]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: inline the fast path of the zonelist iterator
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
5f8dcc21 834
c54ad30c 835 spin_lock(&zone->lock);
0d5d823a
MG
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 839
72853e29 840 while (to_free) {
48db57f8 841 struct page *page;
5f8dcc21
MG
842 struct list_head *list;
843
844 /*
a6f9edd6
MG
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
5f8dcc21
MG
850 */
851 do {
a6f9edd6 852 batch_free++;
5f8dcc21
MG
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
48db57f8 857
1d16871d
NK
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
a6f9edd6 862 do {
770c8aaa
BZ
863 int mt; /* migratetype of the to-be-freed page */
864
a16601c5 865 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
aa016d14 868
bb14c2c7 869 mt = get_pcppage_migratetype(page);
aa016d14
VB
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
8f82b55d 873 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 874 mt = get_pageblock_migratetype(page);
51bb1a40 875
dc4b0caf 876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 877 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 878 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 879 }
c54ad30c 880 spin_unlock(&zone->lock);
1da177e4
LT
881}
882
dc4b0caf
MG
883static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
7aeb09f9 885 unsigned int order,
ed0ae21d 886 int migratetype)
1da177e4 887{
0d5d823a 888 unsigned long nr_scanned;
006d22d9 889 spin_lock(&zone->lock);
0d5d823a
MG
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 893
ad53f92e
JK
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 897 }
dc4b0caf 898 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 899 spin_unlock(&zone->lock);
48db57f8
NP
900}
901
81422f29
KS
902static int free_tail_pages_check(struct page *head_page, struct page *page)
903{
1d798ca3
KS
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
9a982250
KS
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
9a982250
KS
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
1c290f64 936 }
81422f29
KS
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
1d798ca3 939 goto out;
81422f29 940 }
1d798ca3
KS
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
81422f29 944 }
1d798ca3
KS
945 ret = 0;
946out:
1c290f64 947 page->mapping = NULL;
1d798ca3
KS
948 clear_compound_head(page);
949 return ret;
81422f29
KS
950}
951
1e8ce83c
RH
952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954{
1e8ce83c 955 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
1e8ce83c 959
1e8ce83c
RH
960 INIT_LIST_HEAD(&page->lru);
961#ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965#endif
966}
967
968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970{
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972}
973
7e18adb4
MG
974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975static void init_reserved_page(unsigned long pfn)
976{
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993}
994#else
995static inline void init_reserved_page(unsigned long pfn)
996{
997}
998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
92923ca3
NZ
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
7e18adb4 1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1007{
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
7e18adb4
MG
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1d798ca3
KS
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
7e18adb4
MG
1020 SetPageReserved(page);
1021 }
1022 }
92923ca3
NZ
1023}
1024
ec95f53a 1025static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1026{
d61f8590 1027 int bad = 0;
1da177e4 1028
ab1f306f 1029 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1030
b413d48a 1031 trace_mm_page_free(page, order);
b1eeab67 1032 kmemcheck_free_shadow(page, order);
b8c73fc2 1033 kasan_free_pages(page, order);
b1eeab67 1034
d61f8590
MG
1035 /*
1036 * Check tail pages before head page information is cleared to
1037 * avoid checking PageCompound for order-0 pages.
1038 */
1039 if (unlikely(order)) {
1040 bool compound = PageCompound(page);
1041 int i;
1042
1043 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1044
1045 for (i = 1; i < (1 << order); i++) {
1046 if (compound)
1047 bad += free_tail_pages_check(page, page + i);
1048 bad += free_pages_check(page + i);
1049 }
1050 }
17514574 1051 if (PageAnonHead(page))
8dd60a3a 1052 page->mapping = NULL;
81422f29 1053 bad += free_pages_check(page);
8cc3b392 1054 if (bad)
ec95f53a 1055 return false;
689bcebf 1056
48c96a36
JK
1057 reset_page_owner(page, order);
1058
3ac7fe5a 1059 if (!PageHighMem(page)) {
b8af2941
PK
1060 debug_check_no_locks_freed(page_address(page),
1061 PAGE_SIZE << order);
3ac7fe5a
TG
1062 debug_check_no_obj_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 }
dafb1367 1065 arch_free_page(page, order);
8823b1db 1066 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1067 kernel_map_pages(page, 1 << order, 0);
dafb1367 1068
ec95f53a
KM
1069 return true;
1070}
1071
1072static void __free_pages_ok(struct page *page, unsigned int order)
1073{
1074 unsigned long flags;
95e34412 1075 int migratetype;
dc4b0caf 1076 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1077
1078 if (!free_pages_prepare(page, order))
1079 return;
1080
cfc47a28 1081 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1082 local_irq_save(flags);
f8891e5e 1083 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1084 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1085 local_irq_restore(flags);
1da177e4
LT
1086}
1087
949698a3 1088static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1089{
c3993076 1090 unsigned int nr_pages = 1 << order;
e2d0bd2b 1091 struct page *p = page;
c3993076 1092 unsigned int loop;
a226f6c8 1093
e2d0bd2b
YL
1094 prefetchw(p);
1095 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1096 prefetchw(p + 1);
c3993076
JW
1097 __ClearPageReserved(p);
1098 set_page_count(p, 0);
a226f6c8 1099 }
e2d0bd2b
YL
1100 __ClearPageReserved(p);
1101 set_page_count(p, 0);
c3993076 1102
e2d0bd2b 1103 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1104 set_page_refcounted(page);
1105 __free_pages(page, order);
a226f6c8
DH
1106}
1107
75a592a4
MG
1108#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1109 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1110
75a592a4
MG
1111static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1112
1113int __meminit early_pfn_to_nid(unsigned long pfn)
1114{
7ace9917 1115 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1116 int nid;
1117
7ace9917 1118 spin_lock(&early_pfn_lock);
75a592a4 1119 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1120 if (nid < 0)
1121 nid = 0;
1122 spin_unlock(&early_pfn_lock);
1123
1124 return nid;
75a592a4
MG
1125}
1126#endif
1127
1128#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1130 struct mminit_pfnnid_cache *state)
1131{
1132 int nid;
1133
1134 nid = __early_pfn_to_nid(pfn, state);
1135 if (nid >= 0 && nid != node)
1136 return false;
1137 return true;
1138}
1139
1140/* Only safe to use early in boot when initialisation is single-threaded */
1141static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1142{
1143 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1144}
1145
1146#else
1147
1148static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1149{
1150 return true;
1151}
1152static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1153 struct mminit_pfnnid_cache *state)
1154{
1155 return true;
1156}
1157#endif
1158
1159
0e1cc95b 1160void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1161 unsigned int order)
1162{
1163 if (early_page_uninitialised(pfn))
1164 return;
949698a3 1165 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1166}
1167
7cf91a98
JK
1168/*
1169 * Check that the whole (or subset of) a pageblock given by the interval of
1170 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1171 * with the migration of free compaction scanner. The scanners then need to
1172 * use only pfn_valid_within() check for arches that allow holes within
1173 * pageblocks.
1174 *
1175 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1176 *
1177 * It's possible on some configurations to have a setup like node0 node1 node0
1178 * i.e. it's possible that all pages within a zones range of pages do not
1179 * belong to a single zone. We assume that a border between node0 and node1
1180 * can occur within a single pageblock, but not a node0 node1 node0
1181 * interleaving within a single pageblock. It is therefore sufficient to check
1182 * the first and last page of a pageblock and avoid checking each individual
1183 * page in a pageblock.
1184 */
1185struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1186 unsigned long end_pfn, struct zone *zone)
1187{
1188 struct page *start_page;
1189 struct page *end_page;
1190
1191 /* end_pfn is one past the range we are checking */
1192 end_pfn--;
1193
1194 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1195 return NULL;
1196
1197 start_page = pfn_to_page(start_pfn);
1198
1199 if (page_zone(start_page) != zone)
1200 return NULL;
1201
1202 end_page = pfn_to_page(end_pfn);
1203
1204 /* This gives a shorter code than deriving page_zone(end_page) */
1205 if (page_zone_id(start_page) != page_zone_id(end_page))
1206 return NULL;
1207
1208 return start_page;
1209}
1210
1211void set_zone_contiguous(struct zone *zone)
1212{
1213 unsigned long block_start_pfn = zone->zone_start_pfn;
1214 unsigned long block_end_pfn;
1215
1216 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1217 for (; block_start_pfn < zone_end_pfn(zone);
1218 block_start_pfn = block_end_pfn,
1219 block_end_pfn += pageblock_nr_pages) {
1220
1221 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1222
1223 if (!__pageblock_pfn_to_page(block_start_pfn,
1224 block_end_pfn, zone))
1225 return;
1226 }
1227
1228 /* We confirm that there is no hole */
1229 zone->contiguous = true;
1230}
1231
1232void clear_zone_contiguous(struct zone *zone)
1233{
1234 zone->contiguous = false;
1235}
1236
7e18adb4 1237#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1238static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1239 unsigned long pfn, int nr_pages)
1240{
1241 int i;
1242
1243 if (!page)
1244 return;
1245
1246 /* Free a large naturally-aligned chunk if possible */
1247 if (nr_pages == MAX_ORDER_NR_PAGES &&
1248 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1249 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1250 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1251 return;
1252 }
1253
949698a3
LZ
1254 for (i = 0; i < nr_pages; i++, page++)
1255 __free_pages_boot_core(page, 0);
a4de83dd
MG
1256}
1257
d3cd131d
NS
1258/* Completion tracking for deferred_init_memmap() threads */
1259static atomic_t pgdat_init_n_undone __initdata;
1260static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1261
1262static inline void __init pgdat_init_report_one_done(void)
1263{
1264 if (atomic_dec_and_test(&pgdat_init_n_undone))
1265 complete(&pgdat_init_all_done_comp);
1266}
0e1cc95b 1267
7e18adb4 1268/* Initialise remaining memory on a node */
0e1cc95b 1269static int __init deferred_init_memmap(void *data)
7e18adb4 1270{
0e1cc95b
MG
1271 pg_data_t *pgdat = data;
1272 int nid = pgdat->node_id;
7e18adb4
MG
1273 struct mminit_pfnnid_cache nid_init_state = { };
1274 unsigned long start = jiffies;
1275 unsigned long nr_pages = 0;
1276 unsigned long walk_start, walk_end;
1277 int i, zid;
1278 struct zone *zone;
7e18adb4 1279 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1280 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1281
0e1cc95b 1282 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1283 pgdat_init_report_one_done();
0e1cc95b
MG
1284 return 0;
1285 }
1286
1287 /* Bind memory initialisation thread to a local node if possible */
1288 if (!cpumask_empty(cpumask))
1289 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1290
1291 /* Sanity check boundaries */
1292 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1293 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1294 pgdat->first_deferred_pfn = ULONG_MAX;
1295
1296 /* Only the highest zone is deferred so find it */
1297 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1298 zone = pgdat->node_zones + zid;
1299 if (first_init_pfn < zone_end_pfn(zone))
1300 break;
1301 }
1302
1303 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1304 unsigned long pfn, end_pfn;
54608c3f 1305 struct page *page = NULL;
a4de83dd
MG
1306 struct page *free_base_page = NULL;
1307 unsigned long free_base_pfn = 0;
1308 int nr_to_free = 0;
7e18adb4
MG
1309
1310 end_pfn = min(walk_end, zone_end_pfn(zone));
1311 pfn = first_init_pfn;
1312 if (pfn < walk_start)
1313 pfn = walk_start;
1314 if (pfn < zone->zone_start_pfn)
1315 pfn = zone->zone_start_pfn;
1316
1317 for (; pfn < end_pfn; pfn++) {
54608c3f 1318 if (!pfn_valid_within(pfn))
a4de83dd 1319 goto free_range;
7e18adb4 1320
54608c3f
MG
1321 /*
1322 * Ensure pfn_valid is checked every
1323 * MAX_ORDER_NR_PAGES for memory holes
1324 */
1325 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1326 if (!pfn_valid(pfn)) {
1327 page = NULL;
a4de83dd 1328 goto free_range;
54608c3f
MG
1329 }
1330 }
1331
1332 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1333 page = NULL;
a4de83dd 1334 goto free_range;
54608c3f
MG
1335 }
1336
1337 /* Minimise pfn page lookups and scheduler checks */
1338 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1339 page++;
1340 } else {
a4de83dd
MG
1341 nr_pages += nr_to_free;
1342 deferred_free_range(free_base_page,
1343 free_base_pfn, nr_to_free);
1344 free_base_page = NULL;
1345 free_base_pfn = nr_to_free = 0;
1346
54608c3f
MG
1347 page = pfn_to_page(pfn);
1348 cond_resched();
1349 }
7e18adb4
MG
1350
1351 if (page->flags) {
1352 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1353 goto free_range;
7e18adb4
MG
1354 }
1355
1356 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1357 if (!free_base_page) {
1358 free_base_page = page;
1359 free_base_pfn = pfn;
1360 nr_to_free = 0;
1361 }
1362 nr_to_free++;
1363
1364 /* Where possible, batch up pages for a single free */
1365 continue;
1366free_range:
1367 /* Free the current block of pages to allocator */
1368 nr_pages += nr_to_free;
1369 deferred_free_range(free_base_page, free_base_pfn,
1370 nr_to_free);
1371 free_base_page = NULL;
1372 free_base_pfn = nr_to_free = 0;
7e18adb4 1373 }
a4de83dd 1374
7e18adb4
MG
1375 first_init_pfn = max(end_pfn, first_init_pfn);
1376 }
1377
1378 /* Sanity check that the next zone really is unpopulated */
1379 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1380
0e1cc95b 1381 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1382 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1383
1384 pgdat_init_report_one_done();
0e1cc95b
MG
1385 return 0;
1386}
7cf91a98 1387#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1388
1389void __init page_alloc_init_late(void)
1390{
7cf91a98
JK
1391 struct zone *zone;
1392
1393#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1394 int nid;
1395
d3cd131d
NS
1396 /* There will be num_node_state(N_MEMORY) threads */
1397 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1398 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1399 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1400 }
1401
1402 /* Block until all are initialised */
d3cd131d 1403 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1404
1405 /* Reinit limits that are based on free pages after the kernel is up */
1406 files_maxfiles_init();
7cf91a98
JK
1407#endif
1408
1409 for_each_populated_zone(zone)
1410 set_zone_contiguous(zone);
7e18adb4 1411}
7e18adb4 1412
47118af0 1413#ifdef CONFIG_CMA
9cf510a5 1414/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1415void __init init_cma_reserved_pageblock(struct page *page)
1416{
1417 unsigned i = pageblock_nr_pages;
1418 struct page *p = page;
1419
1420 do {
1421 __ClearPageReserved(p);
1422 set_page_count(p, 0);
1423 } while (++p, --i);
1424
47118af0 1425 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1426
1427 if (pageblock_order >= MAX_ORDER) {
1428 i = pageblock_nr_pages;
1429 p = page;
1430 do {
1431 set_page_refcounted(p);
1432 __free_pages(p, MAX_ORDER - 1);
1433 p += MAX_ORDER_NR_PAGES;
1434 } while (i -= MAX_ORDER_NR_PAGES);
1435 } else {
1436 set_page_refcounted(page);
1437 __free_pages(page, pageblock_order);
1438 }
1439
3dcc0571 1440 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1441}
1442#endif
1da177e4
LT
1443
1444/*
1445 * The order of subdivision here is critical for the IO subsystem.
1446 * Please do not alter this order without good reasons and regression
1447 * testing. Specifically, as large blocks of memory are subdivided,
1448 * the order in which smaller blocks are delivered depends on the order
1449 * they're subdivided in this function. This is the primary factor
1450 * influencing the order in which pages are delivered to the IO
1451 * subsystem according to empirical testing, and this is also justified
1452 * by considering the behavior of a buddy system containing a single
1453 * large block of memory acted on by a series of small allocations.
