]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/page_alloc.c
mm: slub: optimise the SLUB fast path to avoid pfmemalloc checks
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
43506fad 567 combined_idx = buddy_idx & page_idx;
1da177e4
LT
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
6dda9d55
CZ
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
b7f50cfa 582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 583 struct page *higher_page, *higher_buddy;
43506fad
KC
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596out:
1da177e4
LT
597 zone->free_area[order].nr_free++;
598}
599
092cead6
KM
600/*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605static inline void free_page_mlock(struct page *page)
606{
092cead6
KM
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609}
092cead6 610
224abf92 611static inline int free_pages_check(struct page *page)
1da177e4 612{
92be2e33
NP
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
a3af9c38 615 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
224abf92 618 bad_page(page);
79f4b7bf 619 return 1;
8cc3b392 620 }
79f4b7bf
HD
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
1da177e4
LT
624}
625
626/*
5f8dcc21 627 * Frees a number of pages from the PCP lists
1da177e4 628 * Assumes all pages on list are in same zone, and of same order.
207f36ee 629 * count is the number of pages to free.
1da177e4
LT
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
5f8dcc21
MG
637static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
1da177e4 639{
5f8dcc21 640 int migratetype = 0;
a6f9edd6 641 int batch_free = 0;
72853e29 642 int to_free = count;
5f8dcc21 643
c54ad30c 644 spin_lock(&zone->lock);
93e4a89a 645 zone->all_unreclaimable = 0;
1da177e4 646 zone->pages_scanned = 0;
f2260e6b 647
72853e29 648 while (to_free) {
48db57f8 649 struct page *page;
5f8dcc21
MG
650 struct list_head *list;
651
652 /*
a6f9edd6
MG
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
5f8dcc21
MG
658 */
659 do {
a6f9edd6 660 batch_free++;
5f8dcc21
MG
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
48db57f8 665
1d16871d
NK
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
a6f9edd6
MG
670 do {
671 page = list_entry(list->prev, struct page, lru);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page->lru);
a7016235
HD
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, page_private(page));
676 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 677 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 678 }
72853e29 679 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 680 spin_unlock(&zone->lock);
1da177e4
LT
681}
682
ed0ae21d
MG
683static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
1da177e4 685{
006d22d9 686 spin_lock(&zone->lock);
93e4a89a 687 zone->all_unreclaimable = 0;
006d22d9 688 zone->pages_scanned = 0;
f2260e6b 689
ed0ae21d 690 __free_one_page(page, zone, order, migratetype);
72853e29 691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 692 spin_unlock(&zone->lock);
48db57f8
NP
693}
694
ec95f53a 695static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 696{
1da177e4 697 int i;
8cc3b392 698 int bad = 0;
1da177e4 699
b413d48a 700 trace_mm_page_free(page, order);
b1eeab67
VN
701 kmemcheck_free_shadow(page, order);
702
8dd60a3a
AA
703 if (PageAnon(page))
704 page->mapping = NULL;
705 for (i = 0; i < (1 << order); i++)
706 bad += free_pages_check(page + i);
8cc3b392 707 if (bad)
ec95f53a 708 return false;
689bcebf 709
3ac7fe5a 710 if (!PageHighMem(page)) {
9858db50 711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
712 debug_check_no_obj_freed(page_address(page),
713 PAGE_SIZE << order);
714 }
dafb1367 715 arch_free_page(page, order);
48db57f8 716 kernel_map_pages(page, 1 << order, 0);
dafb1367 717
ec95f53a
KM
718 return true;
719}
720
721static void __free_pages_ok(struct page *page, unsigned int order)
722{
723 unsigned long flags;
724 int wasMlocked = __TestClearPageMlocked(page);
725
726 if (!free_pages_prepare(page, order))
727 return;
728
c54ad30c 729 local_irq_save(flags);
c277331d 730 if (unlikely(wasMlocked))
da456f14 731 free_page_mlock(page);
f8891e5e 732 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
733 free_one_page(page_zone(page), page, order,
734 get_pageblock_migratetype(page));
c54ad30c 735 local_irq_restore(flags);
1da177e4
LT
736}
737
af370fb8 738void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 739{
c3993076
JW
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
a226f6c8 742
c3993076
JW
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
a226f6c8 751 }
c3993076
JW
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
a226f6c8
DH
755}
756
47118af0
MN
757#ifdef CONFIG_CMA
758/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759void __init init_cma_reserved_pageblock(struct page *page)
760{
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773}
774#endif
1da177e4
LT
775
776/*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
085cc7d5 790static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
791 int low, int high, struct free_area *area,
792 int migratetype)
1da177e4
LT
793{
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
725d704e 800 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
801
802#ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 continue;
816 }
817#endif
b2a0ac88 818 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
819 area->nr_free++;
820 set_page_order(&page[size], high);
821 }
1da177e4
LT
822}
823
1da177e4
LT
824/*
825 * This page is about to be returned from the page allocator
826 */
2a7684a2 827static inline int check_new_page(struct page *page)
1da177e4 828{
92be2e33
NP
829 if (unlikely(page_mapcount(page) |
830 (page->mapping != NULL) |
a3af9c38 831 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 (mem_cgroup_bad_page_check(page)))) {
224abf92 834 bad_page(page);
689bcebf 835 return 1;
8cc3b392 836 }
2a7684a2
WF
837 return 0;
838}
839
840static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841{
842 int i;
843
844 for (i = 0; i < (1 << order); i++) {
845 struct page *p = page + i;
846 if (unlikely(check_new_page(p)))
847 return 1;
848 }
689bcebf 849
4c21e2f2 850 set_page_private(page, 0);
7835e98b 851 set_page_refcounted(page);
cc102509
NP
852
853 arch_alloc_page(page, order);
1da177e4 854 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
855
856 if (gfp_flags & __GFP_ZERO)
857 prep_zero_page(page, order, gfp_flags);
858
859 if (order && (gfp_flags & __GFP_COMP))
860 prep_compound_page(page, order);
861
689bcebf 862 return 0;
1da177e4
LT
863}
864
56fd56b8
MG
865/*
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
868 */
728ec980
MG
869static inline
870struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
871 int migratetype)
872{
873 unsigned int current_order;
874 struct free_area * area;
875 struct page *page;
876
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 area = &(zone->free_area[current_order]);
880 if (list_empty(&area->free_list[migratetype]))
881 continue;
882
883 page = list_entry(area->free_list[migratetype].next,
884 struct page, lru);
885 list_del(&page->lru);
886 rmv_page_order(page);
887 area->nr_free--;
56fd56b8
MG
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
890 }
891
892 return NULL;
893}
894
895
b2a0ac88
MG
896/*
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
899 */
47118af0
MN
900static int fallbacks[MIGRATE_TYPES][4] = {
901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903#ifdef CONFIG_CMA
904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
906#else
907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
908#endif
6d4a4916
MN
909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
911};
912
c361be55
MG
913/*
914 * Move the free pages in a range to the free lists of the requested type.
d9c23400 915 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
916 * boundary. If alignment is required, use move_freepages_block()
917 */
b69a7288
AB
918static int move_freepages(struct zone *zone,
919 struct page *start_page, struct page *end_page,
920 int migratetype)
c361be55
MG
921{
922 struct page *page;
923 unsigned long order;
d100313f 924 int pages_moved = 0;
c361be55
MG
925
926#ifndef CONFIG_HOLES_IN_ZONE
927 /*
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
ac0e5b7a 932 * grouping pages by mobility
c361be55
MG
933 */
934 BUG_ON(page_zone(start_page) != page_zone(end_page));
935#endif
936
937 for (page = start_page; page <= end_page;) {
344c790e
AL
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940
c361be55
MG
941 if (!pfn_valid_within(page_to_pfn(page))) {
942 page++;
943 continue;
944 }
945
946 if (!PageBuddy(page)) {
947 page++;
948 continue;
949 }
950
951 order = page_order(page);
84be48d8
KS
952 list_move(&page->lru,
953 &zone->free_area[order].free_list[migratetype]);
c361be55 954 page += 1 << order;
d100313f 955 pages_moved += 1 << order;
c361be55
MG
956 }
957
d100313f 958 return pages_moved;
c361be55
MG
959}
960
ee6f509c 961int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 962 int migratetype)
c361be55
MG
963{
964 unsigned long start_pfn, end_pfn;
965 struct page *start_page, *end_page;
966
967 start_pfn = page_to_pfn(page);
d9c23400 968 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 969 start_page = pfn_to_page(start_pfn);
d9c23400
MG
970 end_page = start_page + pageblock_nr_pages - 1;
971 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
972
973 /* Do not cross zone boundaries */
974 if (start_pfn < zone->zone_start_pfn)
975 start_page = page;
976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 return 0;
978
979 return move_freepages(zone, start_page, end_page, migratetype);
980}
981
2f66a68f
MG
982static void change_pageblock_range(struct page *pageblock_page,
983 int start_order, int migratetype)
984{
985 int nr_pageblocks = 1 << (start_order - pageblock_order);
986
987 while (nr_pageblocks--) {
988 set_pageblock_migratetype(pageblock_page, migratetype);
989 pageblock_page += pageblock_nr_pages;
990 }
991}
992
b2a0ac88 993/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
994static inline struct page *
995__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
996{
997 struct free_area * area;
998 int current_order;
999 struct page *page;
1000 int migratetype, i;
1001
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order = MAX_ORDER-1; current_order >= order;
1004 --current_order) {
6d4a4916 1005 for (i = 0;; i++) {
b2a0ac88
MG
1006 migratetype = fallbacks[start_migratetype][i];
1007
56fd56b8
MG
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1010 break;
e010487d 1011
b2a0ac88
MG
1012 area = &(zone->free_area[current_order]);
1013 if (list_empty(&area->free_list[migratetype]))
1014 continue;
1015
1016 page = list_entry(area->free_list[migratetype].next,
1017 struct page, lru);
1018 area->nr_free--;
1019
1020 /*
c361be55 1021 * If breaking a large block of pages, move all free
46dafbca
MG
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
25985edc 1024 * aggressive about taking ownership of free pages
47118af0
MN
1025 *
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
b2a0ac88 1031 */
47118af0
MN
1032 if (!is_migrate_cma(migratetype) &&
1033 (unlikely(current_order >= pageblock_order / 2) ||
1034 start_migratetype == MIGRATE_RECLAIMABLE ||
1035 page_group_by_mobility_disabled)) {
1036 int pages;
46dafbca
MG
1037 pages = move_freepages_block(zone, page,
1038 start_migratetype);
1039
1040 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1041 if (pages >= (1 << (pageblock_order-1)) ||
1042 page_group_by_mobility_disabled)
46dafbca
MG
1043 set_pageblock_migratetype(page,
1044 start_migratetype);
1045
b2a0ac88 1046 migratetype = start_migratetype;
c361be55 1047 }
b2a0ac88
MG
1048
1049 /* Remove the page from the freelists */
1050 list_del(&page->lru);
1051 rmv_page_order(page);
b2a0ac88 1052
2f66a68f 1053 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1054 if (current_order >= pageblock_order &&
1055 !is_migrate_cma(migratetype))
2f66a68f 1056 change_pageblock_range(page, current_order,
b2a0ac88
MG
1057 start_migratetype);
1058
47118af0
MN
1059 expand(zone, page, order, current_order, area,
1060 is_migrate_cma(migratetype)
1061 ? migratetype : start_migratetype);
e0fff1bd
MG
1062
1063 trace_mm_page_alloc_extfrag(page, order, current_order,
1064 start_migratetype, migratetype);
1065
b2a0ac88
MG
1066 return page;
1067 }
1068 }
1069
728ec980 1070 return NULL;
b2a0ac88
MG
1071}
1072
56fd56b8 1073/*
1da177e4
LT
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1076 */
b2a0ac88
MG
1077static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 int migratetype)
1da177e4 1079{
1da177e4
LT
1080 struct page *page;
1081
728ec980 1082retry_reserve:
56fd56b8 1083 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1084
728ec980 1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1086 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1087
728ec980
MG
1088 /*
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1092 */
1093 if (!page) {
1094 migratetype = MIGRATE_RESERVE;
1095 goto retry_reserve;
1096 }
1097 }
1098
0d3d062a 1099 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1100 return page;
1da177e4
LT
1101}
1102
5f63b720 1103/*
1da177e4
LT
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1107 */
5f63b720 1108static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1109 unsigned long count, struct list_head *list,
e084b2d9 1110 int migratetype, int cold)
1da177e4 1111{
47118af0 1112 int mt = migratetype, i;
5f63b720 1113
c54ad30c 1114 spin_lock(&zone->lock);
1da177e4 1115 for (i = 0; i < count; ++i) {
b2a0ac88 1116 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1117 if (unlikely(page == NULL))
1da177e4 1118 break;
81eabcbe
MG
1119
1120 /*
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1127 * properly.
1128 */
e084b2d9
MG
1129 if (likely(cold == 0))
1130 list_add(&page->lru, list);
1131 else
1132 list_add_tail(&page->lru, list);
47118af0
MN
1133 if (IS_ENABLED(CONFIG_CMA)) {
1134 mt = get_pageblock_migratetype(page);
1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 mt = migratetype;
1137 }
1138 set_page_private(page, mt);
81eabcbe 1139 list = &page->lru;
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
451ea25d 1299 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1300
ec95f53a 1301 if (!free_pages_prepare(page, 0))
689bcebf
HD
1302 return;
1303
5f8dcc21
MG
1304 migratetype = get_pageblock_migratetype(page);
1305 set_page_private(page, migratetype);
1da177e4 1306 local_irq_save(flags);
c277331d 1307 if (unlikely(wasMlocked))
da456f14 1308 free_page_mlock(page);
f8891e5e 1309 __count_vm_event(PGFREE);
da456f14 1310
5f8dcc21
MG
1311 /*
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1317 */
1318 if (migratetype >= MIGRATE_PCPTYPES) {
1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 free_one_page(zone, page, 0, migratetype);
1321 goto out;
1322 }
1323 migratetype = MIGRATE_MOVABLE;
1324 }
1325
99dcc3e5 1326 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1327 if (cold)
5f8dcc21 1328 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1329 else
5f8dcc21 1330 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1331 pcp->count++;
48db57f8 1332 if (pcp->count >= pcp->high) {
5f8dcc21 1333 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1334 pcp->count -= pcp->batch;
1335 }
5f8dcc21
MG
1336
1337out:
1da177e4 1338 local_irq_restore(flags);
1da177e4
LT
1339}
1340
cc59850e
KK
1341/*
1342 * Free a list of 0-order pages
1343 */
1344void free_hot_cold_page_list(struct list_head *list, int cold)
1345{
1346 struct page *page, *next;
1347
1348 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1349 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1350 free_hot_cold_page(page, cold);
1351 }
1352}
1353
8dfcc9ba
NP
1354/*
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1358 *
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1361 */
1362void split_page(struct page *page, unsigned int order)
1363{
1364 int i;
1365
725d704e
NP
1366 VM_BUG_ON(PageCompound(page));
1367 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1368
1369#ifdef CONFIG_KMEMCHECK
1370 /*
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1373 */
1374 if (kmemcheck_page_is_tracked(page))
1375 split_page(virt_to_page(page[0].shadow), order);
1376#endif
1377
7835e98b
NP
1378 for (i = 1; i < (1 << order); i++)
1379 set_page_refcounted(page + i);
8dfcc9ba 1380}
8dfcc9ba 1381
748446bb
MG
1382/*
1383 * Similar to split_page except the page is already free. As this is only
1384 * being used for migration, the migratetype of the block also changes.
1385 * As this is called with interrupts disabled, the caller is responsible
1386 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1387 * are enabled.
1388 *
1389 * Note: this is probably too low level an operation for use in drivers.
1390 * Please consult with lkml before using this in your driver.
1391 */
1392int split_free_page(struct page *page)
1393{
1394 unsigned int order;
1395 unsigned long watermark;
1396 struct zone *zone;
1397
1398 BUG_ON(!PageBuddy(page));
1399
1400 zone = page_zone(page);
1401 order = page_order(page);
1402
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
1412 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1413
1414 /* Split into individual pages */
1415 set_page_refcounted(page);
1416 split_page(page, order);
1417
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1424 MIGRATE_MOVABLE);
1425 }
748446bb
MG
1426 }
1427
1428 return 1 << order;
1429}
1430
1da177e4
LT
1431/*
1432 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1433 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1434 * or two.
1435 */
0a15c3e9
MG
1436static inline
1437struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1438 struct zone *zone, int order, gfp_t gfp_flags,
1439 int migratetype)
1da177e4
LT
1440{
1441 unsigned long flags;
689bcebf 1442 struct page *page;
1da177e4
LT
1443 int cold = !!(gfp_flags & __GFP_COLD);
1444
689bcebf 1445again:
48db57f8 1446 if (likely(order == 0)) {
1da177e4 1447 struct per_cpu_pages *pcp;
5f8dcc21 1448 struct list_head *list;
1da177e4 1449
1da177e4 1450 local_irq_save(flags);
99dcc3e5
CL
1451 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1452 list = &pcp->lists[migratetype];
5f8dcc21 1453 if (list_empty(list)) {
535131e6 1454 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1455 pcp->batch, list,
e084b2d9 1456 migratetype, cold);
5f8dcc21 1457 if (unlikely(list_empty(list)))
6fb332fa 1458 goto failed;
535131e6 1459 }
b92a6edd 1460
5f8dcc21
MG
1461 if (cold)
1462 page = list_entry(list->prev, struct page, lru);
1463 else
1464 page = list_entry(list->next, struct page, lru);
1465
b92a6edd
MG
1466 list_del(&page->lru);
1467 pcp->count--;
7fb1d9fc 1468 } else {
dab48dab
AM
1469 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1470 /*
1471 * __GFP_NOFAIL is not to be used in new code.
1472 *
1473 * All __GFP_NOFAIL callers should be fixed so that they
1474 * properly detect and handle allocation failures.
1475 *
1476 * We most definitely don't want callers attempting to
4923abf9 1477 * allocate greater than order-1 page units with
dab48dab
AM
1478 * __GFP_NOFAIL.
1479 */
4923abf9 1480 WARN_ON_ONCE(order > 1);
dab48dab 1481 }
1da177e4 1482 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1483 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1484 spin_unlock(&zone->lock);
1485 if (!page)
1486 goto failed;
6ccf80eb 1487 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1488 }
1489
f8891e5e 1490 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1491 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1492 local_irq_restore(flags);
1da177e4 1493
725d704e 1494 VM_BUG_ON(bad_range(zone, page));
17cf4406 1495 if (prep_new_page(page, order, gfp_flags))
a74609fa 1496 goto again;
1da177e4 1497 return page;
a74609fa
NP
1498
1499failed:
1500 local_irq_restore(flags);
a74609fa 1501 return NULL;
1da177e4
LT
1502}
1503
41858966
MG
1504/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1505#define ALLOC_WMARK_MIN WMARK_MIN
1506#define ALLOC_WMARK_LOW WMARK_LOW
1507#define ALLOC_WMARK_HIGH WMARK_HIGH
1508#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1509
1510/* Mask to get the watermark bits */
1511#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1512
3148890b
NP
1513#define ALLOC_HARDER 0x10 /* try to alloc harder */
1514#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1515#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
072bb0aa 1516#define ALLOC_PFMEMALLOC 0x80 /* Caller has PF_MEMALLOC set */
7fb1d9fc 1517
933e312e
AM
1518#ifdef CONFIG_FAIL_PAGE_ALLOC
1519
b2588c4b 1520static struct {
933e312e
AM
1521 struct fault_attr attr;
1522
1523 u32 ignore_gfp_highmem;
1524 u32 ignore_gfp_wait;
54114994 1525 u32 min_order;
933e312e
AM
1526} fail_page_alloc = {
1527 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1528 .ignore_gfp_wait = 1,
1529 .ignore_gfp_highmem = 1,
54114994 1530 .min_order = 1,
933e312e
AM
1531};
1532
1533static int __init setup_fail_page_alloc(char *str)
1534{
1535 return setup_fault_attr(&fail_page_alloc.attr, str);
1536}
1537__setup("fail_page_alloc=", setup_fail_page_alloc);
1538
deaf386e 1539static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1540{
54114994 1541 if (order < fail_page_alloc.min_order)
deaf386e 1542 return false;
933e312e 1543 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1544 return false;
933e312e 1545 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1546 return false;
933e312e 1547 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1548 return false;
933e312e
AM
1549
1550 return should_fail(&fail_page_alloc.attr, 1 << order);
1551}
1552
1553#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1554
1555static int __init fail_page_alloc_debugfs(void)
1556{
f4ae40a6 1557 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1558 struct dentry *dir;
933e312e 1559
dd48c085
AM
1560 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1561 &fail_page_alloc.attr);
1562 if (IS_ERR(dir))
1563 return PTR_ERR(dir);
933e312e 1564
b2588c4b
AM
1565 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1566 &fail_page_alloc.ignore_gfp_wait))
1567 goto fail;
1568 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1569 &fail_page_alloc.ignore_gfp_highmem))
1570 goto fail;
1571 if (!debugfs_create_u32("min-order", mode, dir,
1572 &fail_page_alloc.min_order))
1573 goto fail;
1574
1575 return 0;
1576fail:
dd48c085 1577 debugfs_remove_recursive(dir);
933e312e 1578
b2588c4b 1579 return -ENOMEM;
933e312e
AM
1580}
1581
1582late_initcall(fail_page_alloc_debugfs);
1583
1584#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1585
1586#else /* CONFIG_FAIL_PAGE_ALLOC */
1587
deaf386e 1588static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1589{
deaf386e 1590 return false;
933e312e
AM
1591}
1592
1593#endif /* CONFIG_FAIL_PAGE_ALLOC */
1594
1da177e4 1595/*
88f5acf8 1596 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1597 * of the allocation.
