]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/page_alloc.c
mm: always print RLIMIT_DATA warning
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
895f7b8e 49#include <xen/xen.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4
LT
75#include "internal.h"
76
c8e251fa
CS
77/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 79#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 80
72812019
LS
81#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82DEFINE_PER_CPU(int, numa_node);
83EXPORT_PER_CPU_SYMBOL(numa_node);
84#endif
85
4518085e
KW
86DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87
7aac7898
LS
88#ifdef CONFIG_HAVE_MEMORYLESS_NODES
89/*
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
94 */
95DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 97int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
98#endif
99
bd233f53
MG
100/* work_structs for global per-cpu drains */
101DEFINE_MUTEX(pcpu_drain_mutex);
102DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103
38addce8 104#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 105volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
106EXPORT_SYMBOL(latent_entropy);
107#endif
108
1da177e4 109/*
13808910 110 * Array of node states.
1da177e4 111 */
13808910
CL
112nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115#ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117#ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 119#endif
20b2f52b 120 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
121 [N_CPU] = { { [0] = 1UL } },
122#endif /* NUMA */
123};
124EXPORT_SYMBOL(node_states);
125
c3d5f5f0
JL
126/* Protect totalram_pages and zone->managed_pages */
127static DEFINE_SPINLOCK(managed_page_count_lock);
128
6c231b7b 129unsigned long totalram_pages __read_mostly;
cb45b0e9 130unsigned long totalreserve_pages __read_mostly;
e48322ab 131unsigned long totalcma_pages __read_mostly;
ab8fabd4 132
1b76b02f 133int percpu_pagelist_fraction;
dcce284a 134gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 135
bb14c2c7
VB
136/*
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
143 */
144static inline int get_pcppage_migratetype(struct page *page)
145{
146 return page->index;
147}
148
149static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150{
151 page->index = migratetype;
152}
153
452aa699
RW
154#ifdef CONFIG_PM_SLEEP
155/*
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
162 */
c9e664f1
RW
163
164static gfp_t saved_gfp_mask;
165
166void pm_restore_gfp_mask(void)
452aa699
RW
167{
168 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
452aa699
RW
173}
174
c9e664f1 175void pm_restrict_gfp_mask(void)
452aa699 176{
452aa699 177 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
d0164adc 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 181}
f90ac398
MG
182
183bool pm_suspended_storage(void)
184{
d0164adc 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
186 return false;
187 return true;
188}
452aa699
RW
189#endif /* CONFIG_PM_SLEEP */
190
d9c23400 191#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 192unsigned int pageblock_order __read_mostly;
d9c23400
MG
193#endif
194
d98c7a09 195static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 196
1da177e4
LT
197/*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
1da177e4 207 */
2f1b6248 208int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
2f1b6248 210 256,
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
2f1b6248 213 256,
fb0e7942 214#endif
e53ef38d 215#ifdef CONFIG_HIGHMEM
2a1e274a 216 32,
e53ef38d 217#endif
2a1e274a 218 32,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
2c85f51d
JB
268static unsigned long __meminitdata nr_kernel_pages;
269static unsigned long __meminitdata nr_all_pages;
a3142c8e 270static unsigned long __meminitdata dma_reserve;
1da177e4 271
0ee332c1
TH
272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275static unsigned long __initdata required_kernelcore;
276static unsigned long __initdata required_movablecore;
277static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 278static bool mirrored_kernelcore;
0ee332c1
TH
279
280/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281int movable_zone;
282EXPORT_SYMBOL(movable_zone);
283#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 284
418508c1
MS
285#if MAX_NUMNODES > 1
286int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 287int nr_online_nodes __read_mostly = 1;
418508c1 288EXPORT_SYMBOL(nr_node_ids);
62bc62a8 289EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
290#endif
291
9ef9acb0
MG
292int page_group_by_mobility_disabled __read_mostly;
293
3a80a7fa 294#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
d135e575
PT
295
296/*
3c2c6488 297 * Determine how many pages need to be initialized during early boot
d135e575
PT
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
301 */
3a80a7fa
MG
302static inline void reset_deferred_meminit(pg_data_t *pgdat)
303{
d135e575
PT
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
864b9a39
MH
307
308 /*
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
311 */
d135e575
PT
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
864b9a39
MH
314
315 /*
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
319 */
d135e575
PT
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
864b9a39 324
d135e575 325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
326 pgdat->first_deferred_pfn = ULONG_MAX;
327}
328
329/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 330static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 331{
ef70b6f4
MG
332 int nid = early_pfn_to_nid(pfn);
333
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
335 return true;
336
337 return false;
338}
339
340/*
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
343 */
344static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
347{
3c2c6488 348 /* Always populate low zones for address-constrained allocations */
3a80a7fa
MG
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
895f7b8e
JG
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
3a80a7fa 354 (*nr_initialised)++;
d135e575 355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
359 }
360
361 return true;
362}
363#else
364static inline void reset_deferred_meminit(pg_data_t *pgdat)
365{
366}
367
368static inline bool early_page_uninitialised(unsigned long pfn)
369{
370 return false;
371}
372
373static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
376{
377 return true;
378}
379#endif
380
0b423ca2
MG
381/* Return a pointer to the bitmap storing bits affecting a block of pages */
382static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
384{
385#ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387#else
388 return page_zone(page)->pageblock_flags;
389#endif /* CONFIG_SPARSEMEM */
390}
391
392static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393{
394#ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397#else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400#endif /* CONFIG_SPARSEMEM */
401}
402
403/**
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
409 *
410 * Return: pageblock_bits flags
411 */
412static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416{
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
420
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
425
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429}
430
431unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434{
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436}
437
438static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439{
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441}
442
443/**
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
450 */
451void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455{
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
459
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
466
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
472
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
479 }
480}
3a80a7fa 481
ee6f509c 482void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 483{
5d0f3f72
KM
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
486 migratetype = MIGRATE_UNMOVABLE;
487
b2a0ac88
MG
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
490}
491
13e7444b 492#ifdef CONFIG_DEBUG_VM
c6a57e19 493static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 494{
bdc8cb98
DH
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 498 unsigned long sp, start_pfn;
c6a57e19 499
bdc8cb98
DH
500 do {
501 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
108bcc96 504 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
507
b5e6a5a2 508 if (ret)
613813e8
DH
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
b5e6a5a2 512
bdc8cb98 513 return ret;
c6a57e19
DH
514}
515
516static int page_is_consistent(struct zone *zone, struct page *page)
517{
14e07298 518 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 519 return 0;
1da177e4 520 if (zone != page_zone(page))
c6a57e19
DH
521 return 0;
522
523 return 1;
524}
525/*
526 * Temporary debugging check for pages not lying within a given zone.
527 */
d73d3c9f 528static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
529{
530 if (page_outside_zone_boundaries(zone, page))
1da177e4 531 return 1;
c6a57e19
DH
532 if (!page_is_consistent(zone, page))
533 return 1;
534
1da177e4
LT
535 return 0;
536}
13e7444b 537#else
d73d3c9f 538static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
539{
540 return 0;
541}
542#endif
543
d230dec1
KS
544static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
1da177e4 546{
d936cf9b
HD
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
550
551 /*
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
554 */
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
559 }
560 if (nr_unshown) {
ff8e8116 561 pr_alert(
1e9e6365 562 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
563 nr_unshown);
564 nr_unshown = 0;
565 }
566 nr_shown = 0;
567 }
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
570
ff8e8116 571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 572 current->comm, page_to_pfn(page));
ff8e8116
VB
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
4e462112 578 dump_page_owner(page);
3dc14741 579
4f31888c 580 print_modules();
1da177e4 581 dump_stack();
d936cf9b 582out:
8cc3b392 583 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 584 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
586}
587
1da177e4
LT
588/*
589 * Higher-order pages are called "compound pages". They are structured thusly:
590 *
1d798ca3 591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 592 *
1d798ca3
KS
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 595 *
1d798ca3
KS
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
1da177e4 598 *
1d798ca3 599 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 600 * This usage means that zero-order pages may not be compound.
1da177e4 601 */
d98c7a09 602
9a982250 603void free_compound_page(struct page *page)
d98c7a09 604{
d85f3385 605 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
606}
607
d00181b9 608void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
609{
610 int i;
611 int nr_pages = 1 << order;
612
f1e61557 613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
58a84aa9 618 set_page_count(p, 0);
1c290f64 619 p->mapping = TAIL_MAPPING;
1d798ca3 620 set_compound_head(p, page);
18229df5 621 }
53f9263b 622 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
623}
624
c0a32fc5
SG
625#ifdef CONFIG_DEBUG_PAGEALLOC
626unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
627bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 629EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
630bool _debug_guardpage_enabled __read_mostly;
631
031bc574
JK
632static int __init early_debug_pagealloc(char *buf)
633{
634 if (!buf)
635 return -EINVAL;
2a138dc7 636 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
637}
638early_param("debug_pagealloc", early_debug_pagealloc);
639
e30825f1
JK
640static bool need_debug_guardpage(void)
641{
031bc574
JK
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
645
f1c1e9f7
JK
646 if (!debug_guardpage_minorder())
647 return false;
648
e30825f1
JK
649 return true;
650}
651
652static void init_debug_guardpage(void)
653{
031bc574
JK
654 if (!debug_pagealloc_enabled())
655 return;
656
f1c1e9f7
JK
657 if (!debug_guardpage_minorder())
658 return;
659
e30825f1
JK
660 _debug_guardpage_enabled = true;
661}
662
663struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
666};
c0a32fc5
SG
667
668static int __init debug_guardpage_minorder_setup(char *buf)
669{
670 unsigned long res;
671
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 673 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
674 return 0;
675 }
676 _debug_guardpage_minorder = res;
1170532b 677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
678 return 0;
679}
f1c1e9f7 680early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 681
acbc15a4 682static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 683 unsigned int order, int migratetype)
c0a32fc5 684{
e30825f1
JK
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
acbc15a4
JK
688 return false;
689
690 if (order >= debug_guardpage_minorder())
691 return false;
e30825f1
JK
692
693 page_ext = lookup_page_ext(page);
f86e4271 694 if (unlikely(!page_ext))
acbc15a4 695 return false;
f86e4271 696
e30825f1
JK
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698
2847cf95
JK
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
703
704 return true;
c0a32fc5
SG
705}
706
2847cf95
JK
707static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
c0a32fc5 709{
e30825f1
JK
710 struct page_ext *page_ext;
711
712 if (!debug_guardpage_enabled())
713 return;
714
715 page_ext = lookup_page_ext(page);
f86e4271
YS
716 if (unlikely(!page_ext))
717 return;
718
e30825f1
JK
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
2847cf95
JK
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
724}
725#else
980ac167 726struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
727static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
2847cf95
JK
729static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
c0a32fc5
SG
731#endif
732
7aeb09f9 733static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 734{
4c21e2f2 735 set_page_private(page, order);
676165a8 736 __SetPageBuddy(page);
1da177e4
LT
737}
738
739static inline void rmv_page_order(struct page *page)
740{
676165a8 741 __ClearPageBuddy(page);
4c21e2f2 742 set_page_private(page, 0);
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
13ad59df 748 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 749 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
676165a8 752 *
cf6fe945
WSH
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
1da177e4 757 *
676165a8 758 * For recording page's order, we use page_private(page).
1da177e4 759 */
cb2b95e1 760static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 761 unsigned int order)
1da177e4 762{
c0a32fc5 763 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
c0a32fc5
SG
769 return 1;
770 }
771
cb2b95e1 772 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
4c5018ce
WY
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
6aa3001b 783 return 1;
676165a8 784 }
6aa3001b 785 return 0;
1da177e4
LT
786}
787
788/*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
1da177e4 804 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
1da177e4 807 * If a block is freed, and its buddy is also free, then this
5f63b720 808 * triggers coalescing into a block of larger size.
1da177e4 809 *
6d49e352 810 * -- nyc
1da177e4
LT
811 */
812
48db57f8 813static inline void __free_one_page(struct page *page,
dc4b0caf 814 unsigned long pfn,
ed0ae21d
MG
815 struct zone *zone, unsigned int order,
816 int migratetype)
1da177e4 817{
76741e77
VB
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 820 struct page *buddy;
d9dddbf5
VB
821 unsigned int max_order;
822
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 824
d29bb978 825 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 827
ed0ae21d 828 VM_BUG_ON(migratetype == -1);
d9dddbf5 829 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 831
76741e77 832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 834
d9dddbf5 835continue_merging:
3c605096 836 while (order < max_order - 1) {
76741e77
VB
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
839
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
cb2b95e1 842 if (!page_is_buddy(page, buddy, order))
d9dddbf5 843 goto done_merging;
c0a32fc5
SG
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy)) {
2847cf95 849 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
854 }
76741e77
VB
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
1da177e4
LT
858 order++;
859 }
d9dddbf5
VB
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
865 *
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
868 */
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
871
76741e77
VB
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
874 buddy_mt = get_pageblock_migratetype(buddy);
875
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
880 }
881 max_order++;
882 goto continue_merging;
883 }
884
885done_merging:
1da177e4 886 set_page_order(page, order);
6dda9d55
CZ
887
888 /*
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
895 */
13ad59df 896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 897 struct page *higher_page, *higher_buddy;
76741e77
VB
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
907 }
908 }
909
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911out:
1da177e4
LT
912 zone->free_area[order].nr_free++;
913}
914
7bfec6f4
MG
915/*
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
919 */
920static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
922{
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
925
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928#ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930#endif
931 (page->flags & check_flags)))
932 return false;
933
934 return true;
935}
936
bb552ac6 937static void free_pages_check_bad(struct page *page)
1da177e4 938{
7bfec6f4
MG
939 const char *bad_reason;
940 unsigned long bad_flags;
941
7bfec6f4
MG
942 bad_reason = NULL;
943 bad_flags = 0;
f0b791a3 944
53f9263b 945 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
fe896d18 949 if (unlikely(page_ref_count(page) != 0))
0139aa7b 950 bad_reason = "nonzero _refcount";
f0b791a3
DH
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 }
9edad6ea
JW
955#ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958#endif
7bfec6f4 959 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
960}
961
962static inline int free_pages_check(struct page *page)
963{
da838d4f 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 965 return 0;
bb552ac6
MG
966
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
7bfec6f4 969 return 1;
1da177e4
LT
970}
971
4db7548c
MG
972static int free_tail_pages_check(struct page *head_page, struct page *page)
973{
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
992 }
993 break;
994 case 2:
995 /*
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
998 */
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1004 }
1005 break;
1006 }
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1010 }
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1014 }
1015 ret = 0;
1016out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1020}
1021
e2769dbd
MG
1022static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
4db7548c 1024{
e2769dbd 1025 int bad = 0;
4db7548c 1026
4db7548c
MG
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1028
e2769dbd 1029 trace_mm_page_free(page, order);
e2769dbd
MG
1030
1031 /*
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1034 */
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1038
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1040
9a73f61b
KS
1041 if (compound)
1042 ClearPageDoubleMap(page);
e2769dbd
MG
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1049 }
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 }
1052 }
bda807d4 1053 if (PageMappingFlags(page))
4db7548c 1054 page->mapping = NULL;
c4159a75 1055 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1056 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
4db7548c 1061
e2769dbd
MG
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
4db7548c
MG
1065
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
e2769dbd 1068 PAGE_SIZE << order);
4db7548c 1069 debug_check_no_obj_freed(page_address(page),
e2769dbd 1070 PAGE_SIZE << order);
4db7548c 1071 }
e2769dbd
MG
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
29b52de1 1075 kasan_free_pages(page, order);
4db7548c 1076
4db7548c
MG
1077 return true;
1078}
1079
e2769dbd
MG
1080#ifdef CONFIG_DEBUG_VM
1081static inline bool free_pcp_prepare(struct page *page)
1082{
1083 return free_pages_prepare(page, 0, true);
1084}
1085
1086static inline bool bulkfree_pcp_prepare(struct page *page)
1087{
1088 return false;
1089}
1090#else
1091static bool free_pcp_prepare(struct page *page)
1092{
1093 return free_pages_prepare(page, 0, false);
1094}
1095
4db7548c
MG
1096static bool bulkfree_pcp_prepare(struct page *page)
1097{
1098 return free_pages_check(page);
1099}
1100#endif /* CONFIG_DEBUG_VM */
1101
1da177e4 1102/*
5f8dcc21 1103 * Frees a number of pages from the PCP lists
1da177e4 1104 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1105 * count is the number of pages to free.
1da177e4
LT
1106 *
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1109 *
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1112 */
5f8dcc21
MG
1113static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1da177e4 1115{
5f8dcc21 1116 int migratetype = 0;
a6f9edd6 1117 int batch_free = 0;
3777999d 1118 bool isolated_pageblocks;
5f8dcc21 1119
d34b0733 1120 spin_lock(&zone->lock);
3777999d 1121 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1122
e5b31ac2 1123 while (count) {
48db57f8 1124 struct page *page;
5f8dcc21
MG
1125 struct list_head *list;
1126
1127 /*
a6f9edd6
MG
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
5f8dcc21
MG
1133 */
1134 do {
a6f9edd6 1135 batch_free++;
5f8dcc21
MG
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
48db57f8 1140
1d16871d
NK
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1143 batch_free = count;
1d16871d 1144
a6f9edd6 1145 do {
770c8aaa
BZ
1146 int mt; /* migratetype of the to-be-freed page */
1147
a16601c5 1148 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
aa016d14 1151
bb14c2c7 1152 mt = get_pcppage_migratetype(page);
aa016d14
VB
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
3777999d 1156 if (unlikely(isolated_pageblocks))
51bb1a40 1157 mt = get_pageblock_migratetype(page);
51bb1a40 1158
4db7548c
MG
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1161
dc4b0caf 1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1163 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1164 } while (--count && --batch_free && !list_empty(list));
1da177e4 1165 }
d34b0733 1166 spin_unlock(&zone->lock);
1da177e4
LT
1167}
1168
dc4b0caf
MG
1169static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
7aeb09f9 1171 unsigned int order,
ed0ae21d 1172 int migratetype)
1da177e4 1173{
d34b0733 1174 spin_lock(&zone->lock);
ad53f92e
JK
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1178 }
dc4b0caf 1179 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1180 spin_unlock(&zone->lock);
48db57f8
NP
1181}
1182
1e8ce83c 1183static void __meminit __init_single_page(struct page *page, unsigned long pfn,
9bb5a391 1184 unsigned long zone, int nid, bool zero)
1e8ce83c 1185{
9bb5a391
MH
1186 if (zero)
1187 mm_zero_struct_page(page);
1e8ce83c 1188 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1e8ce83c 1192
1e8ce83c
RH
1193 INIT_LIST_HEAD(&page->lru);
1194#ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198#endif
1199}
1200
1201static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
9bb5a391 1202 int nid, bool zero)
1e8ce83c 1203{
9bb5a391 1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1e8ce83c
RH
1205}
1206
7e18adb4 1207#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1208static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1209{
1210 pg_data_t *pgdat;
1211 int nid, zid;
1212
1213 if (!early_page_uninitialised(pfn))
1214 return;
1215
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1218
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1221
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1224 }
9bb5a391 1225 __init_single_pfn(pfn, zid, nid, true);
7e18adb4
MG
1226}
1227#else
1228static inline void init_reserved_page(unsigned long pfn)
1229{
1230}
1231#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
92923ca3
NZ
1233/*
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1238 */
4b50bcc7 1239void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1240{
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1243
7e18adb4
MG
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1247
1248 init_reserved_page(start_pfn);
1d798ca3
KS
1249
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1252
7e18adb4
MG
1253 SetPageReserved(page);
1254 }
1255 }
92923ca3
NZ
1256}
1257
ec95f53a
KM
1258static void __free_pages_ok(struct page *page, unsigned int order)
1259{
d34b0733 1260 unsigned long flags;
95e34412 1261 int migratetype;
dc4b0caf 1262 unsigned long pfn = page_to_pfn(page);
ec95f53a 1263
e2769dbd 1264 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1265 return;
1266
cfc47a28 1267 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1271 local_irq_restore(flags);
1da177e4
LT
1272}
1273
949698a3 1274static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1275{
c3993076 1276 unsigned int nr_pages = 1 << order;
e2d0bd2b 1277 struct page *p = page;
c3993076 1278 unsigned int loop;
a226f6c8 1279
e2d0bd2b
YL
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
c3993076
JW
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
a226f6c8 1285 }
e2d0bd2b
YL
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
c3993076 1288
e2d0bd2b 1289 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
a226f6c8
DH
1292}
1293
75a592a4
MG
1294#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1296
75a592a4
MG
1297static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299int __meminit early_pfn_to_nid(unsigned long pfn)
1300{
7ace9917 1301 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1302 int nid;
1303
7ace9917 1304 spin_lock(&early_pfn_lock);
75a592a4 1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1306 if (nid < 0)
e4568d38 1307 nid = first_online_node;
7ace9917
MG
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
75a592a4
MG
1311}
1312#endif
1313
1314#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1315static inline bool __meminit __maybe_unused
1316meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
75a592a4
MG
1318{
1319 int nid;
1320
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1325}
1326
1327/* Only safe to use early in boot when initialisation is single-threaded */
1328static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329{
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331}
1332
1333#else
1334
1335static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336{
1337 return true;
1338}
d73d3c9f
MK
1339static inline bool __meminit __maybe_unused
1340meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
75a592a4
MG
1342{
1343 return true;
1344}
1345#endif
1346
1347
0e1cc95b 1348void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1349 unsigned int order)
1350{
1351 if (early_page_uninitialised(pfn))
1352 return;
949698a3 1353 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1354}
1355
7cf91a98
JK
1356/*
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1362 *
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364 *
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1372 */
1373struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375{
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1384
2d070eab
MH
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
7cf91a98
JK
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399}
1400
1401void set_zone_contiguous(struct zone *zone)
1402{
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1405
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1410
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1416 }
1417
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1420}
1421
1422void clear_zone_contiguous(struct zone *zone)
1423{
1424 zone->contiguous = false;
1425}
1426
7e18adb4 1427#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1428static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
a4de83dd 1430{
2f47a91f
PT
1431 struct page *page;
1432 unsigned long i;
a4de83dd 1433
2f47a91f 1434 if (!nr_pages)
a4de83dd
MG
1435 return;
1436
2f47a91f
PT
1437 page = pfn_to_page(pfn);
1438
a4de83dd 1439 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1443 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1444 return;
1445 }
1446
e780149b
XQ
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1450 __free_pages_boot_core(page, 0);
e780149b 1451 }
a4de83dd
MG
1452}
1453
d3cd131d
NS
1454/* Completion tracking for deferred_init_memmap() threads */
1455static atomic_t pgdat_init_n_undone __initdata;
1456static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457
1458static inline void __init pgdat_init_report_one_done(void)
1459{
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1462}
0e1cc95b 1463
2f47a91f 1464/*
80b1f41c
PT
1465 * Returns true if page needs to be initialized or freed to buddy allocator.
1466 *
1467 * First we check if pfn is valid on architectures where it is possible to have
1468 * holes within pageblock_nr_pages. On systems where it is not possible, this
1469 * function is optimized out.
1470 *
1471 * Then, we check if a current large page is valid by only checking the validity
1472 * of the head pfn.
1473 *
1474 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1475 * within a node: a pfn is between start and end of a node, but does not belong
1476 * to this memory node.
2f47a91f 1477 */
80b1f41c
PT
1478static inline bool __init
1479deferred_pfn_valid(int nid, unsigned long pfn,
1480 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1481{
80b1f41c
PT
1482 if (!pfn_valid_within(pfn))
1483 return false;
1484 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1485 return false;
1486 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1487 return false;
1488 return true;
1489}
2f47a91f 1490
80b1f41c
PT
1491/*
1492 * Free pages to buddy allocator. Try to free aligned pages in
1493 * pageblock_nr_pages sizes.
1494 */
1495static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1496 unsigned long end_pfn)
1497{
1498 struct mminit_pfnnid_cache nid_init_state = { };
1499 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1500 unsigned long nr_free = 0;
2f47a91f 1501
80b1f41c
PT
1502 for (; pfn < end_pfn; pfn++) {
1503 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1504 deferred_free_range(pfn - nr_free, nr_free);
1505 nr_free = 0;
1506 } else if (!(pfn & nr_pgmask)) {
1507 deferred_free_range(pfn - nr_free, nr_free);
1508 nr_free = 1;
1509 cond_resched();
1510 } else {
1511 nr_free++;
1512 }
1513 }
1514 /* Free the last block of pages to allocator */
1515 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1516}
1517
80b1f41c
PT
1518/*
1519 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1520 * by performing it only once every pageblock_nr_pages.
1521 * Return number of pages initialized.
1522 */
1523static unsigned long __init deferred_init_pages(int nid, int zid,
1524 unsigned long pfn,
1525 unsigned long end_pfn)
2f47a91f
PT
1526{
1527 struct mminit_pfnnid_cache nid_init_state = { };
1528 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1529 unsigned long nr_pages = 0;
2f47a91f 1530 struct page *page = NULL;
2f47a91f 1531
80b1f41c
PT
1532 for (; pfn < end_pfn; pfn++) {
1533 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1534 page = NULL;
2f47a91f 1535 continue;
80b1f41c 1536 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1537 page = pfn_to_page(pfn);
2f47a91f 1538 cond_resched();
80b1f41c
PT
1539 } else {
1540 page++;
2f47a91f 1541 }
9bb5a391 1542 __init_single_page(page, pfn, zid, nid, true);
80b1f41c 1543 nr_pages++;
2f47a91f 1544 }
80b1f41c 1545 return (nr_pages);
2f47a91f
PT
1546}
1547
7e18adb4 1548/* Initialise remaining memory on a node */
0e1cc95b 1549static int __init deferred_init_memmap(void *data)
7e18adb4 1550{
0e1cc95b
MG
1551 pg_data_t *pgdat = data;
1552 int nid = pgdat->node_id;
7e18adb4
MG
1553 unsigned long start = jiffies;
1554 unsigned long nr_pages = 0;
2f47a91f
PT
1555 unsigned long spfn, epfn;
1556 phys_addr_t spa, epa;
1557 int zid;
7e18adb4 1558 struct zone *zone;
7e18adb4 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1561 u64 i;
7e18adb4 1562
0e1cc95b 1563 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1564 pgdat_init_report_one_done();
0e1cc95b
MG
1565 return 0;
1566 }
1567
1568 /* Bind memory initialisation thread to a local node if possible */
1569 if (!cpumask_empty(cpumask))
1570 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1571
1572 /* Sanity check boundaries */
1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 pgdat->first_deferred_pfn = ULONG_MAX;
1576
1577 /* Only the highest zone is deferred so find it */
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 zone = pgdat->node_zones + zid;
1580 if (first_init_pfn < zone_end_pfn(zone))
1581 break;
1582 }
2f47a91f 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1584
80b1f41c
PT
1585 /*
1586 * Initialize and free pages. We do it in two loops: first we initialize
1587 * struct page, than free to buddy allocator, because while we are
1588 * freeing pages we can access pages that are ahead (computing buddy
1589 * page in __free_one_page()).
1590 */
1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1595 }
2f47a91f
PT
1596 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1597 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1598 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1599 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4
MG
1600 }
1601
1602 /* Sanity check that the next zone really is unpopulated */
1603 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1604
0e1cc95b 1605 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1606 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1607
1608 pgdat_init_report_one_done();
0e1cc95b
MG
1609 return 0;
1610}
7cf91a98 1611#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1612
1613void __init page_alloc_init_late(void)
1614{
7cf91a98
JK
1615 struct zone *zone;
1616
1617#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1618 int nid;
1619
d3cd131d
NS
1620 /* There will be num_node_state(N_MEMORY) threads */
1621 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1622 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1623 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1624 }
1625
1626 /* Block until all are initialised */
d3cd131d 1627 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1628
1629 /* Reinit limits that are based on free pages after the kernel is up */
1630 files_maxfiles_init();
7cf91a98 1631#endif
3010f876
PT
1632#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1633 /* Discard memblock private memory */
1634 memblock_discard();
1635#endif
7cf91a98
JK
1636
1637 for_each_populated_zone(zone)
1638 set_zone_contiguous(zone);
7e18adb4 1639}
7e18adb4 1640
47118af0 1641#ifdef CONFIG_CMA
9cf510a5 1642/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1643void __init init_cma_reserved_pageblock(struct page *page)
1644{
1645 unsigned i = pageblock_nr_pages;
1646 struct page *p = page;
1647
1648 do {
1649 __ClearPageReserved(p);
1650 set_page_count(p, 0);
1651 } while (++p, --i);
1652
47118af0 1653 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1654
1655 if (pageblock_order >= MAX_ORDER) {
1656 i = pageblock_nr_pages;
1657 p = page;
1658 do {
1659 set_page_refcounted(p);
1660 __free_pages(p, MAX_ORDER - 1);
1661 p += MAX_ORDER_NR_PAGES;
1662 } while (i -= MAX_ORDER_NR_PAGES);
1663 } else {
1664 set_page_refcounted(page);
1665 __free_pages(page, pageblock_order);
1666 }
1667
3dcc0571 1668 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1669}
1670#endif
1da177e4
LT
1671
1672/*
1673 * The order of subdivision here is critical for the IO subsystem.