1454 * This behavior is a critical factor in sglist merging's success.
1455 *
6d49e352 1456 * -- nyc
1da177e4 1457 */
085cc7d5 1458static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1459 int low, int high, struct free_area *area,
1460 int migratetype)
1da177e4
LT
1461{
1462 unsigned long size = 1 << high;
1463
1464 while (high > low) {
1465 area--;
1466 high--;
1467 size >>= 1;
309381fe 1468 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1469
2847cf95 1470 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1471 debug_guardpage_enabled() &&
2847cf95 1472 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1473 /*
1474 * Mark as guard pages (or page), that will allow to
1475 * merge back to allocator when buddy will be freed.
1476 * Corresponding page table entries will not be touched,
1477 * pages will stay not present in virtual address space
1478 */
2847cf95 1479 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1480 continue;
1481 }
b2a0ac88 1482 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1483 area->nr_free++;
1484 set_page_order(&page[size], high);
1485 }
1da177e4
LT
1486}
1487
1da177e4
LT
1488/*
1489 * This page is about to be returned from the page allocator
1490 */
2a7684a2 1491static inline int check_new_page(struct page *page)
1da177e4 1492{
d230dec1 1493 const char *bad_reason = NULL;
f0b791a3
DH
1494 unsigned long bad_flags = 0;
1495
53f9263b 1496 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1497 bad_reason = "nonzero mapcount";
1498 if (unlikely(page->mapping != NULL))
1499 bad_reason = "non-NULL mapping";
fe896d18 1500 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1501 bad_reason = "nonzero _count";
f4c18e6f
NH
1502 if (unlikely(page->flags & __PG_HWPOISON)) {
1503 bad_reason = "HWPoisoned (hardware-corrupted)";
1504 bad_flags = __PG_HWPOISON;
1505 }
f0b791a3
DH
1506 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1507 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1508 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1509 }
9edad6ea
JW
1510#ifdef CONFIG_MEMCG
1511 if (unlikely(page->mem_cgroup))
1512 bad_reason = "page still charged to cgroup";
1513#endif
f0b791a3
DH
1514 if (unlikely(bad_reason)) {
1515 bad_page(page, bad_reason, bad_flags);
689bcebf 1516 return 1;
8cc3b392 1517 }
2a7684a2
WF
1518 return 0;
1519}
1520
1414c7f4
LA
1521static inline bool free_pages_prezeroed(bool poisoned)
1522{
1523 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1524 page_poisoning_enabled() && poisoned;
1525}
1526
75379191
VB
1527static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1528 int alloc_flags)
2a7684a2
WF
1529{
1530 int i;
1414c7f4 1531 bool poisoned = true;
2a7684a2
WF
1532
1533 for (i = 0; i < (1 << order); i++) {
1534 struct page *p = page + i;
1535 if (unlikely(check_new_page(p)))
1536 return 1;
1414c7f4
LA
1537 if (poisoned)
1538 poisoned &= page_is_poisoned(p);
2a7684a2 1539 }
689bcebf 1540
4c21e2f2 1541 set_page_private(page, 0);
7835e98b 1542 set_page_refcounted(page);
cc102509
NP
1543
1544 arch_alloc_page(page, order);
1da177e4 1545 kernel_map_pages(page, 1 << order, 1);
8823b1db 1546 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1547 kasan_alloc_pages(page, order);
17cf4406 1548
1414c7f4 1549 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1550 for (i = 0; i < (1 << order); i++)
1551 clear_highpage(page + i);
17cf4406
NP
1552
1553 if (order && (gfp_flags & __GFP_COMP))
1554 prep_compound_page(page, order);
1555
48c96a36
JK
1556 set_page_owner(page, order, gfp_flags);
1557
75379191 1558 /*
2f064f34 1559 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1560 * allocate the page. The expectation is that the caller is taking
1561 * steps that will free more memory. The caller should avoid the page
1562 * being used for !PFMEMALLOC purposes.
1563 */
2f064f34
MH
1564 if (alloc_flags & ALLOC_NO_WATERMARKS)
1565 set_page_pfmemalloc(page);
1566 else
1567 clear_page_pfmemalloc(page);
75379191 1568
689bcebf 1569 return 0;
1da177e4
LT
1570}
1571
56fd56b8
MG
1572/*
1573 * Go through the free lists for the given migratetype and remove
1574 * the smallest available page from the freelists
1575 */
728ec980
MG
1576static inline
1577struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1578 int migratetype)
1579{
1580 unsigned int current_order;
b8af2941 1581 struct free_area *area;
56fd56b8
MG
1582 struct page *page;
1583
1584 /* Find a page of the appropriate size in the preferred list */
1585 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1586 area = &(zone->free_area[current_order]);
a16601c5 1587 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1588 struct page, lru);
a16601c5
GT
1589 if (!page)
1590 continue;
56fd56b8
MG
1591 list_del(&page->lru);
1592 rmv_page_order(page);
1593 area->nr_free--;
56fd56b8 1594 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1595 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1596 return page;
1597 }
1598
1599 return NULL;
1600}
1601
1602
b2a0ac88
MG
1603/*
1604 * This array describes the order lists are fallen back to when
1605 * the free lists for the desirable migrate type are depleted
1606 */
47118af0 1607static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1608 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1609 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1610 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1611#ifdef CONFIG_CMA
974a786e 1612 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1613#endif
194159fb 1614#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1615 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1616#endif
b2a0ac88
MG
1617};
1618
dc67647b
JK
1619#ifdef CONFIG_CMA
1620static struct page *__rmqueue_cma_fallback(struct zone *zone,
1621 unsigned int order)
1622{
1623 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1624}
1625#else
1626static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1627 unsigned int order) { return NULL; }
1628#endif
1629
c361be55
MG
1630/*
1631 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1632 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1633 * boundary. If alignment is required, use move_freepages_block()
1634 */
435b405c 1635int move_freepages(struct zone *zone,
b69a7288
AB
1636 struct page *start_page, struct page *end_page,
1637 int migratetype)
c361be55
MG
1638{
1639 struct page *page;
d00181b9 1640 unsigned int order;
d100313f 1641 int pages_moved = 0;
c361be55
MG
1642
1643#ifndef CONFIG_HOLES_IN_ZONE
1644 /*
1645 * page_zone is not safe to call in this context when
1646 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1647 * anyway as we check zone boundaries in move_freepages_block().
1648 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1649 * grouping pages by mobility
c361be55 1650 */
97ee4ba7 1651 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1652#endif
1653
1654 for (page = start_page; page <= end_page;) {
344c790e 1655 /* Make sure we are not inadvertently changing nodes */
309381fe 1656 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1657
c361be55
MG
1658 if (!pfn_valid_within(page_to_pfn(page))) {
1659 page++;
1660 continue;
1661 }
1662
1663 if (!PageBuddy(page)) {
1664 page++;
1665 continue;
1666 }
1667
1668 order = page_order(page);
84be48d8
KS
1669 list_move(&page->lru,
1670 &zone->free_area[order].free_list[migratetype]);
c361be55 1671 page += 1 << order;
d100313f 1672 pages_moved += 1 << order;
c361be55
MG
1673 }
1674
d100313f 1675 return pages_moved;
c361be55
MG
1676}
1677
ee6f509c 1678int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1679 int migratetype)
c361be55
MG
1680{
1681 unsigned long start_pfn, end_pfn;
1682 struct page *start_page, *end_page;
1683
1684 start_pfn = page_to_pfn(page);
d9c23400 1685 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1686 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1687 end_page = start_page + pageblock_nr_pages - 1;
1688 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1689
1690 /* Do not cross zone boundaries */
108bcc96 1691 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1692 start_page = page;
108bcc96 1693 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1694 return 0;
1695
1696 return move_freepages(zone, start_page, end_page, migratetype);
1697}
1698
2f66a68f
MG
1699static void change_pageblock_range(struct page *pageblock_page,
1700 int start_order, int migratetype)
1701{
1702 int nr_pageblocks = 1 << (start_order - pageblock_order);
1703
1704 while (nr_pageblocks--) {
1705 set_pageblock_migratetype(pageblock_page, migratetype);
1706 pageblock_page += pageblock_nr_pages;
1707 }
1708}
1709
fef903ef 1710/*
9c0415eb
VB
1711 * When we are falling back to another migratetype during allocation, try to
1712 * steal extra free pages from the same pageblocks to satisfy further
1713 * allocations, instead of polluting multiple pageblocks.
1714 *
1715 * If we are stealing a relatively large buddy page, it is likely there will
1716 * be more free pages in the pageblock, so try to steal them all. For
1717 * reclaimable and unmovable allocations, we steal regardless of page size,
1718 * as fragmentation caused by those allocations polluting movable pageblocks
1719 * is worse than movable allocations stealing from unmovable and reclaimable
1720 * pageblocks.
fef903ef 1721 */
4eb7dce6
JK
1722static bool can_steal_fallback(unsigned int order, int start_mt)
1723{
1724 /*
1725 * Leaving this order check is intended, although there is
1726 * relaxed order check in next check. The reason is that
1727 * we can actually steal whole pageblock if this condition met,
1728 * but, below check doesn't guarantee it and that is just heuristic
1729 * so could be changed anytime.
1730 */
1731 if (order >= pageblock_order)
1732 return true;
1733
1734 if (order >= pageblock_order / 2 ||
1735 start_mt == MIGRATE_RECLAIMABLE ||
1736 start_mt == MIGRATE_UNMOVABLE ||
1737 page_group_by_mobility_disabled)
1738 return true;
1739
1740 return false;
1741}
1742
1743/*
1744 * This function implements actual steal behaviour. If order is large enough,
1745 * we can steal whole pageblock. If not, we first move freepages in this
1746 * pageblock and check whether half of pages are moved or not. If half of
1747 * pages are moved, we can change migratetype of pageblock and permanently
1748 * use it's pages as requested migratetype in the future.
1749 */
1750static void steal_suitable_fallback(struct zone *zone, struct page *page,
1751 int start_type)
fef903ef 1752{
d00181b9 1753 unsigned int current_order = page_order(page);
4eb7dce6 1754 int pages;
fef903ef 1755
fef903ef
SB
1756 /* Take ownership for orders >= pageblock_order */
1757 if (current_order >= pageblock_order) {
1758 change_pageblock_range(page, current_order, start_type);
3a1086fb 1759 return;
fef903ef
SB
1760 }
1761
4eb7dce6 1762 pages = move_freepages_block(zone, page, start_type);
fef903ef 1763
4eb7dce6
JK
1764 /* Claim the whole block if over half of it is free */
1765 if (pages >= (1 << (pageblock_order-1)) ||
1766 page_group_by_mobility_disabled)
1767 set_pageblock_migratetype(page, start_type);
1768}
1769
2149cdae
JK
1770/*
1771 * Check whether there is a suitable fallback freepage with requested order.
1772 * If only_stealable is true, this function returns fallback_mt only if
1773 * we can steal other freepages all together. This would help to reduce
1774 * fragmentation due to mixed migratetype pages in one pageblock.
1775 */
1776int find_suitable_fallback(struct free_area *area, unsigned int order,
1777 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1778{
1779 int i;
1780 int fallback_mt;
1781
1782 if (area->nr_free == 0)
1783 return -1;
1784
1785 *can_steal = false;
1786 for (i = 0;; i++) {
1787 fallback_mt = fallbacks[migratetype][i];
974a786e 1788 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1789 break;
1790
1791 if (list_empty(&area->free_list[fallback_mt]))
1792 continue;
fef903ef 1793
4eb7dce6
JK
1794 if (can_steal_fallback(order, migratetype))
1795 *can_steal = true;
1796
2149cdae
JK
1797 if (!only_stealable)
1798 return fallback_mt;
1799
1800 if (*can_steal)
1801 return fallback_mt;
fef903ef 1802 }
4eb7dce6
JK
1803
1804 return -1;
fef903ef
SB
1805}
1806
0aaa29a5
MG
1807/*
1808 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1809 * there are no empty page blocks that contain a page with a suitable order
1810 */
1811static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1812 unsigned int alloc_order)
1813{
1814 int mt;
1815 unsigned long max_managed, flags;
1816
1817 /*
1818 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1819 * Check is race-prone but harmless.
1820 */
1821 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1822 if (zone->nr_reserved_highatomic >= max_managed)
1823 return;
1824
1825 spin_lock_irqsave(&zone->lock, flags);
1826
1827 /* Recheck the nr_reserved_highatomic limit under the lock */
1828 if (zone->nr_reserved_highatomic >= max_managed)
1829 goto out_unlock;
1830
1831 /* Yoink! */
1832 mt = get_pageblock_migratetype(page);
1833 if (mt != MIGRATE_HIGHATOMIC &&
1834 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1835 zone->nr_reserved_highatomic += pageblock_nr_pages;
1836 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1837 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1838 }
1839
1840out_unlock:
1841 spin_unlock_irqrestore(&zone->lock, flags);
1842}
1843
1844/*
1845 * Used when an allocation is about to fail under memory pressure. This
1846 * potentially hurts the reliability of high-order allocations when under
1847 * intense memory pressure but failed atomic allocations should be easier
1848 * to recover from than an OOM.
1849 */
1850static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1851{
1852 struct zonelist *zonelist = ac->zonelist;
1853 unsigned long flags;
1854 struct zoneref *z;
1855 struct zone *zone;
1856 struct page *page;
1857 int order;
1858
1859 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1860 ac->nodemask) {
1861 /* Preserve at least one pageblock */
1862 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1863 continue;
1864
1865 spin_lock_irqsave(&zone->lock, flags);
1866 for (order = 0; order < MAX_ORDER; order++) {
1867 struct free_area *area = &(zone->free_area[order]);
1868
a16601c5
GT
1869 page = list_first_entry_or_null(
1870 &area->free_list[MIGRATE_HIGHATOMIC],
1871 struct page, lru);
1872 if (!page)
0aaa29a5
MG
1873 continue;
1874
0aaa29a5
MG
1875 /*
1876 * It should never happen but changes to locking could
1877 * inadvertently allow a per-cpu drain to add pages
1878 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1879 * and watch for underflows.
1880 */
1881 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1882 zone->nr_reserved_highatomic);
1883
1884 /*
1885 * Convert to ac->migratetype and avoid the normal
1886 * pageblock stealing heuristics. Minimally, the caller
1887 * is doing the work and needs the pages. More
1888 * importantly, if the block was always converted to
1889 * MIGRATE_UNMOVABLE or another type then the number
1890 * of pageblocks that cannot be completely freed
1891 * may increase.
