]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm/page_alloc: drop stale pageblock comment in memmap_init_zone*()
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
e4443149 71#include <linux/padata.h>
4aab2be0 72#include <linux/khugepaged.h>
1da177e4 73
7ee3d4e8 74#include <asm/sections.h>
1da177e4 75#include <asm/tlbflush.h>
ac924c60 76#include <asm/div64.h>
1da177e4 77#include "internal.h"
e900a918 78#include "shuffle.h"
36e66c55 79#include "page_reporting.h"
1da177e4 80
c8e251fa
CS
81/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
82static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 83#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 84
72812019
LS
85#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
86DEFINE_PER_CPU(int, numa_node);
87EXPORT_PER_CPU_SYMBOL(numa_node);
88#endif
89
4518085e
KW
90DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
91
7aac7898
LS
92#ifdef CONFIG_HAVE_MEMORYLESS_NODES
93/*
94 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
95 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
96 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
97 * defined in <linux/topology.h>.
98 */
99DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
100EXPORT_PER_CPU_SYMBOL(_numa_mem_);
101#endif
102
bd233f53 103/* work_structs for global per-cpu drains */
d9367bd0
WY
104struct pcpu_drain {
105 struct zone *zone;
106 struct work_struct work;
107};
8b885f53
JY
108static DEFINE_MUTEX(pcpu_drain_mutex);
109static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 110
38addce8 111#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 112volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
113EXPORT_SYMBOL(latent_entropy);
114#endif
115
1da177e4 116/*
13808910 117 * Array of node states.
1da177e4 118 */
13808910
CL
119nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
120 [N_POSSIBLE] = NODE_MASK_ALL,
121 [N_ONLINE] = { { [0] = 1UL } },
122#ifndef CONFIG_NUMA
123 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
124#ifdef CONFIG_HIGHMEM
125 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 126#endif
20b2f52b 127 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
128 [N_CPU] = { { [0] = 1UL } },
129#endif /* NUMA */
130};
131EXPORT_SYMBOL(node_states);
132
ca79b0c2
AK
133atomic_long_t _totalram_pages __read_mostly;
134EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 135unsigned long totalreserve_pages __read_mostly;
e48322ab 136unsigned long totalcma_pages __read_mostly;
ab8fabd4 137
1b76b02f 138int percpu_pagelist_fraction;
dcce284a 139gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
140#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
141DEFINE_STATIC_KEY_TRUE(init_on_alloc);
142#else
143DEFINE_STATIC_KEY_FALSE(init_on_alloc);
144#endif
145EXPORT_SYMBOL(init_on_alloc);
146
147#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
148DEFINE_STATIC_KEY_TRUE(init_on_free);
149#else
150DEFINE_STATIC_KEY_FALSE(init_on_free);
151#endif
152EXPORT_SYMBOL(init_on_free);
153
154static int __init early_init_on_alloc(char *buf)
155{
156 int ret;
157 bool bool_result;
158
6471384a 159 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
160 if (ret)
161 return ret;
6471384a
AP
162 if (bool_result && page_poisoning_enabled())
163 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 if (bool_result)
165 static_branch_enable(&init_on_alloc);
166 else
167 static_branch_disable(&init_on_alloc);
fdd4fa1c 168 return 0;
6471384a
AP
169}
170early_param("init_on_alloc", early_init_on_alloc);
171
172static int __init early_init_on_free(char *buf)
173{
174 int ret;
175 bool bool_result;
176
6471384a 177 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
178 if (ret)
179 return ret;
6471384a
AP
180 if (bool_result && page_poisoning_enabled())
181 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 if (bool_result)
183 static_branch_enable(&init_on_free);
184 else
185 static_branch_disable(&init_on_free);
fdd4fa1c 186 return 0;
6471384a
AP
187}
188early_param("init_on_free", early_init_on_free);
1da177e4 189
bb14c2c7
VB
190/*
191 * A cached value of the page's pageblock's migratetype, used when the page is
192 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
193 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
194 * Also the migratetype set in the page does not necessarily match the pcplist
195 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
196 * other index - this ensures that it will be put on the correct CMA freelist.
197 */
198static inline int get_pcppage_migratetype(struct page *page)
199{
200 return page->index;
201}
202
203static inline void set_pcppage_migratetype(struct page *page, int migratetype)
204{
205 page->index = migratetype;
206}
207
452aa699
RW
208#ifdef CONFIG_PM_SLEEP
209/*
210 * The following functions are used by the suspend/hibernate code to temporarily
211 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
212 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
213 * they should always be called with system_transition_mutex held
214 * (gfp_allowed_mask also should only be modified with system_transition_mutex
215 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
216 * with that modification).
452aa699 217 */
c9e664f1
RW
218
219static gfp_t saved_gfp_mask;
220
221void pm_restore_gfp_mask(void)
452aa699 222{
55f2503c 223 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
224 if (saved_gfp_mask) {
225 gfp_allowed_mask = saved_gfp_mask;
226 saved_gfp_mask = 0;
227 }
452aa699
RW
228}
229
c9e664f1 230void pm_restrict_gfp_mask(void)
452aa699 231{
55f2503c 232 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
233 WARN_ON(saved_gfp_mask);
234 saved_gfp_mask = gfp_allowed_mask;
d0164adc 235 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 236}
f90ac398
MG
237
238bool pm_suspended_storage(void)
239{
d0164adc 240 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
241 return false;
242 return true;
243}
452aa699
RW
244#endif /* CONFIG_PM_SLEEP */
245
d9c23400 246#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 247unsigned int pageblock_order __read_mostly;
d9c23400
MG
248#endif
249
d98c7a09 250static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 251
1da177e4
LT
252/*
253 * results with 256, 32 in the lowmem_reserve sysctl:
254 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
255 * 1G machine -> (16M dma, 784M normal, 224M high)
256 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
257 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 258 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
259 *
260 * TBD: should special case ZONE_DMA32 machines here - in those we normally
261 * don't need any ZONE_NORMAL reservation
1da177e4 262 */
d3cda233 263int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 264#ifdef CONFIG_ZONE_DMA
d3cda233 265 [ZONE_DMA] = 256,
4b51d669 266#endif
fb0e7942 267#ifdef CONFIG_ZONE_DMA32
d3cda233 268 [ZONE_DMA32] = 256,
fb0e7942 269#endif
d3cda233 270 [ZONE_NORMAL] = 32,
e53ef38d 271#ifdef CONFIG_HIGHMEM
d3cda233 272 [ZONE_HIGHMEM] = 0,
e53ef38d 273#endif
d3cda233 274 [ZONE_MOVABLE] = 0,
2f1b6248 275};
1da177e4 276
15ad7cdc 277static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 278#ifdef CONFIG_ZONE_DMA
2f1b6248 279 "DMA",
4b51d669 280#endif
fb0e7942 281#ifdef CONFIG_ZONE_DMA32
2f1b6248 282 "DMA32",
fb0e7942 283#endif
2f1b6248 284 "Normal",
e53ef38d 285#ifdef CONFIG_HIGHMEM
2a1e274a 286 "HighMem",
e53ef38d 287#endif
2a1e274a 288 "Movable",
033fbae9
DW
289#ifdef CONFIG_ZONE_DEVICE
290 "Device",
291#endif
2f1b6248
CL
292};
293
c999fbd3 294const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
295 "Unmovable",
296 "Movable",
297 "Reclaimable",
298 "HighAtomic",
299#ifdef CONFIG_CMA
300 "CMA",
301#endif
302#ifdef CONFIG_MEMORY_ISOLATION
303 "Isolate",
304#endif
305};
306
ae70eddd
AK
307compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
308 [NULL_COMPOUND_DTOR] = NULL,
309 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 310#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 311 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 312#endif
9a982250 313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 314 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 315#endif
f1e61557
KS
316};
317
1da177e4 318int min_free_kbytes = 1024;
42aa83cb 319int user_min_free_kbytes = -1;
24512228
MG
320#ifdef CONFIG_DISCONTIGMEM
321/*
322 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
323 * are not on separate NUMA nodes. Functionally this works but with
324 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
325 * quite small. By default, do not boost watermarks on discontigmem as in
326 * many cases very high-order allocations like THP are likely to be
327 * unsupported and the premature reclaim offsets the advantage of long-term
328 * fragmentation avoidance.
329 */
330int watermark_boost_factor __read_mostly;
331#else
1c30844d 332int watermark_boost_factor __read_mostly = 15000;
24512228 333#endif
795ae7a0 334int watermark_scale_factor = 10;
1da177e4 335
bbe5d993
OS
336static unsigned long nr_kernel_pages __initdata;
337static unsigned long nr_all_pages __initdata;
338static unsigned long dma_reserve __initdata;
1da177e4 339
bbe5d993
OS
340static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
341static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 342static unsigned long required_kernelcore __initdata;
a5c6d650 343static unsigned long required_kernelcore_percent __initdata;
7f16f91f 344static unsigned long required_movablecore __initdata;
a5c6d650 345static unsigned long required_movablecore_percent __initdata;
bbe5d993 346static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 347static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
348
349/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350int movable_zone;
351EXPORT_SYMBOL(movable_zone);
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
463#else
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 465#endif /* CONFIG_SPARSEMEM */
399b795b 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
467}
468
469/**
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
0b423ca2
MG
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
535b81e2
WY
477static __always_inline
478unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 479 unsigned long pfn,
0b423ca2
MG
480 unsigned long mask)
481{
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
d93d5ab9 492 return (word >> bitidx) & mask;
0b423ca2
MG
493}
494
495unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
496 unsigned long mask)
497{
535b81e2 498 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
499}
500
501static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
502{
535b81e2 503 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
504}
505
506/**
507 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
508 * @page: The page within the block of interest
509 * @flags: The flags to set
510 * @pfn: The target page frame number
0b423ca2
MG
511 * @mask: mask of bits that the caller is interested in
512 */
513void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
514 unsigned long pfn,
0b423ca2
MG
515 unsigned long mask)
516{
517 unsigned long *bitmap;
518 unsigned long bitidx, word_bitidx;
519 unsigned long old_word, word;
520
521 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 522 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
523
524 bitmap = get_pageblock_bitmap(page, pfn);
525 bitidx = pfn_to_bitidx(page, pfn);
526 word_bitidx = bitidx / BITS_PER_LONG;
527 bitidx &= (BITS_PER_LONG-1);
528
529 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
530
d93d5ab9
WY
531 mask <<= bitidx;
532 flags <<= bitidx;
0b423ca2
MG
533
534 word = READ_ONCE(bitmap[word_bitidx]);
535 for (;;) {
536 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
537 if (word == old_word)
538 break;
539 word = old_word;
540 }
541}
3a80a7fa 542
ee6f509c 543void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 544{
5d0f3f72
KM
545 if (unlikely(page_group_by_mobility_disabled &&
546 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
547 migratetype = MIGRATE_UNMOVABLE;
548
d93d5ab9 549 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 550 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
551}
552
13e7444b 553#ifdef CONFIG_DEBUG_VM
c6a57e19 554static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 555{
bdc8cb98
DH
556 int ret = 0;
557 unsigned seq;
558 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 559 unsigned long sp, start_pfn;
c6a57e19 560
bdc8cb98
DH
561 do {
562 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
563 start_pfn = zone->zone_start_pfn;
564 sp = zone->spanned_pages;
108bcc96 565 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
566 ret = 1;
567 } while (zone_span_seqretry(zone, seq));
568
b5e6a5a2 569 if (ret)
613813e8
DH
570 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
571 pfn, zone_to_nid(zone), zone->name,
572 start_pfn, start_pfn + sp);
b5e6a5a2 573
bdc8cb98 574 return ret;
c6a57e19
DH
575}
576
577static int page_is_consistent(struct zone *zone, struct page *page)
578{
14e07298 579 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 580 return 0;
1da177e4 581 if (zone != page_zone(page))
c6a57e19
DH
582 return 0;
583
584 return 1;
585}
586/*
587 * Temporary debugging check for pages not lying within a given zone.
588 */
d73d3c9f 589static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
590{
591 if (page_outside_zone_boundaries(zone, page))
1da177e4 592 return 1;
c6a57e19
DH
593 if (!page_is_consistent(zone, page))
594 return 1;
595
1da177e4
LT
596 return 0;
597}
13e7444b 598#else
d73d3c9f 599static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
600{
601 return 0;
602}
603#endif
604
82a3241a 605static void bad_page(struct page *page, const char *reason)
1da177e4 606{
d936cf9b
HD
607 static unsigned long resume;
608 static unsigned long nr_shown;
609 static unsigned long nr_unshown;
610
611 /*
612 * Allow a burst of 60 reports, then keep quiet for that minute;
613 * or allow a steady drip of one report per second.
614 */
615 if (nr_shown == 60) {
616 if (time_before(jiffies, resume)) {
617 nr_unshown++;
618 goto out;
619 }
620 if (nr_unshown) {
ff8e8116 621 pr_alert(
1e9e6365 622 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
623 nr_unshown);
624 nr_unshown = 0;
625 }
626 nr_shown = 0;
627 }
628 if (nr_shown++ == 0)
629 resume = jiffies + 60 * HZ;
630
ff8e8116 631 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 632 current->comm, page_to_pfn(page));
ff8e8116 633 __dump_page(page, reason);
4e462112 634 dump_page_owner(page);
3dc14741 635
4f31888c 636 print_modules();
1da177e4 637 dump_stack();
d936cf9b 638out:
8cc3b392 639 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 640 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
642}
643
1da177e4
LT
644/*
645 * Higher-order pages are called "compound pages". They are structured thusly:
646 *
1d798ca3 647 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 648 *
1d798ca3
KS
649 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
650 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 651 *
1d798ca3
KS
652 * The first tail page's ->compound_dtor holds the offset in array of compound
653 * page destructors. See compound_page_dtors.
1da177e4 654 *
1d798ca3 655 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 656 * This usage means that zero-order pages may not be compound.
1da177e4 657 */
d98c7a09 658
9a982250 659void free_compound_page(struct page *page)
d98c7a09 660{
7ae88534 661 mem_cgroup_uncharge(page);
d85f3385 662 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
663}
664
d00181b9 665void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
666{
667 int i;
668 int nr_pages = 1 << order;
669
18229df5
AW
670 __SetPageHead(page);
671 for (i = 1; i < nr_pages; i++) {
672 struct page *p = page + i;
58a84aa9 673 set_page_count(p, 0);
1c290f64 674 p->mapping = TAIL_MAPPING;
1d798ca3 675 set_compound_head(p, page);
18229df5 676 }
1378a5ee
MWO
677
678 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
679 set_compound_order(page, order);
53f9263b 680 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
681 if (hpage_pincount_available(page))
682 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
683}
684
c0a32fc5
SG
685#ifdef CONFIG_DEBUG_PAGEALLOC
686unsigned int _debug_guardpage_minorder;
96a2b03f 687
8e57f8ac
VB
688bool _debug_pagealloc_enabled_early __read_mostly
689 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
690EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 691DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 692EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
693
694DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 695
031bc574
JK
696static int __init early_debug_pagealloc(char *buf)
697{
8e57f8ac 698 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
699}
700early_param("debug_pagealloc", early_debug_pagealloc);
701
8e57f8ac 702void init_debug_pagealloc(void)
e30825f1 703{
031bc574
JK
704 if (!debug_pagealloc_enabled())
705 return;
706
8e57f8ac
VB
707 static_branch_enable(&_debug_pagealloc_enabled);
708
f1c1e9f7
JK
709 if (!debug_guardpage_minorder())
710 return;
711
96a2b03f 712 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
713}
714
c0a32fc5
SG
715static int __init debug_guardpage_minorder_setup(char *buf)
716{
717 unsigned long res;
718
719 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 720 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
721 return 0;
722 }
723 _debug_guardpage_minorder = res;
1170532b 724 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
725 return 0;
726}
f1c1e9f7 727early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 728
acbc15a4 729static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 730 unsigned int order, int migratetype)
c0a32fc5 731{
e30825f1 732 if (!debug_guardpage_enabled())
acbc15a4
JK
733 return false;
734
735 if (order >= debug_guardpage_minorder())
736 return false;
e30825f1 737
3972f6bb 738 __SetPageGuard(page);
2847cf95
JK
739 INIT_LIST_HEAD(&page->lru);
740 set_page_private(page, order);
741 /* Guard pages are not available for any usage */
742 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
743
744 return true;
c0a32fc5
SG
745}
746
2847cf95
JK
747static inline void clear_page_guard(struct zone *zone, struct page *page,
748 unsigned int order, int migratetype)
c0a32fc5 749{
e30825f1
JK
750 if (!debug_guardpage_enabled())
751 return;
752
3972f6bb 753 __ClearPageGuard(page);
e30825f1 754
2847cf95
JK
755 set_page_private(page, 0);
756 if (!is_migrate_isolate(migratetype))
757 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
758}
759#else
acbc15a4
JK
760static inline bool set_page_guard(struct zone *zone, struct page *page,
761 unsigned int order, int migratetype) { return false; }
2847cf95
JK
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype) {}
c0a32fc5
SG
764#endif
765
7aeb09f9 766static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 767{
4c21e2f2 768 set_page_private(page, order);
676165a8 769 __SetPageBuddy(page);
1da177e4
LT
770}
771
1da177e4
LT
772/*
773 * This function checks whether a page is free && is the buddy
6e292b9b 774 * we can coalesce a page and its buddy if
13ad59df 775 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 776 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
777 * (c) a page and its buddy have the same order &&
778 * (d) a page and its buddy are in the same zone.
676165a8 779 *
6e292b9b
MW
780 * For recording whether a page is in the buddy system, we set PageBuddy.
781 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 782 *
676165a8 783 * For recording page's order, we use page_private(page).
1da177e4 784 */
fe925c0c 785static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 786 unsigned int order)
1da177e4 787{
fe925c0c 788 if (!page_is_guard(buddy) && !PageBuddy(buddy))
789 return false;
4c5018ce 790
fe925c0c 791 if (page_order(buddy) != order)
792 return false;
c0a32fc5 793
fe925c0c 794 /*
795 * zone check is done late to avoid uselessly calculating
796 * zone/node ids for pages that could never merge.
797 */
798 if (page_zone_id(page) != page_zone_id(buddy))
799 return false;
d34c5fa0 800
fe925c0c 801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 802
fe925c0c 803 return true;
1da177e4
LT
804}
805
5e1f0f09
MG
806#ifdef CONFIG_COMPACTION
807static inline struct capture_control *task_capc(struct zone *zone)
808{
809 struct capture_control *capc = current->capture_control;
810
deba0487 811 return unlikely(capc) &&
5e1f0f09
MG
812 !(current->flags & PF_KTHREAD) &&
813 !capc->page &&
deba0487 814 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
815}
816
817static inline bool
818compaction_capture(struct capture_control *capc, struct page *page,
819 int order, int migratetype)
820{
821 if (!capc || order != capc->cc->order)
822 return false;
823
824 /* Do not accidentally pollute CMA or isolated regions*/
825 if (is_migrate_cma(migratetype) ||
826 is_migrate_isolate(migratetype))
827 return false;
828
829 /*
830 * Do not let lower order allocations polluate a movable pageblock.
831 * This might let an unmovable request use a reclaimable pageblock
832 * and vice-versa but no more than normal fallback logic which can
833 * have trouble finding a high-order free page.
834 */
835 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 return false;
837
838 capc->page = page;
839 return true;
840}
841
842#else
843static inline struct capture_control *task_capc(struct zone *zone)
844{
845 return NULL;
846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 return false;
853}
854#endif /* CONFIG_COMPACTION */
855
6ab01363
AD
856/* Used for pages not on another list */
857static inline void add_to_free_list(struct page *page, struct zone *zone,
858 unsigned int order, int migratetype)
859{
860 struct free_area *area = &zone->free_area[order];
861
862 list_add(&page->lru, &area->free_list[migratetype]);
863 area->nr_free++;
864}
865
866/* Used for pages not on another list */
867static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
868 unsigned int order, int migratetype)
869{
870 struct free_area *area = &zone->free_area[order];
871
872 list_add_tail(&page->lru, &area->free_list[migratetype]);
873 area->nr_free++;
874}
875
876/* Used for pages which are on another list */
877static inline void move_to_free_list(struct page *page, struct zone *zone,
878 unsigned int order, int migratetype)
879{
880 struct free_area *area = &zone->free_area[order];
881
882 list_move(&page->lru, &area->free_list[migratetype]);
883}
884
885static inline void del_page_from_free_list(struct page *page, struct zone *zone,
886 unsigned int order)
887{
36e66c55
AD
888 /* clear reported state and update reported page count */
889 if (page_reported(page))
890 __ClearPageReported(page);
891
6ab01363
AD
892 list_del(&page->lru);
893 __ClearPageBuddy(page);
894 set_page_private(page, 0);
895 zone->free_area[order].nr_free--;
896}
897
a2129f24
AD
898/*
899 * If this is not the largest possible page, check if the buddy
900 * of the next-highest order is free. If it is, it's possible
901 * that pages are being freed that will coalesce soon. In case,
902 * that is happening, add the free page to the tail of the list
903 * so it's less likely to be used soon and more likely to be merged
904 * as a higher order page
905 */
906static inline bool
907buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
908 struct page *page, unsigned int order)
909{
910 struct page *higher_page, *higher_buddy;
911 unsigned long combined_pfn;
912
913 if (order >= MAX_ORDER - 2)
914 return false;
915
916 if (!pfn_valid_within(buddy_pfn))
917 return false;
918
919 combined_pfn = buddy_pfn & pfn;
920 higher_page = page + (combined_pfn - pfn);
921 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
922 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
923
924 return pfn_valid_within(buddy_pfn) &&
925 page_is_buddy(higher_page, higher_buddy, order + 1);
926}
927
1da177e4
LT
928/*
929 * Freeing function for a buddy system allocator.
930 *
931 * The concept of a buddy system is to maintain direct-mapped table
932 * (containing bit values) for memory blocks of various "orders".
933 * The bottom level table contains the map for the smallest allocatable
934 * units of memory (here, pages), and each level above it describes
935 * pairs of units from the levels below, hence, "buddies".
936 * At a high level, all that happens here is marking the table entry
937 * at the bottom level available, and propagating the changes upward
938 * as necessary, plus some accounting needed to play nicely with other
939 * parts of the VM system.
940 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
941 * free pages of length of (1 << order) and marked with PageBuddy.
942 * Page's order is recorded in page_private(page) field.
1da177e4 943 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
944 * other. That is, if we allocate a small block, and both were
945 * free, the remainder of the region must be split into blocks.
1da177e4 946 * If a block is freed, and its buddy is also free, then this
5f63b720 947 * triggers coalescing into a block of larger size.
1da177e4 948 *
6d49e352 949 * -- nyc
1da177e4
LT
950 */
951
48db57f8 952static inline void __free_one_page(struct page *page,
dc4b0caf 953 unsigned long pfn,
ed0ae21d 954 struct zone *zone, unsigned int order,
36e66c55 955 int migratetype, bool report)
1da177e4 956{
a2129f24 957 struct capture_control *capc = task_capc(zone);
3f649ab7 958 unsigned long buddy_pfn;
a2129f24 959 unsigned long combined_pfn;
d9dddbf5 960 unsigned int max_order;
a2129f24
AD
961 struct page *buddy;
962 bool to_tail;
d9dddbf5
VB
963
964 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 965
d29bb978 966 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 967 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 968
ed0ae21d 969 VM_BUG_ON(migratetype == -1);
d9dddbf5 970 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 971 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 972
76741e77 973 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 974 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 975
d9dddbf5 976continue_merging:
3c605096 977 while (order < max_order - 1) {
5e1f0f09
MG
978 if (compaction_capture(capc, page, order, migratetype)) {
979 __mod_zone_freepage_state(zone, -(1 << order),
980 migratetype);
981 return;
982 }
76741e77
VB
983 buddy_pfn = __find_buddy_pfn(pfn, order);
984 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
985
986 if (!pfn_valid_within(buddy_pfn))
987 goto done_merging;
cb2b95e1 988 if (!page_is_buddy(page, buddy, order))
d9dddbf5 989 goto done_merging;
c0a32fc5
SG
990 /*
991 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
992 * merge with it and move up one order.
993 */
b03641af 994 if (page_is_guard(buddy))
2847cf95 995 clear_page_guard(zone, buddy, order, migratetype);
b03641af 996 else
6ab01363 997 del_page_from_free_list(buddy, zone, order);
76741e77
VB
998 combined_pfn = buddy_pfn & pfn;
999 page = page + (combined_pfn - pfn);
1000 pfn = combined_pfn;
1da177e4
LT
1001 order++;
1002 }
d9dddbf5
VB
1003 if (max_order < MAX_ORDER) {
1004 /* If we are here, it means order is >= pageblock_order.
1005 * We want to prevent merge between freepages on isolate
1006 * pageblock and normal pageblock. Without this, pageblock
1007 * isolation could cause incorrect freepage or CMA accounting.
1008 *
1009 * We don't want to hit this code for the more frequent
1010 * low-order merging.
1011 */
1012 if (unlikely(has_isolate_pageblock(zone))) {
1013 int buddy_mt;
1014
76741e77
VB
1015 buddy_pfn = __find_buddy_pfn(pfn, order);
1016 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1017 buddy_mt = get_pageblock_migratetype(buddy);
1018
1019 if (migratetype != buddy_mt
1020 && (is_migrate_isolate(migratetype) ||
1021 is_migrate_isolate(buddy_mt)))
1022 goto done_merging;
1023 }
1024 max_order++;
1025 goto continue_merging;
1026 }
1027
1028done_merging:
1da177e4 1029 set_page_order(page, order);
6dda9d55 1030
97500a4a 1031 if (is_shuffle_order(order))
a2129f24 1032 to_tail = shuffle_pick_tail();
97500a4a 1033 else
a2129f24 1034 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1035
a2129f24 1036 if (to_tail)
6ab01363 1037 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1038 else
6ab01363 1039 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1040
1041 /* Notify page reporting subsystem of freed page */
1042 if (report)
1043 page_reporting_notify_free(order);
1da177e4
LT
1044}
1045
7bfec6f4
MG
1046/*
1047 * A bad page could be due to a number of fields. Instead of multiple branches,
1048 * try and check multiple fields with one check. The caller must do a detailed
1049 * check if necessary.
1050 */
1051static inline bool page_expected_state(struct page *page,
1052 unsigned long check_flags)
1053{
1054 if (unlikely(atomic_read(&page->_mapcount) != -1))
1055 return false;
1056
1057 if (unlikely((unsigned long)page->mapping |
1058 page_ref_count(page) |
1059#ifdef CONFIG_MEMCG
1060 (unsigned long)page->mem_cgroup |
1061#endif
1062 (page->flags & check_flags)))
1063 return false;
1064
1065 return true;
1066}
1067
58b7f119 1068static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1069{
82a3241a 1070 const char *bad_reason = NULL;
f0b791a3 1071
53f9263b 1072 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1073 bad_reason = "nonzero mapcount";
1074 if (unlikely(page->mapping != NULL))
1075 bad_reason = "non-NULL mapping";
fe896d18 1076 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1077 bad_reason = "nonzero _refcount";
58b7f119
WY
1078 if (unlikely(page->flags & flags)) {
1079 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1080 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081 else
1082 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1083 }
9edad6ea
JW
1084#ifdef CONFIG_MEMCG
1085 if (unlikely(page->mem_cgroup))
1086 bad_reason = "page still charged to cgroup";
1087#endif
58b7f119
WY
1088 return bad_reason;
1089}
1090
1091static void check_free_page_bad(struct page *page)
1092{
1093 bad_page(page,
1094 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1095}
1096
534fe5e3 1097static inline int check_free_page(struct page *page)
bb552ac6 1098{
da838d4f 1099 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1100 return 0;
bb552ac6
MG
1101
1102 /* Something has gone sideways, find it */
0d0c48a2 1103 check_free_page_bad(page);
7bfec6f4 1104 return 1;
1da177e4
LT
1105}
1106
4db7548c
MG
1107static int free_tail_pages_check(struct page *head_page, struct page *page)
1108{
1109 int ret = 1;
1110
1111 /*
1112 * We rely page->lru.next never has bit 0 set, unless the page
1113 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114 */
1115 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116
1117 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1118 ret = 0;
1119 goto out;
1120 }
1121 switch (page - head_page) {
1122 case 1:
4da1984e 1123 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1124 if (unlikely(compound_mapcount(page))) {
82a3241a 1125 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1126 goto out;
1127 }
1128 break;
1129 case 2:
1130 /*
1131 * the second tail page: ->mapping is
fa3015b7 1132 * deferred_list.next -- ignore value.
4db7548c
MG
1133 */
1134 break;
1135 default:
1136 if (page->mapping != TAIL_MAPPING) {
82a3241a 1137 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1138 goto out;
1139 }
1140 break;
1141 }
1142 if (unlikely(!PageTail(page))) {
82a3241a 1143 bad_page(page, "PageTail not set");
4db7548c
MG
1144 goto out;
1145 }
1146 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1147 bad_page(page, "compound_head not consistent");
4db7548c
MG
1148 goto out;
1149 }
1150 ret = 0;
1151out:
1152 page->mapping = NULL;
1153 clear_compound_head(page);
1154 return ret;
1155}
1156
6471384a
AP
1157static void kernel_init_free_pages(struct page *page, int numpages)
1158{
1159 int i;
1160
9e15afa5
QC
1161 /* s390's use of memset() could override KASAN redzones. */
1162 kasan_disable_current();
6471384a
AP
1163 for (i = 0; i < numpages; i++)
1164 clear_highpage(page + i);
9e15afa5 1165 kasan_enable_current();
6471384a
AP
1166}
1167
e2769dbd
MG
1168static __always_inline bool free_pages_prepare(struct page *page,
1169 unsigned int order, bool check_free)
4db7548c 1170{
e2769dbd 1171 int bad = 0;
4db7548c 1172
4db7548c
MG
1173 VM_BUG_ON_PAGE(PageTail(page), page);
1174
e2769dbd 1175 trace_mm_page_free(page, order);
e2769dbd 1176
79f5f8fa
OS
1177 if (unlikely(PageHWPoison(page)) && !order) {
1178 /*
1179 * Do not let hwpoison pages hit pcplists/buddy
1180 * Untie memcg state and reset page's owner
1181 */
1182 if (memcg_kmem_enabled() && PageKmemcg(page))
1183 __memcg_kmem_uncharge_page(page, order);
1184 reset_page_owner(page, order);
1185 return false;
1186 }
1187
e2769dbd
MG
1188 /*
1189 * Check tail pages before head page information is cleared to
1190 * avoid checking PageCompound for order-0 pages.
1191 */
1192 if (unlikely(order)) {
1193 bool compound = PageCompound(page);
1194 int i;
1195
1196 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1197
9a73f61b
KS
1198 if (compound)
1199 ClearPageDoubleMap(page);
e2769dbd
MG
1200 for (i = 1; i < (1 << order); i++) {
1201 if (compound)
1202 bad += free_tail_pages_check(page, page + i);
534fe5e3 1203 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1204 bad++;
1205 continue;
1206 }
1207 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1208 }
1209 }
bda807d4 1210 if (PageMappingFlags(page))
4db7548c 1211 page->mapping = NULL;
c4159a75 1212 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1213 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1214 if (check_free)
534fe5e3 1215 bad += check_free_page(page);
e2769dbd
MG
1216 if (bad)
1217 return false;
4db7548c 1218
e2769dbd
MG
1219 page_cpupid_reset_last(page);
1220 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1221 reset_page_owner(page, order);
4db7548c
MG
1222
1223 if (!PageHighMem(page)) {
1224 debug_check_no_locks_freed(page_address(page),
e2769dbd 1225 PAGE_SIZE << order);
4db7548c 1226 debug_check_no_obj_freed(page_address(page),
e2769dbd 1227 PAGE_SIZE << order);
4db7548c 1228 }
6471384a
AP
1229 if (want_init_on_free())
1230 kernel_init_free_pages(page, 1 << order);
1231
e2769dbd 1232 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1233 /*
1234 * arch_free_page() can make the page's contents inaccessible. s390
1235 * does this. So nothing which can access the page's contents should
1236 * happen after this.
1237 */
1238 arch_free_page(page, order);
1239
8e57f8ac 1240 if (debug_pagealloc_enabled_static())
d6332692
RE
1241 kernel_map_pages(page, 1 << order, 0);
1242
3c0c12cc 1243 kasan_free_nondeferred_pages(page, order);
4db7548c 1244
4db7548c
MG
1245 return true;
1246}
1247
e2769dbd 1248#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1249/*
1250 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1251 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1252 * moved from pcp lists to free lists.
1253 */
1254static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1255{
1256 return free_pages_prepare(page, 0, true);
1257}
1258
4462b32c 1259static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1260{
8e57f8ac 1261 if (debug_pagealloc_enabled_static())
534fe5e3 1262 return check_free_page(page);
4462b32c
VB
1263 else
1264 return false;
e2769dbd
MG
1265}
1266#else
4462b32c
VB
1267/*
1268 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1269 * moving from pcp lists to free list in order to reduce overhead. With
1270 * debug_pagealloc enabled, they are checked also immediately when being freed
1271 * to the pcp lists.
1272 */
e2769dbd
MG
1273static bool free_pcp_prepare(struct page *page)
1274{
8e57f8ac 1275 if (debug_pagealloc_enabled_static())
4462b32c
VB
1276 return free_pages_prepare(page, 0, true);
1277 else
1278 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1279}
1280
4db7548c
MG
1281static bool bulkfree_pcp_prepare(struct page *page)
1282{
534fe5e3 1283 return check_free_page(page);
4db7548c
MG
1284}
1285#endif /* CONFIG_DEBUG_VM */
1286
97334162
AL
1287static inline void prefetch_buddy(struct page *page)
1288{
1289 unsigned long pfn = page_to_pfn(page);
1290 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1291 struct page *buddy = page + (buddy_pfn - pfn);
1292
1293 prefetch(buddy);
1294}
1295
1da177e4 1296/*
5f8dcc21 1297 * Frees a number of pages from the PCP lists
1da177e4 1298 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1299 * count is the number of pages to free.
1da177e4
LT
1300 *
1301 * If the zone was previously in an "all pages pinned" state then look to
1302 * see if this freeing clears that state.
1303 *
1304 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1305 * pinned" detection logic.
