]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
1da177e4 69
7ee3d4e8 70#include <asm/sections.h>
1da177e4 71#include <asm/tlbflush.h>
ac924c60 72#include <asm/div64.h>
1da177e4
LT
73#include "internal.h"
74
c8e251fa
CS
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 77#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 78
72812019
LS
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
7aac7898
LS
84#ifdef CONFIG_HAVE_MEMORYLESS_NODES
85/*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 93int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
94#endif
95
bd233f53
MG
96/* work_structs for global per-cpu drains */
97DEFINE_MUTEX(pcpu_drain_mutex);
98DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
38addce8 100#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 101volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
102EXPORT_SYMBOL(latent_entropy);
103#endif
104
1da177e4 105/*
13808910 106 * Array of node states.
1da177e4 107 */
13808910
CL
108nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111#ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113#ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
115#endif
116#ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118#endif
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
bb14c2c7
VB
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
452aa699
RW
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
c9e664f1
RW
161
162static gfp_t saved_gfp_mask;
163
164void pm_restore_gfp_mask(void)
452aa699
RW
165{
166 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
452aa699
RW
171}
172
c9e664f1 173void pm_restrict_gfp_mask(void)
452aa699 174{
452aa699 175 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
d0164adc 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 179}
f90ac398
MG
180
181bool pm_suspended_storage(void)
182{
d0164adc 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
184 return false;
185 return true;
186}
452aa699
RW
187#endif /* CONFIG_PM_SLEEP */
188
d9c23400 189#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 190unsigned int pageblock_order __read_mostly;
d9c23400
MG
191#endif
192
d98c7a09 193static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 194
1da177e4
LT
195/*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
1da177e4 205 */
2f1b6248 206int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 207#ifdef CONFIG_ZONE_DMA
2f1b6248 208 256,
4b51d669 209#endif
fb0e7942 210#ifdef CONFIG_ZONE_DMA32
2f1b6248 211 256,
fb0e7942 212#endif
e53ef38d 213#ifdef CONFIG_HIGHMEM
2a1e274a 214 32,
e53ef38d 215#endif
2a1e274a 216 32,
2f1b6248 217};
1da177e4
LT
218
219EXPORT_SYMBOL(totalram_pages);
1da177e4 220
15ad7cdc 221static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 222#ifdef CONFIG_ZONE_DMA
2f1b6248 223 "DMA",
4b51d669 224#endif
fb0e7942 225#ifdef CONFIG_ZONE_DMA32
2f1b6248 226 "DMA32",
fb0e7942 227#endif
2f1b6248 228 "Normal",
e53ef38d 229#ifdef CONFIG_HIGHMEM
2a1e274a 230 "HighMem",
e53ef38d 231#endif
2a1e274a 232 "Movable",
033fbae9
DW
233#ifdef CONFIG_ZONE_DEVICE
234 "Device",
235#endif
2f1b6248
CL
236};
237
60f30350
VB
238char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243#ifdef CONFIG_CMA
244 "CMA",
245#endif
246#ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248#endif
249};
250
f1e61557
KS
251compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254#ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256#endif
9a982250
KS
257#ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259#endif
f1e61557
KS
260};
261
1da177e4 262int min_free_kbytes = 1024;
42aa83cb 263int user_min_free_kbytes = -1;
795ae7a0 264int watermark_scale_factor = 10;
1da177e4 265
2c85f51d
JB
266static unsigned long __meminitdata nr_kernel_pages;
267static unsigned long __meminitdata nr_all_pages;
a3142c8e 268static unsigned long __meminitdata dma_reserve;
1da177e4 269
0ee332c1
TH
270#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273static unsigned long __initdata required_kernelcore;
274static unsigned long __initdata required_movablecore;
275static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 276static bool mirrored_kernelcore;
0ee332c1
TH
277
278/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279int movable_zone;
280EXPORT_SYMBOL(movable_zone);
281#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 282
418508c1
MS
283#if MAX_NUMNODES > 1
284int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 285int nr_online_nodes __read_mostly = 1;
418508c1 286EXPORT_SYMBOL(nr_node_ids);
62bc62a8 287EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
288#endif
289
9ef9acb0
MG
290int page_group_by_mobility_disabled __read_mostly;
291
3a80a7fa
MG
292#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293static inline void reset_deferred_meminit(pg_data_t *pgdat)
294{
295 pgdat->first_deferred_pfn = ULONG_MAX;
296}
297
298/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 299static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 300{
ef70b6f4
MG
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
304 return true;
305
306 return false;
307}
308
309/*
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
312 */
313static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
316{
987b3095
LZ
317 unsigned long max_initialise;
318
3a80a7fa
MG
319 /* Always populate low zones for address-contrained allocations */
320 if (zone_end < pgdat_end_pfn(pgdat))
321 return true;
987b3095
LZ
322 /*
323 * Initialise at least 2G of a node but also take into account that
324 * two large system hashes that can take up 1GB for 0.25TB/node.
325 */
326 max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 (pgdat->node_spanned_pages >> 8));
3a80a7fa 328
3a80a7fa 329 (*nr_initialised)++;
987b3095 330 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
333 return false;
334 }
335
336 return true;
337}
338#else
339static inline void reset_deferred_meminit(pg_data_t *pgdat)
340{
341}
342
343static inline bool early_page_uninitialised(unsigned long pfn)
344{
345 return false;
346}
347
348static inline bool update_defer_init(pg_data_t *pgdat,
349 unsigned long pfn, unsigned long zone_end,
350 unsigned long *nr_initialised)
351{
352 return true;
353}
354#endif
355
0b423ca2
MG
356/* Return a pointer to the bitmap storing bits affecting a block of pages */
357static inline unsigned long *get_pageblock_bitmap(struct page *page,
358 unsigned long pfn)
359{
360#ifdef CONFIG_SPARSEMEM
361 return __pfn_to_section(pfn)->pageblock_flags;
362#else
363 return page_zone(page)->pageblock_flags;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368{
369#ifdef CONFIG_SPARSEMEM
370 pfn &= (PAGES_PER_SECTION-1);
371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372#else
373 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375#endif /* CONFIG_SPARSEMEM */
376}
377
378/**
379 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380 * @page: The page within the block of interest
381 * @pfn: The target page frame number
382 * @end_bitidx: The last bit of interest to retrieve
383 * @mask: mask of bits that the caller is interested in
384 *
385 * Return: pageblock_bits flags
386 */
387static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
388 unsigned long pfn,
389 unsigned long end_bitidx,
390 unsigned long mask)
391{
392 unsigned long *bitmap;
393 unsigned long bitidx, word_bitidx;
394 unsigned long word;
395
396 bitmap = get_pageblock_bitmap(page, pfn);
397 bitidx = pfn_to_bitidx(page, pfn);
398 word_bitidx = bitidx / BITS_PER_LONG;
399 bitidx &= (BITS_PER_LONG-1);
400
401 word = bitmap[word_bitidx];
402 bitidx += end_bitidx;
403 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
404}
405
406unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 unsigned long end_bitidx,
408 unsigned long mask)
409{
410 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
411}
412
413static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414{
415 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
416}
417
418/**
419 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @flags: The flags to set
422 * @pfn: The target page frame number
423 * @end_bitidx: The last bit of interest
424 * @mask: mask of bits that the caller is interested in
425 */
426void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
427 unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430{
431 unsigned long *bitmap;
432 unsigned long bitidx, word_bitidx;
433 unsigned long old_word, word;
434
435 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436
437 bitmap = get_pageblock_bitmap(page, pfn);
438 bitidx = pfn_to_bitidx(page, pfn);
439 word_bitidx = bitidx / BITS_PER_LONG;
440 bitidx &= (BITS_PER_LONG-1);
441
442 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443
444 bitidx += end_bitidx;
445 mask <<= (BITS_PER_LONG - bitidx - 1);
446 flags <<= (BITS_PER_LONG - bitidx - 1);
447
448 word = READ_ONCE(bitmap[word_bitidx]);
449 for (;;) {
450 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 if (word == old_word)
452 break;
453 word = old_word;
454 }
455}
3a80a7fa 456
ee6f509c 457void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 458{
5d0f3f72
KM
459 if (unlikely(page_group_by_mobility_disabled &&
460 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
461 migratetype = MIGRATE_UNMOVABLE;
462
b2a0ac88
MG
463 set_pageblock_flags_group(page, (unsigned long)migratetype,
464 PB_migrate, PB_migrate_end);
465}
466
13e7444b 467#ifdef CONFIG_DEBUG_VM
c6a57e19 468static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 469{
bdc8cb98
DH
470 int ret = 0;
471 unsigned seq;
472 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 473 unsigned long sp, start_pfn;
c6a57e19 474
bdc8cb98
DH
475 do {
476 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
477 start_pfn = zone->zone_start_pfn;
478 sp = zone->spanned_pages;
108bcc96 479 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
480 ret = 1;
481 } while (zone_span_seqretry(zone, seq));
482
b5e6a5a2 483 if (ret)
613813e8
DH
484 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 pfn, zone_to_nid(zone), zone->name,
486 start_pfn, start_pfn + sp);
b5e6a5a2 487
bdc8cb98 488 return ret;
c6a57e19
DH
489}
490
491static int page_is_consistent(struct zone *zone, struct page *page)
492{
14e07298 493 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 494 return 0;
1da177e4 495 if (zone != page_zone(page))
c6a57e19
DH
496 return 0;
497
498 return 1;
499}
500/*
501 * Temporary debugging check for pages not lying within a given zone.
502 */
503static int bad_range(struct zone *zone, struct page *page)
504{
505 if (page_outside_zone_boundaries(zone, page))
1da177e4 506 return 1;
c6a57e19
DH
507 if (!page_is_consistent(zone, page))
508 return 1;
509
1da177e4
LT
510 return 0;
511}
13e7444b
NP
512#else
513static inline int bad_range(struct zone *zone, struct page *page)
514{
515 return 0;
516}
517#endif
518
d230dec1
KS
519static void bad_page(struct page *page, const char *reason,
520 unsigned long bad_flags)
1da177e4 521{
d936cf9b
HD
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 goto out;
534 }
535 if (nr_unshown) {
ff8e8116 536 pr_alert(
1e9e6365 537 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
538 nr_unshown);
539 nr_unshown = 0;
540 }
541 nr_shown = 0;
542 }
543 if (nr_shown++ == 0)
544 resume = jiffies + 60 * HZ;
545
ff8e8116 546 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 547 current->comm, page_to_pfn(page));
ff8e8116
VB
548 __dump_page(page, reason);
549 bad_flags &= page->flags;
550 if (bad_flags)
551 pr_alert("bad because of flags: %#lx(%pGp)\n",
552 bad_flags, &bad_flags);
4e462112 553 dump_page_owner(page);
3dc14741 554
4f31888c 555 print_modules();
1da177e4 556 dump_stack();
d936cf9b 557out:
8cc3b392 558 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 559 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
561}
562
1da177e4
LT
563/*
564 * Higher-order pages are called "compound pages". They are structured thusly:
565 *
1d798ca3 566 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 567 *
1d798ca3
KS
568 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 570 *
1d798ca3
KS
571 * The first tail page's ->compound_dtor holds the offset in array of compound
572 * page destructors. See compound_page_dtors.
1da177e4 573 *
1d798ca3 574 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 575 * This usage means that zero-order pages may not be compound.
1da177e4 576 */
d98c7a09 577
9a982250 578void free_compound_page(struct page *page)
d98c7a09 579{
d85f3385 580 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
581}
582
d00181b9 583void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
584{
585 int i;
586 int nr_pages = 1 << order;
587
f1e61557 588 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
589 set_compound_order(page, order);
590 __SetPageHead(page);
591 for (i = 1; i < nr_pages; i++) {
592 struct page *p = page + i;
58a84aa9 593 set_page_count(p, 0);
1c290f64 594 p->mapping = TAIL_MAPPING;
1d798ca3 595 set_compound_head(p, page);
18229df5 596 }
53f9263b 597 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
598}
599
c0a32fc5
SG
600#ifdef CONFIG_DEBUG_PAGEALLOC
601unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
602bool _debug_pagealloc_enabled __read_mostly
603 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 604EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
605bool _debug_guardpage_enabled __read_mostly;
606
031bc574
JK
607static int __init early_debug_pagealloc(char *buf)
608{
609 if (!buf)
610 return -EINVAL;
2a138dc7 611 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
612}
613early_param("debug_pagealloc", early_debug_pagealloc);
614
e30825f1
JK
615static bool need_debug_guardpage(void)
616{
031bc574
JK
617 /* If we don't use debug_pagealloc, we don't need guard page */
618 if (!debug_pagealloc_enabled())
619 return false;
620
f1c1e9f7
JK
621 if (!debug_guardpage_minorder())
622 return false;
623
e30825f1
JK
624 return true;
625}
626
627static void init_debug_guardpage(void)
628{
031bc574
JK
629 if (!debug_pagealloc_enabled())
630 return;
631
f1c1e9f7
JK
632 if (!debug_guardpage_minorder())
633 return;
634
e30825f1
JK
635 _debug_guardpage_enabled = true;
636}
637
638struct page_ext_operations debug_guardpage_ops = {
639 .need = need_debug_guardpage,
640 .init = init_debug_guardpage,
641};
c0a32fc5
SG
642
643static int __init debug_guardpage_minorder_setup(char *buf)
644{
645 unsigned long res;
646
647 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 648 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
649 return 0;
650 }
651 _debug_guardpage_minorder = res;
1170532b 652 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
653 return 0;
654}
f1c1e9f7 655early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 656
acbc15a4 657static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 658 unsigned int order, int migratetype)
c0a32fc5 659{
e30825f1
JK
660 struct page_ext *page_ext;
661
662 if (!debug_guardpage_enabled())
acbc15a4
JK
663 return false;
664
665 if (order >= debug_guardpage_minorder())
666 return false;
e30825f1
JK
667
668 page_ext = lookup_page_ext(page);
f86e4271 669 if (unlikely(!page_ext))
acbc15a4 670 return false;
f86e4271 671
e30825f1
JK
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
678
679 return true;
c0a32fc5
SG
680}
681
2847cf95
JK
682static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
c0a32fc5 684{
e30825f1
JK
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
688 return;
689
690 page_ext = lookup_page_ext(page);
f86e4271
YS
691 if (unlikely(!page_ext))
692 return;
693
e30825f1
JK
694 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695
2847cf95
JK
696 set_page_private(page, 0);
697 if (!is_migrate_isolate(migratetype))
698 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
699}
700#else
980ac167 701struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
702static inline bool set_page_guard(struct zone *zone, struct page *page,
703 unsigned int order, int migratetype) { return false; }
2847cf95
JK
704static inline void clear_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype) {}
c0a32fc5
SG
706#endif
707
7aeb09f9 708static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 709{
4c21e2f2 710 set_page_private(page, order);
676165a8 711 __SetPageBuddy(page);
1da177e4
LT
712}
713
714static inline void rmv_page_order(struct page *page)
715{
676165a8 716 __ClearPageBuddy(page);
4c21e2f2 717 set_page_private(page, 0);
1da177e4
LT
718}
719
1da177e4
LT
720/*
721 * This function checks whether a page is free && is the buddy
722 * we can do coalesce a page and its buddy if
13ad59df 723 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 724 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
725 * (c) a page and its buddy have the same order &&
726 * (d) a page and its buddy are in the same zone.
676165a8 727 *
cf6fe945
WSH
728 * For recording whether a page is in the buddy system, we set ->_mapcount
729 * PAGE_BUDDY_MAPCOUNT_VALUE.
730 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731 * serialized by zone->lock.
1da177e4 732 *
676165a8 733 * For recording page's order, we use page_private(page).
1da177e4 734 */
cb2b95e1 735static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 736 unsigned int order)
1da177e4 737{
c0a32fc5 738 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
739 if (page_zone_id(page) != page_zone_id(buddy))
740 return 0;
741
4c5018ce
WY
742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743
c0a32fc5
SG
744 return 1;
745 }
746
cb2b95e1 747 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
748 /*
749 * zone check is done late to avoid uselessly
750 * calculating zone/node ids for pages that could
751 * never merge.
752 */
753 if (page_zone_id(page) != page_zone_id(buddy))
754 return 0;
755
4c5018ce
WY
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757
6aa3001b 758 return 1;
676165a8 759 }
6aa3001b 760 return 0;
1da177e4
LT
761}
762
763/*
764 * Freeing function for a buddy system allocator.
765 *
766 * The concept of a buddy system is to maintain direct-mapped table
767 * (containing bit values) for memory blocks of various "orders".
768 * The bottom level table contains the map for the smallest allocatable
769 * units of memory (here, pages), and each level above it describes
770 * pairs of units from the levels below, hence, "buddies".
771 * At a high level, all that happens here is marking the table entry
772 * at the bottom level available, and propagating the changes upward
773 * as necessary, plus some accounting needed to play nicely with other
774 * parts of the VM system.
775 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
776 * free pages of length of (1 << order) and marked with _mapcount
777 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
778 * field.
1da177e4 779 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
1da177e4 782 * If a block is freed, and its buddy is also free, then this
5f63b720 783 * triggers coalescing into a block of larger size.
1da177e4 784 *
6d49e352 785 * -- nyc
1da177e4
LT
786 */
787
48db57f8 788static inline void __free_one_page(struct page *page,
dc4b0caf 789 unsigned long pfn,
ed0ae21d
MG
790 struct zone *zone, unsigned int order,
791 int migratetype)
1da177e4 792{
76741e77
VB
793 unsigned long combined_pfn;
794 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 795 struct page *buddy;
d9dddbf5
VB
796 unsigned int max_order;
797
798 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 799
d29bb978 800 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 801 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 802
ed0ae21d 803 VM_BUG_ON(migratetype == -1);
d9dddbf5 804 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 805 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 806
76741e77 807 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 809
d9dddbf5 810continue_merging:
3c605096 811 while (order < max_order - 1) {
76741e77
VB
812 buddy_pfn = __find_buddy_pfn(pfn, order);
813 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
814
815 if (!pfn_valid_within(buddy_pfn))
816 goto done_merging;
cb2b95e1 817 if (!page_is_buddy(page, buddy, order))
d9dddbf5 818 goto done_merging;
c0a32fc5
SG
819 /*
820 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 * merge with it and move up one order.
822 */
823 if (page_is_guard(buddy)) {
2847cf95 824 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
825 } else {
826 list_del(&buddy->lru);
827 zone->free_area[order].nr_free--;
828 rmv_page_order(buddy);
829 }
76741e77
VB
830 combined_pfn = buddy_pfn & pfn;
831 page = page + (combined_pfn - pfn);
832 pfn = combined_pfn;
1da177e4
LT
833 order++;
834 }
d9dddbf5
VB
835 if (max_order < MAX_ORDER) {
836 /* If we are here, it means order is >= pageblock_order.
837 * We want to prevent merge between freepages on isolate
838 * pageblock and normal pageblock. Without this, pageblock
839 * isolation could cause incorrect freepage or CMA accounting.
840 *
841 * We don't want to hit this code for the more frequent
842 * low-order merging.
843 */
844 if (unlikely(has_isolate_pageblock(zone))) {
845 int buddy_mt;
846
76741e77
VB
847 buddy_pfn = __find_buddy_pfn(pfn, order);
848 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
849 buddy_mt = get_pageblock_migratetype(buddy);
850
851 if (migratetype != buddy_mt
852 && (is_migrate_isolate(migratetype) ||
853 is_migrate_isolate(buddy_mt)))
854 goto done_merging;
855 }
856 max_order++;
857 goto continue_merging;
858 }
859
860done_merging:
1da177e4 861 set_page_order(page, order);
6dda9d55
CZ
862
863 /*
864 * If this is not the largest possible page, check if the buddy
865 * of the next-highest order is free. If it is, it's possible
866 * that pages are being freed that will coalesce soon. In case,
867 * that is happening, add the free page to the tail of the list
868 * so it's less likely to be used soon and more likely to be merged
869 * as a higher order page
870 */
13ad59df 871 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 872 struct page *higher_page, *higher_buddy;
76741e77
VB
873 combined_pfn = buddy_pfn & pfn;
874 higher_page = page + (combined_pfn - pfn);
875 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
877 if (pfn_valid_within(buddy_pfn) &&
878 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
879 list_add_tail(&page->lru,
880 &zone->free_area[order].free_list[migratetype]);
881 goto out;
882 }
883 }
884
885 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
886out:
1da177e4
LT
887 zone->free_area[order].nr_free++;
888}
889
7bfec6f4
MG
890/*
891 * A bad page could be due to a number of fields. Instead of multiple branches,
892 * try and check multiple fields with one check. The caller must do a detailed
893 * check if necessary.
894 */
895static inline bool page_expected_state(struct page *page,
896 unsigned long check_flags)
897{
898 if (unlikely(atomic_read(&page->_mapcount) != -1))
899 return false;
900
901 if (unlikely((unsigned long)page->mapping |
902 page_ref_count(page) |
903#ifdef CONFIG_MEMCG
904 (unsigned long)page->mem_cgroup |
905#endif
906 (page->flags & check_flags)))
907 return false;
908
909 return true;
910}
911
bb552ac6 912static void free_pages_check_bad(struct page *page)
1da177e4 913{
7bfec6f4
MG
914 const char *bad_reason;
915 unsigned long bad_flags;
916
7bfec6f4
MG
917 bad_reason = NULL;
918 bad_flags = 0;
f0b791a3 919
53f9263b 920 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
921 bad_reason = "nonzero mapcount";
922 if (unlikely(page->mapping != NULL))
923 bad_reason = "non-NULL mapping";
fe896d18 924 if (unlikely(page_ref_count(page) != 0))
0139aa7b 925 bad_reason = "nonzero _refcount";
f0b791a3
DH
926 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 }
9edad6ea
JW
930#ifdef CONFIG_MEMCG
931 if (unlikely(page->mem_cgroup))
932 bad_reason = "page still charged to cgroup";
933#endif
7bfec6f4 934 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
935}
936
937static inline int free_pages_check(struct page *page)
938{
da838d4f 939 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 940 return 0;
bb552ac6
MG
941
942 /* Something has gone sideways, find it */
943 free_pages_check_bad(page);
7bfec6f4 944 return 1;
1da177e4
LT
945}
946
4db7548c
MG
947static int free_tail_pages_check(struct page *head_page, struct page *page)
948{
949 int ret = 1;
950
951 /*
952 * We rely page->lru.next never has bit 0 set, unless the page
953 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 */
955 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956
957 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
958 ret = 0;
959 goto out;
960 }
961 switch (page - head_page) {
962 case 1:
963 /* the first tail page: ->mapping is compound_mapcount() */
964 if (unlikely(compound_mapcount(page))) {
965 bad_page(page, "nonzero compound_mapcount", 0);
966 goto out;
967 }
968 break;
969 case 2:
970 /*
971 * the second tail page: ->mapping is
972 * page_deferred_list().next -- ignore value.
973 */
974 break;
975 default:
976 if (page->mapping != TAIL_MAPPING) {
977 bad_page(page, "corrupted mapping in tail page", 0);
978 goto out;
979 }
980 break;
981 }
982 if (unlikely(!PageTail(page))) {
983 bad_page(page, "PageTail not set", 0);
984 goto out;
985 }
986 if (unlikely(compound_head(page) != head_page)) {
987 bad_page(page, "compound_head not consistent", 0);
988 goto out;
989 }
990 ret = 0;
991out:
992 page->mapping = NULL;
993 clear_compound_head(page);
994 return ret;
995}
996
e2769dbd
MG
997static __always_inline bool free_pages_prepare(struct page *page,
998 unsigned int order, bool check_free)
4db7548c 999{
e2769dbd 1000 int bad = 0;
4db7548c 1001
4db7548c
MG
1002 VM_BUG_ON_PAGE(PageTail(page), page);
1003
e2769dbd
MG
1004 trace_mm_page_free(page, order);
1005 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1006
1007 /*
1008 * Check tail pages before head page information is cleared to
1009 * avoid checking PageCompound for order-0 pages.
1010 */
1011 if (unlikely(order)) {
1012 bool compound = PageCompound(page);
1013 int i;
1014
1015 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1016
9a73f61b
KS
1017 if (compound)
1018 ClearPageDoubleMap(page);
e2769dbd
MG
1019 for (i = 1; i < (1 << order); i++) {
1020 if (compound)
1021 bad += free_tail_pages_check(page, page + i);
1022 if (unlikely(free_pages_check(page + i))) {
1023 bad++;
1024 continue;
1025 }
1026 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1027 }
1028 }
bda807d4 1029 if (PageMappingFlags(page))
4db7548c 1030 page->mapping = NULL;
c4159a75 1031 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1032 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1033 if (check_free)
1034 bad += free_pages_check(page);
1035 if (bad)
1036 return false;
4db7548c 1037
e2769dbd
MG
1038 page_cpupid_reset_last(page);
1039 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 reset_page_owner(page, order);
4db7548c
MG
1041
1042 if (!PageHighMem(page)) {
1043 debug_check_no_locks_freed(page_address(page),
e2769dbd 1044 PAGE_SIZE << order);
4db7548c 1045 debug_check_no_obj_freed(page_address(page),
e2769dbd 1046 PAGE_SIZE << order);
4db7548c 1047 }
e2769dbd
MG
1048 arch_free_page(page, order);
1049 kernel_poison_pages(page, 1 << order, 0);
1050 kernel_map_pages(page, 1 << order, 0);
29b52de1 1051 kasan_free_pages(page, order);
4db7548c 1052
4db7548c
MG
1053 return true;
1054}
1055
e2769dbd
MG
1056#ifdef CONFIG_DEBUG_VM
1057static inline bool free_pcp_prepare(struct page *page)
1058{
1059 return free_pages_prepare(page, 0, true);
1060}
1061
1062static inline bool bulkfree_pcp_prepare(struct page *page)
1063{
1064 return false;
1065}
1066#else
1067static bool free_pcp_prepare(struct page *page)
1068{
1069 return free_pages_prepare(page, 0, false);
1070}
1071
4db7548c
MG
1072static bool bulkfree_pcp_prepare(struct page *page)
1073{
1074 return free_pages_check(page);
1075}
1076#endif /* CONFIG_DEBUG_VM */
1077
1da177e4 1078/*
5f8dcc21 1079 * Frees a number of pages from the PCP lists
1da177e4 1080 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1081 * count is the number of pages to free.
1da177e4
LT
1082 *
1083 * If the zone was previously in an "all pages pinned" state then look to
1084 * see if this freeing clears that state.
1085 *
1086 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087 * pinned" detection logic.