1892 */
1893 set_pageblock_migratetype(page, ac->migratetype);
1894 move_freepages_block(zone, page, ac->migratetype);
1895 spin_unlock_irqrestore(&zone->lock, flags);
1896 return;
1897 }
1898 spin_unlock_irqrestore(&zone->lock, flags);
1899 }
1900}
1901
b2a0ac88 1902/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1903static inline struct page *
7aeb09f9 1904__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1905{
b8af2941 1906 struct free_area *area;
7aeb09f9 1907 unsigned int current_order;
b2a0ac88 1908 struct page *page;
4eb7dce6
JK
1909 int fallback_mt;
1910 bool can_steal;
b2a0ac88
MG
1911
1912 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1913 for (current_order = MAX_ORDER-1;
1914 current_order >= order && current_order <= MAX_ORDER-1;
1915 --current_order) {
4eb7dce6
JK
1916 area = &(zone->free_area[current_order]);
1917 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1918 start_migratetype, false, &can_steal);
4eb7dce6
JK
1919 if (fallback_mt == -1)
1920 continue;
b2a0ac88 1921
a16601c5 1922 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1923 struct page, lru);
1924 if (can_steal)
1925 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1926
4eb7dce6
JK
1927 /* Remove the page from the freelists */
1928 area->nr_free--;
1929 list_del(&page->lru);
1930 rmv_page_order(page);
3a1086fb 1931
4eb7dce6
JK
1932 expand(zone, page, order, current_order, area,
1933 start_migratetype);
1934 /*
bb14c2c7 1935 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1936 * migratetype depending on the decisions in
bb14c2c7
VB
1937 * find_suitable_fallback(). This is OK as long as it does not
1938 * differ for MIGRATE_CMA pageblocks. Those can be used as
1939 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1940 */
bb14c2c7 1941 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1942
4eb7dce6
JK
1943 trace_mm_page_alloc_extfrag(page, order, current_order,
1944 start_migratetype, fallback_mt);
e0fff1bd 1945
4eb7dce6 1946 return page;
b2a0ac88
MG
1947 }
1948
728ec980 1949 return NULL;
b2a0ac88
MG
1950}
1951
56fd56b8 1952/*
1da177e4
LT
1953 * Do the hard work of removing an element from the buddy allocator.
1954 * Call me with the zone->lock already held.
1955 */
b2a0ac88 1956static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1957 int migratetype)
1da177e4 1958{
1da177e4
LT
1959 struct page *page;
1960
56fd56b8 1961 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1962 if (unlikely(!page)) {
dc67647b
JK
1963 if (migratetype == MIGRATE_MOVABLE)
1964 page = __rmqueue_cma_fallback(zone, order);
1965
1966 if (!page)
1967 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1968 }
1969
0d3d062a 1970 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1971 return page;
1da177e4
LT
1972}
1973
5f63b720 1974/*
1da177e4
LT
1975 * Obtain a specified number of elements from the buddy allocator, all under
1976 * a single hold of the lock, for efficiency. Add them to the supplied list.
1977 * Returns the number of new pages which were placed at *list.
1978 */
5f63b720 1979static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1980 unsigned long count, struct list_head *list,
b745bc85 1981 int migratetype, bool cold)
1da177e4 1982{
5bcc9f86 1983 int i;
5f63b720 1984
c54ad30c 1985 spin_lock(&zone->lock);
1da177e4 1986 for (i = 0; i < count; ++i) {
6ac0206b 1987 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1988 if (unlikely(page == NULL))
1da177e4 1989 break;
81eabcbe
MG
1990
1991 /*
1992 * Split buddy pages returned by expand() are received here
1993 * in physical page order. The page is added to the callers and
1994 * list and the list head then moves forward. From the callers
1995 * perspective, the linked list is ordered by page number in
1996 * some conditions. This is useful for IO devices that can
1997 * merge IO requests if the physical pages are ordered
1998 * properly.
1999 */
b745bc85 2000 if (likely(!cold))
e084b2d9
MG
2001 list_add(&page->lru, list);
2002 else
2003 list_add_tail(&page->lru, list);
81eabcbe 2004 list = &page->lru;
bb14c2c7 2005 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2006 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2007 -(1 << order));
1da177e4 2008 }
f2260e6b 2009 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2010 spin_unlock(&zone->lock);
085cc7d5 2011 return i;
1da177e4
LT
2012}
2013
4ae7c039 2014#ifdef CONFIG_NUMA
8fce4d8e 2015/*
4037d452
CL
2016 * Called from the vmstat counter updater to drain pagesets of this
2017 * currently executing processor on remote nodes after they have
2018 * expired.
2019 *
879336c3
CL
2020 * Note that this function must be called with the thread pinned to
2021 * a single processor.
8fce4d8e 2022 */
4037d452 2023void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2024{
4ae7c039 2025 unsigned long flags;
7be12fc9 2026 int to_drain, batch;
4ae7c039 2027
4037d452 2028 local_irq_save(flags);
4db0c3c2 2029 batch = READ_ONCE(pcp->batch);
7be12fc9 2030 to_drain = min(pcp->count, batch);
2a13515c
KM
2031 if (to_drain > 0) {
2032 free_pcppages_bulk(zone, to_drain, pcp);
2033 pcp->count -= to_drain;
2034 }
4037d452 2035 local_irq_restore(flags);
4ae7c039
CL
2036}
2037#endif
2038
9f8f2172 2039/*
93481ff0 2040 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2041 *
2042 * The processor must either be the current processor and the
2043 * thread pinned to the current processor or a processor that
2044 * is not online.
2045 */
93481ff0 2046static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2047{
c54ad30c 2048 unsigned long flags;
93481ff0
VB
2049 struct per_cpu_pageset *pset;
2050 struct per_cpu_pages *pcp;
1da177e4 2051
93481ff0
VB
2052 local_irq_save(flags);
2053 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2054
93481ff0
VB
2055 pcp = &pset->pcp;
2056 if (pcp->count) {
2057 free_pcppages_bulk(zone, pcp->count, pcp);
2058 pcp->count = 0;
2059 }
2060 local_irq_restore(flags);
2061}
3dfa5721 2062
93481ff0
VB
2063/*
2064 * Drain pcplists of all zones on the indicated processor.
2065 *
2066 * The processor must either be the current processor and the
2067 * thread pinned to the current processor or a processor that
2068 * is not online.
2069 */
2070static void drain_pages(unsigned int cpu)
2071{
2072 struct zone *zone;
2073
2074 for_each_populated_zone(zone) {
2075 drain_pages_zone(cpu, zone);
1da177e4
LT
2076 }
2077}
1da177e4 2078
9f8f2172
CL
2079/*
2080 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2081 *
2082 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2083 * the single zone's pages.
9f8f2172 2084 */
93481ff0 2085void drain_local_pages(struct zone *zone)
9f8f2172 2086{
93481ff0
VB
2087 int cpu = smp_processor_id();
2088
2089 if (zone)
2090 drain_pages_zone(cpu, zone);
2091 else
2092 drain_pages(cpu);
9f8f2172
CL
2093}
2094
2095/*
74046494
GBY
2096 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2097 *
93481ff0
VB
2098 * When zone parameter is non-NULL, spill just the single zone's pages.
2099 *
74046494
GBY
2100 * Note that this code is protected against sending an IPI to an offline
2101 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2102 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2103 * nothing keeps CPUs from showing up after we populated the cpumask and
2104 * before the call to on_each_cpu_mask().
9f8f2172 2105 */
93481ff0 2106void drain_all_pages(struct zone *zone)
9f8f2172 2107{
74046494 2108 int cpu;
74046494
GBY
2109
2110 /*
2111 * Allocate in the BSS so we wont require allocation in
2112 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2113 */
2114 static cpumask_t cpus_with_pcps;
2115
2116 /*
2117 * We don't care about racing with CPU hotplug event
2118 * as offline notification will cause the notified
2119 * cpu to drain that CPU pcps and on_each_cpu_mask
2120 * disables preemption as part of its processing
2121 */
2122 for_each_online_cpu(cpu) {
93481ff0
VB
2123 struct per_cpu_pageset *pcp;
2124 struct zone *z;
74046494 2125 bool has_pcps = false;
93481ff0
VB
2126
2127 if (zone) {
74046494 2128 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2129 if (pcp->pcp.count)
74046494 2130 has_pcps = true;
93481ff0
VB
2131 } else {
2132 for_each_populated_zone(z) {
2133 pcp = per_cpu_ptr(z->pageset, cpu);
2134 if (pcp->pcp.count) {
2135 has_pcps = true;
2136 break;
2137 }
74046494
GBY
2138 }
2139 }
93481ff0 2140
74046494
GBY
2141 if (has_pcps)
2142 cpumask_set_cpu(cpu, &cpus_with_pcps);
2143 else
2144 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2145 }
93481ff0
VB
2146 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2147 zone, 1);
9f8f2172
CL
2148}
2149
296699de 2150#ifdef CONFIG_HIBERNATION
1da177e4
LT
2151
2152void mark_free_pages(struct zone *zone)
2153{
f623f0db
RW
2154 unsigned long pfn, max_zone_pfn;
2155 unsigned long flags;
7aeb09f9 2156 unsigned int order, t;
86760a2c 2157 struct page *page;
1da177e4 2158
8080fc03 2159 if (zone_is_empty(zone))
1da177e4
LT
2160 return;
2161
2162 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2163
108bcc96 2164 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2165 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2166 if (pfn_valid(pfn)) {
86760a2c 2167 page = pfn_to_page(pfn);
ba6b0979
JK
2168
2169 if (page_zone(page) != zone)
2170 continue;
2171
7be98234
RW
2172 if (!swsusp_page_is_forbidden(page))
2173 swsusp_unset_page_free(page);
f623f0db 2174 }
1da177e4 2175
b2a0ac88 2176 for_each_migratetype_order(order, t) {
86760a2c
GT
2177 list_for_each_entry(page,
2178 &zone->free_area[order].free_list[t], lru) {
f623f0db 2179 unsigned long i;
1da177e4 2180
86760a2c 2181 pfn = page_to_pfn(page);
f623f0db 2182 for (i = 0; i < (1UL << order); i++)
7be98234 2183 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2184 }
b2a0ac88 2185 }
1da177e4
LT
2186 spin_unlock_irqrestore(&zone->lock, flags);
2187}
e2c55dc8 2188#endif /* CONFIG_PM */
1da177e4 2189
1da177e4
LT
2190/*
2191 * Free a 0-order page
b745bc85 2192 * cold == true ? free a cold page : free a hot page
1da177e4 2193 */
b745bc85 2194void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2195{
2196 struct zone *zone = page_zone(page);
2197 struct per_cpu_pages *pcp;
2198 unsigned long flags;
dc4b0caf 2199 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2200 int migratetype;
1da177e4 2201
ec95f53a 2202 if (!free_pages_prepare(page, 0))
689bcebf
HD
2203 return;
2204
dc4b0caf 2205 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2206 set_pcppage_migratetype(page, migratetype);
1da177e4 2207 local_irq_save(flags);
f8891e5e 2208 __count_vm_event(PGFREE);
da456f14 2209
5f8dcc21
MG
2210 /*
2211 * We only track unmovable, reclaimable and movable on pcp lists.
2212 * Free ISOLATE pages back to the allocator because they are being
2213 * offlined but treat RESERVE as movable pages so we can get those
2214 * areas back if necessary. Otherwise, we may have to free
2215 * excessively into the page allocator
2216 */
2217 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2218 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2219 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2220 goto out;
2221 }
2222 migratetype = MIGRATE_MOVABLE;
2223 }
2224
99dcc3e5 2225 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2226 if (!cold)
5f8dcc21 2227 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2228 else
2229 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2230 pcp->count++;
48db57f8 2231 if (pcp->count >= pcp->high) {
4db0c3c2 2232 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2233 free_pcppages_bulk(zone, batch, pcp);
2234 pcp->count -= batch;
48db57f8 2235 }
5f8dcc21
MG
2236
2237out:
1da177e4 2238 local_irq_restore(flags);
1da177e4
LT
2239}
2240
cc59850e
KK
2241/*
2242 * Free a list of 0-order pages
2243 */
b745bc85 2244void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2245{
2246 struct page *page, *next;
2247
2248 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2249 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2250 free_hot_cold_page(page, cold);
2251 }
2252}
2253
8dfcc9ba
NP
2254/*
2255 * split_page takes a non-compound higher-order page, and splits it into
2256 * n (1<<order) sub-pages: page[0..n]
2257 * Each sub-page must be freed individually.
2258 *
2259 * Note: this is probably too low level an operation for use in drivers.
2260 * Please consult with lkml before using this in your driver.
2261 */
2262void split_page(struct page *page, unsigned int order)
2263{
2264 int i;
e2cfc911 2265 gfp_t gfp_mask;
8dfcc9ba 2266
309381fe
SL
2267 VM_BUG_ON_PAGE(PageCompound(page), page);
2268 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2269
2270#ifdef CONFIG_KMEMCHECK
2271 /*
2272 * Split shadow pages too, because free(page[0]) would
2273 * otherwise free the whole shadow.
2274 */
2275 if (kmemcheck_page_is_tracked(page))
2276 split_page(virt_to_page(page[0].shadow), order);
2277#endif
2278
e2cfc911
JK
2279 gfp_mask = get_page_owner_gfp(page);
2280 set_page_owner(page, 0, gfp_mask);
48c96a36 2281 for (i = 1; i < (1 << order); i++) {
7835e98b 2282 set_page_refcounted(page + i);
e2cfc911 2283 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2284 }
8dfcc9ba 2285}
5853ff23 2286EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2287
3c605096 2288int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2289{
748446bb
MG
2290 unsigned long watermark;
2291 struct zone *zone;
2139cbe6 2292 int mt;
748446bb
MG
2293
2294 BUG_ON(!PageBuddy(page));
2295
2296 zone = page_zone(page);
2e30abd1 2297 mt = get_pageblock_migratetype(page);
748446bb 2298
194159fb 2299 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2300 /* Obey watermarks as if the page was being allocated */
2301 watermark = low_wmark_pages(zone) + (1 << order);
2302 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2303 return 0;
2304
8fb74b9f 2305 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2306 }
748446bb
MG
2307
2308 /* Remove page from free list */
2309 list_del(&page->lru);
2310 zone->free_area[order].nr_free--;
2311 rmv_page_order(page);
2139cbe6 2312
e2cfc911 2313 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2314
8fb74b9f 2315 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2316 if (order >= pageblock_order - 1) {
2317 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2318 for (; page < endpage; page += pageblock_nr_pages) {
2319 int mt = get_pageblock_migratetype(page);
194159fb 2320 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2321 set_pageblock_migratetype(page,
2322 MIGRATE_MOVABLE);
2323 }
748446bb
MG
2324 }
2325
f3a14ced 2326
8fb74b9f 2327 return 1UL << order;
1fb3f8ca
MG
2328}
2329
2330/*
2331 * Similar to split_page except the page is already free. As this is only
2332 * being used for migration, the migratetype of the block also changes.
2333 * As this is called with interrupts disabled, the caller is responsible
2334 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2335 * are enabled.
2336 *
2337 * Note: this is probably too low level an operation for use in drivers.
2338 * Please consult with lkml before using this in your driver.
2339 */
2340int split_free_page(struct page *page)
2341{
2342 unsigned int order;
2343 int nr_pages;
2344
1fb3f8ca
MG
2345 order = page_order(page);
2346
8fb74b9f 2347 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2348 if (!nr_pages)
2349 return 0;
2350
2351 /* Split into individual pages */
2352 set_page_refcounted(page);
2353 split_page(page, order);
2354 return nr_pages;
748446bb
MG
2355}
2356
060e7417
MG
2357/*
2358 * Update NUMA hit/miss statistics
2359 *
2360 * Must be called with interrupts disabled.
2361 *
2362 * When __GFP_OTHER_NODE is set assume the node of the preferred
2363 * zone is the local node. This is useful for daemons who allocate
2364 * memory on behalf of other processes.