1674 * Please do not alter this order without good reasons and regression
1675 * testing. Specifically, as large blocks of memory are subdivided,
1676 * the order in which smaller blocks are delivered depends on the order
1677 * they're subdivided in this function. This is the primary factor
1678 * influencing the order in which pages are delivered to the IO
1679 * subsystem according to empirical testing, and this is also justified
1680 * by considering the behavior of a buddy system containing a single
1681 * large block of memory acted on by a series of small allocations.
1682 * This behavior is a critical factor in sglist merging's success.
1683 *
6d49e352 1684 * -- nyc
1da177e4 1685 */
085cc7d5 1686static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1687 int low, int high, struct free_area *area,
1688 int migratetype)
1da177e4
LT
1689{
1690 unsigned long size = 1 << high;
1691
1692 while (high > low) {
1693 area--;
1694 high--;
1695 size >>= 1;
309381fe 1696 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1697
acbc15a4
JK
1698 /*
1699 * Mark as guard pages (or page), that will allow to
1700 * merge back to allocator when buddy will be freed.
1701 * Corresponding page table entries will not be touched,
1702 * pages will stay not present in virtual address space
1703 */
1704 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1705 continue;
acbc15a4 1706
b2a0ac88 1707 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1708 area->nr_free++;
1709 set_page_order(&page[size], high);
1710 }
1da177e4
LT
1711}
1712
4e611801 1713static void check_new_page_bad(struct page *page)
1da177e4 1714{
4e611801
VB
1715 const char *bad_reason = NULL;
1716 unsigned long bad_flags = 0;
7bfec6f4 1717
53f9263b 1718 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1719 bad_reason = "nonzero mapcount";
1720 if (unlikely(page->mapping != NULL))
1721 bad_reason = "non-NULL mapping";
fe896d18 1722 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1723 bad_reason = "nonzero _count";
f4c18e6f
NH
1724 if (unlikely(page->flags & __PG_HWPOISON)) {
1725 bad_reason = "HWPoisoned (hardware-corrupted)";
1726 bad_flags = __PG_HWPOISON;
e570f56c
NH
1727 /* Don't complain about hwpoisoned pages */
1728 page_mapcount_reset(page); /* remove PageBuddy */
1729 return;
f4c18e6f 1730 }
f0b791a3
DH
1731 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1732 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1733 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1734 }
9edad6ea
JW
1735#ifdef CONFIG_MEMCG
1736 if (unlikely(page->mem_cgroup))
1737 bad_reason = "page still charged to cgroup";
1738#endif
4e611801
VB
1739 bad_page(page, bad_reason, bad_flags);
1740}
1741
1742/*
1743 * This page is about to be returned from the page allocator
1744 */
1745static inline int check_new_page(struct page *page)
1746{
1747 if (likely(page_expected_state(page,
1748 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1749 return 0;
1750
1751 check_new_page_bad(page);
1752 return 1;
2a7684a2
WF
1753}
1754
bd33ef36 1755static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1756{
1757 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1758 page_poisoning_enabled();
1414c7f4
LA
1759}
1760
479f854a
MG
1761#ifdef CONFIG_DEBUG_VM
1762static bool check_pcp_refill(struct page *page)
1763{
1764 return false;
1765}
1766
1767static bool check_new_pcp(struct page *page)
1768{
1769 return check_new_page(page);
1770}
1771#else
1772static bool check_pcp_refill(struct page *page)
1773{
1774 return check_new_page(page);
1775}
1776static bool check_new_pcp(struct page *page)
1777{
1778 return false;
1779}
1780#endif /* CONFIG_DEBUG_VM */
1781
1782static bool check_new_pages(struct page *page, unsigned int order)
1783{
1784 int i;
1785 for (i = 0; i < (1 << order); i++) {
1786 struct page *p = page + i;
1787
1788 if (unlikely(check_new_page(p)))
1789 return true;
1790 }
1791
1792 return false;
1793}
1794
46f24fd8
JK
1795inline void post_alloc_hook(struct page *page, unsigned int order,
1796 gfp_t gfp_flags)
1797{
1798 set_page_private(page, 0);
1799 set_page_refcounted(page);
1800
1801 arch_alloc_page(page, order);
1802 kernel_map_pages(page, 1 << order, 1);
1803 kernel_poison_pages(page, 1 << order, 1);
1804 kasan_alloc_pages(page, order);
1805 set_page_owner(page, order, gfp_flags);
1806}
1807
479f854a 1808static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1809 unsigned int alloc_flags)
2a7684a2
WF
1810{
1811 int i;
689bcebf 1812
46f24fd8 1813 post_alloc_hook(page, order, gfp_flags);
17cf4406 1814
bd33ef36 1815 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1816 for (i = 0; i < (1 << order); i++)
1817 clear_highpage(page + i);
17cf4406
NP
1818
1819 if (order && (gfp_flags & __GFP_COMP))
1820 prep_compound_page(page, order);
1821
75379191 1822 /*
2f064f34 1823 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1824 * allocate the page. The expectation is that the caller is taking
1825 * steps that will free more memory. The caller should avoid the page
1826 * being used for !PFMEMALLOC purposes.
1827 */
2f064f34
MH
1828 if (alloc_flags & ALLOC_NO_WATERMARKS)
1829 set_page_pfmemalloc(page);
1830 else
1831 clear_page_pfmemalloc(page);
1da177e4
LT
1832}
1833
56fd56b8
MG
1834/*
1835 * Go through the free lists for the given migratetype and remove
1836 * the smallest available page from the freelists
1837 */
85ccc8fa 1838static __always_inline
728ec980 1839struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1840 int migratetype)
1841{
1842 unsigned int current_order;
b8af2941 1843 struct free_area *area;
56fd56b8
MG
1844 struct page *page;
1845
1846 /* Find a page of the appropriate size in the preferred list */
1847 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1848 area = &(zone->free_area[current_order]);
a16601c5 1849 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1850 struct page, lru);
a16601c5
GT
1851 if (!page)
1852 continue;
56fd56b8
MG
1853 list_del(&page->lru);
1854 rmv_page_order(page);
1855 area->nr_free--;
56fd56b8 1856 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1857 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1858 return page;
1859 }
1860
1861 return NULL;
1862}
1863
1864
b2a0ac88
MG
1865/*
1866 * This array describes the order lists are fallen back to when
1867 * the free lists for the desirable migrate type are depleted
1868 */
47118af0 1869static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1870 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1871 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1872 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1873#ifdef CONFIG_CMA
974a786e 1874 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1875#endif
194159fb 1876#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1877 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1878#endif
b2a0ac88
MG
1879};
1880
dc67647b 1881#ifdef CONFIG_CMA
85ccc8fa 1882static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1883 unsigned int order)
1884{
1885 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1886}
1887#else
1888static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1889 unsigned int order) { return NULL; }
1890#endif
1891
c361be55
MG
1892/*
1893 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1894 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1895 * boundary. If alignment is required, use move_freepages_block()
1896 */
02aa0cdd 1897static int move_freepages(struct zone *zone,
b69a7288 1898 struct page *start_page, struct page *end_page,
02aa0cdd 1899 int migratetype, int *num_movable)
c361be55
MG
1900{
1901 struct page *page;
d00181b9 1902 unsigned int order;
d100313f 1903 int pages_moved = 0;
c361be55
MG
1904
1905#ifndef CONFIG_HOLES_IN_ZONE
1906 /*
1907 * page_zone is not safe to call in this context when
1908 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1909 * anyway as we check zone boundaries in move_freepages_block().
1910 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1911 * grouping pages by mobility
c361be55 1912 */
3e04040d
AB
1913 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
1914 pfn_valid(page_to_pfn(end_page)) &&
1915 page_zone(start_page) != page_zone(end_page));
c361be55
MG
1916#endif
1917
02aa0cdd
VB
1918 if (num_movable)
1919 *num_movable = 0;
1920
c361be55
MG
1921 for (page = start_page; page <= end_page;) {
1922 if (!pfn_valid_within(page_to_pfn(page))) {
1923 page++;
1924 continue;
1925 }
1926
f073bdc5
AB
1927 /* Make sure we are not inadvertently changing nodes */
1928 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1929
c361be55 1930 if (!PageBuddy(page)) {
02aa0cdd
VB
1931 /*
1932 * We assume that pages that could be isolated for
1933 * migration are movable. But we don't actually try
1934 * isolating, as that would be expensive.
1935 */
1936 if (num_movable &&
1937 (PageLRU(page) || __PageMovable(page)))
1938 (*num_movable)++;
1939
c361be55
MG
1940 page++;
1941 continue;
1942 }
1943
1944 order = page_order(page);
84be48d8
KS
1945 list_move(&page->lru,
1946 &zone->free_area[order].free_list[migratetype]);
c361be55 1947 page += 1 << order;
d100313f 1948 pages_moved += 1 << order;
c361be55
MG
1949 }
1950
d100313f 1951 return pages_moved;
c361be55
MG
1952}
1953
ee6f509c 1954int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1955 int migratetype, int *num_movable)
c361be55
MG
1956{
1957 unsigned long start_pfn, end_pfn;
1958 struct page *start_page, *end_page;
1959
1960 start_pfn = page_to_pfn(page);
d9c23400 1961 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1962 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1963 end_page = start_page + pageblock_nr_pages - 1;
1964 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1965
1966 /* Do not cross zone boundaries */
108bcc96 1967 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1968 start_page = page;
108bcc96 1969 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1970 return 0;
1971
02aa0cdd
VB
1972 return move_freepages(zone, start_page, end_page, migratetype,
1973 num_movable);
c361be55
MG
1974}
1975
2f66a68f
MG
1976static void change_pageblock_range(struct page *pageblock_page,
1977 int start_order, int migratetype)
1978{
1979 int nr_pageblocks = 1 << (start_order - pageblock_order);
1980
1981 while (nr_pageblocks--) {
1982 set_pageblock_migratetype(pageblock_page, migratetype);
1983 pageblock_page += pageblock_nr_pages;
1984 }
1985}
1986
fef903ef 1987/*
9c0415eb
VB
1988 * When we are falling back to another migratetype during allocation, try to
1989 * steal extra free pages from the same pageblocks to satisfy further
1990 * allocations, instead of polluting multiple pageblocks.
1991 *
1992 * If we are stealing a relatively large buddy page, it is likely there will
1993 * be more free pages in the pageblock, so try to steal them all. For
1994 * reclaimable and unmovable allocations, we steal regardless of page size,
1995 * as fragmentation caused by those allocations polluting movable pageblocks
1996 * is worse than movable allocations stealing from unmovable and reclaimable
1997 * pageblocks.
fef903ef 1998 */
4eb7dce6
JK
1999static bool can_steal_fallback(unsigned int order, int start_mt)
2000{
2001 /*
2002 * Leaving this order check is intended, although there is
2003 * relaxed order check in next check. The reason is that
2004 * we can actually steal whole pageblock if this condition met,
2005 * but, below check doesn't guarantee it and that is just heuristic
2006 * so could be changed anytime.
2007 */
2008 if (order >= pageblock_order)
2009 return true;
2010
2011 if (order >= pageblock_order / 2 ||
2012 start_mt == MIGRATE_RECLAIMABLE ||
2013 start_mt == MIGRATE_UNMOVABLE ||
2014 page_group_by_mobility_disabled)
2015 return true;
2016
2017 return false;
2018}
2019
2020/*
2021 * This function implements actual steal behaviour. If order is large enough,
2022 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2023 * pageblock to our migratetype and determine how many already-allocated pages
2024 * are there in the pageblock with a compatible migratetype. If at least half
2025 * of pages are free or compatible, we can change migratetype of the pageblock
2026 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2027 */
2028static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2029 int start_type, bool whole_block)
fef903ef 2030{
d00181b9 2031 unsigned int current_order = page_order(page);
3bc48f96 2032 struct free_area *area;
02aa0cdd
VB
2033 int free_pages, movable_pages, alike_pages;
2034 int old_block_type;
2035
2036 old_block_type = get_pageblock_migratetype(page);
fef903ef 2037
3bc48f96
VB
2038 /*
2039 * This can happen due to races and we want to prevent broken
2040 * highatomic accounting.
2041 */
02aa0cdd 2042 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2043 goto single_page;
2044
fef903ef
SB
2045 /* Take ownership for orders >= pageblock_order */
2046 if (current_order >= pageblock_order) {
2047 change_pageblock_range(page, current_order, start_type);
3bc48f96 2048 goto single_page;
fef903ef
SB
2049 }
2050
3bc48f96
VB
2051 /* We are not allowed to try stealing from the whole block */
2052 if (!whole_block)
2053 goto single_page;
2054
02aa0cdd
VB
2055 free_pages = move_freepages_block(zone, page, start_type,
2056 &movable_pages);
2057 /*
2058 * Determine how many pages are compatible with our allocation.
2059 * For movable allocation, it's the number of movable pages which
2060 * we just obtained. For other types it's a bit more tricky.
2061 */
2062 if (start_type == MIGRATE_MOVABLE) {
2063 alike_pages = movable_pages;
2064 } else {
2065 /*
2066 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2067 * to MOVABLE pageblock, consider all non-movable pages as
2068 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2069 * vice versa, be conservative since we can't distinguish the
2070 * exact migratetype of non-movable pages.
2071 */
2072 if (old_block_type == MIGRATE_MOVABLE)
2073 alike_pages = pageblock_nr_pages
2074 - (free_pages + movable_pages);
2075 else
2076 alike_pages = 0;
2077 }
2078
3bc48f96 2079 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2080 if (!free_pages)
3bc48f96 2081 goto single_page;
fef903ef 2082
02aa0cdd
VB
2083 /*
2084 * If a sufficient number of pages in the block are either free or of
2085 * comparable migratability as our allocation, claim the whole block.
2086 */
2087 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2088 page_group_by_mobility_disabled)
2089 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2090
2091 return;
2092
2093single_page:
2094 area = &zone->free_area[current_order];
2095 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2096}
2097
2149cdae
JK
2098/*
2099 * Check whether there is a suitable fallback freepage with requested order.
2100 * If only_stealable is true, this function returns fallback_mt only if
2101 * we can steal other freepages all together. This would help to reduce
2102 * fragmentation due to mixed migratetype pages in one pageblock.
2103 */
2104int find_suitable_fallback(struct free_area *area, unsigned int order,
2105 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2106{
2107 int i;
2108 int fallback_mt;
2109
2110 if (area->nr_free == 0)
2111 return -1;
2112
2113 *can_steal = false;
2114 for (i = 0;; i++) {
2115 fallback_mt = fallbacks[migratetype][i];
974a786e 2116 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2117 break;
2118
2119 if (list_empty(&area->free_list[fallback_mt]))
2120 continue;
fef903ef 2121
4eb7dce6
JK
2122 if (can_steal_fallback(order, migratetype))
2123 *can_steal = true;
2124
2149cdae
JK
2125 if (!only_stealable)
2126 return fallback_mt;
2127
2128 if (*can_steal)
2129 return fallback_mt;
fef903ef 2130 }
4eb7dce6
JK
2131
2132 return -1;
fef903ef
SB
2133}
2134
0aaa29a5
MG
2135/*
2136 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2137 * there are no empty page blocks that contain a page with a suitable order
2138 */
2139static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2140 unsigned int alloc_order)
2141{
2142 int mt;
2143 unsigned long max_managed, flags;
2144
2145 /*
2146 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2147 * Check is race-prone but harmless.
2148 */
2149 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2150 if (zone->nr_reserved_highatomic >= max_managed)
2151 return;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
2154
2155 /* Recheck the nr_reserved_highatomic limit under the lock */
2156 if (zone->nr_reserved_highatomic >= max_managed)
2157 goto out_unlock;
2158
2159 /* Yoink! */
2160 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2161 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2162 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2163 zone->nr_reserved_highatomic += pageblock_nr_pages;
2164 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2165 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2166 }
2167
2168out_unlock:
2169 spin_unlock_irqrestore(&zone->lock, flags);
2170}
2171
2172/*
2173 * Used when an allocation is about to fail under memory pressure. This
2174 * potentially hurts the reliability of high-order allocations when under
2175 * intense memory pressure but failed atomic allocations should be easier
2176 * to recover from than an OOM.
29fac03b
MK
2177 *
2178 * If @force is true, try to unreserve a pageblock even though highatomic
2179 * pageblock is exhausted.
0aaa29a5 2180 */
29fac03b
MK
2181static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2182 bool force)
0aaa29a5
MG
2183{
2184 struct zonelist *zonelist = ac->zonelist;
2185 unsigned long flags;
2186 struct zoneref *z;
2187 struct zone *zone;
2188 struct page *page;
2189 int order;
04c8716f 2190 bool ret;
0aaa29a5
MG
2191
2192 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2193 ac->nodemask) {
29fac03b
MK
2194 /*
2195 * Preserve at least one pageblock unless memory pressure
2196 * is really high.
2197 */
2198 if (!force && zone->nr_reserved_highatomic <=
2199 pageblock_nr_pages)
0aaa29a5
MG
2200 continue;
2201
2202 spin_lock_irqsave(&zone->lock, flags);
2203 for (order = 0; order < MAX_ORDER; order++) {
2204 struct free_area *area = &(zone->free_area[order]);
2205
a16601c5
GT
2206 page = list_first_entry_or_null(
2207 &area->free_list[MIGRATE_HIGHATOMIC],
2208 struct page, lru);
2209 if (!page)
0aaa29a5
MG
2210 continue;
2211
0aaa29a5 2212 /*
4855e4a7
MK
2213 * In page freeing path, migratetype change is racy so
2214 * we can counter several free pages in a pageblock
2215 * in this loop althoug we changed the pageblock type
2216 * from highatomic to ac->migratetype. So we should
2217 * adjust the count once.
0aaa29a5 2218 */
a6ffdc07 2219 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2220 /*
2221 * It should never happen but changes to
2222 * locking could inadvertently allow a per-cpu
2223 * drain to add pages to MIGRATE_HIGHATOMIC
2224 * while unreserving so be safe and watch for
2225 * underflows.
2226 */
2227 zone->nr_reserved_highatomic -= min(
2228 pageblock_nr_pages,
2229 zone->nr_reserved_highatomic);
2230 }
0aaa29a5
MG
2231
2232 /*
2233 * Convert to ac->migratetype and avoid the normal
2234 * pageblock stealing heuristics. Minimally, the caller
2235 * is doing the work and needs the pages. More
2236 * importantly, if the block was always converted to
2237 * MIGRATE_UNMOVABLE or another type then the number
2238 * of pageblocks that cannot be completely freed
2239 * may increase.
2240 */
2241 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2242 ret = move_freepages_block(zone, page, ac->migratetype,
2243 NULL);
29fac03b
MK
2244 if (ret) {
2245 spin_unlock_irqrestore(&zone->lock, flags);
2246 return ret;
2247 }
0aaa29a5
MG
2248 }
2249 spin_unlock_irqrestore(&zone->lock, flags);
2250 }
04c8716f
MK
2251
2252 return false;
0aaa29a5
MG
2253}
2254
3bc48f96
VB
2255/*
2256 * Try finding a free buddy page on the fallback list and put it on the free
2257 * list of requested migratetype, possibly along with other pages from the same
2258 * block, depending on fragmentation avoidance heuristics. Returns true if
2259 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2260 *
2261 * The use of signed ints for order and current_order is a deliberate
2262 * deviation from the rest of this file, to make the for loop
2263 * condition simpler.
3bc48f96 2264 */
85ccc8fa 2265static __always_inline bool
b002529d 2266__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2267{
b8af2941 2268 struct free_area *area;
b002529d 2269 int current_order;
b2a0ac88 2270 struct page *page;
4eb7dce6
JK
2271 int fallback_mt;
2272 bool can_steal;
b2a0ac88 2273
7a8f58f3
VB
2274 /*
2275 * Find the largest available free page in the other list. This roughly
2276 * approximates finding the pageblock with the most free pages, which
2277 * would be too costly to do exactly.
2278 */
b002529d 2279 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2280 --current_order) {
4eb7dce6
JK
2281 area = &(zone->free_area[current_order]);
2282 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2283 start_migratetype, false, &can_steal);
4eb7dce6
JK
2284 if (fallback_mt == -1)
2285 continue;
b2a0ac88 2286
7a8f58f3
VB
2287 /*
2288 * We cannot steal all free pages from the pageblock and the
2289 * requested migratetype is movable. In that case it's better to
2290 * steal and split the smallest available page instead of the
2291 * largest available page, because even if the next movable
2292 * allocation falls back into a different pageblock than this
2293 * one, it won't cause permanent fragmentation.
2294 */
2295 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2296 && current_order > order)
2297 goto find_smallest;
b2a0ac88 2298
7a8f58f3
VB
2299 goto do_steal;
2300 }
e0fff1bd 2301
7a8f58f3 2302 return false;
e0fff1bd 2303
7a8f58f3
VB
2304find_smallest:
2305 for (current_order = order; current_order < MAX_ORDER;
2306 current_order++) {
2307 area = &(zone->free_area[current_order]);
2308 fallback_mt = find_suitable_fallback(area, current_order,
2309 start_migratetype, false, &can_steal);
2310 if (fallback_mt != -1)
2311 break;
b2a0ac88
MG
2312 }
2313
7a8f58f3
VB
2314 /*
2315 * This should not happen - we already found a suitable fallback
2316 * when looking for the largest page.
2317 */
2318 VM_BUG_ON(current_order == MAX_ORDER);
2319
2320do_steal:
2321 page = list_first_entry(&area->free_list[fallback_mt],
2322 struct page, lru);
2323
2324 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2325
2326 trace_mm_page_alloc_extfrag(page, order, current_order,
2327 start_migratetype, fallback_mt);
2328
2329 return true;
2330
b2a0ac88
MG
2331}
2332
56fd56b8 2333/*
1da177e4
LT
2334 * Do the hard work of removing an element from the buddy allocator.
2335 * Call me with the zone->lock already held.
2336 */
85ccc8fa
AL
2337static __always_inline struct page *
2338__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2339{
1da177e4
LT
2340 struct page *page;
2341
3bc48f96 2342retry:
56fd56b8 2343 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2344 if (unlikely(!page)) {
dc67647b
JK
2345 if (migratetype == MIGRATE_MOVABLE)
2346 page = __rmqueue_cma_fallback(zone, order);
2347
3bc48f96
VB
2348 if (!page && __rmqueue_fallback(zone, order, migratetype))
2349 goto retry;
728ec980
MG
2350 }
2351
0d3d062a 2352 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2353 return page;
1da177e4
LT
2354}
2355
5f63b720 2356/*
1da177e4
LT
2357 * Obtain a specified number of elements from the buddy allocator, all under
2358 * a single hold of the lock, for efficiency. Add them to the supplied list.
2359 * Returns the number of new pages which were placed at *list.
2360 */
5f63b720 2361static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2362 unsigned long count, struct list_head *list,
453f85d4 2363 int migratetype)
1da177e4 2364{
a6de734b 2365 int i, alloced = 0;
5f63b720 2366
d34b0733 2367 spin_lock(&zone->lock);
1da177e4 2368 for (i = 0; i < count; ++i) {
6ac0206b 2369 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2370 if (unlikely(page == NULL))
1da177e4 2371 break;
81eabcbe 2372
479f854a
MG
2373 if (unlikely(check_pcp_refill(page)))
2374 continue;
2375
81eabcbe 2376 /*
0fac3ba5
VB
2377 * Split buddy pages returned by expand() are received here in
2378 * physical page order. The page is added to the tail of
2379 * caller's list. From the callers perspective, the linked list
2380 * is ordered by page number under some conditions. This is
2381 * useful for IO devices that can forward direction from the
2382 * head, thus also in the physical page order. This is useful
2383 * for IO devices that can merge IO requests if the physical
2384 * pages are ordered properly.
81eabcbe 2385 */
0fac3ba5 2386 list_add_tail(&page->lru, list);
a6de734b 2387 alloced++;
bb14c2c7 2388 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2389 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2390 -(1 << order));
1da177e4 2391 }
a6de734b
MG
2392
2393 /*
2394 * i pages were removed from the buddy list even if some leak due
2395 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2396 * on i. Do not confuse with 'alloced' which is the number of
2397 * pages added to the pcp list.
2398 */
f2260e6b 2399 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2400 spin_unlock(&zone->lock);
a6de734b 2401 return alloced;
1da177e4
LT
2402}
2403
4ae7c039 2404#ifdef CONFIG_NUMA
8fce4d8e 2405/*
4037d452
CL
2406 * Called from the vmstat counter updater to drain pagesets of this
2407 * currently executing processor on remote nodes after they have
2408 * expired.
2409 *
879336c3
CL
2410 * Note that this function must be called with the thread pinned to
2411 * a single processor.
8fce4d8e 2412 */
4037d452 2413void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2414{
4ae7c039 2415 unsigned long flags;
7be12fc9 2416 int to_drain, batch;
4ae7c039 2417
4037d452 2418 local_irq_save(flags);
4db0c3c2 2419 batch = READ_ONCE(pcp->batch);
7be12fc9 2420 to_drain = min(pcp->count, batch);
2a13515c
KM
2421 if (to_drain > 0) {
2422 free_pcppages_bulk(zone, to_drain, pcp);
2423 pcp->count -= to_drain;
2424 }
4037d452 2425 local_irq_restore(flags);
4ae7c039
CL
2426}
2427#endif
2428
9f8f2172 2429/*
93481ff0 2430 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2431 *
2432 * The processor must either be the current processor and the
2433 * thread pinned to the current processor or a processor that
2434 * is not online.
2435 */
93481ff0 2436static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2437{
c54ad30c 2438 unsigned long flags;
93481ff0
VB
2439 struct per_cpu_pageset *pset;
2440 struct per_cpu_pages *pcp;
1da177e4 2441
93481ff0
VB
2442 local_irq_save(flags);
2443 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2444
93481ff0
VB
2445 pcp = &pset->pcp;
2446 if (pcp->count) {
2447 free_pcppages_bulk(zone, pcp->count, pcp);
2448 pcp->count = 0;
2449 }
2450 local_irq_restore(flags);
2451}
3dfa5721 2452
93481ff0
VB
2453/*
2454 * Drain pcplists of all zones on the indicated processor.
2455 *
2456 * The processor must either be the current processor and the
2457 * thread pinned to the current processor or a processor that
2458 * is not online.
2459 */
2460static void drain_pages(unsigned int cpu)
2461{
2462 struct zone *zone;
2463
2464 for_each_populated_zone(zone) {
2465 drain_pages_zone(cpu, zone);
1da177e4
LT
2466 }
2467}
1da177e4 2468
9f8f2172
CL
2469/*
2470 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2471 *
2472 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2473 * the single zone's pages.
9f8f2172 2474 */
93481ff0 2475void drain_local_pages(struct zone *zone)
9f8f2172 2476{
93481ff0
VB
2477 int cpu = smp_processor_id();
2478
2479 if (zone)
2480 drain_pages_zone(cpu, zone);
2481 else
2482 drain_pages(cpu);
9f8f2172
CL
2483}
2484
0ccce3b9
MG
2485static void drain_local_pages_wq(struct work_struct *work)
2486{
a459eeb7
MH
2487 /*
2488 * drain_all_pages doesn't use proper cpu hotplug protection so
2489 * we can race with cpu offline when the WQ can move this from
2490 * a cpu pinned worker to an unbound one. We can operate on a different
2491 * cpu which is allright but we also have to make sure to not move to
2492 * a different one.
2493 */
2494 preempt_disable();
0ccce3b9 2495 drain_local_pages(NULL);
a459eeb7 2496 preempt_enable();
0ccce3b9
MG
2497}
2498
9f8f2172 2499/*
74046494
GBY
2500 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2501 *
93481ff0
VB
2502 * When zone parameter is non-NULL, spill just the single zone's pages.
2503 *
0ccce3b9 2504 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2505 */
93481ff0 2506void drain_all_pages(struct zone *zone)
9f8f2172 2507{
74046494 2508 int cpu;
74046494
GBY
2509
2510 /*
2511 * Allocate in the BSS so we wont require allocation in
2512 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2513 */
2514 static cpumask_t cpus_with_pcps;
2515
ce612879
MH
2516 /*
2517 * Make sure nobody triggers this path before mm_percpu_wq is fully
2518 * initialized.
2519 */
2520 if (WARN_ON_ONCE(!mm_percpu_wq))
2521 return;
2522
bd233f53
MG
2523 /*
2524 * Do not drain if one is already in progress unless it's specific to
2525 * a zone. Such callers are primarily CMA and memory hotplug and need
2526 * the drain to be complete when the call returns.