1088 */
5f8dcc21
MG
1089static void free_pcppages_bulk(struct zone *zone, int count,
1090 struct per_cpu_pages *pcp)
1da177e4 1091{
5f8dcc21 1092 int migratetype = 0;
a6f9edd6 1093 int batch_free = 0;
3777999d 1094 bool isolated_pageblocks;
5f8dcc21 1095
d34b0733 1096 spin_lock(&zone->lock);
3777999d 1097 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1098
e5b31ac2 1099 while (count) {
48db57f8 1100 struct page *page;
5f8dcc21
MG
1101 struct list_head *list;
1102
1103 /*
a6f9edd6
MG
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
5f8dcc21
MG
1109 */
1110 do {
a6f9edd6 1111 batch_free++;
5f8dcc21
MG
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
48db57f8 1116
1d16871d
NK
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1119 batch_free = count;
1d16871d 1120
a6f9edd6 1121 do {
770c8aaa
BZ
1122 int mt; /* migratetype of the to-be-freed page */
1123
a16601c5 1124 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
aa016d14 1127
bb14c2c7 1128 mt = get_pcppage_migratetype(page);
aa016d14
VB
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
3777999d 1132 if (unlikely(isolated_pageblocks))
51bb1a40 1133 mt = get_pageblock_migratetype(page);
51bb1a40 1134
4db7548c
MG
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
dc4b0caf 1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1139 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1140 } while (--count && --batch_free && !list_empty(list));
1da177e4 1141 }
d34b0733 1142 spin_unlock(&zone->lock);
1da177e4
LT
1143}
1144
dc4b0caf
MG
1145static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
7aeb09f9 1147 unsigned int order,
ed0ae21d 1148 int migratetype)
1da177e4 1149{
d34b0733 1150 spin_lock(&zone->lock);
ad53f92e
JK
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1154 }
dc4b0caf 1155 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1156 spin_unlock(&zone->lock);
48db57f8
NP
1157}
1158
1e8ce83c
RH
1159static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161{
1e8ce83c 1162 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1e8ce83c 1166
1e8ce83c
RH
1167 INIT_LIST_HEAD(&page->lru);
1168#ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172#endif
1173}
1174
1175static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177{
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179}
1180
7e18adb4
MG
1181#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182static void init_reserved_page(unsigned long pfn)
1183{
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200}
1201#else
1202static inline void init_reserved_page(unsigned long pfn)
1203{
1204}
1205#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
92923ca3
NZ
1207/*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
4b50bcc7 1213void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1214{
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
7e18adb4
MG
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1d798ca3
KS
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
7e18adb4
MG
1227 SetPageReserved(page);
1228 }
1229 }
92923ca3
NZ
1230}
1231
ec95f53a
KM
1232static void __free_pages_ok(struct page *page, unsigned int order)
1233{
d34b0733 1234 unsigned long flags;
95e34412 1235 int migratetype;
dc4b0caf 1236 unsigned long pfn = page_to_pfn(page);
ec95f53a 1237
e2769dbd 1238 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1239 return;
1240
cfc47a28 1241 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1242 local_irq_save(flags);
1243 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1245 local_irq_restore(flags);
1da177e4
LT
1246}
1247
949698a3 1248static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1249{
c3993076 1250 unsigned int nr_pages = 1 << order;
e2d0bd2b 1251 struct page *p = page;
c3993076 1252 unsigned int loop;
a226f6c8 1253
e2d0bd2b
YL
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
c3993076
JW
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
a226f6c8 1259 }
e2d0bd2b
YL
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
c3993076 1262
e2d0bd2b 1263 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
a226f6c8
DH
1266}
1267
75a592a4
MG
1268#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1270
75a592a4
MG
1271static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273int __meminit early_pfn_to_nid(unsigned long pfn)
1274{
7ace9917 1275 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1276 int nid;
1277
7ace9917 1278 spin_lock(&early_pfn_lock);
75a592a4 1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1280 if (nid < 0)
e4568d38 1281 nid = first_online_node;
7ace9917
MG
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
75a592a4
MG
1285}
1286#endif
1287
1288#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291{
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298}
1299
1300/* Only safe to use early in boot when initialisation is single-threaded */
1301static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302{
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304}
1305
1306#else
1307
1308static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309{
1310 return true;
1311}
1312static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314{
1315 return true;
1316}
1317#endif
1318
1319
0e1cc95b 1320void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1321 unsigned int order)
1322{
1323 if (early_page_uninitialised(pfn))
1324 return;
949698a3 1325 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1326}
1327
7cf91a98
JK
1328/*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347{
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369}
1370
1371void set_zone_contiguous(struct zone *zone)
1372{
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390}
1391
1392void clear_zone_contiguous(struct zone *zone)
1393{
1394 zone->contiguous = false;
1395}
1396
7e18adb4 1397#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1398static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1399 unsigned long pfn, int nr_pages)
1400{
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1410 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1411 return;
1412 }
1413
e780149b
XQ
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1417 __free_pages_boot_core(page, 0);
e780149b 1418 }
a4de83dd
MG
1419}
1420
d3cd131d
NS
1421/* Completion tracking for deferred_init_memmap() threads */
1422static atomic_t pgdat_init_n_undone __initdata;
1423static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425static inline void __init pgdat_init_report_one_done(void)
1426{
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429}
0e1cc95b 1430
7e18adb4 1431/* Initialise remaining memory on a node */
0e1cc95b 1432static int __init deferred_init_memmap(void *data)
7e18adb4 1433{
0e1cc95b
MG
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
7e18adb4
MG
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
7e18adb4 1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1444
0e1cc95b 1445 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1446 pgdat_init_report_one_done();
0e1cc95b
MG
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
54608c3f 1468 struct page *page = NULL;
a4de83dd
MG
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
7e18adb4
MG
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
54608c3f 1481 if (!pfn_valid_within(pfn))
a4de83dd 1482 goto free_range;
7e18adb4 1483
54608c3f
MG
1484 /*
1485 * Ensure pfn_valid is checked every
e780149b 1486 * pageblock_nr_pages for memory holes
54608c3f 1487 */
e780149b 1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
a4de83dd 1497 goto free_range;
54608c3f
MG
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
e780149b 1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1502 page++;
1503 } else {
a4de83dd
MG
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
54608c3f
MG
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
7e18adb4
MG
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1516 goto free_range;
7e18adb4
MG
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
7e18adb4 1536 }
e780149b
XQ
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1540
7e18adb4
MG
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
0e1cc95b 1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1548 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1549
1550 pgdat_init_report_one_done();
0e1cc95b
MG
1551 return 0;
1552}
7cf91a98 1553#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1554
1555void __init page_alloc_init_late(void)
1556{
7cf91a98
JK
1557 struct zone *zone;
1558
1559#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1560 int nid;
1561
d3cd131d
NS
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1564 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
d3cd131d 1569 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
7cf91a98
JK
1573#endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
7e18adb4 1577}
7e18adb4 1578
47118af0 1579#ifdef CONFIG_CMA
9cf510a5 1580/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1581void __init init_cma_reserved_pageblock(struct page *page)
1582{
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
47118af0 1591 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
3dcc0571 1606 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1607}
1608#endif
1da177e4
LT
1609
1610/*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
6d49e352 1622 * -- nyc
1da177e4 1623 */
085cc7d5 1624static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1da177e4
LT
1627{
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
309381fe 1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1635
acbc15a4
JK
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1643 continue;
acbc15a4 1644
b2a0ac88 1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1da177e4
LT
1649}
1650
4e611801 1651static void check_new_page_bad(struct page *page)
1da177e4 1652{
4e611801
VB
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
7bfec6f4 1655
53f9263b 1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
fe896d18 1660 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1661 bad_reason = "nonzero _count";
f4c18e6f
NH
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
e570f56c
NH
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
f4c18e6f 1668 }
f0b791a3
DH
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
9edad6ea
JW
1673#ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676#endif
4e611801
VB
1677 bad_page(page, bad_reason, bad_flags);
1678}
1679
1680/*
1681 * This page is about to be returned from the page allocator
1682 */
1683static inline int check_new_page(struct page *page)
1684{
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
2a7684a2
WF
1691}
1692
bd33ef36 1693static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1694{
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1696 page_poisoning_enabled();
1414c7f4
LA
1697}
1698
479f854a
MG
1699#ifdef CONFIG_DEBUG_VM
1700static bool check_pcp_refill(struct page *page)
1701{
1702 return false;
1703}
1704
1705static bool check_new_pcp(struct page *page)
1706{
1707 return check_new_page(page);
1708}
1709#else
1710static bool check_pcp_refill(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714static bool check_new_pcp(struct page *page)
1715{
1716 return false;
1717}
1718#endif /* CONFIG_DEBUG_VM */
1719
1720static bool check_new_pages(struct page *page, unsigned int order)
1721{
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731}
1732
46f24fd8
JK
1733inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735{
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744}
1745
479f854a 1746static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1747 unsigned int alloc_flags)
2a7684a2
WF
1748{
1749 int i;
689bcebf 1750
46f24fd8 1751 post_alloc_hook(page, order, gfp_flags);
17cf4406 1752
bd33ef36 1753 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1754 for (i = 0; i < (1 << order); i++)
1755 clear_highpage(page + i);
17cf4406
NP
1756
1757 if (order && (gfp_flags & __GFP_COMP))
1758 prep_compound_page(page, order);
1759
75379191 1760 /*
2f064f34 1761 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1762 * allocate the page. The expectation is that the caller is taking
1763 * steps that will free more memory. The caller should avoid the page
1764 * being used for !PFMEMALLOC purposes.
1765 */
2f064f34
MH
1766 if (alloc_flags & ALLOC_NO_WATERMARKS)
1767 set_page_pfmemalloc(page);
1768 else
1769 clear_page_pfmemalloc(page);
1da177e4
LT
1770}
1771
56fd56b8
MG
1772/*
1773 * Go through the free lists for the given migratetype and remove
1774 * the smallest available page from the freelists
1775 */
728ec980
MG
1776static inline
1777struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1778 int migratetype)
1779{
1780 unsigned int current_order;
b8af2941 1781 struct free_area *area;
56fd56b8
MG
1782 struct page *page;
1783
1784 /* Find a page of the appropriate size in the preferred list */
1785 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1786 area = &(zone->free_area[current_order]);
a16601c5 1787 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1788 struct page, lru);
a16601c5
GT
1789 if (!page)
1790 continue;
56fd56b8
MG
1791 list_del(&page->lru);
1792 rmv_page_order(page);
1793 area->nr_free--;
56fd56b8 1794 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1795 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1796 return page;
1797 }
1798
1799 return NULL;
1800}
1801
1802
b2a0ac88
MG
1803/*
1804 * This array describes the order lists are fallen back to when
1805 * the free lists for the desirable migrate type are depleted
1806 */
47118af0 1807static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1808 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1809 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1810 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1811#ifdef CONFIG_CMA
974a786e 1812 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1813#endif
194159fb 1814#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1815 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1816#endif
b2a0ac88
MG
1817};
1818
dc67647b
JK
1819#ifdef CONFIG_CMA
1820static struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 unsigned int order)
1822{
1823 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1824}
1825#else
1826static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order) { return NULL; }
1828#endif
1829
c361be55
MG
1830/*
1831 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1832 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1833 * boundary. If alignment is required, use move_freepages_block()
1834 */
02aa0cdd 1835static int move_freepages(struct zone *zone,
b69a7288 1836 struct page *start_page, struct page *end_page,
02aa0cdd 1837 int migratetype, int *num_movable)
c361be55
MG
1838{
1839 struct page *page;
d00181b9 1840 unsigned int order;
d100313f 1841 int pages_moved = 0;
c361be55
MG
1842
1843#ifndef CONFIG_HOLES_IN_ZONE
1844 /*
1845 * page_zone is not safe to call in this context when
1846 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 * anyway as we check zone boundaries in move_freepages_block().
1848 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1849 * grouping pages by mobility
c361be55 1850 */
97ee4ba7 1851 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1852#endif
1853
02aa0cdd
VB
1854 if (num_movable)
1855 *num_movable = 0;
1856
c361be55
MG
1857 for (page = start_page; page <= end_page;) {
1858 if (!pfn_valid_within(page_to_pfn(page))) {
1859 page++;
1860 continue;
1861 }
1862
f073bdc5
AB
1863 /* Make sure we are not inadvertently changing nodes */
1864 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1865
c361be55 1866 if (!PageBuddy(page)) {
02aa0cdd
VB
1867 /*
1868 * We assume that pages that could be isolated for
1869 * migration are movable. But we don't actually try
1870 * isolating, as that would be expensive.
1871 */
1872 if (num_movable &&
1873 (PageLRU(page) || __PageMovable(page)))
1874 (*num_movable)++;
1875
c361be55
MG
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
84be48d8
KS
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
c361be55 1883 page += 1 << order;
d100313f 1884 pages_moved += 1 << order;
c361be55
MG
1885 }
1886
d100313f 1887 return pages_moved;
c361be55
MG
1888}
1889
ee6f509c 1890int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1891 int migratetype, int *num_movable)
c361be55
MG
1892{
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
d9c23400 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1898 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1901
1902 /* Do not cross zone boundaries */
108bcc96 1903 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1904 start_page = page;
108bcc96 1905 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1906 return 0;
1907
02aa0cdd
VB
1908 return move_freepages(zone, start_page, end_page, migratetype,
1909 num_movable);
c361be55
MG
1910}
1911
2f66a68f
MG
1912static void change_pageblock_range(struct page *pageblock_page,
1913 int start_order, int migratetype)
1914{
1915 int nr_pageblocks = 1 << (start_order - pageblock_order);
1916
1917 while (nr_pageblocks--) {
1918 set_pageblock_migratetype(pageblock_page, migratetype);
1919 pageblock_page += pageblock_nr_pages;
1920 }
1921}
1922
fef903ef 1923/*
9c0415eb
VB
1924 * When we are falling back to another migratetype during allocation, try to
1925 * steal extra free pages from the same pageblocks to satisfy further
1926 * allocations, instead of polluting multiple pageblocks.
1927 *
1928 * If we are stealing a relatively large buddy page, it is likely there will
1929 * be more free pages in the pageblock, so try to steal them all. For
1930 * reclaimable and unmovable allocations, we steal regardless of page size,
1931 * as fragmentation caused by those allocations polluting movable pageblocks
1932 * is worse than movable allocations stealing from unmovable and reclaimable
1933 * pageblocks.
fef903ef 1934 */
4eb7dce6
JK
1935static bool can_steal_fallback(unsigned int order, int start_mt)
1936{
1937 /*
1938 * Leaving this order check is intended, although there is
1939 * relaxed order check in next check. The reason is that
1940 * we can actually steal whole pageblock if this condition met,
1941 * but, below check doesn't guarantee it and that is just heuristic
1942 * so could be changed anytime.
1943 */
1944 if (order >= pageblock_order)
1945 return true;
1946
1947 if (order >= pageblock_order / 2 ||
1948 start_mt == MIGRATE_RECLAIMABLE ||
1949 start_mt == MIGRATE_UNMOVABLE ||
1950 page_group_by_mobility_disabled)
1951 return true;
1952
1953 return false;
1954}
1955
1956/*
1957 * This function implements actual steal behaviour. If order is large enough,
1958 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1959 * pageblock to our migratetype and determine how many already-allocated pages
1960 * are there in the pageblock with a compatible migratetype. If at least half
1961 * of pages are free or compatible, we can change migratetype of the pageblock
1962 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1963 */
1964static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 1965 int start_type, bool whole_block)
fef903ef 1966{
d00181b9 1967 unsigned int current_order = page_order(page);
3bc48f96 1968 struct free_area *area;
02aa0cdd
VB
1969 int free_pages, movable_pages, alike_pages;
1970 int old_block_type;
1971
1972 old_block_type = get_pageblock_migratetype(page);
fef903ef 1973
3bc48f96
VB
1974 /*
1975 * This can happen due to races and we want to prevent broken
1976 * highatomic accounting.
1977 */
02aa0cdd 1978 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1979 goto single_page;
1980
fef903ef
SB
1981 /* Take ownership for orders >= pageblock_order */
1982 if (current_order >= pageblock_order) {
1983 change_pageblock_range(page, current_order, start_type);
3bc48f96 1984 goto single_page;
fef903ef
SB
1985 }
1986
3bc48f96
VB
1987 /* We are not allowed to try stealing from the whole block */
1988 if (!whole_block)
1989 goto single_page;
1990
02aa0cdd
VB
1991 free_pages = move_freepages_block(zone, page, start_type,
1992 &movable_pages);
1993 /*
1994 * Determine how many pages are compatible with our allocation.
1995 * For movable allocation, it's the number of movable pages which
1996 * we just obtained. For other types it's a bit more tricky.
1997 */
1998 if (start_type == MIGRATE_MOVABLE) {
1999 alike_pages = movable_pages;
2000 } else {
2001 /*
2002 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2003 * to MOVABLE pageblock, consider all non-movable pages as
2004 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2005 * vice versa, be conservative since we can't distinguish the
2006 * exact migratetype of non-movable pages.
2007 */
2008 if (old_block_type == MIGRATE_MOVABLE)
2009 alike_pages = pageblock_nr_pages
2010 - (free_pages + movable_pages);
2011 else
2012 alike_pages = 0;
2013 }
2014
3bc48f96 2015 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2016 if (!free_pages)
3bc48f96 2017 goto single_page;
fef903ef 2018
02aa0cdd
VB
2019 /*
2020 * If a sufficient number of pages in the block are either free or of
2021 * comparable migratability as our allocation, claim the whole block.
2022 */
2023 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2024 page_group_by_mobility_disabled)
2025 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2026
2027 return;
2028
2029single_page:
2030 area = &zone->free_area[current_order];
2031 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2032}
2033
2149cdae
JK
2034/*
2035 * Check whether there is a suitable fallback freepage with requested order.
2036 * If only_stealable is true, this function returns fallback_mt only if
2037 * we can steal other freepages all together. This would help to reduce
2038 * fragmentation due to mixed migratetype pages in one pageblock.
2039 */
2040int find_suitable_fallback(struct free_area *area, unsigned int order,
2041 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2042{
2043 int i;
2044 int fallback_mt;
2045
2046 if (area->nr_free == 0)
2047 return -1;
2048
2049 *can_steal = false;
2050 for (i = 0;; i++) {
2051 fallback_mt = fallbacks[migratetype][i];
974a786e 2052 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2053 break;
2054
2055 if (list_empty(&area->free_list[fallback_mt]))
2056 continue;
fef903ef 2057
4eb7dce6
JK
2058 if (can_steal_fallback(order, migratetype))
2059 *can_steal = true;
2060
2149cdae
JK
2061 if (!only_stealable)
2062 return fallback_mt;
2063
2064 if (*can_steal)
2065 return fallback_mt;
fef903ef 2066 }
4eb7dce6
JK
2067
2068 return -1;
fef903ef
SB
2069}
2070
0aaa29a5
MG
2071/*
2072 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2073 * there are no empty page blocks that contain a page with a suitable order
2074 */
2075static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2076 unsigned int alloc_order)
2077{
2078 int mt;
2079 unsigned long max_managed, flags;
2080
2081 /*
2082 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2083 * Check is race-prone but harmless.
2084 */
2085 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2086 if (zone->nr_reserved_highatomic >= max_managed)
2087 return;
2088
2089 spin_lock_irqsave(&zone->lock, flags);
2090
2091 /* Recheck the nr_reserved_highatomic limit under the lock */
2092 if (zone->nr_reserved_highatomic >= max_managed)
2093 goto out_unlock;
2094
2095 /* Yoink! */
2096 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2097 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2098 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2099 zone->nr_reserved_highatomic += pageblock_nr_pages;
2100 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2101 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2102 }
2103
2104out_unlock:
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106}
2107
2108/*
2109 * Used when an allocation is about to fail under memory pressure. This
2110 * potentially hurts the reliability of high-order allocations when under
2111 * intense memory pressure but failed atomic allocations should be easier
2112 * to recover from than an OOM.
29fac03b
MK
2113 *
2114 * If @force is true, try to unreserve a pageblock even though highatomic
2115 * pageblock is exhausted.
0aaa29a5 2116 */
29fac03b
MK
2117static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2118 bool force)
0aaa29a5
MG
2119{
2120 struct zonelist *zonelist = ac->zonelist;
2121 unsigned long flags;
2122 struct zoneref *z;
2123 struct zone *zone;
2124 struct page *page;
2125 int order;
04c8716f 2126 bool ret;
0aaa29a5
MG
2127
2128 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2129 ac->nodemask) {
29fac03b
MK
2130 /*
2131 * Preserve at least one pageblock unless memory pressure
2132 * is really high.
2133 */
2134 if (!force && zone->nr_reserved_highatomic <=
2135 pageblock_nr_pages)
0aaa29a5
MG
2136 continue;
2137
2138 spin_lock_irqsave(&zone->lock, flags);
2139 for (order = 0; order < MAX_ORDER; order++) {
2140 struct free_area *area = &(zone->free_area[order]);
2141
a16601c5
GT
2142 page = list_first_entry_or_null(
2143 &area->free_list[MIGRATE_HIGHATOMIC],
2144 struct page, lru);
2145 if (!page)
0aaa29a5
MG
2146 continue;
2147
0aaa29a5 2148 /*
4855e4a7
MK
2149 * In page freeing path, migratetype change is racy so
2150 * we can counter several free pages in a pageblock
2151 * in this loop althoug we changed the pageblock type
2152 * from highatomic to ac->migratetype. So we should
2153 * adjust the count once.
0aaa29a5 2154 */
a6ffdc07 2155 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2156 /*
2157 * It should never happen but changes to
2158 * locking could inadvertently allow a per-cpu
2159 * drain to add pages to MIGRATE_HIGHATOMIC
2160 * while unreserving so be safe and watch for
2161 * underflows.
2162 */
2163 zone->nr_reserved_highatomic -= min(
2164 pageblock_nr_pages,
2165 zone->nr_reserved_highatomic);
2166 }
0aaa29a5
MG
2167
2168 /*
2169 * Convert to ac->migratetype and avoid the normal
2170 * pageblock stealing heuristics. Minimally, the caller
2171 * is doing the work and needs the pages. More
2172 * importantly, if the block was always converted to
2173 * MIGRATE_UNMOVABLE or another type then the number
2174 * of pageblocks that cannot be completely freed
2175 * may increase.
2176 */
2177 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2178 ret = move_freepages_block(zone, page, ac->migratetype,
2179 NULL);
29fac03b
MK
2180 if (ret) {
2181 spin_unlock_irqrestore(&zone->lock, flags);
2182 return ret;
2183 }
0aaa29a5
MG
2184 }
2185 spin_unlock_irqrestore(&zone->lock, flags);
2186 }
04c8716f
MK
2187
2188 return false;
0aaa29a5
MG
2189}
2190
3bc48f96
VB
2191/*
2192 * Try finding a free buddy page on the fallback list and put it on the free
2193 * list of requested migratetype, possibly along with other pages from the same
2194 * block, depending on fragmentation avoidance heuristics. Returns true if
2195 * fallback was found so that __rmqueue_smallest() can grab it.
2196 */
2197static inline bool
7aeb09f9 2198__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2199{
b8af2941 2200 struct free_area *area;
7aeb09f9 2201 unsigned int current_order;
b2a0ac88 2202 struct page *page;
4eb7dce6
JK
2203 int fallback_mt;
2204 bool can_steal;
b2a0ac88
MG
2205
2206 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2207 for (current_order = MAX_ORDER-1;
2208 current_order >= order && current_order <= MAX_ORDER-1;
2209 --current_order) {
4eb7dce6
JK
2210 area = &(zone->free_area[current_order]);
2211 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2212 start_migratetype, false, &can_steal);
4eb7dce6
JK
2213 if (fallback_mt == -1)
2214 continue;
b2a0ac88 2215
a16601c5 2216 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2217 struct page, lru);
b2a0ac88 2218
3bc48f96
VB
2219 steal_suitable_fallback(zone, page, start_migratetype,
2220 can_steal);
e0fff1bd 2221
4eb7dce6
JK
2222 trace_mm_page_alloc_extfrag(page, order, current_order,
2223 start_migratetype, fallback_mt);
e0fff1bd 2224
3bc48f96 2225 return true;
b2a0ac88
MG
2226 }
2227
3bc48f96 2228 return false;
b2a0ac88
MG
2229}
2230
56fd56b8 2231/*
1da177e4
LT
2232 * Do the hard work of removing an element from the buddy allocator.
2233 * Call me with the zone->lock already held.
2234 */
b2a0ac88 2235static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2236 int migratetype)
1da177e4 2237{
1da177e4
LT
2238 struct page *page;
2239
3bc48f96 2240retry:
56fd56b8 2241 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2242 if (unlikely(!page)) {
dc67647b
JK
2243 if (migratetype == MIGRATE_MOVABLE)
2244 page = __rmqueue_cma_fallback(zone, order);
2245
3bc48f96
VB
2246 if (!page && __rmqueue_fallback(zone, order, migratetype))
2247 goto retry;
728ec980
MG
2248 }
2249
0d3d062a 2250 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2251 return page;
1da177e4
LT
2252}
2253
5f63b720 2254/*
1da177e4
LT
2255 * Obtain a specified number of elements from the buddy allocator, all under
2256 * a single hold of the lock, for efficiency. Add them to the supplied list.
2257 * Returns the number of new pages which were placed at *list.
2258 */
5f63b720 2259static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2260 unsigned long count, struct list_head *list,
b745bc85 2261 int migratetype, bool cold)
1da177e4 2262{
a6de734b 2263 int i, alloced = 0;
5f63b720 2264
d34b0733 2265 spin_lock(&zone->lock);
1da177e4 2266 for (i = 0; i < count; ++i) {
6ac0206b 2267 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2268 if (unlikely(page == NULL))
1da177e4 2269 break;
81eabcbe 2270
479f854a
MG
2271 if (unlikely(check_pcp_refill(page)))
2272 continue;
2273
81eabcbe
MG
2274 /*
2275 * Split buddy pages returned by expand() are received here
2276 * in physical page order. The page is added to the callers and
2277 * list and the list head then moves forward. From the callers
2278 * perspective, the linked list is ordered by page number in
2279 * some conditions. This is useful for IO devices that can
2280 * merge IO requests if the physical pages are ordered
2281 * properly.
2282 */
b745bc85 2283 if (likely(!cold))
e084b2d9
MG
2284 list_add(&page->lru, list);
2285 else
2286 list_add_tail(&page->lru, list);
81eabcbe 2287 list = &page->lru;
a6de734b 2288 alloced++;
bb14c2c7 2289 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2290 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2291 -(1 << order));
1da177e4 2292 }
a6de734b
MG
2293
2294 /*
2295 * i pages were removed from the buddy list even if some leak due
2296 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2297 * on i. Do not confuse with 'alloced' which is the number of
2298 * pages added to the pcp list.
2299 */
f2260e6b 2300 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2301 spin_unlock(&zone->lock);
a6de734b 2302 return alloced;
1da177e4
LT
2303}
2304
4ae7c039 2305#ifdef CONFIG_NUMA
8fce4d8e 2306/*
4037d452
CL
2307 * Called from the vmstat counter updater to drain pagesets of this
2308 * currently executing processor on remote nodes after they have
2309 * expired.
2310 *
879336c3
CL
2311 * Note that this function must be called with the thread pinned to
2312 * a single processor.
8fce4d8e 2313 */
4037d452 2314void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2315{
4ae7c039 2316 unsigned long flags;
7be12fc9 2317 int to_drain, batch;
4ae7c039 2318
4037d452 2319 local_irq_save(flags);
4db0c3c2 2320 batch = READ_ONCE(pcp->batch);
7be12fc9 2321 to_drain = min(pcp->count, batch);
2a13515c
KM
2322 if (to_drain > 0) {
2323 free_pcppages_bulk(zone, to_drain, pcp);
2324 pcp->count -= to_drain;
2325 }
4037d452 2326 local_irq_restore(flags);
4ae7c039
CL
2327}
2328#endif
2329
9f8f2172 2330/*
93481ff0 2331 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2332 *
2333 * The processor must either be the current processor and the
2334 * thread pinned to the current processor or a processor that
2335 * is not online.
2336 */
93481ff0 2337static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2338{
c54ad30c 2339 unsigned long flags;
93481ff0
VB
2340 struct per_cpu_pageset *pset;
2341 struct per_cpu_pages *pcp;
1da177e4 2342
93481ff0
VB
2343 local_irq_save(flags);
2344 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2345
93481ff0
VB
2346 pcp = &pset->pcp;
2347 if (pcp->count) {
2348 free_pcppages_bulk(zone, pcp->count, pcp);
2349 pcp->count = 0;
2350 }
2351 local_irq_restore(flags);
2352}
3dfa5721 2353
93481ff0
VB
2354/*
2355 * Drain pcplists of all zones on the indicated processor.
2356 *
2357 * The processor must either be the current processor and the
2358 * thread pinned to the current processor or a processor that
2359 * is not online.
2360 */
2361static void drain_pages(unsigned int cpu)
2362{
2363 struct zone *zone;
2364
2365 for_each_populated_zone(zone) {
2366 drain_pages_zone(cpu, zone);
1da177e4
LT
2367 }
2368}
1da177e4 2369
9f8f2172
CL
2370/*
2371 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2372 *
2373 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2374 * the single zone's pages.
9f8f2172 2375 */
93481ff0 2376void drain_local_pages(struct zone *zone)
9f8f2172 2377{
93481ff0
VB
2378 int cpu = smp_processor_id();
2379
2380 if (zone)
2381 drain_pages_zone(cpu, zone);
2382 else
2383 drain_pages(cpu);
9f8f2172
CL
2384}
2385
0ccce3b9
MG
2386static void drain_local_pages_wq(struct work_struct *work)
2387{
a459eeb7
MH
2388 /*
2389 * drain_all_pages doesn't use proper cpu hotplug protection so
2390 * we can race with cpu offline when the WQ can move this from
2391 * a cpu pinned worker to an unbound one. We can operate on a different
2392 * cpu which is allright but we also have to make sure to not move to
2393 * a different one.
2394 */
2395 preempt_disable();
0ccce3b9 2396 drain_local_pages(NULL);
a459eeb7 2397 preempt_enable();
0ccce3b9
MG
2398}
2399
9f8f2172 2400/*
74046494
GBY
2401 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2402 *
93481ff0
VB
2403 * When zone parameter is non-NULL, spill just the single zone's pages.