1306 */
5f8dcc21
MG
1307static void free_pcppages_bulk(struct zone *zone, int count,
1308 struct per_cpu_pages *pcp)
1da177e4 1309{
5f8dcc21 1310 int migratetype = 0;
a6f9edd6 1311 int batch_free = 0;
97334162 1312 int prefetch_nr = 0;
3777999d 1313 bool isolated_pageblocks;
0a5f4e5b
AL
1314 struct page *page, *tmp;
1315 LIST_HEAD(head);
f2260e6b 1316
88e8ac11
CTR
1317 /*
1318 * Ensure proper count is passed which otherwise would stuck in the
1319 * below while (list_empty(list)) loop.
1320 */
1321 count = min(pcp->count, count);
e5b31ac2 1322 while (count) {
5f8dcc21
MG
1323 struct list_head *list;
1324
1325 /*
a6f9edd6
MG
1326 * Remove pages from lists in a round-robin fashion. A
1327 * batch_free count is maintained that is incremented when an
1328 * empty list is encountered. This is so more pages are freed
1329 * off fuller lists instead of spinning excessively around empty
1330 * lists
5f8dcc21
MG
1331 */
1332 do {
a6f9edd6 1333 batch_free++;
5f8dcc21
MG
1334 if (++migratetype == MIGRATE_PCPTYPES)
1335 migratetype = 0;
1336 list = &pcp->lists[migratetype];
1337 } while (list_empty(list));
48db57f8 1338
1d16871d
NK
1339 /* This is the only non-empty list. Free them all. */
1340 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1341 batch_free = count;
1d16871d 1342
a6f9edd6 1343 do {
a16601c5 1344 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1345 /* must delete to avoid corrupting pcp list */
a6f9edd6 1346 list_del(&page->lru);
77ba9062 1347 pcp->count--;
aa016d14 1348
4db7548c
MG
1349 if (bulkfree_pcp_prepare(page))
1350 continue;
1351
0a5f4e5b 1352 list_add_tail(&page->lru, &head);
97334162
AL
1353
1354 /*
1355 * We are going to put the page back to the global
1356 * pool, prefetch its buddy to speed up later access
1357 * under zone->lock. It is believed the overhead of
1358 * an additional test and calculating buddy_pfn here
1359 * can be offset by reduced memory latency later. To
1360 * avoid excessive prefetching due to large count, only
1361 * prefetch buddy for the first pcp->batch nr of pages.
1362 */
1363 if (prefetch_nr++ < pcp->batch)
1364 prefetch_buddy(page);
e5b31ac2 1365 } while (--count && --batch_free && !list_empty(list));
1da177e4 1366 }
0a5f4e5b
AL
1367
1368 spin_lock(&zone->lock);
1369 isolated_pageblocks = has_isolate_pageblock(zone);
1370
1371 /*
1372 * Use safe version since after __free_one_page(),
1373 * page->lru.next will not point to original list.
1374 */
1375 list_for_each_entry_safe(page, tmp, &head, lru) {
1376 int mt = get_pcppage_migratetype(page);
1377 /* MIGRATE_ISOLATE page should not go to pcplists */
1378 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1379 /* Pageblock could have been isolated meanwhile */
1380 if (unlikely(isolated_pageblocks))
1381 mt = get_pageblock_migratetype(page);
1382
36e66c55 1383 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1384 trace_mm_page_pcpu_drain(page, 0, mt);
1385 }
d34b0733 1386 spin_unlock(&zone->lock);
1da177e4
LT
1387}
1388
dc4b0caf
MG
1389static void free_one_page(struct zone *zone,
1390 struct page *page, unsigned long pfn,
7aeb09f9 1391 unsigned int order,
ed0ae21d 1392 int migratetype)
1da177e4 1393{
d34b0733 1394 spin_lock(&zone->lock);
ad53f92e
JK
1395 if (unlikely(has_isolate_pageblock(zone) ||
1396 is_migrate_isolate(migratetype))) {
1397 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1398 }
36e66c55 1399 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1400 spin_unlock(&zone->lock);
48db57f8
NP
1401}
1402
1e8ce83c 1403static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1404 unsigned long zone, int nid)
1e8ce83c 1405{
d0dc12e8 1406 mm_zero_struct_page(page);
1e8ce83c 1407 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1408 init_page_count(page);
1409 page_mapcount_reset(page);
1410 page_cpupid_reset_last(page);
2813b9c0 1411 page_kasan_tag_reset(page);
1e8ce83c 1412
1e8ce83c
RH
1413 INIT_LIST_HEAD(&page->lru);
1414#ifdef WANT_PAGE_VIRTUAL
1415 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1416 if (!is_highmem_idx(zone))
1417 set_page_address(page, __va(pfn << PAGE_SHIFT));
1418#endif
1419}
1420
7e18adb4 1421#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1422static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1423{
1424 pg_data_t *pgdat;
1425 int nid, zid;
1426
1427 if (!early_page_uninitialised(pfn))
1428 return;
1429
1430 nid = early_pfn_to_nid(pfn);
1431 pgdat = NODE_DATA(nid);
1432
1433 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1434 struct zone *zone = &pgdat->node_zones[zid];
1435
1436 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1437 break;
1438 }
d0dc12e8 1439 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1440}
1441#else
1442static inline void init_reserved_page(unsigned long pfn)
1443{
1444}
1445#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1446
92923ca3
NZ
1447/*
1448 * Initialised pages do not have PageReserved set. This function is
1449 * called for each range allocated by the bootmem allocator and
1450 * marks the pages PageReserved. The remaining valid pages are later
1451 * sent to the buddy page allocator.
1452 */
4b50bcc7 1453void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1454{
1455 unsigned long start_pfn = PFN_DOWN(start);
1456 unsigned long end_pfn = PFN_UP(end);
1457
7e18adb4
MG
1458 for (; start_pfn < end_pfn; start_pfn++) {
1459 if (pfn_valid(start_pfn)) {
1460 struct page *page = pfn_to_page(start_pfn);
1461
1462 init_reserved_page(start_pfn);
1d798ca3
KS
1463
1464 /* Avoid false-positive PageTail() */
1465 INIT_LIST_HEAD(&page->lru);
1466
d483da5b
AD
1467 /*
1468 * no need for atomic set_bit because the struct
1469 * page is not visible yet so nobody should
1470 * access it yet.
1471 */
1472 __SetPageReserved(page);
7e18adb4
MG
1473 }
1474 }
92923ca3
NZ
1475}
1476
ec95f53a
KM
1477static void __free_pages_ok(struct page *page, unsigned int order)
1478{
d34b0733 1479 unsigned long flags;
95e34412 1480 int migratetype;
dc4b0caf 1481 unsigned long pfn = page_to_pfn(page);
ec95f53a 1482
e2769dbd 1483 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1484 return;
1485
cfc47a28 1486 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1487 local_irq_save(flags);
1488 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1489 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1490 local_irq_restore(flags);
1da177e4
LT
1491}
1492
a9cd410a 1493void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1494{
c3993076 1495 unsigned int nr_pages = 1 << order;
e2d0bd2b 1496 struct page *p = page;
c3993076 1497 unsigned int loop;
a226f6c8 1498
e2d0bd2b
YL
1499 prefetchw(p);
1500 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1501 prefetchw(p + 1);
c3993076
JW
1502 __ClearPageReserved(p);
1503 set_page_count(p, 0);
a226f6c8 1504 }
e2d0bd2b
YL
1505 __ClearPageReserved(p);
1506 set_page_count(p, 0);
c3993076 1507
9705bea5 1508 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1509 set_page_refcounted(page);
1510 __free_pages(page, order);
a226f6c8
DH
1511}
1512
3f08a302 1513#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1514
75a592a4
MG
1515static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1516
6f24fbd3
MR
1517#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1518
1519/*
1520 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1521 */
1522int __meminit __early_pfn_to_nid(unsigned long pfn,
1523 struct mminit_pfnnid_cache *state)
75a592a4 1524{
6f24fbd3 1525 unsigned long start_pfn, end_pfn;
75a592a4
MG
1526 int nid;
1527
6f24fbd3
MR
1528 if (state->last_start <= pfn && pfn < state->last_end)
1529 return state->last_nid;
1530
1531 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1532 if (nid != NUMA_NO_NODE) {
1533 state->last_start = start_pfn;
1534 state->last_end = end_pfn;
1535 state->last_nid = nid;
1536 }
7ace9917
MG
1537
1538 return nid;
75a592a4 1539}
6f24fbd3 1540#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
75a592a4 1541
75a592a4 1542int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1543{
7ace9917 1544 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1545 int nid;
1546
7ace9917 1547 spin_lock(&early_pfn_lock);
56ec43d8 1548 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1549 if (nid < 0)
e4568d38 1550 nid = first_online_node;
7ace9917 1551 spin_unlock(&early_pfn_lock);
75a592a4 1552
7ace9917 1553 return nid;
75a592a4 1554}
3f08a302 1555#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1556
7c2ee349 1557void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1558 unsigned int order)
1559{
1560 if (early_page_uninitialised(pfn))
1561 return;
a9cd410a 1562 __free_pages_core(page, order);
3a80a7fa
MG
1563}
1564
7cf91a98
JK
1565/*
1566 * Check that the whole (or subset of) a pageblock given by the interval of
1567 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1568 * with the migration of free compaction scanner. The scanners then need to
1569 * use only pfn_valid_within() check for arches that allow holes within
1570 * pageblocks.
1571 *
1572 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1573 *
1574 * It's possible on some configurations to have a setup like node0 node1 node0
1575 * i.e. it's possible that all pages within a zones range of pages do not
1576 * belong to a single zone. We assume that a border between node0 and node1
1577 * can occur within a single pageblock, but not a node0 node1 node0
1578 * interleaving within a single pageblock. It is therefore sufficient to check
1579 * the first and last page of a pageblock and avoid checking each individual
1580 * page in a pageblock.
1581 */
1582struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1583 unsigned long end_pfn, struct zone *zone)
1584{
1585 struct page *start_page;
1586 struct page *end_page;
1587
1588 /* end_pfn is one past the range we are checking */
1589 end_pfn--;
1590
1591 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1592 return NULL;
1593
2d070eab
MH
1594 start_page = pfn_to_online_page(start_pfn);
1595 if (!start_page)
1596 return NULL;
7cf91a98
JK
1597
1598 if (page_zone(start_page) != zone)
1599 return NULL;
1600
1601 end_page = pfn_to_page(end_pfn);
1602
1603 /* This gives a shorter code than deriving page_zone(end_page) */
1604 if (page_zone_id(start_page) != page_zone_id(end_page))
1605 return NULL;
1606
1607 return start_page;
1608}
1609
1610void set_zone_contiguous(struct zone *zone)
1611{
1612 unsigned long block_start_pfn = zone->zone_start_pfn;
1613 unsigned long block_end_pfn;
1614
1615 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1616 for (; block_start_pfn < zone_end_pfn(zone);
1617 block_start_pfn = block_end_pfn,
1618 block_end_pfn += pageblock_nr_pages) {
1619
1620 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1621
1622 if (!__pageblock_pfn_to_page(block_start_pfn,
1623 block_end_pfn, zone))
1624 return;
e84fe99b 1625 cond_resched();
7cf91a98
JK
1626 }
1627
1628 /* We confirm that there is no hole */
1629 zone->contiguous = true;
1630}
1631
1632void clear_zone_contiguous(struct zone *zone)
1633{
1634 zone->contiguous = false;
1635}
1636
7e18adb4 1637#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1638static void __init deferred_free_range(unsigned long pfn,
1639 unsigned long nr_pages)
a4de83dd 1640{
2f47a91f
PT
1641 struct page *page;
1642 unsigned long i;
a4de83dd 1643
2f47a91f 1644 if (!nr_pages)
a4de83dd
MG
1645 return;
1646
2f47a91f
PT
1647 page = pfn_to_page(pfn);
1648
a4de83dd 1649 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1650 if (nr_pages == pageblock_nr_pages &&
1651 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1652 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1653 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1654 return;
1655 }
1656
e780149b
XQ
1657 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1658 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1659 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1660 __free_pages_core(page, 0);
e780149b 1661 }
a4de83dd
MG
1662}
1663
d3cd131d
NS
1664/* Completion tracking for deferred_init_memmap() threads */
1665static atomic_t pgdat_init_n_undone __initdata;
1666static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1667
1668static inline void __init pgdat_init_report_one_done(void)
1669{
1670 if (atomic_dec_and_test(&pgdat_init_n_undone))
1671 complete(&pgdat_init_all_done_comp);
1672}
0e1cc95b 1673
2f47a91f 1674/*
80b1f41c
PT
1675 * Returns true if page needs to be initialized or freed to buddy allocator.
1676 *
1677 * First we check if pfn is valid on architectures where it is possible to have
1678 * holes within pageblock_nr_pages. On systems where it is not possible, this
1679 * function is optimized out.
1680 *
1681 * Then, we check if a current large page is valid by only checking the validity
1682 * of the head pfn.
2f47a91f 1683 */
56ec43d8 1684static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1685{
80b1f41c
PT
1686 if (!pfn_valid_within(pfn))
1687 return false;
1688 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1689 return false;
80b1f41c
PT
1690 return true;
1691}
2f47a91f 1692
80b1f41c
PT
1693/*
1694 * Free pages to buddy allocator. Try to free aligned pages in
1695 * pageblock_nr_pages sizes.
1696 */
56ec43d8 1697static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1698 unsigned long end_pfn)
1699{
80b1f41c
PT
1700 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1701 unsigned long nr_free = 0;
2f47a91f 1702
80b1f41c 1703 for (; pfn < end_pfn; pfn++) {
56ec43d8 1704 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1705 deferred_free_range(pfn - nr_free, nr_free);
1706 nr_free = 0;
1707 } else if (!(pfn & nr_pgmask)) {
1708 deferred_free_range(pfn - nr_free, nr_free);
1709 nr_free = 1;
80b1f41c
PT
1710 } else {
1711 nr_free++;
1712 }
1713 }
1714 /* Free the last block of pages to allocator */
1715 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1716}
1717
80b1f41c
PT
1718/*
1719 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1720 * by performing it only once every pageblock_nr_pages.
1721 * Return number of pages initialized.
1722 */
56ec43d8 1723static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1724 unsigned long pfn,
1725 unsigned long end_pfn)
2f47a91f 1726{
2f47a91f 1727 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1728 int nid = zone_to_nid(zone);
2f47a91f 1729 unsigned long nr_pages = 0;
56ec43d8 1730 int zid = zone_idx(zone);
2f47a91f 1731 struct page *page = NULL;
2f47a91f 1732
80b1f41c 1733 for (; pfn < end_pfn; pfn++) {
56ec43d8 1734 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1735 page = NULL;
2f47a91f 1736 continue;
80b1f41c 1737 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1738 page = pfn_to_page(pfn);
80b1f41c
PT
1739 } else {
1740 page++;
2f47a91f 1741 }
d0dc12e8 1742 __init_single_page(page, pfn, zid, nid);
80b1f41c 1743 nr_pages++;
2f47a91f 1744 }
80b1f41c 1745 return (nr_pages);
2f47a91f
PT
1746}
1747
0e56acae
AD
1748/*
1749 * This function is meant to pre-load the iterator for the zone init.
1750 * Specifically it walks through the ranges until we are caught up to the
1751 * first_init_pfn value and exits there. If we never encounter the value we
1752 * return false indicating there are no valid ranges left.
1753 */
1754static bool __init
1755deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1756 unsigned long *spfn, unsigned long *epfn,
1757 unsigned long first_init_pfn)
1758{
1759 u64 j;
1760
1761 /*
1762 * Start out by walking through the ranges in this zone that have
1763 * already been initialized. We don't need to do anything with them
1764 * so we just need to flush them out of the system.
1765 */
1766 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1767 if (*epfn <= first_init_pfn)
1768 continue;
1769 if (*spfn < first_init_pfn)
1770 *spfn = first_init_pfn;
1771 *i = j;
1772 return true;
1773 }
1774
1775 return false;
1776}
1777
1778/*
1779 * Initialize and free pages. We do it in two loops: first we initialize
1780 * struct page, then free to buddy allocator, because while we are
1781 * freeing pages we can access pages that are ahead (computing buddy
1782 * page in __free_one_page()).
1783 *
1784 * In order to try and keep some memory in the cache we have the loop
1785 * broken along max page order boundaries. This way we will not cause
1786 * any issues with the buddy page computation.
1787 */
1788static unsigned long __init
1789deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1790 unsigned long *end_pfn)
1791{
1792 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1793 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1794 unsigned long nr_pages = 0;
1795 u64 j = *i;
1796
1797 /* First we loop through and initialize the page values */
1798 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1799 unsigned long t;
1800
1801 if (mo_pfn <= *start_pfn)
1802 break;
1803
1804 t = min(mo_pfn, *end_pfn);
1805 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1806
1807 if (mo_pfn < *end_pfn) {
1808 *start_pfn = mo_pfn;
1809 break;
1810 }
1811 }
1812
1813 /* Reset values and now loop through freeing pages as needed */
1814 swap(j, *i);
1815
1816 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1817 unsigned long t;
1818
1819 if (mo_pfn <= spfn)
1820 break;
1821
1822 t = min(mo_pfn, epfn);
1823 deferred_free_pages(spfn, t);
1824
1825 if (mo_pfn <= epfn)
1826 break;
1827 }
1828
1829 return nr_pages;
1830}
1831
e4443149
DJ
1832static void __init
1833deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1834 void *arg)
1835{
1836 unsigned long spfn, epfn;
1837 struct zone *zone = arg;
1838 u64 i;
1839
1840 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1841
1842 /*
1843 * Initialize and free pages in MAX_ORDER sized increments so that we
1844 * can avoid introducing any issues with the buddy allocator.
1845 */
1846 while (spfn < end_pfn) {
1847 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1848 cond_resched();
1849 }
1850}
1851
ecd09650
DJ
1852/* An arch may override for more concurrency. */
1853__weak int __init
1854deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1855{
1856 return 1;
1857}
1858
7e18adb4 1859/* Initialise remaining memory on a node */
0e1cc95b 1860static int __init deferred_init_memmap(void *data)
7e18adb4 1861{
0e1cc95b 1862 pg_data_t *pgdat = data;
0e56acae 1863 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1864 unsigned long spfn = 0, epfn = 0;
0e56acae 1865 unsigned long first_init_pfn, flags;
7e18adb4 1866 unsigned long start = jiffies;
7e18adb4 1867 struct zone *zone;
e4443149 1868 int zid, max_threads;
2f47a91f 1869 u64 i;
7e18adb4 1870
3a2d7fa8
PT
1871 /* Bind memory initialisation thread to a local node if possible */
1872 if (!cpumask_empty(cpumask))
1873 set_cpus_allowed_ptr(current, cpumask);
1874
1875 pgdat_resize_lock(pgdat, &flags);
1876 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1877 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1878 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1879 pgdat_init_report_one_done();
0e1cc95b
MG
1880 return 0;
1881 }
1882
7e18adb4
MG
1883 /* Sanity check boundaries */
1884 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1885 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1886 pgdat->first_deferred_pfn = ULONG_MAX;
1887
3d060856
PT
1888 /*
1889 * Once we unlock here, the zone cannot be grown anymore, thus if an
1890 * interrupt thread must allocate this early in boot, zone must be
1891 * pre-grown prior to start of deferred page initialization.
1892 */
1893 pgdat_resize_unlock(pgdat, &flags);
1894
7e18adb4
MG
1895 /* Only the highest zone is deferred so find it */
1896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1897 zone = pgdat->node_zones + zid;
1898 if (first_init_pfn < zone_end_pfn(zone))
1899 break;
1900 }
0e56acae
AD
1901
1902 /* If the zone is empty somebody else may have cleared out the zone */
1903 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1904 first_init_pfn))
1905 goto zone_empty;
7e18adb4 1906
ecd09650 1907 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1908
117003c3 1909 while (spfn < epfn) {
e4443149
DJ
1910 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1911 struct padata_mt_job job = {
1912 .thread_fn = deferred_init_memmap_chunk,
1913 .fn_arg = zone,
1914 .start = spfn,
1915 .size = epfn_align - spfn,
1916 .align = PAGES_PER_SECTION,
1917 .min_chunk = PAGES_PER_SECTION,
1918 .max_threads = max_threads,
1919 };
1920
1921 padata_do_multithreaded(&job);
1922 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1923 epfn_align);
117003c3 1924 }
0e56acae 1925zone_empty:
7e18adb4
MG
1926 /* Sanity check that the next zone really is unpopulated */
1927 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1928
89c7c402
DJ
1929 pr_info("node %d deferred pages initialised in %ums\n",
1930 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1931
1932 pgdat_init_report_one_done();
0e1cc95b
MG
1933 return 0;
1934}
c9e97a19 1935
c9e97a19
PT
1936/*
1937 * If this zone has deferred pages, try to grow it by initializing enough
1938 * deferred pages to satisfy the allocation specified by order, rounded up to
1939 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1940 * of SECTION_SIZE bytes by initializing struct pages in increments of
1941 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1942 *
1943 * Return true when zone was grown, otherwise return false. We return true even
1944 * when we grow less than requested, to let the caller decide if there are
1945 * enough pages to satisfy the allocation.
1946 *
1947 * Note: We use noinline because this function is needed only during boot, and
1948 * it is called from a __ref function _deferred_grow_zone. This way we are
1949 * making sure that it is not inlined into permanent text section.
1950 */
1951static noinline bool __init
1952deferred_grow_zone(struct zone *zone, unsigned int order)
1953{
c9e97a19 1954 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1955 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1956 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1957 unsigned long spfn, epfn, flags;
1958 unsigned long nr_pages = 0;
c9e97a19
PT
1959 u64 i;
1960
1961 /* Only the last zone may have deferred pages */
1962 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1963 return false;
1964
1965 pgdat_resize_lock(pgdat, &flags);
1966
c9e97a19
PT
1967 /*
1968 * If someone grew this zone while we were waiting for spinlock, return
1969 * true, as there might be enough pages already.
1970 */
1971 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1972 pgdat_resize_unlock(pgdat, &flags);
1973 return true;
1974 }
1975
0e56acae
AD
1976 /* If the zone is empty somebody else may have cleared out the zone */
1977 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1978 first_deferred_pfn)) {
1979 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1980 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1981 /* Retry only once. */
1982 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1983 }
1984
0e56acae
AD
1985 /*
1986 * Initialize and free pages in MAX_ORDER sized increments so
1987 * that we can avoid introducing any issues with the buddy
1988 * allocator.
1989 */
1990 while (spfn < epfn) {
1991 /* update our first deferred PFN for this section */
1992 first_deferred_pfn = spfn;
1993
1994 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 1995 touch_nmi_watchdog();
c9e97a19 1996
0e56acae
AD
1997 /* We should only stop along section boundaries */
1998 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1999 continue;
c9e97a19 2000
0e56acae 2001 /* If our quota has been met we can stop here */
c9e97a19
PT
2002 if (nr_pages >= nr_pages_needed)
2003 break;
2004 }
2005
0e56acae 2006 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2007 pgdat_resize_unlock(pgdat, &flags);
2008
2009 return nr_pages > 0;
2010}
2011
2012/*
2013 * deferred_grow_zone() is __init, but it is called from
2014 * get_page_from_freelist() during early boot until deferred_pages permanently
2015 * disables this call. This is why we have refdata wrapper to avoid warning,
2016 * and to ensure that the function body gets unloaded.
2017 */
2018static bool __ref
2019_deferred_grow_zone(struct zone *zone, unsigned int order)
2020{
2021 return deferred_grow_zone(zone, order);
2022}
2023
7cf91a98 2024#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2025
2026void __init page_alloc_init_late(void)
2027{
7cf91a98 2028 struct zone *zone;
e900a918 2029 int nid;
7cf91a98
JK
2030
2031#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2032
d3cd131d
NS
2033 /* There will be num_node_state(N_MEMORY) threads */
2034 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2035 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2036 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2037 }
2038
2039 /* Block until all are initialised */
d3cd131d 2040 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2041
3e8fc007
MG
2042 /*
2043 * The number of managed pages has changed due to the initialisation
2044 * so the pcpu batch and high limits needs to be updated or the limits
2045 * will be artificially small.
2046 */
2047 for_each_populated_zone(zone)
2048 zone_pcp_update(zone);
2049
c9e97a19
PT
2050 /*
2051 * We initialized the rest of the deferred pages. Permanently disable
2052 * on-demand struct page initialization.
2053 */
2054 static_branch_disable(&deferred_pages);
2055
4248b0da
MG
2056 /* Reinit limits that are based on free pages after the kernel is up */
2057 files_maxfiles_init();
7cf91a98 2058#endif
350e88ba 2059
3010f876
PT
2060 /* Discard memblock private memory */
2061 memblock_discard();
7cf91a98 2062
e900a918
DW
2063 for_each_node_state(nid, N_MEMORY)
2064 shuffle_free_memory(NODE_DATA(nid));
2065
7cf91a98
JK
2066 for_each_populated_zone(zone)
2067 set_zone_contiguous(zone);
7e18adb4 2068}
7e18adb4 2069
47118af0 2070#ifdef CONFIG_CMA
9cf510a5 2071/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2072void __init init_cma_reserved_pageblock(struct page *page)
2073{
2074 unsigned i = pageblock_nr_pages;
2075 struct page *p = page;
2076
2077 do {
2078 __ClearPageReserved(p);
2079 set_page_count(p, 0);
d883c6cf 2080 } while (++p, --i);
47118af0 2081
47118af0 2082 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2083
2084 if (pageblock_order >= MAX_ORDER) {
2085 i = pageblock_nr_pages;
2086 p = page;
2087 do {
2088 set_page_refcounted(p);
2089 __free_pages(p, MAX_ORDER - 1);
2090 p += MAX_ORDER_NR_PAGES;
2091 } while (i -= MAX_ORDER_NR_PAGES);
2092 } else {
2093 set_page_refcounted(page);
2094 __free_pages(page, pageblock_order);
2095 }
2096
3dcc0571 2097 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2098}
2099#endif
1da177e4
LT
2100
2101/*
2102 * The order of subdivision here is critical for the IO subsystem.
2103 * Please do not alter this order without good reasons and regression
2104 * testing. Specifically, as large blocks of memory are subdivided,
2105 * the order in which smaller blocks are delivered depends on the order
2106 * they're subdivided in this function. This is the primary factor
2107 * influencing the order in which pages are delivered to the IO
2108 * subsystem according to empirical testing, and this is also justified
2109 * by considering the behavior of a buddy system containing a single
2110 * large block of memory acted on by a series of small allocations.
2111 * This behavior is a critical factor in sglist merging's success.
2112 *
6d49e352 2113 * -- nyc
1da177e4 2114 */
085cc7d5 2115static inline void expand(struct zone *zone, struct page *page,
6ab01363 2116 int low, int high, int migratetype)
1da177e4
LT
2117{
2118 unsigned long size = 1 << high;
2119
2120 while (high > low) {
1da177e4
LT
2121 high--;
2122 size >>= 1;
309381fe 2123 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2124
acbc15a4
JK
2125 /*
2126 * Mark as guard pages (or page), that will allow to
2127 * merge back to allocator when buddy will be freed.
2128 * Corresponding page table entries will not be touched,
2129 * pages will stay not present in virtual address space
2130 */
2131 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2132 continue;
acbc15a4 2133
6ab01363 2134 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2135 set_page_order(&page[size], high);
2136 }
1da177e4
LT
2137}
2138
4e611801 2139static void check_new_page_bad(struct page *page)
1da177e4 2140{
f4c18e6f 2141 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2142 /* Don't complain about hwpoisoned pages */
2143 page_mapcount_reset(page); /* remove PageBuddy */
2144 return;
f4c18e6f 2145 }
58b7f119
WY
2146
2147 bad_page(page,
2148 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2149}
2150
2151/*
2152 * This page is about to be returned from the page allocator
2153 */
2154static inline int check_new_page(struct page *page)
2155{
2156 if (likely(page_expected_state(page,
2157 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2158 return 0;
2159
2160 check_new_page_bad(page);
2161 return 1;
2a7684a2
WF
2162}
2163
bd33ef36 2164static inline bool free_pages_prezeroed(void)
1414c7f4 2165{
6471384a
AP
2166 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2167 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2168}
2169
479f854a 2170#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2171/*
2172 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2173 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2174 * also checked when pcp lists are refilled from the free lists.
2175 */
2176static inline bool check_pcp_refill(struct page *page)
479f854a 2177{
8e57f8ac 2178 if (debug_pagealloc_enabled_static())
4462b32c
VB
2179 return check_new_page(page);
2180 else
2181 return false;
479f854a
MG
2182}
2183
4462b32c 2184static inline bool check_new_pcp(struct page *page)
479f854a
MG
2185{
2186 return check_new_page(page);
2187}
2188#else
4462b32c
VB
2189/*
2190 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2191 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2192 * enabled, they are also checked when being allocated from the pcp lists.
2193 */
2194static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2195{
2196 return check_new_page(page);
2197}
4462b32c 2198static inline bool check_new_pcp(struct page *page)
479f854a 2199{
8e57f8ac 2200 if (debug_pagealloc_enabled_static())
4462b32c
VB
2201 return check_new_page(page);
2202 else
2203 return false;
479f854a
MG
2204}
2205#endif /* CONFIG_DEBUG_VM */
2206
2207static bool check_new_pages(struct page *page, unsigned int order)
2208{
2209 int i;
2210 for (i = 0; i < (1 << order); i++) {
2211 struct page *p = page + i;
2212
2213 if (unlikely(check_new_page(p)))
2214 return true;
2215 }
2216
2217 return false;
2218}
2219
46f24fd8
JK
2220inline void post_alloc_hook(struct page *page, unsigned int order,
2221 gfp_t gfp_flags)
2222{
2223 set_page_private(page, 0);
2224 set_page_refcounted(page);
2225
2226 arch_alloc_page(page, order);
8e57f8ac 2227 if (debug_pagealloc_enabled_static())
d6332692 2228 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2229 kasan_alloc_pages(page, order);
4117992d 2230 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2231 set_page_owner(page, order, gfp_flags);
2232}
2233
479f854a 2234static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2235 unsigned int alloc_flags)
2a7684a2 2236{
46f24fd8 2237 post_alloc_hook(page, order, gfp_flags);
17cf4406 2238
6471384a
AP
2239 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2240 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2241
2242 if (order && (gfp_flags & __GFP_COMP))
2243 prep_compound_page(page, order);
2244
75379191 2245 /*
2f064f34 2246 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2247 * allocate the page. The expectation is that the caller is taking
2248 * steps that will free more memory. The caller should avoid the page
2249 * being used for !PFMEMALLOC purposes.
2250 */
2f064f34
MH
2251 if (alloc_flags & ALLOC_NO_WATERMARKS)
2252 set_page_pfmemalloc(page);
2253 else
2254 clear_page_pfmemalloc(page);
1da177e4
LT
2255}
2256
56fd56b8
MG
2257/*
2258 * Go through the free lists for the given migratetype and remove
2259 * the smallest available page from the freelists
2260 */
85ccc8fa 2261static __always_inline
728ec980 2262struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2263 int migratetype)
2264{
2265 unsigned int current_order;
b8af2941 2266 struct free_area *area;
56fd56b8
MG
2267 struct page *page;
2268
2269 /* Find a page of the appropriate size in the preferred list */
2270 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2271 area = &(zone->free_area[current_order]);
b03641af 2272 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2273 if (!page)
2274 continue;
6ab01363
AD
2275 del_page_from_free_list(page, zone, current_order);
2276 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2277 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2278 return page;
2279 }
2280
2281 return NULL;
2282}
2283
2284
b2a0ac88
MG
2285/*
2286 * This array describes the order lists are fallen back to when
2287 * the free lists for the desirable migrate type are depleted
2288 */
da415663 2289static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2290 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2291 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2292 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2293#ifdef CONFIG_CMA
974a786e 2294 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2295#endif
194159fb 2296#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2297 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2298#endif
b2a0ac88
MG
2299};
2300
dc67647b 2301#ifdef CONFIG_CMA
85ccc8fa 2302static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2303 unsigned int order)
2304{
2305 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2306}
2307#else
2308static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2309 unsigned int order) { return NULL; }
2310#endif
2311
c361be55
MG
2312/*
2313 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2314 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2315 * boundary. If alignment is required, use move_freepages_block()
2316 */
02aa0cdd 2317static int move_freepages(struct zone *zone,
b69a7288 2318 struct page *start_page, struct page *end_page,
02aa0cdd 2319 int migratetype, int *num_movable)
c361be55
MG
2320{
2321 struct page *page;
d00181b9 2322 unsigned int order;
d100313f 2323 int pages_moved = 0;
c361be55 2324
c361be55
MG
2325 for (page = start_page; page <= end_page;) {
2326 if (!pfn_valid_within(page_to_pfn(page))) {
2327 page++;
2328 continue;
2329 }
2330
2331 if (!PageBuddy(page)) {
02aa0cdd
VB
2332 /*
2333 * We assume that pages that could be isolated for
2334 * migration are movable. But we don't actually try
2335 * isolating, as that would be expensive.
2336 */
2337 if (num_movable &&
2338 (PageLRU(page) || __PageMovable(page)))
2339 (*num_movable)++;
2340
c361be55
MG
2341 page++;
2342 continue;
2343 }
2344
cd961038
DR
2345 /* Make sure we are not inadvertently changing nodes */
2346 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2347 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2348
c361be55 2349 order = page_order(page);
6ab01363 2350 move_to_free_list(page, zone, order, migratetype);
c361be55 2351 page += 1 << order;
d100313f 2352 pages_moved += 1 << order;
c361be55
MG
2353 }
2354
d100313f 2355 return pages_moved;
c361be55
MG
2356}
2357
ee6f509c 2358int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2359 int migratetype, int *num_movable)
c361be55
MG
2360{
2361 unsigned long start_pfn, end_pfn;
2362 struct page *start_page, *end_page;
2363
4a222127
DR
2364 if (num_movable)
2365 *num_movable = 0;
2366
c361be55 2367 start_pfn = page_to_pfn(page);
d9c23400 2368 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2369 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2370 end_page = start_page + pageblock_nr_pages - 1;
2371 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2372
2373 /* Do not cross zone boundaries */
108bcc96 2374 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2375 start_page = page;
108bcc96 2376 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2377 return 0;
2378
02aa0cdd
VB
2379 return move_freepages(zone, start_page, end_page, migratetype,
2380 num_movable);
c361be55
MG
2381}
2382
2f66a68f
MG
2383static void change_pageblock_range(struct page *pageblock_page,
2384 int start_order, int migratetype)
2385{
2386 int nr_pageblocks = 1 << (start_order - pageblock_order);
2387
2388 while (nr_pageblocks--) {
2389 set_pageblock_migratetype(pageblock_page, migratetype);
2390 pageblock_page += pageblock_nr_pages;
2391 }
2392}
2393
fef903ef 2394/*
9c0415eb
VB
2395 * When we are falling back to another migratetype during allocation, try to
2396 * steal extra free pages from the same pageblocks to satisfy further
2397 * allocations, instead of polluting multiple pageblocks.
