484f51f8 3899static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3900{
3901 int i;
3902 unsigned long totalpages = 0;
3903
37b07e41
LS
3904 for (i = 0; i < nr_nodemap_entries; i++) {
3905 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3906 early_node_map[i].start_pfn;
37b07e41
LS
3907 totalpages += pages;
3908 if (pages)
3909 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3910 }
3911 return totalpages;
7e63efef
MG
3912}
3913
2a1e274a
MG
3914/*
3915 * Find the PFN the Movable zone begins in each node. Kernel memory
3916 * is spread evenly between nodes as long as the nodes have enough
3917 * memory. When they don't, some nodes will have more kernelcore than
3918 * others
3919 */
b69a7288 3920static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3921{
3922 int i, nid;
3923 unsigned long usable_startpfn;
3924 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3925 unsigned long totalpages = early_calculate_totalpages();
3926 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3927
7e63efef
MG
3928 /*
3929 * If movablecore was specified, calculate what size of
3930 * kernelcore that corresponds so that memory usable for
3931 * any allocation type is evenly spread. If both kernelcore
3932 * and movablecore are specified, then the value of kernelcore
3933 * will be used for required_kernelcore if it's greater than
3934 * what movablecore would have allowed.
3935 */
3936 if (required_movablecore) {
7e63efef
MG
3937 unsigned long corepages;
3938
3939 /*
3940 * Round-up so that ZONE_MOVABLE is at least as large as what
3941 * was requested by the user
3942 */
3943 required_movablecore =
3944 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3945 corepages = totalpages - required_movablecore;
3946
3947 required_kernelcore = max(required_kernelcore, corepages);
3948 }
3949
2a1e274a
MG
3950 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3951 if (!required_kernelcore)
3952 return;
3953
3954 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3955 find_usable_zone_for_movable();
3956 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3957
3958restart:
3959 /* Spread kernelcore memory as evenly as possible throughout nodes */
3960 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3961 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3962 /*
3963 * Recalculate kernelcore_node if the division per node
3964 * now exceeds what is necessary to satisfy the requested
3965 * amount of memory for the kernel
3966 */
3967 if (required_kernelcore < kernelcore_node)
3968 kernelcore_node = required_kernelcore / usable_nodes;
3969
3970 /*
3971 * As the map is walked, we track how much memory is usable
3972 * by the kernel using kernelcore_remaining. When it is
3973 * 0, the rest of the node is usable by ZONE_MOVABLE
3974 */
3975 kernelcore_remaining = kernelcore_node;
3976
3977 /* Go through each range of PFNs within this node */
3978 for_each_active_range_index_in_nid(i, nid) {
3979 unsigned long start_pfn, end_pfn;
3980 unsigned long size_pages;
3981
3982 start_pfn = max(early_node_map[i].start_pfn,
3983 zone_movable_pfn[nid]);
3984 end_pfn = early_node_map[i].end_pfn;
3985 if (start_pfn >= end_pfn)
3986 continue;
3987
3988 /* Account for what is only usable for kernelcore */
3989 if (start_pfn < usable_startpfn) {
3990 unsigned long kernel_pages;
3991 kernel_pages = min(end_pfn, usable_startpfn)
3992 - start_pfn;
3993
3994 kernelcore_remaining -= min(kernel_pages,
3995 kernelcore_remaining);
3996 required_kernelcore -= min(kernel_pages,
3997 required_kernelcore);
3998
3999 /* Continue if range is now fully accounted */
4000 if (end_pfn <= usable_startpfn) {
4001
4002 /*
4003 * Push zone_movable_pfn to the end so
4004 * that if we have to rebalance
4005 * kernelcore across nodes, we will
4006 * not double account here
4007 */
4008 zone_movable_pfn[nid] = end_pfn;
4009 continue;
4010 }
4011 start_pfn = usable_startpfn;
4012 }
4013
4014 /*
4015 * The usable PFN range for ZONE_MOVABLE is from
4016 * start_pfn->end_pfn. Calculate size_pages as the
4017 * number of pages used as kernelcore
4018 */
4019 size_pages = end_pfn - start_pfn;
4020 if (size_pages > kernelcore_remaining)
4021 size_pages = kernelcore_remaining;
4022 zone_movable_pfn[nid] = start_pfn + size_pages;
4023
4024 /*
4025 * Some kernelcore has been met, update counts and
4026 * break if the kernelcore for this node has been
4027 * satisified
4028 */
4029 required_kernelcore -= min(required_kernelcore,
4030 size_pages);
4031 kernelcore_remaining -= size_pages;
4032 if (!kernelcore_remaining)
4033 break;
4034 }
4035 }
4036
4037 /*
4038 * If there is still required_kernelcore, we do another pass with one
4039 * less node in the count. This will push zone_movable_pfn[nid] further