2404 *
0ccce3b9 2405 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2406 */
93481ff0 2407void drain_all_pages(struct zone *zone)
9f8f2172 2408{
74046494 2409 int cpu;
74046494
GBY
2410
2411 /*
2412 * Allocate in the BSS so we wont require allocation in
2413 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2414 */
2415 static cpumask_t cpus_with_pcps;
2416
ce612879
MH
2417 /*
2418 * Make sure nobody triggers this path before mm_percpu_wq is fully
2419 * initialized.
2420 */
2421 if (WARN_ON_ONCE(!mm_percpu_wq))
2422 return;
2423
0ccce3b9
MG
2424 /* Workqueues cannot recurse */
2425 if (current->flags & PF_WQ_WORKER)
2426 return;
2427
bd233f53
MG
2428 /*
2429 * Do not drain if one is already in progress unless it's specific to
2430 * a zone. Such callers are primarily CMA and memory hotplug and need
2431 * the drain to be complete when the call returns.
2432 */
2433 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2434 if (!zone)
2435 return;
2436 mutex_lock(&pcpu_drain_mutex);
2437 }
0ccce3b9 2438
74046494
GBY
2439 /*
2440 * We don't care about racing with CPU hotplug event
2441 * as offline notification will cause the notified
2442 * cpu to drain that CPU pcps and on_each_cpu_mask
2443 * disables preemption as part of its processing
2444 */
2445 for_each_online_cpu(cpu) {
93481ff0
VB
2446 struct per_cpu_pageset *pcp;
2447 struct zone *z;
74046494 2448 bool has_pcps = false;
93481ff0
VB
2449
2450 if (zone) {
74046494 2451 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2452 if (pcp->pcp.count)
74046494 2453 has_pcps = true;
93481ff0
VB
2454 } else {
2455 for_each_populated_zone(z) {
2456 pcp = per_cpu_ptr(z->pageset, cpu);
2457 if (pcp->pcp.count) {
2458 has_pcps = true;
2459 break;
2460 }
74046494
GBY
2461 }
2462 }
93481ff0 2463
74046494
GBY
2464 if (has_pcps)
2465 cpumask_set_cpu(cpu, &cpus_with_pcps);
2466 else
2467 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2468 }
0ccce3b9 2469
bd233f53
MG
2470 for_each_cpu(cpu, &cpus_with_pcps) {
2471 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2472 INIT_WORK(work, drain_local_pages_wq);
ce612879 2473 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2474 }
bd233f53
MG
2475 for_each_cpu(cpu, &cpus_with_pcps)
2476 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2477
2478 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2479}
2480
296699de 2481#ifdef CONFIG_HIBERNATION
1da177e4
LT
2482
2483void mark_free_pages(struct zone *zone)
2484{
f623f0db
RW
2485 unsigned long pfn, max_zone_pfn;
2486 unsigned long flags;
7aeb09f9 2487 unsigned int order, t;
86760a2c 2488 struct page *page;
1da177e4 2489
8080fc03 2490 if (zone_is_empty(zone))
1da177e4
LT
2491 return;
2492
2493 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2494
108bcc96 2495 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2496 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2497 if (pfn_valid(pfn)) {
86760a2c 2498 page = pfn_to_page(pfn);
ba6b0979
JK
2499
2500 if (page_zone(page) != zone)
2501 continue;
2502
7be98234
RW
2503 if (!swsusp_page_is_forbidden(page))
2504 swsusp_unset_page_free(page);
f623f0db 2505 }
1da177e4 2506
b2a0ac88 2507 for_each_migratetype_order(order, t) {
86760a2c
GT
2508 list_for_each_entry(page,
2509 &zone->free_area[order].free_list[t], lru) {
f623f0db 2510 unsigned long i;
1da177e4 2511
86760a2c 2512 pfn = page_to_pfn(page);
f623f0db 2513 for (i = 0; i < (1UL << order); i++)
7be98234 2514 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2515 }
b2a0ac88 2516 }
1da177e4
LT
2517 spin_unlock_irqrestore(&zone->lock, flags);
2518}
e2c55dc8 2519#endif /* CONFIG_PM */
1da177e4 2520
1da177e4
LT
2521/*
2522 * Free a 0-order page
b745bc85 2523 * cold == true ? free a cold page : free a hot page
1da177e4 2524 */
b745bc85 2525void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2526{
2527 struct zone *zone = page_zone(page);
2528 struct per_cpu_pages *pcp;
d34b0733 2529 unsigned long flags;
dc4b0caf 2530 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2531 int migratetype;
1da177e4 2532
4db7548c 2533 if (!free_pcp_prepare(page))
689bcebf
HD
2534 return;
2535
dc4b0caf 2536 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2537 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2538 local_irq_save(flags);
2539 __count_vm_event(PGFREE);
da456f14 2540
5f8dcc21
MG
2541 /*
2542 * We only track unmovable, reclaimable and movable on pcp lists.
2543 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2544 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2545 * areas back if necessary. Otherwise, we may have to free
2546 * excessively into the page allocator
2547 */
2548 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2549 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2550 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2551 goto out;
2552 }
2553 migratetype = MIGRATE_MOVABLE;
2554 }
2555
99dcc3e5 2556 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2557 if (!cold)
5f8dcc21 2558 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2559 else
2560 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2561 pcp->count++;
48db57f8 2562 if (pcp->count >= pcp->high) {
4db0c3c2 2563 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2564 free_pcppages_bulk(zone, batch, pcp);
2565 pcp->count -= batch;
48db57f8 2566 }
5f8dcc21
MG
2567
2568out:
d34b0733 2569 local_irq_restore(flags);
1da177e4
LT
2570}
2571
cc59850e
KK
2572/*
2573 * Free a list of 0-order pages
2574 */
b745bc85 2575void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2576{
2577 struct page *page, *next;
2578
2579 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2580 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2581 free_hot_cold_page(page, cold);
2582 }
2583}
2584
8dfcc9ba
NP
2585/*
2586 * split_page takes a non-compound higher-order page, and splits it into
2587 * n (1<<order) sub-pages: page[0..n]
2588 * Each sub-page must be freed individually.
2589 *
2590 * Note: this is probably too low level an operation for use in drivers.
2591 * Please consult with lkml before using this in your driver.
2592 */
2593void split_page(struct page *page, unsigned int order)
2594{
2595 int i;
2596
309381fe
SL
2597 VM_BUG_ON_PAGE(PageCompound(page), page);
2598 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2599
2600#ifdef CONFIG_KMEMCHECK
2601 /*
2602 * Split shadow pages too, because free(page[0]) would
2603 * otherwise free the whole shadow.
2604 */
2605 if (kmemcheck_page_is_tracked(page))
2606 split_page(virt_to_page(page[0].shadow), order);
2607#endif
2608
a9627bc5 2609 for (i = 1; i < (1 << order); i++)
7835e98b 2610 set_page_refcounted(page + i);
a9627bc5 2611 split_page_owner(page, order);
8dfcc9ba 2612}
5853ff23 2613EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2614
3c605096 2615int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2616{
748446bb
MG
2617 unsigned long watermark;
2618 struct zone *zone;
2139cbe6 2619 int mt;
748446bb
MG
2620
2621 BUG_ON(!PageBuddy(page));
2622
2623 zone = page_zone(page);
2e30abd1 2624 mt = get_pageblock_migratetype(page);
748446bb 2625
194159fb 2626 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2627 /*
2628 * Obey watermarks as if the page was being allocated. We can
2629 * emulate a high-order watermark check with a raised order-0
2630 * watermark, because we already know our high-order page
2631 * exists.
2632 */
2633 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2635 return 0;
2636
8fb74b9f 2637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2638 }
748446bb
MG
2639
2640 /* Remove page from free list */
2641 list_del(&page->lru);
2642 zone->free_area[order].nr_free--;
2643 rmv_page_order(page);
2139cbe6 2644
400bc7fd 2645 /*
2646 * Set the pageblock if the isolated page is at least half of a
2647 * pageblock
2648 */
748446bb
MG
2649 if (order >= pageblock_order - 1) {
2650 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2651 for (; page < endpage; page += pageblock_nr_pages) {
2652 int mt = get_pageblock_migratetype(page);
88ed365e 2653 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2654 && !is_migrate_highatomic(mt))
47118af0
MN
2655 set_pageblock_migratetype(page,
2656 MIGRATE_MOVABLE);
2657 }
748446bb
MG
2658 }
2659
f3a14ced 2660
8fb74b9f 2661 return 1UL << order;
1fb3f8ca
MG
2662}
2663
060e7417
MG
2664/*
2665 * Update NUMA hit/miss statistics
2666 *
2667 * Must be called with interrupts disabled.
060e7417 2668 */
41b6167e 2669static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2670{
2671#ifdef CONFIG_NUMA
060e7417
MG
2672 enum zone_stat_item local_stat = NUMA_LOCAL;
2673
2df26639 2674 if (z->node != numa_node_id())
060e7417 2675 local_stat = NUMA_OTHER;
060e7417 2676
2df26639 2677 if (z->node == preferred_zone->node)
060e7417 2678 __inc_zone_state(z, NUMA_HIT);
2df26639 2679 else {
060e7417
MG
2680 __inc_zone_state(z, NUMA_MISS);
2681 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2682 }
2df26639 2683 __inc_zone_state(z, local_stat);
060e7417
MG
2684#endif
2685}
2686
066b2393
MG
2687/* Remove page from the per-cpu list, caller must protect the list */
2688static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2689 bool cold, struct per_cpu_pages *pcp,
2690 struct list_head *list)
2691{
2692 struct page *page;
2693
2694 do {
2695 if (list_empty(list)) {
2696 pcp->count += rmqueue_bulk(zone, 0,
2697 pcp->batch, list,
2698 migratetype, cold);
2699 if (unlikely(list_empty(list)))
2700 return NULL;
2701 }
2702
2703 if (cold)
2704 page = list_last_entry(list, struct page, lru);
2705 else
2706 page = list_first_entry(list, struct page, lru);
2707
2708 list_del(&page->lru);
2709 pcp->count--;
2710 } while (check_new_pcp(page));
2711
2712 return page;
2713}
2714
2715/* Lock and remove page from the per-cpu list */
2716static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 struct zone *zone, unsigned int order,
2718 gfp_t gfp_flags, int migratetype)
2719{
2720 struct per_cpu_pages *pcp;
2721 struct list_head *list;
2722 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2723 struct page *page;
d34b0733 2724 unsigned long flags;
066b2393 2725
d34b0733 2726 local_irq_save(flags);
066b2393
MG
2727 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2728 list = &pcp->lists[migratetype];
2729 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2730 if (page) {
2731 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 zone_statistics(preferred_zone, zone);
2733 }
d34b0733 2734 local_irq_restore(flags);
066b2393
MG
2735 return page;
2736}
2737
1da177e4 2738/*
75379191 2739 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2740 */
0a15c3e9 2741static inline
066b2393 2742struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2743 struct zone *zone, unsigned int order,
c603844b
MG
2744 gfp_t gfp_flags, unsigned int alloc_flags,
2745 int migratetype)
1da177e4
LT
2746{
2747 unsigned long flags;
689bcebf 2748 struct page *page;
1da177e4 2749
d34b0733 2750 if (likely(order == 0)) {
066b2393
MG
2751 page = rmqueue_pcplist(preferred_zone, zone, order,
2752 gfp_flags, migratetype);
2753 goto out;
2754 }
83b9355b 2755
066b2393
MG
2756 /*
2757 * We most definitely don't want callers attempting to
2758 * allocate greater than order-1 page units with __GFP_NOFAIL.
2759 */
2760 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2761 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2762
066b2393
MG
2763 do {
2764 page = NULL;
2765 if (alloc_flags & ALLOC_HARDER) {
2766 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2767 if (page)
2768 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2769 }
a74609fa 2770 if (!page)
066b2393
MG
2771 page = __rmqueue(zone, order, migratetype);
2772 } while (page && check_new_pages(page, order));
2773 spin_unlock(&zone->lock);
2774 if (!page)
2775 goto failed;
2776 __mod_zone_freepage_state(zone, -(1 << order),
2777 get_pcppage_migratetype(page));
1da177e4 2778
16709d1d 2779 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2780 zone_statistics(preferred_zone, zone);
a74609fa 2781 local_irq_restore(flags);
1da177e4 2782
066b2393
MG
2783out:
2784 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2785 return page;
a74609fa
NP
2786
2787failed:
2788 local_irq_restore(flags);
a74609fa 2789 return NULL;
1da177e4
LT
2790}
2791
933e312e
AM
2792#ifdef CONFIG_FAIL_PAGE_ALLOC
2793
b2588c4b 2794static struct {
933e312e
AM
2795 struct fault_attr attr;
2796
621a5f7a 2797 bool ignore_gfp_highmem;
71baba4b 2798 bool ignore_gfp_reclaim;
54114994 2799 u32 min_order;
933e312e
AM
2800} fail_page_alloc = {
2801 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2802 .ignore_gfp_reclaim = true,
621a5f7a 2803 .ignore_gfp_highmem = true,
54114994 2804 .min_order = 1,
933e312e
AM
2805};
2806
2807static int __init setup_fail_page_alloc(char *str)
2808{
2809 return setup_fault_attr(&fail_page_alloc.attr, str);
2810}
2811__setup("fail_page_alloc=", setup_fail_page_alloc);
2812
deaf386e 2813static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2814{
54114994 2815 if (order < fail_page_alloc.min_order)
deaf386e 2816 return false;
933e312e 2817 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2818 return false;
933e312e 2819 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2820 return false;
71baba4b
MG
2821 if (fail_page_alloc.ignore_gfp_reclaim &&
2822 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2823 return false;
933e312e
AM
2824
2825 return should_fail(&fail_page_alloc.attr, 1 << order);
2826}
2827
2828#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2829
2830static int __init fail_page_alloc_debugfs(void)
2831{
f4ae40a6 2832 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2833 struct dentry *dir;
933e312e 2834
dd48c085
AM
2835 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2836 &fail_page_alloc.attr);
2837 if (IS_ERR(dir))
2838 return PTR_ERR(dir);
933e312e 2839
b2588c4b 2840 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2841 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2842 goto fail;
2843 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2844 &fail_page_alloc.ignore_gfp_highmem))
2845 goto fail;
2846 if (!debugfs_create_u32("min-order", mode, dir,
2847 &fail_page_alloc.min_order))
2848 goto fail;
2849
2850 return 0;
2851fail:
dd48c085 2852 debugfs_remove_recursive(dir);
933e312e 2853
b2588c4b 2854 return -ENOMEM;
933e312e
AM
2855}
2856
2857late_initcall(fail_page_alloc_debugfs);
2858
2859#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2860
2861#else /* CONFIG_FAIL_PAGE_ALLOC */
2862
deaf386e 2863static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2864{
deaf386e 2865 return false;
933e312e
AM
2866}
2867
2868#endif /* CONFIG_FAIL_PAGE_ALLOC */
2869
1da177e4 2870/*
97a16fc8
MG
2871 * Return true if free base pages are above 'mark'. For high-order checks it
2872 * will return true of the order-0 watermark is reached and there is at least
2873 * one free page of a suitable size. Checking now avoids taking the zone lock
2874 * to check in the allocation paths if no pages are free.
1da177e4 2875 */
86a294a8
MH
2876bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2877 int classzone_idx, unsigned int alloc_flags,
2878 long free_pages)
1da177e4 2879{
d23ad423 2880 long min = mark;
1da177e4 2881 int o;
c603844b 2882 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2883
0aaa29a5 2884 /* free_pages may go negative - that's OK */
df0a6daa 2885 free_pages -= (1 << order) - 1;
0aaa29a5 2886
7fb1d9fc 2887 if (alloc_flags & ALLOC_HIGH)
1da177e4 2888 min -= min / 2;
0aaa29a5
MG
2889
2890 /*
2891 * If the caller does not have rights to ALLOC_HARDER then subtract
2892 * the high-atomic reserves. This will over-estimate the size of the
2893 * atomic reserve but it avoids a search.
2894 */
97a16fc8 2895 if (likely(!alloc_harder))
0aaa29a5
MG
2896 free_pages -= z->nr_reserved_highatomic;
2897 else
1da177e4 2898 min -= min / 4;
e2b19197 2899
d95ea5d1
BZ
2900#ifdef CONFIG_CMA
2901 /* If allocation can't use CMA areas don't use free CMA pages */
2902 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2903 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2904#endif
026b0814 2905
97a16fc8
MG
2906 /*
2907 * Check watermarks for an order-0 allocation request. If these
2908 * are not met, then a high-order request also cannot go ahead
2909 * even if a suitable page happened to be free.
2910 */
2911 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2912 return false;
1da177e4 2913
97a16fc8
MG
2914 /* If this is an order-0 request then the watermark is fine */
2915 if (!order)
2916 return true;
2917
2918 /* For a high-order request, check at least one suitable page is free */
2919 for (o = order; o < MAX_ORDER; o++) {
2920 struct free_area *area = &z->free_area[o];
2921 int mt;
2922
2923 if (!area->nr_free)
2924 continue;
2925
2926 if (alloc_harder)
2927 return true;
1da177e4 2928
97a16fc8
MG
2929 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2930 if (!list_empty(&area->free_list[mt]))
2931 return true;
2932 }
2933
2934#ifdef CONFIG_CMA
2935 if ((alloc_flags & ALLOC_CMA) &&
2936 !list_empty(&area->free_list[MIGRATE_CMA])) {
2937 return true;
2938 }
2939#endif
1da177e4 2940 }
97a16fc8 2941 return false;
88f5acf8
MG
2942}
2943
7aeb09f9 2944bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2945 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2946{
2947 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2948 zone_page_state(z, NR_FREE_PAGES));
2949}
2950
48ee5f36
MG
2951static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2952 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2953{
2954 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2955 long cma_pages = 0;
2956
2957#ifdef CONFIG_CMA
2958 /* If allocation can't use CMA areas don't use free CMA pages */
2959 if (!(alloc_flags & ALLOC_CMA))
2960 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2961#endif
2962
2963 /*
2964 * Fast check for order-0 only. If this fails then the reserves
2965 * need to be calculated. There is a corner case where the check
2966 * passes but only the high-order atomic reserve are free. If
2967 * the caller is !atomic then it'll uselessly search the free
2968 * list. That corner case is then slower but it is harmless.
2969 */
2970 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2971 return true;
2972
2973 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2974 free_pages);
2975}
2976
7aeb09f9 2977bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2978 unsigned long mark, int classzone_idx)
88f5acf8
MG
2979{
2980 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2981
2982 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2983 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2984
e2b19197 2985 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2986 free_pages);
1da177e4
LT
2987}
2988
9276b1bc 2989#ifdef CONFIG_NUMA
957f822a
DR
2990static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2991{
e02dc017 2992 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 2993 RECLAIM_DISTANCE;
957f822a 2994}
9276b1bc 2995#else /* CONFIG_NUMA */
957f822a
DR
2996static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2997{
2998 return true;
2999}
9276b1bc
PJ
3000#endif /* CONFIG_NUMA */
3001
7fb1d9fc 3002/*
0798e519 3003 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3004 * a page.
3005 */
3006static struct page *
a9263751
VB
3007get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3008 const struct alloc_context *ac)
753ee728 3009{
c33d6c06 3010 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3011 struct zone *zone;
3b8c0be4
MG
3012 struct pglist_data *last_pgdat_dirty_limit = NULL;
3013
7fb1d9fc 3014 /*
9276b1bc 3015 * Scan zonelist, looking for a zone with enough free.
344736f2 3016 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3017 */
c33d6c06 3018 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3019 ac->nodemask) {
be06af00 3020 struct page *page;
e085dbc5
JW
3021 unsigned long mark;
3022
664eedde
MG
3023 if (cpusets_enabled() &&
3024 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3025 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3026 continue;
a756cf59
JW
3027 /*
3028 * When allocating a page cache page for writing, we
281e3726
MG
3029 * want to get it from a node that is within its dirty
3030 * limit, such that no single node holds more than its
a756cf59 3031 * proportional share of globally allowed dirty pages.
281e3726 3032 * The dirty limits take into account the node's
a756cf59
JW
3033 * lowmem reserves and high watermark so that kswapd
3034 * should be able to balance it without having to
3035 * write pages from its LRU list.
3036 *
a756cf59 3037 * XXX: For now, allow allocations to potentially
281e3726 3038 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3039 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3040 * which is important when on a NUMA setup the allowed
281e3726 3041 * nodes are together not big enough to reach the
a756cf59 3042 * global limit. The proper fix for these situations
281e3726 3043 * will require awareness of nodes in the
a756cf59
JW
3044 * dirty-throttling and the flusher threads.
3045 */
3b8c0be4
MG
3046 if (ac->spread_dirty_pages) {
3047 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3048 continue;
3049
3050 if (!node_dirty_ok(zone->zone_pgdat)) {
3051 last_pgdat_dirty_limit = zone->zone_pgdat;
3052 continue;
3053 }
3054 }
7fb1d9fc 3055
e085dbc5 3056 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3057 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3058 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3059 int ret;
3060
5dab2911
MG
3061 /* Checked here to keep the fast path fast */
3062 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3063 if (alloc_flags & ALLOC_NO_WATERMARKS)
3064 goto try_this_zone;
3065
a5f5f91d 3066 if (node_reclaim_mode == 0 ||
c33d6c06 3067 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3068 continue;
3069
a5f5f91d 3070 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3071 switch (ret) {
a5f5f91d 3072 case NODE_RECLAIM_NOSCAN:
fa5e084e 3073 /* did not scan */
cd38b115 3074 continue;
a5f5f91d 3075 case NODE_RECLAIM_FULL:
fa5e084e 3076 /* scanned but unreclaimable */
cd38b115 3077 continue;
fa5e084e
MG
3078 default:
3079 /* did we reclaim enough */
fed2719e 3080 if (zone_watermark_ok(zone, order, mark,
93ea9964 3081 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3082 goto try_this_zone;
3083
fed2719e 3084 continue;
0798e519 3085 }
7fb1d9fc
RS
3086 }
3087
fa5e084e 3088try_this_zone:
066b2393 3089 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3090 gfp_mask, alloc_flags, ac->migratetype);
75379191 3091 if (page) {
479f854a 3092 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3093
3094 /*
3095 * If this is a high-order atomic allocation then check
3096 * if the pageblock should be reserved for the future
3097 */
3098 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3099 reserve_highatomic_pageblock(page, zone, order);
3100
75379191
VB
3101 return page;
3102 }
54a6eb5c 3103 }
9276b1bc 3104
4ffeaf35 3105 return NULL;
753ee728
MH
3106}
3107
29423e77
DR
3108/*
3109 * Large machines with many possible nodes should not always dump per-node
3110 * meminfo in irq context.
3111 */
3112static inline bool should_suppress_show_mem(void)
3113{
3114 bool ret = false;
3115
3116#if NODES_SHIFT > 8
3117 ret = in_interrupt();
3118#endif
3119 return ret;
3120}
3121
9af744d7 3122static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3123{
a238ab5b 3124 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3125 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3126
aa187507 3127 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3128 return;
3129
3130 /*
3131 * This documents exceptions given to allocations in certain
3132 * contexts that are allowed to allocate outside current's set
3133 * of allowed nodes.
3134 */
3135 if (!(gfp_mask & __GFP_NOMEMALLOC))
3136 if (test_thread_flag(TIF_MEMDIE) ||
3137 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3138 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3139 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3140 filter &= ~SHOW_MEM_FILTER_NODES;
3141
9af744d7 3142 show_mem(filter, nodemask);
aa187507
MH
3143}
3144
a8e99259 3145void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3146{
3147 struct va_format vaf;
3148 va_list args;
3149 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3150 DEFAULT_RATELIMIT_BURST);
3151
0f7896f1 3152 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3153 return;
3154
7877cdcc 3155 pr_warn("%s: ", current->comm);
3ee9a4f0 3156
7877cdcc
MH
3157 va_start(args, fmt);
3158 vaf.fmt = fmt;
3159 vaf.va = &args;
3160 pr_cont("%pV", &vaf);
3161 va_end(args);
3ee9a4f0 3162
685dbf6f
DR
3163 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3164 if (nodemask)
3165 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3166 else
3167 pr_cont("(null)\n");
3168
a8e99259 3169 cpuset_print_current_mems_allowed();
3ee9a4f0 3170
a238ab5b 3171 dump_stack();
685dbf6f 3172 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3173}
3174
6c18ba7a
MH
3175static inline struct page *
3176__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3177 unsigned int alloc_flags,
3178 const struct alloc_context *ac)
3179{
3180 struct page *page;
3181
3182 page = get_page_from_freelist(gfp_mask, order,
3183 alloc_flags|ALLOC_CPUSET, ac);
3184 /*
3185 * fallback to ignore cpuset restriction if our nodes
3186 * are depleted
3187 */
3188 if (!page)
3189 page = get_page_from_freelist(gfp_mask, order,
3190 alloc_flags, ac);
3191
3192 return page;
3193}
3194
11e33f6a
MG
3195static inline struct page *
3196__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3197 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3198{
6e0fc46d
DR
3199 struct oom_control oc = {
3200 .zonelist = ac->zonelist,
3201 .nodemask = ac->nodemask,
2a966b77 3202 .memcg = NULL,
6e0fc46d
DR
3203 .gfp_mask = gfp_mask,
3204 .order = order,
6e0fc46d 3205 };
11e33f6a
MG
3206 struct page *page;
3207
9879de73
JW
3208 *did_some_progress = 0;
3209
9879de73 3210 /*
dc56401f
JW
3211 * Acquire the oom lock. If that fails, somebody else is
3212 * making progress for us.
9879de73 3213 */
dc56401f 3214 if (!mutex_trylock(&oom_lock)) {
9879de73 3215 *did_some_progress = 1;
11e33f6a 3216 schedule_timeout_uninterruptible(1);
1da177e4
LT
3217 return NULL;
3218 }
6b1de916 3219
11e33f6a
MG
3220 /*
3221 * Go through the zonelist yet one more time, keep very high watermark
3222 * here, this is only to catch a parallel oom killing, we must fail if
3223 * we're still under heavy pressure.
3224 */
a9263751
VB
3225 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3226 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3227 if (page)
11e33f6a
MG
3228 goto out;
3229
06ad276a
MH
3230 /* Coredumps can quickly deplete all memory reserves */
3231 if (current->flags & PF_DUMPCORE)
3232 goto out;
3233 /* The OOM killer will not help higher order allocs */
3234 if (order > PAGE_ALLOC_COSTLY_ORDER)
3235 goto out;
3236 /* The OOM killer does not needlessly kill tasks for lowmem */
3237 if (ac->high_zoneidx < ZONE_NORMAL)
3238 goto out;
3239 if (pm_suspended_storage())
3240 goto out;
3241 /*
3242 * XXX: GFP_NOFS allocations should rather fail than rely on
3243 * other request to make a forward progress.
3244 * We are in an unfortunate situation where out_of_memory cannot
3245 * do much for this context but let's try it to at least get
3246 * access to memory reserved if the current task is killed (see
3247 * out_of_memory). Once filesystems are ready to handle allocation
3248 * failures more gracefully we should just bail out here.
3249 */
3250
3251 /* The OOM killer may not free memory on a specific node */
3252 if (gfp_mask & __GFP_THISNODE)
3253 goto out;
3da88fb3 3254
11e33f6a 3255 /* Exhausted what can be done so it's blamo time */
5020e285 3256 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3257 *did_some_progress = 1;
5020e285 3258
6c18ba7a
MH
3259 /*
3260 * Help non-failing allocations by giving them access to memory
3261 * reserves
3262 */
3263 if (gfp_mask & __GFP_NOFAIL)
3264 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3265 ALLOC_NO_WATERMARKS, ac);
5020e285 3266 }
11e33f6a 3267out:
dc56401f 3268 mutex_unlock(&oom_lock);
11e33f6a
MG
3269 return page;
3270}
3271
33c2d214
MH
3272/*
3273 * Maximum number of compaction retries wit a progress before OOM
3274 * killer is consider as the only way to move forward.