1598 */
88f5acf8
MG
1599static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1600 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1601{
1602 /* free_pages my go negative - that's OK */
d23ad423 1603 long min = mark;
2cfed075 1604 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1605 int o;
1606
df0a6daa 1607 free_pages -= (1 << order) - 1;
7fb1d9fc 1608 if (alloc_flags & ALLOC_HIGH)
1da177e4 1609 min -= min / 2;
7fb1d9fc 1610 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1611 min -= min / 4;
1612
2cfed075 1613 if (free_pages <= min + lowmem_reserve)
88f5acf8 1614 return false;
1da177e4
LT
1615 for (o = 0; o < order; o++) {
1616 /* At the next order, this order's pages become unavailable */
1617 free_pages -= z->free_area[o].nr_free << o;
1618
1619 /* Require fewer higher order pages to be free */
1620 min >>= 1;
1621
1622 if (free_pages <= min)
88f5acf8 1623 return false;
1da177e4 1624 }
88f5acf8
MG
1625 return true;
1626}
1627
702d1a6e
MK
1628#ifdef CONFIG_MEMORY_ISOLATION
1629static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1630{
1631 if (unlikely(zone->nr_pageblock_isolate))
1632 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1633 return 0;
1634}
1635#else
1636static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1637{
1638 return 0;
1639}
1640#endif
1641
88f5acf8
MG
1642bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1643 int classzone_idx, int alloc_flags)
1644{
1645 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1646 zone_page_state(z, NR_FREE_PAGES));
1647}
1648
1649bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1650 int classzone_idx, int alloc_flags)
1651{
1652 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1653
1654 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1655 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1656
702d1a6e
MK
1657 /*
1658 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1659 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1660 * sleep although it could do so. But this is more desirable for memory
1661 * hotplug than sleeping which can cause a livelock in the direct
1662 * reclaim path.
1663 */
1664 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1665 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1666 free_pages);
1da177e4
LT
1667}
1668
9276b1bc
PJ
1669#ifdef CONFIG_NUMA
1670/*
1671 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1672 * skip over zones that are not allowed by the cpuset, or that have
1673 * been recently (in last second) found to be nearly full. See further
1674 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1675 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1676 *
1677 * If the zonelist cache is present in the passed in zonelist, then
1678 * returns a pointer to the allowed node mask (either the current
37b07e41 1679 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1680 *
1681 * If the zonelist cache is not available for this zonelist, does
1682 * nothing and returns NULL.
1683 *
1684 * If the fullzones BITMAP in the zonelist cache is stale (more than
1685 * a second since last zap'd) then we zap it out (clear its bits.)
1686 *
1687 * We hold off even calling zlc_setup, until after we've checked the
1688 * first zone in the zonelist, on the theory that most allocations will
1689 * be satisfied from that first zone, so best to examine that zone as
1690 * quickly as we can.
1691 */
1692static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1693{
1694 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1695 nodemask_t *allowednodes; /* zonelist_cache approximation */
1696
1697 zlc = zonelist->zlcache_ptr;
1698 if (!zlc)
1699 return NULL;
1700
f05111f5 1701 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1702 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1703 zlc->last_full_zap = jiffies;
1704 }
1705
1706 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1707 &cpuset_current_mems_allowed :
37b07e41 1708 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1709 return allowednodes;
1710}
1711
1712/*
1713 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1714 * if it is worth looking at further for free memory:
1715 * 1) Check that the zone isn't thought to be full (doesn't have its
1716 * bit set in the zonelist_cache fullzones BITMAP).
1717 * 2) Check that the zones node (obtained from the zonelist_cache
1718 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1719 * Return true (non-zero) if zone is worth looking at further, or
1720 * else return false (zero) if it is not.
1721 *
1722 * This check -ignores- the distinction between various watermarks,
1723 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1724 * found to be full for any variation of these watermarks, it will
1725 * be considered full for up to one second by all requests, unless
1726 * we are so low on memory on all allowed nodes that we are forced
1727 * into the second scan of the zonelist.
1728 *
1729 * In the second scan we ignore this zonelist cache and exactly
1730 * apply the watermarks to all zones, even it is slower to do so.
1731 * We are low on memory in the second scan, and should leave no stone
1732 * unturned looking for a free page.
1733 */
dd1a239f 1734static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1735 nodemask_t *allowednodes)
1736{
1737 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1738 int i; /* index of *z in zonelist zones */
1739 int n; /* node that zone *z is on */
1740
1741 zlc = zonelist->zlcache_ptr;
1742 if (!zlc)
1743 return 1;
1744
dd1a239f 1745 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1746 n = zlc->z_to_n[i];
1747
1748 /* This zone is worth trying if it is allowed but not full */
1749 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1750}
1751
1752/*
1753 * Given 'z' scanning a zonelist, set the corresponding bit in
1754 * zlc->fullzones, so that subsequent attempts to allocate a page
1755 * from that zone don't waste time re-examining it.
1756 */
dd1a239f 1757static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1758{
1759 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1760 int i; /* index of *z in zonelist zones */
1761
1762 zlc = zonelist->zlcache_ptr;
1763 if (!zlc)
1764 return;
1765
dd1a239f 1766 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1767
1768 set_bit(i, zlc->fullzones);
1769}
1770
76d3fbf8
MG
1771/*
1772 * clear all zones full, called after direct reclaim makes progress so that
1773 * a zone that was recently full is not skipped over for up to a second
1774 */
1775static void zlc_clear_zones_full(struct zonelist *zonelist)
1776{
1777 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1778
1779 zlc = zonelist->zlcache_ptr;
1780 if (!zlc)
1781 return;
1782
1783 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1784}
1785
9276b1bc
PJ
1786#else /* CONFIG_NUMA */
1787
1788static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1789{
1790 return NULL;
1791}
1792
dd1a239f 1793static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1794 nodemask_t *allowednodes)
1795{
1796 return 1;
1797}
1798
dd1a239f 1799static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1800{
1801}
76d3fbf8
MG
1802
1803static void zlc_clear_zones_full(struct zonelist *zonelist)
1804{
1805}
9276b1bc
PJ
1806#endif /* CONFIG_NUMA */
1807
7fb1d9fc 1808/*
0798e519 1809 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1810 * a page.
1811 */
1812static struct page *
19770b32 1813get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1814 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1815 struct zone *preferred_zone, int migratetype)
753ee728 1816{
dd1a239f 1817 struct zoneref *z;
7fb1d9fc 1818 struct page *page = NULL;
54a6eb5c 1819 int classzone_idx;
5117f45d 1820 struct zone *zone;
9276b1bc
PJ
1821 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1822 int zlc_active = 0; /* set if using zonelist_cache */
1823 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1824
19770b32 1825 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1826zonelist_scan:
7fb1d9fc 1827 /*
9276b1bc 1828 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1829 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1830 */
19770b32
MG
1831 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1832 high_zoneidx, nodemask) {
9276b1bc
PJ
1833 if (NUMA_BUILD && zlc_active &&
1834 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1835 continue;
7fb1d9fc 1836 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1837 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1838 continue;
a756cf59
JW
1839 /*
1840 * When allocating a page cache page for writing, we
1841 * want to get it from a zone that is within its dirty
1842 * limit, such that no single zone holds more than its
1843 * proportional share of globally allowed dirty pages.
1844 * The dirty limits take into account the zone's
1845 * lowmem reserves and high watermark so that kswapd
1846 * should be able to balance it without having to
1847 * write pages from its LRU list.
1848 *
1849 * This may look like it could increase pressure on
1850 * lower zones by failing allocations in higher zones
1851 * before they are full. But the pages that do spill
1852 * over are limited as the lower zones are protected
1853 * by this very same mechanism. It should not become
1854 * a practical burden to them.
1855 *
1856 * XXX: For now, allow allocations to potentially
1857 * exceed the per-zone dirty limit in the slowpath
1858 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1859 * which is important when on a NUMA setup the allowed
1860 * zones are together not big enough to reach the
1861 * global limit. The proper fix for these situations
1862 * will require awareness of zones in the
1863 * dirty-throttling and the flusher threads.
1864 */
1865 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1866 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1867 goto this_zone_full;
7fb1d9fc 1868
41858966 1869 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1870 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1871 unsigned long mark;
fa5e084e
MG
1872 int ret;
1873
41858966 1874 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1875 if (zone_watermark_ok(zone, order, mark,
1876 classzone_idx, alloc_flags))
1877 goto try_this_zone;
1878
cd38b115
MG
1879 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1880 /*
1881 * we do zlc_setup if there are multiple nodes
1882 * and before considering the first zone allowed
1883 * by the cpuset.
1884 */
1885 allowednodes = zlc_setup(zonelist, alloc_flags);
1886 zlc_active = 1;
1887 did_zlc_setup = 1;
1888 }
1889
fa5e084e
MG
1890 if (zone_reclaim_mode == 0)
1891 goto this_zone_full;
1892
cd38b115
MG
1893 /*
1894 * As we may have just activated ZLC, check if the first
1895 * eligible zone has failed zone_reclaim recently.
1896 */
1897 if (NUMA_BUILD && zlc_active &&
1898 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1899 continue;
1900
fa5e084e
MG
1901 ret = zone_reclaim(zone, gfp_mask, order);
1902 switch (ret) {
1903 case ZONE_RECLAIM_NOSCAN:
1904 /* did not scan */
cd38b115 1905 continue;
fa5e084e
MG
1906 case ZONE_RECLAIM_FULL:
1907 /* scanned but unreclaimable */
cd38b115 1908 continue;
fa5e084e
MG
1909 default:
1910 /* did we reclaim enough */
1911 if (!zone_watermark_ok(zone, order, mark,
1912 classzone_idx, alloc_flags))
9276b1bc 1913 goto this_zone_full;
0798e519 1914 }
7fb1d9fc
RS
1915 }
1916
fa5e084e 1917try_this_zone:
3dd28266
MG
1918 page = buffered_rmqueue(preferred_zone, zone, order,
1919 gfp_mask, migratetype);
0798e519 1920 if (page)
7fb1d9fc 1921 break;
9276b1bc
PJ
1922this_zone_full:
1923 if (NUMA_BUILD)
1924 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1925 }
9276b1bc
PJ
1926
1927 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1928 /* Disable zlc cache for second zonelist scan */
1929 zlc_active = 0;
1930 goto zonelist_scan;
1931 }
7fb1d9fc 1932 return page;
753ee728
MH
1933}
1934
29423e77
DR
1935/*
1936 * Large machines with many possible nodes should not always dump per-node
1937 * meminfo in irq context.
1938 */
1939static inline bool should_suppress_show_mem(void)
1940{
1941 bool ret = false;
1942
1943#if NODES_SHIFT > 8
1944 ret = in_interrupt();
1945#endif
1946 return ret;
1947}
1948
a238ab5b
DH
1949static DEFINE_RATELIMIT_STATE(nopage_rs,
1950 DEFAULT_RATELIMIT_INTERVAL,
1951 DEFAULT_RATELIMIT_BURST);
1952
1953void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1954{
a238ab5b
DH
1955 unsigned int filter = SHOW_MEM_FILTER_NODES;
1956
c0a32fc5
SG
1957 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1958 debug_guardpage_minorder() > 0)
a238ab5b
DH
1959 return;
1960
1961 /*
1962 * This documents exceptions given to allocations in certain
1963 * contexts that are allowed to allocate outside current's set
1964 * of allowed nodes.
1965 */
1966 if (!(gfp_mask & __GFP_NOMEMALLOC))
1967 if (test_thread_flag(TIF_MEMDIE) ||
1968 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1969 filter &= ~SHOW_MEM_FILTER_NODES;
1970 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1971 filter &= ~SHOW_MEM_FILTER_NODES;
1972
1973 if (fmt) {
3ee9a4f0
JP
1974 struct va_format vaf;
1975 va_list args;
1976
a238ab5b 1977 va_start(args, fmt);
3ee9a4f0
JP
1978
1979 vaf.fmt = fmt;
1980 vaf.va = &args;
1981
1982 pr_warn("%pV", &vaf);
1983
a238ab5b
DH
1984 va_end(args);
1985 }
1986
3ee9a4f0
JP
1987 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1988 current->comm, order, gfp_mask);
a238ab5b
DH
1989
1990 dump_stack();
1991 if (!should_suppress_show_mem())
1992 show_mem(filter);
1993}
1994
11e33f6a
MG
1995static inline int
1996should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1997 unsigned long did_some_progress,
11e33f6a 1998 unsigned long pages_reclaimed)
1da177e4 1999{
11e33f6a
MG
2000 /* Do not loop if specifically requested */
2001 if (gfp_mask & __GFP_NORETRY)
2002 return 0;
1da177e4 2003
f90ac398
MG
2004 /* Always retry if specifically requested */
2005 if (gfp_mask & __GFP_NOFAIL)
2006 return 1;
2007
2008 /*
2009 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2010 * making forward progress without invoking OOM. Suspend also disables
2011 * storage devices so kswapd will not help. Bail if we are suspending.
2012 */
2013 if (!did_some_progress && pm_suspended_storage())
2014 return 0;
2015
11e33f6a
MG
2016 /*
2017 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2018 * means __GFP_NOFAIL, but that may not be true in other
2019 * implementations.
2020 */
2021 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2022 return 1;
2023
2024 /*
2025 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2026 * specified, then we retry until we no longer reclaim any pages
2027 * (above), or we've reclaimed an order of pages at least as
2028 * large as the allocation's order. In both cases, if the
2029 * allocation still fails, we stop retrying.
2030 */
2031 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2032 return 1;
cf40bd16 2033
11e33f6a
MG
2034 return 0;
2035}
933e312e 2036
11e33f6a
MG
2037static inline struct page *
2038__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2039 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2040 nodemask_t *nodemask, struct zone *preferred_zone,
2041 int migratetype)
11e33f6a
MG
2042{
2043 struct page *page;
2044
2045 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2046 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2047 schedule_timeout_uninterruptible(1);
1da177e4
LT
2048 return NULL;
2049 }
6b1de916 2050
11e33f6a
MG
2051 /*
2052 * Go through the zonelist yet one more time, keep very high watermark
2053 * here, this is only to catch a parallel oom killing, we must fail if
2054 * we're still under heavy pressure.
2055 */
2056 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2057 order, zonelist, high_zoneidx,
5117f45d 2058 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2059 preferred_zone, migratetype);
7fb1d9fc 2060 if (page)
11e33f6a
MG
2061 goto out;
2062
4365a567
KH
2063 if (!(gfp_mask & __GFP_NOFAIL)) {
2064 /* The OOM killer will not help higher order allocs */
2065 if (order > PAGE_ALLOC_COSTLY_ORDER)
2066 goto out;
03668b3c
DR
2067 /* The OOM killer does not needlessly kill tasks for lowmem */
2068 if (high_zoneidx < ZONE_NORMAL)
2069 goto out;
4365a567
KH
2070 /*
2071 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2072 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2073 * The caller should handle page allocation failure by itself if
2074 * it specifies __GFP_THISNODE.
2075 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2076 */
2077 if (gfp_mask & __GFP_THISNODE)
2078 goto out;
2079 }
11e33f6a 2080 /* Exhausted what can be done so it's blamo time */
08ab9b10 2081 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2082
2083out:
2084 clear_zonelist_oom(zonelist, gfp_mask);
2085 return page;
2086}
2087
56de7263
MG
2088#ifdef CONFIG_COMPACTION
2089/* Try memory compaction for high-order allocations before reclaim */
2090static struct page *
2091__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2092 struct zonelist *zonelist, enum zone_type high_zoneidx,
2093 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2094 int migratetype, bool sync_migration,
2095 bool *deferred_compaction,
2096 unsigned long *did_some_progress)
56de7263
MG
2097{
2098 struct page *page;
2099
66199712 2100 if (!order)
56de7263
MG
2101 return NULL;
2102
aff62249 2103 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2104 *deferred_compaction = true;
2105 return NULL;
2106 }
2107
c06b1fca 2108 current->flags |= PF_MEMALLOC;
56de7263 2109 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 2110 nodemask, sync_migration);
c06b1fca 2111 current->flags &= ~PF_MEMALLOC;
56de7263
MG
2112 if (*did_some_progress != COMPACT_SKIPPED) {
2113
2114 /* Page migration frees to the PCP lists but we want merging */
2115 drain_pages(get_cpu());
2116 put_cpu();
2117
2118 page = get_page_from_freelist(gfp_mask, nodemask,
2119 order, zonelist, high_zoneidx,
2120 alloc_flags, preferred_zone,
2121 migratetype);
2122 if (page) {
4f92e258
MG
2123 preferred_zone->compact_considered = 0;
2124 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2125 if (order >= preferred_zone->compact_order_failed)
2126 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2127 count_vm_event(COMPACTSUCCESS);
2128 return page;
2129 }
2130
2131 /*
2132 * It's bad if compaction run occurs and fails.
2133 * The most likely reason is that pages exist,
2134 * but not enough to satisfy watermarks.
2135 */
2136 count_vm_event(COMPACTFAIL);
66199712
MG
2137
2138 /*
2139 * As async compaction considers a subset of pageblocks, only
2140 * defer if the failure was a sync compaction failure.
2141 */
2142 if (sync_migration)
aff62249 2143 defer_compaction(preferred_zone, order);
56de7263
MG
2144
2145 cond_resched();
2146 }
2147
2148 return NULL;
2149}
2150#else
2151static inline struct page *
2152__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2153 struct zonelist *zonelist, enum zone_type high_zoneidx,
2154 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2155 int migratetype, bool sync_migration,
2156 bool *deferred_compaction,
2157 unsigned long *did_some_progress)
56de7263
MG
2158{
2159 return NULL;
2160}
2161#endif /* CONFIG_COMPACTION */
2162
bba90710
MS
2163/* Perform direct synchronous page reclaim */
2164static int
2165__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2166 nodemask_t *nodemask)
11e33f6a 2167{
11e33f6a 2168 struct reclaim_state reclaim_state;
bba90710 2169 int progress;
11e33f6a
MG
2170
2171 cond_resched();
2172
2173 /* We now go into synchronous reclaim */
2174 cpuset_memory_pressure_bump();
c06b1fca 2175 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2176 lockdep_set_current_reclaim_state(gfp_mask);
2177 reclaim_state.reclaimed_slab = 0;
c06b1fca 2178 current->reclaim_state = &reclaim_state;
11e33f6a 2179
bba90710 2180 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2181
c06b1fca 2182 current->reclaim_state = NULL;
11e33f6a 2183 lockdep_clear_current_reclaim_state();
c06b1fca 2184 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2185
2186 cond_resched();
2187
bba90710
MS
2188 return progress;
2189}
2190
2191/* The really slow allocator path where we enter direct reclaim */
2192static inline struct page *
2193__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2194 struct zonelist *zonelist, enum zone_type high_zoneidx,
2195 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2196 int migratetype, unsigned long *did_some_progress)
2197{
2198 struct page *page = NULL;
2199 bool drained = false;
2200
2201 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2202 nodemask);
9ee493ce
MG
2203 if (unlikely(!(*did_some_progress)))
2204 return NULL;
11e33f6a 2205
76d3fbf8
MG
2206 /* After successful reclaim, reconsider all zones for allocation */
2207 if (NUMA_BUILD)
2208 zlc_clear_zones_full(zonelist);
2209
9ee493ce
MG
2210retry:
2211 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2212 zonelist, high_zoneidx,
3dd28266
MG
2213 alloc_flags, preferred_zone,
2214 migratetype);
9ee493ce
MG
2215
2216 /*
2217 * If an allocation failed after direct reclaim, it could be because
2218 * pages are pinned on the per-cpu lists. Drain them and try again
2219 */
2220 if (!page && !drained) {
2221 drain_all_pages();
2222 drained = true;
2223 goto retry;
2224 }
2225
11e33f6a
MG
2226 return page;
2227}
2228
1da177e4 2229/*
11e33f6a
MG
2230 * This is called in the allocator slow-path if the allocation request is of
2231 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2232 */
11e33f6a
MG
2233static inline struct page *
2234__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2235 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2236 nodemask_t *nodemask, struct zone *preferred_zone,
2237 int migratetype)
11e33f6a
MG
2238{
2239 struct page *page;
2240
2241 do {
2242 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2243 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2244 preferred_zone, migratetype);
11e33f6a
MG
2245
2246 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2247 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2248 } while (!page && (gfp_mask & __GFP_NOFAIL));
2249
2250 return page;
2251}
2252
2253static inline
2254void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2255 enum zone_type high_zoneidx,
2256 enum zone_type classzone_idx)
1da177e4 2257{
dd1a239f
MG
2258 struct zoneref *z;
2259 struct zone *zone;
1da177e4 2260
11e33f6a 2261 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2262 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2263}
cf40bd16 2264
341ce06f
PZ
2265static inline int
2266gfp_to_alloc_flags(gfp_t gfp_mask)
2267{
341ce06f
PZ
2268 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2269 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2270
a56f57ff 2271 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2272 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2273
341ce06f
PZ
2274 /*
2275 * The caller may dip into page reserves a bit more if the caller
2276 * cannot run direct reclaim, or if the caller has realtime scheduling
2277 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2278 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2279 */
e6223a3b 2280 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2281
341ce06f 2282 if (!wait) {
5c3240d9
AA
2283 /*
2284 * Not worth trying to allocate harder for
2285 * __GFP_NOMEMALLOC even if it can't schedule.
