]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
thp: fix deadlock in split_huge_pmd()
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
311 /* Always populate low zones for address-contrained allocations */
312 if (zone_end < pgdat_end_pfn(pgdat))
313 return true;
314
315 /* Initialise at least 2G of the highest zone */
316 (*nr_initialised)++;
317 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
318 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
319 pgdat->first_deferred_pfn = pfn;
320 return false;
321 }
322
323 return true;
324}
325#else
326static inline void reset_deferred_meminit(pg_data_t *pgdat)
327{
328}
329
330static inline bool early_page_uninitialised(unsigned long pfn)
331{
332 return false;
333}
334
7e18adb4
MG
335static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
336{
337 return false;
338}
339
3a80a7fa
MG
340static inline bool update_defer_init(pg_data_t *pgdat,
341 unsigned long pfn, unsigned long zone_end,
342 unsigned long *nr_initialised)
343{
344 return true;
345}
346#endif
347
348
ee6f509c 349void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 350{
5d0f3f72
KM
351 if (unlikely(page_group_by_mobility_disabled &&
352 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
353 migratetype = MIGRATE_UNMOVABLE;
354
b2a0ac88
MG
355 set_pageblock_flags_group(page, (unsigned long)migratetype,
356 PB_migrate, PB_migrate_end);
357}
358
13e7444b 359#ifdef CONFIG_DEBUG_VM
c6a57e19 360static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 361{
bdc8cb98
DH
362 int ret = 0;
363 unsigned seq;
364 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 365 unsigned long sp, start_pfn;
c6a57e19 366
bdc8cb98
DH
367 do {
368 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
369 start_pfn = zone->zone_start_pfn;
370 sp = zone->spanned_pages;
108bcc96 371 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
372 ret = 1;
373 } while (zone_span_seqretry(zone, seq));
374
b5e6a5a2 375 if (ret)
613813e8
DH
376 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
377 pfn, zone_to_nid(zone), zone->name,
378 start_pfn, start_pfn + sp);
b5e6a5a2 379
bdc8cb98 380 return ret;
c6a57e19
DH
381}
382
383static int page_is_consistent(struct zone *zone, struct page *page)
384{
14e07298 385 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 386 return 0;
1da177e4 387 if (zone != page_zone(page))
c6a57e19
DH
388 return 0;
389
390 return 1;
391}
392/*
393 * Temporary debugging check for pages not lying within a given zone.
394 */
395static int bad_range(struct zone *zone, struct page *page)
396{
397 if (page_outside_zone_boundaries(zone, page))
1da177e4 398 return 1;
c6a57e19
DH
399 if (!page_is_consistent(zone, page))
400 return 1;
401
1da177e4
LT
402 return 0;
403}
13e7444b
NP
404#else
405static inline int bad_range(struct zone *zone, struct page *page)
406{
407 return 0;
408}
409#endif
410
d230dec1
KS
411static void bad_page(struct page *page, const char *reason,
412 unsigned long bad_flags)
1da177e4 413{
d936cf9b
HD
414 static unsigned long resume;
415 static unsigned long nr_shown;
416 static unsigned long nr_unshown;
417
2a7684a2
WF
418 /* Don't complain about poisoned pages */
419 if (PageHWPoison(page)) {
22b751c3 420 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
421 return;
422 }
423
d936cf9b
HD
424 /*
425 * Allow a burst of 60 reports, then keep quiet for that minute;
426 * or allow a steady drip of one report per second.
427 */
428 if (nr_shown == 60) {
429 if (time_before(jiffies, resume)) {
430 nr_unshown++;
431 goto out;
432 }
433 if (nr_unshown) {
ff8e8116 434 pr_alert(
1e9e6365 435 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
436 nr_unshown);
437 nr_unshown = 0;
438 }
439 nr_shown = 0;
440 }
441 if (nr_shown++ == 0)
442 resume = jiffies + 60 * HZ;
443
ff8e8116 444 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 445 current->comm, page_to_pfn(page));
ff8e8116
VB
446 __dump_page(page, reason);
447 bad_flags &= page->flags;
448 if (bad_flags)
449 pr_alert("bad because of flags: %#lx(%pGp)\n",
450 bad_flags, &bad_flags);
4e462112 451 dump_page_owner(page);
3dc14741 452
4f31888c 453 print_modules();
1da177e4 454 dump_stack();
d936cf9b 455out:
8cc3b392 456 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 457 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 458 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
459}
460
1da177e4
LT
461/*
462 * Higher-order pages are called "compound pages". They are structured thusly:
463 *
1d798ca3 464 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 465 *
1d798ca3
KS
466 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
467 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 468 *
1d798ca3
KS
469 * The first tail page's ->compound_dtor holds the offset in array of compound
470 * page destructors. See compound_page_dtors.
1da177e4 471 *
1d798ca3 472 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 473 * This usage means that zero-order pages may not be compound.
1da177e4 474 */
d98c7a09 475
9a982250 476void free_compound_page(struct page *page)
d98c7a09 477{
d85f3385 478 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
479}
480
d00181b9 481void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
482{
483 int i;
484 int nr_pages = 1 << order;
485
f1e61557 486 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
487 set_compound_order(page, order);
488 __SetPageHead(page);
489 for (i = 1; i < nr_pages; i++) {
490 struct page *p = page + i;
58a84aa9 491 set_page_count(p, 0);
1c290f64 492 p->mapping = TAIL_MAPPING;
1d798ca3 493 set_compound_head(p, page);
18229df5 494 }
53f9263b 495 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
496}
497
c0a32fc5
SG
498#ifdef CONFIG_DEBUG_PAGEALLOC
499unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
500bool _debug_pagealloc_enabled __read_mostly
501 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 502EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
503bool _debug_guardpage_enabled __read_mostly;
504
031bc574
JK
505static int __init early_debug_pagealloc(char *buf)
506{
507 if (!buf)
508 return -EINVAL;
509
510 if (strcmp(buf, "on") == 0)
511 _debug_pagealloc_enabled = true;
512
ea6eabb0
CB
513 if (strcmp(buf, "off") == 0)
514 _debug_pagealloc_enabled = false;
515
031bc574
JK
516 return 0;
517}
518early_param("debug_pagealloc", early_debug_pagealloc);
519
e30825f1
JK
520static bool need_debug_guardpage(void)
521{
031bc574
JK
522 /* If we don't use debug_pagealloc, we don't need guard page */
523 if (!debug_pagealloc_enabled())
524 return false;
525
e30825f1
JK
526 return true;
527}
528
529static void init_debug_guardpage(void)
530{
031bc574
JK
531 if (!debug_pagealloc_enabled())
532 return;
533
e30825f1
JK
534 _debug_guardpage_enabled = true;
535}
536
537struct page_ext_operations debug_guardpage_ops = {
538 .need = need_debug_guardpage,
539 .init = init_debug_guardpage,
540};
c0a32fc5
SG
541
542static int __init debug_guardpage_minorder_setup(char *buf)
543{
544 unsigned long res;
545
546 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 547 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
548 return 0;
549 }
550 _debug_guardpage_minorder = res;
1170532b 551 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
552 return 0;
553}
554__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
555
2847cf95
JK
556static inline void set_page_guard(struct zone *zone, struct page *page,
557 unsigned int order, int migratetype)
c0a32fc5 558{
e30825f1
JK
559 struct page_ext *page_ext;
560
561 if (!debug_guardpage_enabled())
562 return;
563
564 page_ext = lookup_page_ext(page);
565 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
566
2847cf95
JK
567 INIT_LIST_HEAD(&page->lru);
568 set_page_private(page, order);
569 /* Guard pages are not available for any usage */
570 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
571}
572
2847cf95
JK
573static inline void clear_page_guard(struct zone *zone, struct page *page,
574 unsigned int order, int migratetype)
c0a32fc5 575{
e30825f1
JK
576 struct page_ext *page_ext;
577
578 if (!debug_guardpage_enabled())
579 return;
580
581 page_ext = lookup_page_ext(page);
582 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
583
2847cf95
JK
584 set_page_private(page, 0);
585 if (!is_migrate_isolate(migratetype))
586 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
587}
588#else
e30825f1 589struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
590static inline void set_page_guard(struct zone *zone, struct page *page,
591 unsigned int order, int migratetype) {}
592static inline void clear_page_guard(struct zone *zone, struct page *page,
593 unsigned int order, int migratetype) {}
c0a32fc5
SG
594#endif
595
7aeb09f9 596static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 597{
4c21e2f2 598 set_page_private(page, order);
676165a8 599 __SetPageBuddy(page);
1da177e4
LT
600}
601
602static inline void rmv_page_order(struct page *page)
603{
676165a8 604 __ClearPageBuddy(page);
4c21e2f2 605 set_page_private(page, 0);
1da177e4
LT
606}
607
1da177e4
LT
608/*
609 * This function checks whether a page is free && is the buddy
610 * we can do coalesce a page and its buddy if
13e7444b 611 * (a) the buddy is not in a hole &&
676165a8 612 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
613 * (c) a page and its buddy have the same order &&
614 * (d) a page and its buddy are in the same zone.
676165a8 615 *
cf6fe945
WSH
616 * For recording whether a page is in the buddy system, we set ->_mapcount
617 * PAGE_BUDDY_MAPCOUNT_VALUE.
618 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
619 * serialized by zone->lock.
1da177e4 620 *
676165a8 621 * For recording page's order, we use page_private(page).
1da177e4 622 */
cb2b95e1 623static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 624 unsigned int order)
1da177e4 625{
14e07298 626 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 627 return 0;
13e7444b 628
c0a32fc5 629 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
630 if (page_zone_id(page) != page_zone_id(buddy))
631 return 0;
632
4c5018ce
WY
633 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
634
c0a32fc5
SG
635 return 1;
636 }
637
cb2b95e1 638 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
639 /*
640 * zone check is done late to avoid uselessly
641 * calculating zone/node ids for pages that could
642 * never merge.
643 */
644 if (page_zone_id(page) != page_zone_id(buddy))
645 return 0;
646
4c5018ce
WY
647 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
648
6aa3001b 649 return 1;
676165a8 650 }
6aa3001b 651 return 0;
1da177e4
LT
652}
653
654/*
655 * Freeing function for a buddy system allocator.
656 *
657 * The concept of a buddy system is to maintain direct-mapped table
658 * (containing bit values) for memory blocks of various "orders".
659 * The bottom level table contains the map for the smallest allocatable
660 * units of memory (here, pages), and each level above it describes
661 * pairs of units from the levels below, hence, "buddies".
662 * At a high level, all that happens here is marking the table entry
663 * at the bottom level available, and propagating the changes upward
664 * as necessary, plus some accounting needed to play nicely with other
665 * parts of the VM system.
666 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
667 * free pages of length of (1 << order) and marked with _mapcount
668 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
669 * field.
1da177e4 670 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
671 * other. That is, if we allocate a small block, and both were
672 * free, the remainder of the region must be split into blocks.
1da177e4 673 * If a block is freed, and its buddy is also free, then this
5f63b720 674 * triggers coalescing into a block of larger size.
1da177e4 675 *
6d49e352 676 * -- nyc
1da177e4
LT
677 */
678
48db57f8 679static inline void __free_one_page(struct page *page,
dc4b0caf 680 unsigned long pfn,
ed0ae21d
MG
681 struct zone *zone, unsigned int order,
682 int migratetype)
1da177e4
LT
683{
684 unsigned long page_idx;
6dda9d55 685 unsigned long combined_idx;
43506fad 686 unsigned long uninitialized_var(buddy_idx);
6dda9d55 687 struct page *buddy;
d00181b9 688 unsigned int max_order = MAX_ORDER;
1da177e4 689
d29bb978 690 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 691 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 692
ed0ae21d 693 VM_BUG_ON(migratetype == -1);
3c605096
JK
694 if (is_migrate_isolate(migratetype)) {
695 /*
696 * We restrict max order of merging to prevent merge
697 * between freepages on isolate pageblock and normal
698 * pageblock. Without this, pageblock isolation
699 * could cause incorrect freepage accounting.
700 */
d00181b9 701 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 702 } else {
8f82b55d 703 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 704 }
ed0ae21d 705
3c605096 706 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
3c605096 711 while (order < max_order - 1) {
43506fad
KC
712 buddy_idx = __find_buddy_index(page_idx, order);
713 buddy = page + (buddy_idx - page_idx);
cb2b95e1 714 if (!page_is_buddy(page, buddy, order))
3c82d0ce 715 break;
c0a32fc5
SG
716 /*
717 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
718 * merge with it and move up one order.
719 */
720 if (page_is_guard(buddy)) {
2847cf95 721 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
722 } else {
723 list_del(&buddy->lru);
724 zone->free_area[order].nr_free--;
725 rmv_page_order(buddy);
726 }
43506fad 727 combined_idx = buddy_idx & page_idx;
1da177e4
LT
728 page = page + (combined_idx - page_idx);
729 page_idx = combined_idx;
730 order++;
731 }
732 set_page_order(page, order);
6dda9d55
CZ
733
734 /*
735 * If this is not the largest possible page, check if the buddy
736 * of the next-highest order is free. If it is, it's possible
737 * that pages are being freed that will coalesce soon. In case,
738 * that is happening, add the free page to the tail of the list
739 * so it's less likely to be used soon and more likely to be merged
740 * as a higher order page
741 */
b7f50cfa 742 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 743 struct page *higher_page, *higher_buddy;
43506fad
KC
744 combined_idx = buddy_idx & page_idx;
745 higher_page = page + (combined_idx - page_idx);
746 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 747 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
748 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
749 list_add_tail(&page->lru,
750 &zone->free_area[order].free_list[migratetype]);
751 goto out;
752 }
753 }
754
755 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
756out:
1da177e4
LT
757 zone->free_area[order].nr_free++;
758}
759
224abf92 760static inline int free_pages_check(struct page *page)
1da177e4 761{
d230dec1 762 const char *bad_reason = NULL;
f0b791a3
DH
763 unsigned long bad_flags = 0;
764
53f9263b 765 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
766 bad_reason = "nonzero mapcount";
767 if (unlikely(page->mapping != NULL))
768 bad_reason = "non-NULL mapping";
fe896d18 769 if (unlikely(page_ref_count(page) != 0))
f0b791a3
DH
770 bad_reason = "nonzero _count";
771 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
772 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
773 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
774 }
9edad6ea
JW
775#ifdef CONFIG_MEMCG
776 if (unlikely(page->mem_cgroup))
777 bad_reason = "page still charged to cgroup";
778#endif
f0b791a3
DH
779 if (unlikely(bad_reason)) {
780 bad_page(page, bad_reason, bad_flags);
79f4b7bf 781 return 1;
8cc3b392 782 }
90572890 783 page_cpupid_reset_last(page);
79f4b7bf
HD
784 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
785 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
786 return 0;
1da177e4
LT
787}
788
789/*
5f8dcc21 790 * Frees a number of pages from the PCP lists
1da177e4 791 * Assumes all pages on list are in same zone, and of same order.
207f36ee 792 * count is the number of pages to free.
1da177e4
LT
793 *
794 * If the zone was previously in an "all pages pinned" state then look to
795 * see if this freeing clears that state.
796 *
797 * And clear the zone's pages_scanned counter, to hold off the "all pages are
798 * pinned" detection logic.
799 */
5f8dcc21
MG
800static void free_pcppages_bulk(struct zone *zone, int count,
801 struct per_cpu_pages *pcp)
1da177e4 802{
5f8dcc21 803 int migratetype = 0;
a6f9edd6 804 int batch_free = 0;
72853e29 805 int to_free = count;
0d5d823a 806 unsigned long nr_scanned;
5f8dcc21 807
c54ad30c 808 spin_lock(&zone->lock);
0d5d823a
MG
809 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
810 if (nr_scanned)
811 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 812
72853e29 813 while (to_free) {
48db57f8 814 struct page *page;
5f8dcc21
MG
815 struct list_head *list;
816
817 /*
a6f9edd6
MG
818 * Remove pages from lists in a round-robin fashion. A
819 * batch_free count is maintained that is incremented when an
820 * empty list is encountered. This is so more pages are freed
821 * off fuller lists instead of spinning excessively around empty
822 * lists
5f8dcc21
MG
823 */
824 do {
a6f9edd6 825 batch_free++;
5f8dcc21
MG
826 if (++migratetype == MIGRATE_PCPTYPES)
827 migratetype = 0;
828 list = &pcp->lists[migratetype];
829 } while (list_empty(list));
48db57f8 830
1d16871d
NK
831 /* This is the only non-empty list. Free them all. */
832 if (batch_free == MIGRATE_PCPTYPES)
833 batch_free = to_free;
834
a6f9edd6 835 do {
770c8aaa
BZ
836 int mt; /* migratetype of the to-be-freed page */
837
a16601c5 838 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
839 /* must delete as __free_one_page list manipulates */
840 list_del(&page->lru);
aa016d14 841
bb14c2c7 842 mt = get_pcppage_migratetype(page);
aa016d14
VB
843 /* MIGRATE_ISOLATE page should not go to pcplists */
844 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
845 /* Pageblock could have been isolated meanwhile */
8f82b55d 846 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 847 mt = get_pageblock_migratetype(page);
51bb1a40 848
dc4b0caf 849 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 850 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 851 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 852 }
c54ad30c 853 spin_unlock(&zone->lock);
1da177e4
LT
854}
855
dc4b0caf
MG
856static void free_one_page(struct zone *zone,
857 struct page *page, unsigned long pfn,
7aeb09f9 858 unsigned int order,
ed0ae21d 859 int migratetype)
1da177e4 860{
0d5d823a 861 unsigned long nr_scanned;
006d22d9 862 spin_lock(&zone->lock);
0d5d823a
MG
863 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
864 if (nr_scanned)
865 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 866
ad53f92e
JK
867 if (unlikely(has_isolate_pageblock(zone) ||
868 is_migrate_isolate(migratetype))) {
869 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 870 }
dc4b0caf 871 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 872 spin_unlock(&zone->lock);
48db57f8
NP
873}
874
81422f29
KS
875static int free_tail_pages_check(struct page *head_page, struct page *page)
876{
1d798ca3
KS
877 int ret = 1;
878
879 /*
880 * We rely page->lru.next never has bit 0 set, unless the page
881 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
882 */
883 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
884
885 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
886 ret = 0;
887 goto out;
888 }
9a982250
KS
889 switch (page - head_page) {
890 case 1:
891 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
892 if (unlikely(compound_mapcount(page))) {
893 bad_page(page, "nonzero compound_mapcount", 0);
894 goto out;
895 }
9a982250
KS
896 break;
897 case 2:
898 /*
899 * the second tail page: ->mapping is
900 * page_deferred_list().next -- ignore value.
901 */
902 break;
903 default:
904 if (page->mapping != TAIL_MAPPING) {
905 bad_page(page, "corrupted mapping in tail page", 0);
906 goto out;
907 }
908 break;
1c290f64 909 }
81422f29
KS
910 if (unlikely(!PageTail(page))) {
911 bad_page(page, "PageTail not set", 0);
1d798ca3 912 goto out;
81422f29 913 }
1d798ca3
KS
914 if (unlikely(compound_head(page) != head_page)) {
915 bad_page(page, "compound_head not consistent", 0);
916 goto out;
81422f29 917 }
1d798ca3
KS
918 ret = 0;
919out:
1c290f64 920 page->mapping = NULL;
1d798ca3
KS
921 clear_compound_head(page);
922 return ret;
81422f29
KS
923}
924
1e8ce83c
RH
925static void __meminit __init_single_page(struct page *page, unsigned long pfn,
926 unsigned long zone, int nid)
927{
1e8ce83c 928 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
929 init_page_count(page);
930 page_mapcount_reset(page);
931 page_cpupid_reset_last(page);
1e8ce83c 932
1e8ce83c
RH
933 INIT_LIST_HEAD(&page->lru);
934#ifdef WANT_PAGE_VIRTUAL
935 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
936 if (!is_highmem_idx(zone))
937 set_page_address(page, __va(pfn << PAGE_SHIFT));
938#endif
939}
940
941static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
942 int nid)
943{
944 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
945}
946
7e18adb4
MG
947#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
948static void init_reserved_page(unsigned long pfn)
949{
950 pg_data_t *pgdat;
951 int nid, zid;
952
953 if (!early_page_uninitialised(pfn))
954 return;
955
956 nid = early_pfn_to_nid(pfn);
957 pgdat = NODE_DATA(nid);
958
959 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
960 struct zone *zone = &pgdat->node_zones[zid];
961
962 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
963 break;
964 }
965 __init_single_pfn(pfn, zid, nid);
966}
967#else
968static inline void init_reserved_page(unsigned long pfn)
969{
970}
971#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
972
92923ca3
NZ
973/*
974 * Initialised pages do not have PageReserved set. This function is
975 * called for each range allocated by the bootmem allocator and
976 * marks the pages PageReserved. The remaining valid pages are later
977 * sent to the buddy page allocator.
978 */
7e18adb4 979void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
980{
981 unsigned long start_pfn = PFN_DOWN(start);
982 unsigned long end_pfn = PFN_UP(end);
983
7e18adb4
MG
984 for (; start_pfn < end_pfn; start_pfn++) {
985 if (pfn_valid(start_pfn)) {
986 struct page *page = pfn_to_page(start_pfn);
987
988 init_reserved_page(start_pfn);
1d798ca3
KS
989
990 /* Avoid false-positive PageTail() */
991 INIT_LIST_HEAD(&page->lru);
992
7e18adb4
MG
993 SetPageReserved(page);
994 }
995 }
92923ca3
NZ
996}
997
ec95f53a 998static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 999{
81422f29
KS
1000 bool compound = PageCompound(page);
1001 int i, bad = 0;
1da177e4 1002
ab1f306f 1003 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1005
b413d48a 1006 trace_mm_page_free(page, order);
b1eeab67 1007 kmemcheck_free_shadow(page, order);
b8c73fc2 1008 kasan_free_pages(page, order);
b1eeab67 1009
8dd60a3a
AA
1010 if (PageAnon(page))
1011 page->mapping = NULL;
81422f29
KS
1012 bad += free_pages_check(page);
1013 for (i = 1; i < (1 << order); i++) {
1014 if (compound)
1015 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1016 bad += free_pages_check(page + i);
81422f29 1017 }
8cc3b392 1018 if (bad)
ec95f53a 1019 return false;
689bcebf 1020
48c96a36
JK
1021 reset_page_owner(page, order);
1022
3ac7fe5a 1023 if (!PageHighMem(page)) {
b8af2941
PK
1024 debug_check_no_locks_freed(page_address(page),
1025 PAGE_SIZE << order);
3ac7fe5a
TG
1026 debug_check_no_obj_freed(page_address(page),
1027 PAGE_SIZE << order);
1028 }
dafb1367 1029 arch_free_page(page, order);
8823b1db 1030 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1031 kernel_map_pages(page, 1 << order, 0);
dafb1367 1032
ec95f53a
KM
1033 return true;
1034}
1035
1036static void __free_pages_ok(struct page *page, unsigned int order)
1037{
1038 unsigned long flags;
95e34412 1039 int migratetype;
dc4b0caf 1040 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1041
1042 if (!free_pages_prepare(page, order))
1043 return;
1044
cfc47a28 1045 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1046 local_irq_save(flags);
f8891e5e 1047 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1048 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1049 local_irq_restore(flags);
1da177e4
LT
1050}
1051
0e1cc95b 1052static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1053 unsigned long pfn, unsigned int order)
a226f6c8 1054{
c3993076 1055 unsigned int nr_pages = 1 << order;
e2d0bd2b 1056 struct page *p = page;
c3993076 1057 unsigned int loop;
a226f6c8 1058
e2d0bd2b
YL
1059 prefetchw(p);
1060 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1061 prefetchw(p + 1);
c3993076
JW
1062 __ClearPageReserved(p);
1063 set_page_count(p, 0);
a226f6c8 1064 }
e2d0bd2b
YL
1065 __ClearPageReserved(p);
1066 set_page_count(p, 0);
c3993076 1067
e2d0bd2b 1068 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1069 set_page_refcounted(page);
1070 __free_pages(page, order);
a226f6c8
DH
1071}
1072
75a592a4
MG
1073#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1074 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1075
75a592a4
MG
1076static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1077
1078int __meminit early_pfn_to_nid(unsigned long pfn)
1079{
7ace9917 1080 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1081 int nid;
1082
7ace9917 1083 spin_lock(&early_pfn_lock);
75a592a4 1084 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1085 if (nid < 0)
1086 nid = 0;
1087 spin_unlock(&early_pfn_lock);
1088
1089 return nid;
75a592a4
MG
1090}
1091#endif
1092
1093#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1094static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1095 struct mminit_pfnnid_cache *state)
1096{
1097 int nid;
1098
1099 nid = __early_pfn_to_nid(pfn, state);
1100 if (nid >= 0 && nid != node)
1101 return false;
1102 return true;
1103}
1104
1105/* Only safe to use early in boot when initialisation is single-threaded */
1106static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1107{
1108 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1109}
1110
1111#else
1112
1113static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1114{
1115 return true;
1116}
1117static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1118 struct mminit_pfnnid_cache *state)
1119{
1120 return true;
1121}
1122#endif
1123
1124
0e1cc95b 1125void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1126 unsigned int order)
1127{
1128 if (early_page_uninitialised(pfn))
1129 return;
1130 return __free_pages_boot_core(page, pfn, order);
1131}
1132
7cf91a98
JK
1133/*
1134 * Check that the whole (or subset of) a pageblock given by the interval of
1135 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1136 * with the migration of free compaction scanner. The scanners then need to
1137 * use only pfn_valid_within() check for arches that allow holes within
1138 * pageblocks.
1139 *
1140 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1141 *
1142 * It's possible on some configurations to have a setup like node0 node1 node0
1143 * i.e. it's possible that all pages within a zones range of pages do not
1144 * belong to a single zone. We assume that a border between node0 and node1
1145 * can occur within a single pageblock, but not a node0 node1 node0
1146 * interleaving within a single pageblock. It is therefore sufficient to check
1147 * the first and last page of a pageblock and avoid checking each individual
1148 * page in a pageblock.