3275 */
3276#define MAX_COMPACT_RETRIES 16
3277
56de7263
MG
3278#ifdef CONFIG_COMPACTION
3279/* Try memory compaction for high-order allocations before reclaim */
3280static struct page *
3281__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3282 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3283 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3284{
98dd3b48 3285 struct page *page;
62be1511 3286 unsigned int noreclaim_flag = current->flags & PF_MEMALLOC;
53853e2d
VB
3287
3288 if (!order)
66199712 3289 return NULL;
66199712 3290
c06b1fca 3291 current->flags |= PF_MEMALLOC;
c5d01d0d 3292 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3293 prio);
62be1511 3294 current->flags = (current->flags & ~PF_MEMALLOC) | noreclaim_flag;
56de7263 3295
c5d01d0d 3296 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3297 return NULL;
53853e2d 3298
98dd3b48
VB
3299 /*
3300 * At least in one zone compaction wasn't deferred or skipped, so let's
3301 * count a compaction stall
3302 */
3303 count_vm_event(COMPACTSTALL);
8fb74b9f 3304
31a6c190 3305 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3306
98dd3b48
VB
3307 if (page) {
3308 struct zone *zone = page_zone(page);
53853e2d 3309
98dd3b48
VB
3310 zone->compact_blockskip_flush = false;
3311 compaction_defer_reset(zone, order, true);
3312 count_vm_event(COMPACTSUCCESS);
3313 return page;
3314 }
56de7263 3315
98dd3b48
VB
3316 /*
3317 * It's bad if compaction run occurs and fails. The most likely reason
3318 * is that pages exist, but not enough to satisfy watermarks.
3319 */
3320 count_vm_event(COMPACTFAIL);
66199712 3321
98dd3b48 3322 cond_resched();
56de7263
MG
3323
3324 return NULL;
3325}
33c2d214 3326
3250845d
VB
3327static inline bool
3328should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3329 enum compact_result compact_result,
3330 enum compact_priority *compact_priority,
d9436498 3331 int *compaction_retries)
3250845d
VB
3332{
3333 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3334 int min_priority;
65190cff
MH
3335 bool ret = false;
3336 int retries = *compaction_retries;
3337 enum compact_priority priority = *compact_priority;
3250845d
VB
3338
3339 if (!order)
3340 return false;
3341
d9436498
VB
3342 if (compaction_made_progress(compact_result))
3343 (*compaction_retries)++;
3344
3250845d
VB
3345 /*
3346 * compaction considers all the zone as desperately out of memory
3347 * so it doesn't really make much sense to retry except when the
3348 * failure could be caused by insufficient priority
3349 */
d9436498
VB
3350 if (compaction_failed(compact_result))
3351 goto check_priority;
3250845d
VB
3352
3353 /*
3354 * make sure the compaction wasn't deferred or didn't bail out early
3355 * due to locks contention before we declare that we should give up.
3356 * But do not retry if the given zonelist is not suitable for
3357 * compaction.
3358 */
65190cff
MH
3359 if (compaction_withdrawn(compact_result)) {
3360 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3361 goto out;
3362 }
3250845d
VB
3363
3364 /*
3365 * !costly requests are much more important than __GFP_REPEAT
3366 * costly ones because they are de facto nofail and invoke OOM
3367 * killer to move on while costly can fail and users are ready
3368 * to cope with that. 1/4 retries is rather arbitrary but we
3369 * would need much more detailed feedback from compaction to
3370 * make a better decision.
3371 */
3372 if (order > PAGE_ALLOC_COSTLY_ORDER)
3373 max_retries /= 4;
65190cff
MH
3374 if (*compaction_retries <= max_retries) {
3375 ret = true;
3376 goto out;
3377 }
3250845d 3378
d9436498
VB
3379 /*
3380 * Make sure there are attempts at the highest priority if we exhausted
3381 * all retries or failed at the lower priorities.
3382 */
3383check_priority:
c2033b00
VB
3384 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3385 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3386
c2033b00 3387 if (*compact_priority > min_priority) {
d9436498
VB
3388 (*compact_priority)--;
3389 *compaction_retries = 0;
65190cff 3390 ret = true;
d9436498 3391 }
65190cff
MH
3392out:
3393 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3394 return ret;
3250845d 3395}
56de7263
MG
3396#else
3397static inline struct page *
3398__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3399 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3400 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3401{
33c2d214 3402 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3403 return NULL;
3404}
33c2d214
MH
3405
3406static inline bool
86a294a8
MH
3407should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3408 enum compact_result compact_result,
a5508cd8 3409 enum compact_priority *compact_priority,
d9436498 3410 int *compaction_retries)
33c2d214 3411{
31e49bfd
MH
3412 struct zone *zone;
3413 struct zoneref *z;
3414
3415 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3416 return false;
3417
3418 /*
3419 * There are setups with compaction disabled which would prefer to loop
3420 * inside the allocator rather than hit the oom killer prematurely.
3421 * Let's give them a good hope and keep retrying while the order-0
3422 * watermarks are OK.
3423 */
3424 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3425 ac->nodemask) {
3426 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3427 ac_classzone_idx(ac), alloc_flags))
3428 return true;
3429 }
33c2d214
MH
3430 return false;
3431}
3250845d 3432#endif /* CONFIG_COMPACTION */
56de7263 3433
bba90710
MS
3434/* Perform direct synchronous page reclaim */
3435static int
a9263751
VB
3436__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3437 const struct alloc_context *ac)
11e33f6a 3438{
11e33f6a 3439 struct reclaim_state reclaim_state;
bba90710 3440 int progress;
11e33f6a
MG
3441
3442 cond_resched();
3443
3444 /* We now go into synchronous reclaim */
3445 cpuset_memory_pressure_bump();
c06b1fca 3446 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3447 lockdep_set_current_reclaim_state(gfp_mask);
3448 reclaim_state.reclaimed_slab = 0;
c06b1fca 3449 current->reclaim_state = &reclaim_state;
11e33f6a 3450
a9263751
VB
3451 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3452 ac->nodemask);
11e33f6a 3453
c06b1fca 3454 current->reclaim_state = NULL;
11e33f6a 3455 lockdep_clear_current_reclaim_state();
c06b1fca 3456 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3457
3458 cond_resched();
3459
bba90710
MS
3460 return progress;
3461}
3462
3463/* The really slow allocator path where we enter direct reclaim */
3464static inline struct page *
3465__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3466 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3467 unsigned long *did_some_progress)
bba90710
MS
3468{
3469 struct page *page = NULL;
3470 bool drained = false;
3471
a9263751 3472 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3473 if (unlikely(!(*did_some_progress)))
3474 return NULL;
11e33f6a 3475
9ee493ce 3476retry:
31a6c190 3477 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3478
3479 /*
3480 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3481 * pages are pinned on the per-cpu lists or in high alloc reserves.
3482 * Shrink them them and try again
9ee493ce
MG
3483 */
3484 if (!page && !drained) {
29fac03b 3485 unreserve_highatomic_pageblock(ac, false);
93481ff0 3486 drain_all_pages(NULL);
9ee493ce
MG
3487 drained = true;
3488 goto retry;
3489 }
3490
11e33f6a
MG
3491 return page;
3492}
3493
a9263751 3494static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3495{
3496 struct zoneref *z;
3497 struct zone *zone;
e1a55637 3498 pg_data_t *last_pgdat = NULL;
3a025760 3499
a9263751 3500 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3501 ac->high_zoneidx, ac->nodemask) {
3502 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3503 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3504 last_pgdat = zone->zone_pgdat;
3505 }
3a025760
JW
3506}
3507
c603844b 3508static inline unsigned int
341ce06f
PZ
3509gfp_to_alloc_flags(gfp_t gfp_mask)
3510{
c603844b 3511 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3512
a56f57ff 3513 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3514 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3515
341ce06f
PZ
3516 /*
3517 * The caller may dip into page reserves a bit more if the caller
3518 * cannot run direct reclaim, or if the caller has realtime scheduling
3519 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3520 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3521 */
e6223a3b 3522 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3523
d0164adc 3524 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3525 /*
b104a35d
DR
3526 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3527 * if it can't schedule.
5c3240d9 3528 */
b104a35d 3529 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3530 alloc_flags |= ALLOC_HARDER;
523b9458 3531 /*
b104a35d 3532 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3533 * comment for __cpuset_node_allowed().
523b9458 3534 */
341ce06f 3535 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3536 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3537 alloc_flags |= ALLOC_HARDER;
3538
d95ea5d1 3539#ifdef CONFIG_CMA
43e7a34d 3540 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3541 alloc_flags |= ALLOC_CMA;
3542#endif
341ce06f
PZ
3543 return alloc_flags;
3544}
3545
072bb0aa
MG
3546bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3547{
31a6c190
VB
3548 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3549 return false;
3550
3551 if (gfp_mask & __GFP_MEMALLOC)
3552 return true;
3553 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3554 return true;
3555 if (!in_interrupt() &&
3556 ((current->flags & PF_MEMALLOC) ||
3557 unlikely(test_thread_flag(TIF_MEMDIE))))
3558 return true;
3559
3560 return false;
072bb0aa
MG
3561}
3562
0a0337e0
MH
3563/*
3564 * Checks whether it makes sense to retry the reclaim to make a forward progress
3565 * for the given allocation request.
491d79ae
JW
3566 *
3567 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3568 * without success, or when we couldn't even meet the watermark if we
3569 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3570 *
3571 * Returns true if a retry is viable or false to enter the oom path.
3572 */
3573static inline bool
3574should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3575 struct alloc_context *ac, int alloc_flags,
423b452e 3576 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3577{
3578 struct zone *zone;
3579 struct zoneref *z;
3580
423b452e
VB
3581 /*
3582 * Costly allocations might have made a progress but this doesn't mean
3583 * their order will become available due to high fragmentation so
3584 * always increment the no progress counter for them
3585 */
3586 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3587 *no_progress_loops = 0;
3588 else
3589 (*no_progress_loops)++;
3590
0a0337e0
MH
3591 /*
3592 * Make sure we converge to OOM if we cannot make any progress
3593 * several times in the row.
3594 */
04c8716f
MK
3595 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3596 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3597 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3598 }
0a0337e0 3599
bca67592
MG
3600 /*
3601 * Keep reclaiming pages while there is a chance this will lead
3602 * somewhere. If none of the target zones can satisfy our allocation
3603 * request even if all reclaimable pages are considered then we are
3604 * screwed and have to go OOM.
0a0337e0
MH
3605 */
3606 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3607 ac->nodemask) {
3608 unsigned long available;
ede37713 3609 unsigned long reclaimable;
d379f01d
MH
3610 unsigned long min_wmark = min_wmark_pages(zone);
3611 bool wmark;
0a0337e0 3612
5a1c84b4 3613 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3614 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3615
3616 /*
491d79ae
JW
3617 * Would the allocation succeed if we reclaimed all
3618 * reclaimable pages?
0a0337e0 3619 */
d379f01d
MH
3620 wmark = __zone_watermark_ok(zone, order, min_wmark,
3621 ac_classzone_idx(ac), alloc_flags, available);
3622 trace_reclaim_retry_zone(z, order, reclaimable,
3623 available, min_wmark, *no_progress_loops, wmark);
3624 if (wmark) {
ede37713
MH
3625 /*
3626 * If we didn't make any progress and have a lot of
3627 * dirty + writeback pages then we should wait for
3628 * an IO to complete to slow down the reclaim and
3629 * prevent from pre mature OOM
3630 */
3631 if (!did_some_progress) {
11fb9989 3632 unsigned long write_pending;
ede37713 3633
5a1c84b4
MG
3634 write_pending = zone_page_state_snapshot(zone,
3635 NR_ZONE_WRITE_PENDING);
ede37713 3636
11fb9989 3637 if (2 * write_pending > reclaimable) {
ede37713
MH
3638 congestion_wait(BLK_RW_ASYNC, HZ/10);
3639 return true;
3640 }
3641 }
5a1c84b4 3642
ede37713
MH
3643 /*
3644 * Memory allocation/reclaim might be called from a WQ
3645 * context and the current implementation of the WQ
3646 * concurrency control doesn't recognize that
3647 * a particular WQ is congested if the worker thread is
3648 * looping without ever sleeping. Therefore we have to
3649 * do a short sleep here rather than calling
3650 * cond_resched().
3651 */
3652 if (current->flags & PF_WQ_WORKER)
3653 schedule_timeout_uninterruptible(1);
3654 else
3655 cond_resched();
3656
0a0337e0
MH
3657 return true;
3658 }
3659 }
3660
3661 return false;
3662}
3663
11e33f6a
MG
3664static inline struct page *
3665__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3666 struct alloc_context *ac)
11e33f6a 3667{
d0164adc 3668 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3669 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3670 struct page *page = NULL;
c603844b 3671 unsigned int alloc_flags;
11e33f6a 3672 unsigned long did_some_progress;
5ce9bfef 3673 enum compact_priority compact_priority;
c5d01d0d 3674 enum compact_result compact_result;
5ce9bfef
VB
3675 int compaction_retries;
3676 int no_progress_loops;
63f53dea
MH
3677 unsigned long alloc_start = jiffies;
3678 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3679 unsigned int cpuset_mems_cookie;
1da177e4 3680
72807a74
MG
3681 /*
3682 * In the slowpath, we sanity check order to avoid ever trying to
3683 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3684 * be using allocators in order of preference for an area that is
3685 * too large.
3686 */
1fc28b70
MG
3687 if (order >= MAX_ORDER) {
3688 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3689 return NULL;
1fc28b70 3690 }
1da177e4 3691
d0164adc
MG
3692 /*
3693 * We also sanity check to catch abuse of atomic reserves being used by
3694 * callers that are not in atomic context.
3695 */
3696 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3697 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3698 gfp_mask &= ~__GFP_ATOMIC;
3699
5ce9bfef
VB
3700retry_cpuset:
3701 compaction_retries = 0;
3702 no_progress_loops = 0;
3703 compact_priority = DEF_COMPACT_PRIORITY;
3704 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3705
3706 /*
3707 * The fast path uses conservative alloc_flags to succeed only until
3708 * kswapd needs to be woken up, and to avoid the cost of setting up
3709 * alloc_flags precisely. So we do that now.
3710 */
3711 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3712
e47483bc
VB
3713 /*
3714 * We need to recalculate the starting point for the zonelist iterator
3715 * because we might have used different nodemask in the fast path, or
3716 * there was a cpuset modification and we are retrying - otherwise we
3717 * could end up iterating over non-eligible zones endlessly.
3718 */
3719 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3720 ac->high_zoneidx, ac->nodemask);
3721 if (!ac->preferred_zoneref->zone)
3722 goto nopage;
3723
23771235
VB
3724 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3725 wake_all_kswapds(order, ac);
3726
3727 /*
3728 * The adjusted alloc_flags might result in immediate success, so try
3729 * that first
3730 */
3731 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3732 if (page)
3733 goto got_pg;
3734
a8161d1e
VB
3735 /*
3736 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3737 * that we have enough base pages and don't need to reclaim. For non-
3738 * movable high-order allocations, do that as well, as compaction will
3739 * try prevent permanent fragmentation by migrating from blocks of the
3740 * same migratetype.
3741 * Don't try this for allocations that are allowed to ignore
3742 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3743 */
282722b0
VB
3744 if (can_direct_reclaim &&
3745 (costly_order ||
3746 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3747 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3748 page = __alloc_pages_direct_compact(gfp_mask, order,
3749 alloc_flags, ac,
a5508cd8 3750 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3751 &compact_result);
3752 if (page)
3753 goto got_pg;
3754
3eb2771b
VB
3755 /*
3756 * Checks for costly allocations with __GFP_NORETRY, which
3757 * includes THP page fault allocations
3758 */
282722b0 3759 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3760 /*
3761 * If compaction is deferred for high-order allocations,
3762 * it is because sync compaction recently failed. If
3763 * this is the case and the caller requested a THP
3764 * allocation, we do not want to heavily disrupt the
3765 * system, so we fail the allocation instead of entering
3766 * direct reclaim.
3767 */
3768 if (compact_result == COMPACT_DEFERRED)
3769 goto nopage;
3770
a8161d1e 3771 /*
3eb2771b
VB
3772 * Looks like reclaim/compaction is worth trying, but
3773 * sync compaction could be very expensive, so keep
25160354 3774 * using async compaction.
a8161d1e 3775 */
a5508cd8 3776 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3777 }
3778 }
23771235 3779
31a6c190 3780retry:
23771235 3781 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3782 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3783 wake_all_kswapds(order, ac);
3784
23771235
VB
3785 if (gfp_pfmemalloc_allowed(gfp_mask))
3786 alloc_flags = ALLOC_NO_WATERMARKS;
3787
e46e7b77
MG
3788 /*
3789 * Reset the zonelist iterators if memory policies can be ignored.
3790 * These allocations are high priority and system rather than user
3791 * orientated.
3792 */
23771235 3793 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3794 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3795 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3796 ac->high_zoneidx, ac->nodemask);
3797 }
3798
23771235 3799 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3800 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3801 if (page)
3802 goto got_pg;
1da177e4 3803
d0164adc 3804 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3805 if (!can_direct_reclaim)
1da177e4
LT
3806 goto nopage;
3807
9a67f648
MH
3808 /* Make sure we know about allocations which stall for too long */
3809 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 3810 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
3811 "page allocation stalls for %ums, order:%u",
3812 jiffies_to_msecs(jiffies-alloc_start), order);
3813 stall_timeout += 10 * HZ;
33d53103 3814 }
341ce06f 3815
9a67f648
MH
3816 /* Avoid recursion of direct reclaim */
3817 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3818 goto nopage;
3819
a8161d1e
VB
3820 /* Try direct reclaim and then allocating */
3821 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3822 &did_some_progress);
3823 if (page)
3824 goto got_pg;
3825
3826 /* Try direct compaction and then allocating */
a9263751 3827 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3828 compact_priority, &compact_result);
56de7263
MG
3829 if (page)
3830 goto got_pg;
75f30861 3831
9083905a
JW
3832 /* Do not loop if specifically requested */
3833 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3834 goto nopage;
9083905a 3835
0a0337e0
MH
3836 /*
3837 * Do not retry costly high order allocations unless they are
3838 * __GFP_REPEAT
3839 */
282722b0 3840 if (costly_order && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3841 goto nopage;
0a0337e0 3842
0a0337e0 3843 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3844 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3845 goto retry;
3846
33c2d214
MH
3847 /*
3848 * It doesn't make any sense to retry for the compaction if the order-0
3849 * reclaim is not able to make any progress because the current
3850 * implementation of the compaction depends on the sufficient amount
3851 * of free memory (see __compaction_suitable)
3852 */
3853 if (did_some_progress > 0 &&
86a294a8 3854 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3855 compact_result, &compact_priority,
d9436498 3856 &compaction_retries))
33c2d214
MH
3857 goto retry;
3858
e47483bc
VB
3859 /*
3860 * It's possible we raced with cpuset update so the OOM would be
3861 * premature (see below the nopage: label for full explanation).
3862 */
3863 if (read_mems_allowed_retry(cpuset_mems_cookie))
3864 goto retry_cpuset;
3865
9083905a
JW
3866 /* Reclaim has failed us, start killing things */
3867 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3868 if (page)
3869 goto got_pg;
3870
9a67f648
MH
3871 /* Avoid allocations with no watermarks from looping endlessly */
3872 if (test_thread_flag(TIF_MEMDIE))
3873 goto nopage;
3874
9083905a 3875 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3876 if (did_some_progress) {
3877 no_progress_loops = 0;
9083905a 3878 goto retry;
0a0337e0 3879 }
9083905a 3880
1da177e4 3881nopage:
5ce9bfef 3882 /*
e47483bc
VB
3883 * When updating a task's mems_allowed or mempolicy nodemask, it is
3884 * possible to race with parallel threads in such a way that our
3885 * allocation can fail while the mask is being updated. If we are about
3886 * to fail, check if the cpuset changed during allocation and if so,
3887 * retry.
5ce9bfef
VB
3888 */
3889 if (read_mems_allowed_retry(cpuset_mems_cookie))
3890 goto retry_cpuset;
3891
9a67f648
MH
3892 /*
3893 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3894 * we always retry
3895 */
3896 if (gfp_mask & __GFP_NOFAIL) {
3897 /*
3898 * All existing users of the __GFP_NOFAIL are blockable, so warn
3899 * of any new users that actually require GFP_NOWAIT
3900 */
3901 if (WARN_ON_ONCE(!can_direct_reclaim))
3902 goto fail;
3903
3904 /*
3905 * PF_MEMALLOC request from this context is rather bizarre
3906 * because we cannot reclaim anything and only can loop waiting
3907 * for somebody to do a work for us
3908 */
3909 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3910
3911 /*
3912 * non failing costly orders are a hard requirement which we
3913 * are not prepared for much so let's warn about these users
3914 * so that we can identify them and convert them to something
3915 * else.
3916 */
3917 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3918
6c18ba7a
MH
3919 /*
3920 * Help non-failing allocations by giving them access to memory
3921 * reserves but do not use ALLOC_NO_WATERMARKS because this
3922 * could deplete whole memory reserves which would just make
3923 * the situation worse
3924 */
3925 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3926 if (page)
3927 goto got_pg;
3928
9a67f648
MH
3929 cond_resched();
3930 goto retry;
3931 }
3932fail:
a8e99259 3933 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3934 "page allocation failure: order:%u", order);
1da177e4 3935got_pg:
072bb0aa 3936 return page;
1da177e4 3937}
11e33f6a 3938
9cd75558
MG
3939static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3940 struct zonelist *zonelist, nodemask_t *nodemask,
3941 struct alloc_context *ac, gfp_t *alloc_mask,
3942 unsigned int *alloc_flags)
11e33f6a 3943{
9cd75558
MG
3944 ac->high_zoneidx = gfp_zone(gfp_mask);
3945 ac->zonelist = zonelist;
3946 ac->nodemask = nodemask;
3947 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3948
682a3385 3949 if (cpusets_enabled()) {
9cd75558 3950 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
3951 if (!ac->nodemask)
3952 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
3953 else
3954 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
3955 }
3956
11e33f6a
MG
3957 lockdep_trace_alloc(gfp_mask);
3958
d0164adc 3959 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3960
3961 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 3962 return false;
11e33f6a 3963
9cd75558
MG
3964 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3965 *alloc_flags |= ALLOC_CMA;
3966
3967 return true;
3968}
21bb9bd1 3969
9cd75558
MG
3970/* Determine whether to spread dirty pages and what the first usable zone */
3971static inline void finalise_ac(gfp_t gfp_mask,
3972 unsigned int order, struct alloc_context *ac)
3973{
c9ab0c4f 3974 /* Dirty zone balancing only done in the fast path */
9cd75558 3975 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 3976
e46e7b77
MG
3977 /*
3978 * The preferred zone is used for statistics but crucially it is
3979 * also used as the starting point for the zonelist iterator. It
3980 * may get reset for allocations that ignore memory policies.
3981 */
9cd75558
MG
3982 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3983 ac->high_zoneidx, ac->nodemask);
3984}
3985
3986/*
3987 * This is the 'heart' of the zoned buddy allocator.
3988 */
3989struct page *
3990__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3991 struct zonelist *zonelist, nodemask_t *nodemask)
3992{
3993 struct page *page;
3994 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3995 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3996 struct alloc_context ac = { };
3997
3998 gfp_mask &= gfp_allowed_mask;
3999 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
4000 return NULL;
4001
4002 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4003
5117f45d 4004 /* First allocation attempt */
a9263751 4005 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4006 if (likely(page))
4007 goto out;
11e33f6a 4008
4fcb0971 4009 /*
7dea19f9
MH
4010 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4011 * resp. GFP_NOIO which has to be inherited for all allocation requests
4012 * from a particular context which has been marked by
4013 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4014 */
7dea19f9 4015 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4016 ac.spread_dirty_pages = false;
23f086f9 4017
4741526b
MG
4018 /*
4019 * Restore the original nodemask if it was potentially replaced with
4020 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4021 */
e47483bc 4022 if (unlikely(ac.nodemask != nodemask))
4741526b 4023 ac.nodemask = nodemask;
16096c25 4024
4fcb0971 4025 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4026
4fcb0971 4027out:
c4159a75
VD
4028 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4029 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4030 __free_pages(page, order);
4031 page = NULL;
4949148a
VD
4032 }
4033
4fcb0971
MG
4034 if (kmemcheck_enabled && page)
4035 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4036
4037 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4038
11e33f6a 4039 return page;
1da177e4 4040}
d239171e 4041EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4042
4043/*
4044 * Common helper functions.
4045 */
920c7a5d 4046unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4047{
945a1113
AM
4048 struct page *page;
4049
4050 /*
4051 * __get_free_pages() returns a 32-bit address, which cannot represent
4052 * a highmem page
4053 */
4054 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4055
1da177e4
LT
4056 page = alloc_pages(gfp_mask, order);
4057 if (!page)
4058 return 0;
4059 return (unsigned long) page_address(page);
4060}
1da177e4
LT
4061EXPORT_SYMBOL(__get_free_pages);
4062
920c7a5d 4063unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4064{
945a1113 4065 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4066}
1da177e4
LT
4067EXPORT_SYMBOL(get_zeroed_page);
4068
920c7a5d 4069void __free_pages(struct page *page, unsigned int order)
1da177e4 4070{
b5810039 4071 if (put_page_testzero(page)) {
1da177e4 4072 if (order == 0)
b745bc85 4073 free_hot_cold_page(page, false);
1da177e4
LT
4074 else
4075 __free_pages_ok(page, order);
4076 }
4077}
4078
4079EXPORT_SYMBOL(__free_pages);
4080
920c7a5d 4081void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4082{
4083 if (addr != 0) {
725d704e 4084 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4085 __free_pages(virt_to_page((void *)addr), order);
4086 }
4087}
4088
4089EXPORT_SYMBOL(free_pages);
4090
b63ae8ca
AD
4091/*
4092 * Page Fragment:
4093 * An arbitrary-length arbitrary-offset area of memory which resides
4094 * within a 0 or higher order page. Multiple fragments within that page
4095 * are individually refcounted, in the page's reference counter.
4096 *
4097 * The page_frag functions below provide a simple allocation framework for
4098 * page fragments. This is used by the network stack and network device
4099 * drivers to provide a backing region of memory for use as either an
4100 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4101 */
2976db80
AD
4102static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4103 gfp_t gfp_mask)
b63ae8ca
AD
4104{
4105 struct page *page = NULL;
4106 gfp_t gfp = gfp_mask;
4107
4108#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4109 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4110 __GFP_NOMEMALLOC;
4111 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4112 PAGE_FRAG_CACHE_MAX_ORDER);
4113 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4114#endif
4115 if (unlikely(!page))
4116 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4117
4118 nc->va = page ? page_address(page) : NULL;
4119
4120 return page;
4121}
4122
2976db80 4123void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4124{
4125 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4126
4127 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4128 unsigned int order = compound_order(page);
4129
44fdffd7
AD
4130 if (order == 0)
4131 free_hot_cold_page(page, false);
4132 else
4133 __free_pages_ok(page, order);
4134 }
4135}
2976db80 4136EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4137
8c2dd3e4
AD
4138void *page_frag_alloc(struct page_frag_cache *nc,
4139 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4140{
4141 unsigned int size = PAGE_SIZE;
4142 struct page *page;
4143 int offset;
4144
4145 if (unlikely(!nc->va)) {
4146refill:
2976db80 4147 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4148 if (!page)
4149 return NULL;
4150
4151#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4152 /* if size can vary use size else just use PAGE_SIZE */
4153 size = nc->size;
4154#endif
4155 /* Even if we own the page, we do not use atomic_set().
4156 * This would break get_page_unless_zero() users.
4157 */
fe896d18 4158 page_ref_add(page, size - 1);
b63ae8ca
AD
4159
4160 /* reset page count bias and offset to start of new frag */
2f064f34 4161 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4162 nc->pagecnt_bias = size;
4163 nc->offset = size;
4164 }
4165
4166 offset = nc->offset - fragsz;
4167 if (unlikely(offset < 0)) {
4168 page = virt_to_page(nc->va);
4169
fe896d18 4170 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4171 goto refill;
4172
4173#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4174 /* if size can vary use size else just use PAGE_SIZE */
4175 size = nc->size;
4176#endif
4177 /* OK, page count is 0, we can safely set it */
fe896d18 4178 set_page_count(page, size);
b63ae8ca
AD
4179
4180 /* reset page count bias and offset to start of new frag */
4181 nc->pagecnt_bias = size;
4182 offset = size - fragsz;
4183 }
4184
4185 nc->pagecnt_bias--;
4186 nc->offset = offset;
4187
4188 return nc->va + offset;
4189}
8c2dd3e4 4190EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4191
4192/*
4193 * Frees a page fragment allocated out of either a compound or order 0 page.