2286 */
2287 if (!(gfp_mask & __GFP_NOMEMALLOC))
2288 alloc_flags |= ALLOC_HARDER;
523b9458 2289 /*
341ce06f
PZ
2290 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2291 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2292 */
341ce06f 2293 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2294 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2295 alloc_flags |= ALLOC_HARDER;
2296
072bb0aa
MG
2297 if ((current->flags & PF_MEMALLOC) ||
2298 unlikely(test_thread_flag(TIF_MEMDIE))) {
2299 alloc_flags |= ALLOC_PFMEMALLOC;
2300
2301 if (likely(!(gfp_mask & __GFP_NOMEMALLOC)) && !in_interrupt())
341ce06f 2302 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2303 }
6b1de916 2304
341ce06f
PZ
2305 return alloc_flags;
2306}
2307
072bb0aa
MG
2308bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2309{
2310 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_PFMEMALLOC);
2311}
2312
11e33f6a
MG
2313static inline struct page *
2314__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2315 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2316 nodemask_t *nodemask, struct zone *preferred_zone,
2317 int migratetype)
11e33f6a
MG
2318{
2319 const gfp_t wait = gfp_mask & __GFP_WAIT;
2320 struct page *page = NULL;
2321 int alloc_flags;
2322 unsigned long pages_reclaimed = 0;
2323 unsigned long did_some_progress;
77f1fe6b 2324 bool sync_migration = false;
66199712 2325 bool deferred_compaction = false;
1da177e4 2326
72807a74
MG
2327 /*
2328 * In the slowpath, we sanity check order to avoid ever trying to
2329 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2330 * be using allocators in order of preference for an area that is
2331 * too large.
2332 */
1fc28b70
MG
2333 if (order >= MAX_ORDER) {
2334 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2335 return NULL;
1fc28b70 2336 }
1da177e4 2337
952f3b51
CL
2338 /*
2339 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2340 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2341 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2342 * using a larger set of nodes after it has established that the
2343 * allowed per node queues are empty and that nodes are
2344 * over allocated.
2345 */
2346 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2347 goto nopage;
2348
cc4a6851 2349restart:
32dba98e
AA
2350 if (!(gfp_mask & __GFP_NO_KSWAPD))
2351 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2352 zone_idx(preferred_zone));
1da177e4 2353
9bf2229f 2354 /*
7fb1d9fc
RS
2355 * OK, we're below the kswapd watermark and have kicked background
2356 * reclaim. Now things get more complex, so set up alloc_flags according
2357 * to how we want to proceed.
9bf2229f 2358 */
341ce06f 2359 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2360
f33261d7
DR
2361 /*
2362 * Find the true preferred zone if the allocation is unconstrained by
2363 * cpusets.
2364 */
2365 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2366 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2367 &preferred_zone);
2368
cfa54a0f 2369rebalance:
341ce06f 2370 /* This is the last chance, in general, before the goto nopage. */
19770b32 2371 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2372 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2373 preferred_zone, migratetype);
7fb1d9fc
RS
2374 if (page)
2375 goto got_pg;
1da177e4 2376
11e33f6a 2377 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2378 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2379 page = __alloc_pages_high_priority(gfp_mask, order,
2380 zonelist, high_zoneidx, nodemask,
2381 preferred_zone, migratetype);
2382 if (page)
2383 goto got_pg;
1da177e4
LT
2384 }
2385
2386 /* Atomic allocations - we can't balance anything */
2387 if (!wait)
2388 goto nopage;
2389
341ce06f 2390 /* Avoid recursion of direct reclaim */
c06b1fca 2391 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2392 goto nopage;
2393
6583bb64
DR
2394 /* Avoid allocations with no watermarks from looping endlessly */
2395 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2396 goto nopage;
2397
77f1fe6b
MG
2398 /*
2399 * Try direct compaction. The first pass is asynchronous. Subsequent
2400 * attempts after direct reclaim are synchronous
2401 */
56de7263
MG
2402 page = __alloc_pages_direct_compact(gfp_mask, order,
2403 zonelist, high_zoneidx,
2404 nodemask,
2405 alloc_flags, preferred_zone,
66199712
MG
2406 migratetype, sync_migration,
2407 &deferred_compaction,
2408 &did_some_progress);
56de7263
MG
2409 if (page)
2410 goto got_pg;
c6a140bf 2411 sync_migration = true;
56de7263 2412
66199712
MG
2413 /*
2414 * If compaction is deferred for high-order allocations, it is because
2415 * sync compaction recently failed. In this is the case and the caller
2416 * has requested the system not be heavily disrupted, fail the
2417 * allocation now instead of entering direct reclaim
2418 */
2419 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2420 goto nopage;
2421
11e33f6a
MG
2422 /* Try direct reclaim and then allocating */
2423 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2424 zonelist, high_zoneidx,
2425 nodemask,
5117f45d 2426 alloc_flags, preferred_zone,
3dd28266 2427 migratetype, &did_some_progress);
11e33f6a
MG
2428 if (page)
2429 goto got_pg;
1da177e4 2430
e33c3b5e 2431 /*
11e33f6a
MG
2432 * If we failed to make any progress reclaiming, then we are
2433 * running out of options and have to consider going OOM
e33c3b5e 2434 */
11e33f6a
MG
2435 if (!did_some_progress) {
2436 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2437 if (oom_killer_disabled)
2438 goto nopage;
29fd66d2
DR
2439 /* Coredumps can quickly deplete all memory reserves */
2440 if ((current->flags & PF_DUMPCORE) &&
2441 !(gfp_mask & __GFP_NOFAIL))
2442 goto nopage;
11e33f6a
MG
2443 page = __alloc_pages_may_oom(gfp_mask, order,
2444 zonelist, high_zoneidx,
3dd28266
MG
2445 nodemask, preferred_zone,
2446 migratetype);
11e33f6a
MG
2447 if (page)
2448 goto got_pg;
1da177e4 2449
03668b3c
DR
2450 if (!(gfp_mask & __GFP_NOFAIL)) {
2451 /*
2452 * The oom killer is not called for high-order
2453 * allocations that may fail, so if no progress
2454 * is being made, there are no other options and
2455 * retrying is unlikely to help.
2456 */
2457 if (order > PAGE_ALLOC_COSTLY_ORDER)
2458 goto nopage;
2459 /*
2460 * The oom killer is not called for lowmem
2461 * allocations to prevent needlessly killing
2462 * innocent tasks.
2463 */
2464 if (high_zoneidx < ZONE_NORMAL)
2465 goto nopage;
2466 }
e2c55dc8 2467
ff0ceb9d
DR
2468 goto restart;
2469 }
1da177e4
LT
2470 }
2471
11e33f6a 2472 /* Check if we should retry the allocation */
a41f24ea 2473 pages_reclaimed += did_some_progress;
f90ac398
MG
2474 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2475 pages_reclaimed)) {
11e33f6a 2476 /* Wait for some write requests to complete then retry */
0e093d99 2477 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2478 goto rebalance;
3e7d3449
MG
2479 } else {
2480 /*
2481 * High-order allocations do not necessarily loop after
2482 * direct reclaim and reclaim/compaction depends on compaction
2483 * being called after reclaim so call directly if necessary
2484 */
2485 page = __alloc_pages_direct_compact(gfp_mask, order,
2486 zonelist, high_zoneidx,
2487 nodemask,
2488 alloc_flags, preferred_zone,
66199712
MG
2489 migratetype, sync_migration,
2490 &deferred_compaction,
2491 &did_some_progress);
3e7d3449
MG
2492 if (page)
2493 goto got_pg;
1da177e4
LT
2494 }
2495
2496nopage:
a238ab5b 2497 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2498 return page;
1da177e4 2499got_pg:
072bb0aa
MG
2500 /*
2501 * page->pfmemalloc is set when the caller had PFMEMALLOC set or is
2502 * been OOM killed. The expectation is that the caller is taking
2503 * steps that will free more memory. The caller should avoid the
2504 * page being used for !PFMEMALLOC purposes.
2505 */
2506 page->pfmemalloc = !!(alloc_flags & ALLOC_PFMEMALLOC);
2507
b1eeab67
VN
2508 if (kmemcheck_enabled)
2509 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2510
072bb0aa 2511 return page;
1da177e4 2512}
11e33f6a
MG
2513
2514/*
2515 * This is the 'heart' of the zoned buddy allocator.
2516 */
2517struct page *
2518__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2519 struct zonelist *zonelist, nodemask_t *nodemask)
2520{
2521 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2522 struct zone *preferred_zone;
cc9a6c87 2523 struct page *page = NULL;
3dd28266 2524 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2525 unsigned int cpuset_mems_cookie;
11e33f6a 2526
dcce284a
BH
2527 gfp_mask &= gfp_allowed_mask;
2528
11e33f6a
MG
2529 lockdep_trace_alloc(gfp_mask);
2530
2531 might_sleep_if(gfp_mask & __GFP_WAIT);
2532
2533 if (should_fail_alloc_page(gfp_mask, order))
2534 return NULL;
2535
2536 /*
2537 * Check the zones suitable for the gfp_mask contain at least one
2538 * valid zone. It's possible to have an empty zonelist as a result
2539 * of GFP_THISNODE and a memoryless node
2540 */
2541 if (unlikely(!zonelist->_zonerefs->zone))
2542 return NULL;
2543
cc9a6c87
MG
2544retry_cpuset:
2545 cpuset_mems_cookie = get_mems_allowed();
2546
5117f45d 2547 /* The preferred zone is used for statistics later */
f33261d7
DR
2548 first_zones_zonelist(zonelist, high_zoneidx,
2549 nodemask ? : &cpuset_current_mems_allowed,
2550 &preferred_zone);
cc9a6c87
MG
2551 if (!preferred_zone)
2552 goto out;
5117f45d
MG
2553
2554 /* First allocation attempt */
11e33f6a 2555 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2556 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2557 preferred_zone, migratetype);
11e33f6a
MG
2558 if (unlikely(!page))
2559 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2560 zonelist, high_zoneidx, nodemask,
3dd28266 2561 preferred_zone, migratetype);
072bb0aa
MG
2562 else
2563 page->pfmemalloc = false;
11e33f6a 2564
4b4f278c 2565 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2566
2567out:
2568 /*
2569 * When updating a task's mems_allowed, it is possible to race with
2570 * parallel threads in such a way that an allocation can fail while
2571 * the mask is being updated. If a page allocation is about to fail,
2572 * check if the cpuset changed during allocation and if so, retry.
2573 */
2574 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2575 goto retry_cpuset;
2576
11e33f6a 2577 return page;
1da177e4 2578}
d239171e 2579EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2580
2581/*
2582 * Common helper functions.
2583 */
920c7a5d 2584unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2585{
945a1113
AM
2586 struct page *page;
2587
2588 /*
2589 * __get_free_pages() returns a 32-bit address, which cannot represent
2590 * a highmem page
2591 */
2592 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2593
1da177e4
LT
2594 page = alloc_pages(gfp_mask, order);
2595 if (!page)
2596 return 0;
2597 return (unsigned long) page_address(page);
2598}
1da177e4
LT
2599EXPORT_SYMBOL(__get_free_pages);
2600
920c7a5d 2601unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2602{
945a1113 2603 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2604}
1da177e4
LT
2605EXPORT_SYMBOL(get_zeroed_page);
2606
920c7a5d 2607void __free_pages(struct page *page, unsigned int order)
1da177e4 2608{
b5810039 2609 if (put_page_testzero(page)) {
1da177e4 2610 if (order == 0)
fc91668e 2611 free_hot_cold_page(page, 0);
1da177e4
LT
2612 else
2613 __free_pages_ok(page, order);
2614 }
2615}
2616
2617EXPORT_SYMBOL(__free_pages);
2618
920c7a5d 2619void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2620{
2621 if (addr != 0) {
725d704e 2622 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2623 __free_pages(virt_to_page((void *)addr), order);
2624 }
2625}
2626
2627EXPORT_SYMBOL(free_pages);
2628
ee85c2e1
AK
2629static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2630{
2631 if (addr) {
2632 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2633 unsigned long used = addr + PAGE_ALIGN(size);
2634
2635 split_page(virt_to_page((void *)addr), order);
2636 while (used < alloc_end) {
2637 free_page(used);
2638 used += PAGE_SIZE;
2639 }
2640 }
2641 return (void *)addr;
2642}
2643
2be0ffe2
TT
2644/**
2645 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2646 * @size: the number of bytes to allocate
2647 * @gfp_mask: GFP flags for the allocation
2648 *
2649 * This function is similar to alloc_pages(), except that it allocates the
2650 * minimum number of pages to satisfy the request. alloc_pages() can only
2651 * allocate memory in power-of-two pages.
2652 *
2653 * This function is also limited by MAX_ORDER.
2654 *
2655 * Memory allocated by this function must be released by free_pages_exact().
2656 */
2657void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2658{
2659 unsigned int order = get_order(size);
2660 unsigned long addr;
2661
2662 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2663 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2664}
2665EXPORT_SYMBOL(alloc_pages_exact);
2666
ee85c2e1
AK
2667/**
2668 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2669 * pages on a node.
b5e6ab58 2670 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2671 * @size: the number of bytes to allocate
2672 * @gfp_mask: GFP flags for the allocation
2673 *
2674 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2675 * back.
2676 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2677 * but is not exact.
2678 */
2679void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2680{
2681 unsigned order = get_order(size);
2682 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2683 if (!p)
2684 return NULL;
2685 return make_alloc_exact((unsigned long)page_address(p), order, size);
2686}
2687EXPORT_SYMBOL(alloc_pages_exact_nid);
2688
2be0ffe2
TT
2689/**
2690 * free_pages_exact - release memory allocated via alloc_pages_exact()
2691 * @virt: the value returned by alloc_pages_exact.
2692 * @size: size of allocation, same value as passed to alloc_pages_exact().
2693 *
2694 * Release the memory allocated by a previous call to alloc_pages_exact.
2695 */
2696void free_pages_exact(void *virt, size_t size)
2697{
2698 unsigned long addr = (unsigned long)virt;
2699 unsigned long end = addr + PAGE_ALIGN(size);
2700
2701 while (addr < end) {
2702 free_page(addr);
2703 addr += PAGE_SIZE;
2704 }
2705}
2706EXPORT_SYMBOL(free_pages_exact);
2707
1da177e4
LT
2708static unsigned int nr_free_zone_pages(int offset)
2709{
dd1a239f 2710 struct zoneref *z;
54a6eb5c
MG
2711 struct zone *zone;
2712
e310fd43 2713 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2714 unsigned int sum = 0;
2715
0e88460d 2716 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2717
54a6eb5c 2718 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2719 unsigned long size = zone->present_pages;
41858966 2720 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2721 if (size > high)
2722 sum += size - high;
1da177e4
LT
2723 }
2724
2725 return sum;
2726}
2727
2728/*
2729 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2730 */
2731unsigned int nr_free_buffer_pages(void)
2732{
af4ca457 2733 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2734}
c2f1a551 2735EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2736
2737/*
2738 * Amount of free RAM allocatable within all zones
2739 */
2740unsigned int nr_free_pagecache_pages(void)
2741{
2a1e274a 2742 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2743}
08e0f6a9
CL
2744
2745static inline void show_node(struct zone *zone)
1da177e4 2746{
08e0f6a9 2747 if (NUMA_BUILD)
25ba77c1 2748 printk("Node %d ", zone_to_nid(zone));
1da177e4 2749}
1da177e4 2750
1da177e4
LT
2751void si_meminfo(struct sysinfo *val)
2752{
2753 val->totalram = totalram_pages;
2754 val->sharedram = 0;
d23ad423 2755 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2756 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2757 val->totalhigh = totalhigh_pages;
2758 val->freehigh = nr_free_highpages();
1da177e4
LT
2759 val->mem_unit = PAGE_SIZE;
2760}
2761
2762EXPORT_SYMBOL(si_meminfo);
2763
2764#ifdef CONFIG_NUMA
2765void si_meminfo_node(struct sysinfo *val, int nid)
2766{
2767 pg_data_t *pgdat = NODE_DATA(nid);
2768
2769 val->totalram = pgdat->node_present_pages;
d23ad423 2770 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2771#ifdef CONFIG_HIGHMEM
1da177e4 2772 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2773 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2774 NR_FREE_PAGES);
98d2b0eb
CL
2775#else
2776 val->totalhigh = 0;
2777 val->freehigh = 0;
2778#endif
1da177e4
LT
2779 val->mem_unit = PAGE_SIZE;
2780}
2781#endif
2782
ddd588b5 2783/*
7bf02ea2
DR
2784 * Determine whether the node should be displayed or not, depending on whether
2785 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2786 */
7bf02ea2 2787bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2788{
2789 bool ret = false;
cc9a6c87 2790 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2791
2792 if (!(flags & SHOW_MEM_FILTER_NODES))
2793 goto out;
2794
cc9a6c87
MG
2795 do {
2796 cpuset_mems_cookie = get_mems_allowed();
2797 ret = !node_isset(nid, cpuset_current_mems_allowed);
2798 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2799out:
2800 return ret;
2801}
2802
1da177e4
LT
2803#define K(x) ((x) << (PAGE_SHIFT-10))
2804
2805/*
2806 * Show free area list (used inside shift_scroll-lock stuff)
2807 * We also calculate the percentage fragmentation. We do this by counting the
2808 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2809 * Suppresses nodes that are not allowed by current's cpuset if
2810 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2811 */
7bf02ea2 2812void show_free_areas(unsigned int filter)
1da177e4 2813{
c7241913 2814 int cpu;
1da177e4
LT
2815 struct zone *zone;
2816
ee99c71c 2817 for_each_populated_zone(zone) {
7bf02ea2 2818 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2819 continue;
c7241913
JS
2820 show_node(zone);
2821 printk("%s per-cpu:\n", zone->name);
1da177e4 2822
6b482c67 2823 for_each_online_cpu(cpu) {
1da177e4
LT
2824 struct per_cpu_pageset *pageset;
2825
99dcc3e5 2826 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2827
3dfa5721
CL
2828 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2829 cpu, pageset->pcp.high,
2830 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2831 }
2832 }
2833
a731286d
KM
2834 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2835 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2836 " unevictable:%lu"
b76146ed 2837 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2838 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2839 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2840 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2841 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2842 global_page_state(NR_ISOLATED_ANON),
2843 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2844 global_page_state(NR_INACTIVE_FILE),
a731286d 2845 global_page_state(NR_ISOLATED_FILE),
7b854121 2846 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2847 global_page_state(NR_FILE_DIRTY),
ce866b34 2848 global_page_state(NR_WRITEBACK),
fd39fc85 2849 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2850 global_page_state(NR_FREE_PAGES),
3701b033
KM
2851 global_page_state(NR_SLAB_RECLAIMABLE),
2852 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2853 global_page_state(NR_FILE_MAPPED),
4b02108a 2854 global_page_state(NR_SHMEM),
a25700a5
AM
2855 global_page_state(NR_PAGETABLE),
2856 global_page_state(NR_BOUNCE));
1da177e4 2857
ee99c71c 2858 for_each_populated_zone(zone) {
1da177e4
LT
2859 int i;
2860
7bf02ea2 2861 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2862 continue;
1da177e4
LT
2863 show_node(zone);
2864 printk("%s"
2865 " free:%lukB"
2866 " min:%lukB"
2867 " low:%lukB"
2868 " high:%lukB"
4f98a2fe
RR
2869 " active_anon:%lukB"
2870 " inactive_anon:%lukB"
2871 " active_file:%lukB"
2872 " inactive_file:%lukB"
7b854121 2873 " unevictable:%lukB"
a731286d
KM
2874 " isolated(anon):%lukB"
2875 " isolated(file):%lukB"
1da177e4 2876 " present:%lukB"
4a0aa73f
KM
2877 " mlocked:%lukB"
2878 " dirty:%lukB"
2879 " writeback:%lukB"
2880 " mapped:%lukB"
4b02108a 2881 " shmem:%lukB"
4a0aa73f
KM
2882 " slab_reclaimable:%lukB"
2883 " slab_unreclaimable:%lukB"
c6a7f572 2884 " kernel_stack:%lukB"
4a0aa73f
KM
2885 " pagetables:%lukB"
2886 " unstable:%lukB"
2887 " bounce:%lukB"
2888 " writeback_tmp:%lukB"
1da177e4
LT
2889 " pages_scanned:%lu"
2890 " all_unreclaimable? %s"
2891 "\n",
2892 zone->name,
88f5acf8 2893 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2894 K(min_wmark_pages(zone)),
2895 K(low_wmark_pages(zone)),
2896 K(high_wmark_pages(zone)),
4f98a2fe
RR
2897 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2898 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2899 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2900 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2901 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2902 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2903 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2904 K(zone->present_pages),
4a0aa73f
KM
2905 K(zone_page_state(zone, NR_MLOCK)),
2906 K(zone_page_state(zone, NR_FILE_DIRTY)),
2907 K(zone_page_state(zone, NR_WRITEBACK)),
2908 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2909 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2910 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2911 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2912 zone_page_state(zone, NR_KERNEL_STACK) *
2913 THREAD_SIZE / 1024,
4a0aa73f
KM
2914 K(zone_page_state(zone, NR_PAGETABLE)),
2915 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2916 K(zone_page_state(zone, NR_BOUNCE)),
2917 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2918 zone->pages_scanned,
93e4a89a 2919 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2920 );
2921 printk("lowmem_reserve[]:");
2922 for (i = 0; i < MAX_NR_ZONES; i++)
2923 printk(" %lu", zone->lowmem_reserve[i]);
2924 printk("\n");
2925 }
2926
ee99c71c 2927 for_each_populated_zone(zone) {
8f9de51a 2928 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2929
7bf02ea2 2930 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2931 continue;
1da177e4
LT
2932 show_node(zone);
2933 printk("%s: ", zone->name);
1da177e4
LT
2934
2935 spin_lock_irqsave(&zone->lock, flags);
2936 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2937 nr[order] = zone->free_area[order].nr_free;
2938 total += nr[order] << order;
1da177e4
LT
2939 }
2940 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2941 for (order = 0; order < MAX_ORDER; order++)
2942 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2943 printk("= %lukB\n", K(total));
2944 }
2945
e6f3602d
LW
2946 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2947
1da177e4
LT
2948 show_swap_cache_info();
2949}
2950
19770b32
MG
2951static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2952{
2953 zoneref->zone = zone;
2954 zoneref->zone_idx = zone_idx(zone);
2955}
2956
1da177e4
LT
2957/*
2958 * Builds allocation fallback zone lists.