4040 * along on the nodes that still have memory until kernelcore is
4041 * satisified
4042 */
4043 usable_nodes--;
4044 if (usable_nodes && required_kernelcore > usable_nodes)
4045 goto restart;
4046
4047 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4048 for (nid = 0; nid < MAX_NUMNODES; nid++)
4049 zone_movable_pfn[nid] =
4050 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4051}
4052
37b07e41
LS
4053/* Any regular memory on that node ? */
4054static void check_for_regular_memory(pg_data_t *pgdat)
4055{
4056#ifdef CONFIG_HIGHMEM
4057 enum zone_type zone_type;
4058
4059 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4060 struct zone *zone = &pgdat->node_zones[zone_type];
4061 if (zone->present_pages)
4062 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4063 }
4064#endif
4065}
4066
c713216d
MG
4067/**
4068 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4069 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4070 *
4071 * This will call free_area_init_node() for each active node in the system.
4072 * Using the page ranges provided by add_active_range(), the size of each
4073 * zone in each node and their holes is calculated. If the maximum PFN
4074 * between two adjacent zones match, it is assumed that the zone is empty.
4075 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4076 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4077 * starts where the previous one ended. For example, ZONE_DMA32 starts
4078 * at arch_max_dma_pfn.
4079 */
4080void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4081{
4082 unsigned long nid;
db99100d 4083 int i;
c713216d 4084
a6af2bc3
MG
4085 /* Sort early_node_map as initialisation assumes it is sorted */
4086 sort_node_map();
4087
c713216d
MG
4088 /* Record where the zone boundaries are */
4089 memset(arch_zone_lowest_possible_pfn, 0,
4090 sizeof(arch_zone_lowest_possible_pfn));
4091 memset(arch_zone_highest_possible_pfn, 0,
4092 sizeof(arch_zone_highest_possible_pfn));
4093 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4094 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4095 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4096 if (i == ZONE_MOVABLE)
4097 continue;
c713216d
MG
4098 arch_zone_lowest_possible_pfn[i] =
4099 arch_zone_highest_possible_pfn[i-1];
4100 arch_zone_highest_possible_pfn[i] =
4101 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4102 }
2a1e274a
MG
4103 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4104 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4105
4106 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4107 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4108 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4109
c713216d
MG
4110 /* Print out the zone ranges */
4111 printk("Zone PFN ranges:\n");
2a1e274a
MG
4112 for (i = 0; i < MAX_NR_ZONES; i++) {
4113 if (i == ZONE_MOVABLE)
4114 continue;
5dab8ec1 4115 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4116 zone_names[i],
4117 arch_zone_lowest_possible_pfn[i],
4118 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4119 }
4120
4121 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4122 printk("Movable zone start PFN for each node\n");
4123 for (i = 0; i < MAX_NUMNODES; i++) {
4124 if (zone_movable_pfn[i])
4125 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4126 }
c713216d
MG
4127
4128 /* Print out the early_node_map[] */
4129 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4130 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4131 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4132 early_node_map[i].start_pfn,
4133 early_node_map[i].end_pfn);
4134
4135 /* Initialise every node */
708614e6 4136 mminit_verify_pageflags_layout();
8ef82866 4137 setup_nr_node_ids();
c713216d
MG
4138 for_each_online_node(nid) {
4139 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4140 free_area_init_node(nid, NULL,
c713216d 4141 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4142
4143 /* Any memory on that node */
4144 if (pgdat->node_present_pages)
4145 node_set_state(nid, N_HIGH_MEMORY);
4146 check_for_regular_memory(pgdat);
c713216d
MG
4147 }
4148}
2a1e274a 4149
7e63efef 4150static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4151{
4152 unsigned long long coremem;
4153 if (!p)
4154 return -EINVAL;
4155
4156 coremem = memparse(p, &p);
7e63efef 4157 *core = coremem >> PAGE_SHIFT;
2a1e274a 4158
7e63efef 4159 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4160 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4161
4162 return 0;
4163}
ed7ed365 4164
7e63efef
MG
4165/*
4166 * kernelcore=size sets the amount of memory for use for allocations that
4167 * cannot be reclaimed or migrated.