4194 */
8c2dd3e4 4195void page_frag_free(void *addr)
b63ae8ca
AD
4196{
4197 struct page *page = virt_to_head_page(addr);
4198
4199 if (unlikely(put_page_testzero(page)))
4200 __free_pages_ok(page, compound_order(page));
4201}
8c2dd3e4 4202EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4203
d00181b9
KS
4204static void *make_alloc_exact(unsigned long addr, unsigned int order,
4205 size_t size)
ee85c2e1
AK
4206{
4207 if (addr) {
4208 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4209 unsigned long used = addr + PAGE_ALIGN(size);
4210
4211 split_page(virt_to_page((void *)addr), order);
4212 while (used < alloc_end) {
4213 free_page(used);
4214 used += PAGE_SIZE;
4215 }
4216 }
4217 return (void *)addr;
4218}
4219
2be0ffe2
TT
4220/**
4221 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4222 * @size: the number of bytes to allocate
4223 * @gfp_mask: GFP flags for the allocation
4224 *
4225 * This function is similar to alloc_pages(), except that it allocates the
4226 * minimum number of pages to satisfy the request. alloc_pages() can only
4227 * allocate memory in power-of-two pages.
4228 *
4229 * This function is also limited by MAX_ORDER.
4230 *
4231 * Memory allocated by this function must be released by free_pages_exact().
4232 */
4233void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4234{
4235 unsigned int order = get_order(size);
4236 unsigned long addr;
4237
4238 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4239 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4240}
4241EXPORT_SYMBOL(alloc_pages_exact);
4242
ee85c2e1
AK
4243/**
4244 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4245 * pages on a node.
b5e6ab58 4246 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4247 * @size: the number of bytes to allocate
4248 * @gfp_mask: GFP flags for the allocation
4249 *
4250 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4251 * back.
ee85c2e1 4252 */
e1931811 4253void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4254{
d00181b9 4255 unsigned int order = get_order(size);
ee85c2e1
AK
4256 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4257 if (!p)
4258 return NULL;
4259 return make_alloc_exact((unsigned long)page_address(p), order, size);
4260}
ee85c2e1 4261
2be0ffe2
TT
4262/**
4263 * free_pages_exact - release memory allocated via alloc_pages_exact()
4264 * @virt: the value returned by alloc_pages_exact.
4265 * @size: size of allocation, same value as passed to alloc_pages_exact().
4266 *
4267 * Release the memory allocated by a previous call to alloc_pages_exact.
4268 */
4269void free_pages_exact(void *virt, size_t size)
4270{
4271 unsigned long addr = (unsigned long)virt;
4272 unsigned long end = addr + PAGE_ALIGN(size);
4273
4274 while (addr < end) {
4275 free_page(addr);
4276 addr += PAGE_SIZE;
4277 }
4278}
4279EXPORT_SYMBOL(free_pages_exact);
4280
e0fb5815
ZY
4281/**
4282 * nr_free_zone_pages - count number of pages beyond high watermark
4283 * @offset: The zone index of the highest zone
4284 *
4285 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4286 * high watermark within all zones at or below a given zone index. For each
4287 * zone, the number of pages is calculated as:
0e056eb5
MCC
4288 *
4289 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4290 */
ebec3862 4291static unsigned long nr_free_zone_pages(int offset)
1da177e4 4292{
dd1a239f 4293 struct zoneref *z;
54a6eb5c
MG
4294 struct zone *zone;
4295
e310fd43 4296 /* Just pick one node, since fallback list is circular */
ebec3862 4297 unsigned long sum = 0;
1da177e4 4298
0e88460d 4299 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4300
54a6eb5c 4301 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4302 unsigned long size = zone->managed_pages;
41858966 4303 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4304 if (size > high)
4305 sum += size - high;
1da177e4
LT
4306 }
4307
4308 return sum;
4309}
4310
e0fb5815
ZY
4311/**
4312 * nr_free_buffer_pages - count number of pages beyond high watermark
4313 *
4314 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4315 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4316 */
ebec3862 4317unsigned long nr_free_buffer_pages(void)
1da177e4 4318{
af4ca457 4319 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4320}
c2f1a551 4321EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4322
e0fb5815
ZY
4323/**
4324 * nr_free_pagecache_pages - count number of pages beyond high watermark
4325 *
4326 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4327 * high watermark within all zones.
1da177e4 4328 */
ebec3862 4329unsigned long nr_free_pagecache_pages(void)
1da177e4 4330{
2a1e274a 4331 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4332}
08e0f6a9
CL
4333
4334static inline void show_node(struct zone *zone)
1da177e4 4335{
e5adfffc 4336 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4337 printk("Node %d ", zone_to_nid(zone));
1da177e4 4338}
1da177e4 4339
d02bd27b
IR
4340long si_mem_available(void)
4341{
4342 long available;
4343 unsigned long pagecache;
4344 unsigned long wmark_low = 0;
4345 unsigned long pages[NR_LRU_LISTS];
4346 struct zone *zone;
4347 int lru;
4348
4349 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4350 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4351
4352 for_each_zone(zone)
4353 wmark_low += zone->watermark[WMARK_LOW];
4354
4355 /*
4356 * Estimate the amount of memory available for userspace allocations,
4357 * without causing swapping.
4358 */
4359 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4360
4361 /*
4362 * Not all the page cache can be freed, otherwise the system will
4363 * start swapping. Assume at least half of the page cache, or the
4364 * low watermark worth of cache, needs to stay.
4365 */
4366 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4367 pagecache -= min(pagecache / 2, wmark_low);
4368 available += pagecache;
4369
4370 /*
4371 * Part of the reclaimable slab consists of items that are in use,
4372 * and cannot be freed. Cap this estimate at the low watermark.
4373 */
4374 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4375 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4376
4377 if (available < 0)
4378 available = 0;
4379 return available;
4380}
4381EXPORT_SYMBOL_GPL(si_mem_available);
4382
1da177e4
LT
4383void si_meminfo(struct sysinfo *val)
4384{
4385 val->totalram = totalram_pages;
11fb9989 4386 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4387 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4388 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4389 val->totalhigh = totalhigh_pages;
4390 val->freehigh = nr_free_highpages();
1da177e4
LT
4391 val->mem_unit = PAGE_SIZE;
4392}
4393
4394EXPORT_SYMBOL(si_meminfo);
4395
4396#ifdef CONFIG_NUMA
4397void si_meminfo_node(struct sysinfo *val, int nid)
4398{
cdd91a77
JL
4399 int zone_type; /* needs to be signed */
4400 unsigned long managed_pages = 0;
fc2bd799
JK
4401 unsigned long managed_highpages = 0;
4402 unsigned long free_highpages = 0;
1da177e4
LT
4403 pg_data_t *pgdat = NODE_DATA(nid);
4404
cdd91a77
JL
4405 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4406 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4407 val->totalram = managed_pages;
11fb9989 4408 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4409 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4410#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4411 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4412 struct zone *zone = &pgdat->node_zones[zone_type];
4413
4414 if (is_highmem(zone)) {
4415 managed_highpages += zone->managed_pages;
4416 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4417 }
4418 }
4419 val->totalhigh = managed_highpages;
4420 val->freehigh = free_highpages;
98d2b0eb 4421#else
fc2bd799
JK
4422 val->totalhigh = managed_highpages;
4423 val->freehigh = free_highpages;
98d2b0eb 4424#endif
1da177e4
LT
4425 val->mem_unit = PAGE_SIZE;
4426}
4427#endif
4428
ddd588b5 4429/*
7bf02ea2
DR
4430 * Determine whether the node should be displayed or not, depending on whether
4431 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4432 */
9af744d7 4433static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4434{
ddd588b5 4435 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4436 return false;
ddd588b5 4437
9af744d7
MH
4438 /*
4439 * no node mask - aka implicit memory numa policy. Do not bother with
4440 * the synchronization - read_mems_allowed_begin - because we do not
4441 * have to be precise here.
4442 */
4443 if (!nodemask)
4444 nodemask = &cpuset_current_mems_allowed;
4445
4446 return !node_isset(nid, *nodemask);
ddd588b5
DR
4447}
4448
1da177e4
LT
4449#define K(x) ((x) << (PAGE_SHIFT-10))
4450
377e4f16
RV
4451static void show_migration_types(unsigned char type)
4452{
4453 static const char types[MIGRATE_TYPES] = {
4454 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4455 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4456 [MIGRATE_RECLAIMABLE] = 'E',
4457 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4458#ifdef CONFIG_CMA
4459 [MIGRATE_CMA] = 'C',
4460#endif
194159fb 4461#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4462 [MIGRATE_ISOLATE] = 'I',
194159fb 4463#endif
377e4f16
RV
4464 };
4465 char tmp[MIGRATE_TYPES + 1];
4466 char *p = tmp;
4467 int i;
4468
4469 for (i = 0; i < MIGRATE_TYPES; i++) {
4470 if (type & (1 << i))
4471 *p++ = types[i];
4472 }
4473
4474 *p = '\0';
1f84a18f 4475 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4476}
4477
1da177e4
LT
4478/*
4479 * Show free area list (used inside shift_scroll-lock stuff)
4480 * We also calculate the percentage fragmentation. We do this by counting the
4481 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4482 *
4483 * Bits in @filter:
4484 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4485 * cpuset.
1da177e4 4486 */
9af744d7 4487void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4488{
d1bfcdb8 4489 unsigned long free_pcp = 0;
c7241913 4490 int cpu;
1da177e4 4491 struct zone *zone;
599d0c95 4492 pg_data_t *pgdat;
1da177e4 4493
ee99c71c 4494 for_each_populated_zone(zone) {
9af744d7 4495 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4496 continue;
d1bfcdb8 4497
761b0677
KK
4498 for_each_online_cpu(cpu)
4499 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4500 }
4501
a731286d
KM
4502 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4503 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4504 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4505 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4506 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4507 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4508 global_node_page_state(NR_ACTIVE_ANON),
4509 global_node_page_state(NR_INACTIVE_ANON),
4510 global_node_page_state(NR_ISOLATED_ANON),
4511 global_node_page_state(NR_ACTIVE_FILE),
4512 global_node_page_state(NR_INACTIVE_FILE),
4513 global_node_page_state(NR_ISOLATED_FILE),
4514 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4515 global_node_page_state(NR_FILE_DIRTY),
4516 global_node_page_state(NR_WRITEBACK),
4517 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4518 global_page_state(NR_SLAB_RECLAIMABLE),
4519 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4520 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4521 global_node_page_state(NR_SHMEM),
a25700a5 4522 global_page_state(NR_PAGETABLE),
d1ce749a 4523 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4524 global_page_state(NR_FREE_PAGES),
4525 free_pcp,
d1ce749a 4526 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4527
599d0c95 4528 for_each_online_pgdat(pgdat) {
9af744d7 4529 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4530 continue;
4531
599d0c95
MG
4532 printk("Node %d"
4533 " active_anon:%lukB"
4534 " inactive_anon:%lukB"
4535 " active_file:%lukB"
4536 " inactive_file:%lukB"
4537 " unevictable:%lukB"
4538 " isolated(anon):%lukB"
4539 " isolated(file):%lukB"
50658e2e 4540 " mapped:%lukB"
11fb9989
MG
4541 " dirty:%lukB"
4542 " writeback:%lukB"
4543 " shmem:%lukB"
4544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4545 " shmem_thp: %lukB"
4546 " shmem_pmdmapped: %lukB"
4547 " anon_thp: %lukB"
4548#endif
4549 " writeback_tmp:%lukB"
4550 " unstable:%lukB"
599d0c95
MG
4551 " all_unreclaimable? %s"
4552 "\n",
4553 pgdat->node_id,
4554 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4555 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4556 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4557 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4558 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4559 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4560 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4561 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4562 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4563 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4564 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4566 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4567 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4568 * HPAGE_PMD_NR),
4569 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4570#endif
11fb9989
MG
4571 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4572 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4573 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4574 "yes" : "no");
599d0c95
MG
4575 }
4576
ee99c71c 4577 for_each_populated_zone(zone) {
1da177e4
LT
4578 int i;
4579
9af744d7 4580 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4581 continue;
d1bfcdb8
KK
4582
4583 free_pcp = 0;
4584 for_each_online_cpu(cpu)
4585 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4586
1da177e4 4587 show_node(zone);
1f84a18f
JP
4588 printk(KERN_CONT
4589 "%s"
1da177e4
LT
4590 " free:%lukB"
4591 " min:%lukB"
4592 " low:%lukB"
4593 " high:%lukB"
71c799f4
MK
4594 " active_anon:%lukB"
4595 " inactive_anon:%lukB"
4596 " active_file:%lukB"
4597 " inactive_file:%lukB"
4598 " unevictable:%lukB"
5a1c84b4 4599 " writepending:%lukB"
1da177e4 4600 " present:%lukB"
9feedc9d 4601 " managed:%lukB"
4a0aa73f 4602 " mlocked:%lukB"
4a0aa73f
KM
4603 " slab_reclaimable:%lukB"
4604 " slab_unreclaimable:%lukB"
c6a7f572 4605 " kernel_stack:%lukB"
4a0aa73f 4606 " pagetables:%lukB"
4a0aa73f 4607 " bounce:%lukB"
d1bfcdb8
KK
4608 " free_pcp:%lukB"
4609 " local_pcp:%ukB"
d1ce749a 4610 " free_cma:%lukB"
1da177e4
LT
4611 "\n",
4612 zone->name,
88f5acf8 4613 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4614 K(min_wmark_pages(zone)),
4615 K(low_wmark_pages(zone)),
4616 K(high_wmark_pages(zone)),
71c799f4
MK
4617 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4618 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4619 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4620 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4621 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4622 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4623 K(zone->present_pages),
9feedc9d 4624 K(zone->managed_pages),
4a0aa73f 4625 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4626 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4627 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4628 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4629 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4630 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4631 K(free_pcp),
4632 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4633 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4634 printk("lowmem_reserve[]:");
4635 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4636 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4637 printk(KERN_CONT "\n");
1da177e4
LT
4638 }
4639
ee99c71c 4640 for_each_populated_zone(zone) {
d00181b9
KS
4641 unsigned int order;
4642 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4643 unsigned char types[MAX_ORDER];
1da177e4 4644
9af744d7 4645 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4646 continue;
1da177e4 4647 show_node(zone);
1f84a18f 4648 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4649
4650 spin_lock_irqsave(&zone->lock, flags);
4651 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4652 struct free_area *area = &zone->free_area[order];
4653 int type;
4654
4655 nr[order] = area->nr_free;
8f9de51a 4656 total += nr[order] << order;
377e4f16
RV
4657
4658 types[order] = 0;
4659 for (type = 0; type < MIGRATE_TYPES; type++) {
4660 if (!list_empty(&area->free_list[type]))
4661 types[order] |= 1 << type;
4662 }
1da177e4
LT
4663 }
4664 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4665 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4666 printk(KERN_CONT "%lu*%lukB ",
4667 nr[order], K(1UL) << order);
377e4f16
RV
4668 if (nr[order])
4669 show_migration_types(types[order]);
4670 }
1f84a18f 4671 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4672 }
4673
949f7ec5
DR
4674 hugetlb_show_meminfo();
4675
11fb9989 4676 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4677
1da177e4
LT
4678 show_swap_cache_info();
4679}
4680
19770b32
MG
4681static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4682{
4683 zoneref->zone = zone;
4684 zoneref->zone_idx = zone_idx(zone);
4685}
4686
1da177e4
LT
4687/*
4688 * Builds allocation fallback zone lists.
1a93205b
CL
4689 *
4690 * Add all populated zones of a node to the zonelist.
1da177e4 4691 */
f0c0b2b8 4692static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4693 int nr_zones)
1da177e4 4694{
1a93205b 4695 struct zone *zone;
bc732f1d 4696 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4697
4698 do {
2f6726e5 4699 zone_type--;
070f8032 4700 zone = pgdat->node_zones + zone_type;
6aa303de 4701 if (managed_zone(zone)) {
dd1a239f
MG
4702 zoneref_set_zone(zone,
4703 &zonelist->_zonerefs[nr_zones++]);
070f8032 4704 check_highest_zone(zone_type);
1da177e4 4705 }
2f6726e5 4706 } while (zone_type);
bc732f1d 4707
070f8032 4708 return nr_zones;
1da177e4
LT
4709}
4710
f0c0b2b8
KH
4711
4712/*
4713 * zonelist_order:
4714 * 0 = automatic detection of better ordering.
4715 * 1 = order by ([node] distance, -zonetype)
4716 * 2 = order by (-zonetype, [node] distance)
4717 *
4718 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4719 * the same zonelist. So only NUMA can configure this param.
4720 */
4721#define ZONELIST_ORDER_DEFAULT 0
4722#define ZONELIST_ORDER_NODE 1
4723#define ZONELIST_ORDER_ZONE 2
4724
4725/* zonelist order in the kernel.
4726 * set_zonelist_order() will set this to NODE or ZONE.
4727 */
4728static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4729static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4730
4731
1da177e4 4732#ifdef CONFIG_NUMA
f0c0b2b8
KH
4733/* The value user specified ....changed by config */
4734static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4735/* string for sysctl */
4736#define NUMA_ZONELIST_ORDER_LEN 16
4737char numa_zonelist_order[16] = "default";
4738
4739/*
4740 * interface for configure zonelist ordering.
4741 * command line option "numa_zonelist_order"
4742 * = "[dD]efault - default, automatic configuration.
4743 * = "[nN]ode - order by node locality, then by zone within node
4744 * = "[zZ]one - order by zone, then by locality within zone
4745 */
4746
4747static int __parse_numa_zonelist_order(char *s)
4748{
4749 if (*s == 'd' || *s == 'D') {
4750 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4751 } else if (*s == 'n' || *s == 'N') {
4752 user_zonelist_order = ZONELIST_ORDER_NODE;
4753 } else if (*s == 'z' || *s == 'Z') {
4754 user_zonelist_order = ZONELIST_ORDER_ZONE;
4755 } else {
1170532b 4756 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4757 return -EINVAL;
4758 }
4759 return 0;
4760}
4761
4762static __init int setup_numa_zonelist_order(char *s)
4763{
ecb256f8
VL
4764 int ret;
4765
4766 if (!s)
4767 return 0;
4768
4769 ret = __parse_numa_zonelist_order(s);
4770 if (ret == 0)
4771 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4772
4773 return ret;
f0c0b2b8
KH
4774}
4775early_param("numa_zonelist_order", setup_numa_zonelist_order);
4776
4777/*
4778 * sysctl handler for numa_zonelist_order
4779 */
cccad5b9 4780int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4781 void __user *buffer, size_t *length,
f0c0b2b8
KH
4782 loff_t *ppos)
4783{
4784 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4785 int ret;
443c6f14 4786 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4787
443c6f14 4788 mutex_lock(&zl_order_mutex);
dacbde09
CG
4789 if (write) {
4790 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4791 ret = -EINVAL;
4792 goto out;
4793 }
4794 strcpy(saved_string, (char *)table->data);
4795 }
8d65af78 4796 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4797 if (ret)
443c6f14 4798 goto out;
f0c0b2b8
KH
4799 if (write) {
4800 int oldval = user_zonelist_order;
dacbde09
CG
4801
4802 ret = __parse_numa_zonelist_order((char *)table->data);
4803 if (ret) {
f0c0b2b8
KH
4804 /*
4805 * bogus value. restore saved string
4806 */
dacbde09 4807 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4808 NUMA_ZONELIST_ORDER_LEN);
4809 user_zonelist_order = oldval;
4eaf3f64
HL
4810 } else if (oldval != user_zonelist_order) {
4811 mutex_lock(&zonelists_mutex);
9adb62a5 4812 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4813 mutex_unlock(&zonelists_mutex);
4814 }
f0c0b2b8 4815 }
443c6f14
AK
4816out:
4817 mutex_unlock(&zl_order_mutex);
4818 return ret;
f0c0b2b8
KH
4819}
4820
4821
62bc62a8 4822#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4823static int node_load[MAX_NUMNODES];
4824
1da177e4 4825/**
4dc3b16b 4826 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4827 * @node: node whose fallback list we're appending
4828 * @used_node_mask: nodemask_t of already used nodes
4829 *
4830 * We use a number of factors to determine which is the next node that should
4831 * appear on a given node's fallback list. The node should not have appeared
4832 * already in @node's fallback list, and it should be the next closest node
4833 * according to the distance array (which contains arbitrary distance values
4834 * from each node to each node in the system), and should also prefer nodes
4835 * with no CPUs, since presumably they'll have very little allocation pressure
4836 * on them otherwise.
4837 * It returns -1 if no node is found.
4838 */
f0c0b2b8 4839static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4840{
4cf808eb 4841 int n, val;
1da177e4 4842 int min_val = INT_MAX;
00ef2d2f 4843 int best_node = NUMA_NO_NODE;
a70f7302 4844 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4845
4cf808eb
LT
4846 /* Use the local node if we haven't already */
4847 if (!node_isset(node, *used_node_mask)) {
4848 node_set(node, *used_node_mask);
4849 return node;
4850 }
1da177e4 4851
4b0ef1fe 4852 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4853
4854 /* Don't want a node to appear more than once */
4855 if (node_isset(n, *used_node_mask))
4856 continue;
4857
1da177e4
LT
4858 /* Use the distance array to find the distance */
4859 val = node_distance(node, n);
4860
4cf808eb
LT
4861 /* Penalize nodes under us ("prefer the next node") */
4862 val += (n < node);
4863
1da177e4 4864 /* Give preference to headless and unused nodes */
a70f7302
RR
4865 tmp = cpumask_of_node(n);
4866 if (!cpumask_empty(tmp))
1da177e4
LT
4867 val += PENALTY_FOR_NODE_WITH_CPUS;
4868
4869 /* Slight preference for less loaded node */
4870 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4871 val += node_load[n];
4872
4873 if (val < min_val) {
4874 min_val = val;
4875 best_node = n;
4876 }
4877 }
4878
4879 if (best_node >= 0)
4880 node_set(best_node, *used_node_mask);
4881
4882 return best_node;
4883}
4884
f0c0b2b8
KH
4885
4886/*
4887 * Build zonelists ordered by node and zones within node.
4888 * This results in maximum locality--normal zone overflows into local
4889 * DMA zone, if any--but risks exhausting DMA zone.
4890 */
4891static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4892{
f0c0b2b8 4893 int j;
1da177e4 4894 struct zonelist *zonelist;
f0c0b2b8 4895
c9634cf0 4896 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4897 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4898 ;
bc732f1d 4899 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4900 zonelist->_zonerefs[j].zone = NULL;
4901 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4902}
4903
523b9458
CL
4904/*
4905 * Build gfp_thisnode zonelists
4906 */
4907static void build_thisnode_zonelists(pg_data_t *pgdat)
4908{
523b9458
CL
4909 int j;
4910 struct zonelist *zonelist;
4911
c9634cf0 4912 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4913 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4914 zonelist->_zonerefs[j].zone = NULL;
4915 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4916}
4917
f0c0b2b8
KH
4918/*
4919 * Build zonelists ordered by zone and nodes within zones.
4920 * This results in conserving DMA zone[s] until all Normal memory is
4921 * exhausted, but results in overflowing to remote node while memory
4922 * may still exist in local DMA zone.
4923 */
4924static int node_order[MAX_NUMNODES];
4925
4926static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4927{
f0c0b2b8
KH
4928 int pos, j, node;
4929 int zone_type; /* needs to be signed */
4930 struct zone *z;
4931 struct zonelist *zonelist;
4932
c9634cf0 4933 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4934 pos = 0;
4935 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4936 for (j = 0; j < nr_nodes; j++) {
4937 node = node_order[j];
4938 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4939 if (managed_zone(z)) {
dd1a239f
MG
4940 zoneref_set_zone(z,
4941 &zonelist->_zonerefs[pos++]);
54a6eb5c 4942 check_highest_zone(zone_type);
f0c0b2b8
KH
4943 }
4944 }
f0c0b2b8 4945 }
dd1a239f
MG
4946 zonelist->_zonerefs[pos].zone = NULL;
4947 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4948}
4949
3193913c
MG
4950#if defined(CONFIG_64BIT)
4951/*
4952 * Devices that require DMA32/DMA are relatively rare and do not justify a
4953 * penalty to every machine in case the specialised case applies. Default
4954 * to Node-ordering on 64-bit NUMA machines
4955 */
4956static int default_zonelist_order(void)
4957{
4958 return ZONELIST_ORDER_NODE;
4959}
4960#else
4961/*
4962 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4963 * by the kernel. If processes running on node 0 deplete the low memory zone
4964 * then reclaim will occur more frequency increasing stalls and potentially
4965 * be easier to OOM if a large percentage of the zone is under writeback or
4966 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4967 * Hence, default to zone ordering on 32-bit.
4968 */
f0c0b2b8
KH
4969static int default_zonelist_order(void)
4970{
f0c0b2b8
KH
4971 return ZONELIST_ORDER_ZONE;
4972}
3193913c 4973#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4974
4975static void set_zonelist_order(void)
4976{
4977 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4978 current_zonelist_order = default_zonelist_order();
4979 else
4980 current_zonelist_order = user_zonelist_order;
4981}
4982
4983static void build_zonelists(pg_data_t *pgdat)
4984{
c00eb15a 4985 int i, node, load;
1da177e4 4986 nodemask_t used_mask;
f0c0b2b8
KH
4987 int local_node, prev_node;
4988 struct zonelist *zonelist;
d00181b9 4989 unsigned int order = current_zonelist_order;
1da177e4
LT
4990
4991 /* initialize zonelists */
523b9458 4992 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4993 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4994 zonelist->_zonerefs[0].zone = NULL;
4995 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4996 }
4997
4998 /* NUMA-aware ordering of nodes */
4999 local_node = pgdat->node_id;
62bc62a8 5000 load = nr_online_nodes;
1da177e4
LT
5001 prev_node = local_node;
5002 nodes_clear(used_mask);
f0c0b2b8 5003
f0c0b2b8 5004 memset(node_order, 0, sizeof(node_order));
c00eb15a 5005 i = 0;
f0c0b2b8 5006
1da177e4
LT
5007 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5008 /*
5009 * We don't want to pressure a particular node.
5010 * So adding penalty to the first node in same
5011 * distance group to make it round-robin.
5012 */
957f822a
DR
5013 if (node_distance(local_node, node) !=
5014 node_distance(local_node, prev_node))
f0c0b2b8
KH
5015 node_load[node] = load;
5016
1da177e4
LT
5017 prev_node = node;
5018 load--;
f0c0b2b8
KH
5019 if (order == ZONELIST_ORDER_NODE)
5020 build_zonelists_in_node_order(pgdat, node);
5021 else
c00eb15a 5022 node_order[i++] = node; /* remember order */
f0c0b2b8 5023 }
1da177e4 5024
f0c0b2b8
KH
5025 if (order == ZONELIST_ORDER_ZONE) {
5026 /* calculate node order -- i.e., DMA last! */
c00eb15a 5027 build_zonelists_in_zone_order(pgdat, i);
1da177e4 5028 }
523b9458
CL
5029
5030 build_thisnode_zonelists(pgdat);
1da177e4
LT
5031}
5032
7aac7898
LS
5033#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5034/*
5035 * Return node id of node used for "local" allocations.
5036 * I.e., first node id of first zone in arg node's generic zonelist.
5037 * Used for initializing percpu 'numa_mem', which is used primarily
5038 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5039 */
5040int local_memory_node(int node)
5041{
c33d6c06 5042 struct zoneref *z;
7aac7898 5043
c33d6c06 5044 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5045 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5046 NULL);
5047 return z->zone->node;
7aac7898
LS
5048}
5049#endif
f0c0b2b8 5050
6423aa81
JK
5051static void setup_min_unmapped_ratio(void);
5052static void setup_min_slab_ratio(void);
1da177e4
LT
5053#else /* CONFIG_NUMA */
5054
f0c0b2b8
KH
5055static void set_zonelist_order(void)
5056{
5057 current_zonelist_order = ZONELIST_ORDER_ZONE;
5058}
5059
5060static void build_zonelists(pg_data_t *pgdat)
1da177e4 5061{
19655d34 5062 int node, local_node;
54a6eb5c
MG
5063 enum zone_type j;
5064 struct zonelist *zonelist;
1da177e4
LT
5065
5066 local_node = pgdat->node_id;
1da177e4 5067
c9634cf0 5068 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5069 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5070
54a6eb5c
MG
5071 /*
5072 * Now we build the zonelist so that it contains the zones
5073 * of all the other nodes.