1149 */
1150struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1151 unsigned long end_pfn, struct zone *zone)
1152{
1153 struct page *start_page;
1154 struct page *end_page;
1155
1156 /* end_pfn is one past the range we are checking */
1157 end_pfn--;
1158
1159 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1160 return NULL;
1161
1162 start_page = pfn_to_page(start_pfn);
1163
1164 if (page_zone(start_page) != zone)
1165 return NULL;
1166
1167 end_page = pfn_to_page(end_pfn);
1168
1169 /* This gives a shorter code than deriving page_zone(end_page) */
1170 if (page_zone_id(start_page) != page_zone_id(end_page))
1171 return NULL;
1172
1173 return start_page;
1174}
1175
1176void set_zone_contiguous(struct zone *zone)
1177{
1178 unsigned long block_start_pfn = zone->zone_start_pfn;
1179 unsigned long block_end_pfn;
1180
1181 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1182 for (; block_start_pfn < zone_end_pfn(zone);
1183 block_start_pfn = block_end_pfn,
1184 block_end_pfn += pageblock_nr_pages) {
1185
1186 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1187
1188 if (!__pageblock_pfn_to_page(block_start_pfn,
1189 block_end_pfn, zone))
1190 return;
1191 }
1192
1193 /* We confirm that there is no hole */
1194 zone->contiguous = true;
1195}
1196
1197void clear_zone_contiguous(struct zone *zone)
1198{
1199 zone->contiguous = false;
1200}
1201
7e18adb4 1202#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1203static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1204 unsigned long pfn, int nr_pages)
1205{
1206 int i;
1207
1208 if (!page)
1209 return;
1210
1211 /* Free a large naturally-aligned chunk if possible */
1212 if (nr_pages == MAX_ORDER_NR_PAGES &&
1213 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1214 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1215 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1216 return;
1217 }
1218
1219 for (i = 0; i < nr_pages; i++, page++, pfn++)
1220 __free_pages_boot_core(page, pfn, 0);
1221}
1222
d3cd131d
NS
1223/* Completion tracking for deferred_init_memmap() threads */
1224static atomic_t pgdat_init_n_undone __initdata;
1225static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1226
1227static inline void __init pgdat_init_report_one_done(void)
1228{
1229 if (atomic_dec_and_test(&pgdat_init_n_undone))
1230 complete(&pgdat_init_all_done_comp);
1231}
0e1cc95b 1232
7e18adb4 1233/* Initialise remaining memory on a node */
0e1cc95b 1234static int __init deferred_init_memmap(void *data)
7e18adb4 1235{
0e1cc95b
MG
1236 pg_data_t *pgdat = data;
1237 int nid = pgdat->node_id;
7e18adb4
MG
1238 struct mminit_pfnnid_cache nid_init_state = { };
1239 unsigned long start = jiffies;
1240 unsigned long nr_pages = 0;
1241 unsigned long walk_start, walk_end;
1242 int i, zid;
1243 struct zone *zone;
7e18adb4 1244 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1245 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1246
0e1cc95b 1247 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1248 pgdat_init_report_one_done();
0e1cc95b
MG
1249 return 0;
1250 }
1251
1252 /* Bind memory initialisation thread to a local node if possible */
1253 if (!cpumask_empty(cpumask))
1254 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1255
1256 /* Sanity check boundaries */
1257 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1258 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1259 pgdat->first_deferred_pfn = ULONG_MAX;
1260
1261 /* Only the highest zone is deferred so find it */
1262 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1263 zone = pgdat->node_zones + zid;
1264 if (first_init_pfn < zone_end_pfn(zone))
1265 break;
1266 }
1267
1268 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1269 unsigned long pfn, end_pfn;
54608c3f 1270 struct page *page = NULL;
a4de83dd
MG
1271 struct page *free_base_page = NULL;
1272 unsigned long free_base_pfn = 0;
1273 int nr_to_free = 0;
7e18adb4
MG
1274
1275 end_pfn = min(walk_end, zone_end_pfn(zone));
1276 pfn = first_init_pfn;
1277 if (pfn < walk_start)
1278 pfn = walk_start;
1279 if (pfn < zone->zone_start_pfn)
1280 pfn = zone->zone_start_pfn;
1281
1282 for (; pfn < end_pfn; pfn++) {
54608c3f 1283 if (!pfn_valid_within(pfn))
a4de83dd 1284 goto free_range;
7e18adb4 1285
54608c3f
MG
1286 /*
1287 * Ensure pfn_valid is checked every
1288 * MAX_ORDER_NR_PAGES for memory holes
1289 */
1290 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1291 if (!pfn_valid(pfn)) {
1292 page = NULL;
a4de83dd 1293 goto free_range;
54608c3f
MG
1294 }
1295 }
1296
1297 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1298 page = NULL;
a4de83dd 1299 goto free_range;
54608c3f
MG
1300 }
1301
1302 /* Minimise pfn page lookups and scheduler checks */
1303 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1304 page++;
1305 } else {
a4de83dd
MG
1306 nr_pages += nr_to_free;
1307 deferred_free_range(free_base_page,
1308 free_base_pfn, nr_to_free);
1309 free_base_page = NULL;
1310 free_base_pfn = nr_to_free = 0;
1311
54608c3f
MG
1312 page = pfn_to_page(pfn);
1313 cond_resched();
1314 }
7e18adb4
MG
1315
1316 if (page->flags) {
1317 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1318 goto free_range;
7e18adb4
MG
1319 }
1320
1321 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1322 if (!free_base_page) {
1323 free_base_page = page;
1324 free_base_pfn = pfn;
1325 nr_to_free = 0;
1326 }
1327 nr_to_free++;
1328
1329 /* Where possible, batch up pages for a single free */
1330 continue;
1331free_range:
1332 /* Free the current block of pages to allocator */
1333 nr_pages += nr_to_free;
1334 deferred_free_range(free_base_page, free_base_pfn,
1335 nr_to_free);
1336 free_base_page = NULL;
1337 free_base_pfn = nr_to_free = 0;
7e18adb4 1338 }
a4de83dd 1339
7e18adb4
MG
1340 first_init_pfn = max(end_pfn, first_init_pfn);
1341 }
1342
1343 /* Sanity check that the next zone really is unpopulated */
1344 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1345
0e1cc95b 1346 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1347 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1348
1349 pgdat_init_report_one_done();
0e1cc95b
MG
1350 return 0;
1351}
7cf91a98 1352#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1353
1354void __init page_alloc_init_late(void)
1355{
7cf91a98
JK
1356 struct zone *zone;
1357
1358#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1359 int nid;
1360
d3cd131d
NS
1361 /* There will be num_node_state(N_MEMORY) threads */
1362 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1363 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1364 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1365 }
1366
1367 /* Block until all are initialised */
d3cd131d 1368 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1369
1370 /* Reinit limits that are based on free pages after the kernel is up */
1371 files_maxfiles_init();
7cf91a98
JK
1372#endif
1373
1374 for_each_populated_zone(zone)
1375 set_zone_contiguous(zone);
7e18adb4 1376}
7e18adb4 1377
47118af0 1378#ifdef CONFIG_CMA
9cf510a5 1379/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1380void __init init_cma_reserved_pageblock(struct page *page)
1381{
1382 unsigned i = pageblock_nr_pages;
1383 struct page *p = page;
1384
1385 do {
1386 __ClearPageReserved(p);
1387 set_page_count(p, 0);
1388 } while (++p, --i);
1389
47118af0 1390 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1391
1392 if (pageblock_order >= MAX_ORDER) {
1393 i = pageblock_nr_pages;
1394 p = page;
1395 do {
1396 set_page_refcounted(p);
1397 __free_pages(p, MAX_ORDER - 1);
1398 p += MAX_ORDER_NR_PAGES;
1399 } while (i -= MAX_ORDER_NR_PAGES);
1400 } else {
1401 set_page_refcounted(page);
1402 __free_pages(page, pageblock_order);
1403 }
1404
3dcc0571 1405 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1406}
1407#endif
1da177e4
LT
1408
1409/*
1410 * The order of subdivision here is critical for the IO subsystem.
1411 * Please do not alter this order without good reasons and regression
1412 * testing. Specifically, as large blocks of memory are subdivided,
1413 * the order in which smaller blocks are delivered depends on the order
1414 * they're subdivided in this function. This is the primary factor
1415 * influencing the order in which pages are delivered to the IO
1416 * subsystem according to empirical testing, and this is also justified
1417 * by considering the behavior of a buddy system containing a single
1418 * large block of memory acted on by a series of small allocations.
1419 * This behavior is a critical factor in sglist merging's success.
1420 *
6d49e352 1421 * -- nyc
1da177e4 1422 */
085cc7d5 1423static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1424 int low, int high, struct free_area *area,
1425 int migratetype)
1da177e4
LT
1426{
1427 unsigned long size = 1 << high;
1428
1429 while (high > low) {
1430 area--;
1431 high--;
1432 size >>= 1;
309381fe 1433 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1434
2847cf95 1435 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1436 debug_guardpage_enabled() &&
2847cf95 1437 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1438 /*
1439 * Mark as guard pages (or page), that will allow to
1440 * merge back to allocator when buddy will be freed.
1441 * Corresponding page table entries will not be touched,
1442 * pages will stay not present in virtual address space
1443 */
2847cf95 1444 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1445 continue;
1446 }
b2a0ac88 1447 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1448 area->nr_free++;
1449 set_page_order(&page[size], high);
1450 }
1da177e4
LT
1451}
1452
1da177e4
LT
1453/*
1454 * This page is about to be returned from the page allocator
1455 */
2a7684a2 1456static inline int check_new_page(struct page *page)
1da177e4 1457{
d230dec1 1458 const char *bad_reason = NULL;
f0b791a3
DH
1459 unsigned long bad_flags = 0;
1460
53f9263b 1461 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1462 bad_reason = "nonzero mapcount";
1463 if (unlikely(page->mapping != NULL))
1464 bad_reason = "non-NULL mapping";
fe896d18 1465 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1466 bad_reason = "nonzero _count";
f4c18e6f
NH
1467 if (unlikely(page->flags & __PG_HWPOISON)) {
1468 bad_reason = "HWPoisoned (hardware-corrupted)";
1469 bad_flags = __PG_HWPOISON;
1470 }
f0b791a3
DH
1471 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1472 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1473 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1474 }
9edad6ea
JW
1475#ifdef CONFIG_MEMCG
1476 if (unlikely(page->mem_cgroup))
1477 bad_reason = "page still charged to cgroup";
1478#endif
f0b791a3
DH
1479 if (unlikely(bad_reason)) {
1480 bad_page(page, bad_reason, bad_flags);
689bcebf 1481 return 1;
8cc3b392 1482 }
2a7684a2
WF
1483 return 0;
1484}
1485
1414c7f4
LA
1486static inline bool free_pages_prezeroed(bool poisoned)
1487{
1488 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1489 page_poisoning_enabled() && poisoned;
1490}
1491
75379191
VB
1492static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1493 int alloc_flags)
2a7684a2
WF
1494{
1495 int i;
1414c7f4 1496 bool poisoned = true;
2a7684a2
WF
1497
1498 for (i = 0; i < (1 << order); i++) {
1499 struct page *p = page + i;
1500 if (unlikely(check_new_page(p)))
1501 return 1;
1414c7f4
LA
1502 if (poisoned)
1503 poisoned &= page_is_poisoned(p);
2a7684a2 1504 }
689bcebf 1505
4c21e2f2 1506 set_page_private(page, 0);
7835e98b 1507 set_page_refcounted(page);
cc102509
NP
1508
1509 arch_alloc_page(page, order);
1da177e4 1510 kernel_map_pages(page, 1 << order, 1);
8823b1db 1511 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1512 kasan_alloc_pages(page, order);
17cf4406 1513
1414c7f4 1514 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1515 for (i = 0; i < (1 << order); i++)
1516 clear_highpage(page + i);
17cf4406
NP
1517
1518 if (order && (gfp_flags & __GFP_COMP))
1519 prep_compound_page(page, order);
1520
48c96a36
JK
1521 set_page_owner(page, order, gfp_flags);
1522
75379191 1523 /*
2f064f34 1524 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1525 * allocate the page. The expectation is that the caller is taking
1526 * steps that will free more memory. The caller should avoid the page
1527 * being used for !PFMEMALLOC purposes.
1528 */
2f064f34
MH
1529 if (alloc_flags & ALLOC_NO_WATERMARKS)
1530 set_page_pfmemalloc(page);
1531 else
1532 clear_page_pfmemalloc(page);
75379191 1533
689bcebf 1534 return 0;
1da177e4
LT
1535}
1536
56fd56b8
MG
1537/*
1538 * Go through the free lists for the given migratetype and remove
1539 * the smallest available page from the freelists
1540 */
728ec980
MG
1541static inline
1542struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1543 int migratetype)
1544{
1545 unsigned int current_order;
b8af2941 1546 struct free_area *area;
56fd56b8
MG
1547 struct page *page;
1548
1549 /* Find a page of the appropriate size in the preferred list */
1550 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1551 area = &(zone->free_area[current_order]);
a16601c5 1552 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1553 struct page, lru);
a16601c5
GT
1554 if (!page)
1555 continue;
56fd56b8
MG
1556 list_del(&page->lru);
1557 rmv_page_order(page);
1558 area->nr_free--;
56fd56b8 1559 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1560 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1561 return page;
1562 }
1563
1564 return NULL;
1565}
1566
1567
b2a0ac88
MG
1568/*
1569 * This array describes the order lists are fallen back to when
1570 * the free lists for the desirable migrate type are depleted
1571 */
47118af0 1572static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1573 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1574 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1575 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1576#ifdef CONFIG_CMA
974a786e 1577 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1578#endif
194159fb 1579#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1580 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1581#endif
b2a0ac88
MG
1582};
1583
dc67647b
JK
1584#ifdef CONFIG_CMA
1585static struct page *__rmqueue_cma_fallback(struct zone *zone,
1586 unsigned int order)
1587{
1588 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1589}
1590#else
1591static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1592 unsigned int order) { return NULL; }
1593#endif
1594
c361be55
MG
1595/*
1596 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1597 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1598 * boundary. If alignment is required, use move_freepages_block()
1599 */
435b405c 1600int move_freepages(struct zone *zone,
b69a7288
AB
1601 struct page *start_page, struct page *end_page,
1602 int migratetype)
c361be55
MG
1603{
1604 struct page *page;
d00181b9 1605 unsigned int order;
d100313f 1606 int pages_moved = 0;
c361be55
MG
1607
1608#ifndef CONFIG_HOLES_IN_ZONE
1609 /*
1610 * page_zone is not safe to call in this context when
1611 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1612 * anyway as we check zone boundaries in move_freepages_block().
1613 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1614 * grouping pages by mobility
c361be55 1615 */
97ee4ba7 1616 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1617#endif
1618
1619 for (page = start_page; page <= end_page;) {
344c790e 1620 /* Make sure we are not inadvertently changing nodes */
309381fe 1621 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1622
c361be55
MG
1623 if (!pfn_valid_within(page_to_pfn(page))) {
1624 page++;
1625 continue;
1626 }
1627
1628 if (!PageBuddy(page)) {
1629 page++;
1630 continue;
1631 }
1632
1633 order = page_order(page);
84be48d8
KS
1634 list_move(&page->lru,
1635 &zone->free_area[order].free_list[migratetype]);
c361be55 1636 page += 1 << order;
d100313f 1637 pages_moved += 1 << order;
c361be55
MG
1638 }
1639
d100313f 1640 return pages_moved;
c361be55
MG
1641}
1642
ee6f509c 1643int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1644 int migratetype)
c361be55
MG
1645{
1646 unsigned long start_pfn, end_pfn;
1647 struct page *start_page, *end_page;
1648
1649 start_pfn = page_to_pfn(page);
d9c23400 1650 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1651 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1652 end_page = start_page + pageblock_nr_pages - 1;
1653 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1654
1655 /* Do not cross zone boundaries */
108bcc96 1656 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1657 start_page = page;
108bcc96 1658 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1659 return 0;
1660
1661 return move_freepages(zone, start_page, end_page, migratetype);
1662}
1663
2f66a68f
MG
1664static void change_pageblock_range(struct page *pageblock_page,
1665 int start_order, int migratetype)
1666{
1667 int nr_pageblocks = 1 << (start_order - pageblock_order);
1668
1669 while (nr_pageblocks--) {
1670 set_pageblock_migratetype(pageblock_page, migratetype);
1671 pageblock_page += pageblock_nr_pages;
1672 }
1673}
1674
fef903ef 1675/*
9c0415eb
VB
1676 * When we are falling back to another migratetype during allocation, try to
1677 * steal extra free pages from the same pageblocks to satisfy further
1678 * allocations, instead of polluting multiple pageblocks.
1679 *
1680 * If we are stealing a relatively large buddy page, it is likely there will
1681 * be more free pages in the pageblock, so try to steal them all. For
1682 * reclaimable and unmovable allocations, we steal regardless of page size,
1683 * as fragmentation caused by those allocations polluting movable pageblocks
1684 * is worse than movable allocations stealing from unmovable and reclaimable
1685 * pageblocks.
fef903ef 1686 */
4eb7dce6
JK
1687static bool can_steal_fallback(unsigned int order, int start_mt)
1688{
1689 /*
1690 * Leaving this order check is intended, although there is
1691 * relaxed order check in next check. The reason is that
1692 * we can actually steal whole pageblock if this condition met,
1693 * but, below check doesn't guarantee it and that is just heuristic
1694 * so could be changed anytime.
1695 */
1696 if (order >= pageblock_order)
1697 return true;
1698
1699 if (order >= pageblock_order / 2 ||
1700 start_mt == MIGRATE_RECLAIMABLE ||
1701 start_mt == MIGRATE_UNMOVABLE ||
1702 page_group_by_mobility_disabled)
1703 return true;
1704
1705 return false;
1706}
1707
1708/*
1709 * This function implements actual steal behaviour. If order is large enough,
1710 * we can steal whole pageblock. If not, we first move freepages in this
1711 * pageblock and check whether half of pages are moved or not. If half of
1712 * pages are moved, we can change migratetype of pageblock and permanently
1713 * use it's pages as requested migratetype in the future.
1714 */
1715static void steal_suitable_fallback(struct zone *zone, struct page *page,
1716 int start_type)
fef903ef 1717{
d00181b9 1718 unsigned int current_order = page_order(page);
4eb7dce6 1719 int pages;
fef903ef 1720
fef903ef
SB
1721 /* Take ownership for orders >= pageblock_order */
1722 if (current_order >= pageblock_order) {
1723 change_pageblock_range(page, current_order, start_type);
3a1086fb 1724 return;
fef903ef
SB
1725 }
1726
4eb7dce6 1727 pages = move_freepages_block(zone, page, start_type);
fef903ef 1728
4eb7dce6
JK
1729 /* Claim the whole block if over half of it is free */
1730 if (pages >= (1 << (pageblock_order-1)) ||
1731 page_group_by_mobility_disabled)
1732 set_pageblock_migratetype(page, start_type);
1733}
1734
2149cdae
JK
1735/*
1736 * Check whether there is a suitable fallback freepage with requested order.
1737 * If only_stealable is true, this function returns fallback_mt only if
1738 * we can steal other freepages all together. This would help to reduce
1739 * fragmentation due to mixed migratetype pages in one pageblock.
1740 */
1741int find_suitable_fallback(struct free_area *area, unsigned int order,
1742 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1743{
1744 int i;
1745 int fallback_mt;
1746
1747 if (area->nr_free == 0)
1748 return -1;
1749
1750 *can_steal = false;
1751 for (i = 0;; i++) {
1752 fallback_mt = fallbacks[migratetype][i];
974a786e 1753 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1754 break;
1755
1756 if (list_empty(&area->free_list[fallback_mt]))
1757 continue;
fef903ef 1758
4eb7dce6
JK
1759 if (can_steal_fallback(order, migratetype))
1760 *can_steal = true;
1761
2149cdae
JK
1762 if (!only_stealable)
1763 return fallback_mt;
1764
1765 if (*can_steal)
1766 return fallback_mt;
fef903ef 1767 }
4eb7dce6
JK
1768
1769 return -1;
fef903ef
SB
1770}
1771
0aaa29a5
MG
1772/*
1773 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1774 * there are no empty page blocks that contain a page with a suitable order
1775 */
1776static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1777 unsigned int alloc_order)
1778{
1779 int mt;
1780 unsigned long max_managed, flags;
1781
1782 /*
1783 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1784 * Check is race-prone but harmless.
1785 */
1786 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1787 if (zone->nr_reserved_highatomic >= max_managed)
1788 return;
1789
1790 spin_lock_irqsave(&zone->lock, flags);
1791
1792 /* Recheck the nr_reserved_highatomic limit under the lock */
1793 if (zone->nr_reserved_highatomic >= max_managed)
1794 goto out_unlock;
1795
1796 /* Yoink! */
1797 mt = get_pageblock_migratetype(page);
1798 if (mt != MIGRATE_HIGHATOMIC &&
1799 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1800 zone->nr_reserved_highatomic += pageblock_nr_pages;
1801 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1802 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1803 }
1804
1805out_unlock:
1806 spin_unlock_irqrestore(&zone->lock, flags);
1807}
1808
1809/*
1810 * Used when an allocation is about to fail under memory pressure. This
1811 * potentially hurts the reliability of high-order allocations when under
1812 * intense memory pressure but failed atomic allocations should be easier
1813 * to recover from than an OOM.
1814 */
1815static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1816{
1817 struct zonelist *zonelist = ac->zonelist;
1818 unsigned long flags;
1819 struct zoneref *z;
1820 struct zone *zone;
1821 struct page *page;
1822 int order;
1823
1824 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1825 ac->nodemask) {
1826 /* Preserve at least one pageblock */
1827 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1828 continue;
1829
1830 spin_lock_irqsave(&zone->lock, flags);
1831 for (order = 0; order < MAX_ORDER; order++) {
1832 struct free_area *area = &(zone->free_area[order]);
1833
a16601c5
GT
1834 page = list_first_entry_or_null(
1835 &area->free_list[MIGRATE_HIGHATOMIC],
1836 struct page, lru);
1837 if (!page)
0aaa29a5
MG
1838 continue;
1839
0aaa29a5
MG
1840 /*
1841 * It should never happen but changes to locking could
1842 * inadvertently allow a per-cpu drain to add pages
1843 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1844 * and watch for underflows.
1845 */
1846 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1847 zone->nr_reserved_highatomic);
1848
1849 /*
1850 * Convert to ac->migratetype and avoid the normal
1851 * pageblock stealing heuristics. Minimally, the caller
1852 * is doing the work and needs the pages. More
1853 * importantly, if the block was always converted to
1854 * MIGRATE_UNMOVABLE or another type then the number
1855 * of pageblocks that cannot be completely freed
1856 * may increase.
1857 */
1858 set_pageblock_migratetype(page, ac->migratetype);
1859 move_freepages_block(zone, page, ac->migratetype);
1860 spin_unlock_irqrestore(&zone->lock, flags);
1861 return;
1862 }
1863 spin_unlock_irqrestore(&zone->lock, flags);
1864 }
1865}
1866
b2a0ac88 1867/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1868static inline struct page *
7aeb09f9 1869__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1870{
b8af2941 1871 struct free_area *area;
7aeb09f9 1872 unsigned int current_order;
b2a0ac88 1873 struct page *page;
4eb7dce6
JK
1874 int fallback_mt;
1875 bool can_steal;
b2a0ac88
MG
1876
1877 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1878 for (current_order = MAX_ORDER-1;
1879 current_order >= order && current_order <= MAX_ORDER-1;
1880 --current_order) {
4eb7dce6
JK
1881 area = &(zone->free_area[current_order]);
1882 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1883 start_migratetype, false, &can_steal);
4eb7dce6
JK
1884 if (fallback_mt == -1)
1885 continue;
b2a0ac88 1886
a16601c5 1887 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1888 struct page, lru);
1889 if (can_steal)
1890 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1891
4eb7dce6
JK
1892 /* Remove the page from the freelists */
1893 area->nr_free--;
1894 list_del(&page->lru);
1895 rmv_page_order(page);
3a1086fb 1896
4eb7dce6
JK
1897 expand(zone, page, order, current_order, area,
1898 start_migratetype);
1899 /*
bb14c2c7 1900 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1901 * migratetype depending on the decisions in
bb14c2c7
VB
1902 * find_suitable_fallback(). This is OK as long as it does not
1903 * differ for MIGRATE_CMA pageblocks. Those can be used as
1904 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1905 */
bb14c2c7 1906 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1907
4eb7dce6
JK
1908 trace_mm_page_alloc_extfrag(page, order, current_order,
1909 start_migratetype, fallback_mt);
e0fff1bd 1910
4eb7dce6 1911 return page;
b2a0ac88
MG
1912 }
1913
728ec980 1914 return NULL;
b2a0ac88
MG
1915}
1916
56fd56b8 1917/*
1da177e4
LT
1918 * Do the hard work of removing an element from the buddy allocator.
1919 * Call me with the zone->lock already held.
1920 */
b2a0ac88 1921static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1922 int migratetype)
1da177e4 1923{
1da177e4
LT
1924 struct page *page;
1925
56fd56b8 1926 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1927 if (unlikely(!page)) {
dc67647b
JK
1928 if (migratetype == MIGRATE_MOVABLE)
1929 page = __rmqueue_cma_fallback(zone, order);
1930
1931 if (!page)
1932 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1933 }
1934
0d3d062a 1935 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1936 return page;
1da177e4
LT
1937}
1938
5f63b720 1939/*
1da177e4
LT
1940 * Obtain a specified number of elements from the buddy allocator, all under
1941 * a single hold of the lock, for efficiency. Add them to the supplied list.
1942 * Returns the number of new pages which were placed at *list.
1943 */
5f63b720 1944static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1945 unsigned long count, struct list_head *list,
b745bc85 1946 int migratetype, bool cold)
1da177e4 1947{
5bcc9f86 1948 int i;
5f63b720 1949
c54ad30c 1950 spin_lock(&zone->lock);
1da177e4 1951 for (i = 0; i < count; ++i) {
6ac0206b 1952 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1953 if (unlikely(page == NULL))
1da177e4 1954 break;
81eabcbe
MG
1955
1956 /*
1957 * Split buddy pages returned by expand() are received here
1958 * in physical page order. The page is added to the callers and
1959 * list and the list head then moves forward. From the callers
1960 * perspective, the linked list is ordered by page number in
1961 * some conditions. This is useful for IO devices that can
1962 * merge IO requests if the physical pages are ordered
1963 * properly.
1964 */
b745bc85 1965 if (likely(!cold))
e084b2d9
MG
1966 list_add(&page->lru, list);
1967 else
1968 list_add_tail(&page->lru, list);
81eabcbe 1969 list = &page->lru;
bb14c2c7 1970 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1971 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1972 -(1 << order));
1da177e4 1973 }
f2260e6b 1974 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1975 spin_unlock(&zone->lock);
085cc7d5 1976 return i;
1da177e4
LT
1977}
1978
4ae7c039 1979#ifdef CONFIG_NUMA
8fce4d8e 1980/*
4037d452
CL
1981 * Called from the vmstat counter updater to drain pagesets of this
1982 * currently executing processor on remote nodes after they have
1983 * expired.
1984 *
879336c3
CL
1985 * Note that this function must be called with the thread pinned to
1986 * a single processor.
8fce4d8e 1987 */
4037d452 1988void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1989{
4ae7c039 1990 unsigned long flags;
7be12fc9 1991 int to_drain, batch;
4ae7c039 1992
4037d452 1993 local_irq_save(flags);
4db0c3c2 1994 batch = READ_ONCE(pcp->batch);
7be12fc9 1995 to_drain = min(pcp->count, batch);
2a13515c
KM
1996 if (to_drain > 0) {
1997 free_pcppages_bulk(zone, to_drain, pcp);
1998 pcp->count -= to_drain;
1999 }
4037d452 2000 local_irq_restore(flags);
4ae7c039
CL
2001}
2002#endif
2003
9f8f2172 2004/*
93481ff0 2005 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2006 *
2007 * The processor must either be the current processor and the
2008 * thread pinned to the current processor or a processor that
2009 * is not online.
2010 */
93481ff0 2011static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2012{
c54ad30c 2013 unsigned long flags;
93481ff0
VB
2014 struct per_cpu_pageset *pset;
2015 struct per_cpu_pages *pcp;
1da177e4 2016
93481ff0
VB
2017 local_irq_save(flags);
2018 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2019
93481ff0
VB
2020 pcp = &pset->pcp;
2021 if (pcp->count) {
2022 free_pcppages_bulk(zone, pcp->count, pcp);
2023 pcp->count = 0;
2024 }
2025 local_irq_restore(flags);
2026}
3dfa5721 2027
93481ff0
VB
2028/*
2029 * Drain pcplists of all zones on the indicated processor.
2030 *
2031 * The processor must either be the current processor and the
2032 * thread pinned to the current processor or a processor that
2033 * is not online.
2034 */
2035static void drain_pages(unsigned int cpu)
2036{
2037 struct zone *zone;
2038
2039 for_each_populated_zone(zone) {
2040 drain_pages_zone(cpu, zone);
1da177e4
LT
2041 }
2042}
1da177e4 2043
9f8f2172
CL
2044/*
2045 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2046 *
2047 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2048 * the single zone's pages.