2365 */
2366static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2367 gfp_t flags)
2368{
2369#ifdef CONFIG_NUMA
2370 int local_nid = numa_node_id();
2371 enum zone_stat_item local_stat = NUMA_LOCAL;
2372
2373 if (unlikely(flags & __GFP_OTHER_NODE)) {
2374 local_stat = NUMA_OTHER;
2375 local_nid = preferred_zone->node;
2376 }
2377
2378 if (z->node == local_nid) {
2379 __inc_zone_state(z, NUMA_HIT);
2380 __inc_zone_state(z, local_stat);
2381 } else {
2382 __inc_zone_state(z, NUMA_MISS);
2383 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2384 }
2385#endif
2386}
2387
1da177e4 2388/*
75379191 2389 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2390 */
0a15c3e9
MG
2391static inline
2392struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2393 struct zone *zone, unsigned int order,
0aaa29a5 2394 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2395{
2396 unsigned long flags;
689bcebf 2397 struct page *page;
b745bc85 2398 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2399
48db57f8 2400 if (likely(order == 0)) {
1da177e4 2401 struct per_cpu_pages *pcp;
5f8dcc21 2402 struct list_head *list;
1da177e4 2403
1da177e4 2404 local_irq_save(flags);
99dcc3e5
CL
2405 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2406 list = &pcp->lists[migratetype];
5f8dcc21 2407 if (list_empty(list)) {
535131e6 2408 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2409 pcp->batch, list,
e084b2d9 2410 migratetype, cold);
5f8dcc21 2411 if (unlikely(list_empty(list)))
6fb332fa 2412 goto failed;
535131e6 2413 }
b92a6edd 2414
5f8dcc21 2415 if (cold)
a16601c5 2416 page = list_last_entry(list, struct page, lru);
5f8dcc21 2417 else
a16601c5 2418 page = list_first_entry(list, struct page, lru);
5f8dcc21 2419
b92a6edd
MG
2420 list_del(&page->lru);
2421 pcp->count--;
7fb1d9fc 2422 } else {
0f352e53
MH
2423 /*
2424 * We most definitely don't want callers attempting to
2425 * allocate greater than order-1 page units with __GFP_NOFAIL.
2426 */
2427 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2428 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2429
2430 page = NULL;
2431 if (alloc_flags & ALLOC_HARDER) {
2432 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2433 if (page)
2434 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2435 }
2436 if (!page)
6ac0206b 2437 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2438 spin_unlock(&zone->lock);
2439 if (!page)
2440 goto failed;
d1ce749a 2441 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2442 get_pcppage_migratetype(page));
1da177e4
LT
2443 }
2444
3a025760 2445 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2446 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2447 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2448 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2449
f8891e5e 2450 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2451 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2452 local_irq_restore(flags);
1da177e4 2453
309381fe 2454 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2455 return page;
a74609fa
NP
2456
2457failed:
2458 local_irq_restore(flags);
a74609fa 2459 return NULL;
1da177e4
LT
2460}
2461
933e312e
AM
2462#ifdef CONFIG_FAIL_PAGE_ALLOC
2463
b2588c4b 2464static struct {
933e312e
AM
2465 struct fault_attr attr;
2466
621a5f7a 2467 bool ignore_gfp_highmem;
71baba4b 2468 bool ignore_gfp_reclaim;
54114994 2469 u32 min_order;
933e312e
AM
2470} fail_page_alloc = {
2471 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2472 .ignore_gfp_reclaim = true,
621a5f7a 2473 .ignore_gfp_highmem = true,
54114994 2474 .min_order = 1,
933e312e
AM
2475};
2476
2477static int __init setup_fail_page_alloc(char *str)
2478{
2479 return setup_fault_attr(&fail_page_alloc.attr, str);
2480}
2481__setup("fail_page_alloc=", setup_fail_page_alloc);
2482
deaf386e 2483static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2484{
54114994 2485 if (order < fail_page_alloc.min_order)
deaf386e 2486 return false;
933e312e 2487 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2488 return false;
933e312e 2489 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2490 return false;
71baba4b
MG
2491 if (fail_page_alloc.ignore_gfp_reclaim &&
2492 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2493 return false;
933e312e
AM
2494
2495 return should_fail(&fail_page_alloc.attr, 1 << order);
2496}
2497
2498#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2499
2500static int __init fail_page_alloc_debugfs(void)
2501{
f4ae40a6 2502 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2503 struct dentry *dir;
933e312e 2504
dd48c085
AM
2505 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2506 &fail_page_alloc.attr);
2507 if (IS_ERR(dir))
2508 return PTR_ERR(dir);
933e312e 2509
b2588c4b 2510 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2511 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2512 goto fail;
2513 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2514 &fail_page_alloc.ignore_gfp_highmem))
2515 goto fail;
2516 if (!debugfs_create_u32("min-order", mode, dir,
2517 &fail_page_alloc.min_order))
2518 goto fail;
2519
2520 return 0;
2521fail:
dd48c085 2522 debugfs_remove_recursive(dir);
933e312e 2523
b2588c4b 2524 return -ENOMEM;
933e312e
AM
2525}
2526
2527late_initcall(fail_page_alloc_debugfs);
2528
2529#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2530
2531#else /* CONFIG_FAIL_PAGE_ALLOC */
2532
deaf386e 2533static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2534{
deaf386e 2535 return false;
933e312e
AM
2536}
2537
2538#endif /* CONFIG_FAIL_PAGE_ALLOC */
2539
1da177e4 2540/*
97a16fc8
MG
2541 * Return true if free base pages are above 'mark'. For high-order checks it
2542 * will return true of the order-0 watermark is reached and there is at least
2543 * one free page of a suitable size. Checking now avoids taking the zone lock
2544 * to check in the allocation paths if no pages are free.
1da177e4 2545 */
7aeb09f9
MG
2546static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2547 unsigned long mark, int classzone_idx, int alloc_flags,
2548 long free_pages)
1da177e4 2549{
d23ad423 2550 long min = mark;
1da177e4 2551 int o;
97a16fc8 2552 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2553
0aaa29a5 2554 /* free_pages may go negative - that's OK */
df0a6daa 2555 free_pages -= (1 << order) - 1;
0aaa29a5 2556
7fb1d9fc 2557 if (alloc_flags & ALLOC_HIGH)
1da177e4 2558 min -= min / 2;
0aaa29a5
MG
2559
2560 /*
2561 * If the caller does not have rights to ALLOC_HARDER then subtract
2562 * the high-atomic reserves. This will over-estimate the size of the
2563 * atomic reserve but it avoids a search.
2564 */
97a16fc8 2565 if (likely(!alloc_harder))
0aaa29a5
MG
2566 free_pages -= z->nr_reserved_highatomic;
2567 else
1da177e4 2568 min -= min / 4;
e2b19197 2569
d95ea5d1
BZ
2570#ifdef CONFIG_CMA
2571 /* If allocation can't use CMA areas don't use free CMA pages */
2572 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2573 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2574#endif
026b0814 2575
97a16fc8
MG
2576 /*
2577 * Check watermarks for an order-0 allocation request. If these
2578 * are not met, then a high-order request also cannot go ahead
2579 * even if a suitable page happened to be free.
2580 */
2581 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2582 return false;
1da177e4 2583
97a16fc8
MG
2584 /* If this is an order-0 request then the watermark is fine */
2585 if (!order)
2586 return true;
2587
2588 /* For a high-order request, check at least one suitable page is free */
2589 for (o = order; o < MAX_ORDER; o++) {
2590 struct free_area *area = &z->free_area[o];
2591 int mt;
2592
2593 if (!area->nr_free)
2594 continue;
2595
2596 if (alloc_harder)
2597 return true;
1da177e4 2598
97a16fc8
MG
2599 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2600 if (!list_empty(&area->free_list[mt]))
2601 return true;
2602 }
2603
2604#ifdef CONFIG_CMA
2605 if ((alloc_flags & ALLOC_CMA) &&
2606 !list_empty(&area->free_list[MIGRATE_CMA])) {
2607 return true;
2608 }
2609#endif
1da177e4 2610 }
97a16fc8 2611 return false;
88f5acf8
MG
2612}
2613
7aeb09f9 2614bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2615 int classzone_idx, int alloc_flags)
2616{
2617 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2618 zone_page_state(z, NR_FREE_PAGES));
2619}
2620
7aeb09f9 2621bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2622 unsigned long mark, int classzone_idx)
88f5acf8
MG
2623{
2624 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2625
2626 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2627 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2628
e2b19197 2629 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2630 free_pages);
1da177e4
LT
2631}
2632
9276b1bc 2633#ifdef CONFIG_NUMA
81c0a2bb
JW
2634static bool zone_local(struct zone *local_zone, struct zone *zone)
2635{
fff4068c 2636 return local_zone->node == zone->node;
81c0a2bb
JW
2637}
2638
957f822a
DR
2639static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2640{
5f7a75ac
MG
2641 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2642 RECLAIM_DISTANCE;
957f822a 2643}
9276b1bc 2644#else /* CONFIG_NUMA */
81c0a2bb
JW
2645static bool zone_local(struct zone *local_zone, struct zone *zone)
2646{
2647 return true;
2648}
2649
957f822a
DR
2650static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2651{
2652 return true;
2653}
9276b1bc
PJ
2654#endif /* CONFIG_NUMA */
2655
4ffeaf35
MG
2656static void reset_alloc_batches(struct zone *preferred_zone)
2657{
2658 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2659
2660 do {
2661 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2662 high_wmark_pages(zone) - low_wmark_pages(zone) -
2663 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2664 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2665 } while (zone++ != preferred_zone);
2666}
2667
7fb1d9fc 2668/*
0798e519 2669 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2670 * a page.
2671 */
2672static struct page *
a9263751
VB
2673get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2674 const struct alloc_context *ac)
753ee728 2675{
a9263751 2676 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2677 struct zoneref *z;
7fb1d9fc 2678 struct page *page = NULL;
5117f45d 2679 struct zone *zone;
4ffeaf35
MG
2680 int nr_fair_skipped = 0;
2681 bool zonelist_rescan;
54a6eb5c 2682
9276b1bc 2683zonelist_scan:
4ffeaf35
MG
2684 zonelist_rescan = false;
2685
7fb1d9fc 2686 /*
9276b1bc 2687 * Scan zonelist, looking for a zone with enough free.
344736f2 2688 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2689 */
a9263751
VB
2690 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2691 ac->nodemask) {
e085dbc5
JW
2692 unsigned long mark;
2693
664eedde
MG
2694 if (cpusets_enabled() &&
2695 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2696 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2697 continue;
81c0a2bb
JW
2698 /*
2699 * Distribute pages in proportion to the individual
2700 * zone size to ensure fair page aging. The zone a
2701 * page was allocated in should have no effect on the
2702 * time the page has in memory before being reclaimed.
81c0a2bb 2703 */
3a025760 2704 if (alloc_flags & ALLOC_FAIR) {
a9263751 2705 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2706 break;
57054651 2707 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2708 nr_fair_skipped++;
3a025760 2709 continue;
4ffeaf35 2710 }
81c0a2bb 2711 }
a756cf59
JW
2712 /*
2713 * When allocating a page cache page for writing, we
2714 * want to get it from a zone that is within its dirty
2715 * limit, such that no single zone holds more than its
2716 * proportional share of globally allowed dirty pages.
2717 * The dirty limits take into account the zone's
2718 * lowmem reserves and high watermark so that kswapd
2719 * should be able to balance it without having to
2720 * write pages from its LRU list.
2721 *
2722 * This may look like it could increase pressure on
2723 * lower zones by failing allocations in higher zones
2724 * before they are full. But the pages that do spill
2725 * over are limited as the lower zones are protected
2726 * by this very same mechanism. It should not become
2727 * a practical burden to them.
2728 *
2729 * XXX: For now, allow allocations to potentially
2730 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2731 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2732 * which is important when on a NUMA setup the allowed
2733 * zones are together not big enough to reach the
2734 * global limit. The proper fix for these situations
2735 * will require awareness of zones in the
2736 * dirty-throttling and the flusher threads.
2737 */
c9ab0c4f 2738 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2739 continue;
7fb1d9fc 2740
e085dbc5
JW
2741 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2742 if (!zone_watermark_ok(zone, order, mark,
a9263751 2743 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2744 int ret;
2745
5dab2911
MG
2746 /* Checked here to keep the fast path fast */
2747 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2748 if (alloc_flags & ALLOC_NO_WATERMARKS)
2749 goto try_this_zone;
2750
957f822a 2751 if (zone_reclaim_mode == 0 ||
a9263751 2752 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2753 continue;
2754
fa5e084e
MG
2755 ret = zone_reclaim(zone, gfp_mask, order);
2756 switch (ret) {
2757 case ZONE_RECLAIM_NOSCAN:
2758 /* did not scan */
cd38b115 2759 continue;
fa5e084e
MG
2760 case ZONE_RECLAIM_FULL:
2761 /* scanned but unreclaimable */
cd38b115 2762 continue;
fa5e084e
MG
2763 default:
2764 /* did we reclaim enough */
fed2719e 2765 if (zone_watermark_ok(zone, order, mark,
a9263751 2766 ac->classzone_idx, alloc_flags))
fed2719e
MG
2767 goto try_this_zone;
2768
fed2719e 2769 continue;
0798e519 2770 }
7fb1d9fc
RS
2771 }
2772
fa5e084e 2773try_this_zone:
a9263751 2774 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2775 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2776 if (page) {
2777 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2778 goto try_this_zone;
0aaa29a5
MG
2779
2780 /*
2781 * If this is a high-order atomic allocation then check
2782 * if the pageblock should be reserved for the future
2783 */
2784 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2785 reserve_highatomic_pageblock(page, zone, order);
2786
75379191
VB
2787 return page;
2788 }
54a6eb5c 2789 }
9276b1bc 2790
4ffeaf35
MG
2791 /*
2792 * The first pass makes sure allocations are spread fairly within the
2793 * local node. However, the local node might have free pages left
2794 * after the fairness batches are exhausted, and remote zones haven't
2795 * even been considered yet. Try once more without fairness, and
2796 * include remote zones now, before entering the slowpath and waking
2797 * kswapd: prefer spilling to a remote zone over swapping locally.
2798 */
2799 if (alloc_flags & ALLOC_FAIR) {
2800 alloc_flags &= ~ALLOC_FAIR;
2801 if (nr_fair_skipped) {
2802 zonelist_rescan = true;
a9263751 2803 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2804 }
2805 if (nr_online_nodes > 1)
2806 zonelist_rescan = true;
2807 }
2808
4ffeaf35
MG
2809 if (zonelist_rescan)
2810 goto zonelist_scan;
2811
2812 return NULL;
753ee728
MH
2813}
2814
29423e77
DR
2815/*
2816 * Large machines with many possible nodes should not always dump per-node
2817 * meminfo in irq context.
2818 */
2819static inline bool should_suppress_show_mem(void)
2820{
2821 bool ret = false;
2822
2823#if NODES_SHIFT > 8
2824 ret = in_interrupt();
2825#endif
2826 return ret;
2827}
2828
a238ab5b
DH
2829static DEFINE_RATELIMIT_STATE(nopage_rs,
2830 DEFAULT_RATELIMIT_INTERVAL,
2831 DEFAULT_RATELIMIT_BURST);
2832
d00181b9 2833void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2834{
a238ab5b
DH
2835 unsigned int filter = SHOW_MEM_FILTER_NODES;
2836
c0a32fc5
SG
2837 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2838 debug_guardpage_minorder() > 0)
a238ab5b
DH
2839 return;
2840
2841 /*
2842 * This documents exceptions given to allocations in certain
2843 * contexts that are allowed to allocate outside current's set
2844 * of allowed nodes.
2845 */
2846 if (!(gfp_mask & __GFP_NOMEMALLOC))
2847 if (test_thread_flag(TIF_MEMDIE) ||
2848 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2849 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2850 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2851 filter &= ~SHOW_MEM_FILTER_NODES;
2852
2853 if (fmt) {
3ee9a4f0
JP
2854 struct va_format vaf;
2855 va_list args;
2856
a238ab5b 2857 va_start(args, fmt);
3ee9a4f0
JP
2858
2859 vaf.fmt = fmt;
2860 vaf.va = &args;
2861
2862 pr_warn("%pV", &vaf);
2863
a238ab5b
DH
2864 va_end(args);
2865 }
2866
c5c990e8
VB
2867 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2868 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2869 dump_stack();
2870 if (!should_suppress_show_mem())
2871 show_mem(filter);
2872}
2873
11e33f6a
MG
2874static inline struct page *
2875__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2876 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2877{
6e0fc46d
DR
2878 struct oom_control oc = {
2879 .zonelist = ac->zonelist,
2880 .nodemask = ac->nodemask,
2881 .gfp_mask = gfp_mask,
2882 .order = order,
6e0fc46d 2883 };
11e33f6a
MG
2884 struct page *page;
2885
9879de73
JW
2886 *did_some_progress = 0;
2887
9879de73 2888 /*
dc56401f
JW
2889 * Acquire the oom lock. If that fails, somebody else is
2890 * making progress for us.