5074 * We don't want to pressure a particular node, so when
5075 * building the zones for node N, we make sure that the
5076 * zones coming right after the local ones are those from
5077 * node N+1 (modulo N)
5078 */
5079 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5080 if (!node_online(node))
5081 continue;
bc732f1d 5082 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5083 }
54a6eb5c
MG
5084 for (node = 0; node < local_node; node++) {
5085 if (!node_online(node))
5086 continue;
bc732f1d 5087 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5088 }
5089
dd1a239f
MG
5090 zonelist->_zonerefs[j].zone = NULL;
5091 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5092}
5093
5094#endif /* CONFIG_NUMA */
5095
99dcc3e5
CL
5096/*
5097 * Boot pageset table. One per cpu which is going to be used for all
5098 * zones and all nodes. The parameters will be set in such a way
5099 * that an item put on a list will immediately be handed over to
5100 * the buddy list. This is safe since pageset manipulation is done
5101 * with interrupts disabled.
5102 *
5103 * The boot_pagesets must be kept even after bootup is complete for
5104 * unused processors and/or zones. They do play a role for bootstrapping
5105 * hotplugged processors.
5106 *
5107 * zoneinfo_show() and maybe other functions do
5108 * not check if the processor is online before following the pageset pointer.
5109 * Other parts of the kernel may not check if the zone is available.
5110 */
5111static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5112static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5113static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5114
4eaf3f64
HL
5115/*
5116 * Global mutex to protect against size modification of zonelists
5117 * as well as to serialize pageset setup for the new populated zone.
5118 */
5119DEFINE_MUTEX(zonelists_mutex);
5120
9b1a4d38 5121/* return values int ....just for stop_machine() */
4ed7e022 5122static int __build_all_zonelists(void *data)
1da177e4 5123{
6811378e 5124 int nid;
99dcc3e5 5125 int cpu;
9adb62a5 5126 pg_data_t *self = data;
9276b1bc 5127
7f9cfb31
BL
5128#ifdef CONFIG_NUMA
5129 memset(node_load, 0, sizeof(node_load));
5130#endif
9adb62a5
JL
5131
5132 if (self && !node_online(self->node_id)) {
5133 build_zonelists(self);
9adb62a5
JL
5134 }
5135
9276b1bc 5136 for_each_online_node(nid) {
7ea1530a
CL
5137 pg_data_t *pgdat = NODE_DATA(nid);
5138
5139 build_zonelists(pgdat);
9276b1bc 5140 }
99dcc3e5
CL
5141
5142 /*
5143 * Initialize the boot_pagesets that are going to be used
5144 * for bootstrapping processors. The real pagesets for
5145 * each zone will be allocated later when the per cpu
5146 * allocator is available.
5147 *
5148 * boot_pagesets are used also for bootstrapping offline
5149 * cpus if the system is already booted because the pagesets
5150 * are needed to initialize allocators on a specific cpu too.
5151 * F.e. the percpu allocator needs the page allocator which
5152 * needs the percpu allocator in order to allocate its pagesets
5153 * (a chicken-egg dilemma).
5154 */
7aac7898 5155 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5156 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5157
7aac7898
LS
5158#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5159 /*
5160 * We now know the "local memory node" for each node--
5161 * i.e., the node of the first zone in the generic zonelist.
5162 * Set up numa_mem percpu variable for on-line cpus. During
5163 * boot, only the boot cpu should be on-line; we'll init the
5164 * secondary cpus' numa_mem as they come on-line. During
5165 * node/memory hotplug, we'll fixup all on-line cpus.
5166 */
5167 if (cpu_online(cpu))
5168 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5169#endif
5170 }
5171
6811378e
YG
5172 return 0;
5173}
5174
061f67bc
RV
5175static noinline void __init
5176build_all_zonelists_init(void)
5177{
5178 __build_all_zonelists(NULL);
5179 mminit_verify_zonelist();
5180 cpuset_init_current_mems_allowed();
5181}
5182
4eaf3f64
HL
5183/*
5184 * Called with zonelists_mutex held always
5185 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5186 *
5187 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5188 * [we're only called with non-NULL zone through __meminit paths] and
5189 * (2) call of __init annotated helper build_all_zonelists_init
5190 * [protected by SYSTEM_BOOTING].
4eaf3f64 5191 */
9adb62a5 5192void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5193{
f0c0b2b8
KH
5194 set_zonelist_order();
5195
6811378e 5196 if (system_state == SYSTEM_BOOTING) {
061f67bc 5197 build_all_zonelists_init();
6811378e 5198 } else {
e9959f0f 5199#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5200 if (zone)
5201 setup_zone_pageset(zone);
e9959f0f 5202#endif
dd1895e2
CS
5203 /* we have to stop all cpus to guarantee there is no user
5204 of zonelist */
9adb62a5 5205 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5206 /* cpuset refresh routine should be here */
5207 }
bd1e22b8 5208 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5209 /*
5210 * Disable grouping by mobility if the number of pages in the
5211 * system is too low to allow the mechanism to work. It would be
5212 * more accurate, but expensive to check per-zone. This check is
5213 * made on memory-hotadd so a system can start with mobility
5214 * disabled and enable it later
5215 */
d9c23400 5216 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5217 page_group_by_mobility_disabled = 1;
5218 else
5219 page_group_by_mobility_disabled = 0;
5220
756a025f
JP
5221 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5222 nr_online_nodes,
5223 zonelist_order_name[current_zonelist_order],
5224 page_group_by_mobility_disabled ? "off" : "on",
5225 vm_total_pages);
f0c0b2b8 5226#ifdef CONFIG_NUMA
f88dfff5 5227 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5228#endif
1da177e4
LT
5229}
5230
1da177e4
LT
5231/*
5232 * Initially all pages are reserved - free ones are freed
5233 * up by free_all_bootmem() once the early boot process is
5234 * done. Non-atomic initialization, single-pass.
5235 */
c09b4240 5236void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5237 unsigned long start_pfn, enum memmap_context context)
1da177e4 5238{
4b94ffdc 5239 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5240 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5241 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5242 unsigned long pfn;
3a80a7fa 5243 unsigned long nr_initialised = 0;
342332e6
TI
5244#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5245 struct memblock_region *r = NULL, *tmp;
5246#endif
1da177e4 5247
22b31eec
HD
5248 if (highest_memmap_pfn < end_pfn - 1)
5249 highest_memmap_pfn = end_pfn - 1;
5250
4b94ffdc
DW
5251 /*
5252 * Honor reservation requested by the driver for this ZONE_DEVICE
5253 * memory
5254 */
5255 if (altmap && start_pfn == altmap->base_pfn)
5256 start_pfn += altmap->reserve;
5257
cbe8dd4a 5258 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5259 /*
b72d0ffb
AM
5260 * There can be holes in boot-time mem_map[]s handed to this
5261 * function. They do not exist on hotplugged memory.
a2f3aa02 5262 */
b72d0ffb
AM
5263 if (context != MEMMAP_EARLY)
5264 goto not_early;
5265
b92df1de
PB
5266 if (!early_pfn_valid(pfn)) {
5267#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5268 /*
5269 * Skip to the pfn preceding the next valid one (or
5270 * end_pfn), such that we hit a valid pfn (or end_pfn)
5271 * on our next iteration of the loop.
5272 */
5273 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5274#endif
b72d0ffb 5275 continue;
b92df1de 5276 }
b72d0ffb
AM
5277 if (!early_pfn_in_nid(pfn, nid))
5278 continue;
5279 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5280 break;
342332e6
TI
5281
5282#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5283 /*
5284 * Check given memblock attribute by firmware which can affect
5285 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5286 * mirrored, it's an overlapped memmap init. skip it.
5287 */
5288 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5289 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5290 for_each_memblock(memory, tmp)
5291 if (pfn < memblock_region_memory_end_pfn(tmp))
5292 break;
5293 r = tmp;
5294 }
5295 if (pfn >= memblock_region_memory_base_pfn(r) &&
5296 memblock_is_mirror(r)) {
5297 /* already initialized as NORMAL */
5298 pfn = memblock_region_memory_end_pfn(r);
5299 continue;
342332e6 5300 }
a2f3aa02 5301 }
b72d0ffb 5302#endif
ac5d2539 5303
b72d0ffb 5304not_early:
ac5d2539
MG
5305 /*
5306 * Mark the block movable so that blocks are reserved for
5307 * movable at startup. This will force kernel allocations
5308 * to reserve their blocks rather than leaking throughout
5309 * the address space during boot when many long-lived
974a786e 5310 * kernel allocations are made.
ac5d2539
MG
5311 *
5312 * bitmap is created for zone's valid pfn range. but memmap
5313 * can be created for invalid pages (for alignment)
5314 * check here not to call set_pageblock_migratetype() against
5315 * pfn out of zone.
5316 */
5317 if (!(pfn & (pageblock_nr_pages - 1))) {
5318 struct page *page = pfn_to_page(pfn);
5319
5320 __init_single_page(page, pfn, zone, nid);
5321 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5322 } else {
5323 __init_single_pfn(pfn, zone, nid);
5324 }
1da177e4
LT
5325 }
5326}
5327
1e548deb 5328static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5329{
7aeb09f9 5330 unsigned int order, t;
b2a0ac88
MG
5331 for_each_migratetype_order(order, t) {
5332 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5333 zone->free_area[order].nr_free = 0;
5334 }
5335}
5336
5337#ifndef __HAVE_ARCH_MEMMAP_INIT
5338#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5339 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5340#endif
5341
7cd2b0a3 5342static int zone_batchsize(struct zone *zone)
e7c8d5c9 5343{
3a6be87f 5344#ifdef CONFIG_MMU
e7c8d5c9
CL
5345 int batch;
5346
5347 /*
5348 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5349 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5350 *
5351 * OK, so we don't know how big the cache is. So guess.
5352 */
b40da049 5353 batch = zone->managed_pages / 1024;
ba56e91c
SR
5354 if (batch * PAGE_SIZE > 512 * 1024)
5355 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5356 batch /= 4; /* We effectively *= 4 below */
5357 if (batch < 1)
5358 batch = 1;
5359
5360 /*
0ceaacc9
NP
5361 * Clamp the batch to a 2^n - 1 value. Having a power
5362 * of 2 value was found to be more likely to have
5363 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5364 *
0ceaacc9
NP
5365 * For example if 2 tasks are alternately allocating
5366 * batches of pages, one task can end up with a lot
5367 * of pages of one half of the possible page colors
5368 * and the other with pages of the other colors.
e7c8d5c9 5369 */
9155203a 5370 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5371
e7c8d5c9 5372 return batch;
3a6be87f
DH
5373
5374#else
5375 /* The deferral and batching of frees should be suppressed under NOMMU
5376 * conditions.
5377 *
5378 * The problem is that NOMMU needs to be able to allocate large chunks
5379 * of contiguous memory as there's no hardware page translation to
5380 * assemble apparent contiguous memory from discontiguous pages.
5381 *
5382 * Queueing large contiguous runs of pages for batching, however,
5383 * causes the pages to actually be freed in smaller chunks. As there
5384 * can be a significant delay between the individual batches being
5385 * recycled, this leads to the once large chunks of space being
5386 * fragmented and becoming unavailable for high-order allocations.
5387 */
5388 return 0;
5389#endif
e7c8d5c9
CL
5390}
5391
8d7a8fa9
CS
5392/*
5393 * pcp->high and pcp->batch values are related and dependent on one another:
5394 * ->batch must never be higher then ->high.
5395 * The following function updates them in a safe manner without read side
5396 * locking.
5397 *
5398 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5399 * those fields changing asynchronously (acording the the above rule).
5400 *
5401 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5402 * outside of boot time (or some other assurance that no concurrent updaters
5403 * exist).
5404 */
5405static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5406 unsigned long batch)
5407{
5408 /* start with a fail safe value for batch */
5409 pcp->batch = 1;
5410 smp_wmb();
5411
5412 /* Update high, then batch, in order */
5413 pcp->high = high;
5414 smp_wmb();
5415
5416 pcp->batch = batch;
5417}
5418
3664033c 5419/* a companion to pageset_set_high() */
4008bab7
CS
5420static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5421{
8d7a8fa9 5422 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5423}
5424
88c90dbc 5425static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5426{
5427 struct per_cpu_pages *pcp;
5f8dcc21 5428 int migratetype;
2caaad41 5429
1c6fe946
MD
5430 memset(p, 0, sizeof(*p));
5431
3dfa5721 5432 pcp = &p->pcp;
2caaad41 5433 pcp->count = 0;
5f8dcc21
MG
5434 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5435 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5436}
5437
88c90dbc
CS
5438static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5439{
5440 pageset_init(p);
5441 pageset_set_batch(p, batch);
5442}
5443
8ad4b1fb 5444/*
3664033c 5445 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5446 * to the value high for the pageset p.
5447 */
3664033c 5448static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5449 unsigned long high)
5450{
8d7a8fa9
CS
5451 unsigned long batch = max(1UL, high / 4);
5452 if ((high / 4) > (PAGE_SHIFT * 8))
5453 batch = PAGE_SHIFT * 8;
8ad4b1fb 5454
8d7a8fa9 5455 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5456}
5457
7cd2b0a3
DR
5458static void pageset_set_high_and_batch(struct zone *zone,
5459 struct per_cpu_pageset *pcp)
56cef2b8 5460{
56cef2b8 5461 if (percpu_pagelist_fraction)
3664033c 5462 pageset_set_high(pcp,
56cef2b8
CS
5463 (zone->managed_pages /
5464 percpu_pagelist_fraction));
5465 else
5466 pageset_set_batch(pcp, zone_batchsize(zone));
5467}
5468
169f6c19
CS
5469static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5470{
5471 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5472
5473 pageset_init(pcp);
5474 pageset_set_high_and_batch(zone, pcp);
5475}
5476
4ed7e022 5477static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5478{
5479 int cpu;
319774e2 5480 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5481 for_each_possible_cpu(cpu)
5482 zone_pageset_init(zone, cpu);
319774e2
WF
5483}
5484
2caaad41 5485/*
99dcc3e5
CL
5486 * Allocate per cpu pagesets and initialize them.
5487 * Before this call only boot pagesets were available.
e7c8d5c9 5488 */
99dcc3e5 5489void __init setup_per_cpu_pageset(void)
e7c8d5c9 5490{
b4911ea2 5491 struct pglist_data *pgdat;
99dcc3e5 5492 struct zone *zone;
e7c8d5c9 5493
319774e2
WF
5494 for_each_populated_zone(zone)
5495 setup_zone_pageset(zone);
b4911ea2
MG
5496
5497 for_each_online_pgdat(pgdat)
5498 pgdat->per_cpu_nodestats =
5499 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5500}
5501
c09b4240 5502static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5503{
99dcc3e5
CL
5504 /*
5505 * per cpu subsystem is not up at this point. The following code
5506 * relies on the ability of the linker to provide the
5507 * offset of a (static) per cpu variable into the per cpu area.
5508 */
5509 zone->pageset = &boot_pageset;
ed8ece2e 5510
b38a8725 5511 if (populated_zone(zone))
99dcc3e5
CL
5512 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5513 zone->name, zone->present_pages,
5514 zone_batchsize(zone));
ed8ece2e
DH
5515}
5516
4ed7e022 5517int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5518 unsigned long zone_start_pfn,
b171e409 5519 unsigned long size)
ed8ece2e
DH
5520{
5521 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5522
ed8ece2e
DH
5523 pgdat->nr_zones = zone_idx(zone) + 1;
5524
ed8ece2e
DH
5525 zone->zone_start_pfn = zone_start_pfn;
5526
708614e6
MG
5527 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5528 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5529 pgdat->node_id,
5530 (unsigned long)zone_idx(zone),
5531 zone_start_pfn, (zone_start_pfn + size));
5532
1e548deb 5533 zone_init_free_lists(zone);
9dcb8b68 5534 zone->initialized = 1;
718127cc
YG
5535
5536 return 0;
ed8ece2e
DH
5537}
5538
0ee332c1 5539#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5540#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5541
c713216d
MG
5542/*
5543 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5544 */
8a942fde
MG
5545int __meminit __early_pfn_to_nid(unsigned long pfn,
5546 struct mminit_pfnnid_cache *state)
c713216d 5547{
c13291a5 5548 unsigned long start_pfn, end_pfn;
e76b63f8 5549 int nid;
7c243c71 5550
8a942fde
MG
5551 if (state->last_start <= pfn && pfn < state->last_end)
5552 return state->last_nid;
c713216d 5553
e76b63f8
YL
5554 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5555 if (nid != -1) {
8a942fde
MG
5556 state->last_start = start_pfn;
5557 state->last_end = end_pfn;
5558 state->last_nid = nid;
e76b63f8
YL
5559 }
5560
5561 return nid;
c713216d
MG
5562}
5563#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5564
c713216d 5565/**
6782832e 5566 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5567 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5568 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5569 *
7d018176
ZZ
5570 * If an architecture guarantees that all ranges registered contain no holes
5571 * and may be freed, this this function may be used instead of calling
5572 * memblock_free_early_nid() manually.
c713216d 5573 */
c13291a5 5574void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5575{
c13291a5
TH
5576 unsigned long start_pfn, end_pfn;
5577 int i, this_nid;
edbe7d23 5578
c13291a5
TH
5579 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5580 start_pfn = min(start_pfn, max_low_pfn);
5581 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5582
c13291a5 5583 if (start_pfn < end_pfn)
6782832e
SS
5584 memblock_free_early_nid(PFN_PHYS(start_pfn),
5585 (end_pfn - start_pfn) << PAGE_SHIFT,
5586 this_nid);
edbe7d23 5587 }
edbe7d23 5588}
edbe7d23 5589
c713216d
MG
5590/**
5591 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5592 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5593 *
7d018176
ZZ
5594 * If an architecture guarantees that all ranges registered contain no holes and may
5595 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5596 */
5597void __init sparse_memory_present_with_active_regions(int nid)
5598{
c13291a5
TH
5599 unsigned long start_pfn, end_pfn;
5600 int i, this_nid;
c713216d 5601
c13291a5
TH
5602 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5603 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5604}
5605
5606/**
5607 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5608 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5609 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5610 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5611 *
5612 * It returns the start and end page frame of a node based on information
7d018176 5613 * provided by memblock_set_node(). If called for a node
c713216d 5614 * with no available memory, a warning is printed and the start and end
88ca3b94 5615 * PFNs will be 0.
c713216d 5616 */
a3142c8e 5617void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5618 unsigned long *start_pfn, unsigned long *end_pfn)
5619{
c13291a5 5620 unsigned long this_start_pfn, this_end_pfn;
c713216d 5621 int i;
c13291a5 5622
c713216d
MG
5623 *start_pfn = -1UL;
5624 *end_pfn = 0;
5625
c13291a5
TH
5626 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5627 *start_pfn = min(*start_pfn, this_start_pfn);
5628 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5629 }
5630
633c0666 5631 if (*start_pfn == -1UL)
c713216d 5632 *start_pfn = 0;
c713216d
MG
5633}
5634
2a1e274a
MG
5635/*
5636 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5637 * assumption is made that zones within a node are ordered in monotonic
5638 * increasing memory addresses so that the "highest" populated zone is used
5639 */
b69a7288 5640static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5641{
5642 int zone_index;
5643 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5644 if (zone_index == ZONE_MOVABLE)
5645 continue;
5646
5647 if (arch_zone_highest_possible_pfn[zone_index] >
5648 arch_zone_lowest_possible_pfn[zone_index])
5649 break;
5650 }
5651
5652 VM_BUG_ON(zone_index == -1);
5653 movable_zone = zone_index;
5654}
5655
5656/*
5657 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5658 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5659 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5660 * in each node depending on the size of each node and how evenly kernelcore
5661 * is distributed. This helper function adjusts the zone ranges
5662 * provided by the architecture for a given node by using the end of the
5663 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5664 * zones within a node are in order of monotonic increases memory addresses
5665 */
b69a7288 5666static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5667 unsigned long zone_type,
5668 unsigned long node_start_pfn,
5669 unsigned long node_end_pfn,
5670 unsigned long *zone_start_pfn,
5671 unsigned long *zone_end_pfn)
5672{
5673 /* Only adjust if ZONE_MOVABLE is on this node */
5674 if (zone_movable_pfn[nid]) {
5675 /* Size ZONE_MOVABLE */
5676 if (zone_type == ZONE_MOVABLE) {
5677 *zone_start_pfn = zone_movable_pfn[nid];
5678 *zone_end_pfn = min(node_end_pfn,
5679 arch_zone_highest_possible_pfn[movable_zone]);
5680
e506b996
XQ
5681 /* Adjust for ZONE_MOVABLE starting within this range */
5682 } else if (!mirrored_kernelcore &&
5683 *zone_start_pfn < zone_movable_pfn[nid] &&
5684 *zone_end_pfn > zone_movable_pfn[nid]) {
5685 *zone_end_pfn = zone_movable_pfn[nid];
5686
2a1e274a
MG
5687 /* Check if this whole range is within ZONE_MOVABLE */
5688 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5689 *zone_start_pfn = *zone_end_pfn;
5690 }
5691}
5692
c713216d
MG
5693/*
5694 * Return the number of pages a zone spans in a node, including holes
5695 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5696 */
6ea6e688 5697static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5698 unsigned long zone_type,
7960aedd
ZY
5699 unsigned long node_start_pfn,
5700 unsigned long node_end_pfn,
d91749c1
TI
5701 unsigned long *zone_start_pfn,
5702 unsigned long *zone_end_pfn,
c713216d
MG
5703 unsigned long *ignored)
5704{
b5685e92 5705 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5706 if (!node_start_pfn && !node_end_pfn)
5707 return 0;
5708
7960aedd 5709 /* Get the start and end of the zone */
d91749c1
TI
5710 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5711 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5712 adjust_zone_range_for_zone_movable(nid, zone_type,
5713 node_start_pfn, node_end_pfn,
d91749c1 5714 zone_start_pfn, zone_end_pfn);
c713216d
MG
5715
5716 /* Check that this node has pages within the zone's required range */
d91749c1 5717 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5718 return 0;
5719
5720 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5721 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5722 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5723
5724 /* Return the spanned pages */
d91749c1 5725 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5726}
5727
5728/*
5729 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5730 * then all holes in the requested range will be accounted for.
c713216d 5731 */
32996250 5732unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5733 unsigned long range_start_pfn,
5734 unsigned long range_end_pfn)
5735{
96e907d1
TH
5736 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5737 unsigned long start_pfn, end_pfn;
5738 int i;
c713216d 5739
96e907d1
TH
5740 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5741 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5742 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5743 nr_absent -= end_pfn - start_pfn;
c713216d 5744 }
96e907d1 5745 return nr_absent;
c713216d
MG
5746}
5747
5748/**
5749 * absent_pages_in_range - Return number of page frames in holes within a range
5750 * @start_pfn: The start PFN to start searching for holes
5751 * @end_pfn: The end PFN to stop searching for holes
5752 *
88ca3b94 5753 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5754 */
5755unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5756 unsigned long end_pfn)
5757{
5758 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5759}
5760
5761/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5762static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5763 unsigned long zone_type,
7960aedd
ZY
5764 unsigned long node_start_pfn,
5765 unsigned long node_end_pfn,
c713216d
MG
5766 unsigned long *ignored)
5767{
96e907d1
TH
5768 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5769 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5770 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5771 unsigned long nr_absent;
9c7cd687 5772
b5685e92 5773 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5774 if (!node_start_pfn && !node_end_pfn)
5775 return 0;
5776
96e907d1
TH
5777 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5778 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5779
2a1e274a
MG
5780 adjust_zone_range_for_zone_movable(nid, zone_type,
5781 node_start_pfn, node_end_pfn,
5782 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5783 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5784
5785 /*
5786 * ZONE_MOVABLE handling.
5787 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5788 * and vice versa.
5789 */
e506b996
XQ
5790 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5791 unsigned long start_pfn, end_pfn;
5792 struct memblock_region *r;
5793
5794 for_each_memblock(memory, r) {
5795 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5796 zone_start_pfn, zone_end_pfn);
5797 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5798 zone_start_pfn, zone_end_pfn);
5799
5800 if (zone_type == ZONE_MOVABLE &&
5801 memblock_is_mirror(r))
5802 nr_absent += end_pfn - start_pfn;
5803
5804 if (zone_type == ZONE_NORMAL &&
5805 !memblock_is_mirror(r))
5806 nr_absent += end_pfn - start_pfn;
342332e6
TI
5807 }
5808 }
5809
5810 return nr_absent;
c713216d 5811}
0e0b864e 5812
0ee332c1 5813#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5814static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5815 unsigned long zone_type,
7960aedd
ZY
5816 unsigned long node_start_pfn,
5817 unsigned long node_end_pfn,
d91749c1
TI
5818 unsigned long *zone_start_pfn,
5819 unsigned long *zone_end_pfn,
c713216d
MG
5820 unsigned long *zones_size)
5821{
d91749c1
TI
5822 unsigned int zone;
5823
5824 *zone_start_pfn = node_start_pfn;
5825 for (zone = 0; zone < zone_type; zone++)
5826 *zone_start_pfn += zones_size[zone];
5827
5828 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5829
c713216d
MG
5830 return zones_size[zone_type];
5831}
5832
6ea6e688 5833static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5834 unsigned long zone_type,
7960aedd
ZY
5835 unsigned long node_start_pfn,
5836 unsigned long node_end_pfn,
c713216d
MG
5837 unsigned long *zholes_size)
5838{
5839 if (!zholes_size)
5840 return 0;
5841
5842 return zholes_size[zone_type];
5843}
20e6926d 5844
0ee332c1 5845#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5846
a3142c8e 5847static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5848 unsigned long node_start_pfn,
5849 unsigned long node_end_pfn,
5850 unsigned long *zones_size,
5851 unsigned long *zholes_size)
c713216d 5852{
febd5949 5853 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5854 enum zone_type i;
5855
febd5949
GZ
5856 for (i = 0; i < MAX_NR_ZONES; i++) {
5857 struct zone *zone = pgdat->node_zones + i;
d91749c1 5858 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5859 unsigned long size, real_size;
c713216d 5860
febd5949
GZ
5861 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5862 node_start_pfn,
5863 node_end_pfn,
d91749c1
TI
5864 &zone_start_pfn,
5865 &zone_end_pfn,
febd5949
GZ
5866 zones_size);
5867 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5868 node_start_pfn, node_end_pfn,
5869 zholes_size);
d91749c1
TI
5870 if (size)
5871 zone->zone_start_pfn = zone_start_pfn;
5872 else
5873 zone->zone_start_pfn = 0;
febd5949
GZ
5874 zone->spanned_pages = size;
5875 zone->present_pages = real_size;
5876
5877 totalpages += size;
5878 realtotalpages += real_size;
5879 }
5880
5881 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5882 pgdat->node_present_pages = realtotalpages;
5883 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5884 realtotalpages);
5885}
5886
835c134e
MG
5887#ifndef CONFIG_SPARSEMEM
5888/*
5889 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5890 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5891 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5892 * round what is now in bits to nearest long in bits, then return it in
5893 * bytes.