1a93205b
CL
2959 *
2960 * Add all populated zones of a node to the zonelist.
1da177e4 2961 */
f0c0b2b8
KH
2962static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2963 int nr_zones, enum zone_type zone_type)
1da177e4 2964{
1a93205b
CL
2965 struct zone *zone;
2966
98d2b0eb 2967 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2968 zone_type++;
02a68a5e
CL
2969
2970 do {
2f6726e5 2971 zone_type--;
070f8032 2972 zone = pgdat->node_zones + zone_type;
1a93205b 2973 if (populated_zone(zone)) {
dd1a239f
MG
2974 zoneref_set_zone(zone,
2975 &zonelist->_zonerefs[nr_zones++]);
070f8032 2976 check_highest_zone(zone_type);
1da177e4 2977 }
02a68a5e 2978
2f6726e5 2979 } while (zone_type);
070f8032 2980 return nr_zones;
1da177e4
LT
2981}
2982
f0c0b2b8
KH
2983
2984/*
2985 * zonelist_order:
2986 * 0 = automatic detection of better ordering.
2987 * 1 = order by ([node] distance, -zonetype)
2988 * 2 = order by (-zonetype, [node] distance)
2989 *
2990 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2991 * the same zonelist. So only NUMA can configure this param.
2992 */
2993#define ZONELIST_ORDER_DEFAULT 0
2994#define ZONELIST_ORDER_NODE 1
2995#define ZONELIST_ORDER_ZONE 2
2996
2997/* zonelist order in the kernel.
2998 * set_zonelist_order() will set this to NODE or ZONE.
2999 */
3000static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3001static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3002
3003
1da177e4 3004#ifdef CONFIG_NUMA
f0c0b2b8
KH
3005/* The value user specified ....changed by config */
3006static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3007/* string for sysctl */
3008#define NUMA_ZONELIST_ORDER_LEN 16
3009char numa_zonelist_order[16] = "default";
3010
3011/*
3012 * interface for configure zonelist ordering.
3013 * command line option "numa_zonelist_order"
3014 * = "[dD]efault - default, automatic configuration.
3015 * = "[nN]ode - order by node locality, then by zone within node
3016 * = "[zZ]one - order by zone, then by locality within zone
3017 */
3018
3019static int __parse_numa_zonelist_order(char *s)
3020{
3021 if (*s == 'd' || *s == 'D') {
3022 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3023 } else if (*s == 'n' || *s == 'N') {
3024 user_zonelist_order = ZONELIST_ORDER_NODE;
3025 } else if (*s == 'z' || *s == 'Z') {
3026 user_zonelist_order = ZONELIST_ORDER_ZONE;
3027 } else {
3028 printk(KERN_WARNING
3029 "Ignoring invalid numa_zonelist_order value: "
3030 "%s\n", s);
3031 return -EINVAL;
3032 }
3033 return 0;
3034}
3035
3036static __init int setup_numa_zonelist_order(char *s)
3037{
ecb256f8
VL
3038 int ret;
3039
3040 if (!s)
3041 return 0;
3042
3043 ret = __parse_numa_zonelist_order(s);
3044 if (ret == 0)
3045 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3046
3047 return ret;
f0c0b2b8
KH
3048}
3049early_param("numa_zonelist_order", setup_numa_zonelist_order);
3050
3051/*
3052 * sysctl handler for numa_zonelist_order
3053 */
3054int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3055 void __user *buffer, size_t *length,
f0c0b2b8
KH
3056 loff_t *ppos)
3057{
3058 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3059 int ret;
443c6f14 3060 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3061
443c6f14 3062 mutex_lock(&zl_order_mutex);
f0c0b2b8 3063 if (write)
443c6f14 3064 strcpy(saved_string, (char*)table->data);
8d65af78 3065 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3066 if (ret)
443c6f14 3067 goto out;
f0c0b2b8
KH
3068 if (write) {
3069 int oldval = user_zonelist_order;
3070 if (__parse_numa_zonelist_order((char*)table->data)) {
3071 /*
3072 * bogus value. restore saved string
3073 */
3074 strncpy((char*)table->data, saved_string,
3075 NUMA_ZONELIST_ORDER_LEN);
3076 user_zonelist_order = oldval;
4eaf3f64
HL
3077 } else if (oldval != user_zonelist_order) {
3078 mutex_lock(&zonelists_mutex);
9adb62a5 3079 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3080 mutex_unlock(&zonelists_mutex);
3081 }
f0c0b2b8 3082 }
443c6f14
AK
3083out:
3084 mutex_unlock(&zl_order_mutex);
3085 return ret;
f0c0b2b8
KH
3086}
3087
3088
62bc62a8 3089#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3090static int node_load[MAX_NUMNODES];
3091
1da177e4 3092/**
4dc3b16b 3093 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3094 * @node: node whose fallback list we're appending
3095 * @used_node_mask: nodemask_t of already used nodes
3096 *
3097 * We use a number of factors to determine which is the next node that should
3098 * appear on a given node's fallback list. The node should not have appeared
3099 * already in @node's fallback list, and it should be the next closest node
3100 * according to the distance array (which contains arbitrary distance values
3101 * from each node to each node in the system), and should also prefer nodes
3102 * with no CPUs, since presumably they'll have very little allocation pressure
3103 * on them otherwise.
3104 * It returns -1 if no node is found.
3105 */
f0c0b2b8 3106static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3107{
4cf808eb 3108 int n, val;
1da177e4
LT
3109 int min_val = INT_MAX;
3110 int best_node = -1;
a70f7302 3111 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3112
4cf808eb
LT
3113 /* Use the local node if we haven't already */
3114 if (!node_isset(node, *used_node_mask)) {
3115 node_set(node, *used_node_mask);
3116 return node;
3117 }
1da177e4 3118
37b07e41 3119 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3120
3121 /* Don't want a node to appear more than once */
3122 if (node_isset(n, *used_node_mask))
3123 continue;
3124
1da177e4
LT
3125 /* Use the distance array to find the distance */
3126 val = node_distance(node, n);
3127
4cf808eb
LT
3128 /* Penalize nodes under us ("prefer the next node") */
3129 val += (n < node);
3130
1da177e4 3131 /* Give preference to headless and unused nodes */
a70f7302
RR
3132 tmp = cpumask_of_node(n);
3133 if (!cpumask_empty(tmp))
1da177e4
LT
3134 val += PENALTY_FOR_NODE_WITH_CPUS;
3135
3136 /* Slight preference for less loaded node */
3137 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3138 val += node_load[n];
3139
3140 if (val < min_val) {
3141 min_val = val;
3142 best_node = n;
3143 }
3144 }
3145
3146 if (best_node >= 0)
3147 node_set(best_node, *used_node_mask);
3148
3149 return best_node;
3150}
3151
f0c0b2b8
KH
3152
3153/*
3154 * Build zonelists ordered by node and zones within node.
3155 * This results in maximum locality--normal zone overflows into local
3156 * DMA zone, if any--but risks exhausting DMA zone.
3157 */
3158static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3159{
f0c0b2b8 3160 int j;
1da177e4 3161 struct zonelist *zonelist;
f0c0b2b8 3162
54a6eb5c 3163 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3164 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3165 ;
3166 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3167 MAX_NR_ZONES - 1);
dd1a239f
MG
3168 zonelist->_zonerefs[j].zone = NULL;
3169 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3170}
3171
523b9458
CL
3172/*
3173 * Build gfp_thisnode zonelists
3174 */
3175static void build_thisnode_zonelists(pg_data_t *pgdat)
3176{
523b9458
CL
3177 int j;
3178 struct zonelist *zonelist;
3179
54a6eb5c
MG
3180 zonelist = &pgdat->node_zonelists[1];
3181 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3182 zonelist->_zonerefs[j].zone = NULL;
3183 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3184}
3185
f0c0b2b8
KH
3186/*
3187 * Build zonelists ordered by zone and nodes within zones.
3188 * This results in conserving DMA zone[s] until all Normal memory is
3189 * exhausted, but results in overflowing to remote node while memory
3190 * may still exist in local DMA zone.
3191 */
3192static int node_order[MAX_NUMNODES];
3193
3194static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3195{
f0c0b2b8
KH
3196 int pos, j, node;
3197 int zone_type; /* needs to be signed */
3198 struct zone *z;
3199 struct zonelist *zonelist;
3200
54a6eb5c
MG
3201 zonelist = &pgdat->node_zonelists[0];
3202 pos = 0;
3203 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3204 for (j = 0; j < nr_nodes; j++) {
3205 node = node_order[j];
3206 z = &NODE_DATA(node)->node_zones[zone_type];
3207 if (populated_zone(z)) {
dd1a239f
MG
3208 zoneref_set_zone(z,
3209 &zonelist->_zonerefs[pos++]);
54a6eb5c 3210 check_highest_zone(zone_type);
f0c0b2b8
KH
3211 }
3212 }
f0c0b2b8 3213 }
dd1a239f
MG
3214 zonelist->_zonerefs[pos].zone = NULL;
3215 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3216}
3217
3218static int default_zonelist_order(void)
3219{
3220 int nid, zone_type;
3221 unsigned long low_kmem_size,total_size;
3222 struct zone *z;
3223 int average_size;
3224 /*
88393161 3225 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3226 * If they are really small and used heavily, the system can fall
3227 * into OOM very easily.
e325c90f 3228 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3229 */
3230 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3231 low_kmem_size = 0;
3232 total_size = 0;
3233 for_each_online_node(nid) {
3234 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3235 z = &NODE_DATA(nid)->node_zones[zone_type];
3236 if (populated_zone(z)) {
3237 if (zone_type < ZONE_NORMAL)
3238 low_kmem_size += z->present_pages;
3239 total_size += z->present_pages;
e325c90f
DR
3240 } else if (zone_type == ZONE_NORMAL) {
3241 /*
3242 * If any node has only lowmem, then node order
3243 * is preferred to allow kernel allocations
3244 * locally; otherwise, they can easily infringe
3245 * on other nodes when there is an abundance of
3246 * lowmem available to allocate from.
3247 */
3248 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3249 }
3250 }
3251 }
3252 if (!low_kmem_size || /* there are no DMA area. */
3253 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3254 return ZONELIST_ORDER_NODE;
3255 /*
3256 * look into each node's config.
3257 * If there is a node whose DMA/DMA32 memory is very big area on
3258 * local memory, NODE_ORDER may be suitable.
3259 */
37b07e41
LS
3260 average_size = total_size /
3261 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3262 for_each_online_node(nid) {
3263 low_kmem_size = 0;
3264 total_size = 0;
3265 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3266 z = &NODE_DATA(nid)->node_zones[zone_type];
3267 if (populated_zone(z)) {
3268 if (zone_type < ZONE_NORMAL)
3269 low_kmem_size += z->present_pages;
3270 total_size += z->present_pages;
3271 }
3272 }
3273 if (low_kmem_size &&
3274 total_size > average_size && /* ignore small node */
3275 low_kmem_size > total_size * 70/100)
3276 return ZONELIST_ORDER_NODE;
3277 }
3278 return ZONELIST_ORDER_ZONE;
3279}
3280
3281static void set_zonelist_order(void)
3282{
3283 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3284 current_zonelist_order = default_zonelist_order();
3285 else
3286 current_zonelist_order = user_zonelist_order;
3287}
3288
3289static void build_zonelists(pg_data_t *pgdat)
3290{
3291 int j, node, load;
3292 enum zone_type i;
1da177e4 3293 nodemask_t used_mask;
f0c0b2b8
KH
3294 int local_node, prev_node;
3295 struct zonelist *zonelist;
3296 int order = current_zonelist_order;
1da177e4
LT
3297
3298 /* initialize zonelists */
523b9458 3299 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3300 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3301 zonelist->_zonerefs[0].zone = NULL;
3302 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3303 }
3304
3305 /* NUMA-aware ordering of nodes */
3306 local_node = pgdat->node_id;
62bc62a8 3307 load = nr_online_nodes;
1da177e4
LT
3308 prev_node = local_node;
3309 nodes_clear(used_mask);
f0c0b2b8 3310
f0c0b2b8
KH
3311 memset(node_order, 0, sizeof(node_order));
3312 j = 0;
3313
1da177e4 3314 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3315 int distance = node_distance(local_node, node);
3316
3317 /*
3318 * If another node is sufficiently far away then it is better
3319 * to reclaim pages in a zone before going off node.
3320 */
3321 if (distance > RECLAIM_DISTANCE)
3322 zone_reclaim_mode = 1;
3323
1da177e4
LT
3324 /*
3325 * We don't want to pressure a particular node.
3326 * So adding penalty to the first node in same
3327 * distance group to make it round-robin.
3328 */
9eeff239 3329 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3330 node_load[node] = load;
3331
1da177e4
LT
3332 prev_node = node;
3333 load--;
f0c0b2b8
KH
3334 if (order == ZONELIST_ORDER_NODE)
3335 build_zonelists_in_node_order(pgdat, node);
3336 else
3337 node_order[j++] = node; /* remember order */
3338 }
1da177e4 3339
f0c0b2b8
KH
3340 if (order == ZONELIST_ORDER_ZONE) {
3341 /* calculate node order -- i.e., DMA last! */
3342 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3343 }
523b9458
CL
3344
3345 build_thisnode_zonelists(pgdat);
1da177e4
LT
3346}
3347
9276b1bc 3348/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3349static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3350{
54a6eb5c
MG
3351 struct zonelist *zonelist;
3352 struct zonelist_cache *zlc;
dd1a239f 3353 struct zoneref *z;
9276b1bc 3354
54a6eb5c
MG
3355 zonelist = &pgdat->node_zonelists[0];
3356 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3357 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3358 for (z = zonelist->_zonerefs; z->zone; z++)
3359 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3360}
3361
7aac7898
LS
3362#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3363/*
3364 * Return node id of node used for "local" allocations.
3365 * I.e., first node id of first zone in arg node's generic zonelist.
3366 * Used for initializing percpu 'numa_mem', which is used primarily
3367 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3368 */
3369int local_memory_node(int node)
3370{
3371 struct zone *zone;
3372
3373 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3374 gfp_zone(GFP_KERNEL),
3375 NULL,
3376 &zone);
3377 return zone->node;
3378}
3379#endif
f0c0b2b8 3380
1da177e4
LT
3381#else /* CONFIG_NUMA */
3382
f0c0b2b8
KH
3383static void set_zonelist_order(void)
3384{
3385 current_zonelist_order = ZONELIST_ORDER_ZONE;
3386}
3387
3388static void build_zonelists(pg_data_t *pgdat)
1da177e4 3389{
19655d34 3390 int node, local_node;
54a6eb5c
MG
3391 enum zone_type j;
3392 struct zonelist *zonelist;
1da177e4
LT
3393
3394 local_node = pgdat->node_id;
1da177e4 3395
54a6eb5c
MG
3396 zonelist = &pgdat->node_zonelists[0];
3397 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3398
54a6eb5c
MG
3399 /*
3400 * Now we build the zonelist so that it contains the zones
3401 * of all the other nodes.
3402 * We don't want to pressure a particular node, so when
3403 * building the zones for node N, we make sure that the
3404 * zones coming right after the local ones are those from
3405 * node N+1 (modulo N)
3406 */
3407 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3408 if (!node_online(node))
3409 continue;
3410 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3411 MAX_NR_ZONES - 1);
1da177e4 3412 }
54a6eb5c
MG
3413 for (node = 0; node < local_node; node++) {
3414 if (!node_online(node))
3415 continue;
3416 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3417 MAX_NR_ZONES - 1);
3418 }
3419
dd1a239f
MG
3420 zonelist->_zonerefs[j].zone = NULL;
3421 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3422}
3423
9276b1bc 3424/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3425static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3426{
54a6eb5c 3427 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3428}
3429
1da177e4
LT
3430#endif /* CONFIG_NUMA */
3431
99dcc3e5
CL
3432/*
3433 * Boot pageset table. One per cpu which is going to be used for all
3434 * zones and all nodes. The parameters will be set in such a way
3435 * that an item put on a list will immediately be handed over to
3436 * the buddy list. This is safe since pageset manipulation is done
3437 * with interrupts disabled.
3438 *
3439 * The boot_pagesets must be kept even after bootup is complete for
3440 * unused processors and/or zones. They do play a role for bootstrapping
3441 * hotplugged processors.
3442 *
3443 * zoneinfo_show() and maybe other functions do
3444 * not check if the processor is online before following the pageset pointer.
3445 * Other parts of the kernel may not check if the zone is available.
3446 */
3447static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3448static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3449static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3450
4eaf3f64
HL
3451/*
3452 * Global mutex to protect against size modification of zonelists
3453 * as well as to serialize pageset setup for the new populated zone.