9879de73 2891 */
dc56401f 2892 if (!mutex_trylock(&oom_lock)) {
9879de73 2893 *did_some_progress = 1;
11e33f6a 2894 schedule_timeout_uninterruptible(1);
1da177e4
LT
2895 return NULL;
2896 }
6b1de916 2897
11e33f6a
MG
2898 /*
2899 * Go through the zonelist yet one more time, keep very high watermark
2900 * here, this is only to catch a parallel oom killing, we must fail if
2901 * we're still under heavy pressure.
2902 */
a9263751
VB
2903 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2904 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2905 if (page)
11e33f6a
MG
2906 goto out;
2907
4365a567 2908 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2909 /* Coredumps can quickly deplete all memory reserves */
2910 if (current->flags & PF_DUMPCORE)
2911 goto out;
4365a567
KH
2912 /* The OOM killer will not help higher order allocs */
2913 if (order > PAGE_ALLOC_COSTLY_ORDER)
2914 goto out;
03668b3c 2915 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2916 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2917 goto out;
9083905a
JW
2918 if (pm_suspended_storage())
2919 goto out;
3da88fb3
MH
2920 /*
2921 * XXX: GFP_NOFS allocations should rather fail than rely on
2922 * other request to make a forward progress.
2923 * We are in an unfortunate situation where out_of_memory cannot
2924 * do much for this context but let's try it to at least get
2925 * access to memory reserved if the current task is killed (see
2926 * out_of_memory). Once filesystems are ready to handle allocation
2927 * failures more gracefully we should just bail out here.
2928 */
2929
4167e9b2 2930 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2931 if (gfp_mask & __GFP_THISNODE)
2932 goto out;
2933 }
11e33f6a 2934 /* Exhausted what can be done so it's blamo time */
5020e285 2935 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2936 *did_some_progress = 1;
5020e285
MH
2937
2938 if (gfp_mask & __GFP_NOFAIL) {
2939 page = get_page_from_freelist(gfp_mask, order,
2940 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2941 /*
2942 * fallback to ignore cpuset restriction if our nodes
2943 * are depleted
2944 */
2945 if (!page)
2946 page = get_page_from_freelist(gfp_mask, order,
2947 ALLOC_NO_WATERMARKS, ac);
2948 }
2949 }
11e33f6a 2950out:
dc56401f 2951 mutex_unlock(&oom_lock);
11e33f6a
MG
2952 return page;
2953}
2954
56de7263
MG
2955#ifdef CONFIG_COMPACTION
2956/* Try memory compaction for high-order allocations before reclaim */
2957static struct page *
2958__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2959 int alloc_flags, const struct alloc_context *ac,
2960 enum migrate_mode mode, int *contended_compaction,
2961 bool *deferred_compaction)
56de7263 2962{
53853e2d 2963 unsigned long compact_result;
98dd3b48 2964 struct page *page;
53853e2d
VB
2965
2966 if (!order)
66199712 2967 return NULL;
66199712 2968
c06b1fca 2969 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2970 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2971 mode, contended_compaction);
c06b1fca 2972 current->flags &= ~PF_MEMALLOC;
56de7263 2973
98dd3b48
VB
2974 switch (compact_result) {
2975 case COMPACT_DEFERRED:
53853e2d 2976 *deferred_compaction = true;
98dd3b48
VB
2977 /* fall-through */
2978 case COMPACT_SKIPPED:
2979 return NULL;
2980 default:
2981 break;
2982 }
53853e2d 2983
98dd3b48
VB
2984 /*
2985 * At least in one zone compaction wasn't deferred or skipped, so let's
2986 * count a compaction stall
2987 */
2988 count_vm_event(COMPACTSTALL);
8fb74b9f 2989
a9263751
VB
2990 page = get_page_from_freelist(gfp_mask, order,
2991 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2992
98dd3b48
VB
2993 if (page) {
2994 struct zone *zone = page_zone(page);
53853e2d 2995
98dd3b48
VB
2996 zone->compact_blockskip_flush = false;
2997 compaction_defer_reset(zone, order, true);
2998 count_vm_event(COMPACTSUCCESS);
2999 return page;
3000 }
56de7263 3001
98dd3b48
VB
3002 /*
3003 * It's bad if compaction run occurs and fails. The most likely reason
3004 * is that pages exist, but not enough to satisfy watermarks.
3005 */
3006 count_vm_event(COMPACTFAIL);
66199712 3007
98dd3b48 3008 cond_resched();
56de7263
MG
3009
3010 return NULL;
3011}
3012#else
3013static inline struct page *
3014__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
3015 int alloc_flags, const struct alloc_context *ac,
3016 enum migrate_mode mode, int *contended_compaction,
3017 bool *deferred_compaction)
56de7263
MG
3018{
3019 return NULL;
3020}
3021#endif /* CONFIG_COMPACTION */
3022
bba90710
MS
3023/* Perform direct synchronous page reclaim */
3024static int
a9263751
VB
3025__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3026 const struct alloc_context *ac)
11e33f6a 3027{
11e33f6a 3028 struct reclaim_state reclaim_state;
bba90710 3029 int progress;
11e33f6a
MG
3030
3031 cond_resched();
3032
3033 /* We now go into synchronous reclaim */
3034 cpuset_memory_pressure_bump();
c06b1fca 3035 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3036 lockdep_set_current_reclaim_state(gfp_mask);
3037 reclaim_state.reclaimed_slab = 0;
c06b1fca 3038 current->reclaim_state = &reclaim_state;
11e33f6a 3039
a9263751
VB
3040 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3041 ac->nodemask);
11e33f6a 3042
c06b1fca 3043 current->reclaim_state = NULL;
11e33f6a 3044 lockdep_clear_current_reclaim_state();
c06b1fca 3045 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3046
3047 cond_resched();
3048
bba90710
MS
3049 return progress;
3050}
3051
3052/* The really slow allocator path where we enter direct reclaim */
3053static inline struct page *
3054__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
3055 int alloc_flags, const struct alloc_context *ac,
3056 unsigned long *did_some_progress)
bba90710
MS
3057{
3058 struct page *page = NULL;
3059 bool drained = false;
3060
a9263751 3061 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3062 if (unlikely(!(*did_some_progress)))
3063 return NULL;
11e33f6a 3064
9ee493ce 3065retry:
a9263751
VB
3066 page = get_page_from_freelist(gfp_mask, order,
3067 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3068
3069 /*
3070 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3071 * pages are pinned on the per-cpu lists or in high alloc reserves.
3072 * Shrink them them and try again
9ee493ce
MG
3073 */
3074 if (!page && !drained) {
0aaa29a5 3075 unreserve_highatomic_pageblock(ac);
93481ff0 3076 drain_all_pages(NULL);
9ee493ce
MG
3077 drained = true;
3078 goto retry;
3079 }
3080
11e33f6a
MG
3081 return page;
3082}
3083
a9263751 3084static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3085{
3086 struct zoneref *z;
3087 struct zone *zone;
3088
a9263751
VB
3089 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3090 ac->high_zoneidx, ac->nodemask)
3091 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3092}
3093
341ce06f
PZ
3094static inline int
3095gfp_to_alloc_flags(gfp_t gfp_mask)
3096{
341ce06f 3097 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3098
a56f57ff 3099 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3100 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3101
341ce06f
PZ
3102 /*
3103 * The caller may dip into page reserves a bit more if the caller
3104 * cannot run direct reclaim, or if the caller has realtime scheduling
3105 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3106 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3107 */
e6223a3b 3108 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3109
d0164adc 3110 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3111 /*
b104a35d
DR
3112 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3113 * if it can't schedule.
5c3240d9 3114 */
b104a35d 3115 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3116 alloc_flags |= ALLOC_HARDER;
523b9458 3117 /*
b104a35d 3118 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3119 * comment for __cpuset_node_allowed().
523b9458 3120 */
341ce06f 3121 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3122 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3123 alloc_flags |= ALLOC_HARDER;
3124
b37f1dd0
MG
3125 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3126 if (gfp_mask & __GFP_MEMALLOC)
3127 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3128 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3129 alloc_flags |= ALLOC_NO_WATERMARKS;
3130 else if (!in_interrupt() &&
3131 ((current->flags & PF_MEMALLOC) ||
3132 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3133 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3134 }
d95ea5d1 3135#ifdef CONFIG_CMA
43e7a34d 3136 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3137 alloc_flags |= ALLOC_CMA;
3138#endif
341ce06f
PZ
3139 return alloc_flags;
3140}
3141
072bb0aa
MG
3142bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3143{
b37f1dd0 3144 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3145}
3146
d0164adc
MG
3147static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3148{
3149 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3150}
3151
11e33f6a
MG
3152static inline struct page *
3153__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3154 struct alloc_context *ac)
11e33f6a 3155{
d0164adc 3156 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3157 struct page *page = NULL;
3158 int alloc_flags;
3159 unsigned long pages_reclaimed = 0;
3160 unsigned long did_some_progress;
e0b9daeb 3161 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3162 bool deferred_compaction = false;
1f9efdef 3163 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3164
72807a74
MG
3165 /*
3166 * In the slowpath, we sanity check order to avoid ever trying to
3167 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3168 * be using allocators in order of preference for an area that is
3169 * too large.
3170 */
1fc28b70
MG
3171 if (order >= MAX_ORDER) {
3172 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3173 return NULL;
1fc28b70 3174 }
1da177e4 3175
d0164adc
MG
3176 /*
3177 * We also sanity check to catch abuse of atomic reserves being used by
3178 * callers that are not in atomic context.
3179 */
3180 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3181 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3182 gfp_mask &= ~__GFP_ATOMIC;
3183
9879de73 3184retry:
d0164adc 3185 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3186 wake_all_kswapds(order, ac);
1da177e4 3187
9bf2229f 3188 /*
7fb1d9fc
RS
3189 * OK, we're below the kswapd watermark and have kicked background
3190 * reclaim. Now things get more complex, so set up alloc_flags according
3191 * to how we want to proceed.
9bf2229f 3192 */
341ce06f 3193 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3194
341ce06f 3195 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3196 page = get_page_from_freelist(gfp_mask, order,
3197 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3198 if (page)
3199 goto got_pg;
1da177e4 3200
11e33f6a 3201 /* Allocate without watermarks if the context allows */
341ce06f 3202 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3203 /*
3204 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3205 * the allocation is high priority and these type of
3206 * allocations are system rather than user orientated
3207 */
a9263751 3208 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3209 page = get_page_from_freelist(gfp_mask, order,
3210 ALLOC_NO_WATERMARKS, ac);
3211 if (page)
3212 goto got_pg;
1da177e4
LT
3213 }
3214
d0164adc
MG
3215 /* Caller is not willing to reclaim, we can't balance anything */
3216 if (!can_direct_reclaim) {
aed0a0e3 3217 /*
33d53103
MH
3218 * All existing users of the __GFP_NOFAIL are blockable, so warn
3219 * of any new users that actually allow this type of allocation
3220 * to fail.
aed0a0e3
DR
3221 */
3222 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3223 goto nopage;
aed0a0e3 3224 }
1da177e4 3225
341ce06f 3226 /* Avoid recursion of direct reclaim */
33d53103
MH
3227 if (current->flags & PF_MEMALLOC) {
3228 /*
3229 * __GFP_NOFAIL request from this context is rather bizarre
3230 * because we cannot reclaim anything and only can loop waiting
3231 * for somebody to do a work for us.
3232 */
3233 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3234 cond_resched();
3235 goto retry;
3236 }
341ce06f 3237 goto nopage;
33d53103 3238 }
341ce06f 3239
6583bb64
DR
3240 /* Avoid allocations with no watermarks from looping endlessly */
3241 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3242 goto nopage;
3243
77f1fe6b
MG
3244 /*
3245 * Try direct compaction. The first pass is asynchronous. Subsequent
3246 * attempts after direct reclaim are synchronous
3247 */
a9263751
VB
3248 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3249 migration_mode,
3250 &contended_compaction,
53853e2d 3251 &deferred_compaction);
56de7263
MG
3252 if (page)
3253 goto got_pg;
75f30861 3254
1f9efdef 3255 /* Checks for THP-specific high-order allocations */
d0164adc 3256 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3257 /*
3258 * If compaction is deferred for high-order allocations, it is
3259 * because sync compaction recently failed. If this is the case
3260 * and the caller requested a THP allocation, we do not want
3261 * to heavily disrupt the system, so we fail the allocation
3262 * instead of entering direct reclaim.
3263 */
3264 if (deferred_compaction)
3265 goto nopage;
3266
3267 /*
3268 * In all zones where compaction was attempted (and not
3269 * deferred or skipped), lock contention has been detected.
3270 * For THP allocation we do not want to disrupt the others
3271 * so we fallback to base pages instead.
3272 */
3273 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3274 goto nopage;
3275
3276 /*
3277 * If compaction was aborted due to need_resched(), we do not
3278 * want to further increase allocation latency, unless it is
3279 * khugepaged trying to collapse.
3280 */
3281 if (contended_compaction == COMPACT_CONTENDED_SCHED
3282 && !(current->flags & PF_KTHREAD))
3283 goto nopage;
3284 }
66199712 3285
8fe78048
DR
3286 /*
3287 * It can become very expensive to allocate transparent hugepages at
3288 * fault, so use asynchronous memory compaction for THP unless it is
3289 * khugepaged trying to collapse.
3290 */
d0164adc 3291 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3292 migration_mode = MIGRATE_SYNC_LIGHT;
3293
11e33f6a 3294 /* Try direct reclaim and then allocating */
a9263751
VB
3295 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3296 &did_some_progress);
11e33f6a
MG
3297 if (page)
3298 goto got_pg;
1da177e4 3299
9083905a
JW
3300 /* Do not loop if specifically requested */
3301 if (gfp_mask & __GFP_NORETRY)
3302 goto noretry;
3303
3304 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3305 pages_reclaimed += did_some_progress;
9083905a
JW
3306 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3307 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3308 /* Wait for some write requests to complete then retry */
a9263751 3309 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3310 goto retry;
1da177e4
LT
3311 }
3312
9083905a
JW
3313 /* Reclaim has failed us, start killing things */
3314 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3315 if (page)
3316 goto got_pg;
3317
3318 /* Retry as long as the OOM killer is making progress */
3319 if (did_some_progress)
3320 goto retry;
3321
3322noretry:
3323 /*
3324 * High-order allocations do not necessarily loop after
3325 * direct reclaim and reclaim/compaction depends on compaction
3326 * being called after reclaim so call directly if necessary
3327 */
3328 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3329 ac, migration_mode,
3330 &contended_compaction,
3331 &deferred_compaction);
3332 if (page)
3333 goto got_pg;
1da177e4 3334nopage:
a238ab5b 3335 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3336got_pg:
072bb0aa 3337 return page;
1da177e4 3338}
11e33f6a
MG
3339
3340/*
3341 * This is the 'heart' of the zoned buddy allocator.