5894 */
7c45512d 5895static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5896{
5897 unsigned long usemapsize;
5898
7c45512d 5899 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5900 usemapsize = roundup(zonesize, pageblock_nr_pages);
5901 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5902 usemapsize *= NR_PAGEBLOCK_BITS;
5903 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5904
5905 return usemapsize / 8;
5906}
5907
5908static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5909 struct zone *zone,
5910 unsigned long zone_start_pfn,
5911 unsigned long zonesize)
835c134e 5912{
7c45512d 5913 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5914 zone->pageblock_flags = NULL;
58a01a45 5915 if (usemapsize)
6782832e
SS
5916 zone->pageblock_flags =
5917 memblock_virt_alloc_node_nopanic(usemapsize,
5918 pgdat->node_id);
835c134e
MG
5919}
5920#else
7c45512d
LT
5921static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5922 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5923#endif /* CONFIG_SPARSEMEM */
5924
d9c23400 5925#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5926
d9c23400 5927/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5928void __paginginit set_pageblock_order(void)
d9c23400 5929{
955c1cd7
AM
5930 unsigned int order;
5931
d9c23400
MG
5932 /* Check that pageblock_nr_pages has not already been setup */
5933 if (pageblock_order)
5934 return;
5935
955c1cd7
AM
5936 if (HPAGE_SHIFT > PAGE_SHIFT)
5937 order = HUGETLB_PAGE_ORDER;
5938 else
5939 order = MAX_ORDER - 1;
5940
d9c23400
MG
5941 /*
5942 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5943 * This value may be variable depending on boot parameters on IA64 and
5944 * powerpc.
d9c23400
MG
5945 */
5946 pageblock_order = order;
5947}
5948#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5949
ba72cb8c
MG
5950/*
5951 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5952 * is unused as pageblock_order is set at compile-time. See
5953 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5954 * the kernel config
ba72cb8c 5955 */
15ca220e 5956void __paginginit set_pageblock_order(void)
ba72cb8c 5957{
ba72cb8c 5958}
d9c23400
MG
5959
5960#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5961
01cefaef
JL
5962static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5963 unsigned long present_pages)
5964{
5965 unsigned long pages = spanned_pages;
5966
5967 /*
5968 * Provide a more accurate estimation if there are holes within
5969 * the zone and SPARSEMEM is in use. If there are holes within the
5970 * zone, each populated memory region may cost us one or two extra
5971 * memmap pages due to alignment because memmap pages for each
89d790ab 5972 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
5973 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5974 */
5975 if (spanned_pages > present_pages + (present_pages >> 4) &&
5976 IS_ENABLED(CONFIG_SPARSEMEM))
5977 pages = present_pages;
5978
5979 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5980}
5981
1da177e4
LT
5982/*
5983 * Set up the zone data structures:
5984 * - mark all pages reserved
5985 * - mark all memory queues empty
5986 * - clear the memory bitmaps
6527af5d
MK
5987 *
5988 * NOTE: pgdat should get zeroed by caller.
1da177e4 5989 */
7f3eb55b 5990static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5991{
2f1b6248 5992 enum zone_type j;
ed8ece2e 5993 int nid = pgdat->node_id;
718127cc 5994 int ret;
1da177e4 5995
208d54e5 5996 pgdat_resize_init(pgdat);
8177a420
AA
5997#ifdef CONFIG_NUMA_BALANCING
5998 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5999 pgdat->numabalancing_migrate_nr_pages = 0;
6000 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6001#endif
6002#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6003 spin_lock_init(&pgdat->split_queue_lock);
6004 INIT_LIST_HEAD(&pgdat->split_queue);
6005 pgdat->split_queue_len = 0;
8177a420 6006#endif
1da177e4 6007 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6008 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6009#ifdef CONFIG_COMPACTION
6010 init_waitqueue_head(&pgdat->kcompactd_wait);
6011#endif
eefa864b 6012 pgdat_page_ext_init(pgdat);
a52633d8 6013 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6014 lruvec_init(node_lruvec(pgdat));
5f63b720 6015
1da177e4
LT
6016 for (j = 0; j < MAX_NR_ZONES; j++) {
6017 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6018 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6019 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6020
febd5949
GZ
6021 size = zone->spanned_pages;
6022 realsize = freesize = zone->present_pages;
1da177e4 6023
0e0b864e 6024 /*
9feedc9d 6025 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6026 * is used by this zone for memmap. This affects the watermark
6027 * and per-cpu initialisations
6028 */
01cefaef 6029 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6030 if (!is_highmem_idx(j)) {
6031 if (freesize >= memmap_pages) {
6032 freesize -= memmap_pages;
6033 if (memmap_pages)
6034 printk(KERN_DEBUG
6035 " %s zone: %lu pages used for memmap\n",
6036 zone_names[j], memmap_pages);
6037 } else
1170532b 6038 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6039 zone_names[j], memmap_pages, freesize);
6040 }
0e0b864e 6041
6267276f 6042 /* Account for reserved pages */
9feedc9d
JL
6043 if (j == 0 && freesize > dma_reserve) {
6044 freesize -= dma_reserve;
d903ef9f 6045 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6046 zone_names[0], dma_reserve);
0e0b864e
MG
6047 }
6048
98d2b0eb 6049 if (!is_highmem_idx(j))
9feedc9d 6050 nr_kernel_pages += freesize;
01cefaef
JL
6051 /* Charge for highmem memmap if there are enough kernel pages */
6052 else if (nr_kernel_pages > memmap_pages * 2)
6053 nr_kernel_pages -= memmap_pages;
9feedc9d 6054 nr_all_pages += freesize;
1da177e4 6055
9feedc9d
JL
6056 /*
6057 * Set an approximate value for lowmem here, it will be adjusted
6058 * when the bootmem allocator frees pages into the buddy system.
6059 * And all highmem pages will be managed by the buddy system.
6060 */
6061 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6062#ifdef CONFIG_NUMA
d5f541ed 6063 zone->node = nid;
9614634f 6064#endif
1da177e4 6065 zone->name = zone_names[j];
a52633d8 6066 zone->zone_pgdat = pgdat;
1da177e4 6067 spin_lock_init(&zone->lock);
bdc8cb98 6068 zone_seqlock_init(zone);
ed8ece2e 6069 zone_pcp_init(zone);
81c0a2bb 6070
1da177e4
LT
6071 if (!size)
6072 continue;
6073
955c1cd7 6074 set_pageblock_order();
7c45512d 6075 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6076 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6077 BUG_ON(ret);
76cdd58e 6078 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6079 }
6080}
6081
bd721ea7 6082static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6083{
b0aeba74 6084 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6085 unsigned long __maybe_unused offset = 0;
6086
1da177e4
LT
6087 /* Skip empty nodes */
6088 if (!pgdat->node_spanned_pages)
6089 return;
6090
d41dee36 6091#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6092 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6093 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6094 /* ia64 gets its own node_mem_map, before this, without bootmem */
6095 if (!pgdat->node_mem_map) {
b0aeba74 6096 unsigned long size, end;
d41dee36
AW
6097 struct page *map;
6098
e984bb43
BP
6099 /*
6100 * The zone's endpoints aren't required to be MAX_ORDER
6101 * aligned but the node_mem_map endpoints must be in order
6102 * for the buddy allocator to function correctly.
6103 */
108bcc96 6104 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6105 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6106 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6107 map = alloc_remap(pgdat->node_id, size);
6108 if (!map)
6782832e
SS
6109 map = memblock_virt_alloc_node_nopanic(size,
6110 pgdat->node_id);
a1c34a3b 6111 pgdat->node_mem_map = map + offset;
1da177e4 6112 }
12d810c1 6113#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6114 /*
6115 * With no DISCONTIG, the global mem_map is just set as node 0's
6116 */
c713216d 6117 if (pgdat == NODE_DATA(0)) {
1da177e4 6118 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6119#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6120 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6121 mem_map -= offset;
0ee332c1 6122#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6123 }
1da177e4 6124#endif
d41dee36 6125#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6126}
6127
9109fb7b
JW
6128void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6129 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6130{
9109fb7b 6131 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6132 unsigned long start_pfn = 0;
6133 unsigned long end_pfn = 0;
9109fb7b 6134
88fdf75d 6135 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6136 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6137
3a80a7fa 6138 reset_deferred_meminit(pgdat);
1da177e4
LT
6139 pgdat->node_id = nid;
6140 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6141 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6142#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6143 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6144 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6145 (u64)start_pfn << PAGE_SHIFT,
6146 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6147#else
6148 start_pfn = node_start_pfn;
7960aedd
ZY
6149#endif
6150 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6151 zones_size, zholes_size);
1da177e4
LT
6152
6153 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6154#ifdef CONFIG_FLAT_NODE_MEM_MAP
6155 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6156 nid, (unsigned long)pgdat,
6157 (unsigned long)pgdat->node_mem_map);
6158#endif
1da177e4 6159
7f3eb55b 6160 free_area_init_core(pgdat);
1da177e4
LT
6161}
6162
0ee332c1 6163#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6164
6165#if MAX_NUMNODES > 1
6166/*
6167 * Figure out the number of possible node ids.
6168 */
f9872caf 6169void __init setup_nr_node_ids(void)
418508c1 6170{
904a9553 6171 unsigned int highest;
418508c1 6172
904a9553 6173 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6174 nr_node_ids = highest + 1;
6175}
418508c1
MS
6176#endif
6177
1e01979c
TH
6178/**
6179 * node_map_pfn_alignment - determine the maximum internode alignment
6180 *
6181 * This function should be called after node map is populated and sorted.
6182 * It calculates the maximum power of two alignment which can distinguish
6183 * all the nodes.
6184 *
6185 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6186 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6187 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6188 * shifted, 1GiB is enough and this function will indicate so.
6189 *
6190 * This is used to test whether pfn -> nid mapping of the chosen memory
6191 * model has fine enough granularity to avoid incorrect mapping for the
6192 * populated node map.
6193 *
6194 * Returns the determined alignment in pfn's. 0 if there is no alignment
6195 * requirement (single node).
6196 */
6197unsigned long __init node_map_pfn_alignment(void)
6198{
6199 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6200 unsigned long start, end, mask;
1e01979c 6201 int last_nid = -1;
c13291a5 6202 int i, nid;
1e01979c 6203
c13291a5 6204 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6205 if (!start || last_nid < 0 || last_nid == nid) {
6206 last_nid = nid;
6207 last_end = end;
6208 continue;
6209 }
6210
6211 /*
6212 * Start with a mask granular enough to pin-point to the
6213 * start pfn and tick off bits one-by-one until it becomes
6214 * too coarse to separate the current node from the last.
6215 */
6216 mask = ~((1 << __ffs(start)) - 1);
6217 while (mask && last_end <= (start & (mask << 1)))
6218 mask <<= 1;
6219
6220 /* accumulate all internode masks */
6221 accl_mask |= mask;
6222 }
6223
6224 /* convert mask to number of pages */
6225 return ~accl_mask + 1;
6226}
6227
a6af2bc3 6228/* Find the lowest pfn for a node */
b69a7288 6229static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6230{
a6af2bc3 6231 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6232 unsigned long start_pfn;
6233 int i;
1abbfb41 6234
c13291a5
TH
6235 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6236 min_pfn = min(min_pfn, start_pfn);
c713216d 6237
a6af2bc3 6238 if (min_pfn == ULONG_MAX) {
1170532b 6239 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6240 return 0;
6241 }
6242
6243 return min_pfn;
c713216d
MG
6244}
6245
6246/**
6247 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6248 *
6249 * It returns the minimum PFN based on information provided via
7d018176 6250 * memblock_set_node().
c713216d
MG
6251 */
6252unsigned long __init find_min_pfn_with_active_regions(void)
6253{
6254 return find_min_pfn_for_node(MAX_NUMNODES);
6255}
6256
37b07e41
LS
6257/*
6258 * early_calculate_totalpages()
6259 * Sum pages in active regions for movable zone.
4b0ef1fe 6260 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6261 */
484f51f8 6262static unsigned long __init early_calculate_totalpages(void)
7e63efef 6263{
7e63efef 6264 unsigned long totalpages = 0;
c13291a5
TH
6265 unsigned long start_pfn, end_pfn;
6266 int i, nid;
6267
6268 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6269 unsigned long pages = end_pfn - start_pfn;
7e63efef 6270
37b07e41
LS
6271 totalpages += pages;
6272 if (pages)
4b0ef1fe 6273 node_set_state(nid, N_MEMORY);
37b07e41 6274 }
b8af2941 6275 return totalpages;
7e63efef
MG
6276}
6277
2a1e274a
MG
6278/*
6279 * Find the PFN the Movable zone begins in each node. Kernel memory
6280 * is spread evenly between nodes as long as the nodes have enough
6281 * memory. When they don't, some nodes will have more kernelcore than
6282 * others
6283 */
b224ef85 6284static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6285{
6286 int i, nid;
6287 unsigned long usable_startpfn;
6288 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6289 /* save the state before borrow the nodemask */
4b0ef1fe 6290 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6291 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6292 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6293 struct memblock_region *r;
b2f3eebe
TC
6294
6295 /* Need to find movable_zone earlier when movable_node is specified. */
6296 find_usable_zone_for_movable();
6297
6298 /*
6299 * If movable_node is specified, ignore kernelcore and movablecore
6300 * options.
6301 */
6302 if (movable_node_is_enabled()) {
136199f0
EM
6303 for_each_memblock(memory, r) {
6304 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6305 continue;
6306
136199f0 6307 nid = r->nid;
b2f3eebe 6308
136199f0 6309 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6310 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6311 min(usable_startpfn, zone_movable_pfn[nid]) :
6312 usable_startpfn;
6313 }
6314
6315 goto out2;
6316 }
2a1e274a 6317
342332e6
TI
6318 /*
6319 * If kernelcore=mirror is specified, ignore movablecore option
6320 */
6321 if (mirrored_kernelcore) {
6322 bool mem_below_4gb_not_mirrored = false;
6323
6324 for_each_memblock(memory, r) {
6325 if (memblock_is_mirror(r))
6326 continue;
6327
6328 nid = r->nid;
6329
6330 usable_startpfn = memblock_region_memory_base_pfn(r);
6331
6332 if (usable_startpfn < 0x100000) {
6333 mem_below_4gb_not_mirrored = true;
6334 continue;
6335 }
6336
6337 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6338 min(usable_startpfn, zone_movable_pfn[nid]) :
6339 usable_startpfn;
6340 }
6341
6342 if (mem_below_4gb_not_mirrored)
6343 pr_warn("This configuration results in unmirrored kernel memory.");
6344
6345 goto out2;
6346 }
6347
7e63efef 6348 /*
b2f3eebe 6349 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6350 * kernelcore that corresponds so that memory usable for
6351 * any allocation type is evenly spread. If both kernelcore
6352 * and movablecore are specified, then the value of kernelcore
6353 * will be used for required_kernelcore if it's greater than
6354 * what movablecore would have allowed.
6355 */
6356 if (required_movablecore) {
7e63efef
MG
6357 unsigned long corepages;
6358
6359 /*
6360 * Round-up so that ZONE_MOVABLE is at least as large as what
6361 * was requested by the user
6362 */
6363 required_movablecore =
6364 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6365 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6366 corepages = totalpages - required_movablecore;
6367
6368 required_kernelcore = max(required_kernelcore, corepages);
6369 }
6370
bde304bd
XQ
6371 /*
6372 * If kernelcore was not specified or kernelcore size is larger
6373 * than totalpages, there is no ZONE_MOVABLE.
6374 */
6375 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6376 goto out;
2a1e274a
MG
6377
6378 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6379 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6380
6381restart:
6382 /* Spread kernelcore memory as evenly as possible throughout nodes */
6383 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6384 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6385 unsigned long start_pfn, end_pfn;
6386
2a1e274a
MG
6387 /*
6388 * Recalculate kernelcore_node if the division per node
6389 * now exceeds what is necessary to satisfy the requested
6390 * amount of memory for the kernel
6391 */
6392 if (required_kernelcore < kernelcore_node)
6393 kernelcore_node = required_kernelcore / usable_nodes;
6394
6395 /*
6396 * As the map is walked, we track how much memory is usable
6397 * by the kernel using kernelcore_remaining. When it is
6398 * 0, the rest of the node is usable by ZONE_MOVABLE
6399 */
6400 kernelcore_remaining = kernelcore_node;
6401
6402 /* Go through each range of PFNs within this node */
c13291a5 6403 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6404 unsigned long size_pages;
6405
c13291a5 6406 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6407 if (start_pfn >= end_pfn)
6408 continue;
6409
6410 /* Account for what is only usable for kernelcore */
6411 if (start_pfn < usable_startpfn) {
6412 unsigned long kernel_pages;
6413 kernel_pages = min(end_pfn, usable_startpfn)
6414 - start_pfn;
6415
6416 kernelcore_remaining -= min(kernel_pages,
6417 kernelcore_remaining);
6418 required_kernelcore -= min(kernel_pages,
6419 required_kernelcore);
6420
6421 /* Continue if range is now fully accounted */
6422 if (end_pfn <= usable_startpfn) {
6423
6424 /*
6425 * Push zone_movable_pfn to the end so
6426 * that if we have to rebalance
6427 * kernelcore across nodes, we will
6428 * not double account here
6429 */
6430 zone_movable_pfn[nid] = end_pfn;
6431 continue;
6432 }
6433 start_pfn = usable_startpfn;
6434 }
6435
6436 /*
6437 * The usable PFN range for ZONE_MOVABLE is from
6438 * start_pfn->end_pfn. Calculate size_pages as the
6439 * number of pages used as kernelcore
6440 */
6441 size_pages = end_pfn - start_pfn;
6442 if (size_pages > kernelcore_remaining)
6443 size_pages = kernelcore_remaining;
6444 zone_movable_pfn[nid] = start_pfn + size_pages;
6445
6446 /*
6447 * Some kernelcore has been met, update counts and
6448 * break if the kernelcore for this node has been
b8af2941 6449 * satisfied
2a1e274a
MG
6450 */
6451 required_kernelcore -= min(required_kernelcore,
6452 size_pages);
6453 kernelcore_remaining -= size_pages;
6454 if (!kernelcore_remaining)
6455 break;
6456 }
6457 }
6458
6459 /*
6460 * If there is still required_kernelcore, we do another pass with one
6461 * less node in the count. This will push zone_movable_pfn[nid] further
6462 * along on the nodes that still have memory until kernelcore is
b8af2941 6463 * satisfied
2a1e274a
MG
6464 */
6465 usable_nodes--;
6466 if (usable_nodes && required_kernelcore > usable_nodes)
6467 goto restart;
6468
b2f3eebe 6469out2:
2a1e274a
MG
6470 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6471 for (nid = 0; nid < MAX_NUMNODES; nid++)
6472 zone_movable_pfn[nid] =
6473 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6474
20e6926d 6475out:
66918dcd 6476 /* restore the node_state */
4b0ef1fe 6477 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6478}
6479
4b0ef1fe
LJ
6480/* Any regular or high memory on that node ? */
6481static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6482{
37b07e41
LS
6483 enum zone_type zone_type;
6484
4b0ef1fe
LJ
6485 if (N_MEMORY == N_NORMAL_MEMORY)
6486 return;
6487
6488 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6489 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6490 if (populated_zone(zone)) {
4b0ef1fe
LJ
6491 node_set_state(nid, N_HIGH_MEMORY);
6492 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6493 zone_type <= ZONE_NORMAL)
6494 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6495 break;
6496 }
37b07e41 6497 }
37b07e41
LS
6498}
6499
c713216d
MG
6500/**
6501 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6502 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6503 *
6504 * This will call free_area_init_node() for each active node in the system.
7d018176 6505 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6506 * zone in each node and their holes is calculated. If the maximum PFN
6507 * between two adjacent zones match, it is assumed that the zone is empty.
6508 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6509 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6510 * starts where the previous one ended. For example, ZONE_DMA32 starts
6511 * at arch_max_dma_pfn.
6512 */
6513void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6514{
c13291a5
TH
6515 unsigned long start_pfn, end_pfn;
6516 int i, nid;
a6af2bc3 6517
c713216d
MG
6518 /* Record where the zone boundaries are */
6519 memset(arch_zone_lowest_possible_pfn, 0,
6520 sizeof(arch_zone_lowest_possible_pfn));
6521 memset(arch_zone_highest_possible_pfn, 0,
6522 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6523
6524 start_pfn = find_min_pfn_with_active_regions();
6525
6526 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6527 if (i == ZONE_MOVABLE)
6528 continue;
90cae1fe
OH
6529
6530 end_pfn = max(max_zone_pfn[i], start_pfn);
6531 arch_zone_lowest_possible_pfn[i] = start_pfn;
6532 arch_zone_highest_possible_pfn[i] = end_pfn;
6533
6534 start_pfn = end_pfn;
c713216d 6535 }
2a1e274a
MG
6536
6537 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6538 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6539 find_zone_movable_pfns_for_nodes();
c713216d 6540
c713216d 6541 /* Print out the zone ranges */
f88dfff5 6542 pr_info("Zone ranges:\n");
2a1e274a
MG
6543 for (i = 0; i < MAX_NR_ZONES; i++) {
6544 if (i == ZONE_MOVABLE)
6545 continue;
f88dfff5 6546 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6547 if (arch_zone_lowest_possible_pfn[i] ==
6548 arch_zone_highest_possible_pfn[i])
f88dfff5 6549 pr_cont("empty\n");
72f0ba02 6550 else
8d29e18a
JG
6551 pr_cont("[mem %#018Lx-%#018Lx]\n",
6552 (u64)arch_zone_lowest_possible_pfn[i]
6553 << PAGE_SHIFT,
6554 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6555 << PAGE_SHIFT) - 1);
2a1e274a
MG
6556 }
6557
6558 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6559 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6560 for (i = 0; i < MAX_NUMNODES; i++) {
6561 if (zone_movable_pfn[i])
8d29e18a
JG
6562 pr_info(" Node %d: %#018Lx\n", i,
6563 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6564 }
c713216d 6565
f2d52fe5 6566 /* Print out the early node map */
f88dfff5 6567 pr_info("Early memory node ranges\n");
c13291a5 6568 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6569 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6570 (u64)start_pfn << PAGE_SHIFT,
6571 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6572
6573 /* Initialise every node */
708614e6 6574 mminit_verify_pageflags_layout();
8ef82866 6575 setup_nr_node_ids();
c713216d
MG
6576 for_each_online_node(nid) {
6577 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6578 free_area_init_node(nid, NULL,
c713216d 6579 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6580
6581 /* Any memory on that node */
6582 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6583 node_set_state(nid, N_MEMORY);
6584 check_for_memory(pgdat, nid);
c713216d
MG
6585 }
6586}
2a1e274a 6587
7e63efef 6588static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6589{
6590 unsigned long long coremem;
6591 if (!p)
6592 return -EINVAL;
6593
6594 coremem = memparse(p, &p);
7e63efef 6595 *core = coremem >> PAGE_SHIFT;
2a1e274a 6596
7e63efef 6597 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6598 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6599
6600 return 0;
6601}
ed7ed365 6602
7e63efef
MG
6603/*
6604 * kernelcore=size sets the amount of memory for use for allocations that
6605 * cannot be reclaimed or migrated.
6606 */
6607static int __init cmdline_parse_kernelcore(char *p)
6608{
342332e6
TI
6609 /* parse kernelcore=mirror */
6610 if (parse_option_str(p, "mirror")) {
6611 mirrored_kernelcore = true;
6612 return 0;
6613 }
6614
7e63efef
MG
6615 return cmdline_parse_core(p, &required_kernelcore);
6616}
6617
6618/*
6619 * movablecore=size sets the amount of memory for use for allocations that
6620 * can be reclaimed or migrated.
6621 */
6622static int __init cmdline_parse_movablecore(char *p)
6623{
6624 return cmdline_parse_core(p, &required_movablecore);
6625}
6626
ed7ed365 6627early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6628early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6629
0ee332c1 6630#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6631
c3d5f5f0
JL
6632void adjust_managed_page_count(struct page *page, long count)
6633{
6634 spin_lock(&managed_page_count_lock);
6635 page_zone(page)->managed_pages += count;
6636 totalram_pages += count;
3dcc0571
JL
6637#ifdef CONFIG_HIGHMEM
6638 if (PageHighMem(page))
6639 totalhigh_pages += count;
6640#endif
c3d5f5f0
JL
6641 spin_unlock(&managed_page_count_lock);
6642}
3dcc0571 6643EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6644
11199692 6645unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6646{
11199692
JL
6647 void *pos;
6648 unsigned long pages = 0;
69afade7 6649
11199692
JL
6650 start = (void *)PAGE_ALIGN((unsigned long)start);
6651 end = (void *)((unsigned long)end & PAGE_MASK);
6652 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6653 if ((unsigned int)poison <= 0xFF)
11199692
JL
6654 memset(pos, poison, PAGE_SIZE);
6655 free_reserved_page(virt_to_page(pos));
69afade7
JL
6656 }
6657
6658 if (pages && s)
adb1fe9a
JP
6659 pr_info("Freeing %s memory: %ldK\n",
6660 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6661
6662 return pages;
6663}
11199692 6664EXPORT_SYMBOL(free_reserved_area);
69afade7 6665
cfa11e08
JL
6666#ifdef CONFIG_HIGHMEM
6667void free_highmem_page(struct page *page)
6668{
6669 __free_reserved_page(page);
6670 totalram_pages++;
7b4b2a0d 6671 page_zone(page)->managed_pages++;
cfa11e08
JL
6672 totalhigh_pages++;
6673}
6674#endif
6675
7ee3d4e8
JL
6676
6677void __init mem_init_print_info(const char *str)
6678{
6679 unsigned long physpages, codesize, datasize, rosize, bss_size;
6680 unsigned long init_code_size, init_data_size;
6681
6682 physpages = get_num_physpages();
6683 codesize = _etext - _stext;
6684 datasize = _edata - _sdata;
6685 rosize = __end_rodata - __start_rodata;
6686 bss_size = __bss_stop - __bss_start;
6687 init_data_size = __init_end - __init_begin;
6688 init_code_size = _einittext - _sinittext;
6689
6690 /*
6691 * Detect special cases and adjust section sizes accordingly:
6692 * 1) .init.* may be embedded into .data sections
6693 * 2) .init.text.* may be out of [__init_begin, __init_end],
6694 * please refer to arch/tile/kernel/vmlinux.lds.S.
6695 * 3) .rodata.* may be embedded into .text or .data sections.
6696 */
6697#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6698 do { \
6699 if (start <= pos && pos < end && size > adj) \
6700 size -= adj; \
6701 } while (0)
7ee3d4e8
JL
6702
6703 adj_init_size(__init_begin, __init_end, init_data_size,
6704 _sinittext, init_code_size);
6705 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6706 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6707 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6708 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6709
6710#undef adj_init_size
6711
756a025f 6712 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6713#ifdef CONFIG_HIGHMEM
756a025f 6714 ", %luK highmem"
7ee3d4e8 6715#endif
756a025f
JP
6716 "%s%s)\n",
6717 nr_free_pages() << (PAGE_SHIFT - 10),
6718 physpages << (PAGE_SHIFT - 10),
6719 codesize >> 10, datasize >> 10, rosize >> 10,
6720 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6721 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6722 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6723#ifdef CONFIG_HIGHMEM
756a025f 6724 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6725#endif
756a025f 6726 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6727}
6728
0e0b864e 6729/**
88ca3b94
RD
6730 * set_dma_reserve - set the specified number of pages reserved in the first zone
6731 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6732 *
013110a7 6733 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6734 * In the DMA zone, a significant percentage may be consumed by kernel image
6735 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6736 * function may optionally be used to account for unfreeable pages in the
6737 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6738 * smaller per-cpu batchsize.
0e0b864e
MG
6739 */
6740void __init set_dma_reserve(unsigned long new_dma_reserve)
6741{
6742 dma_reserve = new_dma_reserve;
6743}
6744
1da177e4
LT
6745void __init free_area_init(unsigned long *zones_size)
6746{
9109fb7b 6747 free_area_init_node(0, zones_size,
1da177e4
LT
6748 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6749}
1da177e4 6750
005fd4bb 6751static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6752{
1da177e4 6753
005fd4bb
SAS
6754 lru_add_drain_cpu(cpu);
6755 drain_pages(cpu);
9f8f2172 6756
005fd4bb
SAS
6757 /*
6758 * Spill the event counters of the dead processor
6759 * into the current processors event counters.
6760 * This artificially elevates the count of the current
6761 * processor.
6762 */
6763 vm_events_fold_cpu(cpu);
9f8f2172 6764
005fd4bb
SAS
6765 /*
6766 * Zero the differential counters of the dead processor
6767 * so that the vm statistics are consistent.
6768 *
6769 * This is only okay since the processor is dead and cannot
6770 * race with what we are doing.
6771 */
6772 cpu_vm_stats_fold(cpu);
6773 return 0;
1da177e4 6774}
1da177e4
LT
6775
6776void __init page_alloc_init(void)
6777{
005fd4bb
SAS
6778 int ret;
6779
6780 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6781 "mm/page_alloc:dead", NULL,
6782 page_alloc_cpu_dead);
6783 WARN_ON(ret < 0);
1da177e4
LT
6784}
6785
cb45b0e9 6786/*
34b10060 6787 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6788 * or min_free_kbytes changes.