9f8f2172 2049 */
93481ff0 2050void drain_local_pages(struct zone *zone)
9f8f2172 2051{
93481ff0
VB
2052 int cpu = smp_processor_id();
2053
2054 if (zone)
2055 drain_pages_zone(cpu, zone);
2056 else
2057 drain_pages(cpu);
9f8f2172
CL
2058}
2059
2060/*
74046494
GBY
2061 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2062 *
93481ff0
VB
2063 * When zone parameter is non-NULL, spill just the single zone's pages.
2064 *
74046494
GBY
2065 * Note that this code is protected against sending an IPI to an offline
2066 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2067 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2068 * nothing keeps CPUs from showing up after we populated the cpumask and
2069 * before the call to on_each_cpu_mask().
9f8f2172 2070 */
93481ff0 2071void drain_all_pages(struct zone *zone)
9f8f2172 2072{
74046494 2073 int cpu;
74046494
GBY
2074
2075 /*
2076 * Allocate in the BSS so we wont require allocation in
2077 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2078 */
2079 static cpumask_t cpus_with_pcps;
2080
2081 /*
2082 * We don't care about racing with CPU hotplug event
2083 * as offline notification will cause the notified
2084 * cpu to drain that CPU pcps and on_each_cpu_mask
2085 * disables preemption as part of its processing
2086 */
2087 for_each_online_cpu(cpu) {
93481ff0
VB
2088 struct per_cpu_pageset *pcp;
2089 struct zone *z;
74046494 2090 bool has_pcps = false;
93481ff0
VB
2091
2092 if (zone) {
74046494 2093 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2094 if (pcp->pcp.count)
74046494 2095 has_pcps = true;
93481ff0
VB
2096 } else {
2097 for_each_populated_zone(z) {
2098 pcp = per_cpu_ptr(z->pageset, cpu);
2099 if (pcp->pcp.count) {
2100 has_pcps = true;
2101 break;
2102 }
74046494
GBY
2103 }
2104 }
93481ff0 2105
74046494
GBY
2106 if (has_pcps)
2107 cpumask_set_cpu(cpu, &cpus_with_pcps);
2108 else
2109 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2110 }
93481ff0
VB
2111 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2112 zone, 1);
9f8f2172
CL
2113}
2114
296699de 2115#ifdef CONFIG_HIBERNATION
1da177e4
LT
2116
2117void mark_free_pages(struct zone *zone)
2118{
f623f0db
RW
2119 unsigned long pfn, max_zone_pfn;
2120 unsigned long flags;
7aeb09f9 2121 unsigned int order, t;
86760a2c 2122 struct page *page;
1da177e4 2123
8080fc03 2124 if (zone_is_empty(zone))
1da177e4
LT
2125 return;
2126
2127 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2128
108bcc96 2129 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2131 if (pfn_valid(pfn)) {
86760a2c 2132 page = pfn_to_page(pfn);
7be98234
RW
2133 if (!swsusp_page_is_forbidden(page))
2134 swsusp_unset_page_free(page);
f623f0db 2135 }
1da177e4 2136
b2a0ac88 2137 for_each_migratetype_order(order, t) {
86760a2c
GT
2138 list_for_each_entry(page,
2139 &zone->free_area[order].free_list[t], lru) {
f623f0db 2140 unsigned long i;
1da177e4 2141
86760a2c 2142 pfn = page_to_pfn(page);
f623f0db 2143 for (i = 0; i < (1UL << order); i++)
7be98234 2144 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2145 }
b2a0ac88 2146 }
1da177e4
LT
2147 spin_unlock_irqrestore(&zone->lock, flags);
2148}
e2c55dc8 2149#endif /* CONFIG_PM */
1da177e4 2150
1da177e4
LT
2151/*
2152 * Free a 0-order page
b745bc85 2153 * cold == true ? free a cold page : free a hot page
1da177e4 2154 */
b745bc85 2155void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2156{
2157 struct zone *zone = page_zone(page);
2158 struct per_cpu_pages *pcp;
2159 unsigned long flags;
dc4b0caf 2160 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2161 int migratetype;
1da177e4 2162
ec95f53a 2163 if (!free_pages_prepare(page, 0))
689bcebf
HD
2164 return;
2165
dc4b0caf 2166 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2167 set_pcppage_migratetype(page, migratetype);
1da177e4 2168 local_irq_save(flags);
f8891e5e 2169 __count_vm_event(PGFREE);
da456f14 2170
5f8dcc21
MG
2171 /*
2172 * We only track unmovable, reclaimable and movable on pcp lists.
2173 * Free ISOLATE pages back to the allocator because they are being
2174 * offlined but treat RESERVE as movable pages so we can get those
2175 * areas back if necessary. Otherwise, we may have to free
2176 * excessively into the page allocator
2177 */
2178 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2179 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2180 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2181 goto out;
2182 }
2183 migratetype = MIGRATE_MOVABLE;
2184 }
2185
99dcc3e5 2186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2187 if (!cold)
5f8dcc21 2188 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2189 else
2190 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2191 pcp->count++;
48db57f8 2192 if (pcp->count >= pcp->high) {
4db0c3c2 2193 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2194 free_pcppages_bulk(zone, batch, pcp);
2195 pcp->count -= batch;
48db57f8 2196 }
5f8dcc21
MG
2197
2198out:
1da177e4 2199 local_irq_restore(flags);
1da177e4
LT
2200}
2201
cc59850e
KK
2202/*
2203 * Free a list of 0-order pages
2204 */
b745bc85 2205void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2206{
2207 struct page *page, *next;
2208
2209 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2210 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2211 free_hot_cold_page(page, cold);
2212 }
2213}
2214
8dfcc9ba
NP
2215/*
2216 * split_page takes a non-compound higher-order page, and splits it into
2217 * n (1<<order) sub-pages: page[0..n]
2218 * Each sub-page must be freed individually.
2219 *
2220 * Note: this is probably too low level an operation for use in drivers.
2221 * Please consult with lkml before using this in your driver.
2222 */
2223void split_page(struct page *page, unsigned int order)
2224{
2225 int i;
e2cfc911 2226 gfp_t gfp_mask;
8dfcc9ba 2227
309381fe
SL
2228 VM_BUG_ON_PAGE(PageCompound(page), page);
2229 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2230
2231#ifdef CONFIG_KMEMCHECK
2232 /*
2233 * Split shadow pages too, because free(page[0]) would
2234 * otherwise free the whole shadow.
2235 */
2236 if (kmemcheck_page_is_tracked(page))
2237 split_page(virt_to_page(page[0].shadow), order);
2238#endif
2239
e2cfc911
JK
2240 gfp_mask = get_page_owner_gfp(page);
2241 set_page_owner(page, 0, gfp_mask);
48c96a36 2242 for (i = 1; i < (1 << order); i++) {
7835e98b 2243 set_page_refcounted(page + i);
e2cfc911 2244 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2245 }
8dfcc9ba 2246}
5853ff23 2247EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2248
3c605096 2249int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2250{
748446bb
MG
2251 unsigned long watermark;
2252 struct zone *zone;
2139cbe6 2253 int mt;
748446bb
MG
2254
2255 BUG_ON(!PageBuddy(page));
2256
2257 zone = page_zone(page);
2e30abd1 2258 mt = get_pageblock_migratetype(page);
748446bb 2259
194159fb 2260 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2261 /* Obey watermarks as if the page was being allocated */
2262 watermark = low_wmark_pages(zone) + (1 << order);
2263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2264 return 0;
2265
8fb74b9f 2266 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2267 }
748446bb
MG
2268
2269 /* Remove page from free list */
2270 list_del(&page->lru);
2271 zone->free_area[order].nr_free--;
2272 rmv_page_order(page);
2139cbe6 2273
e2cfc911 2274 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2275
8fb74b9f 2276 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2277 if (order >= pageblock_order - 1) {
2278 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2279 for (; page < endpage; page += pageblock_nr_pages) {
2280 int mt = get_pageblock_migratetype(page);
194159fb 2281 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2282 set_pageblock_migratetype(page,
2283 MIGRATE_MOVABLE);
2284 }
748446bb
MG
2285 }
2286
f3a14ced 2287
8fb74b9f 2288 return 1UL << order;
1fb3f8ca
MG
2289}
2290
2291/*
2292 * Similar to split_page except the page is already free. As this is only
2293 * being used for migration, the migratetype of the block also changes.
2294 * As this is called with interrupts disabled, the caller is responsible
2295 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2296 * are enabled.
2297 *
2298 * Note: this is probably too low level an operation for use in drivers.
2299 * Please consult with lkml before using this in your driver.
2300 */
2301int split_free_page(struct page *page)
2302{
2303 unsigned int order;
2304 int nr_pages;
2305
1fb3f8ca
MG
2306 order = page_order(page);
2307
8fb74b9f 2308 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2309 if (!nr_pages)
2310 return 0;
2311
2312 /* Split into individual pages */
2313 set_page_refcounted(page);
2314 split_page(page, order);
2315 return nr_pages;
748446bb
MG
2316}
2317
1da177e4 2318/*
75379191 2319 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2320 */
0a15c3e9
MG
2321static inline
2322struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2323 struct zone *zone, unsigned int order,
0aaa29a5 2324 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2325{
2326 unsigned long flags;
689bcebf 2327 struct page *page;
b745bc85 2328 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2329
48db57f8 2330 if (likely(order == 0)) {
1da177e4 2331 struct per_cpu_pages *pcp;
5f8dcc21 2332 struct list_head *list;
1da177e4 2333
1da177e4 2334 local_irq_save(flags);
99dcc3e5
CL
2335 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2336 list = &pcp->lists[migratetype];
5f8dcc21 2337 if (list_empty(list)) {
535131e6 2338 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2339 pcp->batch, list,
e084b2d9 2340 migratetype, cold);
5f8dcc21 2341 if (unlikely(list_empty(list)))
6fb332fa 2342 goto failed;
535131e6 2343 }
b92a6edd 2344
5f8dcc21 2345 if (cold)
a16601c5 2346 page = list_last_entry(list, struct page, lru);
5f8dcc21 2347 else
a16601c5 2348 page = list_first_entry(list, struct page, lru);
5f8dcc21 2349
b92a6edd
MG
2350 list_del(&page->lru);
2351 pcp->count--;
7fb1d9fc 2352 } else {
0f352e53
MH
2353 /*
2354 * We most definitely don't want callers attempting to
2355 * allocate greater than order-1 page units with __GFP_NOFAIL.
2356 */
2357 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2358 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2359
2360 page = NULL;
2361 if (alloc_flags & ALLOC_HARDER) {
2362 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2363 if (page)
2364 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2365 }
2366 if (!page)
6ac0206b 2367 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2368 spin_unlock(&zone->lock);
2369 if (!page)
2370 goto failed;
d1ce749a 2371 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2372 get_pcppage_migratetype(page));
1da177e4
LT
2373 }
2374
3a025760 2375 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2376 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2377 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2378 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2379
f8891e5e 2380 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2381 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2382 local_irq_restore(flags);
1da177e4 2383
309381fe 2384 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2385 return page;
a74609fa
NP
2386
2387failed:
2388 local_irq_restore(flags);
a74609fa 2389 return NULL;
1da177e4
LT
2390}
2391
933e312e
AM
2392#ifdef CONFIG_FAIL_PAGE_ALLOC
2393
b2588c4b 2394static struct {
933e312e
AM
2395 struct fault_attr attr;
2396
621a5f7a 2397 bool ignore_gfp_highmem;
71baba4b 2398 bool ignore_gfp_reclaim;
54114994 2399 u32 min_order;
933e312e
AM
2400} fail_page_alloc = {
2401 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2402 .ignore_gfp_reclaim = true,
621a5f7a 2403 .ignore_gfp_highmem = true,
54114994 2404 .min_order = 1,
933e312e
AM
2405};
2406
2407static int __init setup_fail_page_alloc(char *str)
2408{
2409 return setup_fault_attr(&fail_page_alloc.attr, str);
2410}
2411__setup("fail_page_alloc=", setup_fail_page_alloc);
2412
deaf386e 2413static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2414{
54114994 2415 if (order < fail_page_alloc.min_order)
deaf386e 2416 return false;
933e312e 2417 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2418 return false;
933e312e 2419 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2420 return false;
71baba4b
MG
2421 if (fail_page_alloc.ignore_gfp_reclaim &&
2422 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2423 return false;
933e312e
AM
2424
2425 return should_fail(&fail_page_alloc.attr, 1 << order);
2426}
2427
2428#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2429
2430static int __init fail_page_alloc_debugfs(void)
2431{
f4ae40a6 2432 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2433 struct dentry *dir;
933e312e 2434
dd48c085
AM
2435 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2436 &fail_page_alloc.attr);
2437 if (IS_ERR(dir))
2438 return PTR_ERR(dir);
933e312e 2439
b2588c4b 2440 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2441 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2442 goto fail;
2443 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2444 &fail_page_alloc.ignore_gfp_highmem))
2445 goto fail;
2446 if (!debugfs_create_u32("min-order", mode, dir,
2447 &fail_page_alloc.min_order))
2448 goto fail;
2449
2450 return 0;
2451fail:
dd48c085 2452 debugfs_remove_recursive(dir);
933e312e 2453
b2588c4b 2454 return -ENOMEM;
933e312e
AM
2455}
2456
2457late_initcall(fail_page_alloc_debugfs);
2458
2459#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2460
2461#else /* CONFIG_FAIL_PAGE_ALLOC */
2462
deaf386e 2463static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2464{
deaf386e 2465 return false;
933e312e
AM
2466}
2467
2468#endif /* CONFIG_FAIL_PAGE_ALLOC */
2469
1da177e4 2470/*
97a16fc8
MG
2471 * Return true if free base pages are above 'mark'. For high-order checks it
2472 * will return true of the order-0 watermark is reached and there is at least
2473 * one free page of a suitable size. Checking now avoids taking the zone lock
2474 * to check in the allocation paths if no pages are free.
1da177e4 2475 */
7aeb09f9
MG
2476static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2477 unsigned long mark, int classzone_idx, int alloc_flags,
2478 long free_pages)
1da177e4 2479{
d23ad423 2480 long min = mark;
1da177e4 2481 int o;
97a16fc8 2482 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2483
0aaa29a5 2484 /* free_pages may go negative - that's OK */
df0a6daa 2485 free_pages -= (1 << order) - 1;
0aaa29a5 2486
7fb1d9fc 2487 if (alloc_flags & ALLOC_HIGH)
1da177e4 2488 min -= min / 2;
0aaa29a5
MG
2489
2490 /*
2491 * If the caller does not have rights to ALLOC_HARDER then subtract
2492 * the high-atomic reserves. This will over-estimate the size of the
2493 * atomic reserve but it avoids a search.
2494 */
97a16fc8 2495 if (likely(!alloc_harder))
0aaa29a5
MG
2496 free_pages -= z->nr_reserved_highatomic;
2497 else
1da177e4 2498 min -= min / 4;
e2b19197 2499
d95ea5d1
BZ
2500#ifdef CONFIG_CMA
2501 /* If allocation can't use CMA areas don't use free CMA pages */
2502 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2503 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2504#endif
026b0814 2505
97a16fc8
MG
2506 /*
2507 * Check watermarks for an order-0 allocation request. If these
2508 * are not met, then a high-order request also cannot go ahead
2509 * even if a suitable page happened to be free.
2510 */
2511 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2512 return false;
1da177e4 2513
97a16fc8
MG
2514 /* If this is an order-0 request then the watermark is fine */
2515 if (!order)
2516 return true;
2517
2518 /* For a high-order request, check at least one suitable page is free */
2519 for (o = order; o < MAX_ORDER; o++) {
2520 struct free_area *area = &z->free_area[o];
2521 int mt;
2522
2523 if (!area->nr_free)
2524 continue;
2525
2526 if (alloc_harder)
2527 return true;
1da177e4 2528
97a16fc8
MG
2529 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2530 if (!list_empty(&area->free_list[mt]))
2531 return true;
2532 }
2533
2534#ifdef CONFIG_CMA
2535 if ((alloc_flags & ALLOC_CMA) &&
2536 !list_empty(&area->free_list[MIGRATE_CMA])) {
2537 return true;
2538 }
2539#endif
1da177e4 2540 }
97a16fc8 2541 return false;
88f5acf8
MG
2542}
2543
7aeb09f9 2544bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2545 int classzone_idx, int alloc_flags)
2546{
2547 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2548 zone_page_state(z, NR_FREE_PAGES));
2549}
2550
7aeb09f9 2551bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2552 unsigned long mark, int classzone_idx)
88f5acf8
MG
2553{
2554 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2555
2556 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2557 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2558
e2b19197 2559 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2560 free_pages);
1da177e4
LT
2561}
2562
9276b1bc 2563#ifdef CONFIG_NUMA
81c0a2bb
JW
2564static bool zone_local(struct zone *local_zone, struct zone *zone)
2565{
fff4068c 2566 return local_zone->node == zone->node;
81c0a2bb
JW
2567}
2568
957f822a
DR
2569static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2570{
5f7a75ac
MG
2571 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2572 RECLAIM_DISTANCE;
957f822a 2573}
9276b1bc 2574#else /* CONFIG_NUMA */
81c0a2bb
JW
2575static bool zone_local(struct zone *local_zone, struct zone *zone)
2576{
2577 return true;
2578}
2579
957f822a
DR
2580static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2581{
2582 return true;
2583}
9276b1bc
PJ
2584#endif /* CONFIG_NUMA */
2585
4ffeaf35
MG
2586static void reset_alloc_batches(struct zone *preferred_zone)
2587{
2588 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2589
2590 do {
2591 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2592 high_wmark_pages(zone) - low_wmark_pages(zone) -
2593 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2594 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2595 } while (zone++ != preferred_zone);
2596}
2597
7fb1d9fc 2598/*
0798e519 2599 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2600 * a page.
2601 */
2602static struct page *
a9263751
VB
2603get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2604 const struct alloc_context *ac)
753ee728 2605{
a9263751 2606 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2607 struct zoneref *z;
7fb1d9fc 2608 struct page *page = NULL;
5117f45d 2609 struct zone *zone;
4ffeaf35
MG
2610 int nr_fair_skipped = 0;
2611 bool zonelist_rescan;
54a6eb5c 2612
9276b1bc 2613zonelist_scan:
4ffeaf35
MG
2614 zonelist_rescan = false;
2615
7fb1d9fc 2616 /*
9276b1bc 2617 * Scan zonelist, looking for a zone with enough free.
344736f2 2618 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2619 */
a9263751
VB
2620 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2621 ac->nodemask) {
e085dbc5
JW
2622 unsigned long mark;
2623
664eedde
MG
2624 if (cpusets_enabled() &&
2625 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2626 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2627 continue;
81c0a2bb
JW
2628 /*
2629 * Distribute pages in proportion to the individual
2630 * zone size to ensure fair page aging. The zone a
2631 * page was allocated in should have no effect on the
2632 * time the page has in memory before being reclaimed.
81c0a2bb 2633 */
3a025760 2634 if (alloc_flags & ALLOC_FAIR) {
a9263751 2635 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2636 break;
57054651 2637 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2638 nr_fair_skipped++;
3a025760 2639 continue;
4ffeaf35 2640 }
81c0a2bb 2641 }
a756cf59
JW
2642 /*
2643 * When allocating a page cache page for writing, we
2644 * want to get it from a zone that is within its dirty
2645 * limit, such that no single zone holds more than its
2646 * proportional share of globally allowed dirty pages.
2647 * The dirty limits take into account the zone's
2648 * lowmem reserves and high watermark so that kswapd
2649 * should be able to balance it without having to
2650 * write pages from its LRU list.
2651 *
2652 * This may look like it could increase pressure on
2653 * lower zones by failing allocations in higher zones
2654 * before they are full. But the pages that do spill
2655 * over are limited as the lower zones are protected
2656 * by this very same mechanism. It should not become
2657 * a practical burden to them.
2658 *
2659 * XXX: For now, allow allocations to potentially
2660 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2661 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2662 * which is important when on a NUMA setup the allowed
2663 * zones are together not big enough to reach the
2664 * global limit. The proper fix for these situations
2665 * will require awareness of zones in the
2666 * dirty-throttling and the flusher threads.
2667 */
c9ab0c4f 2668 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2669 continue;
7fb1d9fc 2670
e085dbc5
JW
2671 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2672 if (!zone_watermark_ok(zone, order, mark,
a9263751 2673 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2674 int ret;
2675
5dab2911
MG
2676 /* Checked here to keep the fast path fast */
2677 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2678 if (alloc_flags & ALLOC_NO_WATERMARKS)
2679 goto try_this_zone;
2680
957f822a 2681 if (zone_reclaim_mode == 0 ||
a9263751 2682 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2683 continue;
2684
fa5e084e
MG
2685 ret = zone_reclaim(zone, gfp_mask, order);
2686 switch (ret) {
2687 case ZONE_RECLAIM_NOSCAN:
2688 /* did not scan */
cd38b115 2689 continue;
fa5e084e
MG
2690 case ZONE_RECLAIM_FULL:
2691 /* scanned but unreclaimable */
cd38b115 2692 continue;
fa5e084e
MG
2693 default:
2694 /* did we reclaim enough */
fed2719e 2695 if (zone_watermark_ok(zone, order, mark,
a9263751 2696 ac->classzone_idx, alloc_flags))
fed2719e
MG
2697 goto try_this_zone;
2698
fed2719e 2699 continue;
0798e519 2700 }
7fb1d9fc
RS
2701 }
2702
fa5e084e 2703try_this_zone:
a9263751 2704 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2705 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2706 if (page) {
2707 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2708 goto try_this_zone;
0aaa29a5
MG
2709
2710 /*
2711 * If this is a high-order atomic allocation then check
2712 * if the pageblock should be reserved for the future
2713 */
2714 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2715 reserve_highatomic_pageblock(page, zone, order);
2716
75379191
VB
2717 return page;
2718 }
54a6eb5c 2719 }
9276b1bc 2720
4ffeaf35
MG
2721 /*
2722 * The first pass makes sure allocations are spread fairly within the
2723 * local node. However, the local node might have free pages left
2724 * after the fairness batches are exhausted, and remote zones haven't
2725 * even been considered yet. Try once more without fairness, and
2726 * include remote zones now, before entering the slowpath and waking
2727 * kswapd: prefer spilling to a remote zone over swapping locally.
2728 */
2729 if (alloc_flags & ALLOC_FAIR) {
2730 alloc_flags &= ~ALLOC_FAIR;
2731 if (nr_fair_skipped) {
2732 zonelist_rescan = true;
a9263751 2733 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2734 }
2735 if (nr_online_nodes > 1)
2736 zonelist_rescan = true;
2737 }
2738
4ffeaf35
MG
2739 if (zonelist_rescan)
2740 goto zonelist_scan;
2741
2742 return NULL;
753ee728
MH
2743}
2744
29423e77
DR
2745/*
2746 * Large machines with many possible nodes should not always dump per-node
2747 * meminfo in irq context.
2748 */
2749static inline bool should_suppress_show_mem(void)
2750{
2751 bool ret = false;
2752
2753#if NODES_SHIFT > 8
2754 ret = in_interrupt();
2755#endif
2756 return ret;
2757}
2758
a238ab5b
DH
2759static DEFINE_RATELIMIT_STATE(nopage_rs,
2760 DEFAULT_RATELIMIT_INTERVAL,
2761 DEFAULT_RATELIMIT_BURST);
2762
d00181b9 2763void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2764{
a238ab5b
DH
2765 unsigned int filter = SHOW_MEM_FILTER_NODES;
2766
c0a32fc5
SG
2767 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2768 debug_guardpage_minorder() > 0)
a238ab5b
DH
2769 return;
2770
2771 /*
2772 * This documents exceptions given to allocations in certain
2773 * contexts that are allowed to allocate outside current's set
2774 * of allowed nodes.
2775 */
2776 if (!(gfp_mask & __GFP_NOMEMALLOC))
2777 if (test_thread_flag(TIF_MEMDIE) ||
2778 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2779 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2780 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2781 filter &= ~SHOW_MEM_FILTER_NODES;
2782
2783 if (fmt) {
3ee9a4f0
JP
2784 struct va_format vaf;
2785 va_list args;
2786
a238ab5b 2787 va_start(args, fmt);
3ee9a4f0
JP
2788
2789 vaf.fmt = fmt;
2790 vaf.va = &args;
2791
2792 pr_warn("%pV", &vaf);
2793
a238ab5b
DH
2794 va_end(args);
2795 }
2796
c5c990e8
VB
2797 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2798 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2799 dump_stack();
2800 if (!should_suppress_show_mem())
2801 show_mem(filter);
2802}
2803
11e33f6a
MG
2804static inline struct page *
2805__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2806 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2807{
6e0fc46d
DR
2808 struct oom_control oc = {
2809 .zonelist = ac->zonelist,
2810 .nodemask = ac->nodemask,
2811 .gfp_mask = gfp_mask,
2812 .order = order,
6e0fc46d 2813 };
11e33f6a
MG
2814 struct page *page;
2815
9879de73
JW
2816 *did_some_progress = 0;
2817
9879de73 2818 /*
dc56401f
JW
2819 * Acquire the oom lock. If that fails, somebody else is
2820 * making progress for us.
9879de73 2821 */
dc56401f 2822 if (!mutex_trylock(&oom_lock)) {
9879de73 2823 *did_some_progress = 1;
11e33f6a 2824 schedule_timeout_uninterruptible(1);
1da177e4
LT
2825 return NULL;
2826 }
6b1de916 2827
11e33f6a
MG
2828 /*
2829 * Go through the zonelist yet one more time, keep very high watermark
2830 * here, this is only to catch a parallel oom killing, we must fail if
2831 * we're still under heavy pressure.
2832 */
a9263751
VB
2833 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2834 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2835 if (page)
11e33f6a
MG
2836 goto out;
2837
4365a567 2838 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2839 /* Coredumps can quickly deplete all memory reserves */
2840 if (current->flags & PF_DUMPCORE)
2841 goto out;
4365a567
KH
2842 /* The OOM killer will not help higher order allocs */
2843 if (order > PAGE_ALLOC_COSTLY_ORDER)
2844 goto out;
03668b3c 2845 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2846 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2847 goto out;
9083905a 2848 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2849 if (!(gfp_mask & __GFP_FS)) {
2850 /*
2851 * XXX: Page reclaim didn't yield anything,
2852 * and the OOM killer can't be invoked, but
9083905a 2853 * keep looping as per tradition.
cc873177
JW
2854 */
2855 *did_some_progress = 1;
9879de73 2856 goto out;
cc873177 2857 }
9083905a
JW
2858 if (pm_suspended_storage())
2859 goto out;
4167e9b2 2860 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2861 if (gfp_mask & __GFP_THISNODE)
2862 goto out;
2863 }
11e33f6a 2864 /* Exhausted what can be done so it's blamo time */
5020e285 2865 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2866 *did_some_progress = 1;
5020e285
MH
2867
2868 if (gfp_mask & __GFP_NOFAIL) {
2869 page = get_page_from_freelist(gfp_mask, order,
2870 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2871 /*
2872 * fallback to ignore cpuset restriction if our nodes
2873 * are depleted
2874 */
2875 if (!page)
2876 page = get_page_from_freelist(gfp_mask, order,
2877 ALLOC_NO_WATERMARKS, ac);
2878 }
2879 }
11e33f6a 2880out:
dc56401f 2881 mutex_unlock(&oom_lock);
11e33f6a
MG
2882 return page;
2883}
2884
56de7263
MG
2885#ifdef CONFIG_COMPACTION
2886/* Try memory compaction for high-order allocations before reclaim */
2887static struct page *
2888__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2889 int alloc_flags, const struct alloc_context *ac,
2890 enum migrate_mode mode, int *contended_compaction,
2891 bool *deferred_compaction)
56de7263 2892{
53853e2d 2893 unsigned long compact_result;
98dd3b48 2894 struct page *page;
53853e2d
VB
2895
2896 if (!order)
66199712 2897 return NULL;
66199712 2898
c06b1fca 2899 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2900 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2901 mode, contended_compaction);
c06b1fca 2902 current->flags &= ~PF_MEMALLOC;
56de7263 2903
98dd3b48
VB
2904 switch (compact_result) {
2905 case COMPACT_DEFERRED:
53853e2d 2906 *deferred_compaction = true;
98dd3b48
VB
2907 /* fall-through */
2908 case COMPACT_SKIPPED:
2909 return NULL;
2910 default:
2911 break;
2912 }
53853e2d 2913
98dd3b48
VB
2914 /*
2915 * At least in one zone compaction wasn't deferred or skipped, so let's
2916 * count a compaction stall
2917 */
2918 count_vm_event(COMPACTSTALL);
8fb74b9f 2919
a9263751
VB
2920 page = get_page_from_freelist(gfp_mask, order,
2921 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2922
98dd3b48
VB
2923 if (page) {
2924 struct zone *zone = page_zone(page);
53853e2d 2925
98dd3b48
VB
2926 zone->compact_blockskip_flush = false;
2927 compaction_defer_reset(zone, order, true);
2928 count_vm_event(COMPACTSUCCESS);
2929 return page;
2930 }
56de7263 2931
98dd3b48
VB
2932 /*
2933 * It's bad if compaction run occurs and fails. The most likely reason
2934 * is that pages exist, but not enough to satisfy watermarks.