3454 */
3455DEFINE_MUTEX(zonelists_mutex);
3456
9b1a4d38 3457/* return values int ....just for stop_machine() */
4ed7e022 3458static int __build_all_zonelists(void *data)
1da177e4 3459{
6811378e 3460 int nid;
99dcc3e5 3461 int cpu;
9adb62a5 3462 pg_data_t *self = data;
9276b1bc 3463
7f9cfb31
BL
3464#ifdef CONFIG_NUMA
3465 memset(node_load, 0, sizeof(node_load));
3466#endif
9adb62a5
JL
3467
3468 if (self && !node_online(self->node_id)) {
3469 build_zonelists(self);
3470 build_zonelist_cache(self);
3471 }
3472
9276b1bc 3473 for_each_online_node(nid) {
7ea1530a
CL
3474 pg_data_t *pgdat = NODE_DATA(nid);
3475
3476 build_zonelists(pgdat);
3477 build_zonelist_cache(pgdat);
9276b1bc 3478 }
99dcc3e5
CL
3479
3480 /*
3481 * Initialize the boot_pagesets that are going to be used
3482 * for bootstrapping processors. The real pagesets for
3483 * each zone will be allocated later when the per cpu
3484 * allocator is available.
3485 *
3486 * boot_pagesets are used also for bootstrapping offline
3487 * cpus if the system is already booted because the pagesets
3488 * are needed to initialize allocators on a specific cpu too.
3489 * F.e. the percpu allocator needs the page allocator which
3490 * needs the percpu allocator in order to allocate its pagesets
3491 * (a chicken-egg dilemma).
3492 */
7aac7898 3493 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3494 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3495
7aac7898
LS
3496#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3497 /*
3498 * We now know the "local memory node" for each node--
3499 * i.e., the node of the first zone in the generic zonelist.
3500 * Set up numa_mem percpu variable for on-line cpus. During
3501 * boot, only the boot cpu should be on-line; we'll init the
3502 * secondary cpus' numa_mem as they come on-line. During
3503 * node/memory hotplug, we'll fixup all on-line cpus.
3504 */
3505 if (cpu_online(cpu))
3506 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3507#endif
3508 }
3509
6811378e
YG
3510 return 0;
3511}
3512
4eaf3f64
HL
3513/*
3514 * Called with zonelists_mutex held always
3515 * unless system_state == SYSTEM_BOOTING.
3516 */
9adb62a5 3517void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3518{
f0c0b2b8
KH
3519 set_zonelist_order();
3520
6811378e 3521 if (system_state == SYSTEM_BOOTING) {
423b41d7 3522 __build_all_zonelists(NULL);
68ad8df4 3523 mminit_verify_zonelist();
6811378e
YG
3524 cpuset_init_current_mems_allowed();
3525 } else {
183ff22b 3526 /* we have to stop all cpus to guarantee there is no user
6811378e 3527 of zonelist */
e9959f0f 3528#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3529 if (zone)
3530 setup_zone_pageset(zone);
e9959f0f 3531#endif
9adb62a5 3532 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3533 /* cpuset refresh routine should be here */
3534 }
bd1e22b8 3535 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3536 /*
3537 * Disable grouping by mobility if the number of pages in the
3538 * system is too low to allow the mechanism to work. It would be
3539 * more accurate, but expensive to check per-zone. This check is
3540 * made on memory-hotadd so a system can start with mobility
3541 * disabled and enable it later
3542 */
d9c23400 3543 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3544 page_group_by_mobility_disabled = 1;
3545 else
3546 page_group_by_mobility_disabled = 0;
3547
3548 printk("Built %i zonelists in %s order, mobility grouping %s. "
3549 "Total pages: %ld\n",
62bc62a8 3550 nr_online_nodes,
f0c0b2b8 3551 zonelist_order_name[current_zonelist_order],
9ef9acb0 3552 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3553 vm_total_pages);
3554#ifdef CONFIG_NUMA
3555 printk("Policy zone: %s\n", zone_names[policy_zone]);
3556#endif
1da177e4
LT
3557}
3558
3559/*
3560 * Helper functions to size the waitqueue hash table.
3561 * Essentially these want to choose hash table sizes sufficiently
3562 * large so that collisions trying to wait on pages are rare.
3563 * But in fact, the number of active page waitqueues on typical
3564 * systems is ridiculously low, less than 200. So this is even
3565 * conservative, even though it seems large.
3566 *
3567 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3568 * waitqueues, i.e. the size of the waitq table given the number of pages.
3569 */
3570#define PAGES_PER_WAITQUEUE 256
3571
cca448fe 3572#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3573static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3574{
3575 unsigned long size = 1;
3576
3577 pages /= PAGES_PER_WAITQUEUE;
3578
3579 while (size < pages)
3580 size <<= 1;
3581
3582 /*
3583 * Once we have dozens or even hundreds of threads sleeping
3584 * on IO we've got bigger problems than wait queue collision.
3585 * Limit the size of the wait table to a reasonable size.
3586 */
3587 size = min(size, 4096UL);
3588
3589 return max(size, 4UL);
3590}
cca448fe
YG
3591#else
3592/*
3593 * A zone's size might be changed by hot-add, so it is not possible to determine
3594 * a suitable size for its wait_table. So we use the maximum size now.
3595 *
3596 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3597 *
3598 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3599 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3600 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3601 *
3602 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3603 * or more by the traditional way. (See above). It equals:
3604 *
3605 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3606 * ia64(16K page size) : = ( 8G + 4M)byte.
3607 * powerpc (64K page size) : = (32G +16M)byte.
3608 */
3609static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3610{
3611 return 4096UL;
3612}
3613#endif
1da177e4
LT
3614
3615/*
3616 * This is an integer logarithm so that shifts can be used later
3617 * to extract the more random high bits from the multiplicative
3618 * hash function before the remainder is taken.
3619 */
3620static inline unsigned long wait_table_bits(unsigned long size)
3621{
3622 return ffz(~size);
3623}
3624
3625#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3626
6d3163ce
AH
3627/*
3628 * Check if a pageblock contains reserved pages
3629 */
3630static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3631{
3632 unsigned long pfn;
3633
3634 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3635 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3636 return 1;
3637 }
3638 return 0;
3639}
3640
56fd56b8 3641/*
d9c23400 3642 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3643 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3644 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3645 * higher will lead to a bigger reserve which will get freed as contiguous
3646 * blocks as reclaim kicks in
3647 */
3648static void setup_zone_migrate_reserve(struct zone *zone)
3649{
6d3163ce 3650 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3651 struct page *page;
78986a67
MG
3652 unsigned long block_migratetype;
3653 int reserve;
56fd56b8 3654
d0215638
MH
3655 /*
3656 * Get the start pfn, end pfn and the number of blocks to reserve
3657 * We have to be careful to be aligned to pageblock_nr_pages to
3658 * make sure that we always check pfn_valid for the first page in
3659 * the block.
3660 */
56fd56b8
MG
3661 start_pfn = zone->zone_start_pfn;
3662 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3663 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3664 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3665 pageblock_order;
56fd56b8 3666
78986a67
MG
3667 /*
3668 * Reserve blocks are generally in place to help high-order atomic
3669 * allocations that are short-lived. A min_free_kbytes value that
3670 * would result in more than 2 reserve blocks for atomic allocations
3671 * is assumed to be in place to help anti-fragmentation for the
3672 * future allocation of hugepages at runtime.
3673 */
3674 reserve = min(2, reserve);
3675
d9c23400 3676 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3677 if (!pfn_valid(pfn))
3678 continue;
3679 page = pfn_to_page(pfn);
3680
344c790e
AL
3681 /* Watch out for overlapping nodes */
3682 if (page_to_nid(page) != zone_to_nid(zone))
3683 continue;
3684
56fd56b8
MG
3685 block_migratetype = get_pageblock_migratetype(page);
3686
938929f1
MG
3687 /* Only test what is necessary when the reserves are not met */
3688 if (reserve > 0) {
3689 /*
3690 * Blocks with reserved pages will never free, skip
3691 * them.
3692 */
3693 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3694 if (pageblock_is_reserved(pfn, block_end_pfn))
3695 continue;
56fd56b8 3696
938929f1
MG
3697 /* If this block is reserved, account for it */
3698 if (block_migratetype == MIGRATE_RESERVE) {
3699 reserve--;
3700 continue;
3701 }
3702
3703 /* Suitable for reserving if this block is movable */
3704 if (block_migratetype == MIGRATE_MOVABLE) {
3705 set_pageblock_migratetype(page,
3706 MIGRATE_RESERVE);
3707 move_freepages_block(zone, page,
3708 MIGRATE_RESERVE);
3709 reserve--;
3710 continue;
3711 }
56fd56b8
MG
3712 }
3713
3714 /*
3715 * If the reserve is met and this is a previous reserved block,
3716 * take it back
3717 */
3718 if (block_migratetype == MIGRATE_RESERVE) {
3719 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3720 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3721 }
3722 }
3723}
ac0e5b7a 3724
1da177e4
LT
3725/*
3726 * Initially all pages are reserved - free ones are freed
3727 * up by free_all_bootmem() once the early boot process is
3728 * done. Non-atomic initialization, single-pass.
3729 */
c09b4240 3730void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3731 unsigned long start_pfn, enum memmap_context context)
1da177e4 3732{
1da177e4 3733 struct page *page;
29751f69
AW
3734 unsigned long end_pfn = start_pfn + size;
3735 unsigned long pfn;
86051ca5 3736 struct zone *z;
1da177e4 3737
22b31eec
HD
3738 if (highest_memmap_pfn < end_pfn - 1)
3739 highest_memmap_pfn = end_pfn - 1;
3740
86051ca5 3741 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3742 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3743 /*
3744 * There can be holes in boot-time mem_map[]s
3745 * handed to this function. They do not
3746 * exist on hotplugged memory.
3747 */
3748 if (context == MEMMAP_EARLY) {
3749 if (!early_pfn_valid(pfn))
3750 continue;
3751 if (!early_pfn_in_nid(pfn, nid))
3752 continue;
3753 }
d41dee36
AW
3754 page = pfn_to_page(pfn);
3755 set_page_links(page, zone, nid, pfn);
708614e6 3756 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3757 init_page_count(page);
1da177e4
LT
3758 reset_page_mapcount(page);
3759 SetPageReserved(page);
b2a0ac88
MG
3760 /*
3761 * Mark the block movable so that blocks are reserved for
3762 * movable at startup. This will force kernel allocations
3763 * to reserve their blocks rather than leaking throughout
3764 * the address space during boot when many long-lived
56fd56b8
MG
3765 * kernel allocations are made. Later some blocks near
3766 * the start are marked MIGRATE_RESERVE by
3767 * setup_zone_migrate_reserve()
86051ca5
KH
3768 *
3769 * bitmap is created for zone's valid pfn range. but memmap
3770 * can be created for invalid pages (for alignment)
3771 * check here not to call set_pageblock_migratetype() against
3772 * pfn out of zone.
b2a0ac88 3773 */
86051ca5
KH
3774 if ((z->zone_start_pfn <= pfn)
3775 && (pfn < z->zone_start_pfn + z->spanned_pages)
3776 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3777 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3778
1da177e4
LT
3779 INIT_LIST_HEAD(&page->lru);
3780#ifdef WANT_PAGE_VIRTUAL
3781 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3782 if (!is_highmem_idx(zone))
3212c6be 3783 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3784#endif
1da177e4
LT
3785 }
3786}
3787
1e548deb 3788static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3789{
b2a0ac88
MG
3790 int order, t;
3791 for_each_migratetype_order(order, t) {
3792 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3793 zone->free_area[order].nr_free = 0;
3794 }
3795}
3796
3797#ifndef __HAVE_ARCH_MEMMAP_INIT
3798#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3799 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3800#endif
3801
4ed7e022 3802static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3803{
3a6be87f 3804#ifdef CONFIG_MMU
e7c8d5c9
CL
3805 int batch;
3806
3807 /*
3808 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3809 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3810 *
3811 * OK, so we don't know how big the cache is. So guess.
3812 */
3813 batch = zone->present_pages / 1024;
ba56e91c
SR
3814 if (batch * PAGE_SIZE > 512 * 1024)
3815 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3816 batch /= 4; /* We effectively *= 4 below */
3817 if (batch < 1)
3818 batch = 1;
3819
3820 /*
0ceaacc9
NP
3821 * Clamp the batch to a 2^n - 1 value. Having a power
3822 * of 2 value was found to be more likely to have
3823 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3824 *
0ceaacc9
NP
3825 * For example if 2 tasks are alternately allocating
3826 * batches of pages, one task can end up with a lot
3827 * of pages of one half of the possible page colors
3828 * and the other with pages of the other colors.
e7c8d5c9 3829 */
9155203a 3830 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3831
e7c8d5c9 3832 return batch;
3a6be87f
DH
3833
3834#else
3835 /* The deferral and batching of frees should be suppressed under NOMMU
3836 * conditions.
3837 *
3838 * The problem is that NOMMU needs to be able to allocate large chunks
3839 * of contiguous memory as there's no hardware page translation to
3840 * assemble apparent contiguous memory from discontiguous pages.
3841 *
3842 * Queueing large contiguous runs of pages for batching, however,
3843 * causes the pages to actually be freed in smaller chunks. As there
3844 * can be a significant delay between the individual batches being
3845 * recycled, this leads to the once large chunks of space being
3846 * fragmented and becoming unavailable for high-order allocations.
3847 */
3848 return 0;
3849#endif
e7c8d5c9
CL
3850}
3851
b69a7288 3852static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3853{
3854 struct per_cpu_pages *pcp;
5f8dcc21 3855 int migratetype;
2caaad41 3856
1c6fe946
MD
3857 memset(p, 0, sizeof(*p));
3858
3dfa5721 3859 pcp = &p->pcp;
2caaad41 3860 pcp->count = 0;
2caaad41
CL
3861 pcp->high = 6 * batch;
3862 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3863 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3864 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3865}
3866
8ad4b1fb
RS
3867/*
3868 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3869 * to the value high for the pageset p.
3870 */
3871
3872static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3873 unsigned long high)
3874{
3875 struct per_cpu_pages *pcp;
3876
3dfa5721 3877 pcp = &p->pcp;
8ad4b1fb
RS
3878 pcp->high = high;
3879 pcp->batch = max(1UL, high/4);
3880 if ((high/4) > (PAGE_SHIFT * 8))
3881 pcp->batch = PAGE_SHIFT * 8;
3882}
3883
4ed7e022 3884static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3885{
3886 int cpu;
3887
3888 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3889
3890 for_each_possible_cpu(cpu) {
3891 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3892
3893 setup_pageset(pcp, zone_batchsize(zone));
3894
3895 if (percpu_pagelist_fraction)
3896 setup_pagelist_highmark(pcp,
3897 (zone->present_pages /
3898 percpu_pagelist_fraction));
3899 }
3900}
3901
2caaad41 3902/*
99dcc3e5
CL
3903 * Allocate per cpu pagesets and initialize them.
3904 * Before this call only boot pagesets were available.
e7c8d5c9 3905 */
99dcc3e5 3906void __init setup_per_cpu_pageset(void)
e7c8d5c9 3907{
99dcc3e5 3908 struct zone *zone;
e7c8d5c9 3909
319774e2
WF
3910 for_each_populated_zone(zone)
3911 setup_zone_pageset(zone);
e7c8d5c9
CL
3912}
3913
577a32f6 3914static noinline __init_refok
cca448fe 3915int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3916{
3917 int i;
3918 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3919 size_t alloc_size;
ed8ece2e
DH
3920
3921 /*
3922 * The per-page waitqueue mechanism uses hashed waitqueues
3923 * per zone.
3924 */
02b694de
YG
3925 zone->wait_table_hash_nr_entries =
3926 wait_table_hash_nr_entries(zone_size_pages);
3927 zone->wait_table_bits =
3928 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3929 alloc_size = zone->wait_table_hash_nr_entries
3930 * sizeof(wait_queue_head_t);
3931
cd94b9db 3932 if (!slab_is_available()) {
cca448fe 3933 zone->wait_table = (wait_queue_head_t *)
8f389a99 3934 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3935 } else {
3936 /*
3937 * This case means that a zone whose size was 0 gets new memory
3938 * via memory hot-add.
3939 * But it may be the case that a new node was hot-added. In
3940 * this case vmalloc() will not be able to use this new node's
3941 * memory - this wait_table must be initialized to use this new
3942 * node itself as well.
3943 * To use this new node's memory, further consideration will be
3944 * necessary.
3945 */
8691f3a7 3946 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3947 }
3948 if (!zone->wait_table)
3949 return -ENOMEM;
ed8ece2e 3950
02b694de 3951 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3952 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3953
3954 return 0;
ed8ece2e
DH
3955}
3956
c09b4240 3957static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3958{
99dcc3e5
CL
3959 /*
3960 * per cpu subsystem is not up at this point. The following code
3961 * relies on the ability of the linker to provide the
3962 * offset of a (static) per cpu variable into the per cpu area.
3963 */
3964 zone->pageset = &boot_pageset;
ed8ece2e 3965
f5335c0f 3966 if (zone->present_pages)
99dcc3e5
CL
3967 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3968 zone->name, zone->present_pages,
3969 zone_batchsize(zone));
ed8ece2e
DH
3970}
3971
4ed7e022 3972int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 3973 unsigned long zone_start_pfn,
a2f3aa02
DH
3974 unsigned long size,
3975 enum memmap_context context)
ed8ece2e
DH
3976{
3977 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3978 int ret;
3979 ret = zone_wait_table_init(zone, size);
3980 if (ret)
3981 return ret;
ed8ece2e
DH
3982 pgdat->nr_zones = zone_idx(zone) + 1;
3983
ed8ece2e
DH
3984 zone->zone_start_pfn = zone_start_pfn;
3985
708614e6
MG
3986 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3987 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3988 pgdat->node_id,
3989 (unsigned long)zone_idx(zone),
3990 zone_start_pfn, (zone_start_pfn + size));
3991
1e548deb 3992 zone_init_free_lists(zone);
718127cc
YG
3993
3994 return 0;
ed8ece2e
DH
3995}
3996
0ee332c1 3997#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3998#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3999/*
4000 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4001 * Architectures may implement their own version but if add_active_range()
4002 * was used and there are no special requirements, this is a convenient
4003 * alternative
4004 */
f2dbcfa7 4005int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4006{
c13291a5
TH
4007 unsigned long start_pfn, end_pfn;
4008 int i, nid;
c713216d 4009
c13291a5 4010 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4011 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4012 return nid;
cc2559bc
KH
4013 /* This is a memory hole */
4014 return -1;
c713216d
MG
4015}
4016#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4017
f2dbcfa7
KH
4018int __meminit early_pfn_to_nid(unsigned long pfn)
4019{
cc2559bc
KH
4020 int nid;
4021
4022 nid = __early_pfn_to_nid(pfn);
4023 if (nid >= 0)
4024 return nid;
4025 /* just returns 0 */
4026 return 0;
f2dbcfa7
KH
4027}
4028
cc2559bc
KH
4029#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4030bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4031{
4032 int nid;
4033
4034 nid = __early_pfn_to_nid(pfn);
4035 if (nid >= 0 && nid != node)
4036 return false;
4037 return true;
4038}
4039#endif
f2dbcfa7 4040
c713216d
MG
4041/**
4042 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4043 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4044 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4045 *
4046 * If an architecture guarantees that all ranges registered with
4047 * add_active_ranges() contain no holes and may be freed, this
4048 * this function may be used instead of calling free_bootmem() manually.