3342 */
3343struct page *
3344__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3345 struct zonelist *zonelist, nodemask_t *nodemask)
3346{
d8846374 3347 struct zoneref *preferred_zoneref;
cc9a6c87 3348 struct page *page = NULL;
cc9a6c87 3349 unsigned int cpuset_mems_cookie;
682a3385 3350 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
91fbdc0f 3351 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3352 struct alloc_context ac = {
3353 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3354 .zonelist = zonelist,
a9263751
VB
3355 .nodemask = nodemask,
3356 .migratetype = gfpflags_to_migratetype(gfp_mask),
3357 };
11e33f6a 3358
682a3385
MG
3359 if (cpusets_enabled()) {
3360 alloc_flags |= ALLOC_CPUSET;
3361 if (!ac.nodemask)
3362 ac.nodemask = &cpuset_current_mems_allowed;
3363 }
3364
dcce284a
BH
3365 gfp_mask &= gfp_allowed_mask;
3366
11e33f6a
MG
3367 lockdep_trace_alloc(gfp_mask);
3368
d0164adc 3369 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3370
3371 if (should_fail_alloc_page(gfp_mask, order))
3372 return NULL;
3373
3374 /*
3375 * Check the zones suitable for the gfp_mask contain at least one
3376 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3377 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3378 */
3379 if (unlikely(!zonelist->_zonerefs->zone))
3380 return NULL;
3381
a9263751 3382 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3383 alloc_flags |= ALLOC_CMA;
3384
cc9a6c87 3385retry_cpuset:
d26914d1 3386 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3387
c9ab0c4f
MG
3388 /* Dirty zone balancing only done in the fast path */
3389 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3390
5117f45d 3391 /* The preferred zone is used for statistics later */
a9263751 3392 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
682a3385 3393 ac.nodemask, &ac.preferred_zone);
a9263751 3394 if (!ac.preferred_zone)
cc9a6c87 3395 goto out;
a9263751 3396 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3397
3398 /* First allocation attempt */
91fbdc0f 3399 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3400 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3401 if (unlikely(!page)) {
3402 /*
3403 * Runtime PM, block IO and its error handling path
3404 * can deadlock because I/O on the device might not
3405 * complete.
3406 */
91fbdc0f 3407 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3408 ac.spread_dirty_pages = false;
91fbdc0f 3409
a9263751 3410 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3411 }
11e33f6a 3412
23f086f9
XQ
3413 if (kmemcheck_enabled && page)
3414 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3415
a9263751 3416 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3417
3418out:
3419 /*
3420 * When updating a task's mems_allowed, it is possible to race with
3421 * parallel threads in such a way that an allocation can fail while
3422 * the mask is being updated. If a page allocation is about to fail,
3423 * check if the cpuset changed during allocation and if so, retry.
3424 */
d26914d1 3425 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3426 goto retry_cpuset;
3427
11e33f6a 3428 return page;
1da177e4 3429}
d239171e 3430EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3431
3432/*
3433 * Common helper functions.
3434 */
920c7a5d 3435unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3436{
945a1113
AM
3437 struct page *page;
3438
3439 /*
3440 * __get_free_pages() returns a 32-bit address, which cannot represent
3441 * a highmem page
3442 */
3443 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3444
1da177e4
LT
3445 page = alloc_pages(gfp_mask, order);
3446 if (!page)
3447 return 0;
3448 return (unsigned long) page_address(page);
3449}
1da177e4
LT
3450EXPORT_SYMBOL(__get_free_pages);
3451
920c7a5d 3452unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3453{
945a1113 3454 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3455}
1da177e4
LT
3456EXPORT_SYMBOL(get_zeroed_page);
3457
920c7a5d 3458void __free_pages(struct page *page, unsigned int order)
1da177e4 3459{
b5810039 3460 if (put_page_testzero(page)) {
1da177e4 3461 if (order == 0)
b745bc85 3462 free_hot_cold_page(page, false);
1da177e4
LT
3463 else
3464 __free_pages_ok(page, order);
3465 }
3466}
3467
3468EXPORT_SYMBOL(__free_pages);
3469
920c7a5d 3470void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3471{
3472 if (addr != 0) {
725d704e 3473 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3474 __free_pages(virt_to_page((void *)addr), order);
3475 }
3476}
3477
3478EXPORT_SYMBOL(free_pages);
3479
b63ae8ca
AD
3480/*
3481 * Page Fragment:
3482 * An arbitrary-length arbitrary-offset area of memory which resides
3483 * within a 0 or higher order page. Multiple fragments within that page
3484 * are individually refcounted, in the page's reference counter.
3485 *
3486 * The page_frag functions below provide a simple allocation framework for
3487 * page fragments. This is used by the network stack and network device
3488 * drivers to provide a backing region of memory for use as either an
3489 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3490 */
3491static struct page *__page_frag_refill(struct page_frag_cache *nc,
3492 gfp_t gfp_mask)
3493{
3494 struct page *page = NULL;
3495 gfp_t gfp = gfp_mask;
3496
3497#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3498 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3499 __GFP_NOMEMALLOC;
3500 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3501 PAGE_FRAG_CACHE_MAX_ORDER);
3502 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3503#endif
3504 if (unlikely(!page))
3505 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3506
3507 nc->va = page ? page_address(page) : NULL;
3508
3509 return page;
3510}
3511
3512void *__alloc_page_frag(struct page_frag_cache *nc,
3513 unsigned int fragsz, gfp_t gfp_mask)
3514{
3515 unsigned int size = PAGE_SIZE;
3516 struct page *page;
3517 int offset;
3518
3519 if (unlikely(!nc->va)) {
3520refill:
3521 page = __page_frag_refill(nc, gfp_mask);
3522 if (!page)
3523 return NULL;
3524
3525#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3526 /* if size can vary use size else just use PAGE_SIZE */
3527 size = nc->size;
3528#endif
3529 /* Even if we own the page, we do not use atomic_set().
3530 * This would break get_page_unless_zero() users.
3531 */
fe896d18 3532 page_ref_add(page, size - 1);
b63ae8ca
AD
3533
3534 /* reset page count bias and offset to start of new frag */
2f064f34 3535 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3536 nc->pagecnt_bias = size;
3537 nc->offset = size;
3538 }
3539
3540 offset = nc->offset - fragsz;
3541 if (unlikely(offset < 0)) {
3542 page = virt_to_page(nc->va);
3543
fe896d18 3544 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3545 goto refill;
3546
3547#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3548 /* if size can vary use size else just use PAGE_SIZE */
3549 size = nc->size;
3550#endif
3551 /* OK, page count is 0, we can safely set it */
fe896d18 3552 set_page_count(page, size);
b63ae8ca
AD
3553
3554 /* reset page count bias and offset to start of new frag */
3555 nc->pagecnt_bias = size;
3556 offset = size - fragsz;
3557 }
3558
3559 nc->pagecnt_bias--;
3560 nc->offset = offset;
3561
3562 return nc->va + offset;
3563}
3564EXPORT_SYMBOL(__alloc_page_frag);
3565
3566/*
3567 * Frees a page fragment allocated out of either a compound or order 0 page.
3568 */
3569void __free_page_frag(void *addr)
3570{
3571 struct page *page = virt_to_head_page(addr);
3572
3573 if (unlikely(put_page_testzero(page)))
3574 __free_pages_ok(page, compound_order(page));
3575}
3576EXPORT_SYMBOL(__free_page_frag);
3577
6a1a0d3b 3578/*
52383431 3579 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3580 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3581 * equivalent to alloc_pages.
6a1a0d3b 3582 *
52383431
VD
3583 * It should be used when the caller would like to use kmalloc, but since the
3584 * allocation is large, it has to fall back to the page allocator.
3585 */
3586struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3587{
3588 struct page *page;
52383431 3589
52383431 3590 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3591 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3592 __free_pages(page, order);
3593 page = NULL;
3594 }
52383431
VD
3595 return page;
3596}
3597
3598struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3599{
3600 struct page *page;
52383431 3601
52383431 3602 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3603 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3604 __free_pages(page, order);
3605 page = NULL;
3606 }
52383431
VD
3607 return page;
3608}
3609
3610/*
3611 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3612 * alloc_kmem_pages.
6a1a0d3b 3613 */
52383431 3614void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3615{
d05e83a6 3616 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3617 __free_pages(page, order);
3618}
3619
52383431 3620void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3621{
3622 if (addr != 0) {
3623 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3624 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3625 }
3626}
3627
d00181b9
KS
3628static void *make_alloc_exact(unsigned long addr, unsigned int order,
3629 size_t size)
ee85c2e1
AK
3630{
3631 if (addr) {
3632 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3633 unsigned long used = addr + PAGE_ALIGN(size);
3634
3635 split_page(virt_to_page((void *)addr), order);
3636 while (used < alloc_end) {
3637 free_page(used);
3638 used += PAGE_SIZE;
3639 }
3640 }
3641 return (void *)addr;
3642}
3643
2be0ffe2
TT
3644/**
3645 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3646 * @size: the number of bytes to allocate
3647 * @gfp_mask: GFP flags for the allocation
3648 *
3649 * This function is similar to alloc_pages(), except that it allocates the
3650 * minimum number of pages to satisfy the request. alloc_pages() can only
3651 * allocate memory in power-of-two pages.
3652 *
3653 * This function is also limited by MAX_ORDER.
3654 *
3655 * Memory allocated by this function must be released by free_pages_exact().
3656 */
3657void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3658{
3659 unsigned int order = get_order(size);
3660 unsigned long addr;
3661
3662 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3663 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3664}
3665EXPORT_SYMBOL(alloc_pages_exact);
3666
ee85c2e1
AK
3667/**
3668 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3669 * pages on a node.
b5e6ab58 3670 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3671 * @size: the number of bytes to allocate
3672 * @gfp_mask: GFP flags for the allocation
3673 *
3674 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3675 * back.
ee85c2e1 3676 */
e1931811 3677void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3678{
d00181b9 3679 unsigned int order = get_order(size);
ee85c2e1
AK
3680 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3681 if (!p)
3682 return NULL;
3683 return make_alloc_exact((unsigned long)page_address(p), order, size);
3684}
ee85c2e1 3685
2be0ffe2
TT
3686/**
3687 * free_pages_exact - release memory allocated via alloc_pages_exact()
3688 * @virt: the value returned by alloc_pages_exact.
3689 * @size: size of allocation, same value as passed to alloc_pages_exact().
3690 *
3691 * Release the memory allocated by a previous call to alloc_pages_exact.
3692 */
3693void free_pages_exact(void *virt, size_t size)
3694{
3695 unsigned long addr = (unsigned long)virt;
3696 unsigned long end = addr + PAGE_ALIGN(size);
3697
3698 while (addr < end) {
3699 free_page(addr);
3700 addr += PAGE_SIZE;
3701 }
3702}
3703EXPORT_SYMBOL(free_pages_exact);
3704
e0fb5815
ZY
3705/**
3706 * nr_free_zone_pages - count number of pages beyond high watermark
3707 * @offset: The zone index of the highest zone
3708 *
3709 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3710 * high watermark within all zones at or below a given zone index. For each
3711 * zone, the number of pages is calculated as:
834405c3 3712 * managed_pages - high_pages
e0fb5815 3713 */
ebec3862 3714static unsigned long nr_free_zone_pages(int offset)
1da177e4 3715{
dd1a239f 3716 struct zoneref *z;
54a6eb5c
MG
3717 struct zone *zone;
3718
e310fd43 3719 /* Just pick one node, since fallback list is circular */
ebec3862 3720 unsigned long sum = 0;
1da177e4 3721
0e88460d 3722 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3723
54a6eb5c 3724 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3725 unsigned long size = zone->managed_pages;
41858966 3726 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3727 if (size > high)
3728 sum += size - high;
1da177e4
LT
3729 }
3730
3731 return sum;
3732}
3733
e0fb5815
ZY
3734/**
3735 * nr_free_buffer_pages - count number of pages beyond high watermark
3736 *
3737 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3738 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3739 */
ebec3862 3740unsigned long nr_free_buffer_pages(void)
1da177e4 3741{
af4ca457 3742 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3743}
c2f1a551 3744EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3745
e0fb5815
ZY
3746/**
3747 * nr_free_pagecache_pages - count number of pages beyond high watermark
3748 *
3749 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3750 * high watermark within all zones.
1da177e4 3751 */
ebec3862 3752unsigned long nr_free_pagecache_pages(void)
1da177e4 3753{
2a1e274a 3754 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3755}
08e0f6a9
CL
3756
3757static inline void show_node(struct zone *zone)
1da177e4 3758{
e5adfffc 3759 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3760 printk("Node %d ", zone_to_nid(zone));
1da177e4 3761}
1da177e4 3762
d02bd27b
IR
3763long si_mem_available(void)
3764{
3765 long available;
3766 unsigned long pagecache;
3767 unsigned long wmark_low = 0;
3768 unsigned long pages[NR_LRU_LISTS];
3769 struct zone *zone;
3770 int lru;
3771
3772 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3773 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3774
3775 for_each_zone(zone)
3776 wmark_low += zone->watermark[WMARK_LOW];
3777
3778 /*
3779 * Estimate the amount of memory available for userspace allocations,
3780 * without causing swapping.
3781 */
3782 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3783
3784 /*
3785 * Not all the page cache can be freed, otherwise the system will
3786 * start swapping. Assume at least half of the page cache, or the
3787 * low watermark worth of cache, needs to stay.
3788 */
3789 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3790 pagecache -= min(pagecache / 2, wmark_low);
3791 available += pagecache;
3792
3793 /*
3794 * Part of the reclaimable slab consists of items that are in use,
3795 * and cannot be freed. Cap this estimate at the low watermark.
3796 */
3797 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3798 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3799
3800 if (available < 0)
3801 available = 0;
3802 return available;
3803}
3804EXPORT_SYMBOL_GPL(si_mem_available);
3805
1da177e4
LT
3806void si_meminfo(struct sysinfo *val)
3807{
3808 val->totalram = totalram_pages;
cc7452b6 3809 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3810 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3811 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3812 val->totalhigh = totalhigh_pages;
3813 val->freehigh = nr_free_highpages();
1da177e4
LT
3814 val->mem_unit = PAGE_SIZE;
3815}
3816
3817EXPORT_SYMBOL(si_meminfo);
3818
3819#ifdef CONFIG_NUMA
3820void si_meminfo_node(struct sysinfo *val, int nid)
3821{
cdd91a77
JL
3822 int zone_type; /* needs to be signed */
3823 unsigned long managed_pages = 0;
fc2bd799
JK
3824 unsigned long managed_highpages = 0;
3825 unsigned long free_highpages = 0;
1da177e4
LT
3826 pg_data_t *pgdat = NODE_DATA(nid);
3827
cdd91a77
JL
3828 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3829 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3830 val->totalram = managed_pages;
cc7452b6 3831 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3832 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3833#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3834 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3835 struct zone *zone = &pgdat->node_zones[zone_type];
3836
3837 if (is_highmem(zone)) {
3838 managed_highpages += zone->managed_pages;
3839 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3840 }
3841 }
3842 val->totalhigh = managed_highpages;
3843 val->freehigh = free_highpages;
98d2b0eb 3844#else
fc2bd799
JK
3845 val->totalhigh = managed_highpages;
3846 val->freehigh = free_highpages;
98d2b0eb 3847#endif
1da177e4
LT
3848 val->mem_unit = PAGE_SIZE;
3849}
3850#endif
3851
ddd588b5 3852/*
7bf02ea2
DR
3853 * Determine whether the node should be displayed or not, depending on whether
3854 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3855 */
7bf02ea2 3856bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3857{
3858 bool ret = false;
cc9a6c87 3859 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3860
3861 if (!(flags & SHOW_MEM_FILTER_NODES))
3862 goto out;
3863
cc9a6c87 3864 do {
d26914d1 3865 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3866 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3867 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3868out:
3869 return ret;
3870}
3871
1da177e4
LT
3872#define K(x) ((x) << (PAGE_SHIFT-10))
3873
377e4f16
RV
3874static void show_migration_types(unsigned char type)
3875{
3876 static const char types[MIGRATE_TYPES] = {
3877 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3878 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3879 [MIGRATE_RECLAIMABLE] = 'E',
3880 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3881#ifdef CONFIG_CMA
3882 [MIGRATE_CMA] = 'C',
3883#endif
194159fb 3884#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3885 [MIGRATE_ISOLATE] = 'I',
194159fb 3886#endif
377e4f16
RV
3887 };
3888 char tmp[MIGRATE_TYPES + 1];
3889 char *p = tmp;
3890 int i;
3891
3892 for (i = 0; i < MIGRATE_TYPES; i++) {
3893 if (type & (1 << i))
3894 *p++ = types[i];
3895 }
3896
3897 *p = '\0';
3898 printk("(%s) ", tmp);
3899}
3900
1da177e4
LT
3901/*
3902 * Show free area list (used inside shift_scroll-lock stuff)
3903 * We also calculate the percentage fragmentation. We do this by counting the
3904 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3905 *
3906 * Bits in @filter:
3907 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3908 * cpuset.