4168 */
4169static int __init cmdline_parse_kernelcore(char *p)
4170{
4171 return cmdline_parse_core(p, &required_kernelcore);
4172}
4173
4174/*
4175 * movablecore=size sets the amount of memory for use for allocations that
4176 * can be reclaimed or migrated.
4177 */
4178static int __init cmdline_parse_movablecore(char *p)
4179{
4180 return cmdline_parse_core(p, &required_movablecore);
4181}
4182
ed7ed365 4183early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4184early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4185
c713216d
MG
4186#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4187
0e0b864e 4188/**
88ca3b94
RD
4189 * set_dma_reserve - set the specified number of pages reserved in the first zone
4190 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4191 *
4192 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4193 * In the DMA zone, a significant percentage may be consumed by kernel image
4194 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4195 * function may optionally be used to account for unfreeable pages in the
4196 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4197 * smaller per-cpu batchsize.
0e0b864e
MG
4198 */
4199void __init set_dma_reserve(unsigned long new_dma_reserve)
4200{
4201 dma_reserve = new_dma_reserve;
4202}
4203
93b7504e 4204#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4205struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4206EXPORT_SYMBOL(contig_page_data);
93b7504e 4207#endif
1da177e4
LT
4208
4209void __init free_area_init(unsigned long *zones_size)
4210{
9109fb7b 4211 free_area_init_node(0, zones_size,
1da177e4
LT
4212 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4213}
1da177e4 4214
1da177e4
LT
4215static int page_alloc_cpu_notify(struct notifier_block *self,
4216 unsigned long action, void *hcpu)
4217{
4218 int cpu = (unsigned long)hcpu;
1da177e4 4219
8bb78442 4220 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4221 drain_pages(cpu);
4222
4223 /*
4224 * Spill the event counters of the dead processor
4225 * into the current processors event counters.
4226 * This artificially elevates the count of the current
4227 * processor.
4228 */
f8891e5e 4229 vm_events_fold_cpu(cpu);
9f8f2172
CL
4230
4231 /*
4232 * Zero the differential counters of the dead processor
4233 * so that the vm statistics are consistent.
4234 *
4235 * This is only okay since the processor is dead and cannot
4236 * race with what we are doing.
4237 */
2244b95a 4238 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4239 }
4240 return NOTIFY_OK;
4241}
1da177e4
LT
4242
4243void __init page_alloc_init(void)
4244{
4245 hotcpu_notifier(page_alloc_cpu_notify, 0);
4246}
4247
cb45b0e9
HA
4248/*
4249 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4250 * or min_free_kbytes changes.
4251 */
4252static void calculate_totalreserve_pages(void)
4253{
4254 struct pglist_data *pgdat;
4255 unsigned long reserve_pages = 0;
2f6726e5 4256 enum zone_type i, j;
cb45b0e9
HA
4257
4258 for_each_online_pgdat(pgdat) {
4259 for (i = 0; i < MAX_NR_ZONES; i++) {
4260 struct zone *zone = pgdat->node_zones + i;
4261 unsigned long max = 0;
4262
4263 /* Find valid and maximum lowmem_reserve in the zone */
4264 for (j = i; j < MAX_NR_ZONES; j++) {
4265 if (zone->lowmem_reserve[j] > max)
4266 max = zone->lowmem_reserve[j];
4267 }
4268
4269 /* we treat pages_high as reserved pages. */
4270 max += zone->pages_high;
4271
4272 if (max > zone->present_pages)
4273 max = zone->present_pages;
4274 reserve_pages += max;
4275 }
4276 }
4277 totalreserve_pages = reserve_pages;
4278}
4279
1da177e4
LT
4280/*
4281 * setup_per_zone_lowmem_reserve - called whenever
4282 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4283 * has a correct pages reserved value, so an adequate number of
4284 * pages are left in the zone after a successful __alloc_pages().