2935 */
2936 count_vm_event(COMPACTFAIL);
66199712 2937
98dd3b48 2938 cond_resched();
56de7263
MG
2939
2940 return NULL;
2941}
2942#else
2943static inline struct page *
2944__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2945 int alloc_flags, const struct alloc_context *ac,
2946 enum migrate_mode mode, int *contended_compaction,
2947 bool *deferred_compaction)
56de7263
MG
2948{
2949 return NULL;
2950}
2951#endif /* CONFIG_COMPACTION */
2952
bba90710
MS
2953/* Perform direct synchronous page reclaim */
2954static int
a9263751
VB
2955__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2956 const struct alloc_context *ac)
11e33f6a 2957{
11e33f6a 2958 struct reclaim_state reclaim_state;
bba90710 2959 int progress;
11e33f6a
MG
2960
2961 cond_resched();
2962
2963 /* We now go into synchronous reclaim */
2964 cpuset_memory_pressure_bump();
c06b1fca 2965 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2966 lockdep_set_current_reclaim_state(gfp_mask);
2967 reclaim_state.reclaimed_slab = 0;
c06b1fca 2968 current->reclaim_state = &reclaim_state;
11e33f6a 2969
a9263751
VB
2970 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2971 ac->nodemask);
11e33f6a 2972
c06b1fca 2973 current->reclaim_state = NULL;
11e33f6a 2974 lockdep_clear_current_reclaim_state();
c06b1fca 2975 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2976
2977 cond_resched();
2978
bba90710
MS
2979 return progress;
2980}
2981
2982/* The really slow allocator path where we enter direct reclaim */
2983static inline struct page *
2984__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2985 int alloc_flags, const struct alloc_context *ac,
2986 unsigned long *did_some_progress)
bba90710
MS
2987{
2988 struct page *page = NULL;
2989 bool drained = false;
2990
a9263751 2991 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2992 if (unlikely(!(*did_some_progress)))
2993 return NULL;
11e33f6a 2994
9ee493ce 2995retry:
a9263751
VB
2996 page = get_page_from_freelist(gfp_mask, order,
2997 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2998
2999 /*
3000 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3001 * pages are pinned on the per-cpu lists or in high alloc reserves.
3002 * Shrink them them and try again
9ee493ce
MG
3003 */
3004 if (!page && !drained) {
0aaa29a5 3005 unreserve_highatomic_pageblock(ac);
93481ff0 3006 drain_all_pages(NULL);
9ee493ce
MG
3007 drained = true;
3008 goto retry;
3009 }
3010
11e33f6a
MG
3011 return page;
3012}
3013
a9263751 3014static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3015{
3016 struct zoneref *z;
3017 struct zone *zone;
3018
a9263751
VB
3019 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3020 ac->high_zoneidx, ac->nodemask)
3021 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3022}
3023
341ce06f
PZ
3024static inline int
3025gfp_to_alloc_flags(gfp_t gfp_mask)
3026{
341ce06f 3027 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3028
a56f57ff 3029 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3030 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3031
341ce06f
PZ
3032 /*
3033 * The caller may dip into page reserves a bit more if the caller
3034 * cannot run direct reclaim, or if the caller has realtime scheduling
3035 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3036 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3037 */
e6223a3b 3038 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3039
d0164adc 3040 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3041 /*
b104a35d
DR
3042 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3043 * if it can't schedule.
5c3240d9 3044 */
b104a35d 3045 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3046 alloc_flags |= ALLOC_HARDER;
523b9458 3047 /*
b104a35d 3048 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3049 * comment for __cpuset_node_allowed().
523b9458 3050 */
341ce06f 3051 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3052 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3053 alloc_flags |= ALLOC_HARDER;
3054
b37f1dd0
MG
3055 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3056 if (gfp_mask & __GFP_MEMALLOC)
3057 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3058 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3059 alloc_flags |= ALLOC_NO_WATERMARKS;
3060 else if (!in_interrupt() &&
3061 ((current->flags & PF_MEMALLOC) ||
3062 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3063 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3064 }
d95ea5d1 3065#ifdef CONFIG_CMA
43e7a34d 3066 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3067 alloc_flags |= ALLOC_CMA;
3068#endif
341ce06f
PZ
3069 return alloc_flags;
3070}
3071
072bb0aa
MG
3072bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3073{
b37f1dd0 3074 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3075}
3076
d0164adc
MG
3077static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3078{
3079 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3080}
3081
11e33f6a
MG
3082static inline struct page *
3083__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3084 struct alloc_context *ac)
11e33f6a 3085{
d0164adc 3086 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3087 struct page *page = NULL;
3088 int alloc_flags;
3089 unsigned long pages_reclaimed = 0;
3090 unsigned long did_some_progress;
e0b9daeb 3091 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3092 bool deferred_compaction = false;
1f9efdef 3093 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3094
72807a74
MG
3095 /*
3096 * In the slowpath, we sanity check order to avoid ever trying to
3097 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3098 * be using allocators in order of preference for an area that is
3099 * too large.
3100 */
1fc28b70
MG
3101 if (order >= MAX_ORDER) {
3102 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3103 return NULL;
1fc28b70 3104 }
1da177e4 3105
d0164adc
MG
3106 /*
3107 * We also sanity check to catch abuse of atomic reserves being used by
3108 * callers that are not in atomic context.
3109 */
3110 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3111 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3112 gfp_mask &= ~__GFP_ATOMIC;
3113
9879de73 3114retry:
d0164adc 3115 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3116 wake_all_kswapds(order, ac);
1da177e4 3117
9bf2229f 3118 /*
7fb1d9fc
RS
3119 * OK, we're below the kswapd watermark and have kicked background
3120 * reclaim. Now things get more complex, so set up alloc_flags according
3121 * to how we want to proceed.
9bf2229f 3122 */
341ce06f 3123 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3124
f33261d7
DR
3125 /*
3126 * Find the true preferred zone if the allocation is unconstrained by
3127 * cpusets.
3128 */
a9263751 3129 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3130 struct zoneref *preferred_zoneref;
a9263751
VB
3131 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3132 ac->high_zoneidx, NULL, &ac->preferred_zone);
3133 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3134 }
f33261d7 3135
341ce06f 3136 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3137 page = get_page_from_freelist(gfp_mask, order,
3138 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3139 if (page)
3140 goto got_pg;
1da177e4 3141
11e33f6a 3142 /* Allocate without watermarks if the context allows */
341ce06f 3143 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3144 /*
3145 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3146 * the allocation is high priority and these type of
3147 * allocations are system rather than user orientated
3148 */
a9263751 3149 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3150 page = get_page_from_freelist(gfp_mask, order,
3151 ALLOC_NO_WATERMARKS, ac);
3152 if (page)
3153 goto got_pg;
1da177e4
LT
3154 }
3155
d0164adc
MG
3156 /* Caller is not willing to reclaim, we can't balance anything */
3157 if (!can_direct_reclaim) {
aed0a0e3 3158 /*
33d53103
MH
3159 * All existing users of the __GFP_NOFAIL are blockable, so warn
3160 * of any new users that actually allow this type of allocation
3161 * to fail.
aed0a0e3
DR
3162 */
3163 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3164 goto nopage;
aed0a0e3 3165 }
1da177e4 3166
341ce06f 3167 /* Avoid recursion of direct reclaim */
33d53103
MH
3168 if (current->flags & PF_MEMALLOC) {
3169 /*
3170 * __GFP_NOFAIL request from this context is rather bizarre
3171 * because we cannot reclaim anything and only can loop waiting
3172 * for somebody to do a work for us.
3173 */
3174 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3175 cond_resched();
3176 goto retry;
3177 }
341ce06f 3178 goto nopage;
33d53103 3179 }
341ce06f 3180
6583bb64
DR
3181 /* Avoid allocations with no watermarks from looping endlessly */
3182 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3183 goto nopage;
3184
77f1fe6b
MG
3185 /*
3186 * Try direct compaction. The first pass is asynchronous. Subsequent
3187 * attempts after direct reclaim are synchronous
3188 */
a9263751
VB
3189 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3190 migration_mode,
3191 &contended_compaction,
53853e2d 3192 &deferred_compaction);
56de7263
MG
3193 if (page)
3194 goto got_pg;
75f30861 3195
1f9efdef 3196 /* Checks for THP-specific high-order allocations */
d0164adc 3197 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3198 /*
3199 * If compaction is deferred for high-order allocations, it is
3200 * because sync compaction recently failed. If this is the case
3201 * and the caller requested a THP allocation, we do not want
3202 * to heavily disrupt the system, so we fail the allocation
3203 * instead of entering direct reclaim.
3204 */
3205 if (deferred_compaction)
3206 goto nopage;
3207
3208 /*
3209 * In all zones where compaction was attempted (and not
3210 * deferred or skipped), lock contention has been detected.
3211 * For THP allocation we do not want to disrupt the others
3212 * so we fallback to base pages instead.
3213 */
3214 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3215 goto nopage;
3216
3217 /*
3218 * If compaction was aborted due to need_resched(), we do not
3219 * want to further increase allocation latency, unless it is
3220 * khugepaged trying to collapse.
3221 */
3222 if (contended_compaction == COMPACT_CONTENDED_SCHED
3223 && !(current->flags & PF_KTHREAD))
3224 goto nopage;
3225 }
66199712 3226
8fe78048
DR
3227 /*
3228 * It can become very expensive to allocate transparent hugepages at
3229 * fault, so use asynchronous memory compaction for THP unless it is
3230 * khugepaged trying to collapse.
3231 */
d0164adc 3232 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3233 migration_mode = MIGRATE_SYNC_LIGHT;
3234
11e33f6a 3235 /* Try direct reclaim and then allocating */
a9263751
VB
3236 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3237 &did_some_progress);
11e33f6a
MG
3238 if (page)
3239 goto got_pg;
1da177e4 3240
9083905a
JW
3241 /* Do not loop if specifically requested */
3242 if (gfp_mask & __GFP_NORETRY)
3243 goto noretry;
3244
3245 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3246 pages_reclaimed += did_some_progress;
9083905a
JW
3247 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3248 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3249 /* Wait for some write requests to complete then retry */
a9263751 3250 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3251 goto retry;
1da177e4
LT
3252 }
3253
9083905a
JW
3254 /* Reclaim has failed us, start killing things */
3255 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3256 if (page)
3257 goto got_pg;
3258
3259 /* Retry as long as the OOM killer is making progress */
3260 if (did_some_progress)
3261 goto retry;
3262
3263noretry:
3264 /*
3265 * High-order allocations do not necessarily loop after
3266 * direct reclaim and reclaim/compaction depends on compaction
3267 * being called after reclaim so call directly if necessary
3268 */
3269 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3270 ac, migration_mode,
3271 &contended_compaction,
3272 &deferred_compaction);
3273 if (page)
3274 goto got_pg;
1da177e4 3275nopage:
a238ab5b 3276 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3277got_pg:
072bb0aa 3278 return page;
1da177e4 3279}
11e33f6a
MG
3280
3281/*
3282 * This is the 'heart' of the zoned buddy allocator.
3283 */
3284struct page *
3285__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3286 struct zonelist *zonelist, nodemask_t *nodemask)
3287{
d8846374 3288 struct zoneref *preferred_zoneref;
cc9a6c87 3289 struct page *page = NULL;
cc9a6c87 3290 unsigned int cpuset_mems_cookie;
3a025760 3291 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3292 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3293 struct alloc_context ac = {
3294 .high_zoneidx = gfp_zone(gfp_mask),
3295 .nodemask = nodemask,
3296 .migratetype = gfpflags_to_migratetype(gfp_mask),
3297 };
11e33f6a 3298
dcce284a
BH
3299 gfp_mask &= gfp_allowed_mask;
3300
11e33f6a
MG
3301 lockdep_trace_alloc(gfp_mask);
3302
d0164adc 3303 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3304
3305 if (should_fail_alloc_page(gfp_mask, order))
3306 return NULL;
3307
3308 /*
3309 * Check the zones suitable for the gfp_mask contain at least one
3310 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3311 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3312 */
3313 if (unlikely(!zonelist->_zonerefs->zone))
3314 return NULL;
3315
a9263751 3316 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3317 alloc_flags |= ALLOC_CMA;
3318
cc9a6c87 3319retry_cpuset:
d26914d1 3320 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3321
a9263751
VB
3322 /* We set it here, as __alloc_pages_slowpath might have changed it */
3323 ac.zonelist = zonelist;
c9ab0c4f
MG
3324
3325 /* Dirty zone balancing only done in the fast path */
3326 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3327
5117f45d 3328 /* The preferred zone is used for statistics later */
a9263751
VB
3329 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3330 ac.nodemask ? : &cpuset_current_mems_allowed,
3331 &ac.preferred_zone);
3332 if (!ac.preferred_zone)
cc9a6c87 3333 goto out;
a9263751 3334 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3335
3336 /* First allocation attempt */
91fbdc0f 3337 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3338 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3339 if (unlikely(!page)) {
3340 /*
3341 * Runtime PM, block IO and its error handling path
3342 * can deadlock because I/O on the device might not
3343 * complete.
3344 */
91fbdc0f 3345 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3346 ac.spread_dirty_pages = false;
91fbdc0f 3347
a9263751 3348 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3349 }
11e33f6a 3350
23f086f9
XQ
3351 if (kmemcheck_enabled && page)
3352 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3353
a9263751 3354 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3355
3356out:
3357 /*
3358 * When updating a task's mems_allowed, it is possible to race with
3359 * parallel threads in such a way that an allocation can fail while
3360 * the mask is being updated. If a page allocation is about to fail,
3361 * check if the cpuset changed during allocation and if so, retry.
3362 */
d26914d1 3363 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3364 goto retry_cpuset;
3365
11e33f6a 3366 return page;
1da177e4 3367}
d239171e 3368EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3369
3370/*
3371 * Common helper functions.
3372 */
920c7a5d 3373unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3374{
945a1113
AM
3375 struct page *page;
3376
3377 /*
3378 * __get_free_pages() returns a 32-bit address, which cannot represent
3379 * a highmem page
3380 */
3381 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3382
1da177e4
LT
3383 page = alloc_pages(gfp_mask, order);
3384 if (!page)
3385 return 0;
3386 return (unsigned long) page_address(page);
3387}
1da177e4
LT
3388EXPORT_SYMBOL(__get_free_pages);
3389
920c7a5d 3390unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3391{
945a1113 3392 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3393}
1da177e4
LT
3394EXPORT_SYMBOL(get_zeroed_page);
3395
920c7a5d 3396void __free_pages(struct page *page, unsigned int order)
1da177e4 3397{
b5810039 3398 if (put_page_testzero(page)) {
1da177e4 3399 if (order == 0)
b745bc85 3400 free_hot_cold_page(page, false);
1da177e4
LT
3401 else
3402 __free_pages_ok(page, order);
3403 }
3404}
3405
3406EXPORT_SYMBOL(__free_pages);
3407
920c7a5d 3408void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3409{
3410 if (addr != 0) {
725d704e 3411 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3412 __free_pages(virt_to_page((void *)addr), order);
3413 }
3414}
3415
3416EXPORT_SYMBOL(free_pages);
3417
b63ae8ca
AD
3418/*
3419 * Page Fragment:
3420 * An arbitrary-length arbitrary-offset area of memory which resides
3421 * within a 0 or higher order page. Multiple fragments within that page
3422 * are individually refcounted, in the page's reference counter.
3423 *
3424 * The page_frag functions below provide a simple allocation framework for
3425 * page fragments. This is used by the network stack and network device
3426 * drivers to provide a backing region of memory for use as either an
3427 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3428 */
3429static struct page *__page_frag_refill(struct page_frag_cache *nc,
3430 gfp_t gfp_mask)
3431{
3432 struct page *page = NULL;
3433 gfp_t gfp = gfp_mask;
3434
3435#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3436 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3437 __GFP_NOMEMALLOC;
3438 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3439 PAGE_FRAG_CACHE_MAX_ORDER);
3440 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3441#endif
3442 if (unlikely(!page))
3443 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3444
3445 nc->va = page ? page_address(page) : NULL;
3446
3447 return page;
3448}
3449
3450void *__alloc_page_frag(struct page_frag_cache *nc,
3451 unsigned int fragsz, gfp_t gfp_mask)
3452{
3453 unsigned int size = PAGE_SIZE;
3454 struct page *page;
3455 int offset;
3456
3457 if (unlikely(!nc->va)) {
3458refill:
3459 page = __page_frag_refill(nc, gfp_mask);
3460 if (!page)
3461 return NULL;
3462
3463#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3464 /* if size can vary use size else just use PAGE_SIZE */
3465 size = nc->size;
3466#endif
3467 /* Even if we own the page, we do not use atomic_set().
3468 * This would break get_page_unless_zero() users.
3469 */
fe896d18 3470 page_ref_add(page, size - 1);
b63ae8ca
AD
3471
3472 /* reset page count bias and offset to start of new frag */
2f064f34 3473 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3474 nc->pagecnt_bias = size;
3475 nc->offset = size;
3476 }
3477
3478 offset = nc->offset - fragsz;
3479 if (unlikely(offset < 0)) {
3480 page = virt_to_page(nc->va);
3481
fe896d18 3482 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3483 goto refill;
3484
3485#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3486 /* if size can vary use size else just use PAGE_SIZE */
3487 size = nc->size;
3488#endif
3489 /* OK, page count is 0, we can safely set it */
fe896d18 3490 set_page_count(page, size);
b63ae8ca
AD
3491
3492 /* reset page count bias and offset to start of new frag */
3493 nc->pagecnt_bias = size;
3494 offset = size - fragsz;
3495 }
3496
3497 nc->pagecnt_bias--;
3498 nc->offset = offset;
3499
3500 return nc->va + offset;
3501}
3502EXPORT_SYMBOL(__alloc_page_frag);
3503
3504/*
3505 * Frees a page fragment allocated out of either a compound or order 0 page.
3506 */
3507void __free_page_frag(void *addr)
3508{
3509 struct page *page = virt_to_head_page(addr);
3510
3511 if (unlikely(put_page_testzero(page)))
3512 __free_pages_ok(page, compound_order(page));
3513}
3514EXPORT_SYMBOL(__free_page_frag);
3515
6a1a0d3b 3516/*
52383431 3517 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3518 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3519 * equivalent to alloc_pages.
6a1a0d3b 3520 *
52383431
VD
3521 * It should be used when the caller would like to use kmalloc, but since the
3522 * allocation is large, it has to fall back to the page allocator.
3523 */
3524struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3525{
3526 struct page *page;
52383431 3527
52383431 3528 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3529 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3530 __free_pages(page, order);
3531 page = NULL;
3532 }
52383431
VD
3533 return page;
3534}
3535
3536struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3537{
3538 struct page *page;
52383431 3539
52383431 3540 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3541 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3542 __free_pages(page, order);
3543 page = NULL;
3544 }
52383431
VD
3545 return page;
3546}
3547
3548/*
3549 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3550 * alloc_kmem_pages.
6a1a0d3b 3551 */
52383431 3552void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3553{
d05e83a6 3554 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3555 __free_pages(page, order);
3556}
3557
52383431 3558void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3559{
3560 if (addr != 0) {
3561 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3562 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3563 }
3564}
3565
d00181b9
KS
3566static void *make_alloc_exact(unsigned long addr, unsigned int order,
3567 size_t size)
ee85c2e1
AK
3568{
3569 if (addr) {
3570 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3571 unsigned long used = addr + PAGE_ALIGN(size);
3572
3573 split_page(virt_to_page((void *)addr), order);
3574 while (used < alloc_end) {
3575 free_page(used);
3576 used += PAGE_SIZE;
3577 }
3578 }
3579 return (void *)addr;
3580}
3581
2be0ffe2
TT
3582/**
3583 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3584 * @size: the number of bytes to allocate
3585 * @gfp_mask: GFP flags for the allocation
3586 *
3587 * This function is similar to alloc_pages(), except that it allocates the
3588 * minimum number of pages to satisfy the request. alloc_pages() can only
3589 * allocate memory in power-of-two pages.
3590 *
3591 * This function is also limited by MAX_ORDER.
3592 *
3593 * Memory allocated by this function must be released by free_pages_exact().
3594 */
3595void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3596{
3597 unsigned int order = get_order(size);
3598 unsigned long addr;
3599
3600 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3601 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3602}
3603EXPORT_SYMBOL(alloc_pages_exact);
3604
ee85c2e1
AK
3605/**
3606 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3607 * pages on a node.
b5e6ab58 3608 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3609 * @size: the number of bytes to allocate
3610 * @gfp_mask: GFP flags for the allocation
3611 *
3612 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3613 * back.
ee85c2e1 3614 */
e1931811 3615void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3616{
d00181b9 3617 unsigned int order = get_order(size);
ee85c2e1
AK
3618 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3619 if (!p)
3620 return NULL;
3621 return make_alloc_exact((unsigned long)page_address(p), order, size);
3622}
ee85c2e1 3623
2be0ffe2
TT
3624/**
3625 * free_pages_exact - release memory allocated via alloc_pages_exact()
3626 * @virt: the value returned by alloc_pages_exact.
3627 * @size: size of allocation, same value as passed to alloc_pages_exact().
3628 *
3629 * Release the memory allocated by a previous call to alloc_pages_exact.
3630 */
3631void free_pages_exact(void *virt, size_t size)
3632{
3633 unsigned long addr = (unsigned long)virt;
3634 unsigned long end = addr + PAGE_ALIGN(size);
3635
3636 while (addr < end) {
3637 free_page(addr);
3638 addr += PAGE_SIZE;
3639 }
3640}
3641EXPORT_SYMBOL(free_pages_exact);
3642
e0fb5815
ZY
3643/**
3644 * nr_free_zone_pages - count number of pages beyond high watermark
3645 * @offset: The zone index of the highest zone
3646 *
3647 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3648 * high watermark within all zones at or below a given zone index. For each
3649 * zone, the number of pages is calculated as:
834405c3 3650 * managed_pages - high_pages
e0fb5815 3651 */
ebec3862 3652static unsigned long nr_free_zone_pages(int offset)
1da177e4 3653{
dd1a239f 3654 struct zoneref *z;
54a6eb5c
MG
3655 struct zone *zone;
3656
e310fd43 3657 /* Just pick one node, since fallback list is circular */
ebec3862 3658 unsigned long sum = 0;
1da177e4 3659
0e88460d 3660 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3661
54a6eb5c 3662 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3663 unsigned long size = zone->managed_pages;
41858966 3664 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3665 if (size > high)
3666 sum += size - high;
1da177e4
LT
3667 }
3668
3669 return sum;
3670}
3671
e0fb5815
ZY
3672/**
3673 * nr_free_buffer_pages - count number of pages beyond high watermark
3674 *
3675 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3676 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3677 */
ebec3862 3678unsigned long nr_free_buffer_pages(void)
1da177e4 3679{
af4ca457 3680 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3681}
c2f1a551 3682EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3683
e0fb5815
ZY
3684/**
3685 * nr_free_pagecache_pages - count number of pages beyond high watermark
3686 *
3687 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3688 * high watermark within all zones.
1da177e4 3689 */
ebec3862 3690unsigned long nr_free_pagecache_pages(void)
1da177e4 3691{
2a1e274a 3692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3693}
08e0f6a9
CL
3694
3695static inline void show_node(struct zone *zone)
1da177e4 3696{
e5adfffc 3697 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3698 printk("Node %d ", zone_to_nid(zone));
1da177e4 3699}
1da177e4 3700
d02bd27b
IR
3701long si_mem_available(void)
3702{
3703 long available;
3704 unsigned long pagecache;
3705 unsigned long wmark_low = 0;
3706 unsigned long pages[NR_LRU_LISTS];
3707 struct zone *zone;
3708 int lru;
3709
3710 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3711 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3712
3713 for_each_zone(zone)
3714 wmark_low += zone->watermark[WMARK_LOW];
3715
3716 /*
3717 * Estimate the amount of memory available for userspace allocations,
3718 * without causing swapping.
3719 */
3720 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3721
3722 /*
3723 * Not all the page cache can be freed, otherwise the system will
3724 * start swapping. Assume at least half of the page cache, or the
3725 * low watermark worth of cache, needs to stay.
3726 */
3727 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3728 pagecache -= min(pagecache / 2, wmark_low);
3729 available += pagecache;
3730
3731 /*
3732 * Part of the reclaimable slab consists of items that are in use,
3733 * and cannot be freed. Cap this estimate at the low watermark.
3734 */
3735 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3736 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3737
3738 if (available < 0)
3739 available = 0;
3740 return available;
3741}
3742EXPORT_SYMBOL_GPL(si_mem_available);
3743
1da177e4
LT
3744void si_meminfo(struct sysinfo *val)
3745{
3746 val->totalram = totalram_pages;
cc7452b6 3747 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3748 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3749 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3750 val->totalhigh = totalhigh_pages;
3751 val->freehigh = nr_free_highpages();
1da177e4
LT
3752 val->mem_unit = PAGE_SIZE;
3753}
3754
3755EXPORT_SYMBOL(si_meminfo);
3756
3757#ifdef CONFIG_NUMA
3758void si_meminfo_node(struct sysinfo *val, int nid)
3759{
cdd91a77
JL
3760 int zone_type; /* needs to be signed */
3761 unsigned long managed_pages = 0;
1da177e4
LT
3762 pg_data_t *pgdat = NODE_DATA(nid);
3763
cdd91a77
JL
3764 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3765 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3766 val->totalram = managed_pages;
cc7452b6 3767 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3768 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3769#ifdef CONFIG_HIGHMEM
b40da049 3770 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3771 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3772 NR_FREE_PAGES);
98d2b0eb
CL
3773#else
3774 val->totalhigh = 0;
3775 val->freehigh = 0;
3776#endif
1da177e4
LT
3777 val->mem_unit = PAGE_SIZE;
3778}
3779#endif
3780
ddd588b5 3781/*
7bf02ea2
DR
3782 * Determine whether the node should be displayed or not, depending on whether
3783 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3784 */
7bf02ea2 3785bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3786{
3787 bool ret = false;
cc9a6c87 3788 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3789
3790 if (!(flags & SHOW_MEM_FILTER_NODES))
3791 goto out;
3792
cc9a6c87 3793 do {
d26914d1 3794 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3795 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3796 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3797out:
3798 return ret;
3799}
3800
1da177e4
LT
3801#define K(x) ((x) << (PAGE_SHIFT-10))
3802
377e4f16
RV
3803static void show_migration_types(unsigned char type)
3804{
3805 static const char types[MIGRATE_TYPES] = {
3806 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3807 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3808 [MIGRATE_RECLAIMABLE] = 'E',
3809 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3810#ifdef CONFIG_CMA
3811 [MIGRATE_CMA] = 'C',
3812#endif
194159fb 3813#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3814 [MIGRATE_ISOLATE] = 'I',
194159fb 3815#endif
377e4f16
RV
3816 };
3817 char tmp[MIGRATE_TYPES + 1];
3818 char *p = tmp;
3819 int i;
3820
3821 for (i = 0; i < MIGRATE_TYPES; i++) {
3822 if (type & (1 << i))
3823 *p++ = types[i];
3824 }
3825
3826 *p = '\0';
3827 printk("(%s) ", tmp);
3828}
3829
1da177e4
LT
3830/*
3831 * Show free area list (used inside shift_scroll-lock stuff)
3832 * We also calculate the percentage fragmentation. We do this by counting the
3833 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3834 *
3835 * Bits in @filter:
3836 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3837 * cpuset.