2527 */
2528 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2529 if (!zone)
2530 return;
2531 mutex_lock(&pcpu_drain_mutex);
2532 }
0ccce3b9 2533
74046494
GBY
2534 /*
2535 * We don't care about racing with CPU hotplug event
2536 * as offline notification will cause the notified
2537 * cpu to drain that CPU pcps and on_each_cpu_mask
2538 * disables preemption as part of its processing
2539 */
2540 for_each_online_cpu(cpu) {
93481ff0
VB
2541 struct per_cpu_pageset *pcp;
2542 struct zone *z;
74046494 2543 bool has_pcps = false;
93481ff0
VB
2544
2545 if (zone) {
74046494 2546 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2547 if (pcp->pcp.count)
74046494 2548 has_pcps = true;
93481ff0
VB
2549 } else {
2550 for_each_populated_zone(z) {
2551 pcp = per_cpu_ptr(z->pageset, cpu);
2552 if (pcp->pcp.count) {
2553 has_pcps = true;
2554 break;
2555 }
74046494
GBY
2556 }
2557 }
93481ff0 2558
74046494
GBY
2559 if (has_pcps)
2560 cpumask_set_cpu(cpu, &cpus_with_pcps);
2561 else
2562 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2563 }
0ccce3b9 2564
bd233f53
MG
2565 for_each_cpu(cpu, &cpus_with_pcps) {
2566 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2567 INIT_WORK(work, drain_local_pages_wq);
ce612879 2568 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2569 }
bd233f53
MG
2570 for_each_cpu(cpu, &cpus_with_pcps)
2571 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2572
2573 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2574}
2575
296699de 2576#ifdef CONFIG_HIBERNATION
1da177e4 2577
556b969a
CY
2578/*
2579 * Touch the watchdog for every WD_PAGE_COUNT pages.
2580 */
2581#define WD_PAGE_COUNT (128*1024)
2582
1da177e4
LT
2583void mark_free_pages(struct zone *zone)
2584{
556b969a 2585 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2586 unsigned long flags;
7aeb09f9 2587 unsigned int order, t;
86760a2c 2588 struct page *page;
1da177e4 2589
8080fc03 2590 if (zone_is_empty(zone))
1da177e4
LT
2591 return;
2592
2593 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2594
108bcc96 2595 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2596 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2597 if (pfn_valid(pfn)) {
86760a2c 2598 page = pfn_to_page(pfn);
ba6b0979 2599
556b969a
CY
2600 if (!--page_count) {
2601 touch_nmi_watchdog();
2602 page_count = WD_PAGE_COUNT;
2603 }
2604
ba6b0979
JK
2605 if (page_zone(page) != zone)
2606 continue;
2607
7be98234
RW
2608 if (!swsusp_page_is_forbidden(page))
2609 swsusp_unset_page_free(page);
f623f0db 2610 }
1da177e4 2611
b2a0ac88 2612 for_each_migratetype_order(order, t) {
86760a2c
GT
2613 list_for_each_entry(page,
2614 &zone->free_area[order].free_list[t], lru) {
f623f0db 2615 unsigned long i;
1da177e4 2616
86760a2c 2617 pfn = page_to_pfn(page);
556b969a
CY
2618 for (i = 0; i < (1UL << order); i++) {
2619 if (!--page_count) {
2620 touch_nmi_watchdog();
2621 page_count = WD_PAGE_COUNT;
2622 }
7be98234 2623 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2624 }
f623f0db 2625 }
b2a0ac88 2626 }
1da177e4
LT
2627 spin_unlock_irqrestore(&zone->lock, flags);
2628}
e2c55dc8 2629#endif /* CONFIG_PM */
1da177e4 2630
2d4894b5 2631static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2632{
5f8dcc21 2633 int migratetype;
1da177e4 2634
4db7548c 2635 if (!free_pcp_prepare(page))
9cca35d4 2636 return false;
689bcebf 2637
dc4b0caf 2638 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2639 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2640 return true;
2641}
2642
2d4894b5 2643static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2644{
2645 struct zone *zone = page_zone(page);
2646 struct per_cpu_pages *pcp;
2647 int migratetype;
2648
2649 migratetype = get_pcppage_migratetype(page);
d34b0733 2650 __count_vm_event(PGFREE);
da456f14 2651
5f8dcc21
MG
2652 /*
2653 * We only track unmovable, reclaimable and movable on pcp lists.
2654 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2655 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2656 * areas back if necessary. Otherwise, we may have to free
2657 * excessively into the page allocator
2658 */
2659 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2660 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2661 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2662 return;
5f8dcc21
MG
2663 }
2664 migratetype = MIGRATE_MOVABLE;
2665 }
2666
99dcc3e5 2667 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2668 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2669 pcp->count++;
48db57f8 2670 if (pcp->count >= pcp->high) {
4db0c3c2 2671 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2672 free_pcppages_bulk(zone, batch, pcp);
2673 pcp->count -= batch;
48db57f8 2674 }
9cca35d4 2675}
5f8dcc21 2676
9cca35d4
MG
2677/*
2678 * Free a 0-order page
9cca35d4 2679 */
2d4894b5 2680void free_unref_page(struct page *page)
9cca35d4
MG
2681{
2682 unsigned long flags;
2683 unsigned long pfn = page_to_pfn(page);
2684
2d4894b5 2685 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2686 return;
2687
2688 local_irq_save(flags);
2d4894b5 2689 free_unref_page_commit(page, pfn);
d34b0733 2690 local_irq_restore(flags);
1da177e4
LT
2691}
2692
cc59850e
KK
2693/*
2694 * Free a list of 0-order pages
2695 */
2d4894b5 2696void free_unref_page_list(struct list_head *list)
cc59850e
KK
2697{
2698 struct page *page, *next;
9cca35d4 2699 unsigned long flags, pfn;
c24ad77d 2700 int batch_count = 0;
9cca35d4
MG
2701
2702 /* Prepare pages for freeing */
2703 list_for_each_entry_safe(page, next, list, lru) {
2704 pfn = page_to_pfn(page);
2d4894b5 2705 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2706 list_del(&page->lru);
2707 set_page_private(page, pfn);
2708 }
cc59850e 2709
9cca35d4 2710 local_irq_save(flags);
cc59850e 2711 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2712 unsigned long pfn = page_private(page);
2713
2714 set_page_private(page, 0);
2d4894b5
MG
2715 trace_mm_page_free_batched(page);
2716 free_unref_page_commit(page, pfn);
c24ad77d
LS
2717
2718 /*
2719 * Guard against excessive IRQ disabled times when we get
2720 * a large list of pages to free.
2721 */
2722 if (++batch_count == SWAP_CLUSTER_MAX) {
2723 local_irq_restore(flags);
2724 batch_count = 0;
2725 local_irq_save(flags);
2726 }
cc59850e 2727 }
9cca35d4 2728 local_irq_restore(flags);
cc59850e
KK
2729}
2730
8dfcc9ba
NP
2731/*
2732 * split_page takes a non-compound higher-order page, and splits it into
2733 * n (1<<order) sub-pages: page[0..n]
2734 * Each sub-page must be freed individually.
2735 *
2736 * Note: this is probably too low level an operation for use in drivers.
2737 * Please consult with lkml before using this in your driver.
2738 */
2739void split_page(struct page *page, unsigned int order)
2740{
2741 int i;
2742
309381fe
SL
2743 VM_BUG_ON_PAGE(PageCompound(page), page);
2744 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2745
a9627bc5 2746 for (i = 1; i < (1 << order); i++)
7835e98b 2747 set_page_refcounted(page + i);
a9627bc5 2748 split_page_owner(page, order);
8dfcc9ba 2749}
5853ff23 2750EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2751
3c605096 2752int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2753{
748446bb
MG
2754 unsigned long watermark;
2755 struct zone *zone;
2139cbe6 2756 int mt;
748446bb
MG
2757
2758 BUG_ON(!PageBuddy(page));
2759
2760 zone = page_zone(page);
2e30abd1 2761 mt = get_pageblock_migratetype(page);
748446bb 2762
194159fb 2763 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2764 /*
2765 * Obey watermarks as if the page was being allocated. We can
2766 * emulate a high-order watermark check with a raised order-0
2767 * watermark, because we already know our high-order page
2768 * exists.
2769 */
2770 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2771 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2772 return 0;
2773
8fb74b9f 2774 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2775 }
748446bb
MG
2776
2777 /* Remove page from free list */
2778 list_del(&page->lru);
2779 zone->free_area[order].nr_free--;
2780 rmv_page_order(page);
2139cbe6 2781
400bc7fd 2782 /*
2783 * Set the pageblock if the isolated page is at least half of a
2784 * pageblock
2785 */
748446bb
MG
2786 if (order >= pageblock_order - 1) {
2787 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2788 for (; page < endpage; page += pageblock_nr_pages) {
2789 int mt = get_pageblock_migratetype(page);
88ed365e 2790 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2791 && !is_migrate_highatomic(mt))
47118af0
MN
2792 set_pageblock_migratetype(page,
2793 MIGRATE_MOVABLE);
2794 }
748446bb
MG
2795 }
2796
f3a14ced 2797
8fb74b9f 2798 return 1UL << order;
1fb3f8ca
MG
2799}
2800
060e7417
MG
2801/*
2802 * Update NUMA hit/miss statistics
2803 *
2804 * Must be called with interrupts disabled.
060e7417 2805 */
41b6167e 2806static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2807{
2808#ifdef CONFIG_NUMA
3a321d2a 2809 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2810
4518085e
KW
2811 /* skip numa counters update if numa stats is disabled */
2812 if (!static_branch_likely(&vm_numa_stat_key))
2813 return;
2814
2df26639 2815 if (z->node != numa_node_id())
060e7417 2816 local_stat = NUMA_OTHER;
060e7417 2817
2df26639 2818 if (z->node == preferred_zone->node)
3a321d2a 2819 __inc_numa_state(z, NUMA_HIT);
2df26639 2820 else {
3a321d2a
KW
2821 __inc_numa_state(z, NUMA_MISS);
2822 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2823 }
3a321d2a 2824 __inc_numa_state(z, local_stat);
060e7417
MG
2825#endif
2826}
2827
066b2393
MG
2828/* Remove page from the per-cpu list, caller must protect the list */
2829static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2830 struct per_cpu_pages *pcp,
066b2393
MG
2831 struct list_head *list)
2832{
2833 struct page *page;
2834
2835 do {
2836 if (list_empty(list)) {
2837 pcp->count += rmqueue_bulk(zone, 0,
2838 pcp->batch, list,
453f85d4 2839 migratetype);
066b2393
MG
2840 if (unlikely(list_empty(list)))
2841 return NULL;
2842 }
2843
453f85d4 2844 page = list_first_entry(list, struct page, lru);
066b2393
MG
2845 list_del(&page->lru);
2846 pcp->count--;
2847 } while (check_new_pcp(page));
2848
2849 return page;
2850}
2851
2852/* Lock and remove page from the per-cpu list */
2853static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2854 struct zone *zone, unsigned int order,
2855 gfp_t gfp_flags, int migratetype)
2856{
2857 struct per_cpu_pages *pcp;
2858 struct list_head *list;
066b2393 2859 struct page *page;
d34b0733 2860 unsigned long flags;
066b2393 2861
d34b0733 2862 local_irq_save(flags);
066b2393
MG
2863 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2864 list = &pcp->lists[migratetype];
453f85d4 2865 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2866 if (page) {
2867 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2868 zone_statistics(preferred_zone, zone);
2869 }
d34b0733 2870 local_irq_restore(flags);
066b2393
MG
2871 return page;
2872}
2873
1da177e4 2874/*
75379191 2875 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2876 */
0a15c3e9 2877static inline
066b2393 2878struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2879 struct zone *zone, unsigned int order,
c603844b
MG
2880 gfp_t gfp_flags, unsigned int alloc_flags,
2881 int migratetype)
1da177e4
LT
2882{
2883 unsigned long flags;
689bcebf 2884 struct page *page;
1da177e4 2885
d34b0733 2886 if (likely(order == 0)) {
066b2393
MG
2887 page = rmqueue_pcplist(preferred_zone, zone, order,
2888 gfp_flags, migratetype);
2889 goto out;
2890 }
83b9355b 2891
066b2393
MG
2892 /*
2893 * We most definitely don't want callers attempting to
2894 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895 */
2896 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2897 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2898
066b2393
MG
2899 do {
2900 page = NULL;
2901 if (alloc_flags & ALLOC_HARDER) {
2902 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2903 if (page)
2904 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2905 }
a74609fa 2906 if (!page)
066b2393
MG
2907 page = __rmqueue(zone, order, migratetype);
2908 } while (page && check_new_pages(page, order));
2909 spin_unlock(&zone->lock);
2910 if (!page)
2911 goto failed;
2912 __mod_zone_freepage_state(zone, -(1 << order),
2913 get_pcppage_migratetype(page));
1da177e4 2914
16709d1d 2915 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2916 zone_statistics(preferred_zone, zone);
a74609fa 2917 local_irq_restore(flags);
1da177e4 2918
066b2393
MG
2919out:
2920 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2921 return page;
a74609fa
NP
2922
2923failed:
2924 local_irq_restore(flags);
a74609fa 2925 return NULL;
1da177e4
LT
2926}
2927
933e312e
AM
2928#ifdef CONFIG_FAIL_PAGE_ALLOC
2929
b2588c4b 2930static struct {
933e312e
AM
2931 struct fault_attr attr;
2932
621a5f7a 2933 bool ignore_gfp_highmem;
71baba4b 2934 bool ignore_gfp_reclaim;
54114994 2935 u32 min_order;
933e312e
AM
2936} fail_page_alloc = {
2937 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2938 .ignore_gfp_reclaim = true,
621a5f7a 2939 .ignore_gfp_highmem = true,
54114994 2940 .min_order = 1,
933e312e
AM
2941};
2942
2943static int __init setup_fail_page_alloc(char *str)
2944{
2945 return setup_fault_attr(&fail_page_alloc.attr, str);
2946}
2947__setup("fail_page_alloc=", setup_fail_page_alloc);
2948
deaf386e 2949static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2950{
54114994 2951 if (order < fail_page_alloc.min_order)
deaf386e 2952 return false;
933e312e 2953 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2954 return false;
933e312e 2955 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2956 return false;
71baba4b
MG
2957 if (fail_page_alloc.ignore_gfp_reclaim &&
2958 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2959 return false;
933e312e
AM
2960
2961 return should_fail(&fail_page_alloc.attr, 1 << order);
2962}
2963
2964#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2965
2966static int __init fail_page_alloc_debugfs(void)
2967{
f4ae40a6 2968 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2969 struct dentry *dir;
933e312e 2970
dd48c085
AM
2971 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2972 &fail_page_alloc.attr);
2973 if (IS_ERR(dir))
2974 return PTR_ERR(dir);
933e312e 2975
b2588c4b 2976 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2977 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2978 goto fail;
2979 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2980 &fail_page_alloc.ignore_gfp_highmem))
2981 goto fail;
2982 if (!debugfs_create_u32("min-order", mode, dir,
2983 &fail_page_alloc.min_order))
2984 goto fail;
2985
2986 return 0;
2987fail:
dd48c085 2988 debugfs_remove_recursive(dir);
933e312e 2989
b2588c4b 2990 return -ENOMEM;
933e312e
AM
2991}
2992
2993late_initcall(fail_page_alloc_debugfs);
2994
2995#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2996
2997#else /* CONFIG_FAIL_PAGE_ALLOC */
2998
deaf386e 2999static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3000{
deaf386e 3001 return false;
933e312e
AM
3002}
3003
3004#endif /* CONFIG_FAIL_PAGE_ALLOC */
3005
1da177e4 3006/*
97a16fc8
MG
3007 * Return true if free base pages are above 'mark'. For high-order checks it
3008 * will return true of the order-0 watermark is reached and there is at least
3009 * one free page of a suitable size. Checking now avoids taking the zone lock
3010 * to check in the allocation paths if no pages are free.
1da177e4 3011 */
86a294a8
MH
3012bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3013 int classzone_idx, unsigned int alloc_flags,
3014 long free_pages)
1da177e4 3015{
d23ad423 3016 long min = mark;
1da177e4 3017 int o;
cd04ae1e 3018 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3019
0aaa29a5 3020 /* free_pages may go negative - that's OK */
df0a6daa 3021 free_pages -= (1 << order) - 1;
0aaa29a5 3022
7fb1d9fc 3023 if (alloc_flags & ALLOC_HIGH)
1da177e4 3024 min -= min / 2;
0aaa29a5
MG
3025
3026 /*
3027 * If the caller does not have rights to ALLOC_HARDER then subtract
3028 * the high-atomic reserves. This will over-estimate the size of the
3029 * atomic reserve but it avoids a search.
3030 */
cd04ae1e 3031 if (likely(!alloc_harder)) {
0aaa29a5 3032 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3033 } else {
3034 /*
3035 * OOM victims can try even harder than normal ALLOC_HARDER
3036 * users on the grounds that it's definitely going to be in
3037 * the exit path shortly and free memory. Any allocation it
3038 * makes during the free path will be small and short-lived.
3039 */
3040 if (alloc_flags & ALLOC_OOM)
3041 min -= min / 2;
3042 else
3043 min -= min / 4;
3044 }
3045
e2b19197 3046
d95ea5d1
BZ
3047#ifdef CONFIG_CMA
3048 /* If allocation can't use CMA areas don't use free CMA pages */
3049 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3050 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3051#endif
026b0814 3052
97a16fc8
MG
3053 /*
3054 * Check watermarks for an order-0 allocation request. If these
3055 * are not met, then a high-order request also cannot go ahead
3056 * even if a suitable page happened to be free.
3057 */
3058 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3059 return false;
1da177e4 3060
97a16fc8
MG
3061 /* If this is an order-0 request then the watermark is fine */
3062 if (!order)
3063 return true;
3064
3065 /* For a high-order request, check at least one suitable page is free */
3066 for (o = order; o < MAX_ORDER; o++) {
3067 struct free_area *area = &z->free_area[o];
3068 int mt;
3069
3070 if (!area->nr_free)
3071 continue;
3072
97a16fc8
MG
3073 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3074 if (!list_empty(&area->free_list[mt]))
3075 return true;
3076 }
3077
3078#ifdef CONFIG_CMA
3079 if ((alloc_flags & ALLOC_CMA) &&
3080 !list_empty(&area->free_list[MIGRATE_CMA])) {
3081 return true;
3082 }
3083#endif
b050e376
VB
3084 if (alloc_harder &&
3085 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3086 return true;
1da177e4 3087 }
97a16fc8 3088 return false;
88f5acf8
MG
3089}
3090
7aeb09f9 3091bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3092 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3093{
3094 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3095 zone_page_state(z, NR_FREE_PAGES));
3096}
3097
48ee5f36
MG
3098static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3099 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3100{
3101 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3102 long cma_pages = 0;
3103
3104#ifdef CONFIG_CMA
3105 /* If allocation can't use CMA areas don't use free CMA pages */
3106 if (!(alloc_flags & ALLOC_CMA))
3107 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3108#endif
3109
3110 /*
3111 * Fast check for order-0 only. If this fails then the reserves
3112 * need to be calculated. There is a corner case where the check
3113 * passes but only the high-order atomic reserve are free. If
3114 * the caller is !atomic then it'll uselessly search the free
3115 * list. That corner case is then slower but it is harmless.
3116 */
3117 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3118 return true;
3119
3120 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3121 free_pages);
3122}
3123
7aeb09f9 3124bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3125 unsigned long mark, int classzone_idx)
88f5acf8
MG
3126{
3127 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3128
3129 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3130 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3131
e2b19197 3132 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3133 free_pages);
1da177e4
LT
3134}
3135
9276b1bc 3136#ifdef CONFIG_NUMA
957f822a
DR
3137static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3138{
e02dc017 3139 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3140 RECLAIM_DISTANCE;
957f822a 3141}
9276b1bc 3142#else /* CONFIG_NUMA */
957f822a
DR
3143static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3144{
3145 return true;
3146}
9276b1bc
PJ
3147#endif /* CONFIG_NUMA */
3148
7fb1d9fc 3149/*
0798e519 3150 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3151 * a page.
3152 */
3153static struct page *
a9263751
VB
3154get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3155 const struct alloc_context *ac)
753ee728 3156{
c33d6c06 3157 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3158 struct zone *zone;
3b8c0be4
MG
3159 struct pglist_data *last_pgdat_dirty_limit = NULL;
3160
7fb1d9fc 3161 /*
9276b1bc 3162 * Scan zonelist, looking for a zone with enough free.
344736f2 3163 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3164 */
c33d6c06 3165 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3166 ac->nodemask) {
be06af00 3167 struct page *page;
e085dbc5
JW
3168 unsigned long mark;
3169
664eedde
MG
3170 if (cpusets_enabled() &&
3171 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3172 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3173 continue;
a756cf59
JW
3174 /*
3175 * When allocating a page cache page for writing, we
281e3726
MG
3176 * want to get it from a node that is within its dirty
3177 * limit, such that no single node holds more than its
a756cf59 3178 * proportional share of globally allowed dirty pages.
281e3726 3179 * The dirty limits take into account the node's
a756cf59
JW
3180 * lowmem reserves and high watermark so that kswapd
3181 * should be able to balance it without having to
3182 * write pages from its LRU list.
3183 *
a756cf59 3184 * XXX: For now, allow allocations to potentially
281e3726 3185 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3186 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3187 * which is important when on a NUMA setup the allowed
281e3726 3188 * nodes are together not big enough to reach the
a756cf59 3189 * global limit. The proper fix for these situations
281e3726 3190 * will require awareness of nodes in the
a756cf59
JW
3191 * dirty-throttling and the flusher threads.
3192 */
3b8c0be4
MG
3193 if (ac->spread_dirty_pages) {
3194 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3195 continue;
3196
3197 if (!node_dirty_ok(zone->zone_pgdat)) {
3198 last_pgdat_dirty_limit = zone->zone_pgdat;
3199 continue;
3200 }
3201 }
7fb1d9fc 3202
e085dbc5 3203 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3204 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3205 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3206 int ret;
3207
5dab2911
MG
3208 /* Checked here to keep the fast path fast */
3209 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3210 if (alloc_flags & ALLOC_NO_WATERMARKS)
3211 goto try_this_zone;
3212
a5f5f91d 3213 if (node_reclaim_mode == 0 ||
c33d6c06 3214 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3215 continue;
3216
a5f5f91d 3217 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3218 switch (ret) {
a5f5f91d 3219 case NODE_RECLAIM_NOSCAN:
fa5e084e 3220 /* did not scan */
cd38b115 3221 continue;
a5f5f91d 3222 case NODE_RECLAIM_FULL:
fa5e084e 3223 /* scanned but unreclaimable */
cd38b115 3224 continue;
fa5e084e
MG
3225 default:
3226 /* did we reclaim enough */
fed2719e 3227 if (zone_watermark_ok(zone, order, mark,
93ea9964 3228 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3229 goto try_this_zone;
3230
fed2719e 3231 continue;
0798e519 3232 }
7fb1d9fc
RS
3233 }
3234
fa5e084e 3235try_this_zone:
066b2393 3236 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3237 gfp_mask, alloc_flags, ac->migratetype);
75379191 3238 if (page) {
479f854a 3239 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3240
3241 /*
3242 * If this is a high-order atomic allocation then check
3243 * if the pageblock should be reserved for the future
3244 */
3245 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3246 reserve_highatomic_pageblock(page, zone, order);
3247
75379191
VB
3248 return page;
3249 }
54a6eb5c 3250 }
9276b1bc 3251
4ffeaf35 3252 return NULL;
753ee728
MH
3253}
3254
29423e77
DR
3255/*
3256 * Large machines with many possible nodes should not always dump per-node
3257 * meminfo in irq context.
3258 */
3259static inline bool should_suppress_show_mem(void)
3260{
3261 bool ret = false;
3262
3263#if NODES_SHIFT > 8
3264 ret = in_interrupt();
3265#endif
3266 return ret;
3267}
3268
9af744d7 3269static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3270{
a238ab5b 3271 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3272 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3273
aa187507 3274 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3275 return;
3276
3277 /*
3278 * This documents exceptions given to allocations in certain
3279 * contexts that are allowed to allocate outside current's set
3280 * of allowed nodes.
3281 */
3282 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3283 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3284 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3285 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3286 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3287 filter &= ~SHOW_MEM_FILTER_NODES;
3288
9af744d7 3289 show_mem(filter, nodemask);
aa187507
MH
3290}
3291
a8e99259 3292void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3293{
3294 struct va_format vaf;
3295 va_list args;
3296 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3297 DEFAULT_RATELIMIT_BURST);
3298
0f7896f1 3299 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3300 return;
3301
7877cdcc
MH
3302 va_start(args, fmt);
3303 vaf.fmt = fmt;
3304 vaf.va = &args;
0205f755
MH
3305 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3306 current->comm, &vaf, gfp_mask, &gfp_mask,
3307 nodemask_pr_args(nodemask));
7877cdcc 3308 va_end(args);
3ee9a4f0 3309
a8e99259 3310 cpuset_print_current_mems_allowed();
3ee9a4f0 3311
a238ab5b 3312 dump_stack();
685dbf6f 3313 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3314}
3315
6c18ba7a
MH
3316static inline struct page *
3317__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3318 unsigned int alloc_flags,
3319 const struct alloc_context *ac)
3320{
3321 struct page *page;
3322
3323 page = get_page_from_freelist(gfp_mask, order,
3324 alloc_flags|ALLOC_CPUSET, ac);
3325 /*
3326 * fallback to ignore cpuset restriction if our nodes
3327 * are depleted
3328 */
3329 if (!page)
3330 page = get_page_from_freelist(gfp_mask, order,
3331 alloc_flags, ac);
3332
3333 return page;
3334}
3335
11e33f6a
MG
3336static inline struct page *
3337__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3338 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3339{
6e0fc46d
DR
3340 struct oom_control oc = {
3341 .zonelist = ac->zonelist,
3342 .nodemask = ac->nodemask,
2a966b77 3343 .memcg = NULL,
6e0fc46d
DR
3344 .gfp_mask = gfp_mask,
3345 .order = order,
6e0fc46d 3346 };
11e33f6a
MG
3347 struct page *page;
3348
9879de73
JW
3349 *did_some_progress = 0;
3350
9879de73 3351 /*
dc56401f
JW
3352 * Acquire the oom lock. If that fails, somebody else is
3353 * making progress for us.
9879de73 3354 */
dc56401f 3355 if (!mutex_trylock(&oom_lock)) {
9879de73 3356 *did_some_progress = 1;
11e33f6a 3357 schedule_timeout_uninterruptible(1);
1da177e4
LT
3358 return NULL;
3359 }
6b1de916 3360
11e33f6a
MG
3361 /*
3362 * Go through the zonelist yet one more time, keep very high watermark
3363 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3364 * we're still under heavy pressure. But make sure that this reclaim
3365 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3366 * allocation which will never fail due to oom_lock already held.
11e33f6a 3367 */
e746bf73
TH
3368 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3369 ~__GFP_DIRECT_RECLAIM, order,
3370 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3371 if (page)
11e33f6a
MG
3372 goto out;
3373
06ad276a
MH
3374 /* Coredumps can quickly deplete all memory reserves */
3375 if (current->flags & PF_DUMPCORE)
3376 goto out;
3377 /* The OOM killer will not help higher order allocs */
3378 if (order > PAGE_ALLOC_COSTLY_ORDER)
3379 goto out;
dcda9b04
MH
3380 /*
3381 * We have already exhausted all our reclaim opportunities without any
3382 * success so it is time to admit defeat. We will skip the OOM killer
3383 * because it is very likely that the caller has a more reasonable
3384 * fallback than shooting a random task.
3385 */
3386 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3387 goto out;
06ad276a
MH
3388 /* The OOM killer does not needlessly kill tasks for lowmem */
3389 if (ac->high_zoneidx < ZONE_NORMAL)
3390 goto out;
3391 if (pm_suspended_storage())
3392 goto out;
3393 /*
3394 * XXX: GFP_NOFS allocations should rather fail than rely on
3395 * other request to make a forward progress.
3396 * We are in an unfortunate situation where out_of_memory cannot
3397 * do much for this context but let's try it to at least get
3398 * access to memory reserved if the current task is killed (see
3399 * out_of_memory). Once filesystems are ready to handle allocation
3400 * failures more gracefully we should just bail out here.