2398 *
2399 * If we are stealing a relatively large buddy page, it is likely there will
2400 * be more free pages in the pageblock, so try to steal them all. For
2401 * reclaimable and unmovable allocations, we steal regardless of page size,
2402 * as fragmentation caused by those allocations polluting movable pageblocks
2403 * is worse than movable allocations stealing from unmovable and reclaimable
2404 * pageblocks.
fef903ef 2405 */
4eb7dce6
JK
2406static bool can_steal_fallback(unsigned int order, int start_mt)
2407{
2408 /*
2409 * Leaving this order check is intended, although there is
2410 * relaxed order check in next check. The reason is that
2411 * we can actually steal whole pageblock if this condition met,
2412 * but, below check doesn't guarantee it and that is just heuristic
2413 * so could be changed anytime.
2414 */
2415 if (order >= pageblock_order)
2416 return true;
2417
2418 if (order >= pageblock_order / 2 ||
2419 start_mt == MIGRATE_RECLAIMABLE ||
2420 start_mt == MIGRATE_UNMOVABLE ||
2421 page_group_by_mobility_disabled)
2422 return true;
2423
2424 return false;
2425}
2426
1c30844d
MG
2427static inline void boost_watermark(struct zone *zone)
2428{
2429 unsigned long max_boost;
2430
2431 if (!watermark_boost_factor)
2432 return;
14f69140
HW
2433 /*
2434 * Don't bother in zones that are unlikely to produce results.
2435 * On small machines, including kdump capture kernels running
2436 * in a small area, boosting the watermark can cause an out of
2437 * memory situation immediately.
2438 */
2439 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2440 return;
1c30844d
MG
2441
2442 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2443 watermark_boost_factor, 10000);
94b3334c
MG
2444
2445 /*
2446 * high watermark may be uninitialised if fragmentation occurs
2447 * very early in boot so do not boost. We do not fall
2448 * through and boost by pageblock_nr_pages as failing
2449 * allocations that early means that reclaim is not going
2450 * to help and it may even be impossible to reclaim the
2451 * boosted watermark resulting in a hang.
2452 */
2453 if (!max_boost)
2454 return;
2455
1c30844d
MG
2456 max_boost = max(pageblock_nr_pages, max_boost);
2457
2458 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2459 max_boost);
2460}
2461
4eb7dce6
JK
2462/*
2463 * This function implements actual steal behaviour. If order is large enough,
2464 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2465 * pageblock to our migratetype and determine how many already-allocated pages
2466 * are there in the pageblock with a compatible migratetype. If at least half
2467 * of pages are free or compatible, we can change migratetype of the pageblock
2468 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2469 */
2470static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2471 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2472{
d00181b9 2473 unsigned int current_order = page_order(page);
02aa0cdd
VB
2474 int free_pages, movable_pages, alike_pages;
2475 int old_block_type;
2476
2477 old_block_type = get_pageblock_migratetype(page);
fef903ef 2478
3bc48f96
VB
2479 /*
2480 * This can happen due to races and we want to prevent broken
2481 * highatomic accounting.
2482 */
02aa0cdd 2483 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2484 goto single_page;
2485
fef903ef
SB
2486 /* Take ownership for orders >= pageblock_order */
2487 if (current_order >= pageblock_order) {
2488 change_pageblock_range(page, current_order, start_type);
3bc48f96 2489 goto single_page;
fef903ef
SB
2490 }
2491
1c30844d
MG
2492 /*
2493 * Boost watermarks to increase reclaim pressure to reduce the
2494 * likelihood of future fallbacks. Wake kswapd now as the node
2495 * may be balanced overall and kswapd will not wake naturally.
2496 */
2497 boost_watermark(zone);
2498 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2499 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2500
3bc48f96
VB
2501 /* We are not allowed to try stealing from the whole block */
2502 if (!whole_block)
2503 goto single_page;
2504
02aa0cdd
VB
2505 free_pages = move_freepages_block(zone, page, start_type,
2506 &movable_pages);
2507 /*
2508 * Determine how many pages are compatible with our allocation.
2509 * For movable allocation, it's the number of movable pages which
2510 * we just obtained. For other types it's a bit more tricky.
2511 */
2512 if (start_type == MIGRATE_MOVABLE) {
2513 alike_pages = movable_pages;
2514 } else {
2515 /*
2516 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2517 * to MOVABLE pageblock, consider all non-movable pages as
2518 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2519 * vice versa, be conservative since we can't distinguish the
2520 * exact migratetype of non-movable pages.
2521 */
2522 if (old_block_type == MIGRATE_MOVABLE)
2523 alike_pages = pageblock_nr_pages
2524 - (free_pages + movable_pages);
2525 else
2526 alike_pages = 0;
2527 }
2528
3bc48f96 2529 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2530 if (!free_pages)
3bc48f96 2531 goto single_page;
fef903ef 2532
02aa0cdd
VB
2533 /*
2534 * If a sufficient number of pages in the block are either free or of
2535 * comparable migratability as our allocation, claim the whole block.
2536 */
2537 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2538 page_group_by_mobility_disabled)
2539 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2540
2541 return;
2542
2543single_page:
6ab01363 2544 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2545}
2546
2149cdae
JK
2547/*
2548 * Check whether there is a suitable fallback freepage with requested order.
2549 * If only_stealable is true, this function returns fallback_mt only if
2550 * we can steal other freepages all together. This would help to reduce
2551 * fragmentation due to mixed migratetype pages in one pageblock.
2552 */
2553int find_suitable_fallback(struct free_area *area, unsigned int order,
2554 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2555{
2556 int i;
2557 int fallback_mt;
2558
2559 if (area->nr_free == 0)
2560 return -1;
2561
2562 *can_steal = false;
2563 for (i = 0;; i++) {
2564 fallback_mt = fallbacks[migratetype][i];
974a786e 2565 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2566 break;
2567
b03641af 2568 if (free_area_empty(area, fallback_mt))
4eb7dce6 2569 continue;
fef903ef 2570
4eb7dce6
JK
2571 if (can_steal_fallback(order, migratetype))
2572 *can_steal = true;
2573
2149cdae
JK
2574 if (!only_stealable)
2575 return fallback_mt;
2576
2577 if (*can_steal)
2578 return fallback_mt;
fef903ef 2579 }
4eb7dce6
JK
2580
2581 return -1;
fef903ef
SB
2582}
2583
0aaa29a5
MG
2584/*
2585 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2586 * there are no empty page blocks that contain a page with a suitable order
2587 */
2588static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2589 unsigned int alloc_order)
2590{
2591 int mt;
2592 unsigned long max_managed, flags;
2593
2594 /*
2595 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2596 * Check is race-prone but harmless.
2597 */
9705bea5 2598 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2599 if (zone->nr_reserved_highatomic >= max_managed)
2600 return;
2601
2602 spin_lock_irqsave(&zone->lock, flags);
2603
2604 /* Recheck the nr_reserved_highatomic limit under the lock */
2605 if (zone->nr_reserved_highatomic >= max_managed)
2606 goto out_unlock;
2607
2608 /* Yoink! */
2609 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2610 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2611 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2612 zone->nr_reserved_highatomic += pageblock_nr_pages;
2613 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2614 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2615 }
2616
2617out_unlock:
2618 spin_unlock_irqrestore(&zone->lock, flags);
2619}
2620
2621/*
2622 * Used when an allocation is about to fail under memory pressure. This
2623 * potentially hurts the reliability of high-order allocations when under
2624 * intense memory pressure but failed atomic allocations should be easier
2625 * to recover from than an OOM.
29fac03b
MK
2626 *
2627 * If @force is true, try to unreserve a pageblock even though highatomic
2628 * pageblock is exhausted.
0aaa29a5 2629 */
29fac03b
MK
2630static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2631 bool force)
0aaa29a5
MG
2632{
2633 struct zonelist *zonelist = ac->zonelist;
2634 unsigned long flags;
2635 struct zoneref *z;
2636 struct zone *zone;
2637 struct page *page;
2638 int order;
04c8716f 2639 bool ret;
0aaa29a5 2640
97a225e6 2641 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2642 ac->nodemask) {
29fac03b
MK
2643 /*
2644 * Preserve at least one pageblock unless memory pressure
2645 * is really high.
2646 */
2647 if (!force && zone->nr_reserved_highatomic <=
2648 pageblock_nr_pages)
0aaa29a5
MG
2649 continue;
2650
2651 spin_lock_irqsave(&zone->lock, flags);
2652 for (order = 0; order < MAX_ORDER; order++) {
2653 struct free_area *area = &(zone->free_area[order]);
2654
b03641af 2655 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2656 if (!page)
0aaa29a5
MG
2657 continue;
2658
0aaa29a5 2659 /*
4855e4a7
MK
2660 * In page freeing path, migratetype change is racy so
2661 * we can counter several free pages in a pageblock
2662 * in this loop althoug we changed the pageblock type
2663 * from highatomic to ac->migratetype. So we should
2664 * adjust the count once.
0aaa29a5 2665 */
a6ffdc07 2666 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2667 /*
2668 * It should never happen but changes to
2669 * locking could inadvertently allow a per-cpu
2670 * drain to add pages to MIGRATE_HIGHATOMIC
2671 * while unreserving so be safe and watch for
2672 * underflows.
2673 */
2674 zone->nr_reserved_highatomic -= min(
2675 pageblock_nr_pages,
2676 zone->nr_reserved_highatomic);
2677 }
0aaa29a5
MG
2678
2679 /*
2680 * Convert to ac->migratetype and avoid the normal
2681 * pageblock stealing heuristics. Minimally, the caller
2682 * is doing the work and needs the pages. More
2683 * importantly, if the block was always converted to
2684 * MIGRATE_UNMOVABLE or another type then the number
2685 * of pageblocks that cannot be completely freed
2686 * may increase.
2687 */
2688 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2689 ret = move_freepages_block(zone, page, ac->migratetype,
2690 NULL);
29fac03b
MK
2691 if (ret) {
2692 spin_unlock_irqrestore(&zone->lock, flags);
2693 return ret;
2694 }
0aaa29a5
MG
2695 }
2696 spin_unlock_irqrestore(&zone->lock, flags);
2697 }
04c8716f
MK
2698
2699 return false;
0aaa29a5
MG
2700}
2701
3bc48f96
VB
2702/*
2703 * Try finding a free buddy page on the fallback list and put it on the free
2704 * list of requested migratetype, possibly along with other pages from the same
2705 * block, depending on fragmentation avoidance heuristics. Returns true if
2706 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2707 *
2708 * The use of signed ints for order and current_order is a deliberate
2709 * deviation from the rest of this file, to make the for loop
2710 * condition simpler.
3bc48f96 2711 */
85ccc8fa 2712static __always_inline bool
6bb15450
MG
2713__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2714 unsigned int alloc_flags)
b2a0ac88 2715{
b8af2941 2716 struct free_area *area;
b002529d 2717 int current_order;
6bb15450 2718 int min_order = order;
b2a0ac88 2719 struct page *page;
4eb7dce6
JK
2720 int fallback_mt;
2721 bool can_steal;
b2a0ac88 2722
6bb15450
MG
2723 /*
2724 * Do not steal pages from freelists belonging to other pageblocks
2725 * i.e. orders < pageblock_order. If there are no local zones free,
2726 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2727 */
2728 if (alloc_flags & ALLOC_NOFRAGMENT)
2729 min_order = pageblock_order;
2730
7a8f58f3
VB
2731 /*
2732 * Find the largest available free page in the other list. This roughly
2733 * approximates finding the pageblock with the most free pages, which
2734 * would be too costly to do exactly.
2735 */
6bb15450 2736 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2737 --current_order) {
4eb7dce6
JK
2738 area = &(zone->free_area[current_order]);
2739 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2740 start_migratetype, false, &can_steal);
4eb7dce6
JK
2741 if (fallback_mt == -1)
2742 continue;
b2a0ac88 2743
7a8f58f3
VB
2744 /*
2745 * We cannot steal all free pages from the pageblock and the
2746 * requested migratetype is movable. In that case it's better to
2747 * steal and split the smallest available page instead of the
2748 * largest available page, because even if the next movable
2749 * allocation falls back into a different pageblock than this
2750 * one, it won't cause permanent fragmentation.
2751 */
2752 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2753 && current_order > order)
2754 goto find_smallest;
b2a0ac88 2755
7a8f58f3
VB
2756 goto do_steal;
2757 }
e0fff1bd 2758
7a8f58f3 2759 return false;
e0fff1bd 2760
7a8f58f3
VB
2761find_smallest:
2762 for (current_order = order; current_order < MAX_ORDER;
2763 current_order++) {
2764 area = &(zone->free_area[current_order]);
2765 fallback_mt = find_suitable_fallback(area, current_order,
2766 start_migratetype, false, &can_steal);
2767 if (fallback_mt != -1)
2768 break;
b2a0ac88
MG
2769 }
2770
7a8f58f3
VB
2771 /*
2772 * This should not happen - we already found a suitable fallback
2773 * when looking for the largest page.
2774 */
2775 VM_BUG_ON(current_order == MAX_ORDER);
2776
2777do_steal:
b03641af 2778 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2779
1c30844d
MG
2780 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2781 can_steal);
7a8f58f3
VB
2782
2783 trace_mm_page_alloc_extfrag(page, order, current_order,
2784 start_migratetype, fallback_mt);
2785
2786 return true;
2787
b2a0ac88
MG
2788}
2789
56fd56b8 2790/*
1da177e4
LT
2791 * Do the hard work of removing an element from the buddy allocator.
2792 * Call me with the zone->lock already held.
2793 */
85ccc8fa 2794static __always_inline struct page *
6bb15450
MG
2795__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2796 unsigned int alloc_flags)
1da177e4 2797{
1da177e4
LT
2798 struct page *page;
2799
16867664
RG
2800#ifdef CONFIG_CMA
2801 /*
2802 * Balance movable allocations between regular and CMA areas by
2803 * allocating from CMA when over half of the zone's free memory
2804 * is in the CMA area.
2805 */
8510e69c 2806 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2807 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2808 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2809 page = __rmqueue_cma_fallback(zone, order);
2810 if (page)
2811 return page;
2812 }
2813#endif
3bc48f96 2814retry:
56fd56b8 2815 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2816 if (unlikely(!page)) {
8510e69c 2817 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2818 page = __rmqueue_cma_fallback(zone, order);
2819
6bb15450
MG
2820 if (!page && __rmqueue_fallback(zone, order, migratetype,
2821 alloc_flags))
3bc48f96 2822 goto retry;
728ec980
MG
2823 }
2824
0d3d062a 2825 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2826 return page;
1da177e4
LT
2827}
2828
5f63b720 2829/*
1da177e4
LT
2830 * Obtain a specified number of elements from the buddy allocator, all under
2831 * a single hold of the lock, for efficiency. Add them to the supplied list.
2832 * Returns the number of new pages which were placed at *list.
2833 */
5f63b720 2834static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2835 unsigned long count, struct list_head *list,
6bb15450 2836 int migratetype, unsigned int alloc_flags)
1da177e4 2837{
a6de734b 2838 int i, alloced = 0;
5f63b720 2839
d34b0733 2840 spin_lock(&zone->lock);
1da177e4 2841 for (i = 0; i < count; ++i) {
6bb15450
MG
2842 struct page *page = __rmqueue(zone, order, migratetype,
2843 alloc_flags);
085cc7d5 2844 if (unlikely(page == NULL))
1da177e4 2845 break;
81eabcbe 2846
479f854a
MG
2847 if (unlikely(check_pcp_refill(page)))
2848 continue;
2849
81eabcbe 2850 /*
0fac3ba5
VB
2851 * Split buddy pages returned by expand() are received here in
2852 * physical page order. The page is added to the tail of
2853 * caller's list. From the callers perspective, the linked list
2854 * is ordered by page number under some conditions. This is
2855 * useful for IO devices that can forward direction from the
2856 * head, thus also in the physical page order. This is useful
2857 * for IO devices that can merge IO requests if the physical
2858 * pages are ordered properly.
81eabcbe 2859 */
0fac3ba5 2860 list_add_tail(&page->lru, list);
a6de734b 2861 alloced++;
bb14c2c7 2862 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2863 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2864 -(1 << order));
1da177e4 2865 }
a6de734b
MG
2866
2867 /*
2868 * i pages were removed from the buddy list even if some leak due
2869 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2870 * on i. Do not confuse with 'alloced' which is the number of
2871 * pages added to the pcp list.
2872 */
f2260e6b 2873 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2874 spin_unlock(&zone->lock);
a6de734b 2875 return alloced;
1da177e4
LT
2876}
2877
4ae7c039 2878#ifdef CONFIG_NUMA
8fce4d8e 2879/*
4037d452
CL
2880 * Called from the vmstat counter updater to drain pagesets of this
2881 * currently executing processor on remote nodes after they have
2882 * expired.
2883 *
879336c3
CL
2884 * Note that this function must be called with the thread pinned to
2885 * a single processor.
8fce4d8e 2886 */
4037d452 2887void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2888{
4ae7c039 2889 unsigned long flags;
7be12fc9 2890 int to_drain, batch;
4ae7c039 2891
4037d452 2892 local_irq_save(flags);
4db0c3c2 2893 batch = READ_ONCE(pcp->batch);
7be12fc9 2894 to_drain = min(pcp->count, batch);
77ba9062 2895 if (to_drain > 0)
2a13515c 2896 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2897 local_irq_restore(flags);
4ae7c039
CL
2898}
2899#endif
2900
9f8f2172 2901/*
93481ff0 2902 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2903 *
2904 * The processor must either be the current processor and the
2905 * thread pinned to the current processor or a processor that
2906 * is not online.
2907 */
93481ff0 2908static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2909{
c54ad30c 2910 unsigned long flags;
93481ff0
VB
2911 struct per_cpu_pageset *pset;
2912 struct per_cpu_pages *pcp;
1da177e4 2913
93481ff0
VB
2914 local_irq_save(flags);
2915 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2916
93481ff0 2917 pcp = &pset->pcp;
77ba9062 2918 if (pcp->count)
93481ff0 2919 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2920 local_irq_restore(flags);
2921}
3dfa5721 2922
93481ff0
VB
2923/*
2924 * Drain pcplists of all zones on the indicated processor.
2925 *
2926 * The processor must either be the current processor and the
2927 * thread pinned to the current processor or a processor that
2928 * is not online.
2929 */
2930static void drain_pages(unsigned int cpu)
2931{
2932 struct zone *zone;
2933
2934 for_each_populated_zone(zone) {
2935 drain_pages_zone(cpu, zone);
1da177e4
LT
2936 }
2937}
1da177e4 2938
9f8f2172
CL
2939/*
2940 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2941 *
2942 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2943 * the single zone's pages.
9f8f2172 2944 */
93481ff0 2945void drain_local_pages(struct zone *zone)
9f8f2172 2946{
93481ff0
VB
2947 int cpu = smp_processor_id();
2948
2949 if (zone)
2950 drain_pages_zone(cpu, zone);
2951 else
2952 drain_pages(cpu);
9f8f2172
CL
2953}
2954
0ccce3b9
MG
2955static void drain_local_pages_wq(struct work_struct *work)
2956{
d9367bd0
WY
2957 struct pcpu_drain *drain;
2958
2959 drain = container_of(work, struct pcpu_drain, work);
2960
a459eeb7
MH
2961 /*
2962 * drain_all_pages doesn't use proper cpu hotplug protection so
2963 * we can race with cpu offline when the WQ can move this from
2964 * a cpu pinned worker to an unbound one. We can operate on a different
2965 * cpu which is allright but we also have to make sure to not move to
2966 * a different one.
2967 */
2968 preempt_disable();
d9367bd0 2969 drain_local_pages(drain->zone);
a459eeb7 2970 preempt_enable();
0ccce3b9
MG
2971}
2972
9f8f2172 2973/*
74046494
GBY
2974 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2975 *
93481ff0
VB
2976 * When zone parameter is non-NULL, spill just the single zone's pages.
2977 *
0ccce3b9 2978 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2979 */
93481ff0 2980void drain_all_pages(struct zone *zone)
9f8f2172 2981{
74046494 2982 int cpu;
74046494
GBY
2983
2984 /*
2985 * Allocate in the BSS so we wont require allocation in
2986 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2987 */
2988 static cpumask_t cpus_with_pcps;
2989
ce612879
MH
2990 /*
2991 * Make sure nobody triggers this path before mm_percpu_wq is fully
2992 * initialized.
2993 */
2994 if (WARN_ON_ONCE(!mm_percpu_wq))
2995 return;
2996
bd233f53
MG
2997 /*
2998 * Do not drain if one is already in progress unless it's specific to
2999 * a zone. Such callers are primarily CMA and memory hotplug and need
3000 * the drain to be complete when the call returns.
3001 */
3002 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3003 if (!zone)
3004 return;
3005 mutex_lock(&pcpu_drain_mutex);
3006 }
0ccce3b9 3007
74046494
GBY
3008 /*
3009 * We don't care about racing with CPU hotplug event
3010 * as offline notification will cause the notified
3011 * cpu to drain that CPU pcps and on_each_cpu_mask
3012 * disables preemption as part of its processing
3013 */
3014 for_each_online_cpu(cpu) {
93481ff0
VB
3015 struct per_cpu_pageset *pcp;
3016 struct zone *z;
74046494 3017 bool has_pcps = false;
93481ff0
VB
3018
3019 if (zone) {
74046494 3020 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3021 if (pcp->pcp.count)
74046494 3022 has_pcps = true;
93481ff0
VB
3023 } else {
3024 for_each_populated_zone(z) {
3025 pcp = per_cpu_ptr(z->pageset, cpu);
3026 if (pcp->pcp.count) {
3027 has_pcps = true;
3028 break;
3029 }
74046494
GBY
3030 }
3031 }
93481ff0 3032
74046494
GBY
3033 if (has_pcps)
3034 cpumask_set_cpu(cpu, &cpus_with_pcps);
3035 else
3036 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3037 }
0ccce3b9 3038
bd233f53 3039 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3040 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3041
3042 drain->zone = zone;
3043 INIT_WORK(&drain->work, drain_local_pages_wq);
3044 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3045 }
bd233f53 3046 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3047 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3048
3049 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3050}
3051
296699de 3052#ifdef CONFIG_HIBERNATION
1da177e4 3053
556b969a
CY
3054/*
3055 * Touch the watchdog for every WD_PAGE_COUNT pages.
3056 */
3057#define WD_PAGE_COUNT (128*1024)
3058
1da177e4
LT
3059void mark_free_pages(struct zone *zone)
3060{
556b969a 3061 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3062 unsigned long flags;
7aeb09f9 3063 unsigned int order, t;
86760a2c 3064 struct page *page;
1da177e4 3065
8080fc03 3066 if (zone_is_empty(zone))
1da177e4
LT
3067 return;
3068
3069 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3070
108bcc96 3071 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3072 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3073 if (pfn_valid(pfn)) {
86760a2c 3074 page = pfn_to_page(pfn);
ba6b0979 3075
556b969a
CY
3076 if (!--page_count) {
3077 touch_nmi_watchdog();
3078 page_count = WD_PAGE_COUNT;
3079 }
3080
ba6b0979
JK
3081 if (page_zone(page) != zone)
3082 continue;
3083
7be98234
RW
3084 if (!swsusp_page_is_forbidden(page))
3085 swsusp_unset_page_free(page);
f623f0db 3086 }
1da177e4 3087
b2a0ac88 3088 for_each_migratetype_order(order, t) {
86760a2c
GT
3089 list_for_each_entry(page,
3090 &zone->free_area[order].free_list[t], lru) {
f623f0db 3091 unsigned long i;
1da177e4 3092
86760a2c 3093 pfn = page_to_pfn(page);
556b969a
CY
3094 for (i = 0; i < (1UL << order); i++) {
3095 if (!--page_count) {
3096 touch_nmi_watchdog();
3097 page_count = WD_PAGE_COUNT;
3098 }
7be98234 3099 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3100 }
f623f0db 3101 }
b2a0ac88 3102 }
1da177e4
LT
3103 spin_unlock_irqrestore(&zone->lock, flags);
3104}
e2c55dc8 3105#endif /* CONFIG_PM */
1da177e4 3106
2d4894b5 3107static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3108{
5f8dcc21 3109 int migratetype;
1da177e4 3110
4db7548c 3111 if (!free_pcp_prepare(page))
9cca35d4 3112 return false;
689bcebf 3113
dc4b0caf 3114 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3115 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3116 return true;
3117}
3118
2d4894b5 3119static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3120{
3121 struct zone *zone = page_zone(page);
3122 struct per_cpu_pages *pcp;
3123 int migratetype;
3124
3125 migratetype = get_pcppage_migratetype(page);
d34b0733 3126 __count_vm_event(PGFREE);
da456f14 3127
5f8dcc21
MG
3128 /*
3129 * We only track unmovable, reclaimable and movable on pcp lists.
3130 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3131 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3132 * areas back if necessary. Otherwise, we may have to free
3133 * excessively into the page allocator
3134 */
3135 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3136 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3137 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3138 return;
5f8dcc21
MG
3139 }
3140 migratetype = MIGRATE_MOVABLE;
3141 }
3142
99dcc3e5 3143 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3144 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3145 pcp->count++;
48db57f8 3146 if (pcp->count >= pcp->high) {
4db0c3c2 3147 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3148 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3149 }
9cca35d4 3150}
5f8dcc21 3151
9cca35d4
MG
3152/*
3153 * Free a 0-order page
9cca35d4 3154 */
2d4894b5 3155void free_unref_page(struct page *page)
9cca35d4
MG
3156{
3157 unsigned long flags;
3158 unsigned long pfn = page_to_pfn(page);
3159
2d4894b5 3160 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3161 return;
3162
3163 local_irq_save(flags);
2d4894b5 3164 free_unref_page_commit(page, pfn);
d34b0733 3165 local_irq_restore(flags);
1da177e4
LT
3166}
3167
cc59850e
KK
3168/*
3169 * Free a list of 0-order pages
3170 */
2d4894b5 3171void free_unref_page_list(struct list_head *list)
cc59850e
KK
3172{
3173 struct page *page, *next;
9cca35d4 3174 unsigned long flags, pfn;
c24ad77d 3175 int batch_count = 0;
9cca35d4
MG
3176
3177 /* Prepare pages for freeing */
3178 list_for_each_entry_safe(page, next, list, lru) {
3179 pfn = page_to_pfn(page);
2d4894b5 3180 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3181 list_del(&page->lru);
3182 set_page_private(page, pfn);
3183 }
cc59850e 3184
9cca35d4 3185 local_irq_save(flags);
cc59850e 3186 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3187 unsigned long pfn = page_private(page);
3188
3189 set_page_private(page, 0);
2d4894b5
MG
3190 trace_mm_page_free_batched(page);
3191 free_unref_page_commit(page, pfn);
c24ad77d
LS
3192
3193 /*
3194 * Guard against excessive IRQ disabled times when we get
3195 * a large list of pages to free.
3196 */
3197 if (++batch_count == SWAP_CLUSTER_MAX) {
3198 local_irq_restore(flags);
3199 batch_count = 0;
3200 local_irq_save(flags);
3201 }
cc59850e 3202 }
9cca35d4 3203 local_irq_restore(flags);
cc59850e
KK
3204}
3205
8dfcc9ba
NP
3206/*
3207 * split_page takes a non-compound higher-order page, and splits it into
3208 * n (1<<order) sub-pages: page[0..n]
3209 * Each sub-page must be freed individually.
3210 *
3211 * Note: this is probably too low level an operation for use in drivers.
3212 * Please consult with lkml before using this in your driver.
3213 */
3214void split_page(struct page *page, unsigned int order)
3215{
3216 int i;
3217
309381fe
SL
3218 VM_BUG_ON_PAGE(PageCompound(page), page);
3219 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3220
a9627bc5 3221 for (i = 1; i < (1 << order); i++)
7835e98b 3222 set_page_refcounted(page + i);
8fb156c9 3223 split_page_owner(page, 1 << order);
8dfcc9ba 3224}
5853ff23 3225EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3226
3c605096 3227int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3228{
748446bb
MG
3229 unsigned long watermark;
3230 struct zone *zone;
2139cbe6 3231 int mt;
748446bb
MG
3232
3233 BUG_ON(!PageBuddy(page));
3234
3235 zone = page_zone(page);
2e30abd1 3236 mt = get_pageblock_migratetype(page);
748446bb 3237
194159fb 3238 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3239 /*
3240 * Obey watermarks as if the page was being allocated. We can
3241 * emulate a high-order watermark check with a raised order-0
3242 * watermark, because we already know our high-order page
3243 * exists.
3244 */
fd1444b2 3245 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3246 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3247 return 0;
3248
8fb74b9f 3249 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3250 }
748446bb
MG
3251
3252 /* Remove page from free list */
b03641af 3253
6ab01363 3254 del_page_from_free_list(page, zone, order);
2139cbe6 3255
400bc7fd 3256 /*
3257 * Set the pageblock if the isolated page is at least half of a
3258 * pageblock
3259 */
748446bb
MG
3260 if (order >= pageblock_order - 1) {
3261 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3262 for (; page < endpage; page += pageblock_nr_pages) {
3263 int mt = get_pageblock_migratetype(page);
88ed365e 3264 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3265 && !is_migrate_highatomic(mt))
47118af0
MN
3266 set_pageblock_migratetype(page,
3267 MIGRATE_MOVABLE);
3268 }
748446bb
MG
3269 }
3270
f3a14ced 3271
8fb74b9f 3272 return 1UL << order;
1fb3f8ca
MG
3273}
3274
624f58d8
AD
3275/**
3276 * __putback_isolated_page - Return a now-isolated page back where we got it
3277 * @page: Page that was isolated
3278 * @order: Order of the isolated page
e6a0a7ad 3279 * @mt: The page's pageblock's migratetype
624f58d8
AD
3280 *
3281 * This function is meant to return a page pulled from the free lists via
3282 * __isolate_free_page back to the free lists they were pulled from.
3283 */
3284void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3285{
3286 struct zone *zone = page_zone(page);
3287
3288 /* zone lock should be held when this function is called */
3289 lockdep_assert_held(&zone->lock);
3290
3291 /* Return isolated page to tail of freelist. */
36e66c55 3292 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3293}
3294
060e7417
MG
3295/*
3296 * Update NUMA hit/miss statistics
3297 *
3298 * Must be called with interrupts disabled.
060e7417 3299 */
41b6167e 3300static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3301{
3302#ifdef CONFIG_NUMA
3a321d2a 3303 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3304
4518085e
KW
3305 /* skip numa counters update if numa stats is disabled */
3306 if (!static_branch_likely(&vm_numa_stat_key))
3307 return;
3308
c1093b74 3309 if (zone_to_nid(z) != numa_node_id())
060e7417 3310 local_stat = NUMA_OTHER;
060e7417 3311
c1093b74 3312 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3313 __inc_numa_state(z, NUMA_HIT);
2df26639 3314 else {
3a321d2a
KW
3315 __inc_numa_state(z, NUMA_MISS);
3316 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3317 }
3a321d2a 3318 __inc_numa_state(z, local_stat);
060e7417
MG
3319#endif
3320}
3321
066b2393
MG
3322/* Remove page from the per-cpu list, caller must protect the list */
3323static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3324 unsigned int alloc_flags,
453f85d4 3325 struct per_cpu_pages *pcp,
066b2393
MG
3326 struct list_head *list)
3327{
3328 struct page *page;
3329
3330 do {
3331 if (list_empty(list)) {
3332 pcp->count += rmqueue_bulk(zone, 0,
3333 pcp->batch, list,
6bb15450 3334 migratetype, alloc_flags);
066b2393
MG
3335 if (unlikely(list_empty(list)))
3336 return NULL;
3337 }
3338
453f85d4 3339 page = list_first_entry(list, struct page, lru);
066b2393
MG
3340 list_del(&page->lru);
3341 pcp->count--;
3342 } while (check_new_pcp(page));
3343
3344 return page;
3345}
3346
3347/* Lock and remove page from the per-cpu list */
3348static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3349 struct zone *zone, gfp_t gfp_flags,
3350 int migratetype, unsigned int alloc_flags)
066b2393
MG
3351{
3352 struct per_cpu_pages *pcp;
3353 struct list_head *list;
066b2393 3354 struct page *page;
d34b0733 3355 unsigned long flags;
066b2393 3356
d34b0733 3357 local_irq_save(flags);
066b2393
MG
3358 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3359 list = &pcp->lists[migratetype];
6bb15450 3360 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3361 if (page) {
1c52e6d0 3362 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3363 zone_statistics(preferred_zone, zone);
3364 }
d34b0733 3365 local_irq_restore(flags);
066b2393
MG
3366 return page;
3367}
3368
1da177e4 3369/*
75379191 3370 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3371 */
0a15c3e9 3372static inline
066b2393 3373struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3374 struct zone *zone, unsigned int order,
c603844b
MG
3375 gfp_t gfp_flags, unsigned int alloc_flags,
3376 int migratetype)
1da177e4
LT
3377{
3378 unsigned long flags;
689bcebf 3379 struct page *page;
1da177e4 3380
d34b0733 3381 if (likely(order == 0)) {
1d91df85
JK
3382 /*
3383 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3384 * we need to skip it when CMA area isn't allowed.
3385 */
3386 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3387 migratetype != MIGRATE_MOVABLE) {
3388 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3389 migratetype, alloc_flags);
1d91df85
JK
3390 goto out;
3391 }
066b2393 3392 }
83b9355b 3393
066b2393
MG
3394 /*
3395 * We most definitely don't want callers attempting to
3396 * allocate greater than order-1 page units with __GFP_NOFAIL.
3397 */
3398 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3399 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3400
066b2393
MG
3401 do {
3402 page = NULL;
1d91df85
JK
3403 /*
3404 * order-0 request can reach here when the pcplist is skipped
3405 * due to non-CMA allocation context. HIGHATOMIC area is
3406 * reserved for high-order atomic allocation, so order-0
3407 * request should skip it.