4285 */
4286static void setup_per_zone_lowmem_reserve(void)
4287{
4288 struct pglist_data *pgdat;
2f6726e5 4289 enum zone_type j, idx;
1da177e4 4290
ec936fc5 4291 for_each_online_pgdat(pgdat) {
1da177e4
LT
4292 for (j = 0; j < MAX_NR_ZONES; j++) {
4293 struct zone *zone = pgdat->node_zones + j;
4294 unsigned long present_pages = zone->present_pages;
4295
4296 zone->lowmem_reserve[j] = 0;
4297
2f6726e5
CL
4298 idx = j;
4299 while (idx) {
1da177e4
LT
4300 struct zone *lower_zone;
4301
2f6726e5
CL
4302 idx--;
4303
1da177e4
LT
4304 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4305 sysctl_lowmem_reserve_ratio[idx] = 1;
4306
4307 lower_zone = pgdat->node_zones + idx;
4308 lower_zone->lowmem_reserve[j] = present_pages /
4309 sysctl_lowmem_reserve_ratio[idx];
4310 present_pages += lower_zone->present_pages;
4311 }
4312 }
4313 }
cb45b0e9
HA
4314
4315 /* update totalreserve_pages */
4316 calculate_totalreserve_pages();
1da177e4
LT
4317}
4318
88ca3b94
RD
4319/**
4320 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4321 *
4322 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4323 * with respect to min_free_kbytes.
1da177e4 4324 */
3947be19 4325void setup_per_zone_pages_min(void)
1da177e4
LT
4326{
4327 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4328 unsigned long lowmem_pages = 0;
4329 struct zone *zone;
4330 unsigned long flags;
4331
4332 /* Calculate total number of !ZONE_HIGHMEM pages */
4333 for_each_zone(zone) {
4334 if (!is_highmem(zone))
4335 lowmem_pages += zone->present_pages;
4336 }
4337
4338 for_each_zone(zone) {
ac924c60
AM
4339 u64 tmp;
4340
1125b4e3 4341 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4342 tmp = (u64)pages_min * zone->present_pages;
4343 do_div(tmp, lowmem_pages);
1da177e4
LT
4344 if (is_highmem(zone)) {
4345 /*
669ed175
NP
4346 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4347 * need highmem pages, so cap pages_min to a small
4348 * value here.
4349 *
4350 * The (pages_high-pages_low) and (pages_low-pages_min)
4351 * deltas controls asynch page reclaim, and so should
4352 * not be capped for highmem.
1da177e4
LT
4353 */
4354 int min_pages;
4355
4356 min_pages = zone->present_pages / 1024;
4357 if (min_pages < SWAP_CLUSTER_MAX)
4358 min_pages = SWAP_CLUSTER_MAX;
4359 if (min_pages > 128)
4360 min_pages = 128;
4361 zone->pages_min = min_pages;
4362 } else {
669ed175
NP
4363 /*
4364 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4365 * proportionate to the zone's size.
4366 */
669ed175 4367 zone->pages_min = tmp;
1da177e4
LT
4368 }
4369
ac924c60
AM
4370 zone->pages_low = zone->pages_min + (tmp >> 2);
4371 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4372 setup_zone_migrate_reserve(zone);
1125b4e3 4373 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4374 }
cb45b0e9
HA
4375
4376 /* update totalreserve_pages */
4377 calculate_totalreserve_pages();
1da177e4
LT
4378}
4379
556adecb
RR
4380/**
4381 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4382 *
4383 * The inactive anon list should be small enough that the VM never has to
4384 * do too much work, but large enough that each inactive page has a chance
4385 * to be referenced again before it is swapped out.
4386 *
4387 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4388 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4389 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4390 * the anonymous pages are kept on the inactive list.
4391 *
4392 * total target max
4393 * memory ratio inactive anon
4394 * -------------------------------------
4395 * 10MB 1 5MB
4396 * 100MB 1 50MB
4397 * 1GB 3 250MB
4398 * 10GB 10 0.9GB
4399 * 100GB 31 3GB
4400 * 1TB 101 10GB
4401 * 10TB 320 32GB
4402 */
efab8186 4403static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4404{
4405 struct zone *zone;
4406
4407 for_each_zone(zone) {
4408 unsigned int gb, ratio;
4409
4410 /* Zone size in gigabytes */
4411 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4412 ratio = int_sqrt(10 * gb);
4413 if (!ratio)
4414 ratio = 1;
4415
4416 zone->inactive_ratio = ratio;
4417 }
4418}
4419
1da177e4
LT
4420/*
4421 * Initialise min_free_kbytes.