3401 */
3402
3403 /* The OOM killer may not free memory on a specific node */
3404 if (gfp_mask & __GFP_THISNODE)
3405 goto out;
3da88fb3 3406
3c2c6488 3407 /* Exhausted what can be done so it's blame time */
5020e285 3408 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3409 *did_some_progress = 1;
5020e285 3410
6c18ba7a
MH
3411 /*
3412 * Help non-failing allocations by giving them access to memory
3413 * reserves
3414 */
3415 if (gfp_mask & __GFP_NOFAIL)
3416 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3417 ALLOC_NO_WATERMARKS, ac);
5020e285 3418 }
11e33f6a 3419out:
dc56401f 3420 mutex_unlock(&oom_lock);
11e33f6a
MG
3421 return page;
3422}
3423
33c2d214
MH
3424/*
3425 * Maximum number of compaction retries wit a progress before OOM
3426 * killer is consider as the only way to move forward.
3427 */
3428#define MAX_COMPACT_RETRIES 16
3429
56de7263
MG
3430#ifdef CONFIG_COMPACTION
3431/* Try memory compaction for high-order allocations before reclaim */
3432static struct page *
3433__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3434 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3435 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3436{
98dd3b48 3437 struct page *page;
499118e9 3438 unsigned int noreclaim_flag;
53853e2d
VB
3439
3440 if (!order)
66199712 3441 return NULL;
66199712 3442
499118e9 3443 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3444 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3445 prio);
499118e9 3446 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3447
c5d01d0d 3448 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3449 return NULL;
53853e2d 3450
98dd3b48
VB
3451 /*
3452 * At least in one zone compaction wasn't deferred or skipped, so let's
3453 * count a compaction stall
3454 */
3455 count_vm_event(COMPACTSTALL);
8fb74b9f 3456
31a6c190 3457 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3458
98dd3b48
VB
3459 if (page) {
3460 struct zone *zone = page_zone(page);
53853e2d 3461
98dd3b48
VB
3462 zone->compact_blockskip_flush = false;
3463 compaction_defer_reset(zone, order, true);
3464 count_vm_event(COMPACTSUCCESS);
3465 return page;
3466 }
56de7263 3467
98dd3b48
VB
3468 /*
3469 * It's bad if compaction run occurs and fails. The most likely reason
3470 * is that pages exist, but not enough to satisfy watermarks.
3471 */
3472 count_vm_event(COMPACTFAIL);
66199712 3473
98dd3b48 3474 cond_resched();
56de7263
MG
3475
3476 return NULL;
3477}
33c2d214 3478
3250845d
VB
3479static inline bool
3480should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3481 enum compact_result compact_result,
3482 enum compact_priority *compact_priority,
d9436498 3483 int *compaction_retries)
3250845d
VB
3484{
3485 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3486 int min_priority;
65190cff
MH
3487 bool ret = false;
3488 int retries = *compaction_retries;
3489 enum compact_priority priority = *compact_priority;
3250845d
VB
3490
3491 if (!order)
3492 return false;
3493
d9436498
VB
3494 if (compaction_made_progress(compact_result))
3495 (*compaction_retries)++;
3496
3250845d
VB
3497 /*
3498 * compaction considers all the zone as desperately out of memory
3499 * so it doesn't really make much sense to retry except when the
3500 * failure could be caused by insufficient priority
3501 */
d9436498
VB
3502 if (compaction_failed(compact_result))
3503 goto check_priority;
3250845d
VB
3504
3505 /*
3506 * make sure the compaction wasn't deferred or didn't bail out early
3507 * due to locks contention before we declare that we should give up.
3508 * But do not retry if the given zonelist is not suitable for
3509 * compaction.
3510 */
65190cff
MH
3511 if (compaction_withdrawn(compact_result)) {
3512 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3513 goto out;
3514 }
3250845d
VB
3515
3516 /*
dcda9b04 3517 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3518 * costly ones because they are de facto nofail and invoke OOM
3519 * killer to move on while costly can fail and users are ready
3520 * to cope with that. 1/4 retries is rather arbitrary but we
3521 * would need much more detailed feedback from compaction to
3522 * make a better decision.
3523 */
3524 if (order > PAGE_ALLOC_COSTLY_ORDER)
3525 max_retries /= 4;
65190cff
MH
3526 if (*compaction_retries <= max_retries) {
3527 ret = true;
3528 goto out;
3529 }
3250845d 3530
d9436498
VB
3531 /*
3532 * Make sure there are attempts at the highest priority if we exhausted
3533 * all retries or failed at the lower priorities.
3534 */
3535check_priority:
c2033b00
VB
3536 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3537 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3538
c2033b00 3539 if (*compact_priority > min_priority) {
d9436498
VB
3540 (*compact_priority)--;
3541 *compaction_retries = 0;
65190cff 3542 ret = true;
d9436498 3543 }
65190cff
MH
3544out:
3545 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3546 return ret;
3250845d 3547}
56de7263
MG
3548#else
3549static inline struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3551 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3552 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3553{
33c2d214 3554 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3555 return NULL;
3556}
33c2d214
MH
3557
3558static inline bool
86a294a8
MH
3559should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3560 enum compact_result compact_result,
a5508cd8 3561 enum compact_priority *compact_priority,
d9436498 3562 int *compaction_retries)
33c2d214 3563{
31e49bfd
MH
3564 struct zone *zone;
3565 struct zoneref *z;
3566
3567 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3568 return false;
3569
3570 /*
3571 * There are setups with compaction disabled which would prefer to loop
3572 * inside the allocator rather than hit the oom killer prematurely.
3573 * Let's give them a good hope and keep retrying while the order-0
3574 * watermarks are OK.
3575 */
3576 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3577 ac->nodemask) {
3578 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3579 ac_classzone_idx(ac), alloc_flags))
3580 return true;
3581 }
33c2d214
MH
3582 return false;
3583}
3250845d 3584#endif /* CONFIG_COMPACTION */
56de7263 3585
d92a8cfc
PZ
3586#ifdef CONFIG_LOCKDEP
3587struct lockdep_map __fs_reclaim_map =
3588 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3589
3590static bool __need_fs_reclaim(gfp_t gfp_mask)
3591{
3592 gfp_mask = current_gfp_context(gfp_mask);
3593
3594 /* no reclaim without waiting on it */
3595 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3596 return false;
3597
3598 /* this guy won't enter reclaim */
2e517d68 3599 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3600 return false;
3601
3602 /* We're only interested __GFP_FS allocations for now */
3603 if (!(gfp_mask & __GFP_FS))
3604 return false;
3605
3606 if (gfp_mask & __GFP_NOLOCKDEP)
3607 return false;
3608
3609 return true;
3610}
3611
3612void fs_reclaim_acquire(gfp_t gfp_mask)
3613{
3614 if (__need_fs_reclaim(gfp_mask))
3615 lock_map_acquire(&__fs_reclaim_map);
3616}
3617EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3618
3619void fs_reclaim_release(gfp_t gfp_mask)
3620{
3621 if (__need_fs_reclaim(gfp_mask))
3622 lock_map_release(&__fs_reclaim_map);
3623}
3624EXPORT_SYMBOL_GPL(fs_reclaim_release);
3625#endif
3626
bba90710
MS
3627/* Perform direct synchronous page reclaim */
3628static int
a9263751
VB
3629__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3630 const struct alloc_context *ac)
11e33f6a 3631{
11e33f6a 3632 struct reclaim_state reclaim_state;
bba90710 3633 int progress;
499118e9 3634 unsigned int noreclaim_flag;
11e33f6a
MG
3635
3636 cond_resched();
3637
3638 /* We now go into synchronous reclaim */
3639 cpuset_memory_pressure_bump();
499118e9 3640 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3641 fs_reclaim_acquire(gfp_mask);
11e33f6a 3642 reclaim_state.reclaimed_slab = 0;
c06b1fca 3643 current->reclaim_state = &reclaim_state;
11e33f6a 3644
a9263751
VB
3645 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3646 ac->nodemask);
11e33f6a 3647
c06b1fca 3648 current->reclaim_state = NULL;
d92a8cfc 3649 fs_reclaim_release(gfp_mask);
499118e9 3650 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3651
3652 cond_resched();
3653
bba90710
MS
3654 return progress;
3655}
3656
3657/* The really slow allocator path where we enter direct reclaim */
3658static inline struct page *
3659__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3660 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3661 unsigned long *did_some_progress)
bba90710
MS
3662{
3663 struct page *page = NULL;
3664 bool drained = false;
3665
a9263751 3666 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3667 if (unlikely(!(*did_some_progress)))
3668 return NULL;
11e33f6a 3669
9ee493ce 3670retry:
31a6c190 3671 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3672
3673 /*
3674 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3675 * pages are pinned on the per-cpu lists or in high alloc reserves.
3676 * Shrink them them and try again
9ee493ce
MG
3677 */
3678 if (!page && !drained) {
29fac03b 3679 unreserve_highatomic_pageblock(ac, false);
93481ff0 3680 drain_all_pages(NULL);
9ee493ce
MG
3681 drained = true;
3682 goto retry;
3683 }
3684
11e33f6a
MG
3685 return page;
3686}
3687
a9263751 3688static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3689{
3690 struct zoneref *z;
3691 struct zone *zone;
e1a55637 3692 pg_data_t *last_pgdat = NULL;
3a025760 3693
a9263751 3694 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3695 ac->high_zoneidx, ac->nodemask) {
3696 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3697 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3698 last_pgdat = zone->zone_pgdat;
3699 }
3a025760
JW
3700}
3701
c603844b 3702static inline unsigned int
341ce06f
PZ
3703gfp_to_alloc_flags(gfp_t gfp_mask)
3704{
c603844b 3705 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3706
a56f57ff 3707 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3708 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3709
341ce06f
PZ
3710 /*
3711 * The caller may dip into page reserves a bit more if the caller
3712 * cannot run direct reclaim, or if the caller has realtime scheduling
3713 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3714 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3715 */
e6223a3b 3716 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3717
d0164adc 3718 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3719 /*
b104a35d
DR
3720 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3721 * if it can't schedule.
5c3240d9 3722 */
b104a35d 3723 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3724 alloc_flags |= ALLOC_HARDER;
523b9458 3725 /*
b104a35d 3726 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3727 * comment for __cpuset_node_allowed().
523b9458 3728 */
341ce06f 3729 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3730 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3731 alloc_flags |= ALLOC_HARDER;
3732
d95ea5d1 3733#ifdef CONFIG_CMA
43e7a34d 3734 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3735 alloc_flags |= ALLOC_CMA;
3736#endif
341ce06f
PZ
3737 return alloc_flags;
3738}
3739
cd04ae1e 3740static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3741{
cd04ae1e
MH
3742 if (!tsk_is_oom_victim(tsk))
3743 return false;
3744
3745 /*
3746 * !MMU doesn't have oom reaper so give access to memory reserves
3747 * only to the thread with TIF_MEMDIE set
3748 */
3749 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3750 return false;
3751
cd04ae1e
MH
3752 return true;
3753}
3754
3755/*
3756 * Distinguish requests which really need access to full memory
3757 * reserves from oom victims which can live with a portion of it
3758 */
3759static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3760{
3761 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3762 return 0;
31a6c190 3763 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3764 return ALLOC_NO_WATERMARKS;
31a6c190 3765 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3766 return ALLOC_NO_WATERMARKS;
3767 if (!in_interrupt()) {
3768 if (current->flags & PF_MEMALLOC)
3769 return ALLOC_NO_WATERMARKS;
3770 else if (oom_reserves_allowed(current))
3771 return ALLOC_OOM;
3772 }
31a6c190 3773
cd04ae1e
MH
3774 return 0;
3775}
3776
3777bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3778{
3779 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3780}
3781
0a0337e0
MH
3782/*
3783 * Checks whether it makes sense to retry the reclaim to make a forward progress
3784 * for the given allocation request.
491d79ae
JW
3785 *
3786 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3787 * without success, or when we couldn't even meet the watermark if we
3788 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3789 *
3790 * Returns true if a retry is viable or false to enter the oom path.
3791 */
3792static inline bool
3793should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3794 struct alloc_context *ac, int alloc_flags,
423b452e 3795 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3796{
3797 struct zone *zone;
3798 struct zoneref *z;
3799
423b452e
VB
3800 /*
3801 * Costly allocations might have made a progress but this doesn't mean
3802 * their order will become available due to high fragmentation so
3803 * always increment the no progress counter for them
3804 */
3805 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3806 *no_progress_loops = 0;
3807 else
3808 (*no_progress_loops)++;
3809
0a0337e0
MH
3810 /*
3811 * Make sure we converge to OOM if we cannot make any progress
3812 * several times in the row.
3813 */
04c8716f
MK
3814 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3815 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3816 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3817 }
0a0337e0 3818
bca67592
MG
3819 /*
3820 * Keep reclaiming pages while there is a chance this will lead
3821 * somewhere. If none of the target zones can satisfy our allocation
3822 * request even if all reclaimable pages are considered then we are
3823 * screwed and have to go OOM.
0a0337e0
MH
3824 */
3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3826 ac->nodemask) {
3827 unsigned long available;
ede37713 3828 unsigned long reclaimable;
d379f01d
MH
3829 unsigned long min_wmark = min_wmark_pages(zone);
3830 bool wmark;
0a0337e0 3831
5a1c84b4 3832 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3833 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3834
3835 /*
491d79ae
JW
3836 * Would the allocation succeed if we reclaimed all
3837 * reclaimable pages?
0a0337e0 3838 */
d379f01d
MH
3839 wmark = __zone_watermark_ok(zone, order, min_wmark,
3840 ac_classzone_idx(ac), alloc_flags, available);
3841 trace_reclaim_retry_zone(z, order, reclaimable,
3842 available, min_wmark, *no_progress_loops, wmark);
3843 if (wmark) {
ede37713
MH
3844 /*
3845 * If we didn't make any progress and have a lot of
3846 * dirty + writeback pages then we should wait for
3847 * an IO to complete to slow down the reclaim and
3848 * prevent from pre mature OOM
3849 */
3850 if (!did_some_progress) {
11fb9989 3851 unsigned long write_pending;
ede37713 3852
5a1c84b4
MG
3853 write_pending = zone_page_state_snapshot(zone,
3854 NR_ZONE_WRITE_PENDING);
ede37713 3855
11fb9989 3856 if (2 * write_pending > reclaimable) {
ede37713
MH
3857 congestion_wait(BLK_RW_ASYNC, HZ/10);
3858 return true;
3859 }
3860 }
5a1c84b4 3861
ede37713
MH
3862 /*
3863 * Memory allocation/reclaim might be called from a WQ
3864 * context and the current implementation of the WQ
3865 * concurrency control doesn't recognize that
3866 * a particular WQ is congested if the worker thread is
3867 * looping without ever sleeping. Therefore we have to
3868 * do a short sleep here rather than calling
3869 * cond_resched().
3870 */
3871 if (current->flags & PF_WQ_WORKER)
3872 schedule_timeout_uninterruptible(1);
3873 else
3874 cond_resched();
3875
0a0337e0
MH
3876 return true;
3877 }
3878 }
3879
3880 return false;
3881}
3882
902b6281
VB
3883static inline bool
3884check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3885{
3886 /*
3887 * It's possible that cpuset's mems_allowed and the nodemask from
3888 * mempolicy don't intersect. This should be normally dealt with by
3889 * policy_nodemask(), but it's possible to race with cpuset update in
3890 * such a way the check therein was true, and then it became false
3891 * before we got our cpuset_mems_cookie here.
3892 * This assumes that for all allocations, ac->nodemask can come only
3893 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3894 * when it does not intersect with the cpuset restrictions) or the
3895 * caller can deal with a violated nodemask.
3896 */
3897 if (cpusets_enabled() && ac->nodemask &&
3898 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3899 ac->nodemask = NULL;
3900 return true;
3901 }
3902
3903 /*
3904 * When updating a task's mems_allowed or mempolicy nodemask, it is
3905 * possible to race with parallel threads in such a way that our
3906 * allocation can fail while the mask is being updated. If we are about
3907 * to fail, check if the cpuset changed during allocation and if so,
3908 * retry.
3909 */
3910 if (read_mems_allowed_retry(cpuset_mems_cookie))
3911 return true;
3912
3913 return false;
3914}
3915
11e33f6a
MG
3916static inline struct page *
3917__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3918 struct alloc_context *ac)
11e33f6a 3919{
d0164adc 3920 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3921 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3922 struct page *page = NULL;
c603844b 3923 unsigned int alloc_flags;
11e33f6a 3924 unsigned long did_some_progress;
5ce9bfef 3925 enum compact_priority compact_priority;
c5d01d0d 3926 enum compact_result compact_result;
5ce9bfef
VB
3927 int compaction_retries;
3928 int no_progress_loops;
5ce9bfef 3929 unsigned int cpuset_mems_cookie;
cd04ae1e 3930 int reserve_flags;
1da177e4 3931
72807a74
MG
3932 /*
3933 * In the slowpath, we sanity check order to avoid ever trying to
3934 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3935 * be using allocators in order of preference for an area that is
3936 * too large.
3937 */
1fc28b70
MG
3938 if (order >= MAX_ORDER) {
3939 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3940 return NULL;
1fc28b70 3941 }
1da177e4 3942
d0164adc
MG
3943 /*
3944 * We also sanity check to catch abuse of atomic reserves being used by
3945 * callers that are not in atomic context.
3946 */
3947 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3948 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3949 gfp_mask &= ~__GFP_ATOMIC;
3950
5ce9bfef
VB
3951retry_cpuset:
3952 compaction_retries = 0;
3953 no_progress_loops = 0;
3954 compact_priority = DEF_COMPACT_PRIORITY;
3955 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3956
3957 /*
3958 * The fast path uses conservative alloc_flags to succeed only until
3959 * kswapd needs to be woken up, and to avoid the cost of setting up
3960 * alloc_flags precisely. So we do that now.
3961 */
3962 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3963
e47483bc
VB
3964 /*
3965 * We need to recalculate the starting point for the zonelist iterator
3966 * because we might have used different nodemask in the fast path, or
3967 * there was a cpuset modification and we are retrying - otherwise we
3968 * could end up iterating over non-eligible zones endlessly.
3969 */
3970 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3971 ac->high_zoneidx, ac->nodemask);
3972 if (!ac->preferred_zoneref->zone)
3973 goto nopage;
3974
23771235
VB
3975 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3976 wake_all_kswapds(order, ac);
3977
3978 /*
3979 * The adjusted alloc_flags might result in immediate success, so try
3980 * that first
3981 */
3982 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3983 if (page)
3984 goto got_pg;
3985
a8161d1e
VB
3986 /*
3987 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3988 * that we have enough base pages and don't need to reclaim. For non-
3989 * movable high-order allocations, do that as well, as compaction will
3990 * try prevent permanent fragmentation by migrating from blocks of the
3991 * same migratetype.
3992 * Don't try this for allocations that are allowed to ignore
3993 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3994 */
282722b0
VB
3995 if (can_direct_reclaim &&
3996 (costly_order ||
3997 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3998 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3999 page = __alloc_pages_direct_compact(gfp_mask, order,
4000 alloc_flags, ac,
a5508cd8 4001 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4002 &compact_result);
4003 if (page)
4004 goto got_pg;
4005
3eb2771b
VB
4006 /*
4007 * Checks for costly allocations with __GFP_NORETRY, which
4008 * includes THP page fault allocations
4009 */
282722b0 4010 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4011 /*
4012 * If compaction is deferred for high-order allocations,
4013 * it is because sync compaction recently failed. If
4014 * this is the case and the caller requested a THP
4015 * allocation, we do not want to heavily disrupt the
4016 * system, so we fail the allocation instead of entering
4017 * direct reclaim.
4018 */
4019 if (compact_result == COMPACT_DEFERRED)
4020 goto nopage;
4021
a8161d1e 4022 /*
3eb2771b
VB
4023 * Looks like reclaim/compaction is worth trying, but
4024 * sync compaction could be very expensive, so keep
25160354 4025 * using async compaction.
a8161d1e 4026 */
a5508cd8 4027 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4028 }
4029 }
23771235 4030
31a6c190 4031retry:
23771235 4032 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4033 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4034 wake_all_kswapds(order, ac);
4035
cd04ae1e
MH
4036 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4037 if (reserve_flags)
4038 alloc_flags = reserve_flags;
23771235 4039
e46e7b77
MG
4040 /*
4041 * Reset the zonelist iterators if memory policies can be ignored.
4042 * These allocations are high priority and system rather than user
4043 * orientated.
4044 */
cd04ae1e 4045 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4046 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4047 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4048 ac->high_zoneidx, ac->nodemask);
4049 }
4050
23771235 4051 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4052 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4053 if (page)
4054 goto got_pg;
1da177e4 4055
d0164adc 4056 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4057 if (!can_direct_reclaim)
1da177e4
LT
4058 goto nopage;
4059
9a67f648
MH
4060 /* Avoid recursion of direct reclaim */
4061 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4062 goto nopage;
4063
a8161d1e
VB
4064 /* Try direct reclaim and then allocating */
4065 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4066 &did_some_progress);
4067 if (page)
4068 goto got_pg;
4069
4070 /* Try direct compaction and then allocating */
a9263751 4071 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4072 compact_priority, &compact_result);
56de7263
MG
4073 if (page)
4074 goto got_pg;
75f30861 4075
9083905a
JW
4076 /* Do not loop if specifically requested */
4077 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4078 goto nopage;
9083905a 4079
0a0337e0
MH
4080 /*
4081 * Do not retry costly high order allocations unless they are
dcda9b04 4082 * __GFP_RETRY_MAYFAIL
0a0337e0 4083 */
dcda9b04 4084 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4085 goto nopage;
0a0337e0 4086
0a0337e0 4087 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4088 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4089 goto retry;
4090
33c2d214
MH
4091 /*
4092 * It doesn't make any sense to retry for the compaction if the order-0
4093 * reclaim is not able to make any progress because the current
4094 * implementation of the compaction depends on the sufficient amount
4095 * of free memory (see __compaction_suitable)
4096 */
4097 if (did_some_progress > 0 &&
86a294a8 4098 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4099 compact_result, &compact_priority,
d9436498 4100 &compaction_retries))
33c2d214
MH
4101 goto retry;
4102
902b6281
VB
4103
4104 /* Deal with possible cpuset update races before we start OOM killing */
4105 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4106 goto retry_cpuset;
4107
9083905a
JW
4108 /* Reclaim has failed us, start killing things */
4109 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4110 if (page)
4111 goto got_pg;
4112
9a67f648 4113 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4114 if (tsk_is_oom_victim(current) &&
4115 (alloc_flags == ALLOC_OOM ||
c288983d 4116 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4117 goto nopage;
4118
9083905a 4119 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4120 if (did_some_progress) {
4121 no_progress_loops = 0;
9083905a 4122 goto retry;
0a0337e0 4123 }
9083905a 4124
1da177e4 4125nopage:
902b6281
VB
4126 /* Deal with possible cpuset update races before we fail */
4127 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4128 goto retry_cpuset;
4129
9a67f648
MH
4130 /*
4131 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4132 * we always retry
4133 */
4134 if (gfp_mask & __GFP_NOFAIL) {
4135 /*
4136 * All existing users of the __GFP_NOFAIL are blockable, so warn
4137 * of any new users that actually require GFP_NOWAIT
4138 */
4139 if (WARN_ON_ONCE(!can_direct_reclaim))
4140 goto fail;
4141
4142 /*
4143 * PF_MEMALLOC request from this context is rather bizarre
4144 * because we cannot reclaim anything and only can loop waiting
4145 * for somebody to do a work for us
4146 */
4147 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4148
4149 /*
4150 * non failing costly orders are a hard requirement which we
4151 * are not prepared for much so let's warn about these users
4152 * so that we can identify them and convert them to something
4153 * else.
4154 */
4155 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4156
6c18ba7a
MH
4157 /*
4158 * Help non-failing allocations by giving them access to memory
4159 * reserves but do not use ALLOC_NO_WATERMARKS because this
4160 * could deplete whole memory reserves which would just make
4161 * the situation worse
4162 */
4163 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4164 if (page)
4165 goto got_pg;
4166
9a67f648
MH
4167 cond_resched();
4168 goto retry;
4169 }
4170fail:
a8e99259 4171 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4172 "page allocation failure: order:%u", order);
1da177e4 4173got_pg:
072bb0aa 4174 return page;
1da177e4 4175}
11e33f6a 4176
9cd75558 4177static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4178 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4179 struct alloc_context *ac, gfp_t *alloc_mask,
4180 unsigned int *alloc_flags)
11e33f6a 4181{
9cd75558 4182 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4183 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4184 ac->nodemask = nodemask;
4185 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4186
682a3385 4187 if (cpusets_enabled()) {
9cd75558 4188 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4189 if (!ac->nodemask)
4190 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4191 else
4192 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4193 }
4194
d92a8cfc
PZ
4195 fs_reclaim_acquire(gfp_mask);
4196 fs_reclaim_release(gfp_mask);
11e33f6a 4197
d0164adc 4198 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4199
4200 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4201 return false;
11e33f6a 4202
9cd75558
MG
4203 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4204 *alloc_flags |= ALLOC_CMA;
4205
4206 return true;
4207}
21bb9bd1 4208
9cd75558
MG
4209/* Determine whether to spread dirty pages and what the first usable zone */
4210static inline void finalise_ac(gfp_t gfp_mask,
4211 unsigned int order, struct alloc_context *ac)
4212{
c9ab0c4f 4213 /* Dirty zone balancing only done in the fast path */
9cd75558 4214 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4215
e46e7b77
MG
4216 /*
4217 * The preferred zone is used for statistics but crucially it is
4218 * also used as the starting point for the zonelist iterator. It
4219 * may get reset for allocations that ignore memory policies.
4220 */
9cd75558
MG
4221 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4222 ac->high_zoneidx, ac->nodemask);
4223}
4224
4225/*
4226 * This is the 'heart' of the zoned buddy allocator.
4227 */
4228struct page *
04ec6264
VB
4229__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4230 nodemask_t *nodemask)
9cd75558
MG
4231{
4232 struct page *page;
4233 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4234 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4235 struct alloc_context ac = { };
4236
4237 gfp_mask &= gfp_allowed_mask;
f19360f0 4238 alloc_mask = gfp_mask;
04ec6264 4239 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4240 return NULL;
4241
4242 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4243
5117f45d 4244 /* First allocation attempt */
a9263751 4245 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4246 if (likely(page))
4247 goto out;
11e33f6a 4248
4fcb0971 4249 /*
7dea19f9
MH
4250 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4251 * resp. GFP_NOIO which has to be inherited for all allocation requests
4252 * from a particular context which has been marked by
4253 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4254 */
7dea19f9 4255 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4256 ac.spread_dirty_pages = false;
23f086f9 4257
4741526b
MG
4258 /*
4259 * Restore the original nodemask if it was potentially replaced with
4260 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4261 */
e47483bc 4262 if (unlikely(ac.nodemask != nodemask))
4741526b 4263 ac.nodemask = nodemask;
16096c25 4264
4fcb0971 4265 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4266
4fcb0971 4267out:
c4159a75
VD
4268 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4269 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4270 __free_pages(page, order);
4271 page = NULL;
4949148a
VD
4272 }
4273
4fcb0971
MG
4274 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4275
11e33f6a 4276 return page;
1da177e4 4277}
d239171e 4278EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4279
4280/*
4281 * Common helper functions.
4282 */
920c7a5d 4283unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4284{
945a1113
AM
4285 struct page *page;
4286
4287 /*
48128397 4288 * __get_free_pages() returns a virtual address, which cannot represent
945a1113
AM
4289 * a highmem page
4290 */
4291 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4292
1da177e4
LT
4293 page = alloc_pages(gfp_mask, order);
4294 if (!page)
4295 return 0;
4296 return (unsigned long) page_address(page);
4297}
1da177e4
LT
4298EXPORT_SYMBOL(__get_free_pages);
4299
920c7a5d 4300unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4301{
945a1113 4302 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4303}
1da177e4
LT
4304EXPORT_SYMBOL(get_zeroed_page);
4305
920c7a5d 4306void __free_pages(struct page *page, unsigned int order)
1da177e4 4307{
b5810039 4308 if (put_page_testzero(page)) {
1da177e4 4309 if (order == 0)
2d4894b5 4310 free_unref_page(page);
1da177e4
LT
4311 else
4312 __free_pages_ok(page, order);
4313 }
4314}
4315
4316EXPORT_SYMBOL(__free_pages);
4317
920c7a5d 4318void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4319{
4320 if (addr != 0) {
725d704e 4321 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4322 __free_pages(virt_to_page((void *)addr), order);
4323 }
4324}
4325
4326EXPORT_SYMBOL(free_pages);
4327
b63ae8ca
AD
4328/*
4329 * Page Fragment:
4330 * An arbitrary-length arbitrary-offset area of memory which resides
4331 * within a 0 or higher order page. Multiple fragments within that page
4332 * are individually refcounted, in the page's reference counter.