3408 */
3409 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3410 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3411 if (page)
3412 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3413 }
a74609fa 3414 if (!page)
6bb15450 3415 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3416 } while (page && check_new_pages(page, order));
3417 spin_unlock(&zone->lock);
3418 if (!page)
3419 goto failed;
3420 __mod_zone_freepage_state(zone, -(1 << order),
3421 get_pcppage_migratetype(page));
1da177e4 3422
16709d1d 3423 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3424 zone_statistics(preferred_zone, zone);
a74609fa 3425 local_irq_restore(flags);
1da177e4 3426
066b2393 3427out:
73444bc4
MG
3428 /* Separate test+clear to avoid unnecessary atomics */
3429 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3430 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3431 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3432 }
3433
066b2393 3434 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3435 return page;
a74609fa
NP
3436
3437failed:
3438 local_irq_restore(flags);
a74609fa 3439 return NULL;
1da177e4
LT
3440}
3441
933e312e
AM
3442#ifdef CONFIG_FAIL_PAGE_ALLOC
3443
b2588c4b 3444static struct {
933e312e
AM
3445 struct fault_attr attr;
3446
621a5f7a 3447 bool ignore_gfp_highmem;
71baba4b 3448 bool ignore_gfp_reclaim;
54114994 3449 u32 min_order;
933e312e
AM
3450} fail_page_alloc = {
3451 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3452 .ignore_gfp_reclaim = true,
621a5f7a 3453 .ignore_gfp_highmem = true,
54114994 3454 .min_order = 1,
933e312e
AM
3455};
3456
3457static int __init setup_fail_page_alloc(char *str)
3458{
3459 return setup_fault_attr(&fail_page_alloc.attr, str);
3460}
3461__setup("fail_page_alloc=", setup_fail_page_alloc);
3462
af3b8544 3463static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3464{
54114994 3465 if (order < fail_page_alloc.min_order)
deaf386e 3466 return false;
933e312e 3467 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3468 return false;
933e312e 3469 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3470 return false;
71baba4b
MG
3471 if (fail_page_alloc.ignore_gfp_reclaim &&
3472 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3473 return false;
933e312e
AM
3474
3475 return should_fail(&fail_page_alloc.attr, 1 << order);
3476}
3477
3478#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3479
3480static int __init fail_page_alloc_debugfs(void)
3481{
0825a6f9 3482 umode_t mode = S_IFREG | 0600;
933e312e 3483 struct dentry *dir;
933e312e 3484
dd48c085
AM
3485 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3486 &fail_page_alloc.attr);
b2588c4b 3487
d9f7979c
GKH
3488 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3489 &fail_page_alloc.ignore_gfp_reclaim);
3490 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3491 &fail_page_alloc.ignore_gfp_highmem);
3492 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3493
d9f7979c 3494 return 0;
933e312e
AM
3495}
3496
3497late_initcall(fail_page_alloc_debugfs);
3498
3499#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3500
3501#else /* CONFIG_FAIL_PAGE_ALLOC */
3502
af3b8544 3503static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3504{
deaf386e 3505 return false;
933e312e
AM
3506}
3507
3508#endif /* CONFIG_FAIL_PAGE_ALLOC */
3509
af3b8544
BP
3510static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3511{
3512 return __should_fail_alloc_page(gfp_mask, order);
3513}
3514ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3515
f27ce0e1
JK
3516static inline long __zone_watermark_unusable_free(struct zone *z,
3517 unsigned int order, unsigned int alloc_flags)
3518{
3519 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3520 long unusable_free = (1 << order) - 1;
3521
3522 /*
3523 * If the caller does not have rights to ALLOC_HARDER then subtract
3524 * the high-atomic reserves. This will over-estimate the size of the
3525 * atomic reserve but it avoids a search.
3526 */
3527 if (likely(!alloc_harder))
3528 unusable_free += z->nr_reserved_highatomic;
3529
3530#ifdef CONFIG_CMA
3531 /* If allocation can't use CMA areas don't use free CMA pages */
3532 if (!(alloc_flags & ALLOC_CMA))
3533 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3534#endif
3535
3536 return unusable_free;
3537}
3538
1da177e4 3539/*
97a16fc8
MG
3540 * Return true if free base pages are above 'mark'. For high-order checks it
3541 * will return true of the order-0 watermark is reached and there is at least
3542 * one free page of a suitable size. Checking now avoids taking the zone lock
3543 * to check in the allocation paths if no pages are free.
1da177e4 3544 */
86a294a8 3545bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3546 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3547 long free_pages)
1da177e4 3548{
d23ad423 3549 long min = mark;
1da177e4 3550 int o;
cd04ae1e 3551 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3552
0aaa29a5 3553 /* free_pages may go negative - that's OK */
f27ce0e1 3554 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3555
7fb1d9fc 3556 if (alloc_flags & ALLOC_HIGH)
1da177e4 3557 min -= min / 2;
0aaa29a5 3558
f27ce0e1 3559 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3560 /*
3561 * OOM victims can try even harder than normal ALLOC_HARDER
3562 * users on the grounds that it's definitely going to be in
3563 * the exit path shortly and free memory. Any allocation it
3564 * makes during the free path will be small and short-lived.
3565 */
3566 if (alloc_flags & ALLOC_OOM)
3567 min -= min / 2;
3568 else
3569 min -= min / 4;
3570 }
3571
97a16fc8
MG
3572 /*
3573 * Check watermarks for an order-0 allocation request. If these
3574 * are not met, then a high-order request also cannot go ahead
3575 * even if a suitable page happened to be free.
3576 */
97a225e6 3577 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3578 return false;
1da177e4 3579
97a16fc8
MG
3580 /* If this is an order-0 request then the watermark is fine */
3581 if (!order)
3582 return true;
3583
3584 /* For a high-order request, check at least one suitable page is free */
3585 for (o = order; o < MAX_ORDER; o++) {
3586 struct free_area *area = &z->free_area[o];
3587 int mt;
3588
3589 if (!area->nr_free)
3590 continue;
3591
97a16fc8 3592 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3593 if (!free_area_empty(area, mt))
97a16fc8
MG
3594 return true;
3595 }
3596
3597#ifdef CONFIG_CMA
d883c6cf 3598 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3599 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3600 return true;
d883c6cf 3601 }
97a16fc8 3602#endif
76089d00 3603 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3604 return true;
1da177e4 3605 }
97a16fc8 3606 return false;
88f5acf8
MG
3607}
3608
7aeb09f9 3609bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3610 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3611{
97a225e6 3612 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3613 zone_page_state(z, NR_FREE_PAGES));
3614}
3615
48ee5f36 3616static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3617 unsigned long mark, int highest_zoneidx,
f80b08fc 3618 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3619{
f27ce0e1 3620 long free_pages;
d883c6cf 3621
f27ce0e1 3622 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3623
3624 /*
3625 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3626 * need to be calculated.
48ee5f36 3627 */
f27ce0e1
JK
3628 if (!order) {
3629 long fast_free;
3630
3631 fast_free = free_pages;
3632 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3633 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3634 return true;
3635 }
48ee5f36 3636
f80b08fc
CTR
3637 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3638 free_pages))
3639 return true;
3640 /*
3641 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3642 * when checking the min watermark. The min watermark is the
3643 * point where boosting is ignored so that kswapd is woken up
3644 * when below the low watermark.
3645 */
3646 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3647 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3648 mark = z->_watermark[WMARK_MIN];
3649 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3650 alloc_flags, free_pages);
3651 }
3652
3653 return false;
48ee5f36
MG
3654}
3655
7aeb09f9 3656bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3657 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3658{
3659 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3660
3661 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3662 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3663
97a225e6 3664 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3665 free_pages);
1da177e4
LT
3666}
3667
9276b1bc 3668#ifdef CONFIG_NUMA
957f822a
DR
3669static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3670{
e02dc017 3671 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3672 node_reclaim_distance;
957f822a 3673}
9276b1bc 3674#else /* CONFIG_NUMA */
957f822a
DR
3675static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3676{
3677 return true;
3678}
9276b1bc
PJ
3679#endif /* CONFIG_NUMA */
3680
6bb15450
MG
3681/*
3682 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3683 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3684 * premature use of a lower zone may cause lowmem pressure problems that
3685 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3686 * probably too small. It only makes sense to spread allocations to avoid
3687 * fragmentation between the Normal and DMA32 zones.
3688 */
3689static inline unsigned int
0a79cdad 3690alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3691{
736838e9 3692 unsigned int alloc_flags;
0a79cdad 3693
736838e9
MN
3694 /*
3695 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3696 * to save a branch.
3697 */
3698 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3699
3700#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3701 if (!zone)
3702 return alloc_flags;
3703
6bb15450 3704 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3705 return alloc_flags;
6bb15450
MG
3706
3707 /*
3708 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3709 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3710 * on UMA that if Normal is populated then so is DMA32.
3711 */
3712 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3713 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3714 return alloc_flags;
6bb15450 3715
8118b82e 3716 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3717#endif /* CONFIG_ZONE_DMA32 */
3718 return alloc_flags;
6bb15450 3719}
6bb15450 3720
8510e69c
JK
3721static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3722 unsigned int alloc_flags)
3723{
3724#ifdef CONFIG_CMA
3725 unsigned int pflags = current->flags;
3726
3727 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3728 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3729 alloc_flags |= ALLOC_CMA;
3730
3731#endif
3732 return alloc_flags;
3733}
3734
7fb1d9fc 3735/*
0798e519 3736 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3737 * a page.
3738 */
3739static struct page *
a9263751
VB
3740get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3741 const struct alloc_context *ac)
753ee728 3742{
6bb15450 3743 struct zoneref *z;
5117f45d 3744 struct zone *zone;
3b8c0be4 3745 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3746 bool no_fallback;
3b8c0be4 3747
6bb15450 3748retry:
7fb1d9fc 3749 /*
9276b1bc 3750 * Scan zonelist, looking for a zone with enough free.
344736f2 3751 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3752 */
6bb15450
MG
3753 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3754 z = ac->preferred_zoneref;
30d8ec73
MN
3755 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3756 ac->nodemask) {
be06af00 3757 struct page *page;
e085dbc5
JW
3758 unsigned long mark;
3759
664eedde
MG
3760 if (cpusets_enabled() &&
3761 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3762 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3763 continue;
a756cf59
JW
3764 /*
3765 * When allocating a page cache page for writing, we
281e3726
MG
3766 * want to get it from a node that is within its dirty
3767 * limit, such that no single node holds more than its
a756cf59 3768 * proportional share of globally allowed dirty pages.
281e3726 3769 * The dirty limits take into account the node's
a756cf59
JW
3770 * lowmem reserves and high watermark so that kswapd
3771 * should be able to balance it without having to
3772 * write pages from its LRU list.
3773 *
a756cf59 3774 * XXX: For now, allow allocations to potentially
281e3726 3775 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3776 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3777 * which is important when on a NUMA setup the allowed
281e3726 3778 * nodes are together not big enough to reach the
a756cf59 3779 * global limit. The proper fix for these situations
281e3726 3780 * will require awareness of nodes in the
a756cf59
JW
3781 * dirty-throttling and the flusher threads.
3782 */
3b8c0be4
MG
3783 if (ac->spread_dirty_pages) {
3784 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3785 continue;
3786
3787 if (!node_dirty_ok(zone->zone_pgdat)) {
3788 last_pgdat_dirty_limit = zone->zone_pgdat;
3789 continue;
3790 }
3791 }
7fb1d9fc 3792
6bb15450
MG
3793 if (no_fallback && nr_online_nodes > 1 &&
3794 zone != ac->preferred_zoneref->zone) {
3795 int local_nid;
3796
3797 /*
3798 * If moving to a remote node, retry but allow
3799 * fragmenting fallbacks. Locality is more important
3800 * than fragmentation avoidance.
3801 */
3802 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3803 if (zone_to_nid(zone) != local_nid) {
3804 alloc_flags &= ~ALLOC_NOFRAGMENT;
3805 goto retry;
3806 }
3807 }
3808
a9214443 3809 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3810 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3811 ac->highest_zoneidx, alloc_flags,
3812 gfp_mask)) {
fa5e084e
MG
3813 int ret;
3814
c9e97a19
PT
3815#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3816 /*
3817 * Watermark failed for this zone, but see if we can
3818 * grow this zone if it contains deferred pages.
3819 */
3820 if (static_branch_unlikely(&deferred_pages)) {
3821 if (_deferred_grow_zone(zone, order))
3822 goto try_this_zone;
3823 }
3824#endif
5dab2911
MG
3825 /* Checked here to keep the fast path fast */
3826 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3827 if (alloc_flags & ALLOC_NO_WATERMARKS)
3828 goto try_this_zone;
3829
a5f5f91d 3830 if (node_reclaim_mode == 0 ||
c33d6c06 3831 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3832 continue;
3833
a5f5f91d 3834 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3835 switch (ret) {
a5f5f91d 3836 case NODE_RECLAIM_NOSCAN:
fa5e084e 3837 /* did not scan */
cd38b115 3838 continue;
a5f5f91d 3839 case NODE_RECLAIM_FULL:
fa5e084e 3840 /* scanned but unreclaimable */
cd38b115 3841 continue;
fa5e084e
MG
3842 default:
3843 /* did we reclaim enough */
fed2719e 3844 if (zone_watermark_ok(zone, order, mark,
97a225e6 3845 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3846 goto try_this_zone;
3847
fed2719e 3848 continue;
0798e519 3849 }
7fb1d9fc
RS
3850 }
3851
fa5e084e 3852try_this_zone:
066b2393 3853 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3854 gfp_mask, alloc_flags, ac->migratetype);
75379191 3855 if (page) {
479f854a 3856 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3857
3858 /*
3859 * If this is a high-order atomic allocation then check
3860 * if the pageblock should be reserved for the future
3861 */
3862 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3863 reserve_highatomic_pageblock(page, zone, order);
3864
75379191 3865 return page;
c9e97a19
PT
3866 } else {
3867#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3868 /* Try again if zone has deferred pages */
3869 if (static_branch_unlikely(&deferred_pages)) {
3870 if (_deferred_grow_zone(zone, order))
3871 goto try_this_zone;
3872 }
3873#endif
75379191 3874 }
54a6eb5c 3875 }
9276b1bc 3876
6bb15450
MG
3877 /*
3878 * It's possible on a UMA machine to get through all zones that are
3879 * fragmented. If avoiding fragmentation, reset and try again.
3880 */
3881 if (no_fallback) {
3882 alloc_flags &= ~ALLOC_NOFRAGMENT;
3883 goto retry;
3884 }
3885
4ffeaf35 3886 return NULL;
753ee728
MH
3887}
3888
9af744d7 3889static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3890{
a238ab5b 3891 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3892
3893 /*
3894 * This documents exceptions given to allocations in certain
3895 * contexts that are allowed to allocate outside current's set
3896 * of allowed nodes.
3897 */
3898 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3899 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3900 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3901 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3902 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3903 filter &= ~SHOW_MEM_FILTER_NODES;
3904
9af744d7 3905 show_mem(filter, nodemask);
aa187507
MH
3906}
3907
a8e99259 3908void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3909{
3910 struct va_format vaf;
3911 va_list args;
1be334e5 3912 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3913
0f7896f1 3914 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3915 return;
3916
7877cdcc
MH
3917 va_start(args, fmt);
3918 vaf.fmt = fmt;
3919 vaf.va = &args;
ef8444ea 3920 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3921 current->comm, &vaf, gfp_mask, &gfp_mask,
3922 nodemask_pr_args(nodemask));
7877cdcc 3923 va_end(args);
3ee9a4f0 3924
a8e99259 3925 cpuset_print_current_mems_allowed();
ef8444ea 3926 pr_cont("\n");
a238ab5b 3927 dump_stack();
685dbf6f 3928 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3929}
3930
6c18ba7a
MH
3931static inline struct page *
3932__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3933 unsigned int alloc_flags,
3934 const struct alloc_context *ac)
3935{
3936 struct page *page;
3937
3938 page = get_page_from_freelist(gfp_mask, order,
3939 alloc_flags|ALLOC_CPUSET, ac);
3940 /*
3941 * fallback to ignore cpuset restriction if our nodes
3942 * are depleted
3943 */
3944 if (!page)
3945 page = get_page_from_freelist(gfp_mask, order,
3946 alloc_flags, ac);
3947
3948 return page;
3949}
3950
11e33f6a
MG
3951static inline struct page *
3952__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3953 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3954{
6e0fc46d
DR
3955 struct oom_control oc = {
3956 .zonelist = ac->zonelist,
3957 .nodemask = ac->nodemask,
2a966b77 3958 .memcg = NULL,
6e0fc46d
DR
3959 .gfp_mask = gfp_mask,
3960 .order = order,
6e0fc46d 3961 };
11e33f6a
MG
3962 struct page *page;
3963
9879de73
JW
3964 *did_some_progress = 0;
3965
9879de73 3966 /*
dc56401f
JW
3967 * Acquire the oom lock. If that fails, somebody else is
3968 * making progress for us.
9879de73 3969 */
dc56401f 3970 if (!mutex_trylock(&oom_lock)) {
9879de73 3971 *did_some_progress = 1;
11e33f6a 3972 schedule_timeout_uninterruptible(1);
1da177e4
LT
3973 return NULL;
3974 }
6b1de916 3975
11e33f6a
MG
3976 /*
3977 * Go through the zonelist yet one more time, keep very high watermark
3978 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3979 * we're still under heavy pressure. But make sure that this reclaim
3980 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3981 * allocation which will never fail due to oom_lock already held.
11e33f6a 3982 */
e746bf73
TH
3983 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3984 ~__GFP_DIRECT_RECLAIM, order,
3985 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3986 if (page)
11e33f6a
MG
3987 goto out;
3988
06ad276a
MH
3989 /* Coredumps can quickly deplete all memory reserves */
3990 if (current->flags & PF_DUMPCORE)
3991 goto out;
3992 /* The OOM killer will not help higher order allocs */
3993 if (order > PAGE_ALLOC_COSTLY_ORDER)
3994 goto out;
dcda9b04
MH
3995 /*
3996 * We have already exhausted all our reclaim opportunities without any
3997 * success so it is time to admit defeat. We will skip the OOM killer
3998 * because it is very likely that the caller has a more reasonable
3999 * fallback than shooting a random task.
cfb4a541
MN
4000 *
4001 * The OOM killer may not free memory on a specific node.
dcda9b04 4002 */
cfb4a541 4003 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4004 goto out;
06ad276a 4005 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4006 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4007 goto out;
4008 if (pm_suspended_storage())
4009 goto out;
4010 /*
4011 * XXX: GFP_NOFS allocations should rather fail than rely on
4012 * other request to make a forward progress.
4013 * We are in an unfortunate situation where out_of_memory cannot
4014 * do much for this context but let's try it to at least get
4015 * access to memory reserved if the current task is killed (see
4016 * out_of_memory). Once filesystems are ready to handle allocation
4017 * failures more gracefully we should just bail out here.
4018 */
4019
3c2c6488 4020 /* Exhausted what can be done so it's blame time */
5020e285 4021 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4022 *did_some_progress = 1;
5020e285 4023
6c18ba7a
MH
4024 /*
4025 * Help non-failing allocations by giving them access to memory
4026 * reserves
4027 */
4028 if (gfp_mask & __GFP_NOFAIL)
4029 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4030 ALLOC_NO_WATERMARKS, ac);
5020e285 4031 }
11e33f6a 4032out:
dc56401f 4033 mutex_unlock(&oom_lock);
11e33f6a
MG
4034 return page;
4035}
4036
33c2d214
MH
4037/*
4038 * Maximum number of compaction retries wit a progress before OOM
4039 * killer is consider as the only way to move forward.
4040 */
4041#define MAX_COMPACT_RETRIES 16
4042
56de7263
MG
4043#ifdef CONFIG_COMPACTION
4044/* Try memory compaction for high-order allocations before reclaim */
4045static struct page *
4046__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4047 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4048 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4049{
5e1f0f09 4050 struct page *page = NULL;
eb414681 4051 unsigned long pflags;
499118e9 4052 unsigned int noreclaim_flag;
53853e2d
VB
4053
4054 if (!order)
66199712 4055 return NULL;
66199712 4056
eb414681 4057 psi_memstall_enter(&pflags);
499118e9 4058 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4059
c5d01d0d 4060 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4061 prio, &page);
eb414681 4062
499118e9 4063 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4064 psi_memstall_leave(&pflags);
56de7263 4065
98dd3b48
VB
4066 /*
4067 * At least in one zone compaction wasn't deferred or skipped, so let's
4068 * count a compaction stall
4069 */
4070 count_vm_event(COMPACTSTALL);
8fb74b9f 4071
5e1f0f09
MG
4072 /* Prep a captured page if available */
4073 if (page)
4074 prep_new_page(page, order, gfp_mask, alloc_flags);
4075
4076 /* Try get a page from the freelist if available */
4077 if (!page)
4078 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4079
98dd3b48
VB
4080 if (page) {
4081 struct zone *zone = page_zone(page);
53853e2d 4082
98dd3b48
VB
4083 zone->compact_blockskip_flush = false;
4084 compaction_defer_reset(zone, order, true);
4085 count_vm_event(COMPACTSUCCESS);
4086 return page;
4087 }
56de7263 4088
98dd3b48
VB
4089 /*
4090 * It's bad if compaction run occurs and fails. The most likely reason
4091 * is that pages exist, but not enough to satisfy watermarks.
4092 */
4093 count_vm_event(COMPACTFAIL);
66199712 4094
98dd3b48 4095 cond_resched();
56de7263
MG
4096
4097 return NULL;
4098}
33c2d214 4099
3250845d
VB
4100static inline bool
4101should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4102 enum compact_result compact_result,
4103 enum compact_priority *compact_priority,
d9436498 4104 int *compaction_retries)
3250845d
VB
4105{
4106 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4107 int min_priority;
65190cff
MH
4108 bool ret = false;
4109 int retries = *compaction_retries;
4110 enum compact_priority priority = *compact_priority;
3250845d
VB
4111
4112 if (!order)
4113 return false;
4114
d9436498
VB
4115 if (compaction_made_progress(compact_result))
4116 (*compaction_retries)++;
4117
3250845d
VB
4118 /*
4119 * compaction considers all the zone as desperately out of memory
4120 * so it doesn't really make much sense to retry except when the
4121 * failure could be caused by insufficient priority
4122 */
d9436498
VB
4123 if (compaction_failed(compact_result))
4124 goto check_priority;
3250845d 4125
49433085
VB
4126 /*
4127 * compaction was skipped because there are not enough order-0 pages
4128 * to work with, so we retry only if it looks like reclaim can help.
4129 */
4130 if (compaction_needs_reclaim(compact_result)) {
4131 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4132 goto out;
4133 }
4134
3250845d
VB
4135 /*
4136 * make sure the compaction wasn't deferred or didn't bail out early
4137 * due to locks contention before we declare that we should give up.
49433085
VB
4138 * But the next retry should use a higher priority if allowed, so
4139 * we don't just keep bailing out endlessly.
3250845d 4140 */
65190cff 4141 if (compaction_withdrawn(compact_result)) {
49433085 4142 goto check_priority;
65190cff 4143 }
3250845d
VB
4144
4145 /*
dcda9b04 4146 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4147 * costly ones because they are de facto nofail and invoke OOM
4148 * killer to move on while costly can fail and users are ready
4149 * to cope with that. 1/4 retries is rather arbitrary but we
4150 * would need much more detailed feedback from compaction to
4151 * make a better decision.
4152 */
4153 if (order > PAGE_ALLOC_COSTLY_ORDER)
4154 max_retries /= 4;
65190cff
MH
4155 if (*compaction_retries <= max_retries) {
4156 ret = true;
4157 goto out;
4158 }
3250845d 4159
d9436498
VB
4160 /*
4161 * Make sure there are attempts at the highest priority if we exhausted
4162 * all retries or failed at the lower priorities.
4163 */
4164check_priority:
c2033b00
VB
4165 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4166 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4167
c2033b00 4168 if (*compact_priority > min_priority) {
d9436498
VB
4169 (*compact_priority)--;
4170 *compaction_retries = 0;
65190cff 4171 ret = true;
d9436498 4172 }
65190cff
MH
4173out:
4174 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4175 return ret;
3250845d 4176}
56de7263
MG
4177#else
4178static inline struct page *
4179__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4180 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4181 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4182{
33c2d214 4183 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4184 return NULL;
4185}
33c2d214
MH
4186
4187static inline bool
86a294a8
MH
4188should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4189 enum compact_result compact_result,
a5508cd8 4190 enum compact_priority *compact_priority,
d9436498 4191 int *compaction_retries)
33c2d214 4192{
31e49bfd
MH
4193 struct zone *zone;
4194 struct zoneref *z;
4195
4196 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4197 return false;
4198
4199 /*
4200 * There are setups with compaction disabled which would prefer to loop
4201 * inside the allocator rather than hit the oom killer prematurely.
4202 * Let's give them a good hope and keep retrying while the order-0
4203 * watermarks are OK.
4204 */
97a225e6
JK
4205 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4206 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4207 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4208 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4209 return true;
4210 }
33c2d214
MH
4211 return false;
4212}
3250845d 4213#endif /* CONFIG_COMPACTION */
56de7263 4214
d92a8cfc 4215#ifdef CONFIG_LOCKDEP
93781325 4216static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4217 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4218
4219static bool __need_fs_reclaim(gfp_t gfp_mask)
4220{
4221 gfp_mask = current_gfp_context(gfp_mask);
4222
4223 /* no reclaim without waiting on it */
4224 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4225 return false;
4226
4227 /* this guy won't enter reclaim */
2e517d68 4228 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4229 return false;
4230
4231 /* We're only interested __GFP_FS allocations for now */
4232 if (!(gfp_mask & __GFP_FS))
4233 return false;
4234
4235 if (gfp_mask & __GFP_NOLOCKDEP)
4236 return false;
4237
4238 return true;
4239}
4240
93781325
OS
4241void __fs_reclaim_acquire(void)
4242{
4243 lock_map_acquire(&__fs_reclaim_map);
4244}
4245
4246void __fs_reclaim_release(void)
4247{
4248 lock_map_release(&__fs_reclaim_map);
4249}
4250
d92a8cfc
PZ
4251void fs_reclaim_acquire(gfp_t gfp_mask)
4252{
4253 if (__need_fs_reclaim(gfp_mask))
93781325 4254 __fs_reclaim_acquire();
d92a8cfc
PZ
4255}
4256EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4257
4258void fs_reclaim_release(gfp_t gfp_mask)
4259{
4260 if (__need_fs_reclaim(gfp_mask))
93781325 4261 __fs_reclaim_release();
d92a8cfc
PZ
4262}
4263EXPORT_SYMBOL_GPL(fs_reclaim_release);
4264#endif
4265
bba90710 4266/* Perform direct synchronous page reclaim */
2187e17b 4267static unsigned long
a9263751
VB
4268__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4269 const struct alloc_context *ac)
11e33f6a 4270{
499118e9 4271 unsigned int noreclaim_flag;
2187e17b 4272 unsigned long pflags, progress;
11e33f6a
MG
4273
4274 cond_resched();
4275
4276 /* We now go into synchronous reclaim */
4277 cpuset_memory_pressure_bump();
eb414681 4278 psi_memstall_enter(&pflags);
d92a8cfc 4279 fs_reclaim_acquire(gfp_mask);
93781325 4280 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4281
a9263751
VB
4282 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4283 ac->nodemask);
11e33f6a 4284
499118e9 4285 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4286 fs_reclaim_release(gfp_mask);
eb414681 4287 psi_memstall_leave(&pflags);
11e33f6a
MG
4288
4289 cond_resched();
4290
bba90710
MS
4291 return progress;
4292}
4293
4294/* The really slow allocator path where we enter direct reclaim */
4295static inline struct page *
4296__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4297 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4298 unsigned long *did_some_progress)
bba90710
MS
4299{
4300 struct page *page = NULL;
4301 bool drained = false;
4302
a9263751 4303 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4304 if (unlikely(!(*did_some_progress)))
4305 return NULL;
11e33f6a 4306
9ee493ce 4307retry:
31a6c190 4308 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4309
4310 /*
4311 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4312 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4313 * Shrink them and try again
9ee493ce
MG
4314 */
4315 if (!page && !drained) {
29fac03b 4316 unreserve_highatomic_pageblock(ac, false);
93481ff0 4317 drain_all_pages(NULL);
9ee493ce
MG
4318 drained = true;
4319 goto retry;
4320 }
4321
11e33f6a
MG
4322 return page;
4323}
4324
5ecd9d40
DR
4325static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4326 const struct alloc_context *ac)
3a025760
JW
4327{
4328 struct zoneref *z;
4329 struct zone *zone;
e1a55637 4330 pg_data_t *last_pgdat = NULL;
97a225e6 4331 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4332
97a225e6 4333 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4334 ac->nodemask) {
e1a55637 4335 if (last_pgdat != zone->zone_pgdat)
97a225e6 4336 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4337 last_pgdat = zone->zone_pgdat;
4338 }
3a025760
JW
4339}
4340
c603844b 4341static inline unsigned int
341ce06f
PZ
4342gfp_to_alloc_flags(gfp_t gfp_mask)
4343{
c603844b 4344 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4345
736838e9
MN
4346 /*
4347 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4348 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4349 * to save two branches.
4350 */
e6223a3b 4351 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4352 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4353
341ce06f
PZ
4354 /*
4355 * The caller may dip into page reserves a bit more if the caller
4356 * cannot run direct reclaim, or if the caller has realtime scheduling
4357 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4358 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4359 */
736838e9
MN
4360 alloc_flags |= (__force int)
4361 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4362
d0164adc 4363 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4364 /*
b104a35d
DR
4365 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4366 * if it can't schedule.
5c3240d9 4367 */
b104a35d 4368 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4369 alloc_flags |= ALLOC_HARDER;
523b9458 4370 /*
b104a35d 4371 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4372 * comment for __cpuset_node_allowed().
523b9458 4373 */
341ce06f 4374 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4375 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4376 alloc_flags |= ALLOC_HARDER;
4377
8510e69c
JK
4378 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4379
341ce06f
PZ
4380 return alloc_flags;
4381}
4382
cd04ae1e 4383static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4384{
cd04ae1e
MH
4385 if (!tsk_is_oom_victim(tsk))
4386 return false;
4387
4388 /*
4389 * !MMU doesn't have oom reaper so give access to memory reserves
4390 * only to the thread with TIF_MEMDIE set
4391 */
4392 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4393 return false;
4394
cd04ae1e
MH
4395 return true;
4396}
4397
4398/*
4399 * Distinguish requests which really need access to full memory
4400 * reserves from oom victims which can live with a portion of it
4401 */
4402static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4403{
4404 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4405 return 0;
31a6c190 4406 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4407 return ALLOC_NO_WATERMARKS;
31a6c190 4408 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4409 return ALLOC_NO_WATERMARKS;
4410 if (!in_interrupt()) {
4411 if (current->flags & PF_MEMALLOC)
4412 return ALLOC_NO_WATERMARKS;
4413 else if (oom_reserves_allowed(current))
4414 return ALLOC_OOM;
4415 }
31a6c190 4416
cd04ae1e
MH
4417 return 0;
4418}
4419
4420bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4421{
4422 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4423}
4424
0a0337e0
MH
4425/*
4426 * Checks whether it makes sense to retry the reclaim to make a forward progress
4427 * for the given allocation request.
491d79ae
JW
4428 *
4429 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4430 * without success, or when we couldn't even meet the watermark if we
4431 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4432 *
4433 * Returns true if a retry is viable or false to enter the oom path.
4434 */
4435static inline bool
4436should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4437 struct alloc_context *ac, int alloc_flags,
423b452e 4438 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4439{
4440 struct zone *zone;
4441 struct zoneref *z;
15f570bf 4442 bool ret = false;
0a0337e0 4443
423b452e
VB
4444 /*
4445 * Costly allocations might have made a progress but this doesn't mean
4446 * their order will become available due to high fragmentation so
4447 * always increment the no progress counter for them
4448 */
4449 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4450 *no_progress_loops = 0;
4451 else
4452 (*no_progress_loops)++;
4453
0a0337e0
MH
4454 /*
4455 * Make sure we converge to OOM if we cannot make any progress
4456 * several times in the row.
4457 */
04c8716f
MK
4458 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4459 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4460 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4461 }
0a0337e0 4462
bca67592
MG
4463 /*
4464 * Keep reclaiming pages while there is a chance this will lead
4465 * somewhere. If none of the target zones can satisfy our allocation
4466 * request even if all reclaimable pages are considered then we are
4467 * screwed and have to go OOM.
0a0337e0 4468 */
97a225e6
JK
4469 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4470 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4471 unsigned long available;
ede37713 4472 unsigned long reclaimable;
d379f01d
MH
4473 unsigned long min_wmark = min_wmark_pages(zone);
4474 bool wmark;
0a0337e0 4475
5a1c84b4 4476 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4477 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4478
4479 /*
491d79ae
JW
4480 * Would the allocation succeed if we reclaimed all
4481 * reclaimable pages?
0a0337e0 4482 */
d379f01d 4483 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4484 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4485 trace_reclaim_retry_zone(z, order, reclaimable,
4486 available, min_wmark, *no_progress_loops, wmark);
4487 if (wmark) {
ede37713
MH
4488 /*
4489 * If we didn't make any progress and have a lot of
4490 * dirty + writeback pages then we should wait for
4491 * an IO to complete to slow down the reclaim and
4492 * prevent from pre mature OOM
4493 */
4494 if (!did_some_progress) {
11fb9989 4495 unsigned long write_pending;
ede37713 4496
5a1c84b4
MG
4497 write_pending = zone_page_state_snapshot(zone,
4498 NR_ZONE_WRITE_PENDING);
ede37713 4499
11fb9989 4500 if (2 * write_pending > reclaimable) {
ede37713
MH
4501 congestion_wait(BLK_RW_ASYNC, HZ/10);
4502 return true;
4503 }
4504 }
5a1c84b4 4505
15f570bf
MH
4506 ret = true;
4507 goto out;
0a0337e0
MH
4508 }
4509 }
4510
15f570bf
MH
4511out:
4512 /*
4513 * Memory allocation/reclaim might be called from a WQ context and the
4514 * current implementation of the WQ concurrency control doesn't
4515 * recognize that a particular WQ is congested if the worker thread is
4516 * looping without ever sleeping. Therefore we have to do a short sleep
4517 * here rather than calling cond_resched().
4518 */
4519 if (current->flags & PF_WQ_WORKER)
4520 schedule_timeout_uninterruptible(1);
4521 else
4522 cond_resched();
4523 return ret;
0a0337e0
MH
4524}
4525
902b6281
VB
4526static inline bool
4527check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4528{
4529 /*
4530 * It's possible that cpuset's mems_allowed and the nodemask from
4531 * mempolicy don't intersect. This should be normally dealt with by
4532 * policy_nodemask(), but it's possible to race with cpuset update in
4533 * such a way the check therein was true, and then it became false
4534 * before we got our cpuset_mems_cookie here.