4049 */
c13291a5 4050void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4051{
c13291a5
TH
4052 unsigned long start_pfn, end_pfn;
4053 int i, this_nid;
edbe7d23 4054
c13291a5
TH
4055 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4056 start_pfn = min(start_pfn, max_low_pfn);
4057 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4058
c13291a5
TH
4059 if (start_pfn < end_pfn)
4060 free_bootmem_node(NODE_DATA(this_nid),
4061 PFN_PHYS(start_pfn),
4062 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4063 }
edbe7d23 4064}
edbe7d23 4065
c713216d
MG
4066/**
4067 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4068 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4069 *
4070 * If an architecture guarantees that all ranges registered with
4071 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4072 * function may be used instead of calling memory_present() manually.
c713216d
MG
4073 */
4074void __init sparse_memory_present_with_active_regions(int nid)
4075{
c13291a5
TH
4076 unsigned long start_pfn, end_pfn;
4077 int i, this_nid;
c713216d 4078
c13291a5
TH
4079 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4080 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4081}
4082
4083/**
4084 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4085 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4086 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4087 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4088 *
4089 * It returns the start and end page frame of a node based on information
4090 * provided by an arch calling add_active_range(). If called for a node
4091 * with no available memory, a warning is printed and the start and end
88ca3b94 4092 * PFNs will be 0.
c713216d 4093 */
a3142c8e 4094void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4095 unsigned long *start_pfn, unsigned long *end_pfn)
4096{
c13291a5 4097 unsigned long this_start_pfn, this_end_pfn;
c713216d 4098 int i;
c13291a5 4099
c713216d
MG
4100 *start_pfn = -1UL;
4101 *end_pfn = 0;
4102
c13291a5
TH
4103 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4104 *start_pfn = min(*start_pfn, this_start_pfn);
4105 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4106 }
4107
633c0666 4108 if (*start_pfn == -1UL)
c713216d 4109 *start_pfn = 0;
c713216d
MG
4110}
4111
2a1e274a
MG
4112/*
4113 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4114 * assumption is made that zones within a node are ordered in monotonic
4115 * increasing memory addresses so that the "highest" populated zone is used
4116 */
b69a7288 4117static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4118{
4119 int zone_index;
4120 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4121 if (zone_index == ZONE_MOVABLE)
4122 continue;
4123
4124 if (arch_zone_highest_possible_pfn[zone_index] >
4125 arch_zone_lowest_possible_pfn[zone_index])
4126 break;
4127 }
4128
4129 VM_BUG_ON(zone_index == -1);
4130 movable_zone = zone_index;
4131}
4132
4133/*
4134 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4135 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4136 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4137 * in each node depending on the size of each node and how evenly kernelcore
4138 * is distributed. This helper function adjusts the zone ranges
4139 * provided by the architecture for a given node by using the end of the
4140 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4141 * zones within a node are in order of monotonic increases memory addresses
4142 */
b69a7288 4143static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4144 unsigned long zone_type,
4145 unsigned long node_start_pfn,
4146 unsigned long node_end_pfn,
4147 unsigned long *zone_start_pfn,
4148 unsigned long *zone_end_pfn)
4149{
4150 /* Only adjust if ZONE_MOVABLE is on this node */
4151 if (zone_movable_pfn[nid]) {
4152 /* Size ZONE_MOVABLE */
4153 if (zone_type == ZONE_MOVABLE) {
4154 *zone_start_pfn = zone_movable_pfn[nid];
4155 *zone_end_pfn = min(node_end_pfn,
4156 arch_zone_highest_possible_pfn[movable_zone]);
4157
4158 /* Adjust for ZONE_MOVABLE starting within this range */
4159 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4160 *zone_end_pfn > zone_movable_pfn[nid]) {
4161 *zone_end_pfn = zone_movable_pfn[nid];
4162
4163 /* Check if this whole range is within ZONE_MOVABLE */
4164 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4165 *zone_start_pfn = *zone_end_pfn;
4166 }
4167}
4168
c713216d
MG
4169/*
4170 * Return the number of pages a zone spans in a node, including holes
4171 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4172 */
6ea6e688 4173static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4174 unsigned long zone_type,
4175 unsigned long *ignored)
4176{
4177 unsigned long node_start_pfn, node_end_pfn;
4178 unsigned long zone_start_pfn, zone_end_pfn;
4179
4180 /* Get the start and end of the node and zone */
4181 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4182 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4183 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4184 adjust_zone_range_for_zone_movable(nid, zone_type,
4185 node_start_pfn, node_end_pfn,
4186 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4187
4188 /* Check that this node has pages within the zone's required range */
4189 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4190 return 0;
4191
4192 /* Move the zone boundaries inside the node if necessary */
4193 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4194 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4195
4196 /* Return the spanned pages */
4197 return zone_end_pfn - zone_start_pfn;
4198}
4199
4200/*
4201 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4202 * then all holes in the requested range will be accounted for.
c713216d 4203 */
32996250 4204unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4205 unsigned long range_start_pfn,
4206 unsigned long range_end_pfn)
4207{
96e907d1
TH
4208 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4209 unsigned long start_pfn, end_pfn;
4210 int i;
c713216d 4211
96e907d1
TH
4212 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4213 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4214 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4215 nr_absent -= end_pfn - start_pfn;
c713216d 4216 }
96e907d1 4217 return nr_absent;
c713216d
MG
4218}
4219
4220/**
4221 * absent_pages_in_range - Return number of page frames in holes within a range
4222 * @start_pfn: The start PFN to start searching for holes
4223 * @end_pfn: The end PFN to stop searching for holes
4224 *
88ca3b94 4225 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4226 */
4227unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4228 unsigned long end_pfn)
4229{
4230 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4231}
4232
4233/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4234static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4235 unsigned long zone_type,
4236 unsigned long *ignored)
4237{
96e907d1
TH
4238 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4239 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4240 unsigned long node_start_pfn, node_end_pfn;
4241 unsigned long zone_start_pfn, zone_end_pfn;
4242
4243 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4244 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4245 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4246
2a1e274a
MG
4247 adjust_zone_range_for_zone_movable(nid, zone_type,
4248 node_start_pfn, node_end_pfn,
4249 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4250 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4251}
0e0b864e 4252
0ee332c1 4253#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4254static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4255 unsigned long zone_type,
4256 unsigned long *zones_size)
4257{
4258 return zones_size[zone_type];
4259}
4260
6ea6e688 4261static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4262 unsigned long zone_type,
4263 unsigned long *zholes_size)
4264{
4265 if (!zholes_size)
4266 return 0;
4267
4268 return zholes_size[zone_type];
4269}
0e0b864e 4270
0ee332c1 4271#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4272
a3142c8e 4273static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4274 unsigned long *zones_size, unsigned long *zholes_size)
4275{
4276 unsigned long realtotalpages, totalpages = 0;
4277 enum zone_type i;
4278
4279 for (i = 0; i < MAX_NR_ZONES; i++)
4280 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4281 zones_size);
4282 pgdat->node_spanned_pages = totalpages;
4283
4284 realtotalpages = totalpages;
4285 for (i = 0; i < MAX_NR_ZONES; i++)
4286 realtotalpages -=
4287 zone_absent_pages_in_node(pgdat->node_id, i,
4288 zholes_size);
4289 pgdat->node_present_pages = realtotalpages;
4290 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4291 realtotalpages);
4292}
4293
835c134e
MG
4294#ifndef CONFIG_SPARSEMEM
4295/*
4296 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4297 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4298 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4299 * round what is now in bits to nearest long in bits, then return it in
4300 * bytes.
4301 */
4302static unsigned long __init usemap_size(unsigned long zonesize)
4303{
4304 unsigned long usemapsize;
4305
d9c23400
MG
4306 usemapsize = roundup(zonesize, pageblock_nr_pages);
4307 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4308 usemapsize *= NR_PAGEBLOCK_BITS;
4309 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4310
4311 return usemapsize / 8;
4312}
4313
4314static void __init setup_usemap(struct pglist_data *pgdat,
4315 struct zone *zone, unsigned long zonesize)
4316{
4317 unsigned long usemapsize = usemap_size(zonesize);
4318 zone->pageblock_flags = NULL;
58a01a45 4319 if (usemapsize)
8f389a99
YL
4320 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4321 usemapsize);
835c134e
MG
4322}
4323#else
fa9f90be 4324static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4325 struct zone *zone, unsigned long zonesize) {}
4326#endif /* CONFIG_SPARSEMEM */
4327
d9c23400 4328#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4329
d9c23400 4330/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4331void __init set_pageblock_order(void)
d9c23400 4332{
955c1cd7
AM
4333 unsigned int order;
4334
d9c23400
MG
4335 /* Check that pageblock_nr_pages has not already been setup */
4336 if (pageblock_order)
4337 return;
4338
955c1cd7
AM
4339 if (HPAGE_SHIFT > PAGE_SHIFT)
4340 order = HUGETLB_PAGE_ORDER;
4341 else
4342 order = MAX_ORDER - 1;
4343
d9c23400
MG
4344 /*
4345 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4346 * This value may be variable depending on boot parameters on IA64 and
4347 * powerpc.
d9c23400
MG
4348 */
4349 pageblock_order = order;
4350}
4351#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4352
ba72cb8c
MG
4353/*
4354 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4355 * is unused as pageblock_order is set at compile-time. See
4356 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4357 * the kernel config
ba72cb8c 4358 */
ca57df79 4359void __init set_pageblock_order(void)
ba72cb8c 4360{
ba72cb8c 4361}
d9c23400
MG
4362
4363#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4364
1da177e4
LT
4365/*
4366 * Set up the zone data structures:
4367 * - mark all pages reserved
4368 * - mark all memory queues empty
4369 * - clear the memory bitmaps
4370 */
b5a0e011 4371static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4372 unsigned long *zones_size, unsigned long *zholes_size)
4373{
2f1b6248 4374 enum zone_type j;
ed8ece2e 4375 int nid = pgdat->node_id;
1da177e4 4376 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4377 int ret;
1da177e4 4378
208d54e5 4379 pgdat_resize_init(pgdat);
1da177e4
LT
4380 pgdat->nr_zones = 0;
4381 init_waitqueue_head(&pgdat->kswapd_wait);
4382 pgdat->kswapd_max_order = 0;
52d4b9ac 4383 pgdat_page_cgroup_init(pgdat);
5f63b720 4384
1da177e4
LT
4385 for (j = 0; j < MAX_NR_ZONES; j++) {
4386 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4387 unsigned long size, realsize, memmap_pages;
1da177e4 4388
c713216d
MG
4389 size = zone_spanned_pages_in_node(nid, j, zones_size);
4390 realsize = size - zone_absent_pages_in_node(nid, j,
4391 zholes_size);
1da177e4 4392
0e0b864e
MG
4393 /*
4394 * Adjust realsize so that it accounts for how much memory
4395 * is used by this zone for memmap. This affects the watermark
4396 * and per-cpu initialisations
4397 */
f7232154
JW
4398 memmap_pages =
4399 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4400 if (realsize >= memmap_pages) {
4401 realsize -= memmap_pages;
5594c8c8
YL
4402 if (memmap_pages)
4403 printk(KERN_DEBUG
4404 " %s zone: %lu pages used for memmap\n",
4405 zone_names[j], memmap_pages);
0e0b864e
MG
4406 } else
4407 printk(KERN_WARNING
4408 " %s zone: %lu pages exceeds realsize %lu\n",
4409 zone_names[j], memmap_pages, realsize);
4410
6267276f
CL
4411 /* Account for reserved pages */
4412 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4413 realsize -= dma_reserve;
d903ef9f 4414 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4415 zone_names[0], dma_reserve);
0e0b864e
MG
4416 }
4417
98d2b0eb 4418 if (!is_highmem_idx(j))
1da177e4
LT
4419 nr_kernel_pages += realsize;
4420 nr_all_pages += realsize;
4421
4422 zone->spanned_pages = size;
4423 zone->present_pages = realsize;
7db8889a
RR
4424#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4425 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4426 zone->spanned_pages;
4427 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4428#endif
9614634f 4429#ifdef CONFIG_NUMA
d5f541ed 4430 zone->node = nid;
8417bba4 4431 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4432 / 100;
0ff38490 4433 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4434#endif
1da177e4
LT
4435 zone->name = zone_names[j];
4436 spin_lock_init(&zone->lock);
4437 spin_lock_init(&zone->lru_lock);
bdc8cb98 4438 zone_seqlock_init(zone);
1da177e4 4439 zone->zone_pgdat = pgdat;
1da177e4 4440
ed8ece2e 4441 zone_pcp_init(zone);
7f5e86c2 4442 lruvec_init(&zone->lruvec, zone);
2244b95a 4443 zap_zone_vm_stats(zone);
e815af95 4444 zone->flags = 0;
702d1a6e
MK
4445#ifdef CONFIG_MEMORY_ISOLATION
4446 zone->nr_pageblock_isolate = 0;
4447#endif
1da177e4
LT
4448 if (!size)
4449 continue;
4450
955c1cd7 4451 set_pageblock_order();
835c134e 4452 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4453 ret = init_currently_empty_zone(zone, zone_start_pfn,
4454 size, MEMMAP_EARLY);
718127cc 4455 BUG_ON(ret);
76cdd58e 4456 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4457 zone_start_pfn += size;
1da177e4
LT
4458 }
4459}
4460
577a32f6 4461static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4462{
1da177e4
LT
4463 /* Skip empty nodes */
4464 if (!pgdat->node_spanned_pages)
4465 return;
4466
d41dee36 4467#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4468 /* ia64 gets its own node_mem_map, before this, without bootmem */
4469 if (!pgdat->node_mem_map) {
e984bb43 4470 unsigned long size, start, end;
d41dee36
AW
4471 struct page *map;
4472
e984bb43
BP
4473 /*
4474 * The zone's endpoints aren't required to be MAX_ORDER
4475 * aligned but the node_mem_map endpoints must be in order
4476 * for the buddy allocator to function correctly.
4477 */
4478 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4479 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4480 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4481 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4482 map = alloc_remap(pgdat->node_id, size);
4483 if (!map)
8f389a99 4484 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4485 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4486 }
12d810c1 4487#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4488 /*
4489 * With no DISCONTIG, the global mem_map is just set as node 0's
4490 */
c713216d 4491 if (pgdat == NODE_DATA(0)) {
1da177e4 4492 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4494 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4495 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4496#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4497 }
1da177e4 4498#endif
d41dee36 4499#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4500}
4501
9109fb7b
JW
4502void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4503 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4504{
9109fb7b
JW
4505 pg_data_t *pgdat = NODE_DATA(nid);
4506
1da177e4
LT
4507 pgdat->node_id = nid;
4508 pgdat->node_start_pfn = node_start_pfn;
c713216d 4509 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4510
4511 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4512#ifdef CONFIG_FLAT_NODE_MEM_MAP
4513 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4514 nid, (unsigned long)pgdat,
4515 (unsigned long)pgdat->node_mem_map);
4516#endif
1da177e4
LT
4517
4518 free_area_init_core(pgdat, zones_size, zholes_size);
4519}
4520
0ee332c1 4521#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4522
4523#if MAX_NUMNODES > 1
4524/*
4525 * Figure out the number of possible node ids.
4526 */
4527static void __init setup_nr_node_ids(void)
4528{
4529 unsigned int node;
4530 unsigned int highest = 0;
4531
4532 for_each_node_mask(node, node_possible_map)
4533 highest = node;
4534 nr_node_ids = highest + 1;
4535}
4536#else
4537static inline void setup_nr_node_ids(void)
4538{
4539}
4540#endif
4541
1e01979c
TH
4542/**
4543 * node_map_pfn_alignment - determine the maximum internode alignment
4544 *
4545 * This function should be called after node map is populated and sorted.
4546 * It calculates the maximum power of two alignment which can distinguish
4547 * all the nodes.
4548 *
4549 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4550 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4551 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4552 * shifted, 1GiB is enough and this function will indicate so.
4553 *
4554 * This is used to test whether pfn -> nid mapping of the chosen memory
4555 * model has fine enough granularity to avoid incorrect mapping for the
4556 * populated node map.
4557 *
4558 * Returns the determined alignment in pfn's. 0 if there is no alignment
4559 * requirement (single node).
4560 */
4561unsigned long __init node_map_pfn_alignment(void)
4562{
4563 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4564 unsigned long start, end, mask;
1e01979c 4565 int last_nid = -1;
c13291a5 4566 int i, nid;
1e01979c 4567
c13291a5 4568 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4569 if (!start || last_nid < 0 || last_nid == nid) {
4570 last_nid = nid;
4571 last_end = end;
4572 continue;
4573 }
4574
4575 /*
4576 * Start with a mask granular enough to pin-point to the
4577 * start pfn and tick off bits one-by-one until it becomes
4578 * too coarse to separate the current node from the last.
4579 */
4580 mask = ~((1 << __ffs(start)) - 1);
4581 while (mask && last_end <= (start & (mask << 1)))
4582 mask <<= 1;
4583
4584 /* accumulate all internode masks */
4585 accl_mask |= mask;
4586 }
4587
4588 /* convert mask to number of pages */
4589 return ~accl_mask + 1;
4590}
4591
a6af2bc3 4592/* Find the lowest pfn for a node */
b69a7288 4593static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4594{
a6af2bc3 4595 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4596 unsigned long start_pfn;
4597 int i;
1abbfb41 4598
c13291a5
TH
4599 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4600 min_pfn = min(min_pfn, start_pfn);
c713216d 4601
a6af2bc3
MG
4602 if (min_pfn == ULONG_MAX) {
4603 printk(KERN_WARNING
2bc0d261 4604 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4605 return 0;
4606 }
4607
4608 return min_pfn;
c713216d
MG
4609}
4610
4611/**
4612 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4613 *
4614 * It returns the minimum PFN based on information provided via
88ca3b94 4615 * add_active_range().
c713216d
MG
4616 */
4617unsigned long __init find_min_pfn_with_active_regions(void)
4618{
4619 return find_min_pfn_for_node(MAX_NUMNODES);
4620}
4621
37b07e41
LS
4622/*
4623 * early_calculate_totalpages()
4624 * Sum pages in active regions for movable zone.
4625 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4626 */
484f51f8 4627static unsigned long __init early_calculate_totalpages(void)
7e63efef 4628{
7e63efef 4629 unsigned long totalpages = 0;
c13291a5
TH
4630 unsigned long start_pfn, end_pfn;
4631 int i, nid;
4632
4633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4634 unsigned long pages = end_pfn - start_pfn;
7e63efef 4635
37b07e41
LS
4636 totalpages += pages;
4637 if (pages)
c13291a5 4638 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4639 }
4640 return totalpages;
7e63efef
MG
4641}
4642
2a1e274a
MG
4643/*
4644 * Find the PFN the Movable zone begins in each node. Kernel memory
4645 * is spread evenly between nodes as long as the nodes have enough
4646 * memory. When they don't, some nodes will have more kernelcore than
4647 * others
4648 */
b224ef85 4649static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4650{
4651 int i, nid;
4652 unsigned long usable_startpfn;
4653 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4654 /* save the state before borrow the nodemask */
4655 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4656 unsigned long totalpages = early_calculate_totalpages();
4657 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4658
7e63efef
MG
4659 /*
4660 * If movablecore was specified, calculate what size of
4661 * kernelcore that corresponds so that memory usable for
4662 * any allocation type is evenly spread. If both kernelcore
4663 * and movablecore are specified, then the value of kernelcore
4664 * will be used for required_kernelcore if it's greater than
4665 * what movablecore would have allowed.
4666 */
4667 if (required_movablecore) {
7e63efef
MG
4668 unsigned long corepages;
4669
4670 /*
4671 * Round-up so that ZONE_MOVABLE is at least as large as what
4672 * was requested by the user
4673 */
4674 required_movablecore =
4675 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4676 corepages = totalpages - required_movablecore;
4677
4678 required_kernelcore = max(required_kernelcore, corepages);
4679 }
4680
2a1e274a
MG
4681 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4682 if (!required_kernelcore)
66918dcd 4683 goto out;
2a1e274a
MG
4684
4685 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4686 find_usable_zone_for_movable();
4687 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4688
4689restart:
4690 /* Spread kernelcore memory as evenly as possible throughout nodes */
4691 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4692 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4693 unsigned long start_pfn, end_pfn;
4694
2a1e274a
MG
4695 /*
4696 * Recalculate kernelcore_node if the division per node
4697 * now exceeds what is necessary to satisfy the requested
4698 * amount of memory for the kernel
4699 */
4700 if (required_kernelcore < kernelcore_node)
4701 kernelcore_node = required_kernelcore / usable_nodes;
4702
4703 /*
4704 * As the map is walked, we track how much memory is usable
4705 * by the kernel using kernelcore_remaining. When it is
4706 * 0, the rest of the node is usable by ZONE_MOVABLE
4707 */
4708 kernelcore_remaining = kernelcore_node;
4709
4710 /* Go through each range of PFNs within this node */
c13291a5 4711 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4712 unsigned long size_pages;
4713
c13291a5 4714 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4715 if (start_pfn >= end_pfn)
4716 continue;
4717
4718 /* Account for what is only usable for kernelcore */
4719 if (start_pfn < usable_startpfn) {
4720 unsigned long kernel_pages;
4721 kernel_pages = min(end_pfn, usable_startpfn)
4722 - start_pfn;
4723
4724 kernelcore_remaining -= min(kernel_pages,
4725 kernelcore_remaining);
4726 required_kernelcore -= min(kernel_pages,
4727 required_kernelcore);
4728
4729 /* Continue if range is now fully accounted */
4730 if (end_pfn <= usable_startpfn) {
4731
4732 /*
4733 * Push zone_movable_pfn to the end so
4734 * that if we have to rebalance
4735 * kernelcore across nodes, we will
4736 * not double account here
4737 */
4738 zone_movable_pfn[nid] = end_pfn;
4739 continue;
4740 }
4741 start_pfn = usable_startpfn;
4742 }
4743
4744 /*
4745 * The usable PFN range for ZONE_MOVABLE is from
4746 * start_pfn->end_pfn. Calculate size_pages as the
4747 * number of pages used as kernelcore
4748 */
4749 size_pages = end_pfn - start_pfn;
4750 if (size_pages > kernelcore_remaining)
4751 size_pages = kernelcore_remaining;
4752 zone_movable_pfn[nid] = start_pfn + size_pages;
4753
4754 /*
4755 * Some kernelcore has been met, update counts and
4756 * break if the kernelcore for this node has been
4757 * satisified
4758 */
4759 required_kernelcore -= min(required_kernelcore,
4760 size_pages);
4761 kernelcore_remaining -= size_pages;
4762 if (!kernelcore_remaining)
4763 break;
4764 }
4765 }
4766
4767 /*
4768 * If there is still required_kernelcore, we do another pass with one
4769 * less node in the count. This will push zone_movable_pfn[nid] further
4770 * along on the nodes that still have memory until kernelcore is
4771 * satisified
4772 */
4773 usable_nodes--;
4774 if (usable_nodes && required_kernelcore > usable_nodes)
4775 goto restart;
4776
4777 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4778 for (nid = 0; nid < MAX_NUMNODES; nid++)
4779 zone_movable_pfn[nid] =
4780 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4781
4782out:
4783 /* restore the node_state */
4784 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4785}
4786
37b07e41 4787/* Any regular memory on that node ? */
4ed7e022 4788static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4789{
4790#ifdef CONFIG_HIGHMEM
4791 enum zone_type zone_type;
4792
4793 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4794 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4795 if (zone->present_pages) {
37b07e41 4796 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4797 break;
4798 }
37b07e41
LS
4799 }
4800#endif
4801}
4802
c713216d
MG
4803/**
4804 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4805 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4806 *
4807 * This will call free_area_init_node() for each active node in the system.