4333 *
4334 * The page_frag functions below provide a simple allocation framework for
4335 * page fragments. This is used by the network stack and network device
4336 * drivers to provide a backing region of memory for use as either an
4337 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4338 */
2976db80
AD
4339static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4340 gfp_t gfp_mask)
b63ae8ca
AD
4341{
4342 struct page *page = NULL;
4343 gfp_t gfp = gfp_mask;
4344
4345#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4346 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4347 __GFP_NOMEMALLOC;
4348 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4349 PAGE_FRAG_CACHE_MAX_ORDER);
4350 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4351#endif
4352 if (unlikely(!page))
4353 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4354
4355 nc->va = page ? page_address(page) : NULL;
4356
4357 return page;
4358}
4359
2976db80 4360void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4361{
4362 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4363
4364 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4365 unsigned int order = compound_order(page);
4366
44fdffd7 4367 if (order == 0)
2d4894b5 4368 free_unref_page(page);
44fdffd7
AD
4369 else
4370 __free_pages_ok(page, order);
4371 }
4372}
2976db80 4373EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4374
8c2dd3e4
AD
4375void *page_frag_alloc(struct page_frag_cache *nc,
4376 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4377{
4378 unsigned int size = PAGE_SIZE;
4379 struct page *page;
4380 int offset;
4381
4382 if (unlikely(!nc->va)) {
4383refill:
2976db80 4384 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4385 if (!page)
4386 return NULL;
4387
4388#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4389 /* if size can vary use size else just use PAGE_SIZE */
4390 size = nc->size;
4391#endif
4392 /* Even if we own the page, we do not use atomic_set().
4393 * This would break get_page_unless_zero() users.
4394 */
fe896d18 4395 page_ref_add(page, size - 1);
b63ae8ca
AD
4396
4397 /* reset page count bias and offset to start of new frag */
2f064f34 4398 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4399 nc->pagecnt_bias = size;
4400 nc->offset = size;
4401 }
4402
4403 offset = nc->offset - fragsz;
4404 if (unlikely(offset < 0)) {
4405 page = virt_to_page(nc->va);
4406
fe896d18 4407 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4408 goto refill;
4409
4410#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4411 /* if size can vary use size else just use PAGE_SIZE */
4412 size = nc->size;
4413#endif
4414 /* OK, page count is 0, we can safely set it */
fe896d18 4415 set_page_count(page, size);
b63ae8ca
AD
4416
4417 /* reset page count bias and offset to start of new frag */
4418 nc->pagecnt_bias = size;
4419 offset = size - fragsz;
4420 }
4421
4422 nc->pagecnt_bias--;
4423 nc->offset = offset;
4424
4425 return nc->va + offset;
4426}
8c2dd3e4 4427EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4428
4429/*
4430 * Frees a page fragment allocated out of either a compound or order 0 page.
4431 */
8c2dd3e4 4432void page_frag_free(void *addr)
b63ae8ca
AD
4433{
4434 struct page *page = virt_to_head_page(addr);
4435
4436 if (unlikely(put_page_testzero(page)))
4437 __free_pages_ok(page, compound_order(page));
4438}
8c2dd3e4 4439EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4440
d00181b9
KS
4441static void *make_alloc_exact(unsigned long addr, unsigned int order,
4442 size_t size)
ee85c2e1
AK
4443{
4444 if (addr) {
4445 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4446 unsigned long used = addr + PAGE_ALIGN(size);
4447
4448 split_page(virt_to_page((void *)addr), order);
4449 while (used < alloc_end) {
4450 free_page(used);
4451 used += PAGE_SIZE;
4452 }
4453 }
4454 return (void *)addr;
4455}
4456
2be0ffe2
TT
4457/**
4458 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4459 * @size: the number of bytes to allocate
4460 * @gfp_mask: GFP flags for the allocation
4461 *
4462 * This function is similar to alloc_pages(), except that it allocates the
4463 * minimum number of pages to satisfy the request. alloc_pages() can only
4464 * allocate memory in power-of-two pages.
4465 *
4466 * This function is also limited by MAX_ORDER.
4467 *
4468 * Memory allocated by this function must be released by free_pages_exact().
4469 */
4470void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4471{
4472 unsigned int order = get_order(size);
4473 unsigned long addr;
4474
4475 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4476 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4477}
4478EXPORT_SYMBOL(alloc_pages_exact);
4479
ee85c2e1
AK
4480/**
4481 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4482 * pages on a node.
b5e6ab58 4483 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4484 * @size: the number of bytes to allocate
4485 * @gfp_mask: GFP flags for the allocation
4486 *
4487 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4488 * back.
ee85c2e1 4489 */
e1931811 4490void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4491{
d00181b9 4492 unsigned int order = get_order(size);
ee85c2e1
AK
4493 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4494 if (!p)
4495 return NULL;
4496 return make_alloc_exact((unsigned long)page_address(p), order, size);
4497}
ee85c2e1 4498
2be0ffe2
TT
4499/**
4500 * free_pages_exact - release memory allocated via alloc_pages_exact()
4501 * @virt: the value returned by alloc_pages_exact.
4502 * @size: size of allocation, same value as passed to alloc_pages_exact().
4503 *
4504 * Release the memory allocated by a previous call to alloc_pages_exact.
4505 */
4506void free_pages_exact(void *virt, size_t size)
4507{
4508 unsigned long addr = (unsigned long)virt;
4509 unsigned long end = addr + PAGE_ALIGN(size);
4510
4511 while (addr < end) {
4512 free_page(addr);
4513 addr += PAGE_SIZE;
4514 }
4515}
4516EXPORT_SYMBOL(free_pages_exact);
4517
e0fb5815
ZY
4518/**
4519 * nr_free_zone_pages - count number of pages beyond high watermark
4520 * @offset: The zone index of the highest zone
4521 *
4522 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4523 * high watermark within all zones at or below a given zone index. For each
4524 * zone, the number of pages is calculated as:
0e056eb5
MCC
4525 *
4526 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4527 */
ebec3862 4528static unsigned long nr_free_zone_pages(int offset)
1da177e4 4529{
dd1a239f 4530 struct zoneref *z;
54a6eb5c
MG
4531 struct zone *zone;
4532
e310fd43 4533 /* Just pick one node, since fallback list is circular */
ebec3862 4534 unsigned long sum = 0;
1da177e4 4535
0e88460d 4536 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4537
54a6eb5c 4538 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4539 unsigned long size = zone->managed_pages;
41858966 4540 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4541 if (size > high)
4542 sum += size - high;
1da177e4
LT
4543 }
4544
4545 return sum;
4546}
4547
e0fb5815
ZY
4548/**
4549 * nr_free_buffer_pages - count number of pages beyond high watermark
4550 *
4551 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4552 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4553 */
ebec3862 4554unsigned long nr_free_buffer_pages(void)
1da177e4 4555{
af4ca457 4556 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4557}
c2f1a551 4558EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4559
e0fb5815
ZY
4560/**
4561 * nr_free_pagecache_pages - count number of pages beyond high watermark
4562 *
4563 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4564 * high watermark within all zones.
1da177e4 4565 */
ebec3862 4566unsigned long nr_free_pagecache_pages(void)
1da177e4 4567{
2a1e274a 4568 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4569}
08e0f6a9
CL
4570
4571static inline void show_node(struct zone *zone)
1da177e4 4572{
e5adfffc 4573 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4574 printk("Node %d ", zone_to_nid(zone));
1da177e4 4575}
1da177e4 4576
d02bd27b
IR
4577long si_mem_available(void)
4578{
4579 long available;
4580 unsigned long pagecache;
4581 unsigned long wmark_low = 0;
4582 unsigned long pages[NR_LRU_LISTS];
4583 struct zone *zone;
4584 int lru;
4585
4586 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4587 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4588
4589 for_each_zone(zone)
4590 wmark_low += zone->watermark[WMARK_LOW];
4591
4592 /*
4593 * Estimate the amount of memory available for userspace allocations,
4594 * without causing swapping.
4595 */
c41f012a 4596 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4597
4598 /*
4599 * Not all the page cache can be freed, otherwise the system will
4600 * start swapping. Assume at least half of the page cache, or the
4601 * low watermark worth of cache, needs to stay.
4602 */
4603 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4604 pagecache -= min(pagecache / 2, wmark_low);
4605 available += pagecache;
4606
4607 /*
4608 * Part of the reclaimable slab consists of items that are in use,
4609 * and cannot be freed. Cap this estimate at the low watermark.
4610 */
d507e2eb
JW
4611 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4612 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4613 wmark_low);
d02bd27b
IR
4614
4615 if (available < 0)
4616 available = 0;
4617 return available;
4618}
4619EXPORT_SYMBOL_GPL(si_mem_available);
4620
1da177e4
LT
4621void si_meminfo(struct sysinfo *val)
4622{
4623 val->totalram = totalram_pages;
11fb9989 4624 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4625 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4626 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4627 val->totalhigh = totalhigh_pages;
4628 val->freehigh = nr_free_highpages();
1da177e4
LT
4629 val->mem_unit = PAGE_SIZE;
4630}
4631
4632EXPORT_SYMBOL(si_meminfo);
4633
4634#ifdef CONFIG_NUMA
4635void si_meminfo_node(struct sysinfo *val, int nid)
4636{
cdd91a77
JL
4637 int zone_type; /* needs to be signed */
4638 unsigned long managed_pages = 0;
fc2bd799
JK
4639 unsigned long managed_highpages = 0;
4640 unsigned long free_highpages = 0;
1da177e4
LT
4641 pg_data_t *pgdat = NODE_DATA(nid);
4642
cdd91a77
JL
4643 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4644 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4645 val->totalram = managed_pages;
11fb9989 4646 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4647 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4648#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4649 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4650 struct zone *zone = &pgdat->node_zones[zone_type];
4651
4652 if (is_highmem(zone)) {
4653 managed_highpages += zone->managed_pages;
4654 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4655 }
4656 }
4657 val->totalhigh = managed_highpages;
4658 val->freehigh = free_highpages;
98d2b0eb 4659#else
fc2bd799
JK
4660 val->totalhigh = managed_highpages;
4661 val->freehigh = free_highpages;
98d2b0eb 4662#endif
1da177e4
LT
4663 val->mem_unit = PAGE_SIZE;
4664}
4665#endif
4666
ddd588b5 4667/*
7bf02ea2
DR
4668 * Determine whether the node should be displayed or not, depending on whether
4669 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4670 */
9af744d7 4671static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4672{
ddd588b5 4673 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4674 return false;
ddd588b5 4675
9af744d7
MH
4676 /*
4677 * no node mask - aka implicit memory numa policy. Do not bother with
4678 * the synchronization - read_mems_allowed_begin - because we do not
4679 * have to be precise here.
4680 */
4681 if (!nodemask)
4682 nodemask = &cpuset_current_mems_allowed;
4683
4684 return !node_isset(nid, *nodemask);
ddd588b5
DR
4685}
4686
1da177e4
LT
4687#define K(x) ((x) << (PAGE_SHIFT-10))
4688
377e4f16
RV
4689static void show_migration_types(unsigned char type)
4690{
4691 static const char types[MIGRATE_TYPES] = {
4692 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4693 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4694 [MIGRATE_RECLAIMABLE] = 'E',
4695 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4696#ifdef CONFIG_CMA
4697 [MIGRATE_CMA] = 'C',
4698#endif
194159fb 4699#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4700 [MIGRATE_ISOLATE] = 'I',
194159fb 4701#endif
377e4f16
RV
4702 };
4703 char tmp[MIGRATE_TYPES + 1];
4704 char *p = tmp;
4705 int i;
4706
4707 for (i = 0; i < MIGRATE_TYPES; i++) {
4708 if (type & (1 << i))
4709 *p++ = types[i];
4710 }
4711
4712 *p = '\0';
1f84a18f 4713 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4714}
4715
1da177e4
LT
4716/*
4717 * Show free area list (used inside shift_scroll-lock stuff)
4718 * We also calculate the percentage fragmentation. We do this by counting the
4719 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4720 *
4721 * Bits in @filter:
4722 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4723 * cpuset.
1da177e4 4724 */
9af744d7 4725void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4726{
d1bfcdb8 4727 unsigned long free_pcp = 0;
c7241913 4728 int cpu;
1da177e4 4729 struct zone *zone;
599d0c95 4730 pg_data_t *pgdat;
1da177e4 4731
ee99c71c 4732 for_each_populated_zone(zone) {
9af744d7 4733 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4734 continue;
d1bfcdb8 4735
761b0677
KK
4736 for_each_online_cpu(cpu)
4737 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4738 }
4739
a731286d
KM
4740 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4741 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4742 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4743 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4744 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4745 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4746 global_node_page_state(NR_ACTIVE_ANON),
4747 global_node_page_state(NR_INACTIVE_ANON),
4748 global_node_page_state(NR_ISOLATED_ANON),
4749 global_node_page_state(NR_ACTIVE_FILE),
4750 global_node_page_state(NR_INACTIVE_FILE),
4751 global_node_page_state(NR_ISOLATED_FILE),
4752 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4753 global_node_page_state(NR_FILE_DIRTY),
4754 global_node_page_state(NR_WRITEBACK),
4755 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4756 global_node_page_state(NR_SLAB_RECLAIMABLE),
4757 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4758 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4759 global_node_page_state(NR_SHMEM),
c41f012a
MH
4760 global_zone_page_state(NR_PAGETABLE),
4761 global_zone_page_state(NR_BOUNCE),
4762 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4763 free_pcp,
c41f012a 4764 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4765
599d0c95 4766 for_each_online_pgdat(pgdat) {
9af744d7 4767 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4768 continue;
4769
599d0c95
MG
4770 printk("Node %d"
4771 " active_anon:%lukB"
4772 " inactive_anon:%lukB"
4773 " active_file:%lukB"
4774 " inactive_file:%lukB"
4775 " unevictable:%lukB"
4776 " isolated(anon):%lukB"
4777 " isolated(file):%lukB"
50658e2e 4778 " mapped:%lukB"
11fb9989
MG
4779 " dirty:%lukB"
4780 " writeback:%lukB"
4781 " shmem:%lukB"
4782#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4783 " shmem_thp: %lukB"
4784 " shmem_pmdmapped: %lukB"
4785 " anon_thp: %lukB"
4786#endif
4787 " writeback_tmp:%lukB"
4788 " unstable:%lukB"
599d0c95
MG
4789 " all_unreclaimable? %s"
4790 "\n",
4791 pgdat->node_id,
4792 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4793 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4794 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4795 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4796 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4797 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4798 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4799 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4800 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4801 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4802 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4803#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4804 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4805 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4806 * HPAGE_PMD_NR),
4807 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4808#endif
11fb9989
MG
4809 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4810 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4811 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4812 "yes" : "no");
599d0c95
MG
4813 }
4814
ee99c71c 4815 for_each_populated_zone(zone) {
1da177e4
LT
4816 int i;
4817
9af744d7 4818 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4819 continue;
d1bfcdb8
KK
4820
4821 free_pcp = 0;
4822 for_each_online_cpu(cpu)
4823 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4824
1da177e4 4825 show_node(zone);
1f84a18f
JP
4826 printk(KERN_CONT
4827 "%s"
1da177e4
LT
4828 " free:%lukB"
4829 " min:%lukB"
4830 " low:%lukB"
4831 " high:%lukB"
71c799f4
MK
4832 " active_anon:%lukB"
4833 " inactive_anon:%lukB"
4834 " active_file:%lukB"
4835 " inactive_file:%lukB"
4836 " unevictable:%lukB"
5a1c84b4 4837 " writepending:%lukB"
1da177e4 4838 " present:%lukB"
9feedc9d 4839 " managed:%lukB"
4a0aa73f 4840 " mlocked:%lukB"
c6a7f572 4841 " kernel_stack:%lukB"
4a0aa73f 4842 " pagetables:%lukB"
4a0aa73f 4843 " bounce:%lukB"
d1bfcdb8
KK
4844 " free_pcp:%lukB"
4845 " local_pcp:%ukB"
d1ce749a 4846 " free_cma:%lukB"
1da177e4
LT
4847 "\n",
4848 zone->name,
88f5acf8 4849 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4850 K(min_wmark_pages(zone)),
4851 K(low_wmark_pages(zone)),
4852 K(high_wmark_pages(zone)),
71c799f4
MK
4853 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4854 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4855 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4856 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4857 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4858 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4859 K(zone->present_pages),
9feedc9d 4860 K(zone->managed_pages),
4a0aa73f 4861 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4862 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4863 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4864 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4865 K(free_pcp),
4866 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4867 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4868 printk("lowmem_reserve[]:");
4869 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4870 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4871 printk(KERN_CONT "\n");
1da177e4
LT
4872 }
4873
ee99c71c 4874 for_each_populated_zone(zone) {
d00181b9
KS
4875 unsigned int order;
4876 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4877 unsigned char types[MAX_ORDER];
1da177e4 4878
9af744d7 4879 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4880 continue;
1da177e4 4881 show_node(zone);
1f84a18f 4882 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4883
4884 spin_lock_irqsave(&zone->lock, flags);
4885 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4886 struct free_area *area = &zone->free_area[order];
4887 int type;
4888
4889 nr[order] = area->nr_free;
8f9de51a 4890 total += nr[order] << order;
377e4f16
RV
4891
4892 types[order] = 0;
4893 for (type = 0; type < MIGRATE_TYPES; type++) {
4894 if (!list_empty(&area->free_list[type]))
4895 types[order] |= 1 << type;
4896 }
1da177e4
LT
4897 }
4898 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4899 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4900 printk(KERN_CONT "%lu*%lukB ",
4901 nr[order], K(1UL) << order);
377e4f16
RV
4902 if (nr[order])
4903 show_migration_types(types[order]);
4904 }
1f84a18f 4905 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4906 }
4907
949f7ec5
DR
4908 hugetlb_show_meminfo();
4909
11fb9989 4910 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4911
1da177e4
LT
4912 show_swap_cache_info();
4913}
4914
19770b32
MG
4915static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4916{
4917 zoneref->zone = zone;
4918 zoneref->zone_idx = zone_idx(zone);
4919}
4920
1da177e4
LT
4921/*
4922 * Builds allocation fallback zone lists.
1a93205b
CL
4923 *
4924 * Add all populated zones of a node to the zonelist.
1da177e4 4925 */
9d3be21b 4926static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4927{
1a93205b 4928 struct zone *zone;
bc732f1d 4929 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4930 int nr_zones = 0;
02a68a5e
CL
4931
4932 do {
2f6726e5 4933 zone_type--;
070f8032 4934 zone = pgdat->node_zones + zone_type;
6aa303de 4935 if (managed_zone(zone)) {
9d3be21b 4936 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4937 check_highest_zone(zone_type);
1da177e4 4938 }
2f6726e5 4939 } while (zone_type);
bc732f1d 4940
070f8032 4941 return nr_zones;
1da177e4
LT
4942}
4943
4944#ifdef CONFIG_NUMA
f0c0b2b8
KH
4945
4946static int __parse_numa_zonelist_order(char *s)
4947{
c9bff3ee
MH
4948 /*
4949 * We used to support different zonlists modes but they turned
4950 * out to be just not useful. Let's keep the warning in place
4951 * if somebody still use the cmd line parameter so that we do
4952 * not fail it silently
4953 */
4954 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4955 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4956 return -EINVAL;
4957 }
4958 return 0;
4959}
4960
4961static __init int setup_numa_zonelist_order(char *s)
4962{
ecb256f8
VL
4963 if (!s)
4964 return 0;
4965
c9bff3ee 4966 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4967}
4968early_param("numa_zonelist_order", setup_numa_zonelist_order);
4969
c9bff3ee
MH
4970char numa_zonelist_order[] = "Node";
4971
f0c0b2b8
KH
4972/*
4973 * sysctl handler for numa_zonelist_order
4974 */
cccad5b9 4975int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4976 void __user *buffer, size_t *length,
f0c0b2b8
KH
4977 loff_t *ppos)
4978{
c9bff3ee 4979 char *str;
f0c0b2b8
KH
4980 int ret;
4981
c9bff3ee
MH
4982 if (!write)
4983 return proc_dostring(table, write, buffer, length, ppos);
4984 str = memdup_user_nul(buffer, 16);
4985 if (IS_ERR(str))
4986 return PTR_ERR(str);
dacbde09 4987
c9bff3ee
MH
4988 ret = __parse_numa_zonelist_order(str);
4989 kfree(str);
443c6f14 4990 return ret;
f0c0b2b8
KH
4991}
4992
4993
62bc62a8 4994#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4995static int node_load[MAX_NUMNODES];
4996
1da177e4 4997/**
4dc3b16b 4998 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4999 * @node: node whose fallback list we're appending
5000 * @used_node_mask: nodemask_t of already used nodes
5001 *
5002 * We use a number of factors to determine which is the next node that should
5003 * appear on a given node's fallback list. The node should not have appeared
5004 * already in @node's fallback list, and it should be the next closest node
5005 * according to the distance array (which contains arbitrary distance values
5006 * from each node to each node in the system), and should also prefer nodes
5007 * with no CPUs, since presumably they'll have very little allocation pressure
5008 * on them otherwise.
5009 * It returns -1 if no node is found.
5010 */
f0c0b2b8 5011static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5012{
4cf808eb 5013 int n, val;
1da177e4 5014 int min_val = INT_MAX;
00ef2d2f 5015 int best_node = NUMA_NO_NODE;
a70f7302 5016 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5017
4cf808eb
LT
5018 /* Use the local node if we haven't already */
5019 if (!node_isset(node, *used_node_mask)) {
5020 node_set(node, *used_node_mask);
5021 return node;
5022 }
1da177e4 5023
4b0ef1fe 5024 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5025
5026 /* Don't want a node to appear more than once */
5027 if (node_isset(n, *used_node_mask))
5028 continue;
5029
1da177e4
LT
5030 /* Use the distance array to find the distance */
5031 val = node_distance(node, n);
5032
4cf808eb
LT
5033 /* Penalize nodes under us ("prefer the next node") */
5034 val += (n < node);
5035
1da177e4 5036 /* Give preference to headless and unused nodes */
a70f7302
RR
5037 tmp = cpumask_of_node(n);
5038 if (!cpumask_empty(tmp))
1da177e4
LT
5039 val += PENALTY_FOR_NODE_WITH_CPUS;
5040
5041 /* Slight preference for less loaded node */
5042 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5043 val += node_load[n];
5044
5045 if (val < min_val) {
5046 min_val = val;
5047 best_node = n;
5048 }
5049 }
5050
5051 if (best_node >= 0)
5052 node_set(best_node, *used_node_mask);
5053
5054 return best_node;
5055}
5056
f0c0b2b8
KH
5057
5058/*
5059 * Build zonelists ordered by node and zones within node.
5060 * This results in maximum locality--normal zone overflows into local
5061 * DMA zone, if any--but risks exhausting DMA zone.
5062 */
9d3be21b
MH
5063static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5064 unsigned nr_nodes)
1da177e4 5065{
9d3be21b
MH
5066 struct zoneref *zonerefs;
5067 int i;
5068
5069 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5070
5071 for (i = 0; i < nr_nodes; i++) {
5072 int nr_zones;
5073
5074 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5075
9d3be21b
MH
5076 nr_zones = build_zonerefs_node(node, zonerefs);
5077 zonerefs += nr_zones;
5078 }
5079 zonerefs->zone = NULL;
5080 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5081}
5082
523b9458
CL
5083/*
5084 * Build gfp_thisnode zonelists
5085 */
5086static void build_thisnode_zonelists(pg_data_t *pgdat)
5087{
9d3be21b
MH
5088 struct zoneref *zonerefs;
5089 int nr_zones;
523b9458 5090
9d3be21b
MH
5091 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5092 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5093 zonerefs += nr_zones;
5094 zonerefs->zone = NULL;
5095 zonerefs->zone_idx = 0;
523b9458
CL
5096}
5097
f0c0b2b8
KH
5098/*
5099 * Build zonelists ordered by zone and nodes within zones.
5100 * This results in conserving DMA zone[s] until all Normal memory is
5101 * exhausted, but results in overflowing to remote node while memory
5102 * may still exist in local DMA zone.
5103 */
f0c0b2b8 5104
f0c0b2b8
KH
5105static void build_zonelists(pg_data_t *pgdat)
5106{
9d3be21b
MH
5107 static int node_order[MAX_NUMNODES];
5108 int node, load, nr_nodes = 0;
1da177e4 5109 nodemask_t used_mask;
f0c0b2b8 5110 int local_node, prev_node;
1da177e4
LT
5111
5112 /* NUMA-aware ordering of nodes */
5113 local_node = pgdat->node_id;
62bc62a8 5114 load = nr_online_nodes;
1da177e4
LT
5115 prev_node = local_node;
5116 nodes_clear(used_mask);
f0c0b2b8 5117
f0c0b2b8 5118 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5119 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5120 /*
5121 * We don't want to pressure a particular node.
5122 * So adding penalty to the first node in same
5123 * distance group to make it round-robin.
5124 */
957f822a
DR
5125 if (node_distance(local_node, node) !=
5126 node_distance(local_node, prev_node))
f0c0b2b8
KH
5127 node_load[node] = load;
5128
9d3be21b 5129 node_order[nr_nodes++] = node;
1da177e4
LT
5130 prev_node = node;
5131 load--;
1da177e4 5132 }
523b9458 5133
9d3be21b 5134 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5135 build_thisnode_zonelists(pgdat);
1da177e4
LT
5136}
5137
7aac7898
LS
5138#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5139/*
5140 * Return node id of node used for "local" allocations.
5141 * I.e., first node id of first zone in arg node's generic zonelist.
5142 * Used for initializing percpu 'numa_mem', which is used primarily
5143 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5144 */
5145int local_memory_node(int node)
5146{
c33d6c06 5147 struct zoneref *z;
7aac7898 5148
c33d6c06 5149 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5150 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5151 NULL);
5152 return z->zone->node;
7aac7898
LS
5153}
5154#endif
f0c0b2b8 5155
6423aa81
JK
5156static void setup_min_unmapped_ratio(void);
5157static void setup_min_slab_ratio(void);
1da177e4
LT
5158#else /* CONFIG_NUMA */
5159
f0c0b2b8 5160static void build_zonelists(pg_data_t *pgdat)
1da177e4 5161{
19655d34 5162 int node, local_node;
9d3be21b
MH
5163 struct zoneref *zonerefs;
5164 int nr_zones;
1da177e4
LT
5165
5166 local_node = pgdat->node_id;
1da177e4 5167
9d3be21b
MH
5168 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5169 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5170 zonerefs += nr_zones;
1da177e4 5171
54a6eb5c
MG
5172 /*
5173 * Now we build the zonelist so that it contains the zones
5174 * of all the other nodes.
5175 * We don't want to pressure a particular node, so when
5176 * building the zones for node N, we make sure that the
5177 * zones coming right after the local ones are those from
5178 * node N+1 (modulo N)
5179 */
5180 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5181 if (!node_online(node))
5182 continue;
9d3be21b
MH
5183 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5184 zonerefs += nr_zones;
1da177e4 5185 }
54a6eb5c
MG
5186 for (node = 0; node < local_node; node++) {
5187 if (!node_online(node))
5188 continue;
9d3be21b
MH
5189 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5190 zonerefs += nr_zones;
54a6eb5c
MG
5191 }
5192
9d3be21b
MH
5193 zonerefs->zone = NULL;
5194 zonerefs->zone_idx = 0;
1da177e4
LT
5195}
5196
5197#endif /* CONFIG_NUMA */
5198
99dcc3e5
CL
5199/*
5200 * Boot pageset table. One per cpu which is going to be used for all
5201 * zones and all nodes. The parameters will be set in such a way
5202 * that an item put on a list will immediately be handed over to
5203 * the buddy list. This is safe since pageset manipulation is done
5204 * with interrupts disabled.
5205 *
5206 * The boot_pagesets must be kept even after bootup is complete for
5207 * unused processors and/or zones. They do play a role for bootstrapping
5208 * hotplugged processors.
5209 *
5210 * zoneinfo_show() and maybe other functions do
5211 * not check if the processor is online before following the pageset pointer.
5212 * Other parts of the kernel may not check if the zone is available.
5213 */
5214static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5215static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5216static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5217
11cd8638 5218static void __build_all_zonelists(void *data)
1da177e4 5219{
6811378e 5220 int nid;
afb6ebb3 5221 int __maybe_unused cpu;
9adb62a5 5222 pg_data_t *self = data;
b93e0f32
MH
5223 static DEFINE_SPINLOCK(lock);
5224
5225 spin_lock(&lock);
9276b1bc 5226
7f9cfb31
BL
5227#ifdef CONFIG_NUMA
5228 memset(node_load, 0, sizeof(node_load));
5229#endif
9adb62a5 5230
c1152583
WY
5231 /*
5232 * This node is hotadded and no memory is yet present. So just
5233 * building zonelists is fine - no need to touch other nodes.