4535 * This assumes that for all allocations, ac->nodemask can come only
4536 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4537 * when it does not intersect with the cpuset restrictions) or the
4538 * caller can deal with a violated nodemask.
4539 */
4540 if (cpusets_enabled() && ac->nodemask &&
4541 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4542 ac->nodemask = NULL;
4543 return true;
4544 }
4545
4546 /*
4547 * When updating a task's mems_allowed or mempolicy nodemask, it is
4548 * possible to race with parallel threads in such a way that our
4549 * allocation can fail while the mask is being updated. If we are about
4550 * to fail, check if the cpuset changed during allocation and if so,
4551 * retry.
4552 */
4553 if (read_mems_allowed_retry(cpuset_mems_cookie))
4554 return true;
4555
4556 return false;
4557}
4558
11e33f6a
MG
4559static inline struct page *
4560__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4561 struct alloc_context *ac)
11e33f6a 4562{
d0164adc 4563 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4564 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4565 struct page *page = NULL;
c603844b 4566 unsigned int alloc_flags;
11e33f6a 4567 unsigned long did_some_progress;
5ce9bfef 4568 enum compact_priority compact_priority;
c5d01d0d 4569 enum compact_result compact_result;
5ce9bfef
VB
4570 int compaction_retries;
4571 int no_progress_loops;
5ce9bfef 4572 unsigned int cpuset_mems_cookie;
cd04ae1e 4573 int reserve_flags;
1da177e4 4574
d0164adc
MG
4575 /*
4576 * We also sanity check to catch abuse of atomic reserves being used by
4577 * callers that are not in atomic context.
4578 */
4579 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4580 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4581 gfp_mask &= ~__GFP_ATOMIC;
4582
5ce9bfef
VB
4583retry_cpuset:
4584 compaction_retries = 0;
4585 no_progress_loops = 0;
4586 compact_priority = DEF_COMPACT_PRIORITY;
4587 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4588
4589 /*
4590 * The fast path uses conservative alloc_flags to succeed only until
4591 * kswapd needs to be woken up, and to avoid the cost of setting up
4592 * alloc_flags precisely. So we do that now.
4593 */
4594 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4595
e47483bc
VB
4596 /*
4597 * We need to recalculate the starting point for the zonelist iterator
4598 * because we might have used different nodemask in the fast path, or
4599 * there was a cpuset modification and we are retrying - otherwise we
4600 * could end up iterating over non-eligible zones endlessly.
4601 */
4602 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4603 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4604 if (!ac->preferred_zoneref->zone)
4605 goto nopage;
4606
0a79cdad 4607 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4608 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4609
4610 /*
4611 * The adjusted alloc_flags might result in immediate success, so try
4612 * that first
4613 */
4614 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4615 if (page)
4616 goto got_pg;
4617
a8161d1e
VB
4618 /*
4619 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4620 * that we have enough base pages and don't need to reclaim. For non-
4621 * movable high-order allocations, do that as well, as compaction will
4622 * try prevent permanent fragmentation by migrating from blocks of the
4623 * same migratetype.
4624 * Don't try this for allocations that are allowed to ignore
4625 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4626 */
282722b0
VB
4627 if (can_direct_reclaim &&
4628 (costly_order ||
4629 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4630 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4631 page = __alloc_pages_direct_compact(gfp_mask, order,
4632 alloc_flags, ac,
a5508cd8 4633 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4634 &compact_result);
4635 if (page)
4636 goto got_pg;
4637
cc638f32
VB
4638 /*
4639 * Checks for costly allocations with __GFP_NORETRY, which
4640 * includes some THP page fault allocations
4641 */
4642 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4643 /*
4644 * If allocating entire pageblock(s) and compaction
4645 * failed because all zones are below low watermarks
4646 * or is prohibited because it recently failed at this
3f36d866
DR
4647 * order, fail immediately unless the allocator has
4648 * requested compaction and reclaim retry.
b39d0ee2
DR
4649 *
4650 * Reclaim is
4651 * - potentially very expensive because zones are far
4652 * below their low watermarks or this is part of very
4653 * bursty high order allocations,
4654 * - not guaranteed to help because isolate_freepages()
4655 * may not iterate over freed pages as part of its
4656 * linear scan, and
4657 * - unlikely to make entire pageblocks free on its
4658 * own.
4659 */
4660 if (compact_result == COMPACT_SKIPPED ||
4661 compact_result == COMPACT_DEFERRED)
4662 goto nopage;
a8161d1e 4663
a8161d1e 4664 /*
3eb2771b
VB
4665 * Looks like reclaim/compaction is worth trying, but
4666 * sync compaction could be very expensive, so keep
25160354 4667 * using async compaction.
a8161d1e 4668 */
a5508cd8 4669 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4670 }
4671 }
23771235 4672
31a6c190 4673retry:
23771235 4674 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4675 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4676 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4677
cd04ae1e
MH
4678 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4679 if (reserve_flags)
8510e69c 4680 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4681
e46e7b77 4682 /*
d6a24df0
VB
4683 * Reset the nodemask and zonelist iterators if memory policies can be
4684 * ignored. These allocations are high priority and system rather than
4685 * user oriented.
e46e7b77 4686 */
cd04ae1e 4687 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4688 ac->nodemask = NULL;
e46e7b77 4689 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4690 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4691 }
4692
23771235 4693 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4694 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4695 if (page)
4696 goto got_pg;
1da177e4 4697
d0164adc 4698 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4699 if (!can_direct_reclaim)
1da177e4
LT
4700 goto nopage;
4701
9a67f648
MH
4702 /* Avoid recursion of direct reclaim */
4703 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4704 goto nopage;
4705
a8161d1e
VB
4706 /* Try direct reclaim and then allocating */
4707 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4708 &did_some_progress);
4709 if (page)
4710 goto got_pg;
4711
4712 /* Try direct compaction and then allocating */
a9263751 4713 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4714 compact_priority, &compact_result);
56de7263
MG
4715 if (page)
4716 goto got_pg;
75f30861 4717
9083905a
JW
4718 /* Do not loop if specifically requested */
4719 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4720 goto nopage;
9083905a 4721
0a0337e0
MH
4722 /*
4723 * Do not retry costly high order allocations unless they are
dcda9b04 4724 * __GFP_RETRY_MAYFAIL
0a0337e0 4725 */
dcda9b04 4726 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4727 goto nopage;
0a0337e0 4728
0a0337e0 4729 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4730 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4731 goto retry;
4732
33c2d214
MH
4733 /*
4734 * It doesn't make any sense to retry for the compaction if the order-0
4735 * reclaim is not able to make any progress because the current
4736 * implementation of the compaction depends on the sufficient amount
4737 * of free memory (see __compaction_suitable)
4738 */
4739 if (did_some_progress > 0 &&
86a294a8 4740 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4741 compact_result, &compact_priority,
d9436498 4742 &compaction_retries))
33c2d214
MH
4743 goto retry;
4744
902b6281
VB
4745
4746 /* Deal with possible cpuset update races before we start OOM killing */
4747 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4748 goto retry_cpuset;
4749
9083905a
JW
4750 /* Reclaim has failed us, start killing things */
4751 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4752 if (page)
4753 goto got_pg;
4754
9a67f648 4755 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4756 if (tsk_is_oom_victim(current) &&
8510e69c 4757 (alloc_flags & ALLOC_OOM ||
c288983d 4758 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4759 goto nopage;
4760
9083905a 4761 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4762 if (did_some_progress) {
4763 no_progress_loops = 0;
9083905a 4764 goto retry;
0a0337e0 4765 }
9083905a 4766
1da177e4 4767nopage:
902b6281
VB
4768 /* Deal with possible cpuset update races before we fail */
4769 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4770 goto retry_cpuset;
4771
9a67f648
MH
4772 /*
4773 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4774 * we always retry
4775 */
4776 if (gfp_mask & __GFP_NOFAIL) {
4777 /*
4778 * All existing users of the __GFP_NOFAIL are blockable, so warn
4779 * of any new users that actually require GFP_NOWAIT
4780 */
4781 if (WARN_ON_ONCE(!can_direct_reclaim))
4782 goto fail;
4783
4784 /*
4785 * PF_MEMALLOC request from this context is rather bizarre
4786 * because we cannot reclaim anything and only can loop waiting
4787 * for somebody to do a work for us
4788 */
4789 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4790
4791 /*
4792 * non failing costly orders are a hard requirement which we
4793 * are not prepared for much so let's warn about these users
4794 * so that we can identify them and convert them to something
4795 * else.
4796 */
4797 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4798
6c18ba7a
MH
4799 /*
4800 * Help non-failing allocations by giving them access to memory
4801 * reserves but do not use ALLOC_NO_WATERMARKS because this
4802 * could deplete whole memory reserves which would just make
4803 * the situation worse
4804 */
4805 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4806 if (page)
4807 goto got_pg;
4808
9a67f648
MH
4809 cond_resched();
4810 goto retry;
4811 }
4812fail:
a8e99259 4813 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4814 "page allocation failure: order:%u", order);
1da177e4 4815got_pg:
072bb0aa 4816 return page;
1da177e4 4817}
11e33f6a 4818
9cd75558 4819static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4820 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4821 struct alloc_context *ac, gfp_t *alloc_mask,
4822 unsigned int *alloc_flags)
11e33f6a 4823{
97a225e6 4824 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4825 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4826 ac->nodemask = nodemask;
01c0bfe0 4827 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4828
682a3385 4829 if (cpusets_enabled()) {
9cd75558 4830 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4831 /*
4832 * When we are in the interrupt context, it is irrelevant
4833 * to the current task context. It means that any node ok.
4834 */
4835 if (!in_interrupt() && !ac->nodemask)
9cd75558 4836 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4837 else
4838 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4839 }
4840
d92a8cfc
PZ
4841 fs_reclaim_acquire(gfp_mask);
4842 fs_reclaim_release(gfp_mask);
11e33f6a 4843
d0164adc 4844 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4845
4846 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4847 return false;
11e33f6a 4848
8510e69c 4849 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4850
c9ab0c4f 4851 /* Dirty zone balancing only done in the fast path */
9cd75558 4852 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4853
e46e7b77
MG
4854 /*
4855 * The preferred zone is used for statistics but crucially it is
4856 * also used as the starting point for the zonelist iterator. It
4857 * may get reset for allocations that ignore memory policies.
4858 */
9cd75558 4859 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4860 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4861
4862 return true;
9cd75558
MG
4863}
4864
4865/*
4866 * This is the 'heart' of the zoned buddy allocator.
4867 */
4868struct page *
04ec6264
VB
4869__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4870 nodemask_t *nodemask)
9cd75558
MG
4871{
4872 struct page *page;
4873 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4874 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4875 struct alloc_context ac = { };
4876
c63ae43b
MH
4877 /*
4878 * There are several places where we assume that the order value is sane
4879 * so bail out early if the request is out of bound.
4880 */
4881 if (unlikely(order >= MAX_ORDER)) {
4882 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4883 return NULL;
4884 }
4885
9cd75558 4886 gfp_mask &= gfp_allowed_mask;
f19360f0 4887 alloc_mask = gfp_mask;
04ec6264 4888 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4889 return NULL;
4890
6bb15450
MG
4891 /*
4892 * Forbid the first pass from falling back to types that fragment
4893 * memory until all local zones are considered.
4894 */
0a79cdad 4895 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4896
5117f45d 4897 /* First allocation attempt */
a9263751 4898 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4899 if (likely(page))
4900 goto out;
11e33f6a 4901
4fcb0971 4902 /*
7dea19f9
MH
4903 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4904 * resp. GFP_NOIO which has to be inherited for all allocation requests
4905 * from a particular context which has been marked by
4906 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4907 */
7dea19f9 4908 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4909 ac.spread_dirty_pages = false;
23f086f9 4910
4741526b
MG
4911 /*
4912 * Restore the original nodemask if it was potentially replaced with
4913 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4914 */
97ce86f9 4915 ac.nodemask = nodemask;
16096c25 4916
4fcb0971 4917 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4918
4fcb0971 4919out:
c4159a75 4920 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4921 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4922 __free_pages(page, order);
4923 page = NULL;
4949148a
VD
4924 }
4925
4fcb0971
MG
4926 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4927
11e33f6a 4928 return page;
1da177e4 4929}
d239171e 4930EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4931
4932/*
9ea9a680
MH
4933 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4934 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4935 * you need to access high mem.
1da177e4 4936 */
920c7a5d 4937unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4938{
945a1113
AM
4939 struct page *page;
4940
9ea9a680 4941 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4942 if (!page)
4943 return 0;
4944 return (unsigned long) page_address(page);
4945}
1da177e4
LT
4946EXPORT_SYMBOL(__get_free_pages);
4947
920c7a5d 4948unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4949{
945a1113 4950 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4951}
1da177e4
LT
4952EXPORT_SYMBOL(get_zeroed_page);
4953
742aa7fb 4954static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4955{
742aa7fb
AL
4956 if (order == 0) /* Via pcp? */
4957 free_unref_page(page);
4958 else
4959 __free_pages_ok(page, order);
1da177e4
LT
4960}
4961
742aa7fb
AL
4962void __free_pages(struct page *page, unsigned int order)
4963{
4964 if (put_page_testzero(page))
4965 free_the_page(page, order);
e320d301
MWO
4966 else if (!PageHead(page))
4967 while (order-- > 0)
4968 free_the_page(page + (1 << order), order);
742aa7fb 4969}
1da177e4
LT
4970EXPORT_SYMBOL(__free_pages);
4971
920c7a5d 4972void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4973{
4974 if (addr != 0) {
725d704e 4975 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4976 __free_pages(virt_to_page((void *)addr), order);
4977 }
4978}
4979
4980EXPORT_SYMBOL(free_pages);
4981
b63ae8ca
AD
4982/*
4983 * Page Fragment:
4984 * An arbitrary-length arbitrary-offset area of memory which resides
4985 * within a 0 or higher order page. Multiple fragments within that page
4986 * are individually refcounted, in the page's reference counter.
4987 *
4988 * The page_frag functions below provide a simple allocation framework for
4989 * page fragments. This is used by the network stack and network device
4990 * drivers to provide a backing region of memory for use as either an
4991 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4992 */
2976db80
AD
4993static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4994 gfp_t gfp_mask)
b63ae8ca
AD
4995{
4996 struct page *page = NULL;
4997 gfp_t gfp = gfp_mask;
4998
4999#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5000 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5001 __GFP_NOMEMALLOC;
5002 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5003 PAGE_FRAG_CACHE_MAX_ORDER);
5004 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5005#endif
5006 if (unlikely(!page))
5007 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5008
5009 nc->va = page ? page_address(page) : NULL;
5010
5011 return page;
5012}
5013
2976db80 5014void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5015{
5016 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5017
742aa7fb
AL
5018 if (page_ref_sub_and_test(page, count))
5019 free_the_page(page, compound_order(page));
44fdffd7 5020}
2976db80 5021EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5022
8c2dd3e4
AD
5023void *page_frag_alloc(struct page_frag_cache *nc,
5024 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5025{
5026 unsigned int size = PAGE_SIZE;
5027 struct page *page;
5028 int offset;
5029
5030 if (unlikely(!nc->va)) {
5031refill:
2976db80 5032 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5033 if (!page)
5034 return NULL;
5035
5036#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5037 /* if size can vary use size else just use PAGE_SIZE */
5038 size = nc->size;
5039#endif
5040 /* Even if we own the page, we do not use atomic_set().
5041 * This would break get_page_unless_zero() users.
5042 */
86447726 5043 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5044
5045 /* reset page count bias and offset to start of new frag */
2f064f34 5046 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5047 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5048 nc->offset = size;
5049 }
5050
5051 offset = nc->offset - fragsz;
5052 if (unlikely(offset < 0)) {
5053 page = virt_to_page(nc->va);
5054
fe896d18 5055 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5056 goto refill;
5057
5058#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5059 /* if size can vary use size else just use PAGE_SIZE */
5060 size = nc->size;
5061#endif
5062 /* OK, page count is 0, we can safely set it */
86447726 5063 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5064
5065 /* reset page count bias and offset to start of new frag */
86447726 5066 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5067 offset = size - fragsz;
5068 }
5069
5070 nc->pagecnt_bias--;
5071 nc->offset = offset;
5072
5073 return nc->va + offset;
5074}
8c2dd3e4 5075EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5076
5077/*
5078 * Frees a page fragment allocated out of either a compound or order 0 page.
5079 */
8c2dd3e4 5080void page_frag_free(void *addr)
b63ae8ca
AD
5081{
5082 struct page *page = virt_to_head_page(addr);
5083
742aa7fb
AL
5084 if (unlikely(put_page_testzero(page)))
5085 free_the_page(page, compound_order(page));
b63ae8ca 5086}
8c2dd3e4 5087EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5088
d00181b9
KS
5089static void *make_alloc_exact(unsigned long addr, unsigned int order,
5090 size_t size)
ee85c2e1
AK
5091{
5092 if (addr) {
5093 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5094 unsigned long used = addr + PAGE_ALIGN(size);
5095
5096 split_page(virt_to_page((void *)addr), order);
5097 while (used < alloc_end) {
5098 free_page(used);
5099 used += PAGE_SIZE;
5100 }
5101 }
5102 return (void *)addr;
5103}
5104
2be0ffe2
TT
5105/**
5106 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5107 * @size: the number of bytes to allocate
63931eb9 5108 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5109 *
5110 * This function is similar to alloc_pages(), except that it allocates the
5111 * minimum number of pages to satisfy the request. alloc_pages() can only
5112 * allocate memory in power-of-two pages.
5113 *
5114 * This function is also limited by MAX_ORDER.
5115 *
5116 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5117 *
5118 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5119 */
5120void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5121{
5122 unsigned int order = get_order(size);
5123 unsigned long addr;
5124
63931eb9
VB
5125 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5126 gfp_mask &= ~__GFP_COMP;
5127
2be0ffe2 5128 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5129 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5130}
5131EXPORT_SYMBOL(alloc_pages_exact);
5132
ee85c2e1
AK
5133/**
5134 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5135 * pages on a node.
b5e6ab58 5136 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5137 * @size: the number of bytes to allocate
63931eb9 5138 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5139 *
5140 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5141 * back.
a862f68a
MR
5142 *
5143 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5144 */
e1931811 5145void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5146{
d00181b9 5147 unsigned int order = get_order(size);
63931eb9
VB
5148 struct page *p;
5149
5150 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5151 gfp_mask &= ~__GFP_COMP;
5152
5153 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5154 if (!p)
5155 return NULL;
5156 return make_alloc_exact((unsigned long)page_address(p), order, size);
5157}
ee85c2e1 5158
2be0ffe2
TT
5159/**
5160 * free_pages_exact - release memory allocated via alloc_pages_exact()
5161 * @virt: the value returned by alloc_pages_exact.
5162 * @size: size of allocation, same value as passed to alloc_pages_exact().
5163 *
5164 * Release the memory allocated by a previous call to alloc_pages_exact.
5165 */
5166void free_pages_exact(void *virt, size_t size)
5167{
5168 unsigned long addr = (unsigned long)virt;
5169 unsigned long end = addr + PAGE_ALIGN(size);
5170
5171 while (addr < end) {
5172 free_page(addr);
5173 addr += PAGE_SIZE;
5174 }
5175}
5176EXPORT_SYMBOL(free_pages_exact);
5177
e0fb5815
ZY
5178/**
5179 * nr_free_zone_pages - count number of pages beyond high watermark
5180 * @offset: The zone index of the highest zone
5181 *
a862f68a 5182 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5183 * high watermark within all zones at or below a given zone index. For each
5184 * zone, the number of pages is calculated as:
0e056eb5
MCC
5185 *
5186 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5187 *
5188 * Return: number of pages beyond high watermark.
e0fb5815 5189 */
ebec3862 5190static unsigned long nr_free_zone_pages(int offset)
1da177e4 5191{
dd1a239f 5192 struct zoneref *z;
54a6eb5c
MG
5193 struct zone *zone;
5194
e310fd43 5195 /* Just pick one node, since fallback list is circular */
ebec3862 5196 unsigned long sum = 0;
1da177e4 5197
0e88460d 5198 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5199
54a6eb5c 5200 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5201 unsigned long size = zone_managed_pages(zone);
41858966 5202 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5203 if (size > high)
5204 sum += size - high;
1da177e4
LT
5205 }
5206
5207 return sum;
5208}
5209
e0fb5815
ZY
5210/**
5211 * nr_free_buffer_pages - count number of pages beyond high watermark
5212 *
5213 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5214 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5215 *
5216 * Return: number of pages beyond high watermark within ZONE_DMA and
5217 * ZONE_NORMAL.
1da177e4 5218 */
ebec3862 5219unsigned long nr_free_buffer_pages(void)
1da177e4 5220{
af4ca457 5221 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5222}
c2f1a551 5223EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5224
08e0f6a9 5225static inline void show_node(struct zone *zone)
1da177e4 5226{
e5adfffc 5227 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5228 printk("Node %d ", zone_to_nid(zone));
1da177e4 5229}
1da177e4 5230
d02bd27b
IR
5231long si_mem_available(void)
5232{
5233 long available;
5234 unsigned long pagecache;
5235 unsigned long wmark_low = 0;
5236 unsigned long pages[NR_LRU_LISTS];
b29940c1 5237 unsigned long reclaimable;
d02bd27b
IR
5238 struct zone *zone;
5239 int lru;
5240
5241 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5242 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5243
5244 for_each_zone(zone)
a9214443 5245 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5246
5247 /*
5248 * Estimate the amount of memory available for userspace allocations,
5249 * without causing swapping.
5250 */
c41f012a 5251 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5252
5253 /*
5254 * Not all the page cache can be freed, otherwise the system will
5255 * start swapping. Assume at least half of the page cache, or the
5256 * low watermark worth of cache, needs to stay.
5257 */
5258 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5259 pagecache -= min(pagecache / 2, wmark_low);
5260 available += pagecache;
5261
5262 /*
b29940c1
VB
5263 * Part of the reclaimable slab and other kernel memory consists of
5264 * items that are in use, and cannot be freed. Cap this estimate at the
5265 * low watermark.
d02bd27b 5266 */
d42f3245
RG
5267 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5268 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5269 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5270
d02bd27b
IR
5271 if (available < 0)
5272 available = 0;
5273 return available;
5274}
5275EXPORT_SYMBOL_GPL(si_mem_available);
5276
1da177e4
LT
5277void si_meminfo(struct sysinfo *val)
5278{
ca79b0c2 5279 val->totalram = totalram_pages();
11fb9989 5280 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5281 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5282 val->bufferram = nr_blockdev_pages();
ca79b0c2 5283 val->totalhigh = totalhigh_pages();
1da177e4 5284 val->freehigh = nr_free_highpages();
1da177e4
LT
5285 val->mem_unit = PAGE_SIZE;
5286}
5287
5288EXPORT_SYMBOL(si_meminfo);
5289
5290#ifdef CONFIG_NUMA
5291void si_meminfo_node(struct sysinfo *val, int nid)
5292{
cdd91a77
JL
5293 int zone_type; /* needs to be signed */
5294 unsigned long managed_pages = 0;
fc2bd799
JK
5295 unsigned long managed_highpages = 0;
5296 unsigned long free_highpages = 0;
1da177e4
LT
5297 pg_data_t *pgdat = NODE_DATA(nid);
5298
cdd91a77 5299 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5300 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5301 val->totalram = managed_pages;
11fb9989 5302 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5303 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5304#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5305 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5306 struct zone *zone = &pgdat->node_zones[zone_type];
5307
5308 if (is_highmem(zone)) {
9705bea5 5309 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5310 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5311 }
5312 }
5313 val->totalhigh = managed_highpages;
5314 val->freehigh = free_highpages;
98d2b0eb 5315#else
fc2bd799
JK
5316 val->totalhigh = managed_highpages;
5317 val->freehigh = free_highpages;
98d2b0eb 5318#endif
1da177e4
LT
5319 val->mem_unit = PAGE_SIZE;
5320}
5321#endif
5322
ddd588b5 5323/*
7bf02ea2
DR
5324 * Determine whether the node should be displayed or not, depending on whether
5325 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5326 */
9af744d7 5327static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5328{
ddd588b5 5329 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5330 return false;
ddd588b5 5331
9af744d7
MH
5332 /*
5333 * no node mask - aka implicit memory numa policy. Do not bother with
5334 * the synchronization - read_mems_allowed_begin - because we do not
5335 * have to be precise here.
5336 */
5337 if (!nodemask)
5338 nodemask = &cpuset_current_mems_allowed;
5339
5340 return !node_isset(nid, *nodemask);
ddd588b5
DR
5341}
5342
1da177e4
LT
5343#define K(x) ((x) << (PAGE_SHIFT-10))
5344
377e4f16
RV
5345static void show_migration_types(unsigned char type)
5346{
5347 static const char types[MIGRATE_TYPES] = {
5348 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5349 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5350 [MIGRATE_RECLAIMABLE] = 'E',
5351 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5352#ifdef CONFIG_CMA
5353 [MIGRATE_CMA] = 'C',
5354#endif
194159fb 5355#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5356 [MIGRATE_ISOLATE] = 'I',
194159fb 5357#endif
377e4f16
RV
5358 };
5359 char tmp[MIGRATE_TYPES + 1];
5360 char *p = tmp;
5361 int i;
5362
5363 for (i = 0; i < MIGRATE_TYPES; i++) {
5364 if (type & (1 << i))
5365 *p++ = types[i];
5366 }
5367
5368 *p = '\0';
1f84a18f 5369 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5370}
5371
1da177e4
LT
5372/*
5373 * Show free area list (used inside shift_scroll-lock stuff)
5374 * We also calculate the percentage fragmentation. We do this by counting the
5375 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5376 *
5377 * Bits in @filter:
5378 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5379 * cpuset.
1da177e4 5380 */
9af744d7 5381void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5382{
d1bfcdb8 5383 unsigned long free_pcp = 0;
c7241913 5384 int cpu;
1da177e4 5385 struct zone *zone;
599d0c95 5386 pg_data_t *pgdat;
1da177e4 5387
ee99c71c 5388 for_each_populated_zone(zone) {
9af744d7 5389 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5390 continue;
d1bfcdb8 5391
761b0677
KK
5392 for_each_online_cpu(cpu)
5393 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5394 }
5395
a731286d
KM
5396 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5397 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5398 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5399 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5400 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5401 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5402 global_node_page_state(NR_ACTIVE_ANON),
5403 global_node_page_state(NR_INACTIVE_ANON),
5404 global_node_page_state(NR_ISOLATED_ANON),
5405 global_node_page_state(NR_ACTIVE_FILE),
5406 global_node_page_state(NR_INACTIVE_FILE),
5407 global_node_page_state(NR_ISOLATED_FILE),
5408 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5409 global_node_page_state(NR_FILE_DIRTY),
5410 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5411 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5412 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5413 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5414 global_node_page_state(NR_SHMEM),
c41f012a
MH
5415 global_zone_page_state(NR_PAGETABLE),
5416 global_zone_page_state(NR_BOUNCE),
5417 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5418 free_pcp,
c41f012a 5419 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5420
599d0c95 5421 for_each_online_pgdat(pgdat) {
9af744d7 5422 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5423 continue;
5424
599d0c95
MG
5425 printk("Node %d"
5426 " active_anon:%lukB"
5427 " inactive_anon:%lukB"
5428 " active_file:%lukB"
5429 " inactive_file:%lukB"
5430 " unevictable:%lukB"
5431 " isolated(anon):%lukB"
5432 " isolated(file):%lukB"
50658e2e 5433 " mapped:%lukB"
11fb9989
MG
5434 " dirty:%lukB"
5435 " writeback:%lukB"
5436 " shmem:%lukB"
5437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5438 " shmem_thp: %lukB"
5439 " shmem_pmdmapped: %lukB"
5440 " anon_thp: %lukB"
5441#endif
5442 " writeback_tmp:%lukB"
991e7673
SB
5443 " kernel_stack:%lukB"
5444#ifdef CONFIG_SHADOW_CALL_STACK
5445 " shadow_call_stack:%lukB"
5446#endif
599d0c95
MG
5447 " all_unreclaimable? %s"
5448 "\n",
5449 pgdat->node_id,
5450 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5451 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5452 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5453 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5454 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5455 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5456 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5457 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5458 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5459 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5460 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5461#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5462 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5463 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5464 * HPAGE_PMD_NR),
5465 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5466#endif
11fb9989 5467 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5468 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5469#ifdef CONFIG_SHADOW_CALL_STACK
5470 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5471#endif
c73322d0
JW
5472 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5473 "yes" : "no");
599d0c95
MG
5474 }
5475
ee99c71c 5476 for_each_populated_zone(zone) {
1da177e4
LT
5477 int i;
5478
9af744d7 5479 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5480 continue;
d1bfcdb8
KK
5481
5482 free_pcp = 0;
5483 for_each_online_cpu(cpu)
5484 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5485
1da177e4 5486 show_node(zone);
1f84a18f
JP
5487 printk(KERN_CONT
5488 "%s"
1da177e4
LT
5489 " free:%lukB"
5490 " min:%lukB"
5491 " low:%lukB"
5492 " high:%lukB"
e47b346a 5493 " reserved_highatomic:%luKB"
71c799f4
MK
5494 " active_anon:%lukB"
5495 " inactive_anon:%lukB"
5496 " active_file:%lukB"
5497 " inactive_file:%lukB"
5498 " unevictable:%lukB"
5a1c84b4 5499 " writepending:%lukB"
1da177e4 5500 " present:%lukB"
9feedc9d 5501 " managed:%lukB"
4a0aa73f 5502 " mlocked:%lukB"
4a0aa73f 5503 " pagetables:%lukB"
4a0aa73f 5504 " bounce:%lukB"
d1bfcdb8
KK
5505 " free_pcp:%lukB"
5506 " local_pcp:%ukB"
d1ce749a 5507 " free_cma:%lukB"
1da177e4
LT
5508 "\n",
5509 zone->name,
88f5acf8 5510 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5511 K(min_wmark_pages(zone)),
5512 K(low_wmark_pages(zone)),
5513 K(high_wmark_pages(zone)),
e47b346a 5514 K(zone->nr_reserved_highatomic),
71c799f4
MK
5515 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5516 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5517 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5518 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5519 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5520 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5521 K(zone->present_pages),
9705bea5 5522 K(zone_managed_pages(zone)),
4a0aa73f 5523 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5524 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5525 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5526 K(free_pcp),
5527 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5528 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5529 printk("lowmem_reserve[]:");
5530 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5531 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5532 printk(KERN_CONT "\n");
1da177e4
LT
5533 }
5534
ee99c71c 5535 for_each_populated_zone(zone) {
d00181b9
KS
5536 unsigned int order;
5537 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5538 unsigned char types[MAX_ORDER];
1da177e4 5539
9af744d7 5540 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5541 continue;
1da177e4 5542 show_node(zone);
1f84a18f 5543 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5544
5545 spin_lock_irqsave(&zone->lock, flags);
5546 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5547 struct free_area *area = &zone->free_area[order];
5548 int type;
5549
5550 nr[order] = area->nr_free;
8f9de51a 5551 total += nr[order] << order;
377e4f16
RV
5552
5553 types[order] = 0;
5554 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5555 if (!free_area_empty(area, type))
377e4f16
RV
5556 types[order] |= 1 << type;
5557 }
1da177e4
LT
5558 }
5559 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5560 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5561 printk(KERN_CONT "%lu*%lukB ",
5562 nr[order], K(1UL) << order);
377e4f16
RV
5563 if (nr[order])
5564 show_migration_types(types[order]);
5565 }
1f84a18f 5566 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5567 }
5568
949f7ec5
DR
5569 hugetlb_show_meminfo();
5570
11fb9989 5571 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5572
1da177e4
LT
5573 show_swap_cache_info();
5574}
5575
19770b32
MG
5576static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5577{
5578 zoneref->zone = zone;
5579 zoneref->zone_idx = zone_idx(zone);
5580}
5581
1da177e4
LT
5582/*
5583 * Builds allocation fallback zone lists.
1a93205b
CL
5584 *
5585 * Add all populated zones of a node to the zonelist.
1da177e4 5586 */
9d3be21b 5587static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5588{
1a93205b 5589 struct zone *zone;
bc732f1d 5590 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5591 int nr_zones = 0;
02a68a5e
CL
5592
5593 do {
2f6726e5 5594 zone_type--;
070f8032 5595 zone = pgdat->node_zones + zone_type;
6aa303de 5596 if (managed_zone(zone)) {
9d3be21b 5597 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5598 check_highest_zone(zone_type);
1da177e4 5599 }
2f6726e5 5600 } while (zone_type);
bc732f1d 5601
070f8032 5602 return nr_zones;
1da177e4
LT
5603}
5604
5605#ifdef CONFIG_NUMA
f0c0b2b8
KH
5606
5607static int __parse_numa_zonelist_order(char *s)
5608{
c9bff3ee
MH
5609 /*
5610 * We used to support different zonlists modes but they turned
5611 * out to be just not useful. Let's keep the warning in place
5612 * if somebody still use the cmd line parameter so that we do
5613 * not fail it silently
5614 */
5615 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5616 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5617 return -EINVAL;
5618 }
5619 return 0;
5620}
5621
c9bff3ee
MH
5622char numa_zonelist_order[] = "Node";
5623
f0c0b2b8
KH
5624/*
5625 * sysctl handler for numa_zonelist_order
5626 */
cccad5b9 5627int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5628 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5629{
32927393
CH
5630 if (write)
5631 return __parse_numa_zonelist_order(buffer);
5632 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5633}
5634
5635
62bc62a8 5636#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5637static int node_load[MAX_NUMNODES];
5638
1da177e4 5639/**
4dc3b16b 5640 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5641 * @node: node whose fallback list we're appending
5642 * @used_node_mask: nodemask_t of already used nodes
5643 *
5644 * We use a number of factors to determine which is the next node that should
5645 * appear on a given node's fallback list. The node should not have appeared
5646 * already in @node's fallback list, and it should be the next closest node
5647 * according to the distance array (which contains arbitrary distance values
5648 * from each node to each node in the system), and should also prefer nodes
5649 * with no CPUs, since presumably they'll have very little allocation pressure
5650 * on them otherwise.
a862f68a
MR
5651 *
5652 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5653 */
f0c0b2b8 5654static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5655{
4cf808eb 5656 int n, val;
1da177e4 5657 int min_val = INT_MAX;
00ef2d2f 5658 int best_node = NUMA_NO_NODE;
1da177e4 5659
4cf808eb
LT
5660 /* Use the local node if we haven't already */
5661 if (!node_isset(node, *used_node_mask)) {
5662 node_set(node, *used_node_mask);
5663 return node;
5664 }
1da177e4 5665
4b0ef1fe 5666 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5667
5668 /* Don't want a node to appear more than once */
5669 if (node_isset(n, *used_node_mask))
5670 continue;
5671
1da177e4
LT
5672 /* Use the distance array to find the distance */
5673 val = node_distance(node, n);
5674
4cf808eb
LT
5675 /* Penalize nodes under us ("prefer the next node") */
5676 val += (n < node);
5677
1da177e4 5678 /* Give preference to headless and unused nodes */
b630749f 5679 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5680 val += PENALTY_FOR_NODE_WITH_CPUS;
5681
5682 /* Slight preference for less loaded node */
5683 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5684 val += node_load[n];
5685
5686 if (val < min_val) {
5687 min_val = val;
5688 best_node = n;
5689 }
5690 }
5691
5692 if (best_node >= 0)
5693 node_set(best_node, *used_node_mask);
5694
5695 return best_node;
5696}
5697
f0c0b2b8
KH
5698
5699/*
5700 * Build zonelists ordered by node and zones within node.