4808 * Using the page ranges provided by add_active_range(), the size of each
4809 * zone in each node and their holes is calculated. If the maximum PFN
4810 * between two adjacent zones match, it is assumed that the zone is empty.
4811 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4812 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4813 * starts where the previous one ended. For example, ZONE_DMA32 starts
4814 * at arch_max_dma_pfn.
4815 */
4816void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4817{
c13291a5
TH
4818 unsigned long start_pfn, end_pfn;
4819 int i, nid;
a6af2bc3 4820
c713216d
MG
4821 /* Record where the zone boundaries are */
4822 memset(arch_zone_lowest_possible_pfn, 0,
4823 sizeof(arch_zone_lowest_possible_pfn));
4824 memset(arch_zone_highest_possible_pfn, 0,
4825 sizeof(arch_zone_highest_possible_pfn));
4826 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4827 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4828 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4829 if (i == ZONE_MOVABLE)
4830 continue;
c713216d
MG
4831 arch_zone_lowest_possible_pfn[i] =
4832 arch_zone_highest_possible_pfn[i-1];
4833 arch_zone_highest_possible_pfn[i] =
4834 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4835 }
2a1e274a
MG
4836 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4837 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4838
4839 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4840 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4841 find_zone_movable_pfns_for_nodes();
c713216d 4842
c713216d 4843 /* Print out the zone ranges */
a62e2f4f 4844 printk("Zone ranges:\n");
2a1e274a
MG
4845 for (i = 0; i < MAX_NR_ZONES; i++) {
4846 if (i == ZONE_MOVABLE)
4847 continue;
155cbfc8 4848 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4849 if (arch_zone_lowest_possible_pfn[i] ==
4850 arch_zone_highest_possible_pfn[i])
155cbfc8 4851 printk(KERN_CONT "empty\n");
72f0ba02 4852 else
a62e2f4f
BH
4853 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4854 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4855 (arch_zone_highest_possible_pfn[i]
4856 << PAGE_SHIFT) - 1);
2a1e274a
MG
4857 }
4858
4859 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4860 printk("Movable zone start for each node\n");
2a1e274a
MG
4861 for (i = 0; i < MAX_NUMNODES; i++) {
4862 if (zone_movable_pfn[i])
a62e2f4f
BH
4863 printk(" Node %d: %#010lx\n", i,
4864 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4865 }
c713216d
MG
4866
4867 /* Print out the early_node_map[] */
a62e2f4f 4868 printk("Early memory node ranges\n");
c13291a5 4869 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4870 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4871 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4872
4873 /* Initialise every node */
708614e6 4874 mminit_verify_pageflags_layout();
8ef82866 4875 setup_nr_node_ids();
c713216d
MG
4876 for_each_online_node(nid) {
4877 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4878 free_area_init_node(nid, NULL,
c713216d 4879 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4880
4881 /* Any memory on that node */
4882 if (pgdat->node_present_pages)
4883 node_set_state(nid, N_HIGH_MEMORY);
4884 check_for_regular_memory(pgdat);
c713216d
MG
4885 }
4886}
2a1e274a 4887
7e63efef 4888static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4889{
4890 unsigned long long coremem;
4891 if (!p)
4892 return -EINVAL;
4893
4894 coremem = memparse(p, &p);
7e63efef 4895 *core = coremem >> PAGE_SHIFT;
2a1e274a 4896
7e63efef 4897 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4898 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4899
4900 return 0;
4901}
ed7ed365 4902
7e63efef
MG
4903/*
4904 * kernelcore=size sets the amount of memory for use for allocations that
4905 * cannot be reclaimed or migrated.
4906 */
4907static int __init cmdline_parse_kernelcore(char *p)
4908{
4909 return cmdline_parse_core(p, &required_kernelcore);
4910}
4911
4912/*
4913 * movablecore=size sets the amount of memory for use for allocations that
4914 * can be reclaimed or migrated.
4915 */
4916static int __init cmdline_parse_movablecore(char *p)
4917{
4918 return cmdline_parse_core(p, &required_movablecore);
4919}
4920
ed7ed365 4921early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4922early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4923
0ee332c1 4924#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4925
0e0b864e 4926/**
88ca3b94
RD
4927 * set_dma_reserve - set the specified number of pages reserved in the first zone
4928 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4929 *
4930 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4931 * In the DMA zone, a significant percentage may be consumed by kernel image
4932 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4933 * function may optionally be used to account for unfreeable pages in the
4934 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4935 * smaller per-cpu batchsize.
0e0b864e
MG
4936 */
4937void __init set_dma_reserve(unsigned long new_dma_reserve)
4938{
4939 dma_reserve = new_dma_reserve;
4940}
4941
1da177e4
LT
4942void __init free_area_init(unsigned long *zones_size)
4943{
9109fb7b 4944 free_area_init_node(0, zones_size,
1da177e4
LT
4945 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4946}
1da177e4 4947
1da177e4
LT
4948static int page_alloc_cpu_notify(struct notifier_block *self,
4949 unsigned long action, void *hcpu)
4950{
4951 int cpu = (unsigned long)hcpu;
1da177e4 4952
8bb78442 4953 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 4954 lru_add_drain_cpu(cpu);
9f8f2172
CL
4955 drain_pages(cpu);
4956
4957 /*
4958 * Spill the event counters of the dead processor
4959 * into the current processors event counters.
4960 * This artificially elevates the count of the current
4961 * processor.
4962 */
f8891e5e 4963 vm_events_fold_cpu(cpu);
9f8f2172
CL
4964
4965 /*
4966 * Zero the differential counters of the dead processor
4967 * so that the vm statistics are consistent.
4968 *
4969 * This is only okay since the processor is dead and cannot
4970 * race with what we are doing.
4971 */
2244b95a 4972 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4973 }
4974 return NOTIFY_OK;
4975}
1da177e4
LT
4976
4977void __init page_alloc_init(void)
4978{
4979 hotcpu_notifier(page_alloc_cpu_notify, 0);
4980}
4981
cb45b0e9
HA
4982/*
4983 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4984 * or min_free_kbytes changes.
4985 */
4986static void calculate_totalreserve_pages(void)
4987{
4988 struct pglist_data *pgdat;
4989 unsigned long reserve_pages = 0;
2f6726e5 4990 enum zone_type i, j;
cb45b0e9
HA
4991
4992 for_each_online_pgdat(pgdat) {
4993 for (i = 0; i < MAX_NR_ZONES; i++) {
4994 struct zone *zone = pgdat->node_zones + i;
4995 unsigned long max = 0;
4996
4997 /* Find valid and maximum lowmem_reserve in the zone */
4998 for (j = i; j < MAX_NR_ZONES; j++) {
4999 if (zone->lowmem_reserve[j] > max)
5000 max = zone->lowmem_reserve[j];
5001 }
5002
41858966
MG
5003 /* we treat the high watermark as reserved pages. */
5004 max += high_wmark_pages(zone);
cb45b0e9
HA
5005
5006 if (max > zone->present_pages)
5007 max = zone->present_pages;
5008 reserve_pages += max;
ab8fabd4
JW
5009 /*
5010 * Lowmem reserves are not available to
5011 * GFP_HIGHUSER page cache allocations and
5012 * kswapd tries to balance zones to their high
5013 * watermark. As a result, neither should be
5014 * regarded as dirtyable memory, to prevent a
5015 * situation where reclaim has to clean pages
5016 * in order to balance the zones.
5017 */
5018 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5019 }
5020 }
ab8fabd4 5021 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5022 totalreserve_pages = reserve_pages;
5023}
5024
1da177e4
LT
5025/*
5026 * setup_per_zone_lowmem_reserve - called whenever
5027 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5028 * has a correct pages reserved value, so an adequate number of
5029 * pages are left in the zone after a successful __alloc_pages().
5030 */
5031static void setup_per_zone_lowmem_reserve(void)
5032{
5033 struct pglist_data *pgdat;
2f6726e5 5034 enum zone_type j, idx;
1da177e4 5035
ec936fc5 5036 for_each_online_pgdat(pgdat) {
1da177e4
LT
5037 for (j = 0; j < MAX_NR_ZONES; j++) {
5038 struct zone *zone = pgdat->node_zones + j;
5039 unsigned long present_pages = zone->present_pages;
5040
5041 zone->lowmem_reserve[j] = 0;
5042
2f6726e5
CL
5043 idx = j;
5044 while (idx) {
1da177e4
LT
5045 struct zone *lower_zone;
5046
2f6726e5
CL
5047 idx--;
5048
1da177e4
LT
5049 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5050 sysctl_lowmem_reserve_ratio[idx] = 1;
5051
5052 lower_zone = pgdat->node_zones + idx;
5053 lower_zone->lowmem_reserve[j] = present_pages /
5054 sysctl_lowmem_reserve_ratio[idx];
5055 present_pages += lower_zone->present_pages;
5056 }
5057 }
5058 }
cb45b0e9
HA
5059
5060 /* update totalreserve_pages */
5061 calculate_totalreserve_pages();
1da177e4
LT
5062}
5063
cfd3da1e 5064static void __setup_per_zone_wmarks(void)
1da177e4
LT
5065{
5066 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5067 unsigned long lowmem_pages = 0;
5068 struct zone *zone;
5069 unsigned long flags;
5070
5071 /* Calculate total number of !ZONE_HIGHMEM pages */
5072 for_each_zone(zone) {
5073 if (!is_highmem(zone))
5074 lowmem_pages += zone->present_pages;
5075 }
5076
5077 for_each_zone(zone) {
ac924c60
AM
5078 u64 tmp;
5079
1125b4e3 5080 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5081 tmp = (u64)pages_min * zone->present_pages;
5082 do_div(tmp, lowmem_pages);
1da177e4
LT
5083 if (is_highmem(zone)) {
5084 /*
669ed175
NP
5085 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5086 * need highmem pages, so cap pages_min to a small
5087 * value here.
5088 *
41858966 5089 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5090 * deltas controls asynch page reclaim, and so should
5091 * not be capped for highmem.
1da177e4
LT
5092 */
5093 int min_pages;
5094
5095 min_pages = zone->present_pages / 1024;
5096 if (min_pages < SWAP_CLUSTER_MAX)
5097 min_pages = SWAP_CLUSTER_MAX;
5098 if (min_pages > 128)
5099 min_pages = 128;
41858966 5100 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5101 } else {
669ed175
NP
5102 /*
5103 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5104 * proportionate to the zone's size.
5105 */
41858966 5106 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5107 }
5108
41858966
MG
5109 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5110 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5111
5112 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5113 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5114 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5115
56fd56b8 5116 setup_zone_migrate_reserve(zone);
1125b4e3 5117 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5118 }
cb45b0e9
HA
5119
5120 /* update totalreserve_pages */
5121 calculate_totalreserve_pages();
1da177e4
LT
5122}
5123
cfd3da1e
MG
5124/**
5125 * setup_per_zone_wmarks - called when min_free_kbytes changes
5126 * or when memory is hot-{added|removed}
5127 *
5128 * Ensures that the watermark[min,low,high] values for each zone are set
5129 * correctly with respect to min_free_kbytes.
5130 */
5131void setup_per_zone_wmarks(void)
5132{
5133 mutex_lock(&zonelists_mutex);
5134 __setup_per_zone_wmarks();
5135 mutex_unlock(&zonelists_mutex);
5136}
5137
55a4462a 5138/*
556adecb
RR
5139 * The inactive anon list should be small enough that the VM never has to
5140 * do too much work, but large enough that each inactive page has a chance
5141 * to be referenced again before it is swapped out.
5142 *
5143 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5144 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5145 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5146 * the anonymous pages are kept on the inactive list.
5147 *
5148 * total target max
5149 * memory ratio inactive anon
5150 * -------------------------------------
5151 * 10MB 1 5MB
5152 * 100MB 1 50MB
5153 * 1GB 3 250MB
5154 * 10GB 10 0.9GB
5155 * 100GB 31 3GB
5156 * 1TB 101 10GB
5157 * 10TB 320 32GB
5158 */
1b79acc9 5159static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5160{
96cb4df5 5161 unsigned int gb, ratio;
556adecb 5162
96cb4df5
MK
5163 /* Zone size in gigabytes */
5164 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5165 if (gb)
556adecb 5166 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5167 else
5168 ratio = 1;
556adecb 5169
96cb4df5
MK
5170 zone->inactive_ratio = ratio;
5171}
556adecb 5172
839a4fcc 5173static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5174{
5175 struct zone *zone;
5176
5177 for_each_zone(zone)
5178 calculate_zone_inactive_ratio(zone);
556adecb
RR
5179}
5180
1da177e4
LT
5181/*
5182 * Initialise min_free_kbytes.
5183 *
5184 * For small machines we want it small (128k min). For large machines
5185 * we want it large (64MB max). But it is not linear, because network
5186 * bandwidth does not increase linearly with machine size. We use
5187 *
5188 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5189 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5190 *
5191 * which yields
5192 *
5193 * 16MB: 512k
5194 * 32MB: 724k
5195 * 64MB: 1024k
5196 * 128MB: 1448k
5197 * 256MB: 2048k
5198 * 512MB: 2896k
5199 * 1024MB: 4096k
5200 * 2048MB: 5792k
5201 * 4096MB: 8192k
5202 * 8192MB: 11584k
5203 * 16384MB: 16384k
5204 */
1b79acc9 5205int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5206{
5207 unsigned long lowmem_kbytes;
5208
5209 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5210
5211 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5212 if (min_free_kbytes < 128)
5213 min_free_kbytes = 128;
5214 if (min_free_kbytes > 65536)
5215 min_free_kbytes = 65536;
bc75d33f 5216 setup_per_zone_wmarks();
a6cccdc3 5217 refresh_zone_stat_thresholds();
1da177e4 5218 setup_per_zone_lowmem_reserve();
556adecb 5219 setup_per_zone_inactive_ratio();
1da177e4
LT
5220 return 0;
5221}
bc75d33f 5222module_init(init_per_zone_wmark_min)
1da177e4
LT
5223
5224/*
5225 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5226 * that we can call two helper functions whenever min_free_kbytes
5227 * changes.
5228 */
5229int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5230 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5231{
8d65af78 5232 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5233 if (write)
bc75d33f 5234 setup_per_zone_wmarks();
1da177e4
LT
5235 return 0;
5236}
5237
9614634f
CL
5238#ifdef CONFIG_NUMA
5239int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5240 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5241{
5242 struct zone *zone;
5243 int rc;
5244
8d65af78 5245 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5246 if (rc)
5247 return rc;
5248
5249 for_each_zone(zone)
8417bba4 5250 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5251 sysctl_min_unmapped_ratio) / 100;
5252 return 0;
5253}
0ff38490
CL
5254
5255int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5256 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5257{
5258 struct zone *zone;
5259 int rc;
5260
8d65af78 5261 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5262 if (rc)
5263 return rc;
5264
5265 for_each_zone(zone)
5266 zone->min_slab_pages = (zone->present_pages *
5267 sysctl_min_slab_ratio) / 100;
5268 return 0;
5269}
9614634f
CL
5270#endif
5271
1da177e4
LT
5272/*
5273 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5274 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5275 * whenever sysctl_lowmem_reserve_ratio changes.
5276 *
5277 * The reserve ratio obviously has absolutely no relation with the
41858966 5278 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5279 * if in function of the boot time zone sizes.
5280 */
5281int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5282 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5283{
8d65af78 5284 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5285 setup_per_zone_lowmem_reserve();
5286 return 0;
5287}
5288
8ad4b1fb
RS
5289/*
5290 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5291 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5292 * can have before it gets flushed back to buddy allocator.