1da177e4 3838 */
7bf02ea2 3839void show_free_areas(unsigned int filter)
1da177e4 3840{
d1bfcdb8 3841 unsigned long free_pcp = 0;
c7241913 3842 int cpu;
1da177e4
LT
3843 struct zone *zone;
3844
ee99c71c 3845 for_each_populated_zone(zone) {
7bf02ea2 3846 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3847 continue;
d1bfcdb8 3848
761b0677
KK
3849 for_each_online_cpu(cpu)
3850 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3851 }
3852
a731286d
KM
3853 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3854 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3855 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3856 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3857 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3858 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3859 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3860 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3861 global_page_state(NR_ISOLATED_ANON),
3862 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3863 global_page_state(NR_INACTIVE_FILE),
a731286d 3864 global_page_state(NR_ISOLATED_FILE),
7b854121 3865 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3866 global_page_state(NR_FILE_DIRTY),
ce866b34 3867 global_page_state(NR_WRITEBACK),
fd39fc85 3868 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3869 global_page_state(NR_SLAB_RECLAIMABLE),
3870 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3871 global_page_state(NR_FILE_MAPPED),
4b02108a 3872 global_page_state(NR_SHMEM),
a25700a5 3873 global_page_state(NR_PAGETABLE),
d1ce749a 3874 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3875 global_page_state(NR_FREE_PAGES),
3876 free_pcp,
d1ce749a 3877 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3878
ee99c71c 3879 for_each_populated_zone(zone) {
1da177e4
LT
3880 int i;
3881
7bf02ea2 3882 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3883 continue;
d1bfcdb8
KK
3884
3885 free_pcp = 0;
3886 for_each_online_cpu(cpu)
3887 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3888
1da177e4
LT
3889 show_node(zone);
3890 printk("%s"
3891 " free:%lukB"
3892 " min:%lukB"
3893 " low:%lukB"
3894 " high:%lukB"
4f98a2fe
RR
3895 " active_anon:%lukB"
3896 " inactive_anon:%lukB"
3897 " active_file:%lukB"
3898 " inactive_file:%lukB"
7b854121 3899 " unevictable:%lukB"
a731286d
KM
3900 " isolated(anon):%lukB"
3901 " isolated(file):%lukB"
1da177e4 3902 " present:%lukB"
9feedc9d 3903 " managed:%lukB"
4a0aa73f
KM
3904 " mlocked:%lukB"
3905 " dirty:%lukB"
3906 " writeback:%lukB"
3907 " mapped:%lukB"
4b02108a 3908 " shmem:%lukB"
4a0aa73f
KM
3909 " slab_reclaimable:%lukB"
3910 " slab_unreclaimable:%lukB"
c6a7f572 3911 " kernel_stack:%lukB"
4a0aa73f
KM
3912 " pagetables:%lukB"
3913 " unstable:%lukB"
3914 " bounce:%lukB"
d1bfcdb8
KK
3915 " free_pcp:%lukB"
3916 " local_pcp:%ukB"
d1ce749a 3917 " free_cma:%lukB"
4a0aa73f 3918 " writeback_tmp:%lukB"
1da177e4
LT
3919 " pages_scanned:%lu"
3920 " all_unreclaimable? %s"
3921 "\n",
3922 zone->name,
88f5acf8 3923 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3924 K(min_wmark_pages(zone)),
3925 K(low_wmark_pages(zone)),
3926 K(high_wmark_pages(zone)),
4f98a2fe
RR
3927 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3928 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3929 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3930 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3931 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3932 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3933 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3934 K(zone->present_pages),
9feedc9d 3935 K(zone->managed_pages),
4a0aa73f
KM
3936 K(zone_page_state(zone, NR_MLOCK)),
3937 K(zone_page_state(zone, NR_FILE_DIRTY)),
3938 K(zone_page_state(zone, NR_WRITEBACK)),
3939 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3940 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3941 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3942 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3943 zone_page_state(zone, NR_KERNEL_STACK) *
3944 THREAD_SIZE / 1024,
4a0aa73f
KM
3945 K(zone_page_state(zone, NR_PAGETABLE)),
3946 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3947 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3948 K(free_pcp),
3949 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3950 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3951 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3952 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3953 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3954 );
3955 printk("lowmem_reserve[]:");
3956 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3957 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3958 printk("\n");
3959 }
3960
ee99c71c 3961 for_each_populated_zone(zone) {
d00181b9
KS
3962 unsigned int order;
3963 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3964 unsigned char types[MAX_ORDER];
1da177e4 3965
7bf02ea2 3966 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3967 continue;
1da177e4
LT
3968 show_node(zone);
3969 printk("%s: ", zone->name);
1da177e4
LT
3970
3971 spin_lock_irqsave(&zone->lock, flags);
3972 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3973 struct free_area *area = &zone->free_area[order];
3974 int type;
3975
3976 nr[order] = area->nr_free;
8f9de51a 3977 total += nr[order] << order;
377e4f16
RV
3978
3979 types[order] = 0;
3980 for (type = 0; type < MIGRATE_TYPES; type++) {
3981 if (!list_empty(&area->free_list[type]))
3982 types[order] |= 1 << type;
3983 }
1da177e4
LT
3984 }
3985 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3986 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3987 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3988 if (nr[order])
3989 show_migration_types(types[order]);
3990 }
1da177e4
LT
3991 printk("= %lukB\n", K(total));
3992 }
3993
949f7ec5
DR
3994 hugetlb_show_meminfo();
3995
e6f3602d
LW
3996 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3997
1da177e4
LT
3998 show_swap_cache_info();
3999}
4000
19770b32
MG
4001static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4002{
4003 zoneref->zone = zone;
4004 zoneref->zone_idx = zone_idx(zone);
4005}
4006
1da177e4
LT
4007/*
4008 * Builds allocation fallback zone lists.
1a93205b
CL
4009 *
4010 * Add all populated zones of a node to the zonelist.
1da177e4 4011 */
f0c0b2b8 4012static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4013 int nr_zones)
1da177e4 4014{
1a93205b 4015 struct zone *zone;
bc732f1d 4016 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4017
4018 do {
2f6726e5 4019 zone_type--;
070f8032 4020 zone = pgdat->node_zones + zone_type;
1a93205b 4021 if (populated_zone(zone)) {
dd1a239f
MG
4022 zoneref_set_zone(zone,
4023 &zonelist->_zonerefs[nr_zones++]);
070f8032 4024 check_highest_zone(zone_type);
1da177e4 4025 }
2f6726e5 4026 } while (zone_type);
bc732f1d 4027
070f8032 4028 return nr_zones;
1da177e4
LT
4029}
4030
f0c0b2b8
KH
4031
4032/*
4033 * zonelist_order:
4034 * 0 = automatic detection of better ordering.
4035 * 1 = order by ([node] distance, -zonetype)
4036 * 2 = order by (-zonetype, [node] distance)
4037 *
4038 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4039 * the same zonelist. So only NUMA can configure this param.
4040 */
4041#define ZONELIST_ORDER_DEFAULT 0
4042#define ZONELIST_ORDER_NODE 1
4043#define ZONELIST_ORDER_ZONE 2
4044
4045/* zonelist order in the kernel.
4046 * set_zonelist_order() will set this to NODE or ZONE.
4047 */
4048static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4049static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4050
4051
1da177e4 4052#ifdef CONFIG_NUMA
f0c0b2b8
KH
4053/* The value user specified ....changed by config */
4054static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4055/* string for sysctl */
4056#define NUMA_ZONELIST_ORDER_LEN 16
4057char numa_zonelist_order[16] = "default";
4058
4059/*
4060 * interface for configure zonelist ordering.
4061 * command line option "numa_zonelist_order"
4062 * = "[dD]efault - default, automatic configuration.
4063 * = "[nN]ode - order by node locality, then by zone within node
4064 * = "[zZ]one - order by zone, then by locality within zone
4065 */
4066
4067static int __parse_numa_zonelist_order(char *s)
4068{
4069 if (*s == 'd' || *s == 'D') {
4070 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4071 } else if (*s == 'n' || *s == 'N') {
4072 user_zonelist_order = ZONELIST_ORDER_NODE;
4073 } else if (*s == 'z' || *s == 'Z') {
4074 user_zonelist_order = ZONELIST_ORDER_ZONE;
4075 } else {
1170532b 4076 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4077 return -EINVAL;
4078 }
4079 return 0;
4080}
4081
4082static __init int setup_numa_zonelist_order(char *s)
4083{
ecb256f8
VL
4084 int ret;
4085
4086 if (!s)
4087 return 0;
4088
4089 ret = __parse_numa_zonelist_order(s);
4090 if (ret == 0)
4091 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4092
4093 return ret;
f0c0b2b8
KH
4094}
4095early_param("numa_zonelist_order", setup_numa_zonelist_order);
4096
4097/*
4098 * sysctl handler for numa_zonelist_order
4099 */
cccad5b9 4100int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4101 void __user *buffer, size_t *length,
f0c0b2b8
KH
4102 loff_t *ppos)
4103{
4104 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4105 int ret;
443c6f14 4106 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4107
443c6f14 4108 mutex_lock(&zl_order_mutex);
dacbde09
CG
4109 if (write) {
4110 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4111 ret = -EINVAL;
4112 goto out;
4113 }
4114 strcpy(saved_string, (char *)table->data);
4115 }
8d65af78 4116 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4117 if (ret)
443c6f14 4118 goto out;
f0c0b2b8
KH
4119 if (write) {
4120 int oldval = user_zonelist_order;
dacbde09
CG
4121
4122 ret = __parse_numa_zonelist_order((char *)table->data);
4123 if (ret) {
f0c0b2b8
KH
4124 /*
4125 * bogus value. restore saved string
4126 */
dacbde09 4127 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4128 NUMA_ZONELIST_ORDER_LEN);
4129 user_zonelist_order = oldval;
4eaf3f64
HL
4130 } else if (oldval != user_zonelist_order) {
4131 mutex_lock(&zonelists_mutex);
9adb62a5 4132 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4133 mutex_unlock(&zonelists_mutex);
4134 }
f0c0b2b8 4135 }
443c6f14
AK
4136out:
4137 mutex_unlock(&zl_order_mutex);
4138 return ret;
f0c0b2b8
KH
4139}
4140
4141
62bc62a8 4142#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4143static int node_load[MAX_NUMNODES];
4144
1da177e4 4145/**
4dc3b16b 4146 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4147 * @node: node whose fallback list we're appending
4148 * @used_node_mask: nodemask_t of already used nodes
4149 *
4150 * We use a number of factors to determine which is the next node that should
4151 * appear on a given node's fallback list. The node should not have appeared
4152 * already in @node's fallback list, and it should be the next closest node
4153 * according to the distance array (which contains arbitrary distance values
4154 * from each node to each node in the system), and should also prefer nodes
4155 * with no CPUs, since presumably they'll have very little allocation pressure
4156 * on them otherwise.
4157 * It returns -1 if no node is found.
4158 */
f0c0b2b8 4159static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4160{
4cf808eb 4161 int n, val;
1da177e4 4162 int min_val = INT_MAX;
00ef2d2f 4163 int best_node = NUMA_NO_NODE;
a70f7302 4164 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4165
4cf808eb
LT
4166 /* Use the local node if we haven't already */
4167 if (!node_isset(node, *used_node_mask)) {
4168 node_set(node, *used_node_mask);
4169 return node;
4170 }
1da177e4 4171
4b0ef1fe 4172 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4173
4174 /* Don't want a node to appear more than once */
4175 if (node_isset(n, *used_node_mask))
4176 continue;
4177
1da177e4
LT
4178 /* Use the distance array to find the distance */
4179 val = node_distance(node, n);
4180
4cf808eb
LT
4181 /* Penalize nodes under us ("prefer the next node") */
4182 val += (n < node);
4183
1da177e4 4184 /* Give preference to headless and unused nodes */
a70f7302
RR
4185 tmp = cpumask_of_node(n);
4186 if (!cpumask_empty(tmp))
1da177e4
LT
4187 val += PENALTY_FOR_NODE_WITH_CPUS;
4188
4189 /* Slight preference for less loaded node */
4190 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4191 val += node_load[n];
4192
4193 if (val < min_val) {
4194 min_val = val;
4195 best_node = n;
4196 }
4197 }
4198
4199 if (best_node >= 0)
4200 node_set(best_node, *used_node_mask);
4201
4202 return best_node;
4203}
4204
f0c0b2b8
KH
4205
4206/*
4207 * Build zonelists ordered by node and zones within node.
4208 * This results in maximum locality--normal zone overflows into local
4209 * DMA zone, if any--but risks exhausting DMA zone.
4210 */
4211static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4212{
f0c0b2b8 4213 int j;
1da177e4 4214 struct zonelist *zonelist;
f0c0b2b8 4215
54a6eb5c 4216 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4217 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4218 ;
bc732f1d 4219 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4220 zonelist->_zonerefs[j].zone = NULL;
4221 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4222}
4223
523b9458
CL
4224/*
4225 * Build gfp_thisnode zonelists
4226 */
4227static void build_thisnode_zonelists(pg_data_t *pgdat)
4228{
523b9458
CL
4229 int j;
4230 struct zonelist *zonelist;
4231
54a6eb5c 4232 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4233 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4234 zonelist->_zonerefs[j].zone = NULL;
4235 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4236}
4237
f0c0b2b8
KH
4238/*
4239 * Build zonelists ordered by zone and nodes within zones.
4240 * This results in conserving DMA zone[s] until all Normal memory is
4241 * exhausted, but results in overflowing to remote node while memory
4242 * may still exist in local DMA zone.
4243 */
4244static int node_order[MAX_NUMNODES];
4245
4246static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4247{
f0c0b2b8
KH
4248 int pos, j, node;
4249 int zone_type; /* needs to be signed */
4250 struct zone *z;
4251 struct zonelist *zonelist;
4252
54a6eb5c
MG
4253 zonelist = &pgdat->node_zonelists[0];
4254 pos = 0;
4255 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4256 for (j = 0; j < nr_nodes; j++) {
4257 node = node_order[j];
4258 z = &NODE_DATA(node)->node_zones[zone_type];
4259 if (populated_zone(z)) {
dd1a239f
MG
4260 zoneref_set_zone(z,
4261 &zonelist->_zonerefs[pos++]);
54a6eb5c 4262 check_highest_zone(zone_type);
f0c0b2b8
KH
4263 }
4264 }
f0c0b2b8 4265 }
dd1a239f
MG
4266 zonelist->_zonerefs[pos].zone = NULL;
4267 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4268}
4269
3193913c
MG
4270#if defined(CONFIG_64BIT)
4271/*
4272 * Devices that require DMA32/DMA are relatively rare and do not justify a
4273 * penalty to every machine in case the specialised case applies. Default
4274 * to Node-ordering on 64-bit NUMA machines
4275 */
4276static int default_zonelist_order(void)
4277{
4278 return ZONELIST_ORDER_NODE;
4279}
4280#else
4281/*
4282 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4283 * by the kernel. If processes running on node 0 deplete the low memory zone
4284 * then reclaim will occur more frequency increasing stalls and potentially
4285 * be easier to OOM if a large percentage of the zone is under writeback or
4286 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4287 * Hence, default to zone ordering on 32-bit.
4288 */
f0c0b2b8
KH
4289static int default_zonelist_order(void)
4290{
f0c0b2b8
KH
4291 return ZONELIST_ORDER_ZONE;
4292}
3193913c 4293#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4294
4295static void set_zonelist_order(void)
4296{
4297 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4298 current_zonelist_order = default_zonelist_order();
4299 else
4300 current_zonelist_order = user_zonelist_order;
4301}
4302
4303static void build_zonelists(pg_data_t *pgdat)
4304{
c00eb15a 4305 int i, node, load;
1da177e4 4306 nodemask_t used_mask;
f0c0b2b8
KH
4307 int local_node, prev_node;
4308 struct zonelist *zonelist;
d00181b9 4309 unsigned int order = current_zonelist_order;
1da177e4
LT
4310
4311 /* initialize zonelists */
523b9458 4312 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4313 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4314 zonelist->_zonerefs[0].zone = NULL;
4315 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4316 }
4317
4318 /* NUMA-aware ordering of nodes */
4319 local_node = pgdat->node_id;
62bc62a8 4320 load = nr_online_nodes;
1da177e4
LT
4321 prev_node = local_node;
4322 nodes_clear(used_mask);
f0c0b2b8 4323
f0c0b2b8 4324 memset(node_order, 0, sizeof(node_order));
c00eb15a 4325 i = 0;
f0c0b2b8 4326
1da177e4
LT
4327 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4328 /*
4329 * We don't want to pressure a particular node.
4330 * So adding penalty to the first node in same
4331 * distance group to make it round-robin.
4332 */
957f822a
DR
4333 if (node_distance(local_node, node) !=
4334 node_distance(local_node, prev_node))
f0c0b2b8
KH
4335 node_load[node] = load;
4336
1da177e4
LT
4337 prev_node = node;
4338 load--;
f0c0b2b8
KH
4339 if (order == ZONELIST_ORDER_NODE)
4340 build_zonelists_in_node_order(pgdat, node);
4341 else
c00eb15a 4342 node_order[i++] = node; /* remember order */
f0c0b2b8 4343 }
1da177e4 4344
f0c0b2b8
KH
4345 if (order == ZONELIST_ORDER_ZONE) {
4346 /* calculate node order -- i.e., DMA last! */
c00eb15a 4347 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4348 }
523b9458
CL
4349
4350 build_thisnode_zonelists(pgdat);
1da177e4
LT
4351}
4352
7aac7898
LS
4353#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4354/*
4355 * Return node id of node used for "local" allocations.
4356 * I.e., first node id of first zone in arg node's generic zonelist.
4357 * Used for initializing percpu 'numa_mem', which is used primarily
4358 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4359 */
4360int local_memory_node(int node)
4361{
4362 struct zone *zone;
4363
4364 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4365 gfp_zone(GFP_KERNEL),
4366 NULL,
4367 &zone);
4368 return zone->node;
4369}
4370#endif
f0c0b2b8 4371
1da177e4
LT
4372#else /* CONFIG_NUMA */
4373
f0c0b2b8
KH
4374static void set_zonelist_order(void)
4375{
4376 current_zonelist_order = ZONELIST_ORDER_ZONE;
4377}
4378
4379static void build_zonelists(pg_data_t *pgdat)
1da177e4 4380{
19655d34 4381 int node, local_node;
54a6eb5c
MG
4382 enum zone_type j;
4383 struct zonelist *zonelist;
1da177e4
LT
4384
4385 local_node = pgdat->node_id;
1da177e4 4386
54a6eb5c 4387 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4388 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4389
54a6eb5c
MG
4390 /*
4391 * Now we build the zonelist so that it contains the zones
4392 * of all the other nodes.
4393 * We don't want to pressure a particular node, so when
4394 * building the zones for node N, we make sure that the
4395 * zones coming right after the local ones are those from
4396 * node N+1 (modulo N)
4397 */
4398 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4399 if (!node_online(node))
4400 continue;
bc732f1d 4401 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4402 }
54a6eb5c
MG
4403 for (node = 0; node < local_node; node++) {
4404 if (!node_online(node))
4405 continue;
bc732f1d 4406 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4407 }
4408
dd1a239f
MG
4409 zonelist->_zonerefs[j].zone = NULL;
4410 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4411}
4412
4413#endif /* CONFIG_NUMA */
4414
99dcc3e5
CL
4415/*
4416 * Boot pageset table. One per cpu which is going to be used for all
4417 * zones and all nodes. The parameters will be set in such a way
4418 * that an item put on a list will immediately be handed over to
4419 * the buddy list. This is safe since pageset manipulation is done
4420 * with interrupts disabled.
4421 *
4422 * The boot_pagesets must be kept even after bootup is complete for
4423 * unused processors and/or zones. They do play a role for bootstrapping
4424 * hotplugged processors.
4425 *
4426 * zoneinfo_show() and maybe other functions do
4427 * not check if the processor is online before following the pageset pointer.
4428 * Other parts of the kernel may not check if the zone is available.
4429 */
4430static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4431static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4432static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4433
4eaf3f64
HL
4434/*
4435 * Global mutex to protect against size modification of zonelists
4436 * as well as to serialize pageset setup for the new populated zone.
4437 */
4438DEFINE_MUTEX(zonelists_mutex);
4439
9b1a4d38 4440/* return values int ....just for stop_machine() */
4ed7e022 4441static int __build_all_zonelists(void *data)
1da177e4 4442{
6811378e 4443 int nid;
99dcc3e5 4444 int cpu;
9adb62a5 4445 pg_data_t *self = data;
9276b1bc 4446
7f9cfb31
BL
4447#ifdef CONFIG_NUMA
4448 memset(node_load, 0, sizeof(node_load));
4449#endif
9adb62a5
JL
4450
4451 if (self && !node_online(self->node_id)) {
4452 build_zonelists(self);
9adb62a5
JL
4453 }
4454
9276b1bc 4455 for_each_online_node(nid) {
7ea1530a
CL
4456 pg_data_t *pgdat = NODE_DATA(nid);
4457
4458 build_zonelists(pgdat);
9276b1bc 4459 }
99dcc3e5
CL
4460
4461 /*
4462 * Initialize the boot_pagesets that are going to be used
4463 * for bootstrapping processors. The real pagesets for
4464 * each zone will be allocated later when the per cpu
4465 * allocator is available.
4466 *
4467 * boot_pagesets are used also for bootstrapping offline
4468 * cpus if the system is already booted because the pagesets
4469 * are needed to initialize allocators on a specific cpu too.
4470 * F.e. the percpu allocator needs the page allocator which
4471 * needs the percpu allocator in order to allocate its pagesets
4472 * (a chicken-egg dilemma).
4473 */
7aac7898 4474 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4475 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4476
7aac7898
LS
4477#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4478 /*
4479 * We now know the "local memory node" for each node--
4480 * i.e., the node of the first zone in the generic zonelist.
4481 * Set up numa_mem percpu variable for on-line cpus. During
4482 * boot, only the boot cpu should be on-line; we'll init the
4483 * secondary cpus' numa_mem as they come on-line. During
4484 * node/memory hotplug, we'll fixup all on-line cpus.
4485 */
4486 if (cpu_online(cpu))
4487 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4488#endif
4489 }
4490
6811378e
YG
4491 return 0;
4492}
4493
061f67bc
RV
4494static noinline void __init
4495build_all_zonelists_init(void)
4496{
4497 __build_all_zonelists(NULL);
4498 mminit_verify_zonelist();
4499 cpuset_init_current_mems_allowed();
4500}
4501
4eaf3f64
HL
4502/*
4503 * Called with zonelists_mutex held always
4504 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4505 *
4506 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4507 * [we're only called with non-NULL zone through __meminit paths] and
4508 * (2) call of __init annotated helper build_all_zonelists_init
4509 * [protected by SYSTEM_BOOTING].
4eaf3f64 4510 */
9adb62a5 4511void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4512{
f0c0b2b8
KH
4513 set_zonelist_order();
4514
6811378e 4515 if (system_state == SYSTEM_BOOTING) {
061f67bc 4516 build_all_zonelists_init();
6811378e 4517 } else {
e9959f0f 4518#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4519 if (zone)
4520 setup_zone_pageset(zone);
e9959f0f 4521#endif
dd1895e2
CS
4522 /* we have to stop all cpus to guarantee there is no user
4523 of zonelist */
9adb62a5 4524 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4525 /* cpuset refresh routine should be here */
4526 }
bd1e22b8 4527 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4528 /*
4529 * Disable grouping by mobility if the number of pages in the
4530 * system is too low to allow the mechanism to work. It would be
4531 * more accurate, but expensive to check per-zone. This check is
4532 * made on memory-hotadd so a system can start with mobility
4533 * disabled and enable it later
4534 */
d9c23400 4535 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4536 page_group_by_mobility_disabled = 1;
4537 else
4538 page_group_by_mobility_disabled = 0;
4539
756a025f
JP
4540 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4541 nr_online_nodes,
4542 zonelist_order_name[current_zonelist_order],
4543 page_group_by_mobility_disabled ? "off" : "on",
4544 vm_total_pages);
f0c0b2b8 4545#ifdef CONFIG_NUMA
f88dfff5 4546 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4547#endif
1da177e4
LT
4548}
4549
4550/*
4551 * Helper functions to size the waitqueue hash table.
4552 * Essentially these want to choose hash table sizes sufficiently
4553 * large so that collisions trying to wait on pages are rare.
4554 * But in fact, the number of active page waitqueues on typical
4555 * systems is ridiculously low, less than 200. So this is even
4556 * conservative, even though it seems large.
4557 *
4558 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4559 * waitqueues, i.e. the size of the waitq table given the number of pages.
4560 */
4561#define PAGES_PER_WAITQUEUE 256
4562
cca448fe 4563#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4564static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4565{
4566 unsigned long size = 1;
4567
4568 pages /= PAGES_PER_WAITQUEUE;
4569
4570 while (size < pages)
4571 size <<= 1;
4572
4573 /*
4574 * Once we have dozens or even hundreds of threads sleeping
4575 * on IO we've got bigger problems than wait queue collision.
4576 * Limit the size of the wait table to a reasonable size.
4577 */
4578 size = min(size, 4096UL);
4579
4580 return max(size, 4UL);
4581}
cca448fe
YG
4582#else
4583/*
4584 * A zone's size might be changed by hot-add, so it is not possible to determine
4585 * a suitable size for its wait_table. So we use the maximum size now.
4586 *
4587 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4588 *
4589 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4590 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4591 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4592 *
4593 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4594 * or more by the traditional way. (See above). It equals:
4595 *
4596 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4597 * ia64(16K page size) : = ( 8G + 4M)byte.
4598 * powerpc (64K page size) : = (32G +16M)byte.
4599 */
4600static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4601{
4602 return 4096UL;
4603}
4604#endif
1da177e4
LT
4605
4606/*
4607 * This is an integer logarithm so that shifts can be used later
4608 * to extract the more random high bits from the multiplicative
4609 * hash function before the remainder is taken.
4610 */
4611static inline unsigned long wait_table_bits(unsigned long size)
4612{
4613 return ffz(~size);
4614}
4615
1da177e4
LT
4616/*
4617 * Initially all pages are reserved - free ones are freed
4618 * up by free_all_bootmem() once the early boot process is
4619 * done. Non-atomic initialization, single-pass.