4422 *
4423 * For small machines we want it small (128k min). For large machines
4424 * we want it large (64MB max). But it is not linear, because network
4425 * bandwidth does not increase linearly with machine size. We use
4426 *
4427 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4428 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4429 *
4430 * which yields
4431 *
4432 * 16MB: 512k
4433 * 32MB: 724k
4434 * 64MB: 1024k
4435 * 128MB: 1448k
4436 * 256MB: 2048k
4437 * 512MB: 2896k
4438 * 1024MB: 4096k
4439 * 2048MB: 5792k
4440 * 4096MB: 8192k
4441 * 8192MB: 11584k
4442 * 16384MB: 16384k
4443 */
4444static int __init init_per_zone_pages_min(void)
4445{
4446 unsigned long lowmem_kbytes;
4447
4448 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4449
4450 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4451 if (min_free_kbytes < 128)
4452 min_free_kbytes = 128;
4453 if (min_free_kbytes > 65536)
4454 min_free_kbytes = 65536;
4455 setup_per_zone_pages_min();
4456 setup_per_zone_lowmem_reserve();
556adecb 4457 setup_per_zone_inactive_ratio();
1da177e4
LT
4458 return 0;
4459}
4460module_init(init_per_zone_pages_min)
4461
4462/*
4463 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4464 * that we can call two helper functions whenever min_free_kbytes
4465 * changes.
4466 */
4467int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4468 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4469{
4470 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4471 if (write)
4472 setup_per_zone_pages_min();
1da177e4
LT
4473 return 0;
4474}
4475
9614634f
CL
4476#ifdef CONFIG_NUMA
4477int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4478 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4479{
4480 struct zone *zone;
4481 int rc;
4482
4483 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4484 if (rc)
4485 return rc;
4486
4487 for_each_zone(zone)
8417bba4 4488 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4489 sysctl_min_unmapped_ratio) / 100;
4490 return 0;
4491}
0ff38490
CL
4492
4493int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4494 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4495{
4496 struct zone *zone;
4497 int rc;
4498
4499 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4500 if (rc)
4501 return rc;
4502
4503 for_each_zone(zone)
4504 zone->min_slab_pages = (zone->present_pages *
4505 sysctl_min_slab_ratio) / 100;
4506 return 0;
4507}
9614634f
CL
4508#endif
4509
1da177e4
LT
4510/*
4511 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4512 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4513 * whenever sysctl_lowmem_reserve_ratio changes.
4514 *
4515 * The reserve ratio obviously has absolutely no relation with the
4516 * pages_min watermarks. The lowmem reserve ratio can only make sense
4517 * if in function of the boot time zone sizes.
4518 */
4519int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4520 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4521{
4522 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4523 setup_per_zone_lowmem_reserve();
4524 return 0;
4525}
4526
8ad4b1fb
RS
4527/*
4528 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4529 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4530 * can have before it gets flushed back to buddy allocator.
4531 */
4532
4533int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4534 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4535{
4536 struct zone *zone;
4537 unsigned int cpu;
4538 int ret;
4539
4540 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4541 if (!write || (ret == -EINVAL))
4542 return ret;
4543 for_each_zone(zone) {
4544 for_each_online_cpu(cpu) {
4545 unsigned long high;
4546 high = zone->present_pages / percpu_pagelist_fraction;