1da177e4 3909 */
7bf02ea2 3910void show_free_areas(unsigned int filter)
1da177e4 3911{
d1bfcdb8 3912 unsigned long free_pcp = 0;
c7241913 3913 int cpu;
1da177e4
LT
3914 struct zone *zone;
3915
ee99c71c 3916 for_each_populated_zone(zone) {
7bf02ea2 3917 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3918 continue;
d1bfcdb8 3919
761b0677
KK
3920 for_each_online_cpu(cpu)
3921 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3922 }
3923
a731286d
KM
3924 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3925 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3926 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3927 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3928 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3929 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3930 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3931 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3932 global_page_state(NR_ISOLATED_ANON),
3933 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3934 global_page_state(NR_INACTIVE_FILE),
a731286d 3935 global_page_state(NR_ISOLATED_FILE),
7b854121 3936 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3937 global_page_state(NR_FILE_DIRTY),
ce866b34 3938 global_page_state(NR_WRITEBACK),
fd39fc85 3939 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3940 global_page_state(NR_SLAB_RECLAIMABLE),
3941 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3942 global_page_state(NR_FILE_MAPPED),
4b02108a 3943 global_page_state(NR_SHMEM),
a25700a5 3944 global_page_state(NR_PAGETABLE),
d1ce749a 3945 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3946 global_page_state(NR_FREE_PAGES),
3947 free_pcp,
d1ce749a 3948 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3949
ee99c71c 3950 for_each_populated_zone(zone) {
1da177e4
LT
3951 int i;
3952
7bf02ea2 3953 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3954 continue;
d1bfcdb8
KK
3955
3956 free_pcp = 0;
3957 for_each_online_cpu(cpu)
3958 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3959
1da177e4
LT
3960 show_node(zone);
3961 printk("%s"
3962 " free:%lukB"
3963 " min:%lukB"
3964 " low:%lukB"
3965 " high:%lukB"
4f98a2fe
RR
3966 " active_anon:%lukB"
3967 " inactive_anon:%lukB"
3968 " active_file:%lukB"
3969 " inactive_file:%lukB"
7b854121 3970 " unevictable:%lukB"
a731286d
KM
3971 " isolated(anon):%lukB"
3972 " isolated(file):%lukB"
1da177e4 3973 " present:%lukB"
9feedc9d 3974 " managed:%lukB"
4a0aa73f
KM
3975 " mlocked:%lukB"
3976 " dirty:%lukB"
3977 " writeback:%lukB"
3978 " mapped:%lukB"
4b02108a 3979 " shmem:%lukB"
4a0aa73f
KM
3980 " slab_reclaimable:%lukB"
3981 " slab_unreclaimable:%lukB"
c6a7f572 3982 " kernel_stack:%lukB"
4a0aa73f
KM
3983 " pagetables:%lukB"
3984 " unstable:%lukB"
3985 " bounce:%lukB"
d1bfcdb8
KK
3986 " free_pcp:%lukB"
3987 " local_pcp:%ukB"
d1ce749a 3988 " free_cma:%lukB"
4a0aa73f 3989 " writeback_tmp:%lukB"
1da177e4
LT
3990 " pages_scanned:%lu"
3991 " all_unreclaimable? %s"
3992 "\n",
3993 zone->name,
88f5acf8 3994 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3995 K(min_wmark_pages(zone)),
3996 K(low_wmark_pages(zone)),
3997 K(high_wmark_pages(zone)),
4f98a2fe
RR
3998 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3999 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4000 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4001 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4002 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4003 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4004 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4005 K(zone->present_pages),
9feedc9d 4006 K(zone->managed_pages),
4a0aa73f
KM
4007 K(zone_page_state(zone, NR_MLOCK)),
4008 K(zone_page_state(zone, NR_FILE_DIRTY)),
4009 K(zone_page_state(zone, NR_WRITEBACK)),
4010 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4011 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4012 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4013 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4014 zone_page_state(zone, NR_KERNEL_STACK) *
4015 THREAD_SIZE / 1024,
4a0aa73f
KM
4016 K(zone_page_state(zone, NR_PAGETABLE)),
4017 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4018 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4019 K(free_pcp),
4020 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4021 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4022 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4023 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4024 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4025 );
4026 printk("lowmem_reserve[]:");
4027 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4028 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4029 printk("\n");
4030 }
4031
ee99c71c 4032 for_each_populated_zone(zone) {
d00181b9
KS
4033 unsigned int order;
4034 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4035 unsigned char types[MAX_ORDER];
1da177e4 4036
7bf02ea2 4037 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4038 continue;
1da177e4
LT
4039 show_node(zone);
4040 printk("%s: ", zone->name);
1da177e4
LT
4041
4042 spin_lock_irqsave(&zone->lock, flags);
4043 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4044 struct free_area *area = &zone->free_area[order];
4045 int type;
4046
4047 nr[order] = area->nr_free;
8f9de51a 4048 total += nr[order] << order;
377e4f16
RV
4049
4050 types[order] = 0;
4051 for (type = 0; type < MIGRATE_TYPES; type++) {
4052 if (!list_empty(&area->free_list[type]))
4053 types[order] |= 1 << type;
4054 }
1da177e4
LT
4055 }
4056 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4057 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4058 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4059 if (nr[order])
4060 show_migration_types(types[order]);
4061 }
1da177e4
LT
4062 printk("= %lukB\n", K(total));
4063 }
4064
949f7ec5
DR
4065 hugetlb_show_meminfo();
4066
e6f3602d
LW
4067 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4068
1da177e4
LT
4069 show_swap_cache_info();
4070}
4071
19770b32
MG
4072static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4073{
4074 zoneref->zone = zone;
4075 zoneref->zone_idx = zone_idx(zone);
4076}
4077
1da177e4
LT
4078/*
4079 * Builds allocation fallback zone lists.
1a93205b
CL
4080 *
4081 * Add all populated zones of a node to the zonelist.
1da177e4 4082 */
f0c0b2b8 4083static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4084 int nr_zones)
1da177e4 4085{
1a93205b 4086 struct zone *zone;
bc732f1d 4087 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4088
4089 do {
2f6726e5 4090 zone_type--;
070f8032 4091 zone = pgdat->node_zones + zone_type;
1a93205b 4092 if (populated_zone(zone)) {
dd1a239f
MG
4093 zoneref_set_zone(zone,
4094 &zonelist->_zonerefs[nr_zones++]);
070f8032 4095 check_highest_zone(zone_type);
1da177e4 4096 }
2f6726e5 4097 } while (zone_type);
bc732f1d 4098
070f8032 4099 return nr_zones;
1da177e4
LT
4100}
4101
f0c0b2b8
KH
4102
4103/*
4104 * zonelist_order:
4105 * 0 = automatic detection of better ordering.
4106 * 1 = order by ([node] distance, -zonetype)
4107 * 2 = order by (-zonetype, [node] distance)
4108 *
4109 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4110 * the same zonelist. So only NUMA can configure this param.
4111 */
4112#define ZONELIST_ORDER_DEFAULT 0
4113#define ZONELIST_ORDER_NODE 1
4114#define ZONELIST_ORDER_ZONE 2
4115
4116/* zonelist order in the kernel.
4117 * set_zonelist_order() will set this to NODE or ZONE.
4118 */
4119static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4120static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4121
4122
1da177e4 4123#ifdef CONFIG_NUMA
f0c0b2b8
KH
4124/* The value user specified ....changed by config */
4125static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4126/* string for sysctl */
4127#define NUMA_ZONELIST_ORDER_LEN 16
4128char numa_zonelist_order[16] = "default";
4129
4130/*
4131 * interface for configure zonelist ordering.
4132 * command line option "numa_zonelist_order"
4133 * = "[dD]efault - default, automatic configuration.
4134 * = "[nN]ode - order by node locality, then by zone within node
4135 * = "[zZ]one - order by zone, then by locality within zone
4136 */
4137
4138static int __parse_numa_zonelist_order(char *s)
4139{
4140 if (*s == 'd' || *s == 'D') {
4141 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4142 } else if (*s == 'n' || *s == 'N') {
4143 user_zonelist_order = ZONELIST_ORDER_NODE;
4144 } else if (*s == 'z' || *s == 'Z') {
4145 user_zonelist_order = ZONELIST_ORDER_ZONE;
4146 } else {
1170532b 4147 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4148 return -EINVAL;
4149 }
4150 return 0;
4151}
4152
4153static __init int setup_numa_zonelist_order(char *s)
4154{
ecb256f8
VL
4155 int ret;
4156
4157 if (!s)
4158 return 0;
4159
4160 ret = __parse_numa_zonelist_order(s);
4161 if (ret == 0)
4162 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4163
4164 return ret;
f0c0b2b8
KH
4165}
4166early_param("numa_zonelist_order", setup_numa_zonelist_order);
4167
4168/*
4169 * sysctl handler for numa_zonelist_order
4170 */
cccad5b9 4171int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4172 void __user *buffer, size_t *length,
f0c0b2b8
KH
4173 loff_t *ppos)
4174{
4175 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4176 int ret;
443c6f14 4177 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4178
443c6f14 4179 mutex_lock(&zl_order_mutex);
dacbde09
CG
4180 if (write) {
4181 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4182 ret = -EINVAL;
4183 goto out;
4184 }
4185 strcpy(saved_string, (char *)table->data);
4186 }
8d65af78 4187 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4188 if (ret)
443c6f14 4189 goto out;
f0c0b2b8
KH
4190 if (write) {
4191 int oldval = user_zonelist_order;
dacbde09
CG
4192
4193 ret = __parse_numa_zonelist_order((char *)table->data);
4194 if (ret) {
f0c0b2b8
KH
4195 /*
4196 * bogus value. restore saved string
4197 */
dacbde09 4198 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4199 NUMA_ZONELIST_ORDER_LEN);
4200 user_zonelist_order = oldval;
4eaf3f64
HL
4201 } else if (oldval != user_zonelist_order) {
4202 mutex_lock(&zonelists_mutex);
9adb62a5 4203 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4204 mutex_unlock(&zonelists_mutex);
4205 }
f0c0b2b8 4206 }
443c6f14
AK
4207out:
4208 mutex_unlock(&zl_order_mutex);
4209 return ret;
f0c0b2b8
KH
4210}
4211
4212
62bc62a8 4213#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4214static int node_load[MAX_NUMNODES];
4215
1da177e4 4216/**
4dc3b16b 4217 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4218 * @node: node whose fallback list we're appending
4219 * @used_node_mask: nodemask_t of already used nodes
4220 *
4221 * We use a number of factors to determine which is the next node that should
4222 * appear on a given node's fallback list. The node should not have appeared
4223 * already in @node's fallback list, and it should be the next closest node
4224 * according to the distance array (which contains arbitrary distance values
4225 * from each node to each node in the system), and should also prefer nodes
4226 * with no CPUs, since presumably they'll have very little allocation pressure
4227 * on them otherwise.
4228 * It returns -1 if no node is found.
4229 */
f0c0b2b8 4230static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4231{
4cf808eb 4232 int n, val;
1da177e4 4233 int min_val = INT_MAX;
00ef2d2f 4234 int best_node = NUMA_NO_NODE;
a70f7302 4235 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4236
4cf808eb
LT
4237 /* Use the local node if we haven't already */
4238 if (!node_isset(node, *used_node_mask)) {
4239 node_set(node, *used_node_mask);
4240 return node;
4241 }
1da177e4 4242
4b0ef1fe 4243 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4244
4245 /* Don't want a node to appear more than once */
4246 if (node_isset(n, *used_node_mask))
4247 continue;
4248
1da177e4
LT
4249 /* Use the distance array to find the distance */
4250 val = node_distance(node, n);
4251
4cf808eb
LT
4252 /* Penalize nodes under us ("prefer the next node") */
4253 val += (n < node);
4254
1da177e4 4255 /* Give preference to headless and unused nodes */
a70f7302
RR
4256 tmp = cpumask_of_node(n);
4257 if (!cpumask_empty(tmp))
1da177e4
LT
4258 val += PENALTY_FOR_NODE_WITH_CPUS;
4259
4260 /* Slight preference for less loaded node */
4261 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4262 val += node_load[n];
4263
4264 if (val < min_val) {
4265 min_val = val;
4266 best_node = n;
4267 }
4268 }
4269
4270 if (best_node >= 0)
4271 node_set(best_node, *used_node_mask);
4272
4273 return best_node;
4274}
4275
f0c0b2b8
KH
4276
4277/*
4278 * Build zonelists ordered by node and zones within node.
4279 * This results in maximum locality--normal zone overflows into local
4280 * DMA zone, if any--but risks exhausting DMA zone.
4281 */
4282static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4283{
f0c0b2b8 4284 int j;
1da177e4 4285 struct zonelist *zonelist;
f0c0b2b8 4286
54a6eb5c 4287 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4288 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4289 ;
bc732f1d 4290 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4291 zonelist->_zonerefs[j].zone = NULL;
4292 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4293}
4294
523b9458
CL
4295/*
4296 * Build gfp_thisnode zonelists
4297 */
4298static void build_thisnode_zonelists(pg_data_t *pgdat)
4299{
523b9458
CL
4300 int j;
4301 struct zonelist *zonelist;
4302
54a6eb5c 4303 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4304 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4305 zonelist->_zonerefs[j].zone = NULL;
4306 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4307}
4308
f0c0b2b8
KH
4309/*
4310 * Build zonelists ordered by zone and nodes within zones.
4311 * This results in conserving DMA zone[s] until all Normal memory is
4312 * exhausted, but results in overflowing to remote node while memory
4313 * may still exist in local DMA zone.
4314 */
4315static int node_order[MAX_NUMNODES];
4316
4317static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4318{
f0c0b2b8
KH
4319 int pos, j, node;
4320 int zone_type; /* needs to be signed */
4321 struct zone *z;
4322 struct zonelist *zonelist;
4323
54a6eb5c
MG
4324 zonelist = &pgdat->node_zonelists[0];
4325 pos = 0;
4326 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4327 for (j = 0; j < nr_nodes; j++) {
4328 node = node_order[j];
4329 z = &NODE_DATA(node)->node_zones[zone_type];
4330 if (populated_zone(z)) {
dd1a239f
MG
4331 zoneref_set_zone(z,
4332 &zonelist->_zonerefs[pos++]);
54a6eb5c 4333 check_highest_zone(zone_type);
f0c0b2b8
KH
4334 }
4335 }
f0c0b2b8 4336 }
dd1a239f
MG
4337 zonelist->_zonerefs[pos].zone = NULL;
4338 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4339}
4340
3193913c
MG
4341#if defined(CONFIG_64BIT)
4342/*
4343 * Devices that require DMA32/DMA are relatively rare and do not justify a
4344 * penalty to every machine in case the specialised case applies. Default
4345 * to Node-ordering on 64-bit NUMA machines
4346 */
4347static int default_zonelist_order(void)
4348{
4349 return ZONELIST_ORDER_NODE;
4350}
4351#else
4352/*
4353 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4354 * by the kernel. If processes running on node 0 deplete the low memory zone
4355 * then reclaim will occur more frequency increasing stalls and potentially
4356 * be easier to OOM if a large percentage of the zone is under writeback or
4357 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4358 * Hence, default to zone ordering on 32-bit.