4620 */
c09b4240 4621void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4622 unsigned long start_pfn, enum memmap_context context)
1da177e4 4623{
4b94ffdc 4624 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4625 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4626 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4627 unsigned long pfn;
3a80a7fa 4628 unsigned long nr_initialised = 0;
342332e6
TI
4629#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4630 struct memblock_region *r = NULL, *tmp;
4631#endif
1da177e4 4632
22b31eec
HD
4633 if (highest_memmap_pfn < end_pfn - 1)
4634 highest_memmap_pfn = end_pfn - 1;
4635
4b94ffdc
DW
4636 /*
4637 * Honor reservation requested by the driver for this ZONE_DEVICE
4638 * memory
4639 */
4640 if (altmap && start_pfn == altmap->base_pfn)
4641 start_pfn += altmap->reserve;
4642
cbe8dd4a 4643 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4644 /*
b72d0ffb
AM
4645 * There can be holes in boot-time mem_map[]s handed to this
4646 * function. They do not exist on hotplugged memory.
a2f3aa02 4647 */
b72d0ffb
AM
4648 if (context != MEMMAP_EARLY)
4649 goto not_early;
4650
4651 if (!early_pfn_valid(pfn))
4652 continue;
4653 if (!early_pfn_in_nid(pfn, nid))
4654 continue;
4655 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4656 break;
342332e6
TI
4657
4658#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4659 /*
4660 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4661 * from zone_movable_pfn[nid] to end of each node should be
4662 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4663 */
4664 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4665 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4666 continue;
342332e6 4667
b72d0ffb
AM
4668 /*
4669 * Check given memblock attribute by firmware which can affect
4670 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4671 * mirrored, it's an overlapped memmap init. skip it.
4672 */
4673 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4674 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4675 for_each_memblock(memory, tmp)
4676 if (pfn < memblock_region_memory_end_pfn(tmp))
4677 break;
4678 r = tmp;
4679 }
4680 if (pfn >= memblock_region_memory_base_pfn(r) &&
4681 memblock_is_mirror(r)) {
4682 /* already initialized as NORMAL */
4683 pfn = memblock_region_memory_end_pfn(r);
4684 continue;
342332e6 4685 }
a2f3aa02 4686 }
b72d0ffb 4687#endif
ac5d2539 4688
b72d0ffb 4689not_early:
ac5d2539
MG
4690 /*
4691 * Mark the block movable so that blocks are reserved for
4692 * movable at startup. This will force kernel allocations
4693 * to reserve their blocks rather than leaking throughout
4694 * the address space during boot when many long-lived
974a786e 4695 * kernel allocations are made.
ac5d2539
MG
4696 *
4697 * bitmap is created for zone's valid pfn range. but memmap
4698 * can be created for invalid pages (for alignment)
4699 * check here not to call set_pageblock_migratetype() against
4700 * pfn out of zone.
4701 */
4702 if (!(pfn & (pageblock_nr_pages - 1))) {
4703 struct page *page = pfn_to_page(pfn);
4704
4705 __init_single_page(page, pfn, zone, nid);
4706 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4707 } else {
4708 __init_single_pfn(pfn, zone, nid);
4709 }
1da177e4
LT
4710 }
4711}
4712
1e548deb 4713static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4714{
7aeb09f9 4715 unsigned int order, t;
b2a0ac88
MG
4716 for_each_migratetype_order(order, t) {
4717 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4718 zone->free_area[order].nr_free = 0;
4719 }
4720}
4721
4722#ifndef __HAVE_ARCH_MEMMAP_INIT
4723#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4724 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4725#endif
4726
7cd2b0a3 4727static int zone_batchsize(struct zone *zone)
e7c8d5c9 4728{
3a6be87f 4729#ifdef CONFIG_MMU
e7c8d5c9
CL
4730 int batch;
4731
4732 /*
4733 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4734 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4735 *
4736 * OK, so we don't know how big the cache is. So guess.
4737 */
b40da049 4738 batch = zone->managed_pages / 1024;
ba56e91c
SR
4739 if (batch * PAGE_SIZE > 512 * 1024)
4740 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4741 batch /= 4; /* We effectively *= 4 below */
4742 if (batch < 1)
4743 batch = 1;
4744
4745 /*
0ceaacc9
NP
4746 * Clamp the batch to a 2^n - 1 value. Having a power
4747 * of 2 value was found to be more likely to have
4748 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4749 *
0ceaacc9
NP
4750 * For example if 2 tasks are alternately allocating
4751 * batches of pages, one task can end up with a lot
4752 * of pages of one half of the possible page colors
4753 * and the other with pages of the other colors.
e7c8d5c9 4754 */
9155203a 4755 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4756
e7c8d5c9 4757 return batch;
3a6be87f
DH
4758
4759#else
4760 /* The deferral and batching of frees should be suppressed under NOMMU
4761 * conditions.
4762 *
4763 * The problem is that NOMMU needs to be able to allocate large chunks
4764 * of contiguous memory as there's no hardware page translation to
4765 * assemble apparent contiguous memory from discontiguous pages.
4766 *
4767 * Queueing large contiguous runs of pages for batching, however,
4768 * causes the pages to actually be freed in smaller chunks. As there
4769 * can be a significant delay between the individual batches being
4770 * recycled, this leads to the once large chunks of space being
4771 * fragmented and becoming unavailable for high-order allocations.
4772 */
4773 return 0;
4774#endif
e7c8d5c9
CL
4775}
4776
8d7a8fa9
CS
4777/*
4778 * pcp->high and pcp->batch values are related and dependent on one another:
4779 * ->batch must never be higher then ->high.
4780 * The following function updates them in a safe manner without read side
4781 * locking.
4782 *
4783 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4784 * those fields changing asynchronously (acording the the above rule).
4785 *
4786 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4787 * outside of boot time (or some other assurance that no concurrent updaters
4788 * exist).
4789 */
4790static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4791 unsigned long batch)
4792{
4793 /* start with a fail safe value for batch */
4794 pcp->batch = 1;
4795 smp_wmb();
4796
4797 /* Update high, then batch, in order */
4798 pcp->high = high;
4799 smp_wmb();
4800
4801 pcp->batch = batch;
4802}
4803
3664033c 4804/* a companion to pageset_set_high() */
4008bab7
CS
4805static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4806{
8d7a8fa9 4807 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4808}
4809
88c90dbc 4810static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4811{
4812 struct per_cpu_pages *pcp;
5f8dcc21 4813 int migratetype;
2caaad41 4814
1c6fe946
MD
4815 memset(p, 0, sizeof(*p));
4816
3dfa5721 4817 pcp = &p->pcp;
2caaad41 4818 pcp->count = 0;
5f8dcc21
MG
4819 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4820 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4821}
4822
88c90dbc
CS
4823static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4824{
4825 pageset_init(p);
4826 pageset_set_batch(p, batch);
4827}
4828
8ad4b1fb 4829/*
3664033c 4830 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4831 * to the value high for the pageset p.
4832 */
3664033c 4833static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4834 unsigned long high)
4835{
8d7a8fa9
CS
4836 unsigned long batch = max(1UL, high / 4);
4837 if ((high / 4) > (PAGE_SHIFT * 8))
4838 batch = PAGE_SHIFT * 8;
8ad4b1fb 4839
8d7a8fa9 4840 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4841}
4842
7cd2b0a3
DR
4843static void pageset_set_high_and_batch(struct zone *zone,
4844 struct per_cpu_pageset *pcp)
56cef2b8 4845{
56cef2b8 4846 if (percpu_pagelist_fraction)
3664033c 4847 pageset_set_high(pcp,
56cef2b8
CS
4848 (zone->managed_pages /
4849 percpu_pagelist_fraction));
4850 else
4851 pageset_set_batch(pcp, zone_batchsize(zone));
4852}
4853
169f6c19
CS
4854static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4855{
4856 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4857
4858 pageset_init(pcp);
4859 pageset_set_high_and_batch(zone, pcp);
4860}
4861
4ed7e022 4862static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4863{
4864 int cpu;
319774e2 4865 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4866 for_each_possible_cpu(cpu)
4867 zone_pageset_init(zone, cpu);
319774e2
WF
4868}
4869
2caaad41 4870/*
99dcc3e5
CL
4871 * Allocate per cpu pagesets and initialize them.
4872 * Before this call only boot pagesets were available.
e7c8d5c9 4873 */
99dcc3e5 4874void __init setup_per_cpu_pageset(void)
e7c8d5c9 4875{
99dcc3e5 4876 struct zone *zone;
e7c8d5c9 4877
319774e2
WF
4878 for_each_populated_zone(zone)
4879 setup_zone_pageset(zone);
e7c8d5c9
CL
4880}
4881
577a32f6 4882static noinline __init_refok
cca448fe 4883int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4884{
4885 int i;
cca448fe 4886 size_t alloc_size;
ed8ece2e
DH
4887
4888 /*
4889 * The per-page waitqueue mechanism uses hashed waitqueues
4890 * per zone.
4891 */
02b694de
YG
4892 zone->wait_table_hash_nr_entries =
4893 wait_table_hash_nr_entries(zone_size_pages);
4894 zone->wait_table_bits =
4895 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4896 alloc_size = zone->wait_table_hash_nr_entries
4897 * sizeof(wait_queue_head_t);
4898
cd94b9db 4899 if (!slab_is_available()) {
cca448fe 4900 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4901 memblock_virt_alloc_node_nopanic(
4902 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4903 } else {
4904 /*
4905 * This case means that a zone whose size was 0 gets new memory
4906 * via memory hot-add.
4907 * But it may be the case that a new node was hot-added. In
4908 * this case vmalloc() will not be able to use this new node's
4909 * memory - this wait_table must be initialized to use this new
4910 * node itself as well.
4911 * To use this new node's memory, further consideration will be
4912 * necessary.
4913 */
8691f3a7 4914 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4915 }
4916 if (!zone->wait_table)
4917 return -ENOMEM;
ed8ece2e 4918
b8af2941 4919 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4920 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4921
4922 return 0;
ed8ece2e
DH
4923}
4924
c09b4240 4925static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4926{
99dcc3e5
CL
4927 /*
4928 * per cpu subsystem is not up at this point. The following code
4929 * relies on the ability of the linker to provide the
4930 * offset of a (static) per cpu variable into the per cpu area.
4931 */
4932 zone->pageset = &boot_pageset;
ed8ece2e 4933
b38a8725 4934 if (populated_zone(zone))
99dcc3e5
CL
4935 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4936 zone->name, zone->present_pages,
4937 zone_batchsize(zone));
ed8ece2e
DH
4938}
4939
4ed7e022 4940int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4941 unsigned long zone_start_pfn,
b171e409 4942 unsigned long size)
ed8ece2e
DH
4943{
4944 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4945 int ret;
4946 ret = zone_wait_table_init(zone, size);
4947 if (ret)
4948 return ret;
ed8ece2e
DH
4949 pgdat->nr_zones = zone_idx(zone) + 1;
4950
ed8ece2e
DH
4951 zone->zone_start_pfn = zone_start_pfn;
4952
708614e6
MG
4953 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4954 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4955 pgdat->node_id,
4956 (unsigned long)zone_idx(zone),
4957 zone_start_pfn, (zone_start_pfn + size));
4958
1e548deb 4959 zone_init_free_lists(zone);
718127cc
YG
4960
4961 return 0;
ed8ece2e
DH
4962}
4963
0ee332c1 4964#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4965#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4966
c713216d
MG
4967/*
4968 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4969 */
8a942fde
MG
4970int __meminit __early_pfn_to_nid(unsigned long pfn,
4971 struct mminit_pfnnid_cache *state)
c713216d 4972{
c13291a5 4973 unsigned long start_pfn, end_pfn;
e76b63f8 4974 int nid;
7c243c71 4975
8a942fde
MG
4976 if (state->last_start <= pfn && pfn < state->last_end)
4977 return state->last_nid;
c713216d 4978
e76b63f8
YL
4979 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4980 if (nid != -1) {
8a942fde
MG
4981 state->last_start = start_pfn;
4982 state->last_end = end_pfn;
4983 state->last_nid = nid;
e76b63f8
YL
4984 }
4985
4986 return nid;
c713216d
MG
4987}
4988#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4989
c713216d 4990/**
6782832e 4991 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4992 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4993 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4994 *
7d018176
ZZ
4995 * If an architecture guarantees that all ranges registered contain no holes
4996 * and may be freed, this this function may be used instead of calling
4997 * memblock_free_early_nid() manually.
c713216d 4998 */
c13291a5 4999void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5000{
c13291a5
TH
5001 unsigned long start_pfn, end_pfn;
5002 int i, this_nid;
edbe7d23 5003
c13291a5
TH
5004 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5005 start_pfn = min(start_pfn, max_low_pfn);
5006 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5007
c13291a5 5008 if (start_pfn < end_pfn)
6782832e
SS
5009 memblock_free_early_nid(PFN_PHYS(start_pfn),
5010 (end_pfn - start_pfn) << PAGE_SHIFT,
5011 this_nid);
edbe7d23 5012 }
edbe7d23 5013}
edbe7d23 5014
c713216d
MG
5015/**
5016 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5017 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5018 *
7d018176
ZZ
5019 * If an architecture guarantees that all ranges registered contain no holes and may
5020 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5021 */
5022void __init sparse_memory_present_with_active_regions(int nid)
5023{
c13291a5
TH
5024 unsigned long start_pfn, end_pfn;
5025 int i, this_nid;
c713216d 5026
c13291a5
TH
5027 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5028 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5029}
5030
5031/**
5032 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5033 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5034 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5035 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5036 *
5037 * It returns the start and end page frame of a node based on information
7d018176 5038 * provided by memblock_set_node(). If called for a node
c713216d 5039 * with no available memory, a warning is printed and the start and end
88ca3b94 5040 * PFNs will be 0.
c713216d 5041 */
a3142c8e 5042void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5043 unsigned long *start_pfn, unsigned long *end_pfn)
5044{
c13291a5 5045 unsigned long this_start_pfn, this_end_pfn;
c713216d 5046 int i;
c13291a5 5047
c713216d
MG
5048 *start_pfn = -1UL;
5049 *end_pfn = 0;
5050
c13291a5
TH
5051 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5052 *start_pfn = min(*start_pfn, this_start_pfn);
5053 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5054 }
5055
633c0666 5056 if (*start_pfn == -1UL)
c713216d 5057 *start_pfn = 0;
c713216d
MG
5058}
5059
2a1e274a
MG
5060/*
5061 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5062 * assumption is made that zones within a node are ordered in monotonic
5063 * increasing memory addresses so that the "highest" populated zone is used
5064 */
b69a7288 5065static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5066{
5067 int zone_index;
5068 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5069 if (zone_index == ZONE_MOVABLE)
5070 continue;
5071
5072 if (arch_zone_highest_possible_pfn[zone_index] >
5073 arch_zone_lowest_possible_pfn[zone_index])
5074 break;
5075 }
5076
5077 VM_BUG_ON(zone_index == -1);
5078 movable_zone = zone_index;
5079}
5080
5081/*
5082 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5083 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5084 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5085 * in each node depending on the size of each node and how evenly kernelcore
5086 * is distributed. This helper function adjusts the zone ranges
5087 * provided by the architecture for a given node by using the end of the
5088 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5089 * zones within a node are in order of monotonic increases memory addresses
5090 */
b69a7288 5091static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5092 unsigned long zone_type,
5093 unsigned long node_start_pfn,
5094 unsigned long node_end_pfn,
5095 unsigned long *zone_start_pfn,
5096 unsigned long *zone_end_pfn)
5097{
5098 /* Only adjust if ZONE_MOVABLE is on this node */
5099 if (zone_movable_pfn[nid]) {
5100 /* Size ZONE_MOVABLE */
5101 if (zone_type == ZONE_MOVABLE) {
5102 *zone_start_pfn = zone_movable_pfn[nid];
5103 *zone_end_pfn = min(node_end_pfn,
5104 arch_zone_highest_possible_pfn[movable_zone]);
5105
2a1e274a
MG
5106 /* Check if this whole range is within ZONE_MOVABLE */
5107 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5108 *zone_start_pfn = *zone_end_pfn;
5109 }
5110}
5111
c713216d
MG
5112/*
5113 * Return the number of pages a zone spans in a node, including holes
5114 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5115 */
6ea6e688 5116static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5117 unsigned long zone_type,
7960aedd
ZY
5118 unsigned long node_start_pfn,
5119 unsigned long node_end_pfn,
d91749c1
TI
5120 unsigned long *zone_start_pfn,
5121 unsigned long *zone_end_pfn,
c713216d
MG
5122 unsigned long *ignored)
5123{
b5685e92 5124 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5125 if (!node_start_pfn && !node_end_pfn)
5126 return 0;
5127
7960aedd 5128 /* Get the start and end of the zone */
d91749c1
TI
5129 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5130 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5131 adjust_zone_range_for_zone_movable(nid, zone_type,
5132 node_start_pfn, node_end_pfn,
d91749c1 5133 zone_start_pfn, zone_end_pfn);
c713216d
MG
5134
5135 /* Check that this node has pages within the zone's required range */
d91749c1 5136 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5137 return 0;
5138
5139 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5140 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5141 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5142
5143 /* Return the spanned pages */
d91749c1 5144 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5145}
5146
5147/*
5148 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5149 * then all holes in the requested range will be accounted for.
c713216d 5150 */
32996250 5151unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5152 unsigned long range_start_pfn,
5153 unsigned long range_end_pfn)
5154{
96e907d1
TH
5155 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5156 unsigned long start_pfn, end_pfn;
5157 int i;
c713216d 5158
96e907d1
TH
5159 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5160 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5161 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5162 nr_absent -= end_pfn - start_pfn;
c713216d 5163 }
96e907d1 5164 return nr_absent;
c713216d
MG
5165}
5166
5167/**
5168 * absent_pages_in_range - Return number of page frames in holes within a range
5169 * @start_pfn: The start PFN to start searching for holes
5170 * @end_pfn: The end PFN to stop searching for holes
5171 *
88ca3b94 5172 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5173 */
5174unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5175 unsigned long end_pfn)
5176{
5177 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5178}
5179
5180/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5181static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5182 unsigned long zone_type,
7960aedd
ZY
5183 unsigned long node_start_pfn,
5184 unsigned long node_end_pfn,
c713216d
MG
5185 unsigned long *ignored)
5186{
96e907d1
TH
5187 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5188 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5189 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5190 unsigned long nr_absent;
9c7cd687 5191
b5685e92 5192 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5193 if (!node_start_pfn && !node_end_pfn)
5194 return 0;
5195
96e907d1
TH
5196 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5197 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5198
2a1e274a
MG
5199 adjust_zone_range_for_zone_movable(nid, zone_type,
5200 node_start_pfn, node_end_pfn,
5201 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5202 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5203
5204 /*
5205 * ZONE_MOVABLE handling.
5206 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5207 * and vice versa.
5208 */
5209 if (zone_movable_pfn[nid]) {
5210 if (mirrored_kernelcore) {
5211 unsigned long start_pfn, end_pfn;
5212 struct memblock_region *r;
5213
5214 for_each_memblock(memory, r) {
5215 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5216 zone_start_pfn, zone_end_pfn);
5217 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5218 zone_start_pfn, zone_end_pfn);
5219
5220 if (zone_type == ZONE_MOVABLE &&
5221 memblock_is_mirror(r))
5222 nr_absent += end_pfn - start_pfn;
5223
5224 if (zone_type == ZONE_NORMAL &&
5225 !memblock_is_mirror(r))
5226 nr_absent += end_pfn - start_pfn;
5227 }
5228 } else {
5229 if (zone_type == ZONE_NORMAL)
5230 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5231 }
5232 }
5233
5234 return nr_absent;
c713216d 5235}
0e0b864e 5236
0ee332c1 5237#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5238static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5239 unsigned long zone_type,
7960aedd
ZY
5240 unsigned long node_start_pfn,
5241 unsigned long node_end_pfn,
d91749c1
TI
5242 unsigned long *zone_start_pfn,
5243 unsigned long *zone_end_pfn,
c713216d
MG
5244 unsigned long *zones_size)
5245{
d91749c1
TI
5246 unsigned int zone;
5247
5248 *zone_start_pfn = node_start_pfn;
5249 for (zone = 0; zone < zone_type; zone++)
5250 *zone_start_pfn += zones_size[zone];
5251
5252 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5253
c713216d
MG
5254 return zones_size[zone_type];
5255}
5256
6ea6e688 5257static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5258 unsigned long zone_type,
7960aedd
ZY
5259 unsigned long node_start_pfn,
5260 unsigned long node_end_pfn,
c713216d
MG
5261 unsigned long *zholes_size)
5262{
5263 if (!zholes_size)
5264 return 0;
5265
5266 return zholes_size[zone_type];
5267}
20e6926d 5268
0ee332c1 5269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5270
a3142c8e 5271static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5272 unsigned long node_start_pfn,
5273 unsigned long node_end_pfn,
5274 unsigned long *zones_size,
5275 unsigned long *zholes_size)
c713216d 5276{
febd5949 5277 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5278 enum zone_type i;
5279
febd5949
GZ
5280 for (i = 0; i < MAX_NR_ZONES; i++) {
5281 struct zone *zone = pgdat->node_zones + i;
d91749c1 5282 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5283 unsigned long size, real_size;
c713216d 5284
febd5949
GZ
5285 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5286 node_start_pfn,
5287 node_end_pfn,
d91749c1
TI
5288 &zone_start_pfn,
5289 &zone_end_pfn,
febd5949
GZ
5290 zones_size);
5291 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5292 node_start_pfn, node_end_pfn,
5293 zholes_size);
d91749c1
TI
5294 if (size)
5295 zone->zone_start_pfn = zone_start_pfn;
5296 else
5297 zone->zone_start_pfn = 0;
febd5949
GZ
5298 zone->spanned_pages = size;
5299 zone->present_pages = real_size;
5300
5301 totalpages += size;
5302 realtotalpages += real_size;
5303 }
5304
5305 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5306 pgdat->node_present_pages = realtotalpages;
5307 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5308 realtotalpages);
5309}
5310
835c134e
MG
5311#ifndef CONFIG_SPARSEMEM
5312/*
5313 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5314 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5315 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5316 * round what is now in bits to nearest long in bits, then return it in
5317 * bytes.
5318 */
7c45512d 5319static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5320{
5321 unsigned long usemapsize;
5322
7c45512d 5323 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5324 usemapsize = roundup(zonesize, pageblock_nr_pages);
5325 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5326 usemapsize *= NR_PAGEBLOCK_BITS;
5327 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5328
5329 return usemapsize / 8;
5330}
5331
5332static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5333 struct zone *zone,
5334 unsigned long zone_start_pfn,
5335 unsigned long zonesize)
835c134e 5336{
7c45512d 5337 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5338 zone->pageblock_flags = NULL;
58a01a45 5339 if (usemapsize)
6782832e
SS
5340 zone->pageblock_flags =
5341 memblock_virt_alloc_node_nopanic(usemapsize,
5342 pgdat->node_id);
835c134e
MG
5343}
5344#else
7c45512d
LT
5345static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5346 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5347#endif /* CONFIG_SPARSEMEM */
5348
d9c23400 5349#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5350
d9c23400 5351/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5352void __paginginit set_pageblock_order(void)
d9c23400 5353{
955c1cd7
AM
5354 unsigned int order;
5355
d9c23400
MG
5356 /* Check that pageblock_nr_pages has not already been setup */
5357 if (pageblock_order)
5358 return;
5359
955c1cd7
AM
5360 if (HPAGE_SHIFT > PAGE_SHIFT)
5361 order = HUGETLB_PAGE_ORDER;
5362 else
5363 order = MAX_ORDER - 1;
5364
d9c23400
MG
5365 /*
5366 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5367 * This value may be variable depending on boot parameters on IA64 and
5368 * powerpc.
d9c23400
MG
5369 */
5370 pageblock_order = order;
5371}
5372#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5373
ba72cb8c
MG
5374/*
5375 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5376 * is unused as pageblock_order is set at compile-time. See
5377 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5378 * the kernel config
ba72cb8c 5379 */
15ca220e 5380void __paginginit set_pageblock_order(void)
ba72cb8c 5381{
ba72cb8c 5382}
d9c23400
MG
5383
5384#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5385
01cefaef
JL
5386static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5387 unsigned long present_pages)
5388{
5389 unsigned long pages = spanned_pages;
5390
5391 /*
5392 * Provide a more accurate estimation if there are holes within
5393 * the zone and SPARSEMEM is in use. If there are holes within the
5394 * zone, each populated memory region may cost us one or two extra
5395 * memmap pages due to alignment because memmap pages for each
5396 * populated regions may not naturally algined on page boundary.
5397 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5398 */
5399 if (spanned_pages > present_pages + (present_pages >> 4) &&
5400 IS_ENABLED(CONFIG_SPARSEMEM))
5401 pages = present_pages;
5402
5403 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5404}
5405
1da177e4
LT
5406/*
5407 * Set up the zone data structures:
5408 * - mark all pages reserved
5409 * - mark all memory queues empty
5410 * - clear the memory bitmaps
6527af5d
MK
5411 *
5412 * NOTE: pgdat should get zeroed by caller.
1da177e4 5413 */
7f3eb55b 5414static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5415{
2f1b6248 5416 enum zone_type j;
ed8ece2e 5417 int nid = pgdat->node_id;
718127cc 5418 int ret;
1da177e4 5419
208d54e5 5420 pgdat_resize_init(pgdat);
8177a420
AA
5421#ifdef CONFIG_NUMA_BALANCING
5422 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5423 pgdat->numabalancing_migrate_nr_pages = 0;
5424 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5425#endif
5426#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5427 spin_lock_init(&pgdat->split_queue_lock);
5428 INIT_LIST_HEAD(&pgdat->split_queue);
5429 pgdat->split_queue_len = 0;
8177a420 5430#endif
1da177e4 5431 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5432 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5433#ifdef CONFIG_COMPACTION
5434 init_waitqueue_head(&pgdat->kcompactd_wait);
5435#endif
eefa864b 5436 pgdat_page_ext_init(pgdat);
5f63b720 5437
1da177e4
LT
5438 for (j = 0; j < MAX_NR_ZONES; j++) {
5439 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5440 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5441 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5442
febd5949
GZ
5443 size = zone->spanned_pages;
5444 realsize = freesize = zone->present_pages;
1da177e4 5445
0e0b864e 5446 /*
9feedc9d 5447 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5448 * is used by this zone for memmap. This affects the watermark
5449 * and per-cpu initialisations
5450 */
01cefaef 5451 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5452 if (!is_highmem_idx(j)) {
5453 if (freesize >= memmap_pages) {
5454 freesize -= memmap_pages;
5455 if (memmap_pages)
5456 printk(KERN_DEBUG
5457 " %s zone: %lu pages used for memmap\n",
5458 zone_names[j], memmap_pages);
5459 } else
1170532b 5460 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5461 zone_names[j], memmap_pages, freesize);
5462 }
0e0b864e 5463
6267276f 5464 /* Account for reserved pages */
9feedc9d
JL
5465 if (j == 0 && freesize > dma_reserve) {
5466 freesize -= dma_reserve;
d903ef9f 5467 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5468 zone_names[0], dma_reserve);
0e0b864e
MG
5469 }
5470
98d2b0eb 5471 if (!is_highmem_idx(j))
9feedc9d 5472 nr_kernel_pages += freesize;
01cefaef
JL
5473 /* Charge for highmem memmap if there are enough kernel pages */
5474 else if (nr_kernel_pages > memmap_pages * 2)
5475 nr_kernel_pages -= memmap_pages;
9feedc9d 5476 nr_all_pages += freesize;
1da177e4 5477
9feedc9d
JL
5478 /*
5479 * Set an approximate value for lowmem here, it will be adjusted
5480 * when the bootmem allocator frees pages into the buddy system.
5481 * And all highmem pages will be managed by the buddy system.