4547 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4548 }
4549 }
4550 return 0;
4551}
4552
f034b5d4 4553int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4554
4555#ifdef CONFIG_NUMA
4556static int __init set_hashdist(char *str)
4557{
4558 if (!str)
4559 return 0;
4560 hashdist = simple_strtoul(str, &str, 0);
4561 return 1;
4562}
4563__setup("hashdist=", set_hashdist);
4564#endif
4565
4566/*
4567 * allocate a large system hash table from bootmem
4568 * - it is assumed that the hash table must contain an exact power-of-2
4569 * quantity of entries
4570 * - limit is the number of hash buckets, not the total allocation size
4571 */
4572void *__init alloc_large_system_hash(const char *tablename,
4573 unsigned long bucketsize,
4574 unsigned long numentries,
4575 int scale,
4576 int flags,
4577 unsigned int *_hash_shift,
4578 unsigned int *_hash_mask,
4579 unsigned long limit)
4580{
4581 unsigned long long max = limit;
4582 unsigned long log2qty, size;
4583 void *table = NULL;
4584
4585 /* allow the kernel cmdline to have a say */
4586 if (!numentries) {
4587 /* round applicable memory size up to nearest megabyte */
04903664 4588 numentries = nr_kernel_pages;
1da177e4
LT
4589 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4590 numentries >>= 20 - PAGE_SHIFT;
4591 numentries <<= 20 - PAGE_SHIFT;
4592
4593 /* limit to 1 bucket per 2^scale bytes of low memory */
4594 if (scale > PAGE_SHIFT)
4595 numentries >>= (scale - PAGE_SHIFT);
4596 else
4597 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4598
4599 /* Make sure we've got at least a 0-order allocation.. */
4600 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4601 numentries = PAGE_SIZE / bucketsize;
1da177e4 4602 }
6e692ed3 4603 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4604
4605 /* limit allocation size to 1/16 total memory by default */
4606 if (max == 0) {
4607 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4608 do_div(max, bucketsize);
4609 }
4610
4611 if (numentries > max)
4612 numentries = max;
4613
f0d1b0b3 4614 log2qty = ilog2(numentries);
1da177e4
LT
4615
4616 do {
4617 size = bucketsize << log2qty;
4618 if (flags & HASH_EARLY)
74768ed8 4619 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4620 else if (hashdist)
4621 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4622 else {
2309f9e6 4623 unsigned long order = get_order(size);
6c0db466
HD
4624
4625 if (order < MAX_ORDER)
4626 table = (void *)__get_free_pages(GFP_ATOMIC,
4627 order);
1037b83b
ED
4628 /*
4629 * If bucketsize is not a power-of-two, we may free
4630 * some pages at the end of hash table.
4631 */
4632 if (table) {
4633 unsigned long alloc_end = (unsigned long)table +
4634 (PAGE_SIZE << order);
4635 unsigned long used = (unsigned long)table +
4636 PAGE_ALIGN(size);
4637 split_page(virt_to_page(table), order);
4638 while (used < alloc_end) {
4639 free_page(used);
4640 used += PAGE_SIZE;
4641 }
4642 }
1da177e4
LT
4643 }
4644 } while (!table && size > PAGE_SIZE && --log2qty);
4645
4646 if (!table)
4647 panic("Failed to allocate %s hash table\n", tablename);
4648
b49ad484 4649 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4650 tablename,
4651 (1U << log2qty),
f0d1b0b3 4652 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4653 size);
4654
4655 if (_hash_shift)
4656 *_hash_shift = log2qty;
4657 if (_hash_mask)
4658 *_hash_mask = (1 << log2qty) - 1;
4659
dbb1f81c
CM
4660 /*
4661 * If hashdist is set, the table allocation is done with __vmalloc()
4662 * which invokes the kmemleak_alloc() callback. This function may also
4663 * be called before the slab and kmemleak are initialised when
4664 * kmemleak simply buffers the request to be executed later
4665 * (GFP_ATOMIC flag ignored in this case).