6789 */
6790static void calculate_totalreserve_pages(void)
6791{
6792 struct pglist_data *pgdat;
6793 unsigned long reserve_pages = 0;
2f6726e5 6794 enum zone_type i, j;
cb45b0e9
HA
6795
6796 for_each_online_pgdat(pgdat) {
281e3726
MG
6797
6798 pgdat->totalreserve_pages = 0;
6799
cb45b0e9
HA
6800 for (i = 0; i < MAX_NR_ZONES; i++) {
6801 struct zone *zone = pgdat->node_zones + i;
3484b2de 6802 long max = 0;
cb45b0e9
HA
6803
6804 /* Find valid and maximum lowmem_reserve in the zone */
6805 for (j = i; j < MAX_NR_ZONES; j++) {
6806 if (zone->lowmem_reserve[j] > max)
6807 max = zone->lowmem_reserve[j];
6808 }
6809
41858966
MG
6810 /* we treat the high watermark as reserved pages. */
6811 max += high_wmark_pages(zone);
cb45b0e9 6812
b40da049
JL
6813 if (max > zone->managed_pages)
6814 max = zone->managed_pages;
a8d01437 6815
281e3726 6816 pgdat->totalreserve_pages += max;
a8d01437 6817
cb45b0e9
HA
6818 reserve_pages += max;
6819 }
6820 }
6821 totalreserve_pages = reserve_pages;
6822}
6823
1da177e4
LT
6824/*
6825 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6826 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6827 * has a correct pages reserved value, so an adequate number of
6828 * pages are left in the zone after a successful __alloc_pages().
6829 */
6830static void setup_per_zone_lowmem_reserve(void)
6831{
6832 struct pglist_data *pgdat;
2f6726e5 6833 enum zone_type j, idx;
1da177e4 6834
ec936fc5 6835 for_each_online_pgdat(pgdat) {
1da177e4
LT
6836 for (j = 0; j < MAX_NR_ZONES; j++) {
6837 struct zone *zone = pgdat->node_zones + j;
b40da049 6838 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6839
6840 zone->lowmem_reserve[j] = 0;
6841
2f6726e5
CL
6842 idx = j;
6843 while (idx) {
1da177e4
LT
6844 struct zone *lower_zone;
6845
2f6726e5
CL
6846 idx--;
6847
1da177e4
LT
6848 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6849 sysctl_lowmem_reserve_ratio[idx] = 1;
6850
6851 lower_zone = pgdat->node_zones + idx;
b40da049 6852 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6853 sysctl_lowmem_reserve_ratio[idx];
b40da049 6854 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6855 }
6856 }
6857 }
cb45b0e9
HA
6858
6859 /* update totalreserve_pages */
6860 calculate_totalreserve_pages();
1da177e4
LT
6861}
6862
cfd3da1e 6863static void __setup_per_zone_wmarks(void)
1da177e4
LT
6864{
6865 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6866 unsigned long lowmem_pages = 0;
6867 struct zone *zone;
6868 unsigned long flags;
6869
6870 /* Calculate total number of !ZONE_HIGHMEM pages */
6871 for_each_zone(zone) {
6872 if (!is_highmem(zone))
b40da049 6873 lowmem_pages += zone->managed_pages;
1da177e4
LT
6874 }
6875
6876 for_each_zone(zone) {
ac924c60
AM
6877 u64 tmp;
6878
1125b4e3 6879 spin_lock_irqsave(&zone->lock, flags);
b40da049 6880 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6881 do_div(tmp, lowmem_pages);
1da177e4
LT
6882 if (is_highmem(zone)) {
6883 /*
669ed175
NP
6884 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6885 * need highmem pages, so cap pages_min to a small
6886 * value here.
6887 *
41858966 6888 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6889 * deltas control asynch page reclaim, and so should
669ed175 6890 * not be capped for highmem.
1da177e4 6891 */
90ae8d67 6892 unsigned long min_pages;
1da177e4 6893
b40da049 6894 min_pages = zone->managed_pages / 1024;
90ae8d67 6895 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6896 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6897 } else {
669ed175
NP
6898 /*
6899 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6900 * proportionate to the zone's size.
6901 */
41858966 6902 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6903 }
6904
795ae7a0
JW
6905 /*
6906 * Set the kswapd watermarks distance according to the
6907 * scale factor in proportion to available memory, but
6908 * ensure a minimum size on small systems.
6909 */
6910 tmp = max_t(u64, tmp >> 2,
6911 mult_frac(zone->managed_pages,
6912 watermark_scale_factor, 10000));
6913
6914 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6915 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6916
1125b4e3 6917 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6918 }
cb45b0e9
HA
6919
6920 /* update totalreserve_pages */
6921 calculate_totalreserve_pages();
1da177e4
LT
6922}
6923
cfd3da1e
MG
6924/**
6925 * setup_per_zone_wmarks - called when min_free_kbytes changes
6926 * or when memory is hot-{added|removed}
6927 *
6928 * Ensures that the watermark[min,low,high] values for each zone are set
6929 * correctly with respect to min_free_kbytes.
6930 */
6931void setup_per_zone_wmarks(void)
6932{
6933 mutex_lock(&zonelists_mutex);
6934 __setup_per_zone_wmarks();
6935 mutex_unlock(&zonelists_mutex);
6936}
6937
1da177e4
LT
6938/*
6939 * Initialise min_free_kbytes.
6940 *
6941 * For small machines we want it small (128k min). For large machines
6942 * we want it large (64MB max). But it is not linear, because network
6943 * bandwidth does not increase linearly with machine size. We use
6944 *
b8af2941 6945 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6946 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6947 *
6948 * which yields
6949 *
6950 * 16MB: 512k
6951 * 32MB: 724k
6952 * 64MB: 1024k
6953 * 128MB: 1448k
6954 * 256MB: 2048k
6955 * 512MB: 2896k
6956 * 1024MB: 4096k
6957 * 2048MB: 5792k
6958 * 4096MB: 8192k
6959 * 8192MB: 11584k
6960 * 16384MB: 16384k
6961 */
1b79acc9 6962int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6963{
6964 unsigned long lowmem_kbytes;
5f12733e 6965 int new_min_free_kbytes;
1da177e4
LT
6966
6967 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6968 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6969
6970 if (new_min_free_kbytes > user_min_free_kbytes) {
6971 min_free_kbytes = new_min_free_kbytes;
6972 if (min_free_kbytes < 128)
6973 min_free_kbytes = 128;
6974 if (min_free_kbytes > 65536)
6975 min_free_kbytes = 65536;
6976 } else {
6977 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6978 new_min_free_kbytes, user_min_free_kbytes);
6979 }
bc75d33f 6980 setup_per_zone_wmarks();
a6cccdc3 6981 refresh_zone_stat_thresholds();
1da177e4 6982 setup_per_zone_lowmem_reserve();
6423aa81
JK
6983
6984#ifdef CONFIG_NUMA
6985 setup_min_unmapped_ratio();
6986 setup_min_slab_ratio();
6987#endif
6988
1da177e4
LT
6989 return 0;
6990}
bc22af74 6991core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6992
6993/*
b8af2941 6994 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6995 * that we can call two helper functions whenever min_free_kbytes
6996 * changes.
6997 */
cccad5b9 6998int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6999 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7000{
da8c757b
HP
7001 int rc;
7002
7003 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7004 if (rc)
7005 return rc;
7006
5f12733e
MH
7007 if (write) {
7008 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7009 setup_per_zone_wmarks();
5f12733e 7010 }
1da177e4
LT
7011 return 0;
7012}
7013
795ae7a0
JW
7014int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7015 void __user *buffer, size_t *length, loff_t *ppos)
7016{
7017 int rc;
7018
7019 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7020 if (rc)
7021 return rc;
7022
7023 if (write)
7024 setup_per_zone_wmarks();
7025
7026 return 0;
7027}
7028
9614634f 7029#ifdef CONFIG_NUMA
6423aa81 7030static void setup_min_unmapped_ratio(void)
9614634f 7031{
6423aa81 7032 pg_data_t *pgdat;
9614634f 7033 struct zone *zone;
9614634f 7034
a5f5f91d 7035 for_each_online_pgdat(pgdat)
81cbcbc2 7036 pgdat->min_unmapped_pages = 0;
a5f5f91d 7037
9614634f 7038 for_each_zone(zone)
a5f5f91d 7039 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7040 sysctl_min_unmapped_ratio) / 100;
9614634f 7041}
0ff38490 7042
6423aa81
JK
7043
7044int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7045 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7046{
0ff38490
CL
7047 int rc;
7048
8d65af78 7049 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7050 if (rc)
7051 return rc;
7052
6423aa81
JK
7053 setup_min_unmapped_ratio();
7054
7055 return 0;
7056}
7057
7058static void setup_min_slab_ratio(void)
7059{
7060 pg_data_t *pgdat;
7061 struct zone *zone;
7062
a5f5f91d
MG
7063 for_each_online_pgdat(pgdat)
7064 pgdat->min_slab_pages = 0;
7065
0ff38490 7066 for_each_zone(zone)
a5f5f91d 7067 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7068 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7069}
7070
7071int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7072 void __user *buffer, size_t *length, loff_t *ppos)
7073{
7074 int rc;
7075
7076 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7077 if (rc)
7078 return rc;
7079
7080 setup_min_slab_ratio();
7081
0ff38490
CL
7082 return 0;
7083}
9614634f
CL
7084#endif
7085
1da177e4
LT
7086/*
7087 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7088 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7089 * whenever sysctl_lowmem_reserve_ratio changes.
7090 *
7091 * The reserve ratio obviously has absolutely no relation with the
41858966 7092 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7093 * if in function of the boot time zone sizes.
7094 */
cccad5b9 7095int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7096 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7097{
8d65af78 7098 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7099 setup_per_zone_lowmem_reserve();
7100 return 0;
7101}
7102
8ad4b1fb
RS
7103/*
7104 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7105 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7106 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7107 */
cccad5b9 7108int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7109 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7110{
7111 struct zone *zone;
7cd2b0a3 7112 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7113 int ret;
7114
7cd2b0a3
DR
7115 mutex_lock(&pcp_batch_high_lock);
7116 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7117
8d65af78 7118 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7119 if (!write || ret < 0)
7120 goto out;
7121
7122 /* Sanity checking to avoid pcp imbalance */
7123 if (percpu_pagelist_fraction &&
7124 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7125 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7126 ret = -EINVAL;
7127 goto out;
7128 }
7129
7130 /* No change? */
7131 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7132 goto out;
c8e251fa 7133
364df0eb 7134 for_each_populated_zone(zone) {
7cd2b0a3
DR
7135 unsigned int cpu;
7136
22a7f12b 7137 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7138 pageset_set_high_and_batch(zone,
7139 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7140 }
7cd2b0a3 7141out:
c8e251fa 7142 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7143 return ret;
8ad4b1fb
RS
7144}
7145
a9919c79 7146#ifdef CONFIG_NUMA
f034b5d4 7147int hashdist = HASHDIST_DEFAULT;
1da177e4 7148
1da177e4
LT
7149static int __init set_hashdist(char *str)
7150{
7151 if (!str)
7152 return 0;
7153 hashdist = simple_strtoul(str, &str, 0);
7154 return 1;
7155}
7156__setup("hashdist=", set_hashdist);
7157#endif
7158
f6f34b43
SD
7159#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7160/*
7161 * Returns the number of pages that arch has reserved but
7162 * is not known to alloc_large_system_hash().
7163 */
7164static unsigned long __init arch_reserved_kernel_pages(void)
7165{
7166 return 0;
7167}
7168#endif
7169
1da177e4
LT
7170/*
7171 * allocate a large system hash table from bootmem
7172 * - it is assumed that the hash table must contain an exact power-of-2
7173 * quantity of entries
7174 * - limit is the number of hash buckets, not the total allocation size
7175 */
7176void *__init alloc_large_system_hash(const char *tablename,
7177 unsigned long bucketsize,
7178 unsigned long numentries,
7179 int scale,
7180 int flags,
7181 unsigned int *_hash_shift,
7182 unsigned int *_hash_mask,
31fe62b9
TB
7183 unsigned long low_limit,
7184 unsigned long high_limit)
1da177e4 7185{
31fe62b9 7186 unsigned long long max = high_limit;
1da177e4
LT
7187 unsigned long log2qty, size;
7188 void *table = NULL;
7189
7190 /* allow the kernel cmdline to have a say */
7191 if (!numentries) {
7192 /* round applicable memory size up to nearest megabyte */
04903664 7193 numentries = nr_kernel_pages;
f6f34b43 7194 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7195
7196 /* It isn't necessary when PAGE_SIZE >= 1MB */
7197 if (PAGE_SHIFT < 20)
7198 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7199
7200 /* limit to 1 bucket per 2^scale bytes of low memory */
7201 if (scale > PAGE_SHIFT)
7202 numentries >>= (scale - PAGE_SHIFT);
7203 else
7204 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7205
7206 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7207 if (unlikely(flags & HASH_SMALL)) {
7208 /* Makes no sense without HASH_EARLY */
7209 WARN_ON(!(flags & HASH_EARLY));
7210 if (!(numentries >> *_hash_shift)) {
7211 numentries = 1UL << *_hash_shift;
7212 BUG_ON(!numentries);
7213 }
7214 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7215 numentries = PAGE_SIZE / bucketsize;
1da177e4 7216 }
6e692ed3 7217 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7218
7219 /* limit allocation size to 1/16 total memory by default */
7220 if (max == 0) {
7221 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7222 do_div(max, bucketsize);
7223 }
074b8517 7224 max = min(max, 0x80000000ULL);
1da177e4 7225
31fe62b9
TB
7226 if (numentries < low_limit)
7227 numentries = low_limit;
1da177e4
LT
7228 if (numentries > max)
7229 numentries = max;
7230
f0d1b0b3 7231 log2qty = ilog2(numentries);
1da177e4
LT
7232
7233 do {
7234 size = bucketsize << log2qty;
7235 if (flags & HASH_EARLY)
6782832e 7236 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7237 else if (hashdist)
7238 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7239 else {
1037b83b
ED
7240 /*
7241 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7242 * some pages at the end of hash table which
7243 * alloc_pages_exact() automatically does
1037b83b 7244 */
264ef8a9 7245 if (get_order(size) < MAX_ORDER) {
a1dd268c 7246 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7247 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7248 }
1da177e4
LT
7249 }
7250 } while (!table && size > PAGE_SIZE && --log2qty);
7251
7252 if (!table)
7253 panic("Failed to allocate %s hash table\n", tablename);
7254
1170532b
JP
7255 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7256 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7257
7258 if (_hash_shift)
7259 *_hash_shift = log2qty;
7260 if (_hash_mask)
7261 *_hash_mask = (1 << log2qty) - 1;
7262
7263 return table;
7264}
a117e66e 7265
a5d76b54 7266/*
80934513
MK
7267 * This function checks whether pageblock includes unmovable pages or not.
7268 * If @count is not zero, it is okay to include less @count unmovable pages
7269 *
b8af2941 7270 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7271 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7272 * check without lock_page also may miss some movable non-lru pages at
7273 * race condition. So you can't expect this function should be exact.
a5d76b54 7274 */
b023f468
WC
7275bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7276 bool skip_hwpoisoned_pages)
49ac8255
KH
7277{
7278 unsigned long pfn, iter, found;
47118af0
MN
7279 int mt;
7280
49ac8255
KH
7281 /*
7282 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7283 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7284 */
7285 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7286 return false;
47118af0
MN
7287 mt = get_pageblock_migratetype(page);
7288 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7289 return false;
49ac8255
KH
7290
7291 pfn = page_to_pfn(page);
7292 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7293 unsigned long check = pfn + iter;
7294
29723fcc 7295 if (!pfn_valid_within(check))
49ac8255 7296 continue;
29723fcc 7297
49ac8255 7298 page = pfn_to_page(check);
c8721bbb
NH
7299
7300 /*
7301 * Hugepages are not in LRU lists, but they're movable.
7302 * We need not scan over tail pages bacause we don't
7303 * handle each tail page individually in migration.
7304 */
7305 if (PageHuge(page)) {
7306 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7307 continue;
7308 }
7309
97d255c8
MK
7310 /*
7311 * We can't use page_count without pin a page
7312 * because another CPU can free compound page.
7313 * This check already skips compound tails of THP
0139aa7b 7314 * because their page->_refcount is zero at all time.
97d255c8 7315 */
fe896d18 7316 if (!page_ref_count(page)) {
49ac8255
KH
7317 if (PageBuddy(page))
7318 iter += (1 << page_order(page)) - 1;
7319 continue;
7320 }
97d255c8 7321
b023f468
WC
7322 /*
7323 * The HWPoisoned page may be not in buddy system, and
7324 * page_count() is not 0.
7325 */
7326 if (skip_hwpoisoned_pages && PageHWPoison(page))
7327 continue;
7328
0efadf48
YX
7329 if (__PageMovable(page))
7330 continue;
7331
49ac8255
KH
7332 if (!PageLRU(page))
7333 found++;
7334 /*
6b4f7799
JW
7335 * If there are RECLAIMABLE pages, we need to check
7336 * it. But now, memory offline itself doesn't call
7337 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7338 */
7339 /*
7340 * If the page is not RAM, page_count()should be 0.
7341 * we don't need more check. This is an _used_ not-movable page.
7342 *
7343 * The problematic thing here is PG_reserved pages. PG_reserved
7344 * is set to both of a memory hole page and a _used_ kernel
7345 * page at boot.
7346 */
7347 if (found > count)
80934513 7348 return true;
49ac8255 7349 }
80934513 7350 return false;
49ac8255
KH
7351}
7352
7353bool is_pageblock_removable_nolock(struct page *page)
7354{
656a0706
MH
7355 struct zone *zone;
7356 unsigned long pfn;
687875fb
MH
7357
7358 /*
7359 * We have to be careful here because we are iterating over memory
7360 * sections which are not zone aware so we might end up outside of
7361 * the zone but still within the section.
656a0706
MH
7362 * We have to take care about the node as well. If the node is offline
7363 * its NODE_DATA will be NULL - see page_zone.
687875fb 7364 */
656a0706
MH
7365 if (!node_online(page_to_nid(page)))
7366 return false;
7367
7368 zone = page_zone(page);
7369 pfn = page_to_pfn(page);
108bcc96 7370 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7371 return false;
7372
b023f468 7373 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7374}
0c0e6195 7375
080fe206 7376#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7377
7378static unsigned long pfn_max_align_down(unsigned long pfn)
7379{
7380 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7381 pageblock_nr_pages) - 1);
7382}
7383
7384static unsigned long pfn_max_align_up(unsigned long pfn)
7385{
7386 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7387 pageblock_nr_pages));
7388}
7389
041d3a8c 7390/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7391static int __alloc_contig_migrate_range(struct compact_control *cc,
7392 unsigned long start, unsigned long end)
041d3a8c
MN
7393{
7394 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7395 unsigned long nr_reclaimed;
041d3a8c
MN
7396 unsigned long pfn = start;
7397 unsigned int tries = 0;
7398 int ret = 0;
7399
be49a6e1 7400 migrate_prep();
041d3a8c 7401
bb13ffeb 7402 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7403 if (fatal_signal_pending(current)) {
7404 ret = -EINTR;
7405 break;
7406 }
7407
bb13ffeb
MG
7408 if (list_empty(&cc->migratepages)) {
7409 cc->nr_migratepages = 0;
edc2ca61 7410 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7411 if (!pfn) {
7412 ret = -EINTR;
7413 break;
7414 }
7415 tries = 0;
7416 } else if (++tries == 5) {
7417 ret = ret < 0 ? ret : -EBUSY;
7418 break;
7419 }
7420
beb51eaa
MK
7421 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7422 &cc->migratepages);
7423 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7424
9c620e2b 7425 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7426 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7427 }
2a6f5124
SP
7428 if (ret < 0) {
7429 putback_movable_pages(&cc->migratepages);
7430 return ret;
7431 }
7432 return 0;
041d3a8c
MN
7433}
7434
7435/**
7436 * alloc_contig_range() -- tries to allocate given range of pages
7437 * @start: start PFN to allocate
7438 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7439 * @migratetype: migratetype of the underlaying pageblocks (either
7440 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7441 * in range must have the same migratetype and it must
7442 * be either of the two.
ca96b625 7443 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7444 *
7445 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7446 * aligned, however it's the caller's responsibility to guarantee that
7447 * we are the only thread that changes migrate type of pageblocks the
7448 * pages fall in.
7449 *
7450 * The PFN range must belong to a single zone.
7451 *
7452 * Returns zero on success or negative error code. On success all
7453 * pages which PFN is in [start, end) are allocated for the caller and
7454 * need to be freed with free_contig_range().
7455 */
0815f3d8 7456int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7457 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7458{
041d3a8c 7459 unsigned long outer_start, outer_end;
d00181b9
KS
7460 unsigned int order;
7461 int ret = 0;
041d3a8c 7462
bb13ffeb
MG
7463 struct compact_control cc = {
7464 .nr_migratepages = 0,
7465 .order = -1,
7466 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7467 .mode = MIGRATE_SYNC,
bb13ffeb 7468 .ignore_skip_hint = true,
7dea19f9 7469 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7470 };
7471 INIT_LIST_HEAD(&cc.migratepages);
7472
041d3a8c
MN
7473 /*
7474 * What we do here is we mark all pageblocks in range as
7475 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7476 * have different sizes, and due to the way page allocator
7477 * work, we align the range to biggest of the two pages so
7478 * that page allocator won't try to merge buddies from
7479 * different pageblocks and change MIGRATE_ISOLATE to some
7480 * other migration type.
7481 *
7482 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7483 * migrate the pages from an unaligned range (ie. pages that
7484 * we are interested in). This will put all the pages in
7485 * range back to page allocator as MIGRATE_ISOLATE.
7486 *
7487 * When this is done, we take the pages in range from page
7488 * allocator removing them from the buddy system. This way
7489 * page allocator will never consider using them.
7490 *
7491 * This lets us mark the pageblocks back as
7492 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7493 * aligned range but not in the unaligned, original range are
7494 * put back to page allocator so that buddy can use them.
7495 */
7496
7497 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7498 pfn_max_align_up(end), migratetype,
7499 false);
041d3a8c 7500 if (ret)
86a595f9 7501 return ret;
041d3a8c 7502
8ef5849f
JK
7503 /*
7504 * In case of -EBUSY, we'd like to know which page causes problem.
7505 * So, just fall through. We will check it in test_pages_isolated().
7506 */
bb13ffeb 7507 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7508 if (ret && ret != -EBUSY)
041d3a8c
MN
7509 goto done;
7510
7511 /*
7512 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7513 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7514 * more, all pages in [start, end) are free in page allocator.
7515 * What we are going to do is to allocate all pages from
7516 * [start, end) (that is remove them from page allocator).
7517 *
7518 * The only problem is that pages at the beginning and at the
7519 * end of interesting range may be not aligned with pages that
7520 * page allocator holds, ie. they can be part of higher order
7521 * pages. Because of this, we reserve the bigger range and
7522 * once this is done free the pages we are not interested in.
7523 *
7524 * We don't have to hold zone->lock here because the pages are
7525 * isolated thus they won't get removed from buddy.
7526 */
7527
7528 lru_add_drain_all();
510f5507 7529 drain_all_pages(cc.zone);
041d3a8c
MN
7530
7531 order = 0;
7532 outer_start = start;
7533 while (!PageBuddy(pfn_to_page(outer_start))) {
7534 if (++order >= MAX_ORDER) {
8ef5849f
JK
7535 outer_start = start;
7536 break;
041d3a8c
MN
7537 }
7538 outer_start &= ~0UL << order;
7539 }
7540
8ef5849f
JK
7541 if (outer_start != start) {
7542 order = page_order(pfn_to_page(outer_start));
7543
7544 /*
7545 * outer_start page could be small order buddy page and
7546 * it doesn't include start page. Adjust outer_start
7547 * in this case to report failed page properly
7548 * on tracepoint in test_pages_isolated()
7549 */
7550 if (outer_start + (1UL << order) <= start)
7551 outer_start = start;
7552 }
7553
041d3a8c 7554 /* Make sure the range is really isolated. */
b023f468 7555 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7556 pr_info("%s: [%lx, %lx) PFNs busy\n",
7557 __func__, outer_start, end);
041d3a8c
MN
7558 ret = -EBUSY;
7559 goto done;
7560 }
7561
49f223a9 7562 /* Grab isolated pages from freelists. */
bb13ffeb 7563 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7564 if (!outer_end) {
7565 ret = -EBUSY;
7566 goto done;
7567 }
7568
7569 /* Free head and tail (if any) */
7570 if (start != outer_start)
7571 free_contig_range(outer_start, start - outer_start);
7572 if (end != outer_end)
7573 free_contig_range(end, outer_end - end);
7574
7575done:
7576 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7577 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7578 return ret;
7579}
7580
7581void free_contig_range(unsigned long pfn, unsigned nr_pages)
7582{
bcc2b02f
MS
7583 unsigned int count = 0;
7584
7585 for (; nr_pages--; pfn++) {
7586 struct page *page = pfn_to_page(pfn);
7587
7588 count += page_count(page) != 1;
7589 __free_page(page);
7590 }
7591 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7592}
7593#endif
7594
4ed7e022 7595#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7596/*
7597 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7598 * page high values need to be recalulated.
7599 */
4ed7e022
JL
7600void __meminit zone_pcp_update(struct zone *zone)
7601{
0a647f38 7602 unsigned cpu;
c8e251fa 7603 mutex_lock(&pcp_batch_high_lock);
0a647f38 7604 for_each_possible_cpu(cpu)
169f6c19
CS
7605 pageset_set_high_and_batch(zone,
7606 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7607 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7608}
7609#endif
7610
340175b7
JL
7611void zone_pcp_reset(struct zone *zone)
7612{
7613 unsigned long flags;
5a883813
MK
7614 int cpu;
7615 struct per_cpu_pageset *pset;
340175b7
JL
7616
7617 /* avoid races with drain_pages() */
7618 local_irq_save(flags);
7619 if (zone->pageset != &boot_pageset) {
5a883813
MK
7620 for_each_online_cpu(cpu) {
7621 pset = per_cpu_ptr(zone->pageset, cpu);
7622 drain_zonestat(zone, pset);
7623 }
340175b7
JL
7624 free_percpu(zone->pageset);
7625 zone->pageset = &boot_pageset;
7626 }
7627 local_irq_restore(flags);
7628}
7629
6dcd73d7 7630#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7631/*
b9eb6319
JK
7632 * All pages in the range must be in a single zone and isolated
7633 * before calling this.
0c0e6195
KH
7634 */
7635void
7636__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7637{
7638 struct page *page;
7639 struct zone *zone;
7aeb09f9 7640 unsigned int order, i;
0c0e6195
KH
7641 unsigned long pfn;
7642 unsigned long flags;
7643 /* find the first valid pfn */
7644 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7645 if (pfn_valid(pfn))
7646 break;
7647 if (pfn == end_pfn)
7648 return;
7649 zone = page_zone(pfn_to_page(pfn));
7650 spin_lock_irqsave(&zone->lock, flags);
7651 pfn = start_pfn;
7652 while (pfn < end_pfn) {
7653 if (!pfn_valid(pfn)) {
7654 pfn++;
7655 continue;
7656 }
7657 page = pfn_to_page(pfn);
b023f468
WC
7658 /*
7659 * The HWPoisoned page may be not in buddy system, and
7660 * page_count() is not 0.
7661 */
7662 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7663 pfn++;
7664 SetPageReserved(page);
7665 continue;
7666 }
7667
0c0e6195
KH
7668 BUG_ON(page_count(page));
7669 BUG_ON(!PageBuddy(page));
7670 order = page_order(page);
7671#ifdef CONFIG_DEBUG_VM
1170532b
JP
7672 pr_info("remove from free list %lx %d %lx\n",
7673 pfn, 1 << order, end_pfn);
0c0e6195
KH
7674#endif
7675 list_del(&page->lru);
7676 rmv_page_order(page);
7677 zone->free_area[order].nr_free--;
0c0e6195
KH
7678 for (i = 0; i < (1 << order); i++)
7679 SetPageReserved((page+i));
7680 pfn += (1 << order);
7681 }
7682 spin_unlock_irqrestore(&zone->lock, flags);
7683}
7684#endif
8d22ba1b 7685
8d22ba1b
WF
7686bool is_free_buddy_page(struct page *page)
7687{
7688 struct zone *zone = page_zone(page);
7689 unsigned long pfn = page_to_pfn(page);
7690 unsigned long flags;
7aeb09f9 7691 unsigned int order;
8d22ba1b
WF
7692
7693 spin_lock_irqsave(&zone->lock, flags);
7694 for (order = 0; order < MAX_ORDER; order++) {
7695 struct page *page_head = page - (pfn & ((1 << order) - 1));
7696
7697 if (PageBuddy(page_head) && page_order(page_head) >= order)
7698 break;
7699 }
7700 spin_unlock_irqrestore(&zone->lock, flags);
7701
7702 return order < MAX_ORDER;
7703}