5482 */
5483 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5484#ifdef CONFIG_NUMA
d5f541ed 5485 zone->node = nid;
9feedc9d 5486 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5487 / 100;
9feedc9d 5488 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5489#endif
1da177e4
LT
5490 zone->name = zone_names[j];
5491 spin_lock_init(&zone->lock);
5492 spin_lock_init(&zone->lru_lock);
bdc8cb98 5493 zone_seqlock_init(zone);
1da177e4 5494 zone->zone_pgdat = pgdat;
ed8ece2e 5495 zone_pcp_init(zone);
81c0a2bb
JW
5496
5497 /* For bootup, initialized properly in watermark setup */
5498 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5499
bea8c150 5500 lruvec_init(&zone->lruvec);
1da177e4
LT
5501 if (!size)
5502 continue;
5503
955c1cd7 5504 set_pageblock_order();
7c45512d 5505 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5506 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5507 BUG_ON(ret);
76cdd58e 5508 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5509 }
5510}
5511
577a32f6 5512static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5513{
b0aeba74 5514 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5515 unsigned long __maybe_unused offset = 0;
5516
1da177e4
LT
5517 /* Skip empty nodes */
5518 if (!pgdat->node_spanned_pages)
5519 return;
5520
d41dee36 5521#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5522 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5523 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5524 /* ia64 gets its own node_mem_map, before this, without bootmem */
5525 if (!pgdat->node_mem_map) {
b0aeba74 5526 unsigned long size, end;
d41dee36
AW
5527 struct page *map;
5528
e984bb43
BP
5529 /*
5530 * The zone's endpoints aren't required to be MAX_ORDER
5531 * aligned but the node_mem_map endpoints must be in order
5532 * for the buddy allocator to function correctly.
5533 */
108bcc96 5534 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5535 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5536 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5537 map = alloc_remap(pgdat->node_id, size);
5538 if (!map)
6782832e
SS
5539 map = memblock_virt_alloc_node_nopanic(size,
5540 pgdat->node_id);
a1c34a3b 5541 pgdat->node_mem_map = map + offset;
1da177e4 5542 }
12d810c1 5543#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5544 /*
5545 * With no DISCONTIG, the global mem_map is just set as node 0's
5546 */
c713216d 5547 if (pgdat == NODE_DATA(0)) {
1da177e4 5548 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5549#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5550 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5551 mem_map -= offset;
0ee332c1 5552#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5553 }
1da177e4 5554#endif
d41dee36 5555#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5556}
5557
9109fb7b
JW
5558void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5559 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5560{
9109fb7b 5561 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5562 unsigned long start_pfn = 0;
5563 unsigned long end_pfn = 0;
9109fb7b 5564
88fdf75d 5565 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5566 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5567
3a80a7fa 5568 reset_deferred_meminit(pgdat);
1da177e4
LT
5569 pgdat->node_id = nid;
5570 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5571#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5572 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5573 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5574 (u64)start_pfn << PAGE_SHIFT,
5575 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5576#else
5577 start_pfn = node_start_pfn;
7960aedd
ZY
5578#endif
5579 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5580 zones_size, zholes_size);
1da177e4
LT
5581
5582 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5583#ifdef CONFIG_FLAT_NODE_MEM_MAP
5584 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5585 nid, (unsigned long)pgdat,
5586 (unsigned long)pgdat->node_mem_map);
5587#endif
1da177e4 5588
7f3eb55b 5589 free_area_init_core(pgdat);
1da177e4
LT
5590}
5591
0ee332c1 5592#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5593
5594#if MAX_NUMNODES > 1
5595/*
5596 * Figure out the number of possible node ids.
5597 */
f9872caf 5598void __init setup_nr_node_ids(void)
418508c1 5599{
904a9553 5600 unsigned int highest;
418508c1 5601
904a9553 5602 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5603 nr_node_ids = highest + 1;
5604}
418508c1
MS
5605#endif
5606
1e01979c
TH
5607/**
5608 * node_map_pfn_alignment - determine the maximum internode alignment
5609 *
5610 * This function should be called after node map is populated and sorted.
5611 * It calculates the maximum power of two alignment which can distinguish
5612 * all the nodes.
5613 *
5614 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5615 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5616 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5617 * shifted, 1GiB is enough and this function will indicate so.
5618 *
5619 * This is used to test whether pfn -> nid mapping of the chosen memory
5620 * model has fine enough granularity to avoid incorrect mapping for the
5621 * populated node map.
5622 *
5623 * Returns the determined alignment in pfn's. 0 if there is no alignment
5624 * requirement (single node).
5625 */
5626unsigned long __init node_map_pfn_alignment(void)
5627{
5628 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5629 unsigned long start, end, mask;
1e01979c 5630 int last_nid = -1;
c13291a5 5631 int i, nid;
1e01979c 5632
c13291a5 5633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5634 if (!start || last_nid < 0 || last_nid == nid) {
5635 last_nid = nid;
5636 last_end = end;
5637 continue;
5638 }
5639
5640 /*
5641 * Start with a mask granular enough to pin-point to the
5642 * start pfn and tick off bits one-by-one until it becomes
5643 * too coarse to separate the current node from the last.
5644 */
5645 mask = ~((1 << __ffs(start)) - 1);
5646 while (mask && last_end <= (start & (mask << 1)))
5647 mask <<= 1;
5648
5649 /* accumulate all internode masks */
5650 accl_mask |= mask;
5651 }
5652
5653 /* convert mask to number of pages */
5654 return ~accl_mask + 1;
5655}
5656
a6af2bc3 5657/* Find the lowest pfn for a node */
b69a7288 5658static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5659{
a6af2bc3 5660 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5661 unsigned long start_pfn;
5662 int i;
1abbfb41 5663
c13291a5
TH
5664 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5665 min_pfn = min(min_pfn, start_pfn);
c713216d 5666
a6af2bc3 5667 if (min_pfn == ULONG_MAX) {
1170532b 5668 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5669 return 0;
5670 }
5671
5672 return min_pfn;
c713216d
MG
5673}
5674
5675/**
5676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5677 *
5678 * It returns the minimum PFN based on information provided via
7d018176 5679 * memblock_set_node().
c713216d
MG
5680 */
5681unsigned long __init find_min_pfn_with_active_regions(void)
5682{
5683 return find_min_pfn_for_node(MAX_NUMNODES);
5684}
5685
37b07e41
LS
5686/*
5687 * early_calculate_totalpages()
5688 * Sum pages in active regions for movable zone.
4b0ef1fe 5689 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5690 */
484f51f8 5691static unsigned long __init early_calculate_totalpages(void)
7e63efef 5692{
7e63efef 5693 unsigned long totalpages = 0;
c13291a5
TH
5694 unsigned long start_pfn, end_pfn;
5695 int i, nid;
5696
5697 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5698 unsigned long pages = end_pfn - start_pfn;
7e63efef 5699
37b07e41
LS
5700 totalpages += pages;
5701 if (pages)
4b0ef1fe 5702 node_set_state(nid, N_MEMORY);
37b07e41 5703 }
b8af2941 5704 return totalpages;
7e63efef
MG
5705}
5706
2a1e274a
MG
5707/*
5708 * Find the PFN the Movable zone begins in each node. Kernel memory
5709 * is spread evenly between nodes as long as the nodes have enough
5710 * memory. When they don't, some nodes will have more kernelcore than
5711 * others
5712 */
b224ef85 5713static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5714{
5715 int i, nid;
5716 unsigned long usable_startpfn;
5717 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5718 /* save the state before borrow the nodemask */
4b0ef1fe 5719 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5720 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5721 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5722 struct memblock_region *r;
b2f3eebe
TC
5723
5724 /* Need to find movable_zone earlier when movable_node is specified. */
5725 find_usable_zone_for_movable();
5726
5727 /*
5728 * If movable_node is specified, ignore kernelcore and movablecore
5729 * options.
5730 */
5731 if (movable_node_is_enabled()) {
136199f0
EM
5732 for_each_memblock(memory, r) {
5733 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5734 continue;
5735
136199f0 5736 nid = r->nid;
b2f3eebe 5737
136199f0 5738 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5739 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5740 min(usable_startpfn, zone_movable_pfn[nid]) :
5741 usable_startpfn;
5742 }
5743
5744 goto out2;
5745 }
2a1e274a 5746
342332e6
TI
5747 /*
5748 * If kernelcore=mirror is specified, ignore movablecore option
5749 */
5750 if (mirrored_kernelcore) {
5751 bool mem_below_4gb_not_mirrored = false;
5752
5753 for_each_memblock(memory, r) {
5754 if (memblock_is_mirror(r))
5755 continue;
5756
5757 nid = r->nid;
5758
5759 usable_startpfn = memblock_region_memory_base_pfn(r);
5760
5761 if (usable_startpfn < 0x100000) {
5762 mem_below_4gb_not_mirrored = true;
5763 continue;
5764 }
5765
5766 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5767 min(usable_startpfn, zone_movable_pfn[nid]) :
5768 usable_startpfn;
5769 }
5770
5771 if (mem_below_4gb_not_mirrored)
5772 pr_warn("This configuration results in unmirrored kernel memory.");
5773
5774 goto out2;
5775 }
5776
7e63efef 5777 /*
b2f3eebe 5778 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5779 * kernelcore that corresponds so that memory usable for
5780 * any allocation type is evenly spread. If both kernelcore
5781 * and movablecore are specified, then the value of kernelcore
5782 * will be used for required_kernelcore if it's greater than
5783 * what movablecore would have allowed.
5784 */
5785 if (required_movablecore) {
7e63efef
MG
5786 unsigned long corepages;
5787
5788 /*
5789 * Round-up so that ZONE_MOVABLE is at least as large as what
5790 * was requested by the user
5791 */
5792 required_movablecore =
5793 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5794 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5795 corepages = totalpages - required_movablecore;
5796
5797 required_kernelcore = max(required_kernelcore, corepages);
5798 }
5799
bde304bd
XQ
5800 /*
5801 * If kernelcore was not specified or kernelcore size is larger
5802 * than totalpages, there is no ZONE_MOVABLE.
5803 */
5804 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5805 goto out;
2a1e274a
MG
5806
5807 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5808 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5809
5810restart:
5811 /* Spread kernelcore memory as evenly as possible throughout nodes */
5812 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5813 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5814 unsigned long start_pfn, end_pfn;
5815
2a1e274a
MG
5816 /*
5817 * Recalculate kernelcore_node if the division per node
5818 * now exceeds what is necessary to satisfy the requested
5819 * amount of memory for the kernel
5820 */
5821 if (required_kernelcore < kernelcore_node)
5822 kernelcore_node = required_kernelcore / usable_nodes;
5823
5824 /*
5825 * As the map is walked, we track how much memory is usable
5826 * by the kernel using kernelcore_remaining. When it is
5827 * 0, the rest of the node is usable by ZONE_MOVABLE
5828 */
5829 kernelcore_remaining = kernelcore_node;
5830
5831 /* Go through each range of PFNs within this node */
c13291a5 5832 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5833 unsigned long size_pages;
5834
c13291a5 5835 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5836 if (start_pfn >= end_pfn)
5837 continue;
5838
5839 /* Account for what is only usable for kernelcore */
5840 if (start_pfn < usable_startpfn) {
5841 unsigned long kernel_pages;
5842 kernel_pages = min(end_pfn, usable_startpfn)
5843 - start_pfn;
5844
5845 kernelcore_remaining -= min(kernel_pages,
5846 kernelcore_remaining);
5847 required_kernelcore -= min(kernel_pages,
5848 required_kernelcore);
5849
5850 /* Continue if range is now fully accounted */
5851 if (end_pfn <= usable_startpfn) {
5852
5853 /*
5854 * Push zone_movable_pfn to the end so
5855 * that if we have to rebalance
5856 * kernelcore across nodes, we will
5857 * not double account here
5858 */
5859 zone_movable_pfn[nid] = end_pfn;
5860 continue;
5861 }
5862 start_pfn = usable_startpfn;
5863 }
5864
5865 /*
5866 * The usable PFN range for ZONE_MOVABLE is from
5867 * start_pfn->end_pfn. Calculate size_pages as the
5868 * number of pages used as kernelcore
5869 */
5870 size_pages = end_pfn - start_pfn;
5871 if (size_pages > kernelcore_remaining)
5872 size_pages = kernelcore_remaining;
5873 zone_movable_pfn[nid] = start_pfn + size_pages;
5874
5875 /*
5876 * Some kernelcore has been met, update counts and
5877 * break if the kernelcore for this node has been
b8af2941 5878 * satisfied
2a1e274a
MG
5879 */
5880 required_kernelcore -= min(required_kernelcore,
5881 size_pages);
5882 kernelcore_remaining -= size_pages;
5883 if (!kernelcore_remaining)
5884 break;
5885 }
5886 }
5887
5888 /*
5889 * If there is still required_kernelcore, we do another pass with one
5890 * less node in the count. This will push zone_movable_pfn[nid] further
5891 * along on the nodes that still have memory until kernelcore is
b8af2941 5892 * satisfied
2a1e274a
MG
5893 */
5894 usable_nodes--;
5895 if (usable_nodes && required_kernelcore > usable_nodes)
5896 goto restart;
5897
b2f3eebe 5898out2:
2a1e274a
MG
5899 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5900 for (nid = 0; nid < MAX_NUMNODES; nid++)
5901 zone_movable_pfn[nid] =
5902 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5903
20e6926d 5904out:
66918dcd 5905 /* restore the node_state */
4b0ef1fe 5906 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5907}
5908
4b0ef1fe
LJ
5909/* Any regular or high memory on that node ? */
5910static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5911{
37b07e41
LS
5912 enum zone_type zone_type;
5913
4b0ef1fe
LJ
5914 if (N_MEMORY == N_NORMAL_MEMORY)
5915 return;
5916
5917 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5918 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5919 if (populated_zone(zone)) {
4b0ef1fe
LJ
5920 node_set_state(nid, N_HIGH_MEMORY);
5921 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5922 zone_type <= ZONE_NORMAL)
5923 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5924 break;
5925 }
37b07e41 5926 }
37b07e41
LS
5927}
5928
c713216d
MG
5929/**
5930 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5931 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5932 *
5933 * This will call free_area_init_node() for each active node in the system.
7d018176 5934 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5935 * zone in each node and their holes is calculated. If the maximum PFN
5936 * between two adjacent zones match, it is assumed that the zone is empty.
5937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5939 * starts where the previous one ended. For example, ZONE_DMA32 starts
5940 * at arch_max_dma_pfn.
5941 */
5942void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5943{
c13291a5
TH
5944 unsigned long start_pfn, end_pfn;
5945 int i, nid;
a6af2bc3 5946
c713216d
MG
5947 /* Record where the zone boundaries are */
5948 memset(arch_zone_lowest_possible_pfn, 0,
5949 sizeof(arch_zone_lowest_possible_pfn));
5950 memset(arch_zone_highest_possible_pfn, 0,
5951 sizeof(arch_zone_highest_possible_pfn));
5952 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5953 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5954 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5955 if (i == ZONE_MOVABLE)
5956 continue;
c713216d
MG
5957 arch_zone_lowest_possible_pfn[i] =
5958 arch_zone_highest_possible_pfn[i-1];
5959 arch_zone_highest_possible_pfn[i] =
5960 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5961 }
2a1e274a
MG
5962 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5963 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5964
5965 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5966 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5967 find_zone_movable_pfns_for_nodes();
c713216d 5968
c713216d 5969 /* Print out the zone ranges */
f88dfff5 5970 pr_info("Zone ranges:\n");
2a1e274a
MG
5971 for (i = 0; i < MAX_NR_ZONES; i++) {
5972 if (i == ZONE_MOVABLE)
5973 continue;
f88dfff5 5974 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5975 if (arch_zone_lowest_possible_pfn[i] ==
5976 arch_zone_highest_possible_pfn[i])
f88dfff5 5977 pr_cont("empty\n");
72f0ba02 5978 else
8d29e18a
JG
5979 pr_cont("[mem %#018Lx-%#018Lx]\n",
5980 (u64)arch_zone_lowest_possible_pfn[i]
5981 << PAGE_SHIFT,
5982 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5983 << PAGE_SHIFT) - 1);
2a1e274a
MG
5984 }
5985
5986 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5987 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5988 for (i = 0; i < MAX_NUMNODES; i++) {
5989 if (zone_movable_pfn[i])
8d29e18a
JG
5990 pr_info(" Node %d: %#018Lx\n", i,
5991 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5992 }
c713216d 5993
f2d52fe5 5994 /* Print out the early node map */
f88dfff5 5995 pr_info("Early memory node ranges\n");
c13291a5 5996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5997 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5998 (u64)start_pfn << PAGE_SHIFT,
5999 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6000
6001 /* Initialise every node */
708614e6 6002 mminit_verify_pageflags_layout();
8ef82866 6003 setup_nr_node_ids();
c713216d
MG
6004 for_each_online_node(nid) {
6005 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6006 free_area_init_node(nid, NULL,
c713216d 6007 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6008
6009 /* Any memory on that node */
6010 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6011 node_set_state(nid, N_MEMORY);
6012 check_for_memory(pgdat, nid);
c713216d
MG
6013 }
6014}
2a1e274a 6015
7e63efef 6016static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6017{
6018 unsigned long long coremem;
6019 if (!p)
6020 return -EINVAL;
6021
6022 coremem = memparse(p, &p);
7e63efef 6023 *core = coremem >> PAGE_SHIFT;
2a1e274a 6024
7e63efef 6025 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6026 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6027
6028 return 0;
6029}
ed7ed365 6030
7e63efef
MG
6031/*
6032 * kernelcore=size sets the amount of memory for use for allocations that
6033 * cannot be reclaimed or migrated.
6034 */
6035static int __init cmdline_parse_kernelcore(char *p)
6036{
342332e6
TI
6037 /* parse kernelcore=mirror */
6038 if (parse_option_str(p, "mirror")) {
6039 mirrored_kernelcore = true;
6040 return 0;
6041 }
6042
7e63efef
MG
6043 return cmdline_parse_core(p, &required_kernelcore);
6044}
6045
6046/*
6047 * movablecore=size sets the amount of memory for use for allocations that
6048 * can be reclaimed or migrated.
6049 */
6050static int __init cmdline_parse_movablecore(char *p)
6051{
6052 return cmdline_parse_core(p, &required_movablecore);
6053}
6054
ed7ed365 6055early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6056early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6057
0ee332c1 6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6059
c3d5f5f0
JL
6060void adjust_managed_page_count(struct page *page, long count)
6061{
6062 spin_lock(&managed_page_count_lock);
6063 page_zone(page)->managed_pages += count;
6064 totalram_pages += count;
3dcc0571
JL
6065#ifdef CONFIG_HIGHMEM
6066 if (PageHighMem(page))
6067 totalhigh_pages += count;
6068#endif
c3d5f5f0
JL
6069 spin_unlock(&managed_page_count_lock);
6070}
3dcc0571 6071EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6072
11199692 6073unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6074{
11199692
JL
6075 void *pos;
6076 unsigned long pages = 0;
69afade7 6077
11199692
JL
6078 start = (void *)PAGE_ALIGN((unsigned long)start);
6079 end = (void *)((unsigned long)end & PAGE_MASK);
6080 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6081 if ((unsigned int)poison <= 0xFF)
11199692
JL
6082 memset(pos, poison, PAGE_SIZE);
6083 free_reserved_page(virt_to_page(pos));
69afade7
JL
6084 }
6085
6086 if (pages && s)
11199692 6087 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6088 s, pages << (PAGE_SHIFT - 10), start, end);
6089
6090 return pages;
6091}
11199692 6092EXPORT_SYMBOL(free_reserved_area);
69afade7 6093
cfa11e08
JL
6094#ifdef CONFIG_HIGHMEM
6095void free_highmem_page(struct page *page)
6096{
6097 __free_reserved_page(page);
6098 totalram_pages++;
7b4b2a0d 6099 page_zone(page)->managed_pages++;
cfa11e08
JL
6100 totalhigh_pages++;
6101}
6102#endif
6103
7ee3d4e8
JL
6104
6105void __init mem_init_print_info(const char *str)
6106{
6107 unsigned long physpages, codesize, datasize, rosize, bss_size;
6108 unsigned long init_code_size, init_data_size;
6109
6110 physpages = get_num_physpages();
6111 codesize = _etext - _stext;
6112 datasize = _edata - _sdata;
6113 rosize = __end_rodata - __start_rodata;
6114 bss_size = __bss_stop - __bss_start;
6115 init_data_size = __init_end - __init_begin;
6116 init_code_size = _einittext - _sinittext;
6117
6118 /*
6119 * Detect special cases and adjust section sizes accordingly:
6120 * 1) .init.* may be embedded into .data sections
6121 * 2) .init.text.* may be out of [__init_begin, __init_end],
6122 * please refer to arch/tile/kernel/vmlinux.lds.S.
6123 * 3) .rodata.* may be embedded into .text or .data sections.
6124 */
6125#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6126 do { \
6127 if (start <= pos && pos < end && size > adj) \
6128 size -= adj; \
6129 } while (0)
7ee3d4e8
JL
6130
6131 adj_init_size(__init_begin, __init_end, init_data_size,
6132 _sinittext, init_code_size);
6133 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6134 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6135 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6136 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6137
6138#undef adj_init_size
6139
756a025f 6140 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6141#ifdef CONFIG_HIGHMEM
756a025f 6142 ", %luK highmem"
7ee3d4e8 6143#endif
756a025f
JP
6144 "%s%s)\n",
6145 nr_free_pages() << (PAGE_SHIFT - 10),
6146 physpages << (PAGE_SHIFT - 10),
6147 codesize >> 10, datasize >> 10, rosize >> 10,
6148 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6149 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6150 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6151#ifdef CONFIG_HIGHMEM
756a025f 6152 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6153#endif
756a025f 6154 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6155}
6156
0e0b864e 6157/**
88ca3b94
RD
6158 * set_dma_reserve - set the specified number of pages reserved in the first zone
6159 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6160 *
013110a7 6161 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6162 * In the DMA zone, a significant percentage may be consumed by kernel image
6163 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6164 * function may optionally be used to account for unfreeable pages in the
6165 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6166 * smaller per-cpu batchsize.
0e0b864e
MG
6167 */
6168void __init set_dma_reserve(unsigned long new_dma_reserve)
6169{
6170 dma_reserve = new_dma_reserve;
6171}
6172
1da177e4
LT
6173void __init free_area_init(unsigned long *zones_size)
6174{
9109fb7b 6175 free_area_init_node(0, zones_size,
1da177e4
LT
6176 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6177}
1da177e4 6178
1da177e4
LT
6179static int page_alloc_cpu_notify(struct notifier_block *self,
6180 unsigned long action, void *hcpu)
6181{
6182 int cpu = (unsigned long)hcpu;
1da177e4 6183
8bb78442 6184 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6185 lru_add_drain_cpu(cpu);
9f8f2172
CL
6186 drain_pages(cpu);
6187
6188 /*
6189 * Spill the event counters of the dead processor
6190 * into the current processors event counters.
6191 * This artificially elevates the count of the current
6192 * processor.
6193 */
f8891e5e 6194 vm_events_fold_cpu(cpu);
9f8f2172
CL
6195
6196 /*
6197 * Zero the differential counters of the dead processor
6198 * so that the vm statistics are consistent.
6199 *
6200 * This is only okay since the processor is dead and cannot
6201 * race with what we are doing.
6202 */
2bb921e5 6203 cpu_vm_stats_fold(cpu);
1da177e4
LT
6204 }
6205 return NOTIFY_OK;
6206}
1da177e4
LT
6207
6208void __init page_alloc_init(void)
6209{
6210 hotcpu_notifier(page_alloc_cpu_notify, 0);
6211}
6212
cb45b0e9 6213/*
34b10060 6214 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6215 * or min_free_kbytes changes.
6216 */
6217static void calculate_totalreserve_pages(void)
6218{
6219 struct pglist_data *pgdat;
6220 unsigned long reserve_pages = 0;
2f6726e5 6221 enum zone_type i, j;
cb45b0e9
HA
6222
6223 for_each_online_pgdat(pgdat) {
6224 for (i = 0; i < MAX_NR_ZONES; i++) {
6225 struct zone *zone = pgdat->node_zones + i;
3484b2de 6226 long max = 0;
cb45b0e9
HA
6227
6228 /* Find valid and maximum lowmem_reserve in the zone */
6229 for (j = i; j < MAX_NR_ZONES; j++) {
6230 if (zone->lowmem_reserve[j] > max)
6231 max = zone->lowmem_reserve[j];
6232 }
6233
41858966
MG
6234 /* we treat the high watermark as reserved pages. */
6235 max += high_wmark_pages(zone);
cb45b0e9 6236
b40da049
JL
6237 if (max > zone->managed_pages)
6238 max = zone->managed_pages;
a8d01437
JW
6239
6240 zone->totalreserve_pages = max;
6241
cb45b0e9
HA
6242 reserve_pages += max;
6243 }
6244 }
6245 totalreserve_pages = reserve_pages;
6246}
6247
1da177e4
LT
6248/*
6249 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6250 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6251 * has a correct pages reserved value, so an adequate number of
6252 * pages are left in the zone after a successful __alloc_pages().
6253 */
6254static void setup_per_zone_lowmem_reserve(void)
6255{
6256 struct pglist_data *pgdat;
2f6726e5 6257 enum zone_type j, idx;
1da177e4 6258
ec936fc5 6259 for_each_online_pgdat(pgdat) {
1da177e4
LT
6260 for (j = 0; j < MAX_NR_ZONES; j++) {
6261 struct zone *zone = pgdat->node_zones + j;
b40da049 6262 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6263
6264 zone->lowmem_reserve[j] = 0;
6265
2f6726e5
CL
6266 idx = j;
6267 while (idx) {
1da177e4
LT
6268 struct zone *lower_zone;
6269
2f6726e5
CL
6270 idx--;
6271
1da177e4
LT
6272 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6273 sysctl_lowmem_reserve_ratio[idx] = 1;
6274
6275 lower_zone = pgdat->node_zones + idx;
b40da049 6276 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6277 sysctl_lowmem_reserve_ratio[idx];
b40da049 6278 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6279 }
6280 }
6281 }
cb45b0e9
HA
6282
6283 /* update totalreserve_pages */
6284 calculate_totalreserve_pages();
1da177e4
LT
6285}
6286
cfd3da1e 6287static void __setup_per_zone_wmarks(void)
1da177e4
LT
6288{
6289 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6290 unsigned long lowmem_pages = 0;
6291 struct zone *zone;
6292 unsigned long flags;
6293
6294 /* Calculate total number of !ZONE_HIGHMEM pages */
6295 for_each_zone(zone) {
6296 if (!is_highmem(zone))
b40da049 6297 lowmem_pages += zone->managed_pages;
1da177e4
LT
6298 }
6299
6300 for_each_zone(zone) {
ac924c60
AM
6301 u64 tmp;
6302
1125b4e3 6303 spin_lock_irqsave(&zone->lock, flags);
b40da049 6304 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6305 do_div(tmp, lowmem_pages);
1da177e4
LT
6306 if (is_highmem(zone)) {
6307 /*
669ed175
NP
6308 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6309 * need highmem pages, so cap pages_min to a small
6310 * value here.
6311 *
41858966 6312 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6313 * deltas control asynch page reclaim, and so should
669ed175 6314 * not be capped for highmem.
1da177e4 6315 */
90ae8d67 6316 unsigned long min_pages;
1da177e4 6317
b40da049 6318 min_pages = zone->managed_pages / 1024;
90ae8d67 6319 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6320 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6321 } else {
669ed175
NP
6322 /*
6323 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6324 * proportionate to the zone's size.
6325 */
41858966 6326 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6327 }
6328
795ae7a0
JW
6329 /*
6330 * Set the kswapd watermarks distance according to the
6331 * scale factor in proportion to available memory, but
6332 * ensure a minimum size on small systems.