4666 */
4667 if (!hashdist)
4668 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4669
1da177e4
LT
4670 return table;
4671}
a117e66e 4672
835c134e
MG
4673/* Return a pointer to the bitmap storing bits affecting a block of pages */
4674static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4675 unsigned long pfn)
4676{
4677#ifdef CONFIG_SPARSEMEM
4678 return __pfn_to_section(pfn)->pageblock_flags;
4679#else
4680 return zone->pageblock_flags;
4681#endif /* CONFIG_SPARSEMEM */
4682}
4683
4684static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4685{
4686#ifdef CONFIG_SPARSEMEM
4687 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4688 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4689#else
4690 pfn = pfn - zone->zone_start_pfn;
d9c23400 4691 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4692#endif /* CONFIG_SPARSEMEM */
4693}
4694
4695/**
d9c23400 4696 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4697 * @page: The page within the block of interest
4698 * @start_bitidx: The first bit of interest to retrieve
4699 * @end_bitidx: The last bit of interest
4700 * returns pageblock_bits flags
4701 */
4702unsigned long get_pageblock_flags_group(struct page *page,
4703 int start_bitidx, int end_bitidx)
4704{
4705 struct zone *zone;
4706 unsigned long *bitmap;
4707 unsigned long pfn, bitidx;
4708 unsigned long flags = 0;
4709 unsigned long value = 1;
4710
4711 zone = page_zone(page);
4712 pfn = page_to_pfn(page);
4713 bitmap = get_pageblock_bitmap(zone, pfn);
4714 bitidx = pfn_to_bitidx(zone, pfn);
4715
4716 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4717 if (test_bit(bitidx + start_bitidx, bitmap))
4718 flags |= value;
6220ec78 4719
835c134e
MG
4720 return flags;
4721}
4722
4723/**
d9c23400 4724 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4725 * @page: The page within the block of interest
4726 * @start_bitidx: The first bit of interest
4727 * @end_bitidx: The last bit of interest
4728 * @flags: The flags to set
4729 */
4730void set_pageblock_flags_group(struct page *page, unsigned long flags,
4731 int start_bitidx, int end_bitidx)
4732{
4733 struct zone *zone;
4734 unsigned long *bitmap;
4735 unsigned long pfn, bitidx;
4736 unsigned long value = 1;
4737
4738 zone = page_zone(page);
4739 pfn = page_to_pfn(page);
4740 bitmap = get_pageblock_bitmap(zone, pfn);
4741 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4742 VM_BUG_ON(pfn < zone->zone_start_pfn);
4743 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4744
4745 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4746 if (flags & value)
4747 __set_bit(bitidx + start_bitidx, bitmap);
4748 else
4749 __clear_bit(bitidx + start_bitidx, bitmap);
4750}
a5d76b54
KH
4751
4752/*
4753 * This is designed as sub function...plz see page_isolation.c also.
4754 * set/clear page block's type to be ISOLATE.
4755 * page allocater never alloc memory from ISOLATE block.
4756 */
4757
4758int set_migratetype_isolate(struct page *page)
4759{
4760 struct zone *zone;
4761 unsigned long flags;
4762 int ret = -EBUSY;
4763
4764 zone = page_zone(page);
4765 spin_lock_irqsave(&zone->lock, flags);
4766 /*
4767 * In future, more migrate types will be able to be isolation target.
4768 */
4769 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4770 goto out;
4771 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4772 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4773 ret = 0;
4774out:
4775 spin_unlock_irqrestore(&zone->lock, flags);
4776 if (!ret)
9f8f2172 4777 drain_all_pages();
a5d76b54
KH
4778 return ret;
4779}
4780
4781void unset_migratetype_isolate(struct page *page)
4782{
4783 struct zone *zone;
4784 unsigned long flags;
4785 zone = page_zone(page);
4786 spin_lock_irqsave(&zone->lock, flags);
4787 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4788 goto out;
4789 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4790 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4791out:
4792 spin_unlock_irqrestore(&zone->lock, flags);
4793}
0c0e6195
KH
4794
4795#ifdef CONFIG_MEMORY_HOTREMOVE
4796/*
4797 * All pages in the range must be isolated before calling this.
4798 */
4799void
4800__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4801{
4802 struct page *page;
4803 struct zone *zone;
4804 int order, i;
4805 unsigned long pfn;
4806 unsigned long flags;
4807 /* find the first valid pfn */
4808 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4809 if (pfn_valid(pfn))
4810 break;
4811 if (pfn == end_pfn)
4812 return;
4813 zone = page_zone(pfn_to_page(pfn));
4814 spin_lock_irqsave(&zone->lock, flags);
4815 pfn = start_pfn;
4816 while (pfn < end_pfn) {
4817 if (!pfn_valid(pfn)) {
4818 pfn++;
4819 continue;
4820 }
4821 page = pfn_to_page(pfn);
4822 BUG_ON(page_count(page));
4823 BUG_ON(!PageBuddy(page));
4824 order = page_order(page);
4825#ifdef CONFIG_DEBUG_VM
4826 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4827 pfn, 1 << order, end_pfn);
4828#endif
4829 list_del(&page->lru);
4830 rmv_page_order(page);
4831 zone->free_area[order].nr_free--;
4832 __mod_zone_page_state(zone, NR_FREE_PAGES,
4833 - (1UL << order));
4834 for (i = 0; i < (1 << order); i++)
4835 SetPageReserved((page+i));
4836 pfn += (1 << order);
4837 }
4838 spin_unlock_irqrestore(&zone->lock, flags);
4839}
4840#endif