5701 * This results in maximum locality--normal zone overflows into local
5702 * DMA zone, if any--but risks exhausting DMA zone.
5703 */
9d3be21b
MH
5704static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5705 unsigned nr_nodes)
1da177e4 5706{
9d3be21b
MH
5707 struct zoneref *zonerefs;
5708 int i;
5709
5710 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5711
5712 for (i = 0; i < nr_nodes; i++) {
5713 int nr_zones;
5714
5715 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5716
9d3be21b
MH
5717 nr_zones = build_zonerefs_node(node, zonerefs);
5718 zonerefs += nr_zones;
5719 }
5720 zonerefs->zone = NULL;
5721 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5722}
5723
523b9458
CL
5724/*
5725 * Build gfp_thisnode zonelists
5726 */
5727static void build_thisnode_zonelists(pg_data_t *pgdat)
5728{
9d3be21b
MH
5729 struct zoneref *zonerefs;
5730 int nr_zones;
523b9458 5731
9d3be21b
MH
5732 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5733 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5734 zonerefs += nr_zones;
5735 zonerefs->zone = NULL;
5736 zonerefs->zone_idx = 0;
523b9458
CL
5737}
5738
f0c0b2b8
KH
5739/*
5740 * Build zonelists ordered by zone and nodes within zones.
5741 * This results in conserving DMA zone[s] until all Normal memory is
5742 * exhausted, but results in overflowing to remote node while memory
5743 * may still exist in local DMA zone.
5744 */
f0c0b2b8 5745
f0c0b2b8
KH
5746static void build_zonelists(pg_data_t *pgdat)
5747{
9d3be21b
MH
5748 static int node_order[MAX_NUMNODES];
5749 int node, load, nr_nodes = 0;
d0ddf49b 5750 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5751 int local_node, prev_node;
1da177e4
LT
5752
5753 /* NUMA-aware ordering of nodes */
5754 local_node = pgdat->node_id;
62bc62a8 5755 load = nr_online_nodes;
1da177e4 5756 prev_node = local_node;
f0c0b2b8 5757
f0c0b2b8 5758 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5759 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5760 /*
5761 * We don't want to pressure a particular node.
5762 * So adding penalty to the first node in same
5763 * distance group to make it round-robin.
5764 */
957f822a
DR
5765 if (node_distance(local_node, node) !=
5766 node_distance(local_node, prev_node))
f0c0b2b8
KH
5767 node_load[node] = load;
5768
9d3be21b 5769 node_order[nr_nodes++] = node;
1da177e4
LT
5770 prev_node = node;
5771 load--;
1da177e4 5772 }
523b9458 5773
9d3be21b 5774 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5775 build_thisnode_zonelists(pgdat);
1da177e4
LT
5776}
5777
7aac7898
LS
5778#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5779/*
5780 * Return node id of node used for "local" allocations.
5781 * I.e., first node id of first zone in arg node's generic zonelist.
5782 * Used for initializing percpu 'numa_mem', which is used primarily
5783 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5784 */
5785int local_memory_node(int node)
5786{
c33d6c06 5787 struct zoneref *z;
7aac7898 5788
c33d6c06 5789 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5790 gfp_zone(GFP_KERNEL),
c33d6c06 5791 NULL);
c1093b74 5792 return zone_to_nid(z->zone);
7aac7898
LS
5793}
5794#endif
f0c0b2b8 5795
6423aa81
JK
5796static void setup_min_unmapped_ratio(void);
5797static void setup_min_slab_ratio(void);
1da177e4
LT
5798#else /* CONFIG_NUMA */
5799
f0c0b2b8 5800static void build_zonelists(pg_data_t *pgdat)
1da177e4 5801{
19655d34 5802 int node, local_node;
9d3be21b
MH
5803 struct zoneref *zonerefs;
5804 int nr_zones;
1da177e4
LT
5805
5806 local_node = pgdat->node_id;
1da177e4 5807
9d3be21b
MH
5808 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5809 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5810 zonerefs += nr_zones;
1da177e4 5811
54a6eb5c
MG
5812 /*
5813 * Now we build the zonelist so that it contains the zones
5814 * of all the other nodes.
5815 * We don't want to pressure a particular node, so when
5816 * building the zones for node N, we make sure that the
5817 * zones coming right after the local ones are those from
5818 * node N+1 (modulo N)
5819 */
5820 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5821 if (!node_online(node))
5822 continue;
9d3be21b
MH
5823 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5824 zonerefs += nr_zones;
1da177e4 5825 }
54a6eb5c
MG
5826 for (node = 0; node < local_node; node++) {
5827 if (!node_online(node))
5828 continue;
9d3be21b
MH
5829 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5830 zonerefs += nr_zones;
54a6eb5c
MG
5831 }
5832
9d3be21b
MH
5833 zonerefs->zone = NULL;
5834 zonerefs->zone_idx = 0;
1da177e4
LT
5835}
5836
5837#endif /* CONFIG_NUMA */
5838
99dcc3e5
CL
5839/*
5840 * Boot pageset table. One per cpu which is going to be used for all
5841 * zones and all nodes. The parameters will be set in such a way
5842 * that an item put on a list will immediately be handed over to
5843 * the buddy list. This is safe since pageset manipulation is done
5844 * with interrupts disabled.
5845 *
5846 * The boot_pagesets must be kept even after bootup is complete for
5847 * unused processors and/or zones. They do play a role for bootstrapping
5848 * hotplugged processors.
5849 *
5850 * zoneinfo_show() and maybe other functions do
5851 * not check if the processor is online before following the pageset pointer.
5852 * Other parts of the kernel may not check if the zone is available.
5853 */
5854static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5855static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5856static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5857
11cd8638 5858static void __build_all_zonelists(void *data)
1da177e4 5859{
6811378e 5860 int nid;
afb6ebb3 5861 int __maybe_unused cpu;
9adb62a5 5862 pg_data_t *self = data;
b93e0f32
MH
5863 static DEFINE_SPINLOCK(lock);
5864
5865 spin_lock(&lock);
9276b1bc 5866
7f9cfb31
BL
5867#ifdef CONFIG_NUMA
5868 memset(node_load, 0, sizeof(node_load));
5869#endif
9adb62a5 5870
c1152583
WY
5871 /*
5872 * This node is hotadded and no memory is yet present. So just
5873 * building zonelists is fine - no need to touch other nodes.
5874 */
9adb62a5
JL
5875 if (self && !node_online(self->node_id)) {
5876 build_zonelists(self);
c1152583
WY
5877 } else {
5878 for_each_online_node(nid) {
5879 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5880
c1152583
WY
5881 build_zonelists(pgdat);
5882 }
99dcc3e5 5883
7aac7898
LS
5884#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5885 /*
5886 * We now know the "local memory node" for each node--
5887 * i.e., the node of the first zone in the generic zonelist.
5888 * Set up numa_mem percpu variable for on-line cpus. During
5889 * boot, only the boot cpu should be on-line; we'll init the
5890 * secondary cpus' numa_mem as they come on-line. During
5891 * node/memory hotplug, we'll fixup all on-line cpus.
5892 */
d9c9a0b9 5893 for_each_online_cpu(cpu)
7aac7898 5894 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5895#endif
d9c9a0b9 5896 }
b93e0f32
MH
5897
5898 spin_unlock(&lock);
6811378e
YG
5899}
5900
061f67bc
RV
5901static noinline void __init
5902build_all_zonelists_init(void)
5903{
afb6ebb3
MH
5904 int cpu;
5905
061f67bc 5906 __build_all_zonelists(NULL);
afb6ebb3
MH
5907
5908 /*
5909 * Initialize the boot_pagesets that are going to be used
5910 * for bootstrapping processors. The real pagesets for
5911 * each zone will be allocated later when the per cpu
5912 * allocator is available.
5913 *
5914 * boot_pagesets are used also for bootstrapping offline
5915 * cpus if the system is already booted because the pagesets
5916 * are needed to initialize allocators on a specific cpu too.
5917 * F.e. the percpu allocator needs the page allocator which
5918 * needs the percpu allocator in order to allocate its pagesets
5919 * (a chicken-egg dilemma).
5920 */
5921 for_each_possible_cpu(cpu)
5922 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5923
061f67bc
RV
5924 mminit_verify_zonelist();
5925 cpuset_init_current_mems_allowed();
5926}
5927
4eaf3f64 5928/*
4eaf3f64 5929 * unless system_state == SYSTEM_BOOTING.
061f67bc 5930 *
72675e13 5931 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5932 * [protected by SYSTEM_BOOTING].
4eaf3f64 5933 */
72675e13 5934void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5935{
0a18e607
DH
5936 unsigned long vm_total_pages;
5937
6811378e 5938 if (system_state == SYSTEM_BOOTING) {
061f67bc 5939 build_all_zonelists_init();
6811378e 5940 } else {
11cd8638 5941 __build_all_zonelists(pgdat);
6811378e
YG
5942 /* cpuset refresh routine should be here */
5943 }
56b9413b
DH
5944 /* Get the number of free pages beyond high watermark in all zones. */
5945 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5946 /*
5947 * Disable grouping by mobility if the number of pages in the
5948 * system is too low to allow the mechanism to work. It would be
5949 * more accurate, but expensive to check per-zone. This check is
5950 * made on memory-hotadd so a system can start with mobility
5951 * disabled and enable it later
5952 */
d9c23400 5953 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5954 page_group_by_mobility_disabled = 1;
5955 else
5956 page_group_by_mobility_disabled = 0;
5957
ce0725f7 5958 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5959 nr_online_nodes,
756a025f
JP
5960 page_group_by_mobility_disabled ? "off" : "on",
5961 vm_total_pages);
f0c0b2b8 5962#ifdef CONFIG_NUMA
f88dfff5 5963 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5964#endif
1da177e4
LT
5965}
5966
a9a9e77f
PT
5967/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5968static bool __meminit
5969overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5970{
a9a9e77f
PT
5971 static struct memblock_region *r;
5972
5973 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5974 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 5975 for_each_mem_region(r) {
a9a9e77f
PT
5976 if (*pfn < memblock_region_memory_end_pfn(r))
5977 break;
5978 }
5979 }
5980 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5981 memblock_is_mirror(r)) {
5982 *pfn = memblock_region_memory_end_pfn(r);
5983 return true;
5984 }
5985 }
a9a9e77f
PT
5986 return false;
5987}
5988
1da177e4
LT
5989/*
5990 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5991 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5992 * done. Non-atomic initialization, single-pass.
5993 */
c09b4240 5994void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
c1d0da83 5995 unsigned long start_pfn, enum meminit_context context,
a99583e7 5996 struct vmem_altmap *altmap)
1da177e4 5997{
a9a9e77f 5998 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5999 struct page *page;
1da177e4 6000
22b31eec
HD
6001 if (highest_memmap_pfn < end_pfn - 1)
6002 highest_memmap_pfn = end_pfn - 1;
6003
966cf44f 6004#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6005 /*
6006 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6007 * memory. We limit the total number of pages to initialize to just
6008 * those that might contain the memory mapping. We will defer the
6009 * ZONE_DEVICE page initialization until after we have released
6010 * the hotplug lock.
4b94ffdc 6011 */
966cf44f
AD
6012 if (zone == ZONE_DEVICE) {
6013 if (!altmap)
6014 return;
6015
6016 if (start_pfn == altmap->base_pfn)
6017 start_pfn += altmap->reserve;
6018 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6019 }
6020#endif
4b94ffdc 6021
948c436e 6022 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6023 /*
b72d0ffb
AM
6024 * There can be holes in boot-time mem_map[]s handed to this
6025 * function. They do not exist on hotplugged memory.
a2f3aa02 6026 */
c1d0da83 6027 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6028 if (overlap_memmap_init(zone, &pfn))
6029 continue;
6030 if (defer_init(nid, pfn, end_pfn))
6031 break;
a2f3aa02 6032 }
ac5d2539 6033
d0dc12e8
PT
6034 page = pfn_to_page(pfn);
6035 __init_single_page(page, pfn, zone, nid);
c1d0da83 6036 if (context == MEMINIT_HOTPLUG)
d483da5b 6037 __SetPageReserved(page);
d0dc12e8 6038
ac5d2539
MG
6039 /*
6040 * Mark the block movable so that blocks are reserved for
6041 * movable at startup. This will force kernel allocations
6042 * to reserve their blocks rather than leaking throughout
6043 * the address space during boot when many long-lived
974a786e 6044 * kernel allocations are made.
ac5d2539 6045 */
4eb29bd9 6046 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
ac5d2539 6047 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6048 cond_resched();
ac5d2539 6049 }
948c436e 6050 pfn++;
1da177e4
LT
6051 }
6052}
6053
966cf44f
AD
6054#ifdef CONFIG_ZONE_DEVICE
6055void __ref memmap_init_zone_device(struct zone *zone,
6056 unsigned long start_pfn,
1f8d75c1 6057 unsigned long nr_pages,
966cf44f
AD
6058 struct dev_pagemap *pgmap)
6059{
1f8d75c1 6060 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6061 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6062 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6063 unsigned long zone_idx = zone_idx(zone);
6064 unsigned long start = jiffies;
6065 int nid = pgdat->node_id;
6066
46d945ae 6067 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6068 return;
6069
6070 /*
6071 * The call to memmap_init_zone should have already taken care
6072 * of the pages reserved for the memmap, so we can just jump to
6073 * the end of that region and start processing the device pages.
6074 */
514caf23 6075 if (altmap) {
966cf44f 6076 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6077 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6078 }
6079
6080 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6081 struct page *page = pfn_to_page(pfn);
6082
6083 __init_single_page(page, pfn, zone_idx, nid);
6084
6085 /*
6086 * Mark page reserved as it will need to wait for onlining
6087 * phase for it to be fully associated with a zone.
6088 *
6089 * We can use the non-atomic __set_bit operation for setting
6090 * the flag as we are still initializing the pages.
6091 */
6092 __SetPageReserved(page);
6093
6094 /*
8a164fef
CH
6095 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6096 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6097 * ever freed or placed on a driver-private list.
966cf44f
AD
6098 */
6099 page->pgmap = pgmap;
8a164fef 6100 page->zone_device_data = NULL;
966cf44f
AD
6101
6102 /*
6103 * Mark the block movable so that blocks are reserved for
6104 * movable at startup. This will force kernel allocations
6105 * to reserve their blocks rather than leaking throughout
6106 * the address space during boot when many long-lived
6107 * kernel allocations are made.
6108 *
c1d0da83 6109 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6110 * because this is done early in section_activate()
966cf44f 6111 */
4eb29bd9 6112 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6113 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6114 cond_resched();
6115 }
6116 }
6117
fdc029b1 6118 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6119 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6120}
6121
6122#endif
1e548deb 6123static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6124{
7aeb09f9 6125 unsigned int order, t;
b2a0ac88
MG
6126 for_each_migratetype_order(order, t) {
6127 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6128 zone->free_area[order].nr_free = 0;
6129 }
6130}
6131
dfb3ccd0 6132void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6133 unsigned long zone,
6134 unsigned long range_start_pfn)
dfb3ccd0 6135{
73a6e474
BH
6136 unsigned long start_pfn, end_pfn;
6137 unsigned long range_end_pfn = range_start_pfn + size;
6138 int i;
6139
6140 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6141 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6142 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6143
6144 if (end_pfn > start_pfn) {
6145 size = end_pfn - start_pfn;
6146 memmap_init_zone(size, nid, zone, start_pfn,
c1d0da83 6147 MEMINIT_EARLY, NULL);
73a6e474
BH
6148 }
6149 }
dfb3ccd0 6150}
1da177e4 6151
7cd2b0a3 6152static int zone_batchsize(struct zone *zone)
e7c8d5c9 6153{
3a6be87f 6154#ifdef CONFIG_MMU
e7c8d5c9
CL
6155 int batch;
6156
6157 /*
6158 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6159 * size of the zone.
e7c8d5c9 6160 */
9705bea5 6161 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6162 /* But no more than a meg. */
6163 if (batch * PAGE_SIZE > 1024 * 1024)
6164 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6165 batch /= 4; /* We effectively *= 4 below */
6166 if (batch < 1)
6167 batch = 1;
6168
6169 /*
0ceaacc9
NP
6170 * Clamp the batch to a 2^n - 1 value. Having a power
6171 * of 2 value was found to be more likely to have
6172 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6173 *
0ceaacc9
NP
6174 * For example if 2 tasks are alternately allocating
6175 * batches of pages, one task can end up with a lot
6176 * of pages of one half of the possible page colors
6177 * and the other with pages of the other colors.
e7c8d5c9 6178 */
9155203a 6179 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6180
e7c8d5c9 6181 return batch;
3a6be87f
DH
6182
6183#else
6184 /* The deferral and batching of frees should be suppressed under NOMMU
6185 * conditions.
6186 *
6187 * The problem is that NOMMU needs to be able to allocate large chunks
6188 * of contiguous memory as there's no hardware page translation to
6189 * assemble apparent contiguous memory from discontiguous pages.
6190 *
6191 * Queueing large contiguous runs of pages for batching, however,
6192 * causes the pages to actually be freed in smaller chunks. As there
6193 * can be a significant delay between the individual batches being
6194 * recycled, this leads to the once large chunks of space being
6195 * fragmented and becoming unavailable for high-order allocations.
6196 */
6197 return 0;
6198#endif
e7c8d5c9
CL
6199}
6200
8d7a8fa9
CS
6201/*
6202 * pcp->high and pcp->batch values are related and dependent on one another:
6203 * ->batch must never be higher then ->high.
6204 * The following function updates them in a safe manner without read side
6205 * locking.
6206 *
6207 * Any new users of pcp->batch and pcp->high should ensure they can cope with
047b9967 6208 * those fields changing asynchronously (acording to the above rule).
8d7a8fa9
CS
6209 *
6210 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6211 * outside of boot time (or some other assurance that no concurrent updaters
6212 * exist).
6213 */
6214static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6215 unsigned long batch)
6216{
6217 /* start with a fail safe value for batch */
6218 pcp->batch = 1;
6219 smp_wmb();
6220
6221 /* Update high, then batch, in order */
6222 pcp->high = high;
6223 smp_wmb();
6224
6225 pcp->batch = batch;
6226}
6227
3664033c 6228/* a companion to pageset_set_high() */
4008bab7
CS
6229static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6230{
8d7a8fa9 6231 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6232}
6233
88c90dbc 6234static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6235{
6236 struct per_cpu_pages *pcp;
5f8dcc21 6237 int migratetype;
2caaad41 6238
1c6fe946
MD
6239 memset(p, 0, sizeof(*p));
6240
3dfa5721 6241 pcp = &p->pcp;
5f8dcc21
MG
6242 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6243 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6244}
6245
88c90dbc
CS
6246static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6247{
6248 pageset_init(p);
6249 pageset_set_batch(p, batch);
6250}
6251
8ad4b1fb 6252/*
3664033c 6253 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6254 * to the value high for the pageset p.
6255 */
3664033c 6256static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6257 unsigned long high)
6258{
8d7a8fa9
CS
6259 unsigned long batch = max(1UL, high / 4);
6260 if ((high / 4) > (PAGE_SHIFT * 8))
6261 batch = PAGE_SHIFT * 8;
8ad4b1fb 6262
8d7a8fa9 6263 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6264}
6265
7cd2b0a3
DR
6266static void pageset_set_high_and_batch(struct zone *zone,
6267 struct per_cpu_pageset *pcp)
56cef2b8 6268{
56cef2b8 6269 if (percpu_pagelist_fraction)
3664033c 6270 pageset_set_high(pcp,
9705bea5 6271 (zone_managed_pages(zone) /
56cef2b8
CS
6272 percpu_pagelist_fraction));
6273 else
6274 pageset_set_batch(pcp, zone_batchsize(zone));
6275}
6276
169f6c19
CS
6277static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6278{
6279 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6280
6281 pageset_init(pcp);
6282 pageset_set_high_and_batch(zone, pcp);
6283}
6284
72675e13 6285void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6286{
6287 int cpu;
319774e2 6288 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6289 for_each_possible_cpu(cpu)
6290 zone_pageset_init(zone, cpu);
319774e2
WF
6291}
6292
2caaad41 6293/*
99dcc3e5
CL
6294 * Allocate per cpu pagesets and initialize them.
6295 * Before this call only boot pagesets were available.
e7c8d5c9 6296 */
99dcc3e5 6297void __init setup_per_cpu_pageset(void)
e7c8d5c9 6298{
b4911ea2 6299 struct pglist_data *pgdat;
99dcc3e5 6300 struct zone *zone;
b418a0f9 6301 int __maybe_unused cpu;
e7c8d5c9 6302
319774e2
WF
6303 for_each_populated_zone(zone)
6304 setup_zone_pageset(zone);
b4911ea2 6305
b418a0f9
SD
6306#ifdef CONFIG_NUMA
6307 /*
6308 * Unpopulated zones continue using the boot pagesets.
6309 * The numa stats for these pagesets need to be reset.
6310 * Otherwise, they will end up skewing the stats of
6311 * the nodes these zones are associated with.
6312 */
6313 for_each_possible_cpu(cpu) {
6314 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6315 memset(pcp->vm_numa_stat_diff, 0,
6316 sizeof(pcp->vm_numa_stat_diff));
6317 }
6318#endif
6319
b4911ea2
MG
6320 for_each_online_pgdat(pgdat)
6321 pgdat->per_cpu_nodestats =
6322 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6323}
6324
c09b4240 6325static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6326{
99dcc3e5
CL
6327 /*
6328 * per cpu subsystem is not up at this point. The following code
6329 * relies on the ability of the linker to provide the
6330 * offset of a (static) per cpu variable into the per cpu area.
6331 */
6332 zone->pageset = &boot_pageset;
ed8ece2e 6333
b38a8725 6334 if (populated_zone(zone))
99dcc3e5
CL
6335 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6336 zone->name, zone->present_pages,
6337 zone_batchsize(zone));
ed8ece2e
DH
6338}
6339
dc0bbf3b 6340void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6341 unsigned long zone_start_pfn,
b171e409 6342 unsigned long size)
ed8ece2e
DH
6343{
6344 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6345 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6346
8f416836
WY
6347 if (zone_idx > pgdat->nr_zones)
6348 pgdat->nr_zones = zone_idx;
ed8ece2e 6349
ed8ece2e
DH
6350 zone->zone_start_pfn = zone_start_pfn;
6351
708614e6
MG
6352 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6353 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6354 pgdat->node_id,
6355 (unsigned long)zone_idx(zone),
6356 zone_start_pfn, (zone_start_pfn + size));
6357
1e548deb 6358 zone_init_free_lists(zone);
9dcb8b68 6359 zone->initialized = 1;
ed8ece2e
DH
6360}
6361
c713216d
MG
6362/**
6363 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6364 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6365 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6366 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6367 *
6368 * It returns the start and end page frame of a node based on information
7d018176 6369 * provided by memblock_set_node(). If called for a node
c713216d 6370 * with no available memory, a warning is printed and the start and end
88ca3b94 6371 * PFNs will be 0.
c713216d 6372 */
bbe5d993 6373void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6374 unsigned long *start_pfn, unsigned long *end_pfn)
6375{
c13291a5 6376 unsigned long this_start_pfn, this_end_pfn;
c713216d 6377 int i;
c13291a5 6378
c713216d
MG
6379 *start_pfn = -1UL;
6380 *end_pfn = 0;
6381
c13291a5
TH
6382 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6383 *start_pfn = min(*start_pfn, this_start_pfn);
6384 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6385 }
6386
633c0666 6387 if (*start_pfn == -1UL)
c713216d 6388 *start_pfn = 0;
c713216d
MG
6389}
6390
2a1e274a
MG
6391/*
6392 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6393 * assumption is made that zones within a node are ordered in monotonic
6394 * increasing memory addresses so that the "highest" populated zone is used
6395 */
b69a7288 6396static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6397{
6398 int zone_index;
6399 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6400 if (zone_index == ZONE_MOVABLE)
6401 continue;
6402
6403 if (arch_zone_highest_possible_pfn[zone_index] >
6404 arch_zone_lowest_possible_pfn[zone_index])
6405 break;
6406 }
6407
6408 VM_BUG_ON(zone_index == -1);
6409 movable_zone = zone_index;
6410}
6411
6412/*
6413 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6414 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6415 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6416 * in each node depending on the size of each node and how evenly kernelcore
6417 * is distributed. This helper function adjusts the zone ranges
6418 * provided by the architecture for a given node by using the end of the
6419 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6420 * zones within a node are in order of monotonic increases memory addresses
6421 */
bbe5d993 6422static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6423 unsigned long zone_type,
6424 unsigned long node_start_pfn,
6425 unsigned long node_end_pfn,
6426 unsigned long *zone_start_pfn,
6427 unsigned long *zone_end_pfn)
6428{
6429 /* Only adjust if ZONE_MOVABLE is on this node */
6430 if (zone_movable_pfn[nid]) {
6431 /* Size ZONE_MOVABLE */
6432 if (zone_type == ZONE_MOVABLE) {
6433 *zone_start_pfn = zone_movable_pfn[nid];
6434 *zone_end_pfn = min(node_end_pfn,
6435 arch_zone_highest_possible_pfn[movable_zone]);
6436
e506b996
XQ
6437 /* Adjust for ZONE_MOVABLE starting within this range */
6438 } else if (!mirrored_kernelcore &&
6439 *zone_start_pfn < zone_movable_pfn[nid] &&
6440 *zone_end_pfn > zone_movable_pfn[nid]) {
6441 *zone_end_pfn = zone_movable_pfn[nid];
6442
2a1e274a
MG
6443 /* Check if this whole range is within ZONE_MOVABLE */
6444 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6445 *zone_start_pfn = *zone_end_pfn;
6446 }
6447}
6448
c713216d
MG
6449/*
6450 * Return the number of pages a zone spans in a node, including holes
6451 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6452 */
bbe5d993 6453static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6454 unsigned long zone_type,
7960aedd
ZY
6455 unsigned long node_start_pfn,
6456 unsigned long node_end_pfn,
d91749c1 6457 unsigned long *zone_start_pfn,
854e8848 6458 unsigned long *zone_end_pfn)
c713216d 6459{
299c83dc
LF
6460 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6461 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6462 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6463 if (!node_start_pfn && !node_end_pfn)
6464 return 0;
6465
7960aedd 6466 /* Get the start and end of the zone */
299c83dc
LF
6467 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6468 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6469 adjust_zone_range_for_zone_movable(nid, zone_type,
6470 node_start_pfn, node_end_pfn,
d91749c1 6471 zone_start_pfn, zone_end_pfn);
c713216d
MG
6472
6473 /* Check that this node has pages within the zone's required range */
d91749c1 6474 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6475 return 0;
6476
6477 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6478 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6479 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6480
6481 /* Return the spanned pages */
d91749c1 6482 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6483}
6484
6485/*
6486 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6487 * then all holes in the requested range will be accounted for.
c713216d 6488 */
bbe5d993 6489unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6490 unsigned long range_start_pfn,
6491 unsigned long range_end_pfn)
6492{
96e907d1
TH
6493 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6494 unsigned long start_pfn, end_pfn;
6495 int i;
c713216d 6496
96e907d1
TH
6497 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6498 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6499 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6500 nr_absent -= end_pfn - start_pfn;
c713216d 6501 }
96e907d1 6502 return nr_absent;
c713216d
MG
6503}
6504
6505/**
6506 * absent_pages_in_range - Return number of page frames in holes within a range
6507 * @start_pfn: The start PFN to start searching for holes
6508 * @end_pfn: The end PFN to stop searching for holes
6509 *
a862f68a 6510 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6511 */
6512unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6513 unsigned long end_pfn)
6514{
6515 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6516}
6517
6518/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6519static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6520 unsigned long zone_type,
7960aedd 6521 unsigned long node_start_pfn,
854e8848 6522 unsigned long node_end_pfn)
c713216d 6523{
96e907d1
TH
6524 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6525 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6526 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6527 unsigned long nr_absent;
9c7cd687 6528
b5685e92 6529 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6530 if (!node_start_pfn && !node_end_pfn)
6531 return 0;
6532
96e907d1
TH
6533 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6534 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6535
2a1e274a
MG
6536 adjust_zone_range_for_zone_movable(nid, zone_type,
6537 node_start_pfn, node_end_pfn,
6538 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6539 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6540
6541 /*
6542 * ZONE_MOVABLE handling.
6543 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6544 * and vice versa.
6545 */
e506b996
XQ
6546 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6547 unsigned long start_pfn, end_pfn;
6548 struct memblock_region *r;
6549
cc6de168 6550 for_each_mem_region(r) {
e506b996
XQ
6551 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6552 zone_start_pfn, zone_end_pfn);
6553 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6554 zone_start_pfn, zone_end_pfn);
6555
6556 if (zone_type == ZONE_MOVABLE &&
6557 memblock_is_mirror(r))
6558 nr_absent += end_pfn - start_pfn;
6559
6560 if (zone_type == ZONE_NORMAL &&
6561 !memblock_is_mirror(r))
6562 nr_absent += end_pfn - start_pfn;
342332e6
TI
6563 }
6564 }
6565
6566 return nr_absent;
c713216d 6567}
0e0b864e 6568
bbe5d993 6569static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6570 unsigned long node_start_pfn,
854e8848 6571 unsigned long node_end_pfn)
c713216d 6572{
febd5949 6573 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6574 enum zone_type i;
6575
febd5949
GZ
6576 for (i = 0; i < MAX_NR_ZONES; i++) {
6577 struct zone *zone = pgdat->node_zones + i;
d91749c1 6578 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6579 unsigned long spanned, absent;
febd5949 6580 unsigned long size, real_size;
c713216d 6581
854e8848
MR
6582 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6583 node_start_pfn,
6584 node_end_pfn,
6585 &zone_start_pfn,
6586 &zone_end_pfn);
6587 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6588 node_start_pfn,
6589 node_end_pfn);
3f08a302
MR
6590
6591 size = spanned;
6592 real_size = size - absent;
6593
d91749c1
TI
6594 if (size)
6595 zone->zone_start_pfn = zone_start_pfn;
6596 else
6597 zone->zone_start_pfn = 0;
febd5949
GZ
6598 zone->spanned_pages = size;
6599 zone->present_pages = real_size;
6600
6601 totalpages += size;
6602 realtotalpages += real_size;
6603 }
6604
6605 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6606 pgdat->node_present_pages = realtotalpages;
6607 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6608 realtotalpages);
6609}
6610
835c134e
MG
6611#ifndef CONFIG_SPARSEMEM
6612/*
6613 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6614 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6615 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6616 * round what is now in bits to nearest long in bits, then return it in
6617 * bytes.
6618 */
7c45512d 6619static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6620{
6621 unsigned long usemapsize;
6622
7c45512d 6623 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6624 usemapsize = roundup(zonesize, pageblock_nr_pages);
6625 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6626 usemapsize *= NR_PAGEBLOCK_BITS;
6627 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6628
6629 return usemapsize / 8;
6630}
6631
7cc2a959 6632static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6633 struct zone *zone,
6634 unsigned long zone_start_pfn,
6635 unsigned long zonesize)
835c134e 6636{
7c45512d 6637 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6638 zone->pageblock_flags = NULL;
23a7052a 6639 if (usemapsize) {
6782832e 6640 zone->pageblock_flags =
26fb3dae
MR
6641 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6642 pgdat->node_id);
23a7052a
MR
6643 if (!zone->pageblock_flags)
6644 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6645 usemapsize, zone->name, pgdat->node_id);
6646 }
835c134e
MG
6647}
6648#else
7c45512d
LT
6649static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6650 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6651#endif /* CONFIG_SPARSEMEM */
6652
d9c23400 6653#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6654
d9c23400 6655/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6656void __init set_pageblock_order(void)
d9c23400 6657{
955c1cd7
AM
6658 unsigned int order;
6659
d9c23400
MG
6660 /* Check that pageblock_nr_pages has not already been setup */
6661 if (pageblock_order)
6662 return;
6663
955c1cd7
AM
6664 if (HPAGE_SHIFT > PAGE_SHIFT)
6665 order = HUGETLB_PAGE_ORDER;
6666 else
6667 order = MAX_ORDER - 1;
6668
d9c23400
MG
6669 /*
6670 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6671 * This value may be variable depending on boot parameters on IA64 and
6672 * powerpc.
d9c23400
MG
6673 */
6674 pageblock_order = order;
6675}
6676#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6677
ba72cb8c
MG
6678/*
6679 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6680 * is unused as pageblock_order is set at compile-time. See
6681 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6682 * the kernel config
ba72cb8c 6683 */
03e85f9d 6684void __init set_pageblock_order(void)
ba72cb8c 6685{
ba72cb8c 6686}
d9c23400
MG
6687
6688#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6689
03e85f9d 6690static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6691 unsigned long present_pages)
01cefaef
JL
6692{
6693 unsigned long pages = spanned_pages;
6694
6695 /*
6696 * Provide a more accurate estimation if there are holes within
6697 * the zone and SPARSEMEM is in use. If there are holes within the
6698 * zone, each populated memory region may cost us one or two extra
6699 * memmap pages due to alignment because memmap pages for each
89d790ab 6700 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6701 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6702 */
6703 if (spanned_pages > present_pages + (present_pages >> 4) &&
6704 IS_ENABLED(CONFIG_SPARSEMEM))
6705 pages = present_pages;
6706
6707 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6708}
6709
ace1db39
OS
6710#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6711static void pgdat_init_split_queue(struct pglist_data *pgdat)
6712{
364c1eeb
YS
6713 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6714
6715 spin_lock_init(&ds_queue->split_queue_lock);
6716 INIT_LIST_HEAD(&ds_queue->split_queue);
6717 ds_queue->split_queue_len = 0;
ace1db39
OS
6718}
6719#else
6720static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6721#endif
6722
6723#ifdef CONFIG_COMPACTION
6724static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6725{
6726 init_waitqueue_head(&pgdat->kcompactd_wait);
6727}
6728#else
6729static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6730#endif
6731
03e85f9d 6732static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6733{
208d54e5 6734 pgdat_resize_init(pgdat);
ace1db39 6735
ace1db39
OS
6736 pgdat_init_split_queue(pgdat);
6737 pgdat_init_kcompactd(pgdat);
6738
1da177e4 6739 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6740 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6741
eefa864b 6742 pgdat_page_ext_init(pgdat);
a52633d8 6743 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6744 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6745}
6746
6747static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6748 unsigned long remaining_pages)
6749{
9705bea5 6750 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6751 zone_set_nid(zone, nid);
6752 zone->name = zone_names[idx];
6753 zone->zone_pgdat = NODE_DATA(nid);
6754 spin_lock_init(&zone->lock);
6755 zone_seqlock_init(zone);
6756 zone_pcp_init(zone);
6757}
6758
6759/*
6760 * Set up the zone data structures
6761 * - init pgdat internals
6762 * - init all zones belonging to this node
6763 *
6764 * NOTE: this function is only called during memory hotplug
6765 */
6766#ifdef CONFIG_MEMORY_HOTPLUG
6767void __ref free_area_init_core_hotplug(int nid)
6768{
6769 enum zone_type z;
6770 pg_data_t *pgdat = NODE_DATA(nid);
6771
6772 pgdat_init_internals(pgdat);
6773 for (z = 0; z < MAX_NR_ZONES; z++)
6774 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6775}
6776#endif
6777
6778/*
6779 * Set up the zone data structures:
6780 * - mark all pages reserved
6781 * - mark all memory queues empty
6782 * - clear the memory bitmaps
6783 *
6784 * NOTE: pgdat should get zeroed by caller.