6333 */
6334 tmp = max_t(u64, tmp >> 2,
6335 mult_frac(zone->managed_pages,
6336 watermark_scale_factor, 10000));
6337
6338 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6339 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6340
81c0a2bb 6341 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6342 high_wmark_pages(zone) - low_wmark_pages(zone) -
6343 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6344
1125b4e3 6345 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6346 }
cb45b0e9
HA
6347
6348 /* update totalreserve_pages */
6349 calculate_totalreserve_pages();
1da177e4
LT
6350}
6351
cfd3da1e
MG
6352/**
6353 * setup_per_zone_wmarks - called when min_free_kbytes changes
6354 * or when memory is hot-{added|removed}
6355 *
6356 * Ensures that the watermark[min,low,high] values for each zone are set
6357 * correctly with respect to min_free_kbytes.
6358 */
6359void setup_per_zone_wmarks(void)
6360{
6361 mutex_lock(&zonelists_mutex);
6362 __setup_per_zone_wmarks();
6363 mutex_unlock(&zonelists_mutex);
6364}
6365
55a4462a 6366/*
556adecb
RR
6367 * The inactive anon list should be small enough that the VM never has to
6368 * do too much work, but large enough that each inactive page has a chance
6369 * to be referenced again before it is swapped out.
6370 *
6371 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6372 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6373 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6374 * the anonymous pages are kept on the inactive list.
6375 *
6376 * total target max
6377 * memory ratio inactive anon
6378 * -------------------------------------
6379 * 10MB 1 5MB
6380 * 100MB 1 50MB
6381 * 1GB 3 250MB
6382 * 10GB 10 0.9GB
6383 * 100GB 31 3GB
6384 * 1TB 101 10GB
6385 * 10TB 320 32GB
6386 */
1b79acc9 6387static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6388{
96cb4df5 6389 unsigned int gb, ratio;
556adecb 6390
96cb4df5 6391 /* Zone size in gigabytes */
b40da049 6392 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6393 if (gb)
556adecb 6394 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6395 else
6396 ratio = 1;
556adecb 6397
96cb4df5
MK
6398 zone->inactive_ratio = ratio;
6399}
556adecb 6400
839a4fcc 6401static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6402{
6403 struct zone *zone;
6404
6405 for_each_zone(zone)
6406 calculate_zone_inactive_ratio(zone);
556adecb
RR
6407}
6408
1da177e4
LT
6409/*
6410 * Initialise min_free_kbytes.
6411 *
6412 * For small machines we want it small (128k min). For large machines
6413 * we want it large (64MB max). But it is not linear, because network
6414 * bandwidth does not increase linearly with machine size. We use
6415 *
b8af2941 6416 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6417 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6418 *
6419 * which yields
6420 *
6421 * 16MB: 512k
6422 * 32MB: 724k
6423 * 64MB: 1024k
6424 * 128MB: 1448k
6425 * 256MB: 2048k
6426 * 512MB: 2896k
6427 * 1024MB: 4096k
6428 * 2048MB: 5792k
6429 * 4096MB: 8192k
6430 * 8192MB: 11584k
6431 * 16384MB: 16384k
6432 */
1b79acc9 6433int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6434{
6435 unsigned long lowmem_kbytes;
5f12733e 6436 int new_min_free_kbytes;
1da177e4
LT
6437
6438 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6439 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6440
6441 if (new_min_free_kbytes > user_min_free_kbytes) {
6442 min_free_kbytes = new_min_free_kbytes;
6443 if (min_free_kbytes < 128)
6444 min_free_kbytes = 128;
6445 if (min_free_kbytes > 65536)
6446 min_free_kbytes = 65536;
6447 } else {
6448 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6449 new_min_free_kbytes, user_min_free_kbytes);
6450 }
bc75d33f 6451 setup_per_zone_wmarks();
a6cccdc3 6452 refresh_zone_stat_thresholds();
1da177e4 6453 setup_per_zone_lowmem_reserve();
556adecb 6454 setup_per_zone_inactive_ratio();
1da177e4
LT
6455 return 0;
6456}
bc75d33f 6457module_init(init_per_zone_wmark_min)
1da177e4
LT
6458
6459/*
b8af2941 6460 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6461 * that we can call two helper functions whenever min_free_kbytes
6462 * changes.
6463 */
cccad5b9 6464int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6465 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6466{
da8c757b
HP
6467 int rc;
6468
6469 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6470 if (rc)
6471 return rc;
6472
5f12733e
MH
6473 if (write) {
6474 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6475 setup_per_zone_wmarks();
5f12733e 6476 }
1da177e4
LT
6477 return 0;
6478}
6479
795ae7a0
JW
6480int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6481 void __user *buffer, size_t *length, loff_t *ppos)
6482{
6483 int rc;
6484
6485 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6486 if (rc)
6487 return rc;
6488
6489 if (write)
6490 setup_per_zone_wmarks();
6491
6492 return 0;
6493}
6494
9614634f 6495#ifdef CONFIG_NUMA
cccad5b9 6496int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6497 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6498{
6499 struct zone *zone;
6500 int rc;
6501
8d65af78 6502 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6503 if (rc)
6504 return rc;
6505
6506 for_each_zone(zone)
b40da049 6507 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6508 sysctl_min_unmapped_ratio) / 100;
6509 return 0;
6510}
0ff38490 6511
cccad5b9 6512int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6513 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6514{
6515 struct zone *zone;
6516 int rc;
6517
8d65af78 6518 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6519 if (rc)
6520 return rc;
6521
6522 for_each_zone(zone)
b40da049 6523 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6524 sysctl_min_slab_ratio) / 100;
6525 return 0;
6526}
9614634f
CL
6527#endif
6528
1da177e4
LT
6529/*
6530 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6531 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6532 * whenever sysctl_lowmem_reserve_ratio changes.
6533 *
6534 * The reserve ratio obviously has absolutely no relation with the
41858966 6535 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6536 * if in function of the boot time zone sizes.
6537 */
cccad5b9 6538int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6539 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6540{
8d65af78 6541 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6542 setup_per_zone_lowmem_reserve();
6543 return 0;
6544}
6545
8ad4b1fb
RS
6546/*
6547 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6548 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6549 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6550 */
cccad5b9 6551int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6552 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6553{
6554 struct zone *zone;
7cd2b0a3 6555 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6556 int ret;
6557
7cd2b0a3
DR
6558 mutex_lock(&pcp_batch_high_lock);
6559 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6560
8d65af78 6561 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6562 if (!write || ret < 0)
6563 goto out;
6564
6565 /* Sanity checking to avoid pcp imbalance */
6566 if (percpu_pagelist_fraction &&
6567 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6568 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6569 ret = -EINVAL;
6570 goto out;
6571 }
6572
6573 /* No change? */
6574 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6575 goto out;
c8e251fa 6576
364df0eb 6577 for_each_populated_zone(zone) {
7cd2b0a3
DR
6578 unsigned int cpu;
6579
22a7f12b 6580 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6581 pageset_set_high_and_batch(zone,
6582 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6583 }
7cd2b0a3 6584out:
c8e251fa 6585 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6586 return ret;
8ad4b1fb
RS
6587}
6588
a9919c79 6589#ifdef CONFIG_NUMA
f034b5d4 6590int hashdist = HASHDIST_DEFAULT;
1da177e4 6591
1da177e4
LT
6592static int __init set_hashdist(char *str)
6593{
6594 if (!str)
6595 return 0;
6596 hashdist = simple_strtoul(str, &str, 0);
6597 return 1;
6598}
6599__setup("hashdist=", set_hashdist);
6600#endif
6601
6602/*
6603 * allocate a large system hash table from bootmem
6604 * - it is assumed that the hash table must contain an exact power-of-2
6605 * quantity of entries
6606 * - limit is the number of hash buckets, not the total allocation size
6607 */
6608void *__init alloc_large_system_hash(const char *tablename,
6609 unsigned long bucketsize,
6610 unsigned long numentries,
6611 int scale,
6612 int flags,
6613 unsigned int *_hash_shift,
6614 unsigned int *_hash_mask,
31fe62b9
TB
6615 unsigned long low_limit,
6616 unsigned long high_limit)
1da177e4 6617{
31fe62b9 6618 unsigned long long max = high_limit;
1da177e4
LT
6619 unsigned long log2qty, size;
6620 void *table = NULL;
6621
6622 /* allow the kernel cmdline to have a say */
6623 if (!numentries) {
6624 /* round applicable memory size up to nearest megabyte */
04903664 6625 numentries = nr_kernel_pages;
a7e83318
JZ
6626
6627 /* It isn't necessary when PAGE_SIZE >= 1MB */
6628 if (PAGE_SHIFT < 20)
6629 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6630
6631 /* limit to 1 bucket per 2^scale bytes of low memory */
6632 if (scale > PAGE_SHIFT)
6633 numentries >>= (scale - PAGE_SHIFT);
6634 else
6635 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6636
6637 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6638 if (unlikely(flags & HASH_SMALL)) {
6639 /* Makes no sense without HASH_EARLY */
6640 WARN_ON(!(flags & HASH_EARLY));
6641 if (!(numentries >> *_hash_shift)) {
6642 numentries = 1UL << *_hash_shift;
6643 BUG_ON(!numentries);
6644 }
6645 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6646 numentries = PAGE_SIZE / bucketsize;
1da177e4 6647 }
6e692ed3 6648 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6649
6650 /* limit allocation size to 1/16 total memory by default */
6651 if (max == 0) {
6652 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6653 do_div(max, bucketsize);
6654 }
074b8517 6655 max = min(max, 0x80000000ULL);
1da177e4 6656
31fe62b9
TB
6657 if (numentries < low_limit)
6658 numentries = low_limit;
1da177e4
LT
6659 if (numentries > max)
6660 numentries = max;
6661
f0d1b0b3 6662 log2qty = ilog2(numentries);
1da177e4
LT
6663
6664 do {
6665 size = bucketsize << log2qty;
6666 if (flags & HASH_EARLY)
6782832e 6667 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6668 else if (hashdist)
6669 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6670 else {
1037b83b
ED
6671 /*
6672 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6673 * some pages at the end of hash table which
6674 * alloc_pages_exact() automatically does
1037b83b 6675 */
264ef8a9 6676 if (get_order(size) < MAX_ORDER) {
a1dd268c 6677 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6678 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6679 }
1da177e4
LT
6680 }
6681 } while (!table && size > PAGE_SIZE && --log2qty);
6682
6683 if (!table)
6684 panic("Failed to allocate %s hash table\n", tablename);
6685
1170532b
JP
6686 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6687 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6688
6689 if (_hash_shift)
6690 *_hash_shift = log2qty;
6691 if (_hash_mask)
6692 *_hash_mask = (1 << log2qty) - 1;
6693
6694 return table;
6695}
a117e66e 6696
835c134e
MG
6697/* Return a pointer to the bitmap storing bits affecting a block of pages */
6698static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6699 unsigned long pfn)
6700{
6701#ifdef CONFIG_SPARSEMEM
6702 return __pfn_to_section(pfn)->pageblock_flags;
6703#else
6704 return zone->pageblock_flags;
6705#endif /* CONFIG_SPARSEMEM */
6706}
6707
6708static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6709{
6710#ifdef CONFIG_SPARSEMEM
6711 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6712 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6713#else
c060f943 6714 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6715 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6716#endif /* CONFIG_SPARSEMEM */
6717}
6718
6719/**
1aab4d77 6720 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6721 * @page: The page within the block of interest
1aab4d77
RD
6722 * @pfn: The target page frame number
6723 * @end_bitidx: The last bit of interest to retrieve
6724 * @mask: mask of bits that the caller is interested in
6725 *
6726 * Return: pageblock_bits flags
835c134e 6727 */
dc4b0caf 6728unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6729 unsigned long end_bitidx,
6730 unsigned long mask)
835c134e
MG
6731{
6732 struct zone *zone;
6733 unsigned long *bitmap;
dc4b0caf 6734 unsigned long bitidx, word_bitidx;
e58469ba 6735 unsigned long word;
835c134e
MG
6736
6737 zone = page_zone(page);
835c134e
MG
6738 bitmap = get_pageblock_bitmap(zone, pfn);
6739 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6740 word_bitidx = bitidx / BITS_PER_LONG;
6741 bitidx &= (BITS_PER_LONG-1);
835c134e 6742
e58469ba
MG
6743 word = bitmap[word_bitidx];
6744 bitidx += end_bitidx;
6745 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6746}
6747
6748/**
dc4b0caf 6749 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6750 * @page: The page within the block of interest
835c134e 6751 * @flags: The flags to set
1aab4d77
RD
6752 * @pfn: The target page frame number
6753 * @end_bitidx: The last bit of interest
6754 * @mask: mask of bits that the caller is interested in
835c134e 6755 */
dc4b0caf
MG
6756void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6757 unsigned long pfn,
e58469ba
MG
6758 unsigned long end_bitidx,
6759 unsigned long mask)
835c134e
MG
6760{
6761 struct zone *zone;
6762 unsigned long *bitmap;
dc4b0caf 6763 unsigned long bitidx, word_bitidx;
e58469ba
MG
6764 unsigned long old_word, word;
6765
6766 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6767
6768 zone = page_zone(page);
835c134e
MG
6769 bitmap = get_pageblock_bitmap(zone, pfn);
6770 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6771 word_bitidx = bitidx / BITS_PER_LONG;
6772 bitidx &= (BITS_PER_LONG-1);
6773
309381fe 6774 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6775
e58469ba
MG
6776 bitidx += end_bitidx;
6777 mask <<= (BITS_PER_LONG - bitidx - 1);
6778 flags <<= (BITS_PER_LONG - bitidx - 1);
6779
4db0c3c2 6780 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6781 for (;;) {
6782 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6783 if (word == old_word)
6784 break;
6785 word = old_word;
6786 }
835c134e 6787}
a5d76b54
KH
6788
6789/*
80934513
MK
6790 * This function checks whether pageblock includes unmovable pages or not.
6791 * If @count is not zero, it is okay to include less @count unmovable pages
6792 *
b8af2941 6793 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6794 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6795 * expect this function should be exact.
a5d76b54 6796 */
b023f468
WC
6797bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6798 bool skip_hwpoisoned_pages)
49ac8255
KH
6799{
6800 unsigned long pfn, iter, found;
47118af0
MN
6801 int mt;
6802
49ac8255
KH
6803 /*
6804 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6805 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6806 */
6807 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6808 return false;
47118af0
MN
6809 mt = get_pageblock_migratetype(page);
6810 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6811 return false;
49ac8255
KH
6812
6813 pfn = page_to_pfn(page);
6814 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6815 unsigned long check = pfn + iter;
6816
29723fcc 6817 if (!pfn_valid_within(check))
49ac8255 6818 continue;
29723fcc 6819
49ac8255 6820 page = pfn_to_page(check);
c8721bbb
NH
6821
6822 /*
6823 * Hugepages are not in LRU lists, but they're movable.
6824 * We need not scan over tail pages bacause we don't
6825 * handle each tail page individually in migration.
6826 */
6827 if (PageHuge(page)) {
6828 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6829 continue;
6830 }
6831
97d255c8
MK
6832 /*
6833 * We can't use page_count without pin a page
6834 * because another CPU can free compound page.
6835 * This check already skips compound tails of THP
6836 * because their page->_count is zero at all time.
6837 */
fe896d18 6838 if (!page_ref_count(page)) {
49ac8255
KH
6839 if (PageBuddy(page))
6840 iter += (1 << page_order(page)) - 1;
6841 continue;
6842 }
97d255c8 6843
b023f468
WC
6844 /*
6845 * The HWPoisoned page may be not in buddy system, and
6846 * page_count() is not 0.
6847 */
6848 if (skip_hwpoisoned_pages && PageHWPoison(page))
6849 continue;
6850
49ac8255
KH
6851 if (!PageLRU(page))
6852 found++;
6853 /*
6b4f7799
JW
6854 * If there are RECLAIMABLE pages, we need to check
6855 * it. But now, memory offline itself doesn't call
6856 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6857 */
6858 /*
6859 * If the page is not RAM, page_count()should be 0.
6860 * we don't need more check. This is an _used_ not-movable page.
6861 *
6862 * The problematic thing here is PG_reserved pages. PG_reserved
6863 * is set to both of a memory hole page and a _used_ kernel
6864 * page at boot.
6865 */
6866 if (found > count)
80934513 6867 return true;
49ac8255 6868 }
80934513 6869 return false;
49ac8255
KH
6870}
6871
6872bool is_pageblock_removable_nolock(struct page *page)
6873{
656a0706
MH
6874 struct zone *zone;
6875 unsigned long pfn;
687875fb
MH
6876
6877 /*
6878 * We have to be careful here because we are iterating over memory
6879 * sections which are not zone aware so we might end up outside of
6880 * the zone but still within the section.
656a0706
MH
6881 * We have to take care about the node as well. If the node is offline
6882 * its NODE_DATA will be NULL - see page_zone.
687875fb 6883 */
656a0706
MH
6884 if (!node_online(page_to_nid(page)))
6885 return false;
6886
6887 zone = page_zone(page);
6888 pfn = page_to_pfn(page);
108bcc96 6889 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6890 return false;
6891
b023f468 6892 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6893}
0c0e6195 6894
080fe206 6895#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6896
6897static unsigned long pfn_max_align_down(unsigned long pfn)
6898{
6899 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6900 pageblock_nr_pages) - 1);
6901}
6902
6903static unsigned long pfn_max_align_up(unsigned long pfn)
6904{
6905 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6906 pageblock_nr_pages));
6907}
6908
041d3a8c 6909/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6910static int __alloc_contig_migrate_range(struct compact_control *cc,
6911 unsigned long start, unsigned long end)
041d3a8c
MN
6912{
6913 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6914 unsigned long nr_reclaimed;
041d3a8c
MN
6915 unsigned long pfn = start;
6916 unsigned int tries = 0;
6917 int ret = 0;
6918
be49a6e1 6919 migrate_prep();
041d3a8c 6920
bb13ffeb 6921 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6922 if (fatal_signal_pending(current)) {
6923 ret = -EINTR;
6924 break;
6925 }
6926
bb13ffeb
MG
6927 if (list_empty(&cc->migratepages)) {
6928 cc->nr_migratepages = 0;
edc2ca61 6929 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6930 if (!pfn) {
6931 ret = -EINTR;
6932 break;
6933 }
6934 tries = 0;
6935 } else if (++tries == 5) {
6936 ret = ret < 0 ? ret : -EBUSY;
6937 break;
6938 }
6939
beb51eaa
MK
6940 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6941 &cc->migratepages);
6942 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6943
9c620e2b 6944 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6945 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6946 }
2a6f5124
SP
6947 if (ret < 0) {
6948 putback_movable_pages(&cc->migratepages);
6949 return ret;
6950 }
6951 return 0;
041d3a8c
MN
6952}
6953
6954/**
6955 * alloc_contig_range() -- tries to allocate given range of pages
6956 * @start: start PFN to allocate
6957 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6958 * @migratetype: migratetype of the underlaying pageblocks (either
6959 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6960 * in range must have the same migratetype and it must
6961 * be either of the two.
041d3a8c
MN
6962 *
6963 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6964 * aligned, however it's the caller's responsibility to guarantee that
6965 * we are the only thread that changes migrate type of pageblocks the
6966 * pages fall in.
6967 *
6968 * The PFN range must belong to a single zone.
6969 *
6970 * Returns zero on success or negative error code. On success all
6971 * pages which PFN is in [start, end) are allocated for the caller and
6972 * need to be freed with free_contig_range().
6973 */
0815f3d8
MN
6974int alloc_contig_range(unsigned long start, unsigned long end,
6975 unsigned migratetype)
041d3a8c 6976{
041d3a8c 6977 unsigned long outer_start, outer_end;
d00181b9
KS
6978 unsigned int order;
6979 int ret = 0;
041d3a8c 6980
bb13ffeb
MG
6981 struct compact_control cc = {
6982 .nr_migratepages = 0,
6983 .order = -1,
6984 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6985 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6986 .ignore_skip_hint = true,
6987 };
6988 INIT_LIST_HEAD(&cc.migratepages);
6989
041d3a8c
MN
6990 /*
6991 * What we do here is we mark all pageblocks in range as
6992 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6993 * have different sizes, and due to the way page allocator
6994 * work, we align the range to biggest of the two pages so
6995 * that page allocator won't try to merge buddies from
6996 * different pageblocks and change MIGRATE_ISOLATE to some
6997 * other migration type.
6998 *
6999 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7000 * migrate the pages from an unaligned range (ie. pages that
7001 * we are interested in). This will put all the pages in
7002 * range back to page allocator as MIGRATE_ISOLATE.
7003 *
7004 * When this is done, we take the pages in range from page
7005 * allocator removing them from the buddy system. This way
7006 * page allocator will never consider using them.
7007 *
7008 * This lets us mark the pageblocks back as
7009 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7010 * aligned range but not in the unaligned, original range are
7011 * put back to page allocator so that buddy can use them.
7012 */
7013
7014 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7015 pfn_max_align_up(end), migratetype,
7016 false);
041d3a8c 7017 if (ret)
86a595f9 7018 return ret;
041d3a8c 7019
8ef5849f
JK
7020 /*
7021 * In case of -EBUSY, we'd like to know which page causes problem.
7022 * So, just fall through. We will check it in test_pages_isolated().
7023 */
bb13ffeb 7024 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7025 if (ret && ret != -EBUSY)
041d3a8c
MN
7026 goto done;
7027
7028 /*
7029 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7030 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7031 * more, all pages in [start, end) are free in page allocator.
7032 * What we are going to do is to allocate all pages from
7033 * [start, end) (that is remove them from page allocator).
7034 *
7035 * The only problem is that pages at the beginning and at the
7036 * end of interesting range may be not aligned with pages that
7037 * page allocator holds, ie. they can be part of higher order
7038 * pages. Because of this, we reserve the bigger range and
7039 * once this is done free the pages we are not interested in.
7040 *
7041 * We don't have to hold zone->lock here because the pages are
7042 * isolated thus they won't get removed from buddy.
7043 */
7044
7045 lru_add_drain_all();
510f5507 7046 drain_all_pages(cc.zone);
041d3a8c
MN
7047
7048 order = 0;
7049 outer_start = start;
7050 while (!PageBuddy(pfn_to_page(outer_start))) {
7051 if (++order >= MAX_ORDER) {
8ef5849f
JK
7052 outer_start = start;
7053 break;
041d3a8c
MN
7054 }
7055 outer_start &= ~0UL << order;
7056 }
7057
8ef5849f
JK
7058 if (outer_start != start) {
7059 order = page_order(pfn_to_page(outer_start));
7060
7061 /*
7062 * outer_start page could be small order buddy page and
7063 * it doesn't include start page. Adjust outer_start
7064 * in this case to report failed page properly
7065 * on tracepoint in test_pages_isolated()
7066 */
7067 if (outer_start + (1UL << order) <= start)
7068 outer_start = start;
7069 }
7070
041d3a8c 7071 /* Make sure the range is really isolated. */
b023f468 7072 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7073 pr_info("%s: [%lx, %lx) PFNs busy\n",
7074 __func__, outer_start, end);
041d3a8c
MN
7075 ret = -EBUSY;
7076 goto done;
7077 }
7078
49f223a9 7079 /* Grab isolated pages from freelists. */
bb13ffeb 7080 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7081 if (!outer_end) {
7082 ret = -EBUSY;
7083 goto done;
7084 }
7085
7086 /* Free head and tail (if any) */
7087 if (start != outer_start)
7088 free_contig_range(outer_start, start - outer_start);
7089 if (end != outer_end)
7090 free_contig_range(end, outer_end - end);
7091
7092done:
7093 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7094 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7095 return ret;
7096}
7097
7098void free_contig_range(unsigned long pfn, unsigned nr_pages)
7099{
bcc2b02f
MS
7100 unsigned int count = 0;
7101
7102 for (; nr_pages--; pfn++) {
7103 struct page *page = pfn_to_page(pfn);
7104
7105 count += page_count(page) != 1;
7106 __free_page(page);
7107 }
7108 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7109}
7110#endif
7111
4ed7e022 7112#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7113/*
7114 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7115 * page high values need to be recalulated.
7116 */
4ed7e022
JL
7117void __meminit zone_pcp_update(struct zone *zone)
7118{
0a647f38 7119 unsigned cpu;
c8e251fa 7120 mutex_lock(&pcp_batch_high_lock);
0a647f38 7121 for_each_possible_cpu(cpu)
169f6c19
CS
7122 pageset_set_high_and_batch(zone,
7123 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7124 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7125}
7126#endif
7127
340175b7
JL
7128void zone_pcp_reset(struct zone *zone)
7129{
7130 unsigned long flags;
5a883813
MK
7131 int cpu;
7132 struct per_cpu_pageset *pset;
340175b7
JL
7133
7134 /* avoid races with drain_pages() */
7135 local_irq_save(flags);
7136 if (zone->pageset != &boot_pageset) {
5a883813
MK
7137 for_each_online_cpu(cpu) {
7138 pset = per_cpu_ptr(zone->pageset, cpu);
7139 drain_zonestat(zone, pset);
7140 }
340175b7
JL
7141 free_percpu(zone->pageset);
7142 zone->pageset = &boot_pageset;
7143 }
7144 local_irq_restore(flags);
7145}
7146
6dcd73d7 7147#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
7148/*
7149 * All pages in the range must be isolated before calling this.
7150 */
7151void
7152__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7153{
7154 struct page *page;
7155 struct zone *zone;
7aeb09f9 7156 unsigned int order, i;
0c0e6195
KH
7157 unsigned long pfn;
7158 unsigned long flags;
7159 /* find the first valid pfn */
7160 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7161 if (pfn_valid(pfn))
7162 break;
7163 if (pfn == end_pfn)
7164 return;
7165 zone = page_zone(pfn_to_page(pfn));
7166 spin_lock_irqsave(&zone->lock, flags);
7167 pfn = start_pfn;
7168 while (pfn < end_pfn) {
7169 if (!pfn_valid(pfn)) {
7170 pfn++;
7171 continue;
7172 }
7173 page = pfn_to_page(pfn);
b023f468
WC
7174 /*
7175 * The HWPoisoned page may be not in buddy system, and
7176 * page_count() is not 0.
7177 */
7178 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7179 pfn++;
7180 SetPageReserved(page);
7181 continue;
7182 }
7183
0c0e6195
KH
7184 BUG_ON(page_count(page));
7185 BUG_ON(!PageBuddy(page));
7186 order = page_order(page);
7187#ifdef CONFIG_DEBUG_VM
1170532b
JP
7188 pr_info("remove from free list %lx %d %lx\n",
7189 pfn, 1 << order, end_pfn);
0c0e6195
KH
7190#endif
7191 list_del(&page->lru);
7192 rmv_page_order(page);
7193 zone->free_area[order].nr_free--;
0c0e6195
KH
7194 for (i = 0; i < (1 << order); i++)
7195 SetPageReserved((page+i));
7196 pfn += (1 << order);
7197 }
7198 spin_unlock_irqrestore(&zone->lock, flags);
7199}
7200#endif
8d22ba1b 7201
8d22ba1b
WF
7202bool is_free_buddy_page(struct page *page)
7203{
7204 struct zone *zone = page_zone(page);
7205 unsigned long pfn = page_to_pfn(page);
7206 unsigned long flags;
7aeb09f9 7207 unsigned int order;
8d22ba1b
WF
7208
7209 spin_lock_irqsave(&zone->lock, flags);
7210 for (order = 0; order < MAX_ORDER; order++) {
7211 struct page *page_head = page - (pfn & ((1 << order) - 1));
7212
7213 if (PageBuddy(page_head) && page_order(page_head) >= order)
7214 break;
7215 }
7216 spin_unlock_irqrestore(&zone->lock, flags);
7217
7218 return order < MAX_ORDER;
7219}