5234 */
9adb62a5
JL
5235 if (self && !node_online(self->node_id)) {
5236 build_zonelists(self);
c1152583
WY
5237 } else {
5238 for_each_online_node(nid) {
5239 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5240
c1152583
WY
5241 build_zonelists(pgdat);
5242 }
99dcc3e5 5243
7aac7898
LS
5244#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5245 /*
5246 * We now know the "local memory node" for each node--
5247 * i.e., the node of the first zone in the generic zonelist.
5248 * Set up numa_mem percpu variable for on-line cpus. During
5249 * boot, only the boot cpu should be on-line; we'll init the
5250 * secondary cpus' numa_mem as they come on-line. During
5251 * node/memory hotplug, we'll fixup all on-line cpus.
5252 */
d9c9a0b9 5253 for_each_online_cpu(cpu)
7aac7898 5254 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5255#endif
d9c9a0b9 5256 }
b93e0f32
MH
5257
5258 spin_unlock(&lock);
6811378e
YG
5259}
5260
061f67bc
RV
5261static noinline void __init
5262build_all_zonelists_init(void)
5263{
afb6ebb3
MH
5264 int cpu;
5265
061f67bc 5266 __build_all_zonelists(NULL);
afb6ebb3
MH
5267
5268 /*
5269 * Initialize the boot_pagesets that are going to be used
5270 * for bootstrapping processors. The real pagesets for
5271 * each zone will be allocated later when the per cpu
5272 * allocator is available.
5273 *
5274 * boot_pagesets are used also for bootstrapping offline
5275 * cpus if the system is already booted because the pagesets
5276 * are needed to initialize allocators on a specific cpu too.
5277 * F.e. the percpu allocator needs the page allocator which
5278 * needs the percpu allocator in order to allocate its pagesets
5279 * (a chicken-egg dilemma).
5280 */
5281 for_each_possible_cpu(cpu)
5282 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5283
061f67bc
RV
5284 mminit_verify_zonelist();
5285 cpuset_init_current_mems_allowed();
5286}
5287
4eaf3f64 5288/*
4eaf3f64 5289 * unless system_state == SYSTEM_BOOTING.
061f67bc 5290 *
72675e13 5291 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5292 * [protected by SYSTEM_BOOTING].
4eaf3f64 5293 */
72675e13 5294void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5295{
5296 if (system_state == SYSTEM_BOOTING) {
061f67bc 5297 build_all_zonelists_init();
6811378e 5298 } else {
11cd8638 5299 __build_all_zonelists(pgdat);
6811378e
YG
5300 /* cpuset refresh routine should be here */
5301 }
bd1e22b8 5302 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5303 /*
5304 * Disable grouping by mobility if the number of pages in the
5305 * system is too low to allow the mechanism to work. It would be
5306 * more accurate, but expensive to check per-zone. This check is
5307 * made on memory-hotadd so a system can start with mobility
5308 * disabled and enable it later
5309 */
d9c23400 5310 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5311 page_group_by_mobility_disabled = 1;
5312 else
5313 page_group_by_mobility_disabled = 0;
5314
c9bff3ee 5315 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5316 nr_online_nodes,
756a025f
JP
5317 page_group_by_mobility_disabled ? "off" : "on",
5318 vm_total_pages);
f0c0b2b8 5319#ifdef CONFIG_NUMA
f88dfff5 5320 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5321#endif
1da177e4
LT
5322}
5323
1da177e4
LT
5324/*
5325 * Initially all pages are reserved - free ones are freed
5326 * up by free_all_bootmem() once the early boot process is
5327 * done. Non-atomic initialization, single-pass.
5328 */
c09b4240 5329void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5330 unsigned long start_pfn, enum memmap_context context,
5331 struct vmem_altmap *altmap)
1da177e4 5332{
29751f69 5333 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5334 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5335 unsigned long pfn;
3a80a7fa 5336 unsigned long nr_initialised = 0;
342332e6
TI
5337#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5338 struct memblock_region *r = NULL, *tmp;
5339#endif
1da177e4 5340
22b31eec
HD
5341 if (highest_memmap_pfn < end_pfn - 1)
5342 highest_memmap_pfn = end_pfn - 1;
5343
4b94ffdc
DW
5344 /*
5345 * Honor reservation requested by the driver for this ZONE_DEVICE
5346 * memory
5347 */
5348 if (altmap && start_pfn == altmap->base_pfn)
5349 start_pfn += altmap->reserve;
5350
cbe8dd4a 5351 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5352 /*
b72d0ffb
AM
5353 * There can be holes in boot-time mem_map[]s handed to this
5354 * function. They do not exist on hotplugged memory.
a2f3aa02 5355 */
b72d0ffb
AM
5356 if (context != MEMMAP_EARLY)
5357 goto not_early;
5358
f59f1caf 5359 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5360 continue;
5361 if (!early_pfn_in_nid(pfn, nid))
5362 continue;
5363 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5364 break;
342332e6
TI
5365
5366#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5367 /*
5368 * Check given memblock attribute by firmware which can affect
5369 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5370 * mirrored, it's an overlapped memmap init. skip it.
5371 */
5372 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5373 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5374 for_each_memblock(memory, tmp)
5375 if (pfn < memblock_region_memory_end_pfn(tmp))
5376 break;
5377 r = tmp;
5378 }
5379 if (pfn >= memblock_region_memory_base_pfn(r) &&
5380 memblock_is_mirror(r)) {
5381 /* already initialized as NORMAL */
5382 pfn = memblock_region_memory_end_pfn(r);
5383 continue;
342332e6 5384 }
a2f3aa02 5385 }
b72d0ffb 5386#endif
ac5d2539 5387
b72d0ffb 5388not_early:
ac5d2539
MG
5389 /*
5390 * Mark the block movable so that blocks are reserved for
5391 * movable at startup. This will force kernel allocations
5392 * to reserve their blocks rather than leaking throughout
5393 * the address space during boot when many long-lived
974a786e 5394 * kernel allocations are made.
ac5d2539
MG
5395 *
5396 * bitmap is created for zone's valid pfn range. but memmap
5397 * can be created for invalid pages (for alignment)
5398 * check here not to call set_pageblock_migratetype() against
5399 * pfn out of zone.
9bb5a391
MH
5400 *
5401 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5402 * because this is done early in sparse_add_one_section
ac5d2539
MG
5403 */
5404 if (!(pfn & (pageblock_nr_pages - 1))) {
5405 struct page *page = pfn_to_page(pfn);
5406
9bb5a391
MH
5407 __init_single_page(page, pfn, zone, nid,
5408 context != MEMMAP_HOTPLUG);
ac5d2539 5409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5410 cond_resched();
ac5d2539 5411 } else {
9bb5a391
MH
5412 __init_single_pfn(pfn, zone, nid,
5413 context != MEMMAP_HOTPLUG);
ac5d2539 5414 }
1da177e4
LT
5415 }
5416}
5417
1e548deb 5418static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5419{
7aeb09f9 5420 unsigned int order, t;
b2a0ac88
MG
5421 for_each_migratetype_order(order, t) {
5422 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5423 zone->free_area[order].nr_free = 0;
5424 }
5425}
5426
5427#ifndef __HAVE_ARCH_MEMMAP_INIT
5428#define memmap_init(size, nid, zone, start_pfn) \
a99583e7 5429 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
1da177e4
LT
5430#endif
5431
7cd2b0a3 5432static int zone_batchsize(struct zone *zone)
e7c8d5c9 5433{
3a6be87f 5434#ifdef CONFIG_MMU
e7c8d5c9
CL
5435 int batch;
5436
5437 /*
5438 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5439 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5440 *
5441 * OK, so we don't know how big the cache is. So guess.
5442 */
b40da049 5443 batch = zone->managed_pages / 1024;
ba56e91c
SR
5444 if (batch * PAGE_SIZE > 512 * 1024)
5445 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5446 batch /= 4; /* We effectively *= 4 below */
5447 if (batch < 1)
5448 batch = 1;
5449
5450 /*
0ceaacc9
NP
5451 * Clamp the batch to a 2^n - 1 value. Having a power
5452 * of 2 value was found to be more likely to have
5453 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5454 *
0ceaacc9
NP
5455 * For example if 2 tasks are alternately allocating
5456 * batches of pages, one task can end up with a lot
5457 * of pages of one half of the possible page colors
5458 * and the other with pages of the other colors.
e7c8d5c9 5459 */
9155203a 5460 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5461
e7c8d5c9 5462 return batch;
3a6be87f
DH
5463
5464#else
5465 /* The deferral and batching of frees should be suppressed under NOMMU
5466 * conditions.
5467 *
5468 * The problem is that NOMMU needs to be able to allocate large chunks
5469 * of contiguous memory as there's no hardware page translation to
5470 * assemble apparent contiguous memory from discontiguous pages.
5471 *
5472 * Queueing large contiguous runs of pages for batching, however,
5473 * causes the pages to actually be freed in smaller chunks. As there
5474 * can be a significant delay between the individual batches being
5475 * recycled, this leads to the once large chunks of space being
5476 * fragmented and becoming unavailable for high-order allocations.
5477 */
5478 return 0;
5479#endif
e7c8d5c9
CL
5480}
5481
8d7a8fa9
CS
5482/*
5483 * pcp->high and pcp->batch values are related and dependent on one another:
5484 * ->batch must never be higher then ->high.
5485 * The following function updates them in a safe manner without read side
5486 * locking.
5487 *
5488 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5489 * those fields changing asynchronously (acording the the above rule).
5490 *
5491 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5492 * outside of boot time (or some other assurance that no concurrent updaters
5493 * exist).
5494 */
5495static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5496 unsigned long batch)
5497{
5498 /* start with a fail safe value for batch */
5499 pcp->batch = 1;
5500 smp_wmb();
5501
5502 /* Update high, then batch, in order */
5503 pcp->high = high;
5504 smp_wmb();
5505
5506 pcp->batch = batch;
5507}
5508
3664033c 5509/* a companion to pageset_set_high() */
4008bab7
CS
5510static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5511{
8d7a8fa9 5512 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5513}
5514
88c90dbc 5515static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5516{
5517 struct per_cpu_pages *pcp;
5f8dcc21 5518 int migratetype;
2caaad41 5519
1c6fe946
MD
5520 memset(p, 0, sizeof(*p));
5521
3dfa5721 5522 pcp = &p->pcp;
2caaad41 5523 pcp->count = 0;
5f8dcc21
MG
5524 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5525 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5526}
5527
88c90dbc
CS
5528static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5529{
5530 pageset_init(p);
5531 pageset_set_batch(p, batch);
5532}
5533
8ad4b1fb 5534/*
3664033c 5535 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5536 * to the value high for the pageset p.
5537 */
3664033c 5538static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5539 unsigned long high)
5540{
8d7a8fa9
CS
5541 unsigned long batch = max(1UL, high / 4);
5542 if ((high / 4) > (PAGE_SHIFT * 8))
5543 batch = PAGE_SHIFT * 8;
8ad4b1fb 5544
8d7a8fa9 5545 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5546}
5547
7cd2b0a3
DR
5548static void pageset_set_high_and_batch(struct zone *zone,
5549 struct per_cpu_pageset *pcp)
56cef2b8 5550{
56cef2b8 5551 if (percpu_pagelist_fraction)
3664033c 5552 pageset_set_high(pcp,
56cef2b8
CS
5553 (zone->managed_pages /
5554 percpu_pagelist_fraction));
5555 else
5556 pageset_set_batch(pcp, zone_batchsize(zone));
5557}
5558
169f6c19
CS
5559static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5560{
5561 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5562
5563 pageset_init(pcp);
5564 pageset_set_high_and_batch(zone, pcp);
5565}
5566
72675e13 5567void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5568{
5569 int cpu;
319774e2 5570 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5571 for_each_possible_cpu(cpu)
5572 zone_pageset_init(zone, cpu);
319774e2
WF
5573}
5574
2caaad41 5575/*
99dcc3e5
CL
5576 * Allocate per cpu pagesets and initialize them.
5577 * Before this call only boot pagesets were available.
e7c8d5c9 5578 */
99dcc3e5 5579void __init setup_per_cpu_pageset(void)
e7c8d5c9 5580{
b4911ea2 5581 struct pglist_data *pgdat;
99dcc3e5 5582 struct zone *zone;
e7c8d5c9 5583
319774e2
WF
5584 for_each_populated_zone(zone)
5585 setup_zone_pageset(zone);
b4911ea2
MG
5586
5587 for_each_online_pgdat(pgdat)
5588 pgdat->per_cpu_nodestats =
5589 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5590}
5591
c09b4240 5592static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5593{
99dcc3e5
CL
5594 /*
5595 * per cpu subsystem is not up at this point. The following code
5596 * relies on the ability of the linker to provide the
5597 * offset of a (static) per cpu variable into the per cpu area.
5598 */
5599 zone->pageset = &boot_pageset;
ed8ece2e 5600
b38a8725 5601 if (populated_zone(zone))
99dcc3e5
CL
5602 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5603 zone->name, zone->present_pages,
5604 zone_batchsize(zone));
ed8ece2e
DH
5605}
5606
dc0bbf3b 5607void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5608 unsigned long zone_start_pfn,
b171e409 5609 unsigned long size)
ed8ece2e
DH
5610{
5611 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5612
ed8ece2e
DH
5613 pgdat->nr_zones = zone_idx(zone) + 1;
5614
ed8ece2e
DH
5615 zone->zone_start_pfn = zone_start_pfn;
5616
708614e6
MG
5617 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5618 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5619 pgdat->node_id,
5620 (unsigned long)zone_idx(zone),
5621 zone_start_pfn, (zone_start_pfn + size));
5622
1e548deb 5623 zone_init_free_lists(zone);
9dcb8b68 5624 zone->initialized = 1;
ed8ece2e
DH
5625}
5626
0ee332c1 5627#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5628#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5629
c713216d
MG
5630/*
5631 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5632 */
8a942fde
MG
5633int __meminit __early_pfn_to_nid(unsigned long pfn,
5634 struct mminit_pfnnid_cache *state)
c713216d 5635{
c13291a5 5636 unsigned long start_pfn, end_pfn;
e76b63f8 5637 int nid;
7c243c71 5638
8a942fde
MG
5639 if (state->last_start <= pfn && pfn < state->last_end)
5640 return state->last_nid;
c713216d 5641
e76b63f8
YL
5642 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5643 if (nid != -1) {
8a942fde
MG
5644 state->last_start = start_pfn;
5645 state->last_end = end_pfn;
5646 state->last_nid = nid;
e76b63f8
YL
5647 }
5648
5649 return nid;
c713216d
MG
5650}
5651#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5652
c713216d 5653/**
6782832e 5654 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5655 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5656 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5657 *
7d018176
ZZ
5658 * If an architecture guarantees that all ranges registered contain no holes
5659 * and may be freed, this this function may be used instead of calling
5660 * memblock_free_early_nid() manually.
c713216d 5661 */
c13291a5 5662void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5663{
c13291a5
TH
5664 unsigned long start_pfn, end_pfn;
5665 int i, this_nid;
edbe7d23 5666
c13291a5
TH
5667 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5668 start_pfn = min(start_pfn, max_low_pfn);
5669 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5670
c13291a5 5671 if (start_pfn < end_pfn)
6782832e
SS
5672 memblock_free_early_nid(PFN_PHYS(start_pfn),
5673 (end_pfn - start_pfn) << PAGE_SHIFT,
5674 this_nid);
edbe7d23 5675 }
edbe7d23 5676}
edbe7d23 5677
c713216d
MG
5678/**
5679 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5680 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5681 *
7d018176
ZZ
5682 * If an architecture guarantees that all ranges registered contain no holes and may
5683 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5684 */
5685void __init sparse_memory_present_with_active_regions(int nid)
5686{
c13291a5
TH
5687 unsigned long start_pfn, end_pfn;
5688 int i, this_nid;
c713216d 5689
c13291a5
TH
5690 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5691 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5692}
5693
5694/**
5695 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5696 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5697 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5698 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5699 *
5700 * It returns the start and end page frame of a node based on information
7d018176 5701 * provided by memblock_set_node(). If called for a node
c713216d 5702 * with no available memory, a warning is printed and the start and end
88ca3b94 5703 * PFNs will be 0.
c713216d 5704 */
a3142c8e 5705void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5706 unsigned long *start_pfn, unsigned long *end_pfn)
5707{
c13291a5 5708 unsigned long this_start_pfn, this_end_pfn;
c713216d 5709 int i;
c13291a5 5710
c713216d
MG
5711 *start_pfn = -1UL;
5712 *end_pfn = 0;
5713
c13291a5
TH
5714 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5715 *start_pfn = min(*start_pfn, this_start_pfn);
5716 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5717 }
5718
633c0666 5719 if (*start_pfn == -1UL)
c713216d 5720 *start_pfn = 0;
c713216d
MG
5721}
5722
2a1e274a
MG
5723/*
5724 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5725 * assumption is made that zones within a node are ordered in monotonic
5726 * increasing memory addresses so that the "highest" populated zone is used
5727 */
b69a7288 5728static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5729{
5730 int zone_index;
5731 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5732 if (zone_index == ZONE_MOVABLE)
5733 continue;
5734
5735 if (arch_zone_highest_possible_pfn[zone_index] >
5736 arch_zone_lowest_possible_pfn[zone_index])
5737 break;
5738 }
5739
5740 VM_BUG_ON(zone_index == -1);
5741 movable_zone = zone_index;
5742}
5743
5744/*
5745 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5746 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5747 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5748 * in each node depending on the size of each node and how evenly kernelcore
5749 * is distributed. This helper function adjusts the zone ranges
5750 * provided by the architecture for a given node by using the end of the
5751 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5752 * zones within a node are in order of monotonic increases memory addresses
5753 */
b69a7288 5754static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5755 unsigned long zone_type,
5756 unsigned long node_start_pfn,
5757 unsigned long node_end_pfn,
5758 unsigned long *zone_start_pfn,
5759 unsigned long *zone_end_pfn)
5760{
5761 /* Only adjust if ZONE_MOVABLE is on this node */
5762 if (zone_movable_pfn[nid]) {
5763 /* Size ZONE_MOVABLE */
5764 if (zone_type == ZONE_MOVABLE) {
5765 *zone_start_pfn = zone_movable_pfn[nid];
5766 *zone_end_pfn = min(node_end_pfn,
5767 arch_zone_highest_possible_pfn[movable_zone]);
5768
e506b996
XQ
5769 /* Adjust for ZONE_MOVABLE starting within this range */
5770 } else if (!mirrored_kernelcore &&
5771 *zone_start_pfn < zone_movable_pfn[nid] &&
5772 *zone_end_pfn > zone_movable_pfn[nid]) {
5773 *zone_end_pfn = zone_movable_pfn[nid];
5774
2a1e274a
MG
5775 /* Check if this whole range is within ZONE_MOVABLE */
5776 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5777 *zone_start_pfn = *zone_end_pfn;
5778 }
5779}
5780
c713216d
MG
5781/*
5782 * Return the number of pages a zone spans in a node, including holes
5783 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5784 */
6ea6e688 5785static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5786 unsigned long zone_type,
7960aedd
ZY
5787 unsigned long node_start_pfn,
5788 unsigned long node_end_pfn,
d91749c1
TI
5789 unsigned long *zone_start_pfn,
5790 unsigned long *zone_end_pfn,
c713216d
MG
5791 unsigned long *ignored)
5792{
b5685e92 5793 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5794 if (!node_start_pfn && !node_end_pfn)
5795 return 0;
5796
7960aedd 5797 /* Get the start and end of the zone */
d91749c1
TI
5798 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5799 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5800 adjust_zone_range_for_zone_movable(nid, zone_type,
5801 node_start_pfn, node_end_pfn,
d91749c1 5802 zone_start_pfn, zone_end_pfn);
c713216d
MG
5803
5804 /* Check that this node has pages within the zone's required range */
d91749c1 5805 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5806 return 0;
5807
5808 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5809 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5810 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5811
5812 /* Return the spanned pages */
d91749c1 5813 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5814}
5815
5816/*
5817 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5818 * then all holes in the requested range will be accounted for.
c713216d 5819 */
32996250 5820unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5821 unsigned long range_start_pfn,
5822 unsigned long range_end_pfn)
5823{
96e907d1
TH
5824 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5825 unsigned long start_pfn, end_pfn;
5826 int i;
c713216d 5827
96e907d1
TH
5828 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5829 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5830 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5831 nr_absent -= end_pfn - start_pfn;
c713216d 5832 }
96e907d1 5833 return nr_absent;
c713216d
MG
5834}
5835
5836/**
5837 * absent_pages_in_range - Return number of page frames in holes within a range
5838 * @start_pfn: The start PFN to start searching for holes
5839 * @end_pfn: The end PFN to stop searching for holes
5840 *
88ca3b94 5841 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5842 */
5843unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5844 unsigned long end_pfn)
5845{
5846 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5847}
5848
5849/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5850static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5851 unsigned long zone_type,
7960aedd
ZY
5852 unsigned long node_start_pfn,
5853 unsigned long node_end_pfn,
c713216d
MG
5854 unsigned long *ignored)
5855{
96e907d1
TH
5856 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5857 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5858 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5859 unsigned long nr_absent;
9c7cd687 5860
b5685e92 5861 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5862 if (!node_start_pfn && !node_end_pfn)
5863 return 0;
5864
96e907d1
TH
5865 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5866 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5867
2a1e274a
MG
5868 adjust_zone_range_for_zone_movable(nid, zone_type,
5869 node_start_pfn, node_end_pfn,
5870 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5871 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5872
5873 /*
5874 * ZONE_MOVABLE handling.
5875 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5876 * and vice versa.
5877 */
e506b996
XQ
5878 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5879 unsigned long start_pfn, end_pfn;
5880 struct memblock_region *r;
5881
5882 for_each_memblock(memory, r) {
5883 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5884 zone_start_pfn, zone_end_pfn);
5885 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5886 zone_start_pfn, zone_end_pfn);
5887
5888 if (zone_type == ZONE_MOVABLE &&
5889 memblock_is_mirror(r))
5890 nr_absent += end_pfn - start_pfn;
5891
5892 if (zone_type == ZONE_NORMAL &&
5893 !memblock_is_mirror(r))
5894 nr_absent += end_pfn - start_pfn;
342332e6
TI
5895 }
5896 }
5897
5898 return nr_absent;
c713216d 5899}
0e0b864e 5900
0ee332c1 5901#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5902static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5903 unsigned long zone_type,
7960aedd
ZY
5904 unsigned long node_start_pfn,
5905 unsigned long node_end_pfn,
d91749c1
TI
5906 unsigned long *zone_start_pfn,
5907 unsigned long *zone_end_pfn,
c713216d
MG
5908 unsigned long *zones_size)
5909{
d91749c1
TI
5910 unsigned int zone;
5911
5912 *zone_start_pfn = node_start_pfn;
5913 for (zone = 0; zone < zone_type; zone++)
5914 *zone_start_pfn += zones_size[zone];
5915
5916 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5917
c713216d
MG
5918 return zones_size[zone_type];
5919}
5920
6ea6e688 5921static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5922 unsigned long zone_type,
7960aedd
ZY
5923 unsigned long node_start_pfn,
5924 unsigned long node_end_pfn,
c713216d
MG
5925 unsigned long *zholes_size)
5926{
5927 if (!zholes_size)
5928 return 0;
5929
5930 return zholes_size[zone_type];
5931}
20e6926d 5932
0ee332c1 5933#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5934
a3142c8e 5935static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5936 unsigned long node_start_pfn,
5937 unsigned long node_end_pfn,
5938 unsigned long *zones_size,
5939 unsigned long *zholes_size)
c713216d 5940{
febd5949 5941 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5942 enum zone_type i;
5943
febd5949
GZ
5944 for (i = 0; i < MAX_NR_ZONES; i++) {
5945 struct zone *zone = pgdat->node_zones + i;
d91749c1 5946 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5947 unsigned long size, real_size;
c713216d 5948
febd5949
GZ
5949 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5950 node_start_pfn,
5951 node_end_pfn,
d91749c1
TI
5952 &zone_start_pfn,
5953 &zone_end_pfn,
febd5949
GZ
5954 zones_size);
5955 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5956 node_start_pfn, node_end_pfn,
5957 zholes_size);
d91749c1
TI
5958 if (size)
5959 zone->zone_start_pfn = zone_start_pfn;
5960 else
5961 zone->zone_start_pfn = 0;
febd5949
GZ
5962 zone->spanned_pages = size;
5963 zone->present_pages = real_size;
5964
5965 totalpages += size;
5966 realtotalpages += real_size;
5967 }
5968
5969 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5970 pgdat->node_present_pages = realtotalpages;
5971 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5972 realtotalpages);
5973}
5974
835c134e
MG
5975#ifndef CONFIG_SPARSEMEM
5976/*
5977 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5978 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5979 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5980 * round what is now in bits to nearest long in bits, then return it in
5981 * bytes.
5982 */
7c45512d 5983static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5984{
5985 unsigned long usemapsize;
5986
7c45512d 5987 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5988 usemapsize = roundup(zonesize, pageblock_nr_pages);
5989 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5990 usemapsize *= NR_PAGEBLOCK_BITS;
5991 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5992
5993 return usemapsize / 8;
5994}
5995
5996static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5997 struct zone *zone,
5998 unsigned long zone_start_pfn,
5999 unsigned long zonesize)
835c134e 6000{
7c45512d 6001 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6002 zone->pageblock_flags = NULL;
58a01a45 6003 if (usemapsize)
6782832e
SS
6004 zone->pageblock_flags =
6005 memblock_virt_alloc_node_nopanic(usemapsize,
6006 pgdat->node_id);
835c134e
MG
6007}
6008#else
7c45512d
LT
6009static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6010 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6011#endif /* CONFIG_SPARSEMEM */
6012
d9c23400 6013#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6014
d9c23400 6015/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6016void __paginginit set_pageblock_order(void)
d9c23400 6017{
955c1cd7
AM
6018 unsigned int order;
6019
d9c23400
MG
6020 /* Check that pageblock_nr_pages has not already been setup */
6021 if (pageblock_order)
6022 return;
6023
955c1cd7
AM
6024 if (HPAGE_SHIFT > PAGE_SHIFT)
6025 order = HUGETLB_PAGE_ORDER;
6026 else
6027 order = MAX_ORDER - 1;
6028
d9c23400
MG
6029 /*
6030 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6031 * This value may be variable depending on boot parameters on IA64 and
6032 * powerpc.
d9c23400
MG
6033 */
6034 pageblock_order = order;
6035}
6036#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6037
ba72cb8c
MG
6038/*
6039 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6040 * is unused as pageblock_order is set at compile-time. See
6041 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6042 * the kernel config
ba72cb8c 6043 */
15ca220e 6044void __paginginit set_pageblock_order(void)
ba72cb8c 6045{
ba72cb8c 6046}
d9c23400
MG
6047
6048#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6049
01cefaef
JL
6050static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6051 unsigned long present_pages)
6052{
6053 unsigned long pages = spanned_pages;
6054
6055 /*
6056 * Provide a more accurate estimation if there are holes within
6057 * the zone and SPARSEMEM is in use. If there are holes within the
6058 * zone, each populated memory region may cost us one or two extra
6059 * memmap pages due to alignment because memmap pages for each
89d790ab 6060 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6061 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6062 */
6063 if (spanned_pages > present_pages + (present_pages >> 4) &&
6064 IS_ENABLED(CONFIG_SPARSEMEM))
6065 pages = present_pages;
6066
6067 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6068}
6069
1da177e4
LT
6070/*
6071 * Set up the zone data structures:
6072 * - mark all pages reserved
6073 * - mark all memory queues empty
6074 * - clear the memory bitmaps
6527af5d
MK
6075 *
6076 * NOTE: pgdat should get zeroed by caller.