5293 */
5294
5295int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5296 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5297{
5298 struct zone *zone;
5299 unsigned int cpu;
5300 int ret;
5301
8d65af78 5302 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5303 if (!write || (ret < 0))
8ad4b1fb 5304 return ret;
364df0eb 5305 for_each_populated_zone(zone) {
99dcc3e5 5306 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5307 unsigned long high;
5308 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5309 setup_pagelist_highmark(
5310 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5311 }
5312 }
5313 return 0;
5314}
5315
f034b5d4 5316int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5317
5318#ifdef CONFIG_NUMA
5319static int __init set_hashdist(char *str)
5320{
5321 if (!str)
5322 return 0;
5323 hashdist = simple_strtoul(str, &str, 0);
5324 return 1;
5325}
5326__setup("hashdist=", set_hashdist);
5327#endif
5328
5329/*
5330 * allocate a large system hash table from bootmem
5331 * - it is assumed that the hash table must contain an exact power-of-2
5332 * quantity of entries
5333 * - limit is the number of hash buckets, not the total allocation size
5334 */
5335void *__init alloc_large_system_hash(const char *tablename,
5336 unsigned long bucketsize,
5337 unsigned long numentries,
5338 int scale,
5339 int flags,
5340 unsigned int *_hash_shift,
5341 unsigned int *_hash_mask,
31fe62b9
TB
5342 unsigned long low_limit,
5343 unsigned long high_limit)
1da177e4 5344{
31fe62b9 5345 unsigned long long max = high_limit;
1da177e4
LT
5346 unsigned long log2qty, size;
5347 void *table = NULL;
5348
5349 /* allow the kernel cmdline to have a say */
5350 if (!numentries) {
5351 /* round applicable memory size up to nearest megabyte */
04903664 5352 numentries = nr_kernel_pages;
1da177e4
LT
5353 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5354 numentries >>= 20 - PAGE_SHIFT;
5355 numentries <<= 20 - PAGE_SHIFT;
5356
5357 /* limit to 1 bucket per 2^scale bytes of low memory */
5358 if (scale > PAGE_SHIFT)
5359 numentries >>= (scale - PAGE_SHIFT);
5360 else
5361 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5362
5363 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5364 if (unlikely(flags & HASH_SMALL)) {
5365 /* Makes no sense without HASH_EARLY */
5366 WARN_ON(!(flags & HASH_EARLY));
5367 if (!(numentries >> *_hash_shift)) {
5368 numentries = 1UL << *_hash_shift;
5369 BUG_ON(!numentries);
5370 }
5371 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5372 numentries = PAGE_SIZE / bucketsize;
1da177e4 5373 }
6e692ed3 5374 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5375
5376 /* limit allocation size to 1/16 total memory by default */
5377 if (max == 0) {
5378 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5379 do_div(max, bucketsize);
5380 }
074b8517 5381 max = min(max, 0x80000000ULL);
1da177e4 5382
31fe62b9
TB
5383 if (numentries < low_limit)
5384 numentries = low_limit;
1da177e4
LT
5385 if (numentries > max)
5386 numentries = max;
5387
f0d1b0b3 5388 log2qty = ilog2(numentries);
1da177e4
LT
5389
5390 do {
5391 size = bucketsize << log2qty;
5392 if (flags & HASH_EARLY)
74768ed8 5393 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5394 else if (hashdist)
5395 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5396 else {
1037b83b
ED
5397 /*
5398 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5399 * some pages at the end of hash table which
5400 * alloc_pages_exact() automatically does
1037b83b 5401 */
264ef8a9 5402 if (get_order(size) < MAX_ORDER) {
a1dd268c 5403 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5404 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5405 }
1da177e4
LT
5406 }
5407 } while (!table && size > PAGE_SIZE && --log2qty);
5408
5409 if (!table)
5410 panic("Failed to allocate %s hash table\n", tablename);
5411
f241e660 5412 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5413 tablename,
f241e660 5414 (1UL << log2qty),
f0d1b0b3 5415 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5416 size);
5417
5418 if (_hash_shift)
5419 *_hash_shift = log2qty;
5420 if (_hash_mask)
5421 *_hash_mask = (1 << log2qty) - 1;
5422
5423 return table;
5424}
a117e66e 5425
835c134e
MG
5426/* Return a pointer to the bitmap storing bits affecting a block of pages */
5427static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5428 unsigned long pfn)
5429{
5430#ifdef CONFIG_SPARSEMEM
5431 return __pfn_to_section(pfn)->pageblock_flags;
5432#else
5433 return zone->pageblock_flags;
5434#endif /* CONFIG_SPARSEMEM */
5435}
5436
5437static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5438{
5439#ifdef CONFIG_SPARSEMEM
5440 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5441 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5442#else
5443 pfn = pfn - zone->zone_start_pfn;
d9c23400 5444 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5445#endif /* CONFIG_SPARSEMEM */
5446}
5447
5448/**
d9c23400 5449 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5450 * @page: The page within the block of interest
5451 * @start_bitidx: The first bit of interest to retrieve
5452 * @end_bitidx: The last bit of interest
5453 * returns pageblock_bits flags
5454 */
5455unsigned long get_pageblock_flags_group(struct page *page,
5456 int start_bitidx, int end_bitidx)
5457{
5458 struct zone *zone;
5459 unsigned long *bitmap;
5460 unsigned long pfn, bitidx;
5461 unsigned long flags = 0;
5462 unsigned long value = 1;
5463
5464 zone = page_zone(page);
5465 pfn = page_to_pfn(page);
5466 bitmap = get_pageblock_bitmap(zone, pfn);
5467 bitidx = pfn_to_bitidx(zone, pfn);
5468
5469 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5470 if (test_bit(bitidx + start_bitidx, bitmap))
5471 flags |= value;
6220ec78 5472
835c134e
MG
5473 return flags;
5474}
5475
5476/**
d9c23400 5477 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5478 * @page: The page within the block of interest
5479 * @start_bitidx: The first bit of interest
5480 * @end_bitidx: The last bit of interest
5481 * @flags: The flags to set
5482 */
5483void set_pageblock_flags_group(struct page *page, unsigned long flags,
5484 int start_bitidx, int end_bitidx)
5485{
5486 struct zone *zone;
5487 unsigned long *bitmap;
5488 unsigned long pfn, bitidx;
5489 unsigned long value = 1;
5490
5491 zone = page_zone(page);
5492 pfn = page_to_pfn(page);
5493 bitmap = get_pageblock_bitmap(zone, pfn);
5494 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5495 VM_BUG_ON(pfn < zone->zone_start_pfn);
5496 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5497
5498 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5499 if (flags & value)
5500 __set_bit(bitidx + start_bitidx, bitmap);
5501 else
5502 __clear_bit(bitidx + start_bitidx, bitmap);
5503}
a5d76b54
KH
5504
5505/*
80934513
MK
5506 * This function checks whether pageblock includes unmovable pages or not.
5507 * If @count is not zero, it is okay to include less @count unmovable pages
5508 *
5509 * PageLRU check wihtout isolation or lru_lock could race so that
5510 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5511 * expect this function should be exact.
a5d76b54 5512 */
ee6f509c 5513bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5514{
5515 unsigned long pfn, iter, found;
47118af0
MN
5516 int mt;
5517
49ac8255
KH
5518 /*
5519 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5520 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5521 */
5522 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5523 return false;
47118af0
MN
5524 mt = get_pageblock_migratetype(page);
5525 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5526 return false;
49ac8255
KH
5527
5528 pfn = page_to_pfn(page);
5529 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5530 unsigned long check = pfn + iter;
5531
29723fcc 5532 if (!pfn_valid_within(check))
49ac8255 5533 continue;
29723fcc 5534
49ac8255 5535 page = pfn_to_page(check);
97d255c8
MK
5536 /*
5537 * We can't use page_count without pin a page
5538 * because another CPU can free compound page.
5539 * This check already skips compound tails of THP
5540 * because their page->_count is zero at all time.
5541 */
5542 if (!atomic_read(&page->_count)) {
49ac8255
KH
5543 if (PageBuddy(page))
5544 iter += (1 << page_order(page)) - 1;
5545 continue;
5546 }
97d255c8 5547
49ac8255
KH
5548 if (!PageLRU(page))
5549 found++;
5550 /*
5551 * If there are RECLAIMABLE pages, we need to check it.
5552 * But now, memory offline itself doesn't call shrink_slab()
5553 * and it still to be fixed.
5554 */
5555 /*
5556 * If the page is not RAM, page_count()should be 0.
5557 * we don't need more check. This is an _used_ not-movable page.
5558 *
5559 * The problematic thing here is PG_reserved pages. PG_reserved
5560 * is set to both of a memory hole page and a _used_ kernel
5561 * page at boot.
5562 */
5563 if (found > count)
80934513 5564 return true;
49ac8255 5565 }
80934513 5566 return false;
49ac8255
KH
5567}
5568
5569bool is_pageblock_removable_nolock(struct page *page)
5570{
656a0706
MH
5571 struct zone *zone;
5572 unsigned long pfn;
687875fb
MH
5573
5574 /*
5575 * We have to be careful here because we are iterating over memory
5576 * sections which are not zone aware so we might end up outside of
5577 * the zone but still within the section.
656a0706
MH
5578 * We have to take care about the node as well. If the node is offline
5579 * its NODE_DATA will be NULL - see page_zone.
687875fb 5580 */
656a0706
MH
5581 if (!node_online(page_to_nid(page)))
5582 return false;
5583
5584 zone = page_zone(page);
5585 pfn = page_to_pfn(page);
5586 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5587 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5588 return false;
5589
ee6f509c 5590 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5591}
0c0e6195 5592
041d3a8c
MN
5593#ifdef CONFIG_CMA
5594
5595static unsigned long pfn_max_align_down(unsigned long pfn)
5596{
5597 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5598 pageblock_nr_pages) - 1);
5599}
5600
5601static unsigned long pfn_max_align_up(unsigned long pfn)
5602{
5603 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5604 pageblock_nr_pages));
5605}
5606
5607static struct page *
5608__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5609 int **resultp)
5610{
6a6dccba
RV
5611 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5612
5613 if (PageHighMem(page))
5614 gfp_mask |= __GFP_HIGHMEM;
5615
5616 return alloc_page(gfp_mask);
041d3a8c
MN
5617}
5618
5619/* [start, end) must belong to a single zone. */
5620static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5621{
5622 /* This function is based on compact_zone() from compaction.c. */
5623
5624 unsigned long pfn = start;
5625 unsigned int tries = 0;
5626 int ret = 0;
5627
5628 struct compact_control cc = {
5629 .nr_migratepages = 0,
5630 .order = -1,
5631 .zone = page_zone(pfn_to_page(start)),
68e3e926 5632 .sync = true,
041d3a8c
MN
5633 };
5634 INIT_LIST_HEAD(&cc.migratepages);
5635
5636 migrate_prep_local();
5637
5638 while (pfn < end || !list_empty(&cc.migratepages)) {
5639 if (fatal_signal_pending(current)) {
5640 ret = -EINTR;
5641 break;
5642 }
5643
5644 if (list_empty(&cc.migratepages)) {
5645 cc.nr_migratepages = 0;
5646 pfn = isolate_migratepages_range(cc.zone, &cc,
5647 pfn, end);
5648 if (!pfn) {
5649 ret = -EINTR;
5650 break;
5651 }
5652 tries = 0;
5653 } else if (++tries == 5) {
5654 ret = ret < 0 ? ret : -EBUSY;
5655 break;
5656 }
5657
5658 ret = migrate_pages(&cc.migratepages,
5659 __alloc_contig_migrate_alloc,
58f42fd5 5660 0, false, MIGRATE_SYNC);
041d3a8c
MN
5661 }
5662
5663 putback_lru_pages(&cc.migratepages);
5664 return ret > 0 ? 0 : ret;
5665}
5666
49f223a9
MS
5667/*
5668 * Update zone's cma pages counter used for watermark level calculation.
5669 */
5670static inline void __update_cma_watermarks(struct zone *zone, int count)
5671{
5672 unsigned long flags;
5673 spin_lock_irqsave(&zone->lock, flags);
5674 zone->min_cma_pages += count;
5675 spin_unlock_irqrestore(&zone->lock, flags);
5676 setup_per_zone_wmarks();
5677}
5678
5679/*
5680 * Trigger memory pressure bump to reclaim some pages in order to be able to
5681 * allocate 'count' pages in single page units. Does similar work as
5682 *__alloc_pages_slowpath() function.
5683 */
5684static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5685{
5686 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5687 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5688 int did_some_progress = 0;
5689 int order = 1;
5690
5691 /*
5692 * Increase level of watermarks to force kswapd do his job
5693 * to stabilise at new watermark level.
5694 */
5695 __update_cma_watermarks(zone, count);
5696
5697 /* Obey watermarks as if the page was being allocated */
5698 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5699 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5700
5701 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5702 NULL);
5703 if (!did_some_progress) {
5704 /* Exhausted what can be done so it's blamo time */
5705 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5706 }
5707 }
5708
5709 /* Restore original watermark levels. */
5710 __update_cma_watermarks(zone, -count);
5711
5712 return count;
5713}
5714
041d3a8c
MN
5715/**
5716 * alloc_contig_range() -- tries to allocate given range of pages
5717 * @start: start PFN to allocate
5718 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5719 * @migratetype: migratetype of the underlaying pageblocks (either
5720 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5721 * in range must have the same migratetype and it must
5722 * be either of the two.
041d3a8c
MN
5723 *
5724 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5725 * aligned, however it's the caller's responsibility to guarantee that
5726 * we are the only thread that changes migrate type of pageblocks the
5727 * pages fall in.
5728 *
5729 * The PFN range must belong to a single zone.
5730 *
5731 * Returns zero on success or negative error code. On success all
5732 * pages which PFN is in [start, end) are allocated for the caller and
5733 * need to be freed with free_contig_range().
5734 */
0815f3d8
MN
5735int alloc_contig_range(unsigned long start, unsigned long end,
5736 unsigned migratetype)
041d3a8c
MN
5737{
5738 struct zone *zone = page_zone(pfn_to_page(start));
5739 unsigned long outer_start, outer_end;
5740 int ret = 0, order;
5741
5742 /*
5743 * What we do here is we mark all pageblocks in range as
5744 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5745 * have different sizes, and due to the way page allocator
5746 * work, we align the range to biggest of the two pages so
5747 * that page allocator won't try to merge buddies from
5748 * different pageblocks and change MIGRATE_ISOLATE to some
5749 * other migration type.
5750 *
5751 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5752 * migrate the pages from an unaligned range (ie. pages that
5753 * we are interested in). This will put all the pages in
5754 * range back to page allocator as MIGRATE_ISOLATE.
5755 *
5756 * When this is done, we take the pages in range from page
5757 * allocator removing them from the buddy system. This way
5758 * page allocator will never consider using them.
5759 *
5760 * This lets us mark the pageblocks back as
5761 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5762 * aligned range but not in the unaligned, original range are
5763 * put back to page allocator so that buddy can use them.
5764 */
5765
5766 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5767 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5768 if (ret)
5769 goto done;
5770
5771 ret = __alloc_contig_migrate_range(start, end);
5772 if (ret)
5773 goto done;
5774
5775 /*
5776 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5777 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5778 * more, all pages in [start, end) are free in page allocator.
5779 * What we are going to do is to allocate all pages from
5780 * [start, end) (that is remove them from page allocator).
5781 *
5782 * The only problem is that pages at the beginning and at the
5783 * end of interesting range may be not aligned with pages that
5784 * page allocator holds, ie. they can be part of higher order
5785 * pages. Because of this, we reserve the bigger range and
5786 * once this is done free the pages we are not interested in.
5787 *
5788 * We don't have to hold zone->lock here because the pages are
5789 * isolated thus they won't get removed from buddy.
5790 */
5791
5792 lru_add_drain_all();
5793 drain_all_pages();
5794
5795 order = 0;
5796 outer_start = start;
5797 while (!PageBuddy(pfn_to_page(outer_start))) {
5798 if (++order >= MAX_ORDER) {
5799 ret = -EBUSY;
5800 goto done;
5801 }
5802 outer_start &= ~0UL << order;
5803 }
5804
5805 /* Make sure the range is really isolated. */
5806 if (test_pages_isolated(outer_start, end)) {
5807 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5808 outer_start, end);
5809 ret = -EBUSY;
5810 goto done;
5811 }
5812
49f223a9
MS
5813 /*
5814 * Reclaim enough pages to make sure that contiguous allocation
5815 * will not starve the system.
5816 */
5817 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5818
5819 /* Grab isolated pages from freelists. */
041d3a8c
MN
5820 outer_end = isolate_freepages_range(outer_start, end);
5821 if (!outer_end) {
5822 ret = -EBUSY;
5823 goto done;
5824 }
5825
5826 /* Free head and tail (if any) */
5827 if (start != outer_start)
5828 free_contig_range(outer_start, start - outer_start);
5829 if (end != outer_end)
5830 free_contig_range(end, outer_end - end);
5831
5832done:
5833 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5834 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5835 return ret;
5836}
5837
5838void free_contig_range(unsigned long pfn, unsigned nr_pages)
5839{
5840 for (; nr_pages--; ++pfn)
5841 __free_page(pfn_to_page(pfn));
5842}
5843#endif
5844
4ed7e022
JL
5845#ifdef CONFIG_MEMORY_HOTPLUG
5846static int __meminit __zone_pcp_update(void *data)
5847{
5848 struct zone *zone = data;
5849 int cpu;
5850 unsigned long batch = zone_batchsize(zone), flags;
5851
5852 for_each_possible_cpu(cpu) {
5853 struct per_cpu_pageset *pset;
5854 struct per_cpu_pages *pcp;
5855
5856 pset = per_cpu_ptr(zone->pageset, cpu);
5857 pcp = &pset->pcp;
5858
5859 local_irq_save(flags);
5860 if (pcp->count > 0)
5861 free_pcppages_bulk(zone, pcp->count, pcp);
5862 setup_pageset(pset, batch);
5863 local_irq_restore(flags);
5864 }
5865 return 0;
5866}
5867
5868void __meminit zone_pcp_update(struct zone *zone)
5869{
5870 stop_machine(__zone_pcp_update, zone, NULL);
5871}
5872#endif
5873
0c0e6195 5874#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5875void zone_pcp_reset(struct zone *zone)
5876{
5877 unsigned long flags;
5878
5879 /* avoid races with drain_pages() */
5880 local_irq_save(flags);
5881 if (zone->pageset != &boot_pageset) {
5882 free_percpu(zone->pageset);
5883 zone->pageset = &boot_pageset;
5884 }
5885 local_irq_restore(flags);
5886}
5887
0c0e6195
KH
5888/*
5889 * All pages in the range must be isolated before calling this.
5890 */
5891void
5892__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5893{
5894 struct page *page;
5895 struct zone *zone;
5896 int order, i;
5897 unsigned long pfn;
5898 unsigned long flags;
5899 /* find the first valid pfn */
5900 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5901 if (pfn_valid(pfn))
5902 break;
5903 if (pfn == end_pfn)
5904 return;
5905 zone = page_zone(pfn_to_page(pfn));
5906 spin_lock_irqsave(&zone->lock, flags);
5907 pfn = start_pfn;
5908 while (pfn < end_pfn) {
5909 if (!pfn_valid(pfn)) {
5910 pfn++;
5911 continue;
5912 }
5913 page = pfn_to_page(pfn);
5914 BUG_ON(page_count(page));
5915 BUG_ON(!PageBuddy(page));
5916 order = page_order(page);
5917#ifdef CONFIG_DEBUG_VM
5918 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5919 pfn, 1 << order, end_pfn);
5920#endif
5921 list_del(&page->lru);
5922 rmv_page_order(page);
5923 zone->free_area[order].nr_free--;
5924 __mod_zone_page_state(zone, NR_FREE_PAGES,
5925 - (1UL << order));
5926 for (i = 0; i < (1 << order); i++)
5927 SetPageReserved((page+i));
5928 pfn += (1 << order);
5929 }
5930 spin_unlock_irqrestore(&zone->lock, flags);
5931}
5932#endif
8d22ba1b
WF
5933
5934#ifdef CONFIG_MEMORY_FAILURE
5935bool is_free_buddy_page(struct page *page)
5936{
5937 struct zone *zone = page_zone(page);
5938 unsigned long pfn = page_to_pfn(page);
5939 unsigned long flags;
5940 int order;
5941
5942 spin_lock_irqsave(&zone->lock, flags);
5943 for (order = 0; order < MAX_ORDER; order++) {
5944 struct page *page_head = page - (pfn & ((1 << order) - 1));
5945
5946 if (PageBuddy(page_head) && page_order(page_head) >= order)
5947 break;
5948 }
5949 spin_unlock_irqrestore(&zone->lock, flags);
5950
5951 return order < MAX_ORDER;
5952}
5953#endif
718a3821 5954
51300cef 5955static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
5956 {1UL << PG_locked, "locked" },
5957 {1UL << PG_error, "error" },
5958 {1UL << PG_referenced, "referenced" },
5959 {1UL << PG_uptodate, "uptodate" },
5960 {1UL << PG_dirty, "dirty" },
5961 {1UL << PG_lru, "lru" },
5962 {1UL << PG_active, "active" },
5963 {1UL << PG_slab, "slab" },
5964 {1UL << PG_owner_priv_1, "owner_priv_1" },
5965 {1UL << PG_arch_1, "arch_1" },
5966 {1UL << PG_reserved, "reserved" },
5967 {1UL << PG_private, "private" },
5968 {1UL << PG_private_2, "private_2" },
5969 {1UL << PG_writeback, "writeback" },
5970#ifdef CONFIG_PAGEFLAGS_EXTENDED
5971 {1UL << PG_head, "head" },
5972 {1UL << PG_tail, "tail" },
5973#else
5974 {1UL << PG_compound, "compound" },
5975#endif
5976 {1UL << PG_swapcache, "swapcache" },
5977 {1UL << PG_mappedtodisk, "mappedtodisk" },
5978 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5979 {1UL << PG_swapbacked, "swapbacked" },
5980 {1UL << PG_unevictable, "unevictable" },
5981#ifdef CONFIG_MMU
5982 {1UL << PG_mlocked, "mlocked" },
5983#endif
5984#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5985 {1UL << PG_uncached, "uncached" },
5986#endif
5987#ifdef CONFIG_MEMORY_FAILURE
5988 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
5989#endif
5990#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5991 {1UL << PG_compound_lock, "compound_lock" },
718a3821 5992#endif
718a3821
WF
5993};
5994
5995static void dump_page_flags(unsigned long flags)
5996{
5997 const char *delim = "";
5998 unsigned long mask;
5999 int i;
6000
51300cef 6001 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6002
718a3821
WF
6003 printk(KERN_ALERT "page flags: %#lx(", flags);
6004
6005 /* remove zone id */
6006 flags &= (1UL << NR_PAGEFLAGS) - 1;
6007
51300cef 6008 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6009
6010 mask = pageflag_names[i].mask;
6011 if ((flags & mask) != mask)
6012 continue;
6013
6014 flags &= ~mask;
6015 printk("%s%s", delim, pageflag_names[i].name);
6016 delim = "|";
6017 }
6018
6019 /* check for left over flags */
6020 if (flags)
6021 printk("%s%#lx", delim, flags);
6022
6023 printk(")\n");
6024}
6025
6026void dump_page(struct page *page)
6027{
6028 printk(KERN_ALERT
6029 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6030 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6031 page->mapping, page->index);
6032 dump_page_flags(page->flags);
f212ad7c 6033 mem_cgroup_print_bad_page(page);
718a3821 6034}