6785 * NOTE: this function is only called during early init.
6786 */
6787static void __init free_area_init_core(struct pglist_data *pgdat)
6788{
6789 enum zone_type j;
6790 int nid = pgdat->node_id;
5f63b720 6791
03e85f9d 6792 pgdat_init_internals(pgdat);
385386cf
JW
6793 pgdat->per_cpu_nodestats = &boot_nodestats;
6794
1da177e4
LT
6795 for (j = 0; j < MAX_NR_ZONES; j++) {
6796 struct zone *zone = pgdat->node_zones + j;
e6943859 6797 unsigned long size, freesize, memmap_pages;
d91749c1 6798 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6799
febd5949 6800 size = zone->spanned_pages;
e6943859 6801 freesize = zone->present_pages;
1da177e4 6802
0e0b864e 6803 /*
9feedc9d 6804 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6805 * is used by this zone for memmap. This affects the watermark
6806 * and per-cpu initialisations
6807 */
e6943859 6808 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6809 if (!is_highmem_idx(j)) {
6810 if (freesize >= memmap_pages) {
6811 freesize -= memmap_pages;
6812 if (memmap_pages)
6813 printk(KERN_DEBUG
6814 " %s zone: %lu pages used for memmap\n",
6815 zone_names[j], memmap_pages);
6816 } else
1170532b 6817 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6818 zone_names[j], memmap_pages, freesize);
6819 }
0e0b864e 6820
6267276f 6821 /* Account for reserved pages */
9feedc9d
JL
6822 if (j == 0 && freesize > dma_reserve) {
6823 freesize -= dma_reserve;
d903ef9f 6824 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6825 zone_names[0], dma_reserve);
0e0b864e
MG
6826 }
6827
98d2b0eb 6828 if (!is_highmem_idx(j))
9feedc9d 6829 nr_kernel_pages += freesize;
01cefaef
JL
6830 /* Charge for highmem memmap if there are enough kernel pages */
6831 else if (nr_kernel_pages > memmap_pages * 2)
6832 nr_kernel_pages -= memmap_pages;
9feedc9d 6833 nr_all_pages += freesize;
1da177e4 6834
9feedc9d
JL
6835 /*
6836 * Set an approximate value for lowmem here, it will be adjusted
6837 * when the bootmem allocator frees pages into the buddy system.
6838 * And all highmem pages will be managed by the buddy system.
6839 */
03e85f9d 6840 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6841
d883c6cf 6842 if (!size)
1da177e4
LT
6843 continue;
6844
955c1cd7 6845 set_pageblock_order();
d883c6cf
JK
6846 setup_usemap(pgdat, zone, zone_start_pfn, size);
6847 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6848 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6849 }
6850}
6851
0cd842f9 6852#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6853static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6854{
b0aeba74 6855 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6856 unsigned long __maybe_unused offset = 0;
6857
1da177e4
LT
6858 /* Skip empty nodes */
6859 if (!pgdat->node_spanned_pages)
6860 return;
6861
b0aeba74
TL
6862 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6863 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6864 /* ia64 gets its own node_mem_map, before this, without bootmem */
6865 if (!pgdat->node_mem_map) {
b0aeba74 6866 unsigned long size, end;
d41dee36
AW
6867 struct page *map;
6868
e984bb43
BP
6869 /*
6870 * The zone's endpoints aren't required to be MAX_ORDER
6871 * aligned but the node_mem_map endpoints must be in order
6872 * for the buddy allocator to function correctly.
6873 */
108bcc96 6874 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6875 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6876 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6877 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6878 pgdat->node_id);
23a7052a
MR
6879 if (!map)
6880 panic("Failed to allocate %ld bytes for node %d memory map\n",
6881 size, pgdat->node_id);
a1c34a3b 6882 pgdat->node_mem_map = map + offset;
1da177e4 6883 }
0cd842f9
OS
6884 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6885 __func__, pgdat->node_id, (unsigned long)pgdat,
6886 (unsigned long)pgdat->node_mem_map);
12d810c1 6887#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6888 /*
6889 * With no DISCONTIG, the global mem_map is just set as node 0's
6890 */
c713216d 6891 if (pgdat == NODE_DATA(0)) {
1da177e4 6892 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6893 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6894 mem_map -= offset;
c713216d 6895 }
1da177e4
LT
6896#endif
6897}
0cd842f9
OS
6898#else
6899static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6900#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6901
0188dc98
OS
6902#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6903static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6904{
0188dc98
OS
6905 pgdat->first_deferred_pfn = ULONG_MAX;
6906}
6907#else
6908static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6909#endif
6910
854e8848 6911static void __init free_area_init_node(int nid)
1da177e4 6912{
9109fb7b 6913 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6914 unsigned long start_pfn = 0;
6915 unsigned long end_pfn = 0;
9109fb7b 6916
88fdf75d 6917 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6918 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6919
854e8848 6920 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6921
1da177e4 6922 pgdat->node_id = nid;
854e8848 6923 pgdat->node_start_pfn = start_pfn;
75ef7184 6924 pgdat->per_cpu_nodestats = NULL;
854e8848 6925
8d29e18a 6926 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6927 (u64)start_pfn << PAGE_SHIFT,
6928 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 6929 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6930
6931 alloc_node_mem_map(pgdat);
0188dc98 6932 pgdat_set_deferred_range(pgdat);
1da177e4 6933
7f3eb55b 6934 free_area_init_core(pgdat);
1da177e4
LT
6935}
6936
bc9331a1 6937void __init free_area_init_memoryless_node(int nid)
3f08a302 6938{
854e8848 6939 free_area_init_node(nid);
3f08a302
MR
6940}
6941
aca52c39 6942#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6943/*
4b094b78
DH
6944 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6945 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6946 */
4b094b78 6947static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6948{
6949 unsigned long pfn;
6950 u64 pgcnt = 0;
6951
6952 for (pfn = spfn; pfn < epfn; pfn++) {
6953 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6954 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6955 + pageblock_nr_pages - 1;
6956 continue;
6957 }
4b094b78
DH
6958 /*
6959 * Use a fake node/zone (0) for now. Some of these pages
6960 * (in memblock.reserved but not in memblock.memory) will
6961 * get re-initialized via reserve_bootmem_region() later.
6962 */
6963 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6964 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6965 pgcnt++;
6966 }
6967
6968 return pgcnt;
6969}
6970
a4a3ede2
PT
6971/*
6972 * Only struct pages that are backed by physical memory are zeroed and
6973 * initialized by going through __init_single_page(). But, there are some
6974 * struct pages which are reserved in memblock allocator and their fields
6975 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6976 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6977 *
6978 * This function also addresses a similar issue where struct pages are left
6979 * uninitialized because the physical address range is not covered by
6980 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6981 * layout is manually configured via memmap=, or when the highest physical
6982 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6983 */
4b094b78 6984static void __init init_unavailable_mem(void)
a4a3ede2
PT
6985{
6986 phys_addr_t start, end;
a4a3ede2 6987 u64 i, pgcnt;
907ec5fc 6988 phys_addr_t next = 0;
a4a3ede2
PT
6989
6990 /*
907ec5fc 6991 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6992 */
6993 pgcnt = 0;
6e245ad4 6994 for_each_mem_range(i, &start, &end) {
ec393a0f 6995 if (next < start)
4b094b78
DH
6996 pgcnt += init_unavailable_range(PFN_DOWN(next),
6997 PFN_UP(start));
907ec5fc
NH
6998 next = end;
6999 }
e822969c
DH
7000
7001 /*
7002 * Early sections always have a fully populated memmap for the whole
7003 * section - see pfn_valid(). If the last section has holes at the
7004 * end and that section is marked "online", the memmap will be
7005 * considered initialized. Make sure that memmap has a well defined
7006 * state.
7007 */
4b094b78
DH
7008 pgcnt += init_unavailable_range(PFN_DOWN(next),
7009 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7010
a4a3ede2
PT
7011 /*
7012 * Struct pages that do not have backing memory. This could be because
7013 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7014 */
7015 if (pgcnt)
907ec5fc 7016 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7017}
4b094b78
DH
7018#else
7019static inline void __init init_unavailable_mem(void)
7020{
7021}
aca52c39 7022#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7023
418508c1
MS
7024#if MAX_NUMNODES > 1
7025/*
7026 * Figure out the number of possible node ids.
7027 */
f9872caf 7028void __init setup_nr_node_ids(void)
418508c1 7029{
904a9553 7030 unsigned int highest;
418508c1 7031
904a9553 7032 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7033 nr_node_ids = highest + 1;
7034}
418508c1
MS
7035#endif
7036
1e01979c
TH
7037/**
7038 * node_map_pfn_alignment - determine the maximum internode alignment
7039 *
7040 * This function should be called after node map is populated and sorted.
7041 * It calculates the maximum power of two alignment which can distinguish
7042 * all the nodes.
7043 *
7044 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7045 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7046 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7047 * shifted, 1GiB is enough and this function will indicate so.
7048 *
7049 * This is used to test whether pfn -> nid mapping of the chosen memory
7050 * model has fine enough granularity to avoid incorrect mapping for the
7051 * populated node map.
7052 *
a862f68a 7053 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7054 * requirement (single node).
7055 */
7056unsigned long __init node_map_pfn_alignment(void)
7057{
7058 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7059 unsigned long start, end, mask;
98fa15f3 7060 int last_nid = NUMA_NO_NODE;
c13291a5 7061 int i, nid;
1e01979c 7062
c13291a5 7063 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7064 if (!start || last_nid < 0 || last_nid == nid) {
7065 last_nid = nid;
7066 last_end = end;
7067 continue;
7068 }
7069
7070 /*
7071 * Start with a mask granular enough to pin-point to the
7072 * start pfn and tick off bits one-by-one until it becomes
7073 * too coarse to separate the current node from the last.
7074 */
7075 mask = ~((1 << __ffs(start)) - 1);
7076 while (mask && last_end <= (start & (mask << 1)))
7077 mask <<= 1;
7078
7079 /* accumulate all internode masks */
7080 accl_mask |= mask;
7081 }
7082
7083 /* convert mask to number of pages */
7084 return ~accl_mask + 1;
7085}
7086
c713216d
MG
7087/**
7088 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7089 *
a862f68a 7090 * Return: the minimum PFN based on information provided via
7d018176 7091 * memblock_set_node().
c713216d
MG
7092 */
7093unsigned long __init find_min_pfn_with_active_regions(void)
7094{
8a1b25fe 7095 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7096}
7097
37b07e41
LS
7098/*
7099 * early_calculate_totalpages()
7100 * Sum pages in active regions for movable zone.
4b0ef1fe 7101 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7102 */
484f51f8 7103static unsigned long __init early_calculate_totalpages(void)
7e63efef 7104{
7e63efef 7105 unsigned long totalpages = 0;
c13291a5
TH
7106 unsigned long start_pfn, end_pfn;
7107 int i, nid;
7108
7109 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7110 unsigned long pages = end_pfn - start_pfn;
7e63efef 7111
37b07e41
LS
7112 totalpages += pages;
7113 if (pages)
4b0ef1fe 7114 node_set_state(nid, N_MEMORY);
37b07e41 7115 }
b8af2941 7116 return totalpages;
7e63efef
MG
7117}
7118
2a1e274a
MG
7119/*
7120 * Find the PFN the Movable zone begins in each node. Kernel memory
7121 * is spread evenly between nodes as long as the nodes have enough
7122 * memory. When they don't, some nodes will have more kernelcore than
7123 * others
7124 */
b224ef85 7125static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7126{
7127 int i, nid;
7128 unsigned long usable_startpfn;
7129 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7130 /* save the state before borrow the nodemask */
4b0ef1fe 7131 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7132 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7133 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7134 struct memblock_region *r;
b2f3eebe
TC
7135
7136 /* Need to find movable_zone earlier when movable_node is specified. */
7137 find_usable_zone_for_movable();
7138
7139 /*
7140 * If movable_node is specified, ignore kernelcore and movablecore
7141 * options.
7142 */
7143 if (movable_node_is_enabled()) {
cc6de168 7144 for_each_mem_region(r) {
136199f0 7145 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7146 continue;
7147
d622abf7 7148 nid = memblock_get_region_node(r);
b2f3eebe 7149
136199f0 7150 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7151 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7152 min(usable_startpfn, zone_movable_pfn[nid]) :
7153 usable_startpfn;
7154 }
7155
7156 goto out2;
7157 }
2a1e274a 7158
342332e6
TI
7159 /*
7160 * If kernelcore=mirror is specified, ignore movablecore option
7161 */
7162 if (mirrored_kernelcore) {
7163 bool mem_below_4gb_not_mirrored = false;
7164
cc6de168 7165 for_each_mem_region(r) {
342332e6
TI
7166 if (memblock_is_mirror(r))
7167 continue;
7168
d622abf7 7169 nid = memblock_get_region_node(r);
342332e6
TI
7170
7171 usable_startpfn = memblock_region_memory_base_pfn(r);
7172
7173 if (usable_startpfn < 0x100000) {
7174 mem_below_4gb_not_mirrored = true;
7175 continue;
7176 }
7177
7178 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7179 min(usable_startpfn, zone_movable_pfn[nid]) :
7180 usable_startpfn;
7181 }
7182
7183 if (mem_below_4gb_not_mirrored)
633bf2fe 7184 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7185
7186 goto out2;
7187 }
7188
7e63efef 7189 /*
a5c6d650
DR
7190 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7191 * amount of necessary memory.
7192 */
7193 if (required_kernelcore_percent)
7194 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7195 10000UL;
7196 if (required_movablecore_percent)
7197 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7198 10000UL;
7199
7200 /*
7201 * If movablecore= was specified, calculate what size of
7e63efef
MG
7202 * kernelcore that corresponds so that memory usable for
7203 * any allocation type is evenly spread. If both kernelcore
7204 * and movablecore are specified, then the value of kernelcore
7205 * will be used for required_kernelcore if it's greater than
7206 * what movablecore would have allowed.
7207 */
7208 if (required_movablecore) {
7e63efef
MG
7209 unsigned long corepages;
7210
7211 /*
7212 * Round-up so that ZONE_MOVABLE is at least as large as what
7213 * was requested by the user
7214 */
7215 required_movablecore =
7216 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7217 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7218 corepages = totalpages - required_movablecore;
7219
7220 required_kernelcore = max(required_kernelcore, corepages);
7221 }
7222
bde304bd
XQ
7223 /*
7224 * If kernelcore was not specified or kernelcore size is larger
7225 * than totalpages, there is no ZONE_MOVABLE.
7226 */
7227 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7228 goto out;
2a1e274a
MG
7229
7230 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7231 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7232
7233restart:
7234 /* Spread kernelcore memory as evenly as possible throughout nodes */
7235 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7236 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7237 unsigned long start_pfn, end_pfn;
7238
2a1e274a
MG
7239 /*
7240 * Recalculate kernelcore_node if the division per node
7241 * now exceeds what is necessary to satisfy the requested
7242 * amount of memory for the kernel
7243 */
7244 if (required_kernelcore < kernelcore_node)
7245 kernelcore_node = required_kernelcore / usable_nodes;
7246
7247 /*
7248 * As the map is walked, we track how much memory is usable
7249 * by the kernel using kernelcore_remaining. When it is
7250 * 0, the rest of the node is usable by ZONE_MOVABLE
7251 */
7252 kernelcore_remaining = kernelcore_node;
7253
7254 /* Go through each range of PFNs within this node */
c13291a5 7255 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7256 unsigned long size_pages;
7257
c13291a5 7258 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7259 if (start_pfn >= end_pfn)
7260 continue;
7261
7262 /* Account for what is only usable for kernelcore */
7263 if (start_pfn < usable_startpfn) {
7264 unsigned long kernel_pages;
7265 kernel_pages = min(end_pfn, usable_startpfn)
7266 - start_pfn;
7267
7268 kernelcore_remaining -= min(kernel_pages,
7269 kernelcore_remaining);
7270 required_kernelcore -= min(kernel_pages,
7271 required_kernelcore);
7272
7273 /* Continue if range is now fully accounted */
7274 if (end_pfn <= usable_startpfn) {
7275
7276 /*
7277 * Push zone_movable_pfn to the end so
7278 * that if we have to rebalance
7279 * kernelcore across nodes, we will
7280 * not double account here
7281 */
7282 zone_movable_pfn[nid] = end_pfn;
7283 continue;
7284 }
7285 start_pfn = usable_startpfn;
7286 }
7287
7288 /*
7289 * The usable PFN range for ZONE_MOVABLE is from
7290 * start_pfn->end_pfn. Calculate size_pages as the
7291 * number of pages used as kernelcore
7292 */
7293 size_pages = end_pfn - start_pfn;
7294 if (size_pages > kernelcore_remaining)
7295 size_pages = kernelcore_remaining;
7296 zone_movable_pfn[nid] = start_pfn + size_pages;
7297
7298 /*
7299 * Some kernelcore has been met, update counts and
7300 * break if the kernelcore for this node has been
b8af2941 7301 * satisfied
2a1e274a
MG
7302 */
7303 required_kernelcore -= min(required_kernelcore,
7304 size_pages);
7305 kernelcore_remaining -= size_pages;
7306 if (!kernelcore_remaining)
7307 break;
7308 }
7309 }
7310
7311 /*
7312 * If there is still required_kernelcore, we do another pass with one
7313 * less node in the count. This will push zone_movable_pfn[nid] further
7314 * along on the nodes that still have memory until kernelcore is
b8af2941 7315 * satisfied
2a1e274a
MG
7316 */
7317 usable_nodes--;
7318 if (usable_nodes && required_kernelcore > usable_nodes)
7319 goto restart;
7320
b2f3eebe 7321out2:
2a1e274a
MG
7322 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7323 for (nid = 0; nid < MAX_NUMNODES; nid++)
7324 zone_movable_pfn[nid] =
7325 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7326
20e6926d 7327out:
66918dcd 7328 /* restore the node_state */
4b0ef1fe 7329 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7330}
7331
4b0ef1fe
LJ
7332/* Any regular or high memory on that node ? */
7333static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7334{
37b07e41
LS
7335 enum zone_type zone_type;
7336
4b0ef1fe 7337 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7338 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7339 if (populated_zone(zone)) {
7b0e0c0e
OS
7340 if (IS_ENABLED(CONFIG_HIGHMEM))
7341 node_set_state(nid, N_HIGH_MEMORY);
7342 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7343 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7344 break;
7345 }
37b07e41 7346 }
37b07e41
LS
7347}
7348
51930df5
MR
7349/*
7350 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7351 * such cases we allow max_zone_pfn sorted in the descending order
7352 */
7353bool __weak arch_has_descending_max_zone_pfns(void)
7354{
7355 return false;
7356}
7357
c713216d 7358/**
9691a071 7359 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7360 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7361 *
7362 * This will call free_area_init_node() for each active node in the system.
7d018176 7363 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7364 * zone in each node and their holes is calculated. If the maximum PFN
7365 * between two adjacent zones match, it is assumed that the zone is empty.
7366 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7367 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7368 * starts where the previous one ended. For example, ZONE_DMA32 starts
7369 * at arch_max_dma_pfn.
7370 */
9691a071 7371void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7372{
c13291a5 7373 unsigned long start_pfn, end_pfn;
51930df5
MR
7374 int i, nid, zone;
7375 bool descending;
a6af2bc3 7376
c713216d
MG
7377 /* Record where the zone boundaries are */
7378 memset(arch_zone_lowest_possible_pfn, 0,
7379 sizeof(arch_zone_lowest_possible_pfn));
7380 memset(arch_zone_highest_possible_pfn, 0,
7381 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7382
7383 start_pfn = find_min_pfn_with_active_regions();
51930df5 7384 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7385
7386 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7387 if (descending)
7388 zone = MAX_NR_ZONES - i - 1;
7389 else
7390 zone = i;
7391
7392 if (zone == ZONE_MOVABLE)
2a1e274a 7393 continue;
90cae1fe 7394
51930df5
MR
7395 end_pfn = max(max_zone_pfn[zone], start_pfn);
7396 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7397 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7398
7399 start_pfn = end_pfn;
c713216d 7400 }
2a1e274a
MG
7401
7402 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7403 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7404 find_zone_movable_pfns_for_nodes();
c713216d 7405
c713216d 7406 /* Print out the zone ranges */
f88dfff5 7407 pr_info("Zone ranges:\n");
2a1e274a
MG
7408 for (i = 0; i < MAX_NR_ZONES; i++) {
7409 if (i == ZONE_MOVABLE)
7410 continue;
f88dfff5 7411 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7412 if (arch_zone_lowest_possible_pfn[i] ==
7413 arch_zone_highest_possible_pfn[i])
f88dfff5 7414 pr_cont("empty\n");
72f0ba02 7415 else
8d29e18a
JG
7416 pr_cont("[mem %#018Lx-%#018Lx]\n",
7417 (u64)arch_zone_lowest_possible_pfn[i]
7418 << PAGE_SHIFT,
7419 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7420 << PAGE_SHIFT) - 1);
2a1e274a
MG
7421 }
7422
7423 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7424 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7425 for (i = 0; i < MAX_NUMNODES; i++) {
7426 if (zone_movable_pfn[i])
8d29e18a
JG
7427 pr_info(" Node %d: %#018Lx\n", i,
7428 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7429 }
c713216d 7430
f46edbd1
DW
7431 /*
7432 * Print out the early node map, and initialize the
7433 * subsection-map relative to active online memory ranges to
7434 * enable future "sub-section" extensions of the memory map.
7435 */
f88dfff5 7436 pr_info("Early memory node ranges\n");
f46edbd1 7437 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7438 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7439 (u64)start_pfn << PAGE_SHIFT,
7440 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7441 subsection_map_init(start_pfn, end_pfn - start_pfn);
7442 }
c713216d
MG
7443
7444 /* Initialise every node */
708614e6 7445 mminit_verify_pageflags_layout();
8ef82866 7446 setup_nr_node_ids();
4b094b78 7447 init_unavailable_mem();
c713216d
MG
7448 for_each_online_node(nid) {
7449 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7450 free_area_init_node(nid);
37b07e41
LS
7451
7452 /* Any memory on that node */
7453 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7454 node_set_state(nid, N_MEMORY);
7455 check_for_memory(pgdat, nid);
c713216d
MG
7456 }
7457}
2a1e274a 7458
a5c6d650
DR
7459static int __init cmdline_parse_core(char *p, unsigned long *core,
7460 unsigned long *percent)
2a1e274a
MG
7461{
7462 unsigned long long coremem;
a5c6d650
DR
7463 char *endptr;
7464
2a1e274a
MG
7465 if (!p)
7466 return -EINVAL;
7467
a5c6d650
DR
7468 /* Value may be a percentage of total memory, otherwise bytes */
7469 coremem = simple_strtoull(p, &endptr, 0);
7470 if (*endptr == '%') {
7471 /* Paranoid check for percent values greater than 100 */
7472 WARN_ON(coremem > 100);
2a1e274a 7473
a5c6d650
DR
7474 *percent = coremem;
7475 } else {
7476 coremem = memparse(p, &p);
7477 /* Paranoid check that UL is enough for the coremem value */
7478 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7479
a5c6d650
DR
7480 *core = coremem >> PAGE_SHIFT;
7481 *percent = 0UL;
7482 }
2a1e274a
MG
7483 return 0;
7484}
ed7ed365 7485
7e63efef
MG
7486/*
7487 * kernelcore=size sets the amount of memory for use for allocations that
7488 * cannot be reclaimed or migrated.
7489 */
7490static int __init cmdline_parse_kernelcore(char *p)
7491{
342332e6
TI
7492 /* parse kernelcore=mirror */
7493 if (parse_option_str(p, "mirror")) {
7494 mirrored_kernelcore = true;
7495 return 0;
7496 }
7497
a5c6d650
DR
7498 return cmdline_parse_core(p, &required_kernelcore,
7499 &required_kernelcore_percent);
7e63efef
MG
7500}
7501
7502/*
7503 * movablecore=size sets the amount of memory for use for allocations that
7504 * can be reclaimed or migrated.
7505 */
7506static int __init cmdline_parse_movablecore(char *p)
7507{
a5c6d650
DR
7508 return cmdline_parse_core(p, &required_movablecore,
7509 &required_movablecore_percent);
7e63efef
MG
7510}
7511
ed7ed365 7512early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7513early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7514
c3d5f5f0
JL
7515void adjust_managed_page_count(struct page *page, long count)
7516{
9705bea5 7517 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7518 totalram_pages_add(count);
3dcc0571
JL
7519#ifdef CONFIG_HIGHMEM
7520 if (PageHighMem(page))
ca79b0c2 7521 totalhigh_pages_add(count);
3dcc0571 7522#endif
c3d5f5f0 7523}
3dcc0571 7524EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7525
e5cb113f 7526unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7527{
11199692
JL
7528 void *pos;
7529 unsigned long pages = 0;
69afade7 7530
11199692
JL
7531 start = (void *)PAGE_ALIGN((unsigned long)start);
7532 end = (void *)((unsigned long)end & PAGE_MASK);
7533 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7534 struct page *page = virt_to_page(pos);
7535 void *direct_map_addr;
7536
7537 /*
7538 * 'direct_map_addr' might be different from 'pos'
7539 * because some architectures' virt_to_page()
7540 * work with aliases. Getting the direct map
7541 * address ensures that we get a _writeable_
7542 * alias for the memset().
7543 */
7544 direct_map_addr = page_address(page);
dbe67df4 7545 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7546 memset(direct_map_addr, poison, PAGE_SIZE);
7547
7548 free_reserved_page(page);
69afade7
JL
7549 }
7550
7551 if (pages && s)
adb1fe9a
JP
7552 pr_info("Freeing %s memory: %ldK\n",
7553 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7554
7555 return pages;
7556}
7557
cfa11e08
JL
7558#ifdef CONFIG_HIGHMEM
7559void free_highmem_page(struct page *page)
7560{
7561 __free_reserved_page(page);
ca79b0c2 7562 totalram_pages_inc();
9705bea5 7563 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7564 totalhigh_pages_inc();
cfa11e08
JL
7565}
7566#endif
7567
7ee3d4e8
JL
7568
7569void __init mem_init_print_info(const char *str)
7570{
7571 unsigned long physpages, codesize, datasize, rosize, bss_size;
7572 unsigned long init_code_size, init_data_size;
7573
7574 physpages = get_num_physpages();
7575 codesize = _etext - _stext;
7576 datasize = _edata - _sdata;
7577 rosize = __end_rodata - __start_rodata;
7578 bss_size = __bss_stop - __bss_start;
7579 init_data_size = __init_end - __init_begin;
7580 init_code_size = _einittext - _sinittext;
7581
7582 /*
7583 * Detect special cases and adjust section sizes accordingly:
7584 * 1) .init.* may be embedded into .data sections
7585 * 2) .init.text.* may be out of [__init_begin, __init_end],
7586 * please refer to arch/tile/kernel/vmlinux.lds.S.
7587 * 3) .rodata.* may be embedded into .text or .data sections.
7588 */
7589#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7590 do { \
7591 if (start <= pos && pos < end && size > adj) \
7592 size -= adj; \
7593 } while (0)
7ee3d4e8
JL
7594
7595 adj_init_size(__init_begin, __init_end, init_data_size,
7596 _sinittext, init_code_size);
7597 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7598 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7599 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7600 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7601
7602#undef adj_init_size
7603
756a025f 7604 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7605#ifdef CONFIG_HIGHMEM
756a025f 7606 ", %luK highmem"
7ee3d4e8 7607#endif
756a025f
JP
7608 "%s%s)\n",
7609 nr_free_pages() << (PAGE_SHIFT - 10),
7610 physpages << (PAGE_SHIFT - 10),
7611 codesize >> 10, datasize >> 10, rosize >> 10,
7612 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7613 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7614 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7615#ifdef CONFIG_HIGHMEM
ca79b0c2 7616 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7617#endif
756a025f 7618 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7619}
7620
0e0b864e 7621/**
88ca3b94
RD
7622 * set_dma_reserve - set the specified number of pages reserved in the first zone
7623 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7624 *
013110a7 7625 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7626 * In the DMA zone, a significant percentage may be consumed by kernel image
7627 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7628 * function may optionally be used to account for unfreeable pages in the
7629 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7630 * smaller per-cpu batchsize.
0e0b864e
MG
7631 */
7632void __init set_dma_reserve(unsigned long new_dma_reserve)
7633{
7634 dma_reserve = new_dma_reserve;
7635}
7636
005fd4bb 7637static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7638{
1da177e4 7639
005fd4bb
SAS
7640 lru_add_drain_cpu(cpu);
7641 drain_pages(cpu);
9f8f2172 7642
005fd4bb
SAS
7643 /*
7644 * Spill the event counters of the dead processor
7645 * into the current processors event counters.
7646 * This artificially elevates the count of the current
7647 * processor.
7648 */
7649 vm_events_fold_cpu(cpu);
9f8f2172 7650
005fd4bb
SAS
7651 /*
7652 * Zero the differential counters of the dead processor
7653 * so that the vm statistics are consistent.
7654 *
7655 * This is only okay since the processor is dead and cannot
7656 * race with what we are doing.
7657 */
7658 cpu_vm_stats_fold(cpu);
7659 return 0;
1da177e4 7660}
1da177e4 7661
e03a5125
NP
7662#ifdef CONFIG_NUMA
7663int hashdist = HASHDIST_DEFAULT;
7664
7665static int __init set_hashdist(char *str)
7666{
7667 if (!str)
7668 return 0;
7669 hashdist = simple_strtoul(str, &str, 0);
7670 return 1;
7671}
7672__setup("hashdist=", set_hashdist);
7673#endif
7674
1da177e4
LT
7675void __init page_alloc_init(void)
7676{
005fd4bb
SAS
7677 int ret;
7678
e03a5125
NP
7679#ifdef CONFIG_NUMA
7680 if (num_node_state(N_MEMORY) == 1)
7681 hashdist = 0;
7682#endif
7683
005fd4bb
SAS
7684 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7685 "mm/page_alloc:dead", NULL,
7686 page_alloc_cpu_dead);
7687 WARN_ON(ret < 0);
1da177e4
LT
7688}
7689
cb45b0e9 7690/*
34b10060 7691 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7692 * or min_free_kbytes changes.
7693 */
7694static void calculate_totalreserve_pages(void)
7695{
7696 struct pglist_data *pgdat;
7697 unsigned long reserve_pages = 0;
2f6726e5 7698 enum zone_type i, j;
cb45b0e9
HA
7699
7700 for_each_online_pgdat(pgdat) {
281e3726
MG
7701
7702 pgdat->totalreserve_pages = 0;
7703
cb45b0e9
HA
7704 for (i = 0; i < MAX_NR_ZONES; i++) {
7705 struct zone *zone = pgdat->node_zones + i;
3484b2de 7706 long max = 0;
9705bea5 7707 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7708
7709 /* Find valid and maximum lowmem_reserve in the zone */
7710 for (j = i; j < MAX_NR_ZONES; j++) {
7711 if (zone->lowmem_reserve[j] > max)
7712 max = zone->lowmem_reserve[j];
7713 }
7714
41858966
MG
7715 /* we treat the high watermark as reserved pages. */
7716 max += high_wmark_pages(zone);
cb45b0e9 7717
3d6357de
AK
7718 if (max > managed_pages)
7719 max = managed_pages;
a8d01437 7720
281e3726 7721 pgdat->totalreserve_pages += max;
a8d01437 7722
cb45b0e9
HA
7723 reserve_pages += max;
7724 }
7725 }
7726 totalreserve_pages = reserve_pages;
7727}
7728
1da177e4
LT
7729/*
7730 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7731 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7732 * has a correct pages reserved value, so an adequate number of
7733 * pages are left in the zone after a successful __alloc_pages().