1da177e4 6077 */
7f3eb55b 6078static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6079{
2f1b6248 6080 enum zone_type j;
ed8ece2e 6081 int nid = pgdat->node_id;
1da177e4 6082
208d54e5 6083 pgdat_resize_init(pgdat);
8177a420
AA
6084#ifdef CONFIG_NUMA_BALANCING
6085 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6086 pgdat->numabalancing_migrate_nr_pages = 0;
6087 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6088#endif
6089#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6090 spin_lock_init(&pgdat->split_queue_lock);
6091 INIT_LIST_HEAD(&pgdat->split_queue);
6092 pgdat->split_queue_len = 0;
8177a420 6093#endif
1da177e4 6094 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6095 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6096#ifdef CONFIG_COMPACTION
6097 init_waitqueue_head(&pgdat->kcompactd_wait);
6098#endif
eefa864b 6099 pgdat_page_ext_init(pgdat);
a52633d8 6100 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6101 lruvec_init(node_lruvec(pgdat));
5f63b720 6102
385386cf
JW
6103 pgdat->per_cpu_nodestats = &boot_nodestats;
6104
1da177e4
LT
6105 for (j = 0; j < MAX_NR_ZONES; j++) {
6106 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6107 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6108 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6109
febd5949
GZ
6110 size = zone->spanned_pages;
6111 realsize = freesize = zone->present_pages;
1da177e4 6112
0e0b864e 6113 /*
9feedc9d 6114 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6115 * is used by this zone for memmap. This affects the watermark
6116 * and per-cpu initialisations
6117 */
01cefaef 6118 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6119 if (!is_highmem_idx(j)) {
6120 if (freesize >= memmap_pages) {
6121 freesize -= memmap_pages;
6122 if (memmap_pages)
6123 printk(KERN_DEBUG
6124 " %s zone: %lu pages used for memmap\n",
6125 zone_names[j], memmap_pages);
6126 } else
1170532b 6127 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6128 zone_names[j], memmap_pages, freesize);
6129 }
0e0b864e 6130
6267276f 6131 /* Account for reserved pages */
9feedc9d
JL
6132 if (j == 0 && freesize > dma_reserve) {
6133 freesize -= dma_reserve;
d903ef9f 6134 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6135 zone_names[0], dma_reserve);
0e0b864e
MG
6136 }
6137
98d2b0eb 6138 if (!is_highmem_idx(j))
9feedc9d 6139 nr_kernel_pages += freesize;
01cefaef
JL
6140 /* Charge for highmem memmap if there are enough kernel pages */
6141 else if (nr_kernel_pages > memmap_pages * 2)
6142 nr_kernel_pages -= memmap_pages;
9feedc9d 6143 nr_all_pages += freesize;
1da177e4 6144
9feedc9d
JL
6145 /*
6146 * Set an approximate value for lowmem here, it will be adjusted
6147 * when the bootmem allocator frees pages into the buddy system.
6148 * And all highmem pages will be managed by the buddy system.
6149 */
6150 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6151#ifdef CONFIG_NUMA
d5f541ed 6152 zone->node = nid;
9614634f 6153#endif
1da177e4 6154 zone->name = zone_names[j];
a52633d8 6155 zone->zone_pgdat = pgdat;
1da177e4 6156 spin_lock_init(&zone->lock);
bdc8cb98 6157 zone_seqlock_init(zone);
ed8ece2e 6158 zone_pcp_init(zone);
81c0a2bb 6159
1da177e4
LT
6160 if (!size)
6161 continue;
6162
955c1cd7 6163 set_pageblock_order();
7c45512d 6164 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6165 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6166 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6167 }
6168}
6169
0cd842f9 6170#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6171static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6172{
b0aeba74 6173 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6174 unsigned long __maybe_unused offset = 0;
6175
1da177e4
LT
6176 /* Skip empty nodes */
6177 if (!pgdat->node_spanned_pages)
6178 return;
6179
b0aeba74
TL
6180 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6181 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6182 /* ia64 gets its own node_mem_map, before this, without bootmem */
6183 if (!pgdat->node_mem_map) {
b0aeba74 6184 unsigned long size, end;
d41dee36
AW
6185 struct page *map;
6186
e984bb43
BP
6187 /*
6188 * The zone's endpoints aren't required to be MAX_ORDER
6189 * aligned but the node_mem_map endpoints must be in order
6190 * for the buddy allocator to function correctly.
6191 */
108bcc96 6192 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6193 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6194 size = (end - start) * sizeof(struct page);
79375ea3 6195 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6196 pgdat->node_mem_map = map + offset;
1da177e4 6197 }
0cd842f9
OS
6198 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6199 __func__, pgdat->node_id, (unsigned long)pgdat,
6200 (unsigned long)pgdat->node_mem_map);
12d810c1 6201#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6202 /*
6203 * With no DISCONTIG, the global mem_map is just set as node 0's
6204 */
c713216d 6205 if (pgdat == NODE_DATA(0)) {
1da177e4 6206 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6207#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6208 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6209 mem_map -= offset;
0ee332c1 6210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6211 }
1da177e4
LT
6212#endif
6213}
0cd842f9
OS
6214#else
6215static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6216#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6217
9109fb7b
JW
6218void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6219 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6220{
9109fb7b 6221 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6222 unsigned long start_pfn = 0;
6223 unsigned long end_pfn = 0;
9109fb7b 6224
88fdf75d 6225 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6226 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6227
1da177e4
LT
6228 pgdat->node_id = nid;
6229 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6230 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6231#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6232 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6233 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6234 (u64)start_pfn << PAGE_SHIFT,
6235 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6236#else
6237 start_pfn = node_start_pfn;
7960aedd
ZY
6238#endif
6239 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6240 zones_size, zholes_size);
1da177e4
LT
6241
6242 alloc_node_mem_map(pgdat);
6243
864b9a39 6244 reset_deferred_meminit(pgdat);
7f3eb55b 6245 free_area_init_core(pgdat);
1da177e4
LT
6246}
6247
a4a3ede2
PT
6248#ifdef CONFIG_HAVE_MEMBLOCK
6249/*
6250 * Only struct pages that are backed by physical memory are zeroed and
6251 * initialized by going through __init_single_page(). But, there are some
6252 * struct pages which are reserved in memblock allocator and their fields
6253 * may be accessed (for example page_to_pfn() on some configuration accesses
6254 * flags). We must explicitly zero those struct pages.
6255 */
6256void __paginginit zero_resv_unavail(void)
6257{
6258 phys_addr_t start, end;
6259 unsigned long pfn;
6260 u64 i, pgcnt;
6261
6262 /*
6263 * Loop through ranges that are reserved, but do not have reported
6264 * physical memory backing.
6265 */
6266 pgcnt = 0;
6267 for_each_resv_unavail_range(i, &start, &end) {
6268 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
e8c24773
DY
6269 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6270 continue;
a4a3ede2
PT
6271 mm_zero_struct_page(pfn_to_page(pfn));
6272 pgcnt++;
6273 }
6274 }
6275
6276 /*
6277 * Struct pages that do not have backing memory. This could be because
6278 * firmware is using some of this memory, or for some other reasons.
6279 * Once memblock is changed so such behaviour is not allowed: i.e.
6280 * list of "reserved" memory must be a subset of list of "memory", then
6281 * this code can be removed.
6282 */
6283 if (pgcnt)
6284 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6285}
6286#endif /* CONFIG_HAVE_MEMBLOCK */
6287
0ee332c1 6288#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6289
6290#if MAX_NUMNODES > 1
6291/*
6292 * Figure out the number of possible node ids.
6293 */
f9872caf 6294void __init setup_nr_node_ids(void)
418508c1 6295{
904a9553 6296 unsigned int highest;
418508c1 6297
904a9553 6298 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6299 nr_node_ids = highest + 1;
6300}
418508c1
MS
6301#endif
6302
1e01979c
TH
6303/**
6304 * node_map_pfn_alignment - determine the maximum internode alignment
6305 *
6306 * This function should be called after node map is populated and sorted.
6307 * It calculates the maximum power of two alignment which can distinguish
6308 * all the nodes.
6309 *
6310 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6311 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6312 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6313 * shifted, 1GiB is enough and this function will indicate so.
6314 *
6315 * This is used to test whether pfn -> nid mapping of the chosen memory
6316 * model has fine enough granularity to avoid incorrect mapping for the
6317 * populated node map.
6318 *
6319 * Returns the determined alignment in pfn's. 0 if there is no alignment
6320 * requirement (single node).
6321 */
6322unsigned long __init node_map_pfn_alignment(void)
6323{
6324 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6325 unsigned long start, end, mask;
1e01979c 6326 int last_nid = -1;
c13291a5 6327 int i, nid;
1e01979c 6328
c13291a5 6329 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6330 if (!start || last_nid < 0 || last_nid == nid) {
6331 last_nid = nid;
6332 last_end = end;
6333 continue;
6334 }
6335
6336 /*
6337 * Start with a mask granular enough to pin-point to the
6338 * start pfn and tick off bits one-by-one until it becomes
6339 * too coarse to separate the current node from the last.
6340 */
6341 mask = ~((1 << __ffs(start)) - 1);
6342 while (mask && last_end <= (start & (mask << 1)))
6343 mask <<= 1;
6344
6345 /* accumulate all internode masks */
6346 accl_mask |= mask;
6347 }
6348
6349 /* convert mask to number of pages */
6350 return ~accl_mask + 1;
6351}
6352
a6af2bc3 6353/* Find the lowest pfn for a node */
b69a7288 6354static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6355{
a6af2bc3 6356 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6357 unsigned long start_pfn;
6358 int i;
1abbfb41 6359
c13291a5
TH
6360 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6361 min_pfn = min(min_pfn, start_pfn);
c713216d 6362
a6af2bc3 6363 if (min_pfn == ULONG_MAX) {
1170532b 6364 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6365 return 0;
6366 }
6367
6368 return min_pfn;
c713216d
MG
6369}
6370
6371/**
6372 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6373 *
6374 * It returns the minimum PFN based on information provided via
7d018176 6375 * memblock_set_node().
c713216d
MG
6376 */
6377unsigned long __init find_min_pfn_with_active_regions(void)
6378{
6379 return find_min_pfn_for_node(MAX_NUMNODES);
6380}
6381
37b07e41
LS
6382/*
6383 * early_calculate_totalpages()
6384 * Sum pages in active regions for movable zone.
4b0ef1fe 6385 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6386 */
484f51f8 6387static unsigned long __init early_calculate_totalpages(void)
7e63efef 6388{
7e63efef 6389 unsigned long totalpages = 0;
c13291a5
TH
6390 unsigned long start_pfn, end_pfn;
6391 int i, nid;
6392
6393 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6394 unsigned long pages = end_pfn - start_pfn;
7e63efef 6395
37b07e41
LS
6396 totalpages += pages;
6397 if (pages)
4b0ef1fe 6398 node_set_state(nid, N_MEMORY);
37b07e41 6399 }
b8af2941 6400 return totalpages;
7e63efef
MG
6401}
6402
2a1e274a
MG
6403/*
6404 * Find the PFN the Movable zone begins in each node. Kernel memory
6405 * is spread evenly between nodes as long as the nodes have enough
6406 * memory. When they don't, some nodes will have more kernelcore than
6407 * others
6408 */
b224ef85 6409static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6410{
6411 int i, nid;
6412 unsigned long usable_startpfn;
6413 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6414 /* save the state before borrow the nodemask */
4b0ef1fe 6415 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6416 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6417 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6418 struct memblock_region *r;
b2f3eebe
TC
6419
6420 /* Need to find movable_zone earlier when movable_node is specified. */
6421 find_usable_zone_for_movable();
6422
6423 /*
6424 * If movable_node is specified, ignore kernelcore and movablecore
6425 * options.
6426 */
6427 if (movable_node_is_enabled()) {
136199f0
EM
6428 for_each_memblock(memory, r) {
6429 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6430 continue;
6431
136199f0 6432 nid = r->nid;
b2f3eebe 6433
136199f0 6434 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6435 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6436 min(usable_startpfn, zone_movable_pfn[nid]) :
6437 usable_startpfn;
6438 }
6439
6440 goto out2;
6441 }
2a1e274a 6442
342332e6
TI
6443 /*
6444 * If kernelcore=mirror is specified, ignore movablecore option
6445 */
6446 if (mirrored_kernelcore) {
6447 bool mem_below_4gb_not_mirrored = false;
6448
6449 for_each_memblock(memory, r) {
6450 if (memblock_is_mirror(r))
6451 continue;
6452
6453 nid = r->nid;
6454
6455 usable_startpfn = memblock_region_memory_base_pfn(r);
6456
6457 if (usable_startpfn < 0x100000) {
6458 mem_below_4gb_not_mirrored = true;
6459 continue;
6460 }
6461
6462 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6463 min(usable_startpfn, zone_movable_pfn[nid]) :
6464 usable_startpfn;
6465 }
6466
6467 if (mem_below_4gb_not_mirrored)
6468 pr_warn("This configuration results in unmirrored kernel memory.");
6469
6470 goto out2;
6471 }
6472
7e63efef 6473 /*
b2f3eebe 6474 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6475 * kernelcore that corresponds so that memory usable for
6476 * any allocation type is evenly spread. If both kernelcore
6477 * and movablecore are specified, then the value of kernelcore
6478 * will be used for required_kernelcore if it's greater than
6479 * what movablecore would have allowed.
6480 */
6481 if (required_movablecore) {
7e63efef
MG
6482 unsigned long corepages;
6483
6484 /*
6485 * Round-up so that ZONE_MOVABLE is at least as large as what
6486 * was requested by the user
6487 */
6488 required_movablecore =
6489 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6490 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6491 corepages = totalpages - required_movablecore;
6492
6493 required_kernelcore = max(required_kernelcore, corepages);
6494 }
6495
bde304bd
XQ
6496 /*
6497 * If kernelcore was not specified or kernelcore size is larger
6498 * than totalpages, there is no ZONE_MOVABLE.
6499 */
6500 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6501 goto out;
2a1e274a
MG
6502
6503 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6504 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6505
6506restart:
6507 /* Spread kernelcore memory as evenly as possible throughout nodes */
6508 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6509 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6510 unsigned long start_pfn, end_pfn;
6511
2a1e274a
MG
6512 /*
6513 * Recalculate kernelcore_node if the division per node
6514 * now exceeds what is necessary to satisfy the requested
6515 * amount of memory for the kernel
6516 */
6517 if (required_kernelcore < kernelcore_node)
6518 kernelcore_node = required_kernelcore / usable_nodes;
6519
6520 /*
6521 * As the map is walked, we track how much memory is usable
6522 * by the kernel using kernelcore_remaining. When it is
6523 * 0, the rest of the node is usable by ZONE_MOVABLE
6524 */
6525 kernelcore_remaining = kernelcore_node;
6526
6527 /* Go through each range of PFNs within this node */
c13291a5 6528 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6529 unsigned long size_pages;
6530
c13291a5 6531 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6532 if (start_pfn >= end_pfn)
6533 continue;
6534
6535 /* Account for what is only usable for kernelcore */
6536 if (start_pfn < usable_startpfn) {
6537 unsigned long kernel_pages;
6538 kernel_pages = min(end_pfn, usable_startpfn)
6539 - start_pfn;
6540
6541 kernelcore_remaining -= min(kernel_pages,
6542 kernelcore_remaining);
6543 required_kernelcore -= min(kernel_pages,
6544 required_kernelcore);
6545
6546 /* Continue if range is now fully accounted */
6547 if (end_pfn <= usable_startpfn) {
6548
6549 /*
6550 * Push zone_movable_pfn to the end so
6551 * that if we have to rebalance
6552 * kernelcore across nodes, we will
6553 * not double account here
6554 */
6555 zone_movable_pfn[nid] = end_pfn;
6556 continue;
6557 }
6558 start_pfn = usable_startpfn;
6559 }
6560
6561 /*
6562 * The usable PFN range for ZONE_MOVABLE is from
6563 * start_pfn->end_pfn. Calculate size_pages as the
6564 * number of pages used as kernelcore
6565 */
6566 size_pages = end_pfn - start_pfn;
6567 if (size_pages > kernelcore_remaining)
6568 size_pages = kernelcore_remaining;
6569 zone_movable_pfn[nid] = start_pfn + size_pages;
6570
6571 /*
6572 * Some kernelcore has been met, update counts and
6573 * break if the kernelcore for this node has been
b8af2941 6574 * satisfied
2a1e274a
MG
6575 */
6576 required_kernelcore -= min(required_kernelcore,
6577 size_pages);
6578 kernelcore_remaining -= size_pages;
6579 if (!kernelcore_remaining)
6580 break;
6581 }
6582 }
6583
6584 /*
6585 * If there is still required_kernelcore, we do another pass with one
6586 * less node in the count. This will push zone_movable_pfn[nid] further
6587 * along on the nodes that still have memory until kernelcore is
b8af2941 6588 * satisfied
2a1e274a
MG
6589 */
6590 usable_nodes--;
6591 if (usable_nodes && required_kernelcore > usable_nodes)
6592 goto restart;
6593
b2f3eebe 6594out2:
2a1e274a
MG
6595 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6596 for (nid = 0; nid < MAX_NUMNODES; nid++)
6597 zone_movable_pfn[nid] =
6598 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6599
20e6926d 6600out:
66918dcd 6601 /* restore the node_state */
4b0ef1fe 6602 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6603}
6604
4b0ef1fe
LJ
6605/* Any regular or high memory on that node ? */
6606static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6607{
37b07e41
LS
6608 enum zone_type zone_type;
6609
4b0ef1fe
LJ
6610 if (N_MEMORY == N_NORMAL_MEMORY)
6611 return;
6612
6613 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6614 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6615 if (populated_zone(zone)) {
4b0ef1fe
LJ
6616 node_set_state(nid, N_HIGH_MEMORY);
6617 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6618 zone_type <= ZONE_NORMAL)
6619 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6620 break;
6621 }
37b07e41 6622 }
37b07e41
LS
6623}
6624
c713216d
MG
6625/**
6626 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6627 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6628 *
6629 * This will call free_area_init_node() for each active node in the system.
7d018176 6630 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6631 * zone in each node and their holes is calculated. If the maximum PFN
6632 * between two adjacent zones match, it is assumed that the zone is empty.
6633 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6634 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6635 * starts where the previous one ended. For example, ZONE_DMA32 starts
6636 * at arch_max_dma_pfn.
6637 */
6638void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6639{
c13291a5
TH
6640 unsigned long start_pfn, end_pfn;
6641 int i, nid;
a6af2bc3 6642
c713216d
MG
6643 /* Record where the zone boundaries are */
6644 memset(arch_zone_lowest_possible_pfn, 0,
6645 sizeof(arch_zone_lowest_possible_pfn));
6646 memset(arch_zone_highest_possible_pfn, 0,
6647 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6648
6649 start_pfn = find_min_pfn_with_active_regions();
6650
6651 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6652 if (i == ZONE_MOVABLE)
6653 continue;
90cae1fe
OH
6654
6655 end_pfn = max(max_zone_pfn[i], start_pfn);
6656 arch_zone_lowest_possible_pfn[i] = start_pfn;
6657 arch_zone_highest_possible_pfn[i] = end_pfn;
6658
6659 start_pfn = end_pfn;
c713216d 6660 }
2a1e274a
MG
6661
6662 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6663 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6664 find_zone_movable_pfns_for_nodes();
c713216d 6665
c713216d 6666 /* Print out the zone ranges */
f88dfff5 6667 pr_info("Zone ranges:\n");
2a1e274a
MG
6668 for (i = 0; i < MAX_NR_ZONES; i++) {
6669 if (i == ZONE_MOVABLE)
6670 continue;
f88dfff5 6671 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6672 if (arch_zone_lowest_possible_pfn[i] ==
6673 arch_zone_highest_possible_pfn[i])
f88dfff5 6674 pr_cont("empty\n");
72f0ba02 6675 else
8d29e18a
JG
6676 pr_cont("[mem %#018Lx-%#018Lx]\n",
6677 (u64)arch_zone_lowest_possible_pfn[i]
6678 << PAGE_SHIFT,
6679 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6680 << PAGE_SHIFT) - 1);
2a1e274a
MG
6681 }
6682
6683 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6684 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6685 for (i = 0; i < MAX_NUMNODES; i++) {
6686 if (zone_movable_pfn[i])
8d29e18a
JG
6687 pr_info(" Node %d: %#018Lx\n", i,
6688 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6689 }
c713216d 6690
f2d52fe5 6691 /* Print out the early node map */
f88dfff5 6692 pr_info("Early memory node ranges\n");
c13291a5 6693 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6694 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6695 (u64)start_pfn << PAGE_SHIFT,
6696 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6697
6698 /* Initialise every node */
708614e6 6699 mminit_verify_pageflags_layout();
8ef82866 6700 setup_nr_node_ids();
c713216d
MG
6701 for_each_online_node(nid) {
6702 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6703 free_area_init_node(nid, NULL,
c713216d 6704 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6705
6706 /* Any memory on that node */
6707 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6708 node_set_state(nid, N_MEMORY);
6709 check_for_memory(pgdat, nid);
c713216d 6710 }
a4a3ede2 6711 zero_resv_unavail();
c713216d 6712}
2a1e274a 6713
7e63efef 6714static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6715{
6716 unsigned long long coremem;
6717 if (!p)
6718 return -EINVAL;
6719
6720 coremem = memparse(p, &p);
7e63efef 6721 *core = coremem >> PAGE_SHIFT;
2a1e274a 6722
7e63efef 6723 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6724 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6725
6726 return 0;
6727}
ed7ed365 6728
7e63efef
MG
6729/*
6730 * kernelcore=size sets the amount of memory for use for allocations that
6731 * cannot be reclaimed or migrated.
6732 */
6733static int __init cmdline_parse_kernelcore(char *p)
6734{
342332e6
TI
6735 /* parse kernelcore=mirror */
6736 if (parse_option_str(p, "mirror")) {
6737 mirrored_kernelcore = true;
6738 return 0;
6739 }
6740
7e63efef
MG
6741 return cmdline_parse_core(p, &required_kernelcore);
6742}
6743
6744/*
6745 * movablecore=size sets the amount of memory for use for allocations that
6746 * can be reclaimed or migrated.
6747 */
6748static int __init cmdline_parse_movablecore(char *p)
6749{
6750 return cmdline_parse_core(p, &required_movablecore);
6751}
6752
ed7ed365 6753early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6754early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6755
0ee332c1 6756#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6757
c3d5f5f0
JL
6758void adjust_managed_page_count(struct page *page, long count)
6759{
6760 spin_lock(&managed_page_count_lock);
6761 page_zone(page)->managed_pages += count;
6762 totalram_pages += count;
3dcc0571
JL
6763#ifdef CONFIG_HIGHMEM
6764 if (PageHighMem(page))
6765 totalhigh_pages += count;
6766#endif
c3d5f5f0
JL
6767 spin_unlock(&managed_page_count_lock);
6768}
3dcc0571 6769EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6770
11199692 6771unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6772{
11199692
JL
6773 void *pos;
6774 unsigned long pages = 0;
69afade7 6775
11199692
JL
6776 start = (void *)PAGE_ALIGN((unsigned long)start);
6777 end = (void *)((unsigned long)end & PAGE_MASK);
6778 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6779 if ((unsigned int)poison <= 0xFF)
11199692
JL
6780 memset(pos, poison, PAGE_SIZE);
6781 free_reserved_page(virt_to_page(pos));
69afade7
JL
6782 }
6783
6784 if (pages && s)
adb1fe9a
JP
6785 pr_info("Freeing %s memory: %ldK\n",
6786 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6787
6788 return pages;
6789}
11199692 6790EXPORT_SYMBOL(free_reserved_area);
69afade7 6791
cfa11e08
JL
6792#ifdef CONFIG_HIGHMEM
6793void free_highmem_page(struct page *page)
6794{
6795 __free_reserved_page(page);
6796 totalram_pages++;
7b4b2a0d 6797 page_zone(page)->managed_pages++;
cfa11e08
JL
6798 totalhigh_pages++;
6799}
6800#endif
6801
7ee3d4e8
JL
6802
6803void __init mem_init_print_info(const char *str)
6804{
6805 unsigned long physpages, codesize, datasize, rosize, bss_size;
6806 unsigned long init_code_size, init_data_size;
6807
6808 physpages = get_num_physpages();
6809 codesize = _etext - _stext;
6810 datasize = _edata - _sdata;
6811 rosize = __end_rodata - __start_rodata;
6812 bss_size = __bss_stop - __bss_start;
6813 init_data_size = __init_end - __init_begin;
6814 init_code_size = _einittext - _sinittext;
6815
6816 /*
6817 * Detect special cases and adjust section sizes accordingly:
6818 * 1) .init.* may be embedded into .data sections
6819 * 2) .init.text.* may be out of [__init_begin, __init_end],
6820 * please refer to arch/tile/kernel/vmlinux.lds.S.
6821 * 3) .rodata.* may be embedded into .text or .data sections.
6822 */
6823#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6824 do { \
6825 if (start <= pos && pos < end && size > adj) \
6826 size -= adj; \
6827 } while (0)
7ee3d4e8
JL
6828
6829 adj_init_size(__init_begin, __init_end, init_data_size,
6830 _sinittext, init_code_size);
6831 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6832 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6833 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6834 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6835
6836#undef adj_init_size
6837
756a025f 6838 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6839#ifdef CONFIG_HIGHMEM
756a025f 6840 ", %luK highmem"
7ee3d4e8 6841#endif
756a025f
JP
6842 "%s%s)\n",
6843 nr_free_pages() << (PAGE_SHIFT - 10),
6844 physpages << (PAGE_SHIFT - 10),
6845 codesize >> 10, datasize >> 10, rosize >> 10,
6846 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6847 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6848 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6849#ifdef CONFIG_HIGHMEM
756a025f 6850 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6851#endif
756a025f 6852 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6853}
6854
0e0b864e 6855/**
88ca3b94
RD
6856 * set_dma_reserve - set the specified number of pages reserved in the first zone
6857 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6858 *
013110a7 6859 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6860 * In the DMA zone, a significant percentage may be consumed by kernel image
6861 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6862 * function may optionally be used to account for unfreeable pages in the
6863 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6864 * smaller per-cpu batchsize.
0e0b864e
MG
6865 */
6866void __init set_dma_reserve(unsigned long new_dma_reserve)
6867{
6868 dma_reserve = new_dma_reserve;
6869}
6870
1da177e4
LT
6871void __init free_area_init(unsigned long *zones_size)
6872{
9109fb7b 6873 free_area_init_node(0, zones_size,
1da177e4 6874 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 6875 zero_resv_unavail();
1da177e4 6876}
1da177e4 6877
005fd4bb 6878static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6879{
1da177e4 6880
005fd4bb
SAS
6881 lru_add_drain_cpu(cpu);
6882 drain_pages(cpu);
9f8f2172 6883
005fd4bb
SAS
6884 /*
6885 * Spill the event counters of the dead processor
6886 * into the current processors event counters.
6887 * This artificially elevates the count of the current
6888 * processor.
6889 */
6890 vm_events_fold_cpu(cpu);
9f8f2172 6891
005fd4bb
SAS
6892 /*
6893 * Zero the differential counters of the dead processor
6894 * so that the vm statistics are consistent.
6895 *
6896 * This is only okay since the processor is dead and cannot
6897 * race with what we are doing.
6898 */
6899 cpu_vm_stats_fold(cpu);
6900 return 0;
1da177e4 6901}
1da177e4
LT
6902
6903void __init page_alloc_init(void)
6904{
005fd4bb
SAS
6905 int ret;
6906
6907 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6908 "mm/page_alloc:dead", NULL,
6909 page_alloc_cpu_dead);
6910 WARN_ON(ret < 0);
1da177e4
LT
6911}
6912
cb45b0e9 6913/*
34b10060 6914 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6915 * or min_free_kbytes changes.
6916 */
6917static void calculate_totalreserve_pages(void)
6918{
6919 struct pglist_data *pgdat;
6920 unsigned long reserve_pages = 0;
2f6726e5 6921 enum zone_type i, j;
cb45b0e9
HA
6922
6923 for_each_online_pgdat(pgdat) {
281e3726
MG
6924
6925 pgdat->totalreserve_pages = 0;
6926
cb45b0e9
HA
6927 for (i = 0; i < MAX_NR_ZONES; i++) {
6928 struct zone *zone = pgdat->node_zones + i;
3484b2de 6929 long max = 0;
cb45b0e9
HA
6930
6931 /* Find valid and maximum lowmem_reserve in the zone */
6932 for (j = i; j < MAX_NR_ZONES; j++) {
6933 if (zone->lowmem_reserve[j] > max)
6934 max = zone->lowmem_reserve[j];
6935 }
6936
41858966
MG
6937 /* we treat the high watermark as reserved pages. */
6938 max += high_wmark_pages(zone);
cb45b0e9 6939
b40da049
JL
6940 if (max > zone->managed_pages)
6941 max = zone->managed_pages;
a8d01437 6942
281e3726 6943 pgdat->totalreserve_pages += max;
a8d01437 6944
cb45b0e9
HA
6945 reserve_pages += max;
6946 }
6947 }
6948 totalreserve_pages = reserve_pages;
6949}
6950
1da177e4
LT
6951/*
6952 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6953 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6954 * has a correct pages reserved value, so an adequate number of
6955 * pages are left in the zone after a successful __alloc_pages().
6956 */
6957static void setup_per_zone_lowmem_reserve(void)
6958{
6959 struct pglist_data *pgdat;
2f6726e5 6960 enum zone_type j, idx;
1da177e4 6961
ec936fc5 6962 for_each_online_pgdat(pgdat) {
1da177e4
LT
6963 for (j = 0; j < MAX_NR_ZONES; j++) {
6964 struct zone *zone = pgdat->node_zones + j;
b40da049 6965 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6966
6967 zone->lowmem_reserve[j] = 0;
6968
2f6726e5
CL
6969 idx = j;
6970 while (idx) {
1da177e4
LT
6971 struct zone *lower_zone;
6972
2f6726e5
CL
6973 idx--;
6974
1da177e4
LT
6975 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6976 sysctl_lowmem_reserve_ratio[idx] = 1;
6977
6978 lower_zone = pgdat->node_zones + idx;
b40da049 6979 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6980 sysctl_lowmem_reserve_ratio[idx];
b40da049 6981 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6982 }
6983 }
6984 }
cb45b0e9
HA
6985
6986 /* update totalreserve_pages */
6987 calculate_totalreserve_pages();
1da177e4
LT
6988}
6989
cfd3da1e 6990static void __setup_per_zone_wmarks(void)
1da177e4
LT
6991{
6992 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6993 unsigned long lowmem_pages = 0;
6994 struct zone *zone;
6995 unsigned long flags;
6996
6997 /* Calculate total number of !ZONE_HIGHMEM pages */
6998 for_each_zone(zone) {
6999 if (!is_highmem(zone))
b40da049 7000 lowmem_pages += zone->managed_pages;
1da177e4
LT
7001 }
7002
7003 for_each_zone(zone) {
ac924c60
AM
7004 u64 tmp;
7005
1125b4e3 7006 spin_lock_irqsave(&zone->lock, flags);
b40da049 7007 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7008 do_div(tmp, lowmem_pages);
1da177e4
LT
7009 if (is_highmem(zone)) {
7010 /*
669ed175
NP
7011 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7012 * need highmem pages, so cap pages_min to a small
7013 * value here.
7014 *
41858966 7015 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7016 * deltas control asynch page reclaim, and so should
669ed175 7017 * not be capped for highmem.
1da177e4 7018 */
90ae8d67 7019 unsigned long min_pages;
1da177e4 7020
b40da049 7021 min_pages = zone->managed_pages / 1024;
90ae8d67 7022 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7023 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7024 } else {
669ed175
NP
7025 /*
7026 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7027 * proportionate to the zone's size.
7028 */
41858966 7029 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7030 }
7031
795ae7a0
JW
7032 /*
7033 * Set the kswapd watermarks distance according to the
7034 * scale factor in proportion to available memory, but
7035 * ensure a minimum size on small systems.
7036 */
7037 tmp = max_t(u64, tmp >> 2,
7038 mult_frac(zone->managed_pages,
7039 watermark_scale_factor, 10000));
7040
7041 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7042 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7043
1125b4e3 7044 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7045 }
cb45b0e9
HA
7046
7047 /* update totalreserve_pages */
7048 calculate_totalreserve_pages();
1da177e4
LT
7049}
7050
cfd3da1e
MG
7051/**
7052 * setup_per_zone_wmarks - called when min_free_kbytes changes
7053 * or when memory is hot-{added|removed}
7054 *
7055 * Ensures that the watermark[min,low,high] values for each zone are set
7056 * correctly with respect to min_free_kbytes.
7057 */
7058void setup_per_zone_wmarks(void)
7059{
b93e0f32
MH
7060 static DEFINE_SPINLOCK(lock);
7061
7062 spin_lock(&lock);
cfd3da1e 7063 __setup_per_zone_wmarks();
b93e0f32 7064 spin_unlock(&lock);
cfd3da1e
MG
7065}
7066
1da177e4
LT
7067/*
7068 * Initialise min_free_kbytes.
7069 *
7070 * For small machines we want it small (128k min). For large machines
7071 * we want it large (64MB max). But it is not linear, because network
7072 * bandwidth does not increase linearly with machine size. We use
7073 *
b8af2941 7074 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7075 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7076 *
7077 * which yields
7078 *
7079 * 16MB: 512k
7080 * 32MB: 724k
7081 * 64MB: 1024k
7082 * 128MB: 1448k
7083 * 256MB: 2048k
7084 * 512MB: 2896k
7085 * 1024MB: 4096k
7086 * 2048MB: 5792k
7087 * 4096MB: 8192k
7088 * 8192MB: 11584k
7089 * 16384MB: 16384k
7090 */
1b79acc9 7091int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7092{
7093 unsigned long lowmem_kbytes;
5f12733e 7094 int new_min_free_kbytes;
1da177e4
LT
7095
7096 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7097 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7098
7099 if (new_min_free_kbytes > user_min_free_kbytes) {
7100 min_free_kbytes = new_min_free_kbytes;
7101 if (min_free_kbytes < 128)
7102 min_free_kbytes = 128;
7103 if (min_free_kbytes > 65536)
7104 min_free_kbytes = 65536;
7105 } else {
7106 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7107 new_min_free_kbytes, user_min_free_kbytes);
7108 }
bc75d33f 7109 setup_per_zone_wmarks();
a6cccdc3 7110 refresh_zone_stat_thresholds();
1da177e4 7111 setup_per_zone_lowmem_reserve();
6423aa81
JK
7112
7113#ifdef CONFIG_NUMA
7114 setup_min_unmapped_ratio();
7115 setup_min_slab_ratio();
7116#endif
7117
1da177e4
LT
7118 return 0;
7119}
bc22af74 7120core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7121
7122/*
b8af2941 7123 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7124 * that we can call two helper functions whenever min_free_kbytes
7125 * changes.
7126 */
cccad5b9 7127int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7128 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7129{
da8c757b
HP
7130 int rc;
7131
7132 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7133 if (rc)
7134 return rc;
7135
5f12733e
MH
7136 if (write) {
7137 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7138 setup_per_zone_wmarks();
5f12733e 7139 }
1da177e4
LT
7140 return 0;
7141}
7142
795ae7a0
JW
7143int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7144 void __user *buffer, size_t *length, loff_t *ppos)
7145{
7146 int rc;
7147
7148 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7149 if (rc)
7150 return rc;
7151
7152 if (write)
7153 setup_per_zone_wmarks();
7154
7155 return 0;
7156}
7157
9614634f 7158#ifdef CONFIG_NUMA
6423aa81 7159static void setup_min_unmapped_ratio(void)
9614634f 7160{
6423aa81 7161 pg_data_t *pgdat;
9614634f 7162 struct zone *zone;
9614634f 7163
a5f5f91d 7164 for_each_online_pgdat(pgdat)
81cbcbc2 7165 pgdat->min_unmapped_pages = 0;
a5f5f91d 7166
9614634f 7167 for_each_zone(zone)
a5f5f91d 7168 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7169 sysctl_min_unmapped_ratio) / 100;
9614634f 7170}
0ff38490 7171
6423aa81
JK
7172
7173int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7174 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7175{
0ff38490
CL
7176 int rc;
7177
8d65af78 7178 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7179 if (rc)
7180 return rc;
7181
6423aa81
JK
7182 setup_min_unmapped_ratio();
7183
7184 return 0;
7185}
7186
7187static void setup_min_slab_ratio(void)
7188{
7189 pg_data_t *pgdat;
7190 struct zone *zone;
7191
a5f5f91d
MG
7192 for_each_online_pgdat(pgdat)
7193 pgdat->min_slab_pages = 0;
7194
0ff38490 7195 for_each_zone(zone)
a5f5f91d 7196 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7197 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7198}
7199
7200int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7201 void __user *buffer, size_t *length, loff_t *ppos)
7202{
7203 int rc;
7204
7205 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7206 if (rc)
7207 return rc;
7208
7209 setup_min_slab_ratio();
7210
0ff38490
CL
7211 return 0;
7212}
9614634f
CL
7213#endif
7214
1da177e4
LT
7215/*
7216 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7217 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7218 * whenever sysctl_lowmem_reserve_ratio changes.
7219 *
7220 * The reserve ratio obviously has absolutely no relation with the
41858966 7221 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7222 * if in function of the boot time zone sizes.
7223 */
cccad5b9 7224int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7225 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7226{
8d65af78 7227 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7228 setup_per_zone_lowmem_reserve();
7229 return 0;
7230}
7231
8ad4b1fb
RS
7232/*
7233 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7234 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7235 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7236 */
cccad5b9 7237int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7238 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7239{
7240 struct zone *zone;
7cd2b0a3 7241 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7242 int ret;
7243
7cd2b0a3
DR
7244 mutex_lock(&pcp_batch_high_lock);
7245 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7246
8d65af78 7247 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7248 if (!write || ret < 0)
7249 goto out;
7250
7251 /* Sanity checking to avoid pcp imbalance */
7252 if (percpu_pagelist_fraction &&
7253 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7254 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7255 ret = -EINVAL;
7256 goto out;
7257 }
7258
7259 /* No change? */
7260 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7261 goto out;
c8e251fa 7262
364df0eb 7263 for_each_populated_zone(zone) {
7cd2b0a3
DR
7264 unsigned int cpu;
7265
22a7f12b 7266 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7267 pageset_set_high_and_batch(zone,
7268 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7269 }
7cd2b0a3 7270out:
c8e251fa 7271 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7272 return ret;
8ad4b1fb
RS
7273}
7274
a9919c79 7275#ifdef CONFIG_NUMA
f034b5d4 7276int hashdist = HASHDIST_DEFAULT;
1da177e4 7277
1da177e4
LT
7278static int __init set_hashdist(char *str)
7279{
7280 if (!str)
7281 return 0;
7282 hashdist = simple_strtoul(str, &str, 0);
7283 return 1;
7284}
7285__setup("hashdist=", set_hashdist);
7286#endif
7287
f6f34b43
SD
7288#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7289/*
7290 * Returns the number of pages that arch has reserved but
7291 * is not known to alloc_large_system_hash().
7292 */
7293static unsigned long __init arch_reserved_kernel_pages(void)
7294{
7295 return 0;
7296}
7297#endif
7298
9017217b
PT
7299/*
7300 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7301 * machines. As memory size is increased the scale is also increased but at
7302 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7303 * quadruples the scale is increased by one, which means the size of hash table
7304 * only doubles, instead of quadrupling as well.
7305 * Because 32-bit systems cannot have large physical memory, where this scaling
7306 * makes sense, it is disabled on such platforms.
7307 */
7308#if __BITS_PER_LONG > 32
7309#define ADAPT_SCALE_BASE (64ul << 30)
7310#define ADAPT_SCALE_SHIFT 2
7311#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7312#endif
7313
1da177e4
LT
7314/*
7315 * allocate a large system hash table from bootmem
7316 * - it is assumed that the hash table must contain an exact power-of-2
7317 * quantity of entries
7318 * - limit is the number of hash buckets, not the total allocation size
7319 */
7320void *__init alloc_large_system_hash(const char *tablename,
7321 unsigned long bucketsize,
7322 unsigned long numentries,
7323 int scale,
7324 int flags,
7325 unsigned int *_hash_shift,
7326 unsigned int *_hash_mask,
31fe62b9
TB
7327 unsigned long low_limit,
7328 unsigned long high_limit)
1da177e4 7329{
31fe62b9 7330 unsigned long long max = high_limit;
1da177e4
LT
7331 unsigned long log2qty, size;
7332 void *table = NULL;
3749a8f0 7333 gfp_t gfp_flags;
1da177e4
LT
7334
7335 /* allow the kernel cmdline to have a say */
7336 if (!numentries) {
7337 /* round applicable memory size up to nearest megabyte */
04903664 7338 numentries = nr_kernel_pages;
f6f34b43 7339 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7340
7341 /* It isn't necessary when PAGE_SIZE >= 1MB */
7342 if (PAGE_SHIFT < 20)
7343 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7344
9017217b
PT
7345#if __BITS_PER_LONG > 32
7346 if (!high_limit) {
7347 unsigned long adapt;
7348
7349 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7350 adapt <<= ADAPT_SCALE_SHIFT)
7351 scale++;
7352 }
7353#endif
7354
1da177e4
LT
7355 /* limit to 1 bucket per 2^scale bytes of low memory */
7356 if (scale > PAGE_SHIFT)
7357 numentries >>= (scale - PAGE_SHIFT);
7358 else
7359 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7360
7361 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7362 if (unlikely(flags & HASH_SMALL)) {
7363 /* Makes no sense without HASH_EARLY */
7364 WARN_ON(!(flags & HASH_EARLY));
7365 if (!(numentries >> *_hash_shift)) {
7366 numentries = 1UL << *_hash_shift;
7367 BUG_ON(!numentries);
7368 }
7369 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7370 numentries = PAGE_SIZE / bucketsize;
1da177e4 7371 }
6e692ed3 7372 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7373
7374 /* limit allocation size to 1/16 total memory by default */
7375 if (max == 0) {
7376 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7377 do_div(max, bucketsize);
7378 }
074b8517 7379 max = min(max, 0x80000000ULL);
1da177e4 7380
31fe62b9
TB
7381 if (numentries < low_limit)
7382 numentries = low_limit;
1da177e4
LT
7383 if (numentries > max)
7384 numentries = max;
7385
f0d1b0b3 7386 log2qty = ilog2(numentries);
1da177e4 7387
3749a8f0 7388 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7389 do {
7390 size = bucketsize << log2qty;
ea1f5f37
PT
7391 if (flags & HASH_EARLY) {
7392 if (flags & HASH_ZERO)
7393 table = memblock_virt_alloc_nopanic(size, 0);
7394 else
7395 table = memblock_virt_alloc_raw(size, 0);
7396 } else if (hashdist) {
3749a8f0 7397 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7398 } else {
1037b83b
ED
7399 /*
7400 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7401 * some pages at the end of hash table which
7402 * alloc_pages_exact() automatically does
1037b83b 7403 */
264ef8a9 7404 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7405 table = alloc_pages_exact(size, gfp_flags);
7406 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7407 }
1da177e4
LT
7408 }
7409 } while (!table && size > PAGE_SIZE && --log2qty);
7410
7411 if (!table)
7412 panic("Failed to allocate %s hash table\n", tablename);
7413
1170532b
JP
7414 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7415 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7416
7417 if (_hash_shift)
7418 *_hash_shift = log2qty;
7419 if (_hash_mask)
7420 *_hash_mask = (1 << log2qty) - 1;
7421
7422 return table;
7423}
a117e66e 7424
a5d76b54 7425/*
80934513
MK
7426 * This function checks whether pageblock includes unmovable pages or not.
7427 * If @count is not zero, it is okay to include less @count unmovable pages
7428 *
b8af2941 7429 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7430 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7431 * check without lock_page also may miss some movable non-lru pages at
7432 * race condition. So you can't expect this function should be exact.
a5d76b54 7433 */
b023f468 7434bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7435 int migratetype,
b023f468 7436 bool skip_hwpoisoned_pages)
49ac8255
KH
7437{
7438 unsigned long pfn, iter, found;
47118af0 7439
49ac8255
KH
7440 /*
7441 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7442 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7443 */
7444 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7445 return false;
49ac8255 7446
4da2ce25
MH
7447 /*
7448 * CMA allocations (alloc_contig_range) really need to mark isolate
7449 * CMA pageblocks even when they are not movable in fact so consider
7450 * them movable here.
7451 */
7452 if (is_migrate_cma(migratetype) &&
7453 is_migrate_cma(get_pageblock_migratetype(page)))
7454 return false;
7455
49ac8255
KH
7456 pfn = page_to_pfn(page);
7457 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7458 unsigned long check = pfn + iter;
7459
29723fcc 7460 if (!pfn_valid_within(check))
49ac8255 7461 continue;
29723fcc 7462
49ac8255 7463 page = pfn_to_page(check);
c8721bbb 7464
d7ab3672
MH
7465 if (PageReserved(page))
7466 return true;
7467
c8721bbb
NH
7468 /*
7469 * Hugepages are not in LRU lists, but they're movable.
7470 * We need not scan over tail pages bacause we don't
7471 * handle each tail page individually in migration.
7472 */
7473 if (PageHuge(page)) {
7474 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7475 continue;
7476 }
7477
97d255c8
MK
7478 /*
7479 * We can't use page_count without pin a page
7480 * because another CPU can free compound page.
7481 * This check already skips compound tails of THP
0139aa7b 7482 * because their page->_refcount is zero at all time.
97d255c8 7483 */
fe896d18 7484 if (!page_ref_count(page)) {
49ac8255
KH
7485 if (PageBuddy(page))
7486 iter += (1 << page_order(page)) - 1;
7487 continue;
7488 }
97d255c8 7489
b023f468
WC
7490 /*
7491 * The HWPoisoned page may be not in buddy system, and
7492 * page_count() is not 0.
7493 */
7494 if (skip_hwpoisoned_pages && PageHWPoison(page))
7495 continue;
7496
0efadf48
YX
7497 if (__PageMovable(page))
7498 continue;
7499
49ac8255
KH
7500 if (!PageLRU(page))
7501 found++;
7502 /*
6b4f7799
JW
7503 * If there are RECLAIMABLE pages, we need to check
7504 * it. But now, memory offline itself doesn't call
7505 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7506 */
7507 /*
7508 * If the page is not RAM, page_count()should be 0.
7509 * we don't need more check. This is an _used_ not-movable page.
7510 *
7511 * The problematic thing here is PG_reserved pages. PG_reserved
7512 * is set to both of a memory hole page and a _used_ kernel
7513 * page at boot.
7514 */
7515 if (found > count)
80934513 7516 return true;
49ac8255 7517 }
80934513 7518 return false;
49ac8255
KH
7519}
7520
7521bool is_pageblock_removable_nolock(struct page *page)
7522{
656a0706
MH
7523 struct zone *zone;
7524 unsigned long pfn;
687875fb
MH
7525
7526 /*
7527 * We have to be careful here because we are iterating over memory
7528 * sections which are not zone aware so we might end up outside of
7529 * the zone but still within the section.
656a0706
MH
7530 * We have to take care about the node as well. If the node is offline
7531 * its NODE_DATA will be NULL - see page_zone.
687875fb 7532 */
656a0706
MH
7533 if (!node_online(page_to_nid(page)))
7534 return false;
7535
7536 zone = page_zone(page);
7537 pfn = page_to_pfn(page);
108bcc96 7538 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7539 return false;
7540
4da2ce25 7541 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7542}
0c0e6195 7543
080fe206 7544#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7545
7546static unsigned long pfn_max_align_down(unsigned long pfn)
7547{
7548 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7549 pageblock_nr_pages) - 1);
7550}
7551
7552static unsigned long pfn_max_align_up(unsigned long pfn)
7553{
7554 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7555 pageblock_nr_pages));
7556}
7557
041d3a8c 7558/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7559static int __alloc_contig_migrate_range(struct compact_control *cc,
7560 unsigned long start, unsigned long end)
041d3a8c
MN
7561{
7562 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7563 unsigned long nr_reclaimed;
041d3a8c
MN
7564 unsigned long pfn = start;
7565 unsigned int tries = 0;
7566 int ret = 0;
7567
be49a6e1 7568 migrate_prep();
041d3a8c 7569
bb13ffeb 7570 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7571 if (fatal_signal_pending(current)) {
7572 ret = -EINTR;
7573 break;
7574 }
7575
bb13ffeb
MG
7576 if (list_empty(&cc->migratepages)) {
7577 cc->nr_migratepages = 0;
edc2ca61 7578 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7579 if (!pfn) {
7580 ret = -EINTR;
7581 break;
7582 }
7583 tries = 0;
7584 } else if (++tries == 5) {
7585 ret = ret < 0 ? ret : -EBUSY;
7586 break;
7587 }
7588
beb51eaa
MK
7589 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7590 &cc->migratepages);
7591 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7592
9c620e2b 7593 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7594 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7595 }
2a6f5124
SP
7596 if (ret < 0) {
7597 putback_movable_pages(&cc->migratepages);
7598 return ret;
7599 }
7600 return 0;
041d3a8c
MN
7601}
7602
7603/**
7604 * alloc_contig_range() -- tries to allocate given range of pages
7605 * @start: start PFN to allocate
7606 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7607 * @migratetype: migratetype of the underlaying pageblocks (either
7608 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7609 * in range must have the same migratetype and it must
7610 * be either of the two.
ca96b625 7611 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7612 *
7613 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7614 * aligned, however it's the caller's responsibility to guarantee that
7615 * we are the only thread that changes migrate type of pageblocks the
7616 * pages fall in.
7617 *
7618 * The PFN range must belong to a single zone.
7619 *
7620 * Returns zero on success or negative error code. On success all
7621 * pages which PFN is in [start, end) are allocated for the caller and
7622 * need to be freed with free_contig_range().
7623 */
0815f3d8 7624int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7625 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7626{
041d3a8c 7627 unsigned long outer_start, outer_end;
d00181b9
KS
7628 unsigned int order;
7629 int ret = 0;
041d3a8c 7630
bb13ffeb
MG
7631 struct compact_control cc = {
7632 .nr_migratepages = 0,
7633 .order = -1,
7634 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7635 .mode = MIGRATE_SYNC,
bb13ffeb 7636 .ignore_skip_hint = true,
2583d671 7637 .no_set_skip_hint = true,
7dea19f9 7638 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7639 };
7640 INIT_LIST_HEAD(&cc.migratepages);
7641
041d3a8c
MN
7642 /*
7643 * What we do here is we mark all pageblocks in range as
7644 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7645 * have different sizes, and due to the way page allocator
7646 * work, we align the range to biggest of the two pages so
7647 * that page allocator won't try to merge buddies from
7648 * different pageblocks and change MIGRATE_ISOLATE to some
7649 * other migration type.
7650 *
7651 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7652 * migrate the pages from an unaligned range (ie. pages that
7653 * we are interested in). This will put all the pages in
7654 * range back to page allocator as MIGRATE_ISOLATE.
7655 *
7656 * When this is done, we take the pages in range from page
7657 * allocator removing them from the buddy system. This way
7658 * page allocator will never consider using them.
7659 *
7660 * This lets us mark the pageblocks back as
7661 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7662 * aligned range but not in the unaligned, original range are
7663 * put back to page allocator so that buddy can use them.
7664 */
7665
7666 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7667 pfn_max_align_up(end), migratetype,
7668 false);
041d3a8c 7669 if (ret)
86a595f9 7670 return ret;
041d3a8c 7671
8ef5849f
JK
7672 /*
7673 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7674 * So, just fall through. test_pages_isolated() has a tracepoint
7675 * which will report the busy page.
7676 *
7677 * It is possible that busy pages could become available before
7678 * the call to test_pages_isolated, and the range will actually be
7679 * allocated. So, if we fall through be sure to clear ret so that
7680 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7681 */
bb13ffeb 7682 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7683 if (ret && ret != -EBUSY)
041d3a8c 7684 goto done;
63cd4489 7685 ret =0;
041d3a8c
MN
7686
7687 /*
7688 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7689 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7690 * more, all pages in [start, end) are free in page allocator.
7691 * What we are going to do is to allocate all pages from
7692 * [start, end) (that is remove them from page allocator).
7693 *
7694 * The only problem is that pages at the beginning and at the
7695 * end of interesting range may be not aligned with pages that
7696 * page allocator holds, ie. they can be part of higher order
7697 * pages. Because of this, we reserve the bigger range and
7698 * once this is done free the pages we are not interested in.
7699 *
7700 * We don't have to hold zone->lock here because the pages are
7701 * isolated thus they won't get removed from buddy.
7702 */
7703
7704 lru_add_drain_all();
510f5507 7705 drain_all_pages(cc.zone);
041d3a8c
MN
7706
7707 order = 0;
7708 outer_start = start;
7709 while (!PageBuddy(pfn_to_page(outer_start))) {
7710 if (++order >= MAX_ORDER) {
8ef5849f
JK
7711 outer_start = start;
7712 break;
041d3a8c
MN
7713 }
7714 outer_start &= ~0UL << order;
7715 }
7716
8ef5849f
JK
7717 if (outer_start != start) {
7718 order = page_order(pfn_to_page(outer_start));
7719
7720 /*
7721 * outer_start page could be small order buddy page and
7722 * it doesn't include start page. Adjust outer_start
7723 * in this case to report failed page properly
7724 * on tracepoint in test_pages_isolated()
7725 */
7726 if (outer_start + (1UL << order) <= start)
7727 outer_start = start;
7728 }
7729
041d3a8c 7730 /* Make sure the range is really isolated. */
b023f468 7731 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7732 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7733 __func__, outer_start, end);
041d3a8c
MN
7734 ret = -EBUSY;
7735 goto done;
7736 }
7737
49f223a9 7738 /* Grab isolated pages from freelists. */
bb13ffeb 7739 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7740 if (!outer_end) {
7741 ret = -EBUSY;
7742 goto done;
7743 }
7744
7745 /* Free head and tail (if any) */
7746 if (start != outer_start)
7747 free_contig_range(outer_start, start - outer_start);
7748 if (end != outer_end)
7749 free_contig_range(end, outer_end - end);
7750
7751done:
7752 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7753 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7754 return ret;
7755}
7756
7757void free_contig_range(unsigned long pfn, unsigned nr_pages)
7758{
bcc2b02f
MS
7759 unsigned int count = 0;
7760
7761 for (; nr_pages--; pfn++) {
7762 struct page *page = pfn_to_page(pfn);
7763
7764 count += page_count(page) != 1;
7765 __free_page(page);
7766 }
7767 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7768}
7769#endif
7770
4ed7e022 7771#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7772/*
7773 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7774 * page high values need to be recalulated.
7775 */
4ed7e022
JL
7776void __meminit zone_pcp_update(struct zone *zone)
7777{
0a647f38 7778 unsigned cpu;
c8e251fa 7779 mutex_lock(&pcp_batch_high_lock);
0a647f38 7780 for_each_possible_cpu(cpu)
169f6c19
CS
7781 pageset_set_high_and_batch(zone,
7782 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7783 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7784}
7785#endif
7786
340175b7
JL
7787void zone_pcp_reset(struct zone *zone)
7788{
7789 unsigned long flags;
5a883813
MK
7790 int cpu;
7791 struct per_cpu_pageset *pset;
340175b7
JL
7792
7793 /* avoid races with drain_pages() */
7794 local_irq_save(flags);
7795 if (zone->pageset != &boot_pageset) {
5a883813
MK
7796 for_each_online_cpu(cpu) {
7797 pset = per_cpu_ptr(zone->pageset, cpu);
7798 drain_zonestat(zone, pset);
7799 }
340175b7
JL
7800 free_percpu(zone->pageset);
7801 zone->pageset = &boot_pageset;
7802 }
7803 local_irq_restore(flags);
7804}
7805
6dcd73d7 7806#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7807/*
b9eb6319
JK
7808 * All pages in the range must be in a single zone and isolated
7809 * before calling this.
0c0e6195
KH
7810 */
7811void
7812__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7813{
7814 struct page *page;
7815 struct zone *zone;
7aeb09f9 7816 unsigned int order, i;
0c0e6195
KH
7817 unsigned long pfn;
7818 unsigned long flags;
7819 /* find the first valid pfn */
7820 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7821 if (pfn_valid(pfn))
7822 break;
7823 if (pfn == end_pfn)
7824 return;
2d070eab 7825 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7826 zone = page_zone(pfn_to_page(pfn));
7827 spin_lock_irqsave(&zone->lock, flags);
7828 pfn = start_pfn;
7829 while (pfn < end_pfn) {
7830 if (!pfn_valid(pfn)) {
7831 pfn++;
7832 continue;
7833 }
7834 page = pfn_to_page(pfn);
b023f468
WC
7835 /*
7836 * The HWPoisoned page may be not in buddy system, and
7837 * page_count() is not 0.
7838 */
7839 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7840 pfn++;
7841 SetPageReserved(page);
7842 continue;
7843 }
7844
0c0e6195
KH
7845 BUG_ON(page_count(page));
7846 BUG_ON(!PageBuddy(page));
7847 order = page_order(page);
7848#ifdef CONFIG_DEBUG_VM
1170532b
JP
7849 pr_info("remove from free list %lx %d %lx\n",
7850 pfn, 1 << order, end_pfn);
0c0e6195
KH
7851#endif
7852 list_del(&page->lru);
7853 rmv_page_order(page);
7854 zone->free_area[order].nr_free--;
0c0e6195
KH
7855 for (i = 0; i < (1 << order); i++)
7856 SetPageReserved((page+i));
7857 pfn += (1 << order);
7858 }
7859 spin_unlock_irqrestore(&zone->lock, flags);
7860}
7861#endif
8d22ba1b 7862
8d22ba1b
WF
7863bool is_free_buddy_page(struct page *page)
7864{
7865 struct zone *zone = page_zone(page);
7866 unsigned long pfn = page_to_pfn(page);
7867 unsigned long flags;
7aeb09f9 7868 unsigned int order;
8d22ba1b
WF
7869
7870 spin_lock_irqsave(&zone->lock, flags);
7871 for (order = 0; order < MAX_ORDER; order++) {
7872 struct page *page_head = page - (pfn & ((1 << order) - 1));
7873
7874 if (PageBuddy(page_head) && page_order(page_head) >= order)
7875 break;
7876 }
7877 spin_unlock_irqrestore(&zone->lock, flags);
7878
7879 return order < MAX_ORDER;
7880}