7734 */
7735static void setup_per_zone_lowmem_reserve(void)
7736{
7737 struct pglist_data *pgdat;
2f6726e5 7738 enum zone_type j, idx;
1da177e4 7739
ec936fc5 7740 for_each_online_pgdat(pgdat) {
1da177e4
LT
7741 for (j = 0; j < MAX_NR_ZONES; j++) {
7742 struct zone *zone = pgdat->node_zones + j;
9705bea5 7743 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7744
7745 zone->lowmem_reserve[j] = 0;
7746
2f6726e5
CL
7747 idx = j;
7748 while (idx) {
1da177e4
LT
7749 struct zone *lower_zone;
7750
2f6726e5 7751 idx--;
1da177e4 7752 lower_zone = pgdat->node_zones + idx;
d3cda233 7753
f6366156
BH
7754 if (!sysctl_lowmem_reserve_ratio[idx] ||
7755 !zone_managed_pages(lower_zone)) {
d3cda233 7756 lower_zone->lowmem_reserve[j] = 0;
f6366156 7757 continue;
d3cda233
JK
7758 } else {
7759 lower_zone->lowmem_reserve[j] =
7760 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7761 }
9705bea5 7762 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7763 }
7764 }
7765 }
cb45b0e9
HA
7766
7767 /* update totalreserve_pages */
7768 calculate_totalreserve_pages();
1da177e4
LT
7769}
7770
cfd3da1e 7771static void __setup_per_zone_wmarks(void)
1da177e4
LT
7772{
7773 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7774 unsigned long lowmem_pages = 0;
7775 struct zone *zone;
7776 unsigned long flags;
7777
7778 /* Calculate total number of !ZONE_HIGHMEM pages */
7779 for_each_zone(zone) {
7780 if (!is_highmem(zone))
9705bea5 7781 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7782 }
7783
7784 for_each_zone(zone) {
ac924c60
AM
7785 u64 tmp;
7786
1125b4e3 7787 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7788 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7789 do_div(tmp, lowmem_pages);
1da177e4
LT
7790 if (is_highmem(zone)) {
7791 /*
669ed175
NP
7792 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7793 * need highmem pages, so cap pages_min to a small
7794 * value here.
7795 *
41858966 7796 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7797 * deltas control async page reclaim, and so should
669ed175 7798 * not be capped for highmem.
1da177e4 7799 */
90ae8d67 7800 unsigned long min_pages;
1da177e4 7801
9705bea5 7802 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7803 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7804 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7805 } else {
669ed175
NP
7806 /*
7807 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7808 * proportionate to the zone's size.
7809 */
a9214443 7810 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7811 }
7812
795ae7a0
JW
7813 /*
7814 * Set the kswapd watermarks distance according to the
7815 * scale factor in proportion to available memory, but
7816 * ensure a minimum size on small systems.
7817 */
7818 tmp = max_t(u64, tmp >> 2,
9705bea5 7819 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7820 watermark_scale_factor, 10000));
7821
aa092591 7822 zone->watermark_boost = 0;
a9214443
MG
7823 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7824 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7825
1125b4e3 7826 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7827 }
cb45b0e9
HA
7828
7829 /* update totalreserve_pages */
7830 calculate_totalreserve_pages();
1da177e4
LT
7831}
7832
cfd3da1e
MG
7833/**
7834 * setup_per_zone_wmarks - called when min_free_kbytes changes
7835 * or when memory is hot-{added|removed}
7836 *
7837 * Ensures that the watermark[min,low,high] values for each zone are set
7838 * correctly with respect to min_free_kbytes.
7839 */
7840void setup_per_zone_wmarks(void)
7841{
b93e0f32
MH
7842 static DEFINE_SPINLOCK(lock);
7843
7844 spin_lock(&lock);
cfd3da1e 7845 __setup_per_zone_wmarks();
b93e0f32 7846 spin_unlock(&lock);
cfd3da1e
MG
7847}
7848
1da177e4
LT
7849/*
7850 * Initialise min_free_kbytes.
7851 *
7852 * For small machines we want it small (128k min). For large machines
8beeae86 7853 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7854 * bandwidth does not increase linearly with machine size. We use
7855 *
b8af2941 7856 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7857 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7858 *
7859 * which yields
7860 *
7861 * 16MB: 512k
7862 * 32MB: 724k
7863 * 64MB: 1024k
7864 * 128MB: 1448k
7865 * 256MB: 2048k
7866 * 512MB: 2896k
7867 * 1024MB: 4096k
7868 * 2048MB: 5792k
7869 * 4096MB: 8192k
7870 * 8192MB: 11584k
7871 * 16384MB: 16384k
7872 */
1b79acc9 7873int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7874{
7875 unsigned long lowmem_kbytes;
5f12733e 7876 int new_min_free_kbytes;
1da177e4
LT
7877
7878 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7879 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7880
7881 if (new_min_free_kbytes > user_min_free_kbytes) {
7882 min_free_kbytes = new_min_free_kbytes;
7883 if (min_free_kbytes < 128)
7884 min_free_kbytes = 128;
ee8eb9a5
JS
7885 if (min_free_kbytes > 262144)
7886 min_free_kbytes = 262144;
5f12733e
MH
7887 } else {
7888 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7889 new_min_free_kbytes, user_min_free_kbytes);
7890 }
bc75d33f 7891 setup_per_zone_wmarks();
a6cccdc3 7892 refresh_zone_stat_thresholds();
1da177e4 7893 setup_per_zone_lowmem_reserve();
6423aa81
JK
7894
7895#ifdef CONFIG_NUMA
7896 setup_min_unmapped_ratio();
7897 setup_min_slab_ratio();
7898#endif
7899
4aab2be0
VB
7900 khugepaged_min_free_kbytes_update();
7901
1da177e4
LT
7902 return 0;
7903}
e08d3fdf 7904postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
7905
7906/*
b8af2941 7907 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7908 * that we can call two helper functions whenever min_free_kbytes
7909 * changes.
7910 */
cccad5b9 7911int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7912 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7913{
da8c757b
HP
7914 int rc;
7915
7916 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7917 if (rc)
7918 return rc;
7919
5f12733e
MH
7920 if (write) {
7921 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7922 setup_per_zone_wmarks();
5f12733e 7923 }
1da177e4
LT
7924 return 0;
7925}
7926
795ae7a0 7927int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 7928 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
7929{
7930 int rc;
7931
7932 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7933 if (rc)
7934 return rc;
7935
7936 if (write)
7937 setup_per_zone_wmarks();
7938
7939 return 0;
7940}
7941
9614634f 7942#ifdef CONFIG_NUMA
6423aa81 7943static void setup_min_unmapped_ratio(void)
9614634f 7944{
6423aa81 7945 pg_data_t *pgdat;
9614634f 7946 struct zone *zone;
9614634f 7947
a5f5f91d 7948 for_each_online_pgdat(pgdat)
81cbcbc2 7949 pgdat->min_unmapped_pages = 0;
a5f5f91d 7950
9614634f 7951 for_each_zone(zone)
9705bea5
AK
7952 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7953 sysctl_min_unmapped_ratio) / 100;
9614634f 7954}
0ff38490 7955
6423aa81
JK
7956
7957int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7958 void *buffer, size_t *length, loff_t *ppos)
0ff38490 7959{
0ff38490
CL
7960 int rc;
7961
8d65af78 7962 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7963 if (rc)
7964 return rc;
7965
6423aa81
JK
7966 setup_min_unmapped_ratio();
7967
7968 return 0;
7969}
7970
7971static void setup_min_slab_ratio(void)
7972{
7973 pg_data_t *pgdat;
7974 struct zone *zone;
7975
a5f5f91d
MG
7976 for_each_online_pgdat(pgdat)
7977 pgdat->min_slab_pages = 0;
7978
0ff38490 7979 for_each_zone(zone)
9705bea5
AK
7980 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7981 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7982}
7983
7984int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7985 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
7986{
7987 int rc;
7988
7989 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7990 if (rc)
7991 return rc;
7992
7993 setup_min_slab_ratio();
7994
0ff38490
CL
7995 return 0;
7996}
9614634f
CL
7997#endif
7998
1da177e4
LT
7999/*
8000 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8001 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8002 * whenever sysctl_lowmem_reserve_ratio changes.
8003 *
8004 * The reserve ratio obviously has absolutely no relation with the
41858966 8005 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8006 * if in function of the boot time zone sizes.
8007 */
cccad5b9 8008int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8009 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8010{
86aaf255
BH
8011 int i;
8012
8d65af78 8013 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8014
8015 for (i = 0; i < MAX_NR_ZONES; i++) {
8016 if (sysctl_lowmem_reserve_ratio[i] < 1)
8017 sysctl_lowmem_reserve_ratio[i] = 0;
8018 }
8019
1da177e4
LT
8020 setup_per_zone_lowmem_reserve();
8021 return 0;
8022}
8023
cb1ef534
MG
8024static void __zone_pcp_update(struct zone *zone)
8025{
8026 unsigned int cpu;
8027
8028 for_each_possible_cpu(cpu)
8029 pageset_set_high_and_batch(zone,
8030 per_cpu_ptr(zone->pageset, cpu));
8031}
8032
8ad4b1fb
RS
8033/*
8034 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8035 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8036 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8037 */
cccad5b9 8038int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8039 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8040{
8041 struct zone *zone;
7cd2b0a3 8042 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8043 int ret;
8044
7cd2b0a3
DR
8045 mutex_lock(&pcp_batch_high_lock);
8046 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8047
8d65af78 8048 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8049 if (!write || ret < 0)
8050 goto out;
8051
8052 /* Sanity checking to avoid pcp imbalance */
8053 if (percpu_pagelist_fraction &&
8054 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8055 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8056 ret = -EINVAL;
8057 goto out;
8058 }
8059
8060 /* No change? */
8061 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8062 goto out;
c8e251fa 8063
cb1ef534
MG
8064 for_each_populated_zone(zone)
8065 __zone_pcp_update(zone);
7cd2b0a3 8066out:
c8e251fa 8067 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8068 return ret;
8ad4b1fb
RS
8069}
8070
f6f34b43
SD
8071#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8072/*
8073 * Returns the number of pages that arch has reserved but
8074 * is not known to alloc_large_system_hash().
8075 */
8076static unsigned long __init arch_reserved_kernel_pages(void)
8077{
8078 return 0;
8079}
8080#endif
8081
9017217b
PT
8082/*
8083 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8084 * machines. As memory size is increased the scale is also increased but at
8085 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8086 * quadruples the scale is increased by one, which means the size of hash table
8087 * only doubles, instead of quadrupling as well.
8088 * Because 32-bit systems cannot have large physical memory, where this scaling
8089 * makes sense, it is disabled on such platforms.
8090 */
8091#if __BITS_PER_LONG > 32
8092#define ADAPT_SCALE_BASE (64ul << 30)
8093#define ADAPT_SCALE_SHIFT 2
8094#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8095#endif
8096
1da177e4
LT
8097/*
8098 * allocate a large system hash table from bootmem
8099 * - it is assumed that the hash table must contain an exact power-of-2
8100 * quantity of entries
8101 * - limit is the number of hash buckets, not the total allocation size
8102 */
8103void *__init alloc_large_system_hash(const char *tablename,
8104 unsigned long bucketsize,
8105 unsigned long numentries,
8106 int scale,
8107 int flags,
8108 unsigned int *_hash_shift,
8109 unsigned int *_hash_mask,
31fe62b9
TB
8110 unsigned long low_limit,
8111 unsigned long high_limit)
1da177e4 8112{
31fe62b9 8113 unsigned long long max = high_limit;
1da177e4
LT
8114 unsigned long log2qty, size;
8115 void *table = NULL;
3749a8f0 8116 gfp_t gfp_flags;
ec11408a 8117 bool virt;
1da177e4
LT
8118
8119 /* allow the kernel cmdline to have a say */
8120 if (!numentries) {
8121 /* round applicable memory size up to nearest megabyte */
04903664 8122 numentries = nr_kernel_pages;
f6f34b43 8123 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8124
8125 /* It isn't necessary when PAGE_SIZE >= 1MB */
8126 if (PAGE_SHIFT < 20)
8127 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8128
9017217b
PT
8129#if __BITS_PER_LONG > 32
8130 if (!high_limit) {
8131 unsigned long adapt;
8132
8133 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8134 adapt <<= ADAPT_SCALE_SHIFT)
8135 scale++;
8136 }
8137#endif
8138
1da177e4
LT
8139 /* limit to 1 bucket per 2^scale bytes of low memory */
8140 if (scale > PAGE_SHIFT)
8141 numentries >>= (scale - PAGE_SHIFT);
8142 else
8143 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8144
8145 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8146 if (unlikely(flags & HASH_SMALL)) {
8147 /* Makes no sense without HASH_EARLY */
8148 WARN_ON(!(flags & HASH_EARLY));
8149 if (!(numentries >> *_hash_shift)) {
8150 numentries = 1UL << *_hash_shift;
8151 BUG_ON(!numentries);
8152 }
8153 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8154 numentries = PAGE_SIZE / bucketsize;
1da177e4 8155 }
6e692ed3 8156 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8157
8158 /* limit allocation size to 1/16 total memory by default */
8159 if (max == 0) {
8160 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8161 do_div(max, bucketsize);
8162 }
074b8517 8163 max = min(max, 0x80000000ULL);
1da177e4 8164
31fe62b9
TB
8165 if (numentries < low_limit)
8166 numentries = low_limit;
1da177e4
LT
8167 if (numentries > max)
8168 numentries = max;
8169
f0d1b0b3 8170 log2qty = ilog2(numentries);
1da177e4 8171
3749a8f0 8172 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8173 do {
ec11408a 8174 virt = false;
1da177e4 8175 size = bucketsize << log2qty;
ea1f5f37
PT
8176 if (flags & HASH_EARLY) {
8177 if (flags & HASH_ZERO)
26fb3dae 8178 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8179 else
7e1c4e27
MR
8180 table = memblock_alloc_raw(size,
8181 SMP_CACHE_BYTES);
ec11408a 8182 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8183 table = __vmalloc(size, gfp_flags);
ec11408a 8184 virt = true;
ea1f5f37 8185 } else {
1037b83b
ED
8186 /*
8187 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8188 * some pages at the end of hash table which
8189 * alloc_pages_exact() automatically does
1037b83b 8190 */
ec11408a
NP
8191 table = alloc_pages_exact(size, gfp_flags);
8192 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8193 }
8194 } while (!table && size > PAGE_SIZE && --log2qty);
8195
8196 if (!table)
8197 panic("Failed to allocate %s hash table\n", tablename);
8198
ec11408a
NP
8199 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8200 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8201 virt ? "vmalloc" : "linear");
1da177e4
LT
8202
8203 if (_hash_shift)
8204 *_hash_shift = log2qty;
8205 if (_hash_mask)
8206 *_hash_mask = (1 << log2qty) - 1;
8207
8208 return table;
8209}
a117e66e 8210
a5d76b54 8211/*
80934513 8212 * This function checks whether pageblock includes unmovable pages or not.
80934513 8213 *
b8af2941 8214 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8215 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8216 * check without lock_page also may miss some movable non-lru pages at
8217 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8218 *
8219 * Returns a page without holding a reference. If the caller wants to
047b9967 8220 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8221 * cannot get removed (e.g., via memory unplug) concurrently.
8222 *
a5d76b54 8223 */
4a55c047
QC
8224struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8225 int migratetype, int flags)
49ac8255 8226{
1a9f2191
QC
8227 unsigned long iter = 0;
8228 unsigned long pfn = page_to_pfn(page);
6a654e36 8229 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8230
1a9f2191
QC
8231 if (is_migrate_cma_page(page)) {
8232 /*
8233 * CMA allocations (alloc_contig_range) really need to mark
8234 * isolate CMA pageblocks even when they are not movable in fact
8235 * so consider them movable here.
8236 */
8237 if (is_migrate_cma(migratetype))
4a55c047 8238 return NULL;
1a9f2191 8239
3d680bdf 8240 return page;
1a9f2191 8241 }
4da2ce25 8242
6a654e36 8243 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8244 if (!pfn_valid_within(pfn + iter))
49ac8255 8245 continue;
29723fcc 8246
fe4c86c9 8247 page = pfn_to_page(pfn + iter);
c8721bbb 8248
c9c510dc
DH
8249 /*
8250 * Both, bootmem allocations and memory holes are marked
8251 * PG_reserved and are unmovable. We can even have unmovable
8252 * allocations inside ZONE_MOVABLE, for example when
8253 * specifying "movablecore".
8254 */
d7ab3672 8255 if (PageReserved(page))
3d680bdf 8256 return page;
d7ab3672 8257
9d789999
MH
8258 /*
8259 * If the zone is movable and we have ruled out all reserved
8260 * pages then it should be reasonably safe to assume the rest
8261 * is movable.
8262 */
8263 if (zone_idx(zone) == ZONE_MOVABLE)
8264 continue;
8265
c8721bbb
NH
8266 /*
8267 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8268 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8269 * We need not scan over tail pages because we don't
c8721bbb
NH
8270 * handle each tail page individually in migration.
8271 */
1da2f328 8272 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8273 struct page *head = compound_head(page);
8274 unsigned int skip_pages;
464c7ffb 8275
1da2f328
RR
8276 if (PageHuge(page)) {
8277 if (!hugepage_migration_supported(page_hstate(head)))
8278 return page;
8279 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8280 return page;
1da2f328 8281 }
464c7ffb 8282
d8c6546b 8283 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8284 iter += skip_pages - 1;
c8721bbb
NH
8285 continue;
8286 }
8287
97d255c8
MK
8288 /*
8289 * We can't use page_count without pin a page
8290 * because another CPU can free compound page.
8291 * This check already skips compound tails of THP
0139aa7b 8292 * because their page->_refcount is zero at all time.
97d255c8 8293 */
fe896d18 8294 if (!page_ref_count(page)) {
49ac8255
KH
8295 if (PageBuddy(page))
8296 iter += (1 << page_order(page)) - 1;
8297 continue;
8298 }
97d255c8 8299
b023f468
WC
8300 /*
8301 * The HWPoisoned page may be not in buddy system, and
8302 * page_count() is not 0.
8303 */
756d25be 8304 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8305 continue;
8306
aa218795
DH
8307 /*
8308 * We treat all PageOffline() pages as movable when offlining
8309 * to give drivers a chance to decrement their reference count
8310 * in MEM_GOING_OFFLINE in order to indicate that these pages
8311 * can be offlined as there are no direct references anymore.
8312 * For actually unmovable PageOffline() where the driver does
8313 * not support this, we will fail later when trying to actually
8314 * move these pages that still have a reference count > 0.
8315 * (false negatives in this function only)
8316 */
8317 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8318 continue;
8319
fe4c86c9 8320 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8321 continue;
8322
49ac8255 8323 /*
6b4f7799
JW
8324 * If there are RECLAIMABLE pages, we need to check
8325 * it. But now, memory offline itself doesn't call
8326 * shrink_node_slabs() and it still to be fixed.
49ac8255 8327 */
3d680bdf 8328 return page;
49ac8255 8329 }
4a55c047 8330 return NULL;
49ac8255
KH
8331}
8332
8df995f6 8333#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8334static unsigned long pfn_max_align_down(unsigned long pfn)
8335{
8336 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8337 pageblock_nr_pages) - 1);
8338}
8339
8340static unsigned long pfn_max_align_up(unsigned long pfn)
8341{
8342 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8343 pageblock_nr_pages));
8344}
8345
041d3a8c 8346/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8347static int __alloc_contig_migrate_range(struct compact_control *cc,
8348 unsigned long start, unsigned long end)
041d3a8c
MN
8349{
8350 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8351 unsigned int nr_reclaimed;
041d3a8c
MN
8352 unsigned long pfn = start;
8353 unsigned int tries = 0;
8354 int ret = 0;
8b94e0b8
JK
8355 struct migration_target_control mtc = {
8356 .nid = zone_to_nid(cc->zone),
8357 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8358 };
041d3a8c 8359
be49a6e1 8360 migrate_prep();
041d3a8c 8361
bb13ffeb 8362 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8363 if (fatal_signal_pending(current)) {
8364 ret = -EINTR;
8365 break;
8366 }
8367
bb13ffeb
MG
8368 if (list_empty(&cc->migratepages)) {
8369 cc->nr_migratepages = 0;
edc2ca61 8370 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8371 if (!pfn) {
8372 ret = -EINTR;
8373 break;
8374 }
8375 tries = 0;
8376 } else if (++tries == 5) {
8377 ret = ret < 0 ? ret : -EBUSY;
8378 break;
8379 }
8380
beb51eaa
MK
8381 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8382 &cc->migratepages);
8383 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8384
8b94e0b8
JK
8385 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8386 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8387 }
2a6f5124
SP
8388 if (ret < 0) {
8389 putback_movable_pages(&cc->migratepages);
8390 return ret;
8391 }
8392 return 0;
041d3a8c
MN
8393}
8394
8395/**
8396 * alloc_contig_range() -- tries to allocate given range of pages
8397 * @start: start PFN to allocate
8398 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8399 * @migratetype: migratetype of the underlaying pageblocks (either
8400 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8401 * in range must have the same migratetype and it must
8402 * be either of the two.
ca96b625 8403 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8404 *
8405 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8406 * aligned. The PFN range must belong to a single zone.
041d3a8c 8407 *
2c7452a0
MK
8408 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8409 * pageblocks in the range. Once isolated, the pageblocks should not
8410 * be modified by others.
041d3a8c 8411 *
a862f68a 8412 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8413 * pages which PFN is in [start, end) are allocated for the caller and
8414 * need to be freed with free_contig_range().
8415 */
0815f3d8 8416int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8417 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8418{
041d3a8c 8419 unsigned long outer_start, outer_end;
d00181b9
KS
8420 unsigned int order;
8421 int ret = 0;
041d3a8c 8422
bb13ffeb
MG
8423 struct compact_control cc = {
8424 .nr_migratepages = 0,
8425 .order = -1,
8426 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8427 .mode = MIGRATE_SYNC,
bb13ffeb 8428 .ignore_skip_hint = true,
2583d671 8429 .no_set_skip_hint = true,
7dea19f9 8430 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8431 .alloc_contig = true,
bb13ffeb
MG
8432 };
8433 INIT_LIST_HEAD(&cc.migratepages);
8434
041d3a8c
MN
8435 /*
8436 * What we do here is we mark all pageblocks in range as
8437 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8438 * have different sizes, and due to the way page allocator
8439 * work, we align the range to biggest of the two pages so
8440 * that page allocator won't try to merge buddies from
8441 * different pageblocks and change MIGRATE_ISOLATE to some
8442 * other migration type.
8443 *
8444 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8445 * migrate the pages from an unaligned range (ie. pages that
8446 * we are interested in). This will put all the pages in
8447 * range back to page allocator as MIGRATE_ISOLATE.
8448 *
8449 * When this is done, we take the pages in range from page
8450 * allocator removing them from the buddy system. This way
8451 * page allocator will never consider using them.
8452 *
8453 * This lets us mark the pageblocks back as
8454 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8455 * aligned range but not in the unaligned, original range are
8456 * put back to page allocator so that buddy can use them.
8457 */
8458
8459 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8460 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8461 if (ret)
86a595f9 8462 return ret;
041d3a8c 8463
8ef5849f
JK
8464 /*
8465 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8466 * So, just fall through. test_pages_isolated() has a tracepoint
8467 * which will report the busy page.
8468 *
8469 * It is possible that busy pages could become available before
8470 * the call to test_pages_isolated, and the range will actually be
8471 * allocated. So, if we fall through be sure to clear ret so that
8472 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8473 */
bb13ffeb 8474 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8475 if (ret && ret != -EBUSY)
041d3a8c 8476 goto done;
63cd4489 8477 ret =0;
041d3a8c
MN
8478
8479 /*
8480 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8481 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8482 * more, all pages in [start, end) are free in page allocator.
8483 * What we are going to do is to allocate all pages from
8484 * [start, end) (that is remove them from page allocator).
8485 *
8486 * The only problem is that pages at the beginning and at the
8487 * end of interesting range may be not aligned with pages that
8488 * page allocator holds, ie. they can be part of higher order
8489 * pages. Because of this, we reserve the bigger range and
8490 * once this is done free the pages we are not interested in.
8491 *
8492 * We don't have to hold zone->lock here because the pages are
8493 * isolated thus they won't get removed from buddy.
8494 */
8495
8496 lru_add_drain_all();
041d3a8c
MN
8497
8498 order = 0;
8499 outer_start = start;
8500 while (!PageBuddy(pfn_to_page(outer_start))) {
8501 if (++order >= MAX_ORDER) {
8ef5849f
JK
8502 outer_start = start;
8503 break;
041d3a8c
MN
8504 }
8505 outer_start &= ~0UL << order;
8506 }
8507
8ef5849f
JK
8508 if (outer_start != start) {
8509 order = page_order(pfn_to_page(outer_start));
8510
8511 /*
8512 * outer_start page could be small order buddy page and
8513 * it doesn't include start page. Adjust outer_start
8514 * in this case to report failed page properly
8515 * on tracepoint in test_pages_isolated()
8516 */
8517 if (outer_start + (1UL << order) <= start)
8518 outer_start = start;
8519 }
8520
041d3a8c 8521 /* Make sure the range is really isolated. */
756d25be 8522 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8523 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8524 __func__, outer_start, end);
041d3a8c
MN
8525 ret = -EBUSY;
8526 goto done;
8527 }
8528
49f223a9 8529 /* Grab isolated pages from freelists. */
bb13ffeb 8530 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8531 if (!outer_end) {
8532 ret = -EBUSY;
8533 goto done;
8534 }
8535
8536 /* Free head and tail (if any) */
8537 if (start != outer_start)
8538 free_contig_range(outer_start, start - outer_start);
8539 if (end != outer_end)
8540 free_contig_range(end, outer_end - end);
8541
8542done:
8543 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8544 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8545 return ret;
8546}
255f5985 8547EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8548
8549static int __alloc_contig_pages(unsigned long start_pfn,
8550 unsigned long nr_pages, gfp_t gfp_mask)
8551{
8552 unsigned long end_pfn = start_pfn + nr_pages;
8553
8554 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8555 gfp_mask);
8556}
8557
8558static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8559 unsigned long nr_pages)
8560{
8561 unsigned long i, end_pfn = start_pfn + nr_pages;
8562 struct page *page;
8563
8564 for (i = start_pfn; i < end_pfn; i++) {
8565 page = pfn_to_online_page(i);
8566 if (!page)
8567 return false;
8568
8569 if (page_zone(page) != z)
8570 return false;
8571
8572 if (PageReserved(page))
8573 return false;
8574
8575 if (page_count(page) > 0)
8576 return false;
8577
8578 if (PageHuge(page))
8579 return false;
8580 }
8581 return true;
8582}
8583
8584static bool zone_spans_last_pfn(const struct zone *zone,
8585 unsigned long start_pfn, unsigned long nr_pages)
8586{
8587 unsigned long last_pfn = start_pfn + nr_pages - 1;
8588
8589 return zone_spans_pfn(zone, last_pfn);
8590}
8591
8592/**
8593 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8594 * @nr_pages: Number of contiguous pages to allocate
8595 * @gfp_mask: GFP mask to limit search and used during compaction
8596 * @nid: Target node
8597 * @nodemask: Mask for other possible nodes
8598 *
8599 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8600 * on an applicable zonelist to find a contiguous pfn range which can then be
8601 * tried for allocation with alloc_contig_range(). This routine is intended
8602 * for allocation requests which can not be fulfilled with the buddy allocator.
8603 *
8604 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8605 * power of two then the alignment is guaranteed to be to the given nr_pages
8606 * (e.g. 1GB request would be aligned to 1GB).
8607 *
8608 * Allocated pages can be freed with free_contig_range() or by manually calling
8609 * __free_page() on each allocated page.
8610 *
8611 * Return: pointer to contiguous pages on success, or NULL if not successful.
8612 */
8613struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8614 int nid, nodemask_t *nodemask)
8615{
8616 unsigned long ret, pfn, flags;
8617 struct zonelist *zonelist;
8618 struct zone *zone;
8619 struct zoneref *z;
8620
8621 zonelist = node_zonelist(nid, gfp_mask);
8622 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8623 gfp_zone(gfp_mask), nodemask) {
8624 spin_lock_irqsave(&zone->lock, flags);
8625
8626 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8627 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8628 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8629 /*
8630 * We release the zone lock here because
8631 * alloc_contig_range() will also lock the zone
8632 * at some point. If there's an allocation
8633 * spinning on this lock, it may win the race
8634 * and cause alloc_contig_range() to fail...
8635 */
8636 spin_unlock_irqrestore(&zone->lock, flags);
8637 ret = __alloc_contig_pages(pfn, nr_pages,
8638 gfp_mask);
8639 if (!ret)
8640 return pfn_to_page(pfn);
8641 spin_lock_irqsave(&zone->lock, flags);
8642 }
8643 pfn += nr_pages;
8644 }
8645 spin_unlock_irqrestore(&zone->lock, flags);
8646 }
8647 return NULL;
8648}
4eb0716e 8649#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8650
4eb0716e 8651void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8652{
bcc2b02f
MS
8653 unsigned int count = 0;
8654
8655 for (; nr_pages--; pfn++) {
8656 struct page *page = pfn_to_page(pfn);
8657
8658 count += page_count(page) != 1;
8659 __free_page(page);
8660 }
8661 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8662}
255f5985 8663EXPORT_SYMBOL(free_contig_range);
041d3a8c 8664
0a647f38
CS
8665/*
8666 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8667 * page high values need to be recalulated.
8668 */
4ed7e022
JL
8669void __meminit zone_pcp_update(struct zone *zone)
8670{
c8e251fa 8671 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8672 __zone_pcp_update(zone);
c8e251fa 8673 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8674}
4ed7e022 8675
340175b7
JL
8676void zone_pcp_reset(struct zone *zone)
8677{
8678 unsigned long flags;
5a883813
MK
8679 int cpu;
8680 struct per_cpu_pageset *pset;
340175b7
JL
8681
8682 /* avoid races with drain_pages() */
8683 local_irq_save(flags);
8684 if (zone->pageset != &boot_pageset) {
5a883813
MK
8685 for_each_online_cpu(cpu) {
8686 pset = per_cpu_ptr(zone->pageset, cpu);
8687 drain_zonestat(zone, pset);
8688 }
340175b7
JL
8689 free_percpu(zone->pageset);
8690 zone->pageset = &boot_pageset;
8691 }
8692 local_irq_restore(flags);
8693}
8694
6dcd73d7 8695#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8696/*
257bea71
DH
8697 * All pages in the range must be in a single zone, must not contain holes,
8698 * must span full sections, and must be isolated before calling this function.
0c0e6195 8699 */
257bea71 8700void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8701{
257bea71 8702 unsigned long pfn = start_pfn;
0c0e6195
KH
8703 struct page *page;
8704 struct zone *zone;
0ee5f4f3 8705 unsigned int order;
0c0e6195 8706 unsigned long flags;
5557c766 8707
2d070eab 8708 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8709 zone = page_zone(pfn_to_page(pfn));
8710 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8711 while (pfn < end_pfn) {
0c0e6195 8712 page = pfn_to_page(pfn);
b023f468
WC
8713 /*
8714 * The HWPoisoned page may be not in buddy system, and
8715 * page_count() is not 0.
8716 */
8717 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8718 pfn++;
b023f468
WC
8719 continue;
8720 }
aa218795
DH
8721 /*
8722 * At this point all remaining PageOffline() pages have a
8723 * reference count of 0 and can simply be skipped.
8724 */
8725 if (PageOffline(page)) {
8726 BUG_ON(page_count(page));
8727 BUG_ON(PageBuddy(page));
8728 pfn++;
aa218795
DH
8729 continue;
8730 }
b023f468 8731
0c0e6195
KH
8732 BUG_ON(page_count(page));
8733 BUG_ON(!PageBuddy(page));
8734 order = page_order(page);
6ab01363 8735 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8736 pfn += (1 << order);
8737 }
8738 spin_unlock_irqrestore(&zone->lock, flags);
8739}
8740#endif
8d22ba1b 8741
8d22ba1b
WF
8742bool is_free_buddy_page(struct page *page)
8743{
8744 struct zone *zone = page_zone(page);
8745 unsigned long pfn = page_to_pfn(page);
8746 unsigned long flags;
7aeb09f9 8747 unsigned int order;
8d22ba1b
WF
8748
8749 spin_lock_irqsave(&zone->lock, flags);
8750 for (order = 0; order < MAX_ORDER; order++) {
8751 struct page *page_head = page - (pfn & ((1 << order) - 1));
8752
8753 if (PageBuddy(page_head) && page_order(page_head) >= order)
8754 break;
8755 }
8756 spin_unlock_irqrestore(&zone->lock, flags);
8757
8758 return order < MAX_ORDER;
8759}
d4ae9916
NH
8760
8761#ifdef CONFIG_MEMORY_FAILURE
06be6ff3
OS
8762/*
8763 * Break down a higher-order page in sub-pages, and keep our target out of
8764 * buddy allocator.
8765 */
8766static void break_down_buddy_pages(struct zone *zone, struct page *page,
8767 struct page *target, int low, int high,
8768 int migratetype)
8769{
8770 unsigned long size = 1 << high;
8771 struct page *current_buddy, *next_page;
8772
8773 while (high > low) {
8774 high--;
8775 size >>= 1;
8776
8777 if (target >= &page[size]) {
8778 next_page = page + size;
8779 current_buddy = page;
8780 } else {
8781 next_page = page;
8782 current_buddy = page + size;
8783 }
8784
8785 if (set_page_guard(zone, current_buddy, high, migratetype))
8786 continue;
8787
8788 if (current_buddy != target) {
8789 add_to_free_list(current_buddy, zone, high, migratetype);
8790 set_page_order(current_buddy, high);
8791 page = next_page;
8792 }
8793 }
8794}
8795
8796/*
8797 * Take a page that will be marked as poisoned off the buddy allocator.
8798 */
8799bool take_page_off_buddy(struct page *page)
8800{
8801 struct zone *zone = page_zone(page);
8802 unsigned long pfn = page_to_pfn(page);
8803 unsigned long flags;
8804 unsigned int order;
8805 bool ret = false;
8806
8807 spin_lock_irqsave(&zone->lock, flags);
8808 for (order = 0; order < MAX_ORDER; order++) {
8809 struct page *page_head = page - (pfn & ((1 << order) - 1));
8810 int buddy_order = page_order(page_head);
8811
8812 if (PageBuddy(page_head) && buddy_order >= order) {
8813 unsigned long pfn_head = page_to_pfn(page_head);
8814 int migratetype = get_pfnblock_migratetype(page_head,
8815 pfn_head);
8816
8817 del_page_from_free_list(page_head, zone, buddy_order);
8818 break_down_buddy_pages(zone, page_head, page, 0,
8819 buddy_order, migratetype);
8820 ret = true;
8821 break;
8822 }
8823 if (page_count(page_head) > 0)
8824 break;
8825 }
8826 spin_unlock_irqrestore(&zone->lock, flags);
8827 return ret;
8828}
d4ae9916 8829#endif