4359 */
f0c0b2b8
KH
4360static int default_zonelist_order(void)
4361{
f0c0b2b8
KH
4362 return ZONELIST_ORDER_ZONE;
4363}
3193913c 4364#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4365
4366static void set_zonelist_order(void)
4367{
4368 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4369 current_zonelist_order = default_zonelist_order();
4370 else
4371 current_zonelist_order = user_zonelist_order;
4372}
4373
4374static void build_zonelists(pg_data_t *pgdat)
4375{
c00eb15a 4376 int i, node, load;
1da177e4 4377 nodemask_t used_mask;
f0c0b2b8
KH
4378 int local_node, prev_node;
4379 struct zonelist *zonelist;
d00181b9 4380 unsigned int order = current_zonelist_order;
1da177e4
LT
4381
4382 /* initialize zonelists */
523b9458 4383 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4384 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4385 zonelist->_zonerefs[0].zone = NULL;
4386 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4387 }
4388
4389 /* NUMA-aware ordering of nodes */
4390 local_node = pgdat->node_id;
62bc62a8 4391 load = nr_online_nodes;
1da177e4
LT
4392 prev_node = local_node;
4393 nodes_clear(used_mask);
f0c0b2b8 4394
f0c0b2b8 4395 memset(node_order, 0, sizeof(node_order));
c00eb15a 4396 i = 0;
f0c0b2b8 4397
1da177e4
LT
4398 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4399 /*
4400 * We don't want to pressure a particular node.
4401 * So adding penalty to the first node in same
4402 * distance group to make it round-robin.
4403 */
957f822a
DR
4404 if (node_distance(local_node, node) !=
4405 node_distance(local_node, prev_node))
f0c0b2b8
KH
4406 node_load[node] = load;
4407
1da177e4
LT
4408 prev_node = node;
4409 load--;
f0c0b2b8
KH
4410 if (order == ZONELIST_ORDER_NODE)
4411 build_zonelists_in_node_order(pgdat, node);
4412 else
c00eb15a 4413 node_order[i++] = node; /* remember order */
f0c0b2b8 4414 }
1da177e4 4415
f0c0b2b8
KH
4416 if (order == ZONELIST_ORDER_ZONE) {
4417 /* calculate node order -- i.e., DMA last! */
c00eb15a 4418 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4419 }
523b9458
CL
4420
4421 build_thisnode_zonelists(pgdat);
1da177e4
LT
4422}
4423
7aac7898
LS
4424#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4425/*
4426 * Return node id of node used for "local" allocations.
4427 * I.e., first node id of first zone in arg node's generic zonelist.
4428 * Used for initializing percpu 'numa_mem', which is used primarily
4429 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4430 */
4431int local_memory_node(int node)
4432{
4433 struct zone *zone;
4434
4435 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4436 gfp_zone(GFP_KERNEL),
4437 NULL,
4438 &zone);
4439 return zone->node;
4440}
4441#endif
f0c0b2b8 4442
1da177e4
LT
4443#else /* CONFIG_NUMA */
4444
f0c0b2b8
KH
4445static void set_zonelist_order(void)
4446{
4447 current_zonelist_order = ZONELIST_ORDER_ZONE;
4448}
4449
4450static void build_zonelists(pg_data_t *pgdat)
1da177e4 4451{
19655d34 4452 int node, local_node;
54a6eb5c
MG
4453 enum zone_type j;
4454 struct zonelist *zonelist;
1da177e4
LT
4455
4456 local_node = pgdat->node_id;
1da177e4 4457
54a6eb5c 4458 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4459 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4460
54a6eb5c
MG
4461 /*
4462 * Now we build the zonelist so that it contains the zones
4463 * of all the other nodes.
4464 * We don't want to pressure a particular node, so when
4465 * building the zones for node N, we make sure that the
4466 * zones coming right after the local ones are those from
4467 * node N+1 (modulo N)
4468 */
4469 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4470 if (!node_online(node))
4471 continue;
bc732f1d 4472 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4473 }
54a6eb5c
MG
4474 for (node = 0; node < local_node; node++) {
4475 if (!node_online(node))
4476 continue;
bc732f1d 4477 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4478 }
4479
dd1a239f
MG
4480 zonelist->_zonerefs[j].zone = NULL;
4481 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4482}
4483
4484#endif /* CONFIG_NUMA */
4485
99dcc3e5
CL
4486/*
4487 * Boot pageset table. One per cpu which is going to be used for all
4488 * zones and all nodes. The parameters will be set in such a way
4489 * that an item put on a list will immediately be handed over to
4490 * the buddy list. This is safe since pageset manipulation is done
4491 * with interrupts disabled.
4492 *
4493 * The boot_pagesets must be kept even after bootup is complete for
4494 * unused processors and/or zones. They do play a role for bootstrapping
4495 * hotplugged processors.
4496 *
4497 * zoneinfo_show() and maybe other functions do
4498 * not check if the processor is online before following the pageset pointer.
4499 * Other parts of the kernel may not check if the zone is available.
4500 */
4501static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4502static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4503static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4504
4eaf3f64
HL
4505/*
4506 * Global mutex to protect against size modification of zonelists
4507 * as well as to serialize pageset setup for the new populated zone.
4508 */
4509DEFINE_MUTEX(zonelists_mutex);
4510
9b1a4d38 4511/* return values int ....just for stop_machine() */
4ed7e022 4512static int __build_all_zonelists(void *data)
1da177e4 4513{
6811378e 4514 int nid;
99dcc3e5 4515 int cpu;
9adb62a5 4516 pg_data_t *self = data;
9276b1bc 4517
7f9cfb31
BL
4518#ifdef CONFIG_NUMA
4519 memset(node_load, 0, sizeof(node_load));
4520#endif
9adb62a5
JL
4521
4522 if (self && !node_online(self->node_id)) {
4523 build_zonelists(self);
9adb62a5
JL
4524 }
4525
9276b1bc 4526 for_each_online_node(nid) {
7ea1530a
CL
4527 pg_data_t *pgdat = NODE_DATA(nid);
4528
4529 build_zonelists(pgdat);
9276b1bc 4530 }
99dcc3e5
CL
4531
4532 /*
4533 * Initialize the boot_pagesets that are going to be used
4534 * for bootstrapping processors. The real pagesets for
4535 * each zone will be allocated later when the per cpu
4536 * allocator is available.
4537 *
4538 * boot_pagesets are used also for bootstrapping offline
4539 * cpus if the system is already booted because the pagesets
4540 * are needed to initialize allocators on a specific cpu too.
4541 * F.e. the percpu allocator needs the page allocator which
4542 * needs the percpu allocator in order to allocate its pagesets
4543 * (a chicken-egg dilemma).
4544 */
7aac7898 4545 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4546 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4547
7aac7898
LS
4548#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4549 /*
4550 * We now know the "local memory node" for each node--
4551 * i.e., the node of the first zone in the generic zonelist.
4552 * Set up numa_mem percpu variable for on-line cpus. During
4553 * boot, only the boot cpu should be on-line; we'll init the
4554 * secondary cpus' numa_mem as they come on-line. During
4555 * node/memory hotplug, we'll fixup all on-line cpus.
4556 */
4557 if (cpu_online(cpu))
4558 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4559#endif
4560 }
4561
6811378e
YG
4562 return 0;
4563}
4564
061f67bc
RV
4565static noinline void __init
4566build_all_zonelists_init(void)
4567{
4568 __build_all_zonelists(NULL);
4569 mminit_verify_zonelist();
4570 cpuset_init_current_mems_allowed();
4571}
4572
4eaf3f64
HL
4573/*
4574 * Called with zonelists_mutex held always
4575 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4576 *
4577 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4578 * [we're only called with non-NULL zone through __meminit paths] and
4579 * (2) call of __init annotated helper build_all_zonelists_init
4580 * [protected by SYSTEM_BOOTING].
4eaf3f64 4581 */
9adb62a5 4582void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4583{
f0c0b2b8
KH
4584 set_zonelist_order();
4585
6811378e 4586 if (system_state == SYSTEM_BOOTING) {
061f67bc 4587 build_all_zonelists_init();
6811378e 4588 } else {
e9959f0f 4589#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4590 if (zone)
4591 setup_zone_pageset(zone);
e9959f0f 4592#endif
dd1895e2
CS
4593 /* we have to stop all cpus to guarantee there is no user
4594 of zonelist */
9adb62a5 4595 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4596 /* cpuset refresh routine should be here */
4597 }
bd1e22b8 4598 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4599 /*
4600 * Disable grouping by mobility if the number of pages in the
4601 * system is too low to allow the mechanism to work. It would be
4602 * more accurate, but expensive to check per-zone. This check is
4603 * made on memory-hotadd so a system can start with mobility
4604 * disabled and enable it later
4605 */
d9c23400 4606 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4607 page_group_by_mobility_disabled = 1;
4608 else
4609 page_group_by_mobility_disabled = 0;
4610
756a025f
JP
4611 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4612 nr_online_nodes,
4613 zonelist_order_name[current_zonelist_order],
4614 page_group_by_mobility_disabled ? "off" : "on",
4615 vm_total_pages);
f0c0b2b8 4616#ifdef CONFIG_NUMA
f88dfff5 4617 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4618#endif
1da177e4
LT
4619}
4620
4621/*
4622 * Helper functions to size the waitqueue hash table.
4623 * Essentially these want to choose hash table sizes sufficiently
4624 * large so that collisions trying to wait on pages are rare.
4625 * But in fact, the number of active page waitqueues on typical
4626 * systems is ridiculously low, less than 200. So this is even
4627 * conservative, even though it seems large.
4628 *
4629 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4630 * waitqueues, i.e. the size of the waitq table given the number of pages.
4631 */
4632#define PAGES_PER_WAITQUEUE 256
4633
cca448fe 4634#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4635static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4636{
4637 unsigned long size = 1;
4638
4639 pages /= PAGES_PER_WAITQUEUE;
4640
4641 while (size < pages)
4642 size <<= 1;
4643
4644 /*
4645 * Once we have dozens or even hundreds of threads sleeping
4646 * on IO we've got bigger problems than wait queue collision.
4647 * Limit the size of the wait table to a reasonable size.
4648 */
4649 size = min(size, 4096UL);
4650
4651 return max(size, 4UL);
4652}
cca448fe
YG
4653#else
4654/*
4655 * A zone's size might be changed by hot-add, so it is not possible to determine
4656 * a suitable size for its wait_table. So we use the maximum size now.
4657 *
4658 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4659 *
4660 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4661 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4662 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4663 *
4664 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4665 * or more by the traditional way. (See above). It equals:
4666 *
4667 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4668 * ia64(16K page size) : = ( 8G + 4M)byte.
4669 * powerpc (64K page size) : = (32G +16M)byte.
4670 */
4671static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4672{
4673 return 4096UL;
4674}
4675#endif
1da177e4
LT
4676
4677/*
4678 * This is an integer logarithm so that shifts can be used later
4679 * to extract the more random high bits from the multiplicative
4680 * hash function before the remainder is taken.
4681 */
4682static inline unsigned long wait_table_bits(unsigned long size)
4683{
4684 return ffz(~size);
4685}
4686
1da177e4
LT
4687/*
4688 * Initially all pages are reserved - free ones are freed
4689 * up by free_all_bootmem() once the early boot process is
4690 * done. Non-atomic initialization, single-pass.
4691 */
c09b4240 4692void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4693 unsigned long start_pfn, enum memmap_context context)
1da177e4 4694{
4b94ffdc 4695 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4696 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4697 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4698 unsigned long pfn;
3a80a7fa 4699 unsigned long nr_initialised = 0;
342332e6
TI
4700#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4701 struct memblock_region *r = NULL, *tmp;
4702#endif
1da177e4 4703
22b31eec
HD
4704 if (highest_memmap_pfn < end_pfn - 1)
4705 highest_memmap_pfn = end_pfn - 1;
4706
4b94ffdc
DW
4707 /*
4708 * Honor reservation requested by the driver for this ZONE_DEVICE
4709 * memory
4710 */
4711 if (altmap && start_pfn == altmap->base_pfn)
4712 start_pfn += altmap->reserve;
4713
cbe8dd4a 4714 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4715 /*
b72d0ffb
AM
4716 * There can be holes in boot-time mem_map[]s handed to this
4717 * function. They do not exist on hotplugged memory.
a2f3aa02 4718 */
b72d0ffb
AM
4719 if (context != MEMMAP_EARLY)
4720 goto not_early;
4721
4722 if (!early_pfn_valid(pfn))
4723 continue;
4724 if (!early_pfn_in_nid(pfn, nid))
4725 continue;
4726 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4727 break;
342332e6
TI
4728
4729#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4730 /*
4731 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4732 * from zone_movable_pfn[nid] to end of each node should be
4733 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4734 */
4735 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4736 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4737 continue;
342332e6 4738
b72d0ffb
AM
4739 /*
4740 * Check given memblock attribute by firmware which can affect
4741 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4742 * mirrored, it's an overlapped memmap init. skip it.
4743 */
4744 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4745 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4746 for_each_memblock(memory, tmp)
4747 if (pfn < memblock_region_memory_end_pfn(tmp))
4748 break;
4749 r = tmp;
4750 }
4751 if (pfn >= memblock_region_memory_base_pfn(r) &&
4752 memblock_is_mirror(r)) {
4753 /* already initialized as NORMAL */
4754 pfn = memblock_region_memory_end_pfn(r);
4755 continue;
342332e6 4756 }
a2f3aa02 4757 }
b72d0ffb 4758#endif
ac5d2539 4759
b72d0ffb 4760not_early:
ac5d2539
MG
4761 /*
4762 * Mark the block movable so that blocks are reserved for
4763 * movable at startup. This will force kernel allocations
4764 * to reserve their blocks rather than leaking throughout
4765 * the address space during boot when many long-lived
974a786e 4766 * kernel allocations are made.
ac5d2539
MG
4767 *
4768 * bitmap is created for zone's valid pfn range. but memmap
4769 * can be created for invalid pages (for alignment)
4770 * check here not to call set_pageblock_migratetype() against
4771 * pfn out of zone.
4772 */
4773 if (!(pfn & (pageblock_nr_pages - 1))) {
4774 struct page *page = pfn_to_page(pfn);
4775
4776 __init_single_page(page, pfn, zone, nid);
4777 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4778 } else {
4779 __init_single_pfn(pfn, zone, nid);
4780 }
1da177e4
LT
4781 }
4782}
4783
1e548deb 4784static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4785{
7aeb09f9 4786 unsigned int order, t;
b2a0ac88
MG
4787 for_each_migratetype_order(order, t) {
4788 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4789 zone->free_area[order].nr_free = 0;
4790 }
4791}
4792
4793#ifndef __HAVE_ARCH_MEMMAP_INIT
4794#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4795 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4796#endif
4797
7cd2b0a3 4798static int zone_batchsize(struct zone *zone)
e7c8d5c9 4799{
3a6be87f 4800#ifdef CONFIG_MMU
e7c8d5c9
CL
4801 int batch;
4802
4803 /*
4804 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4805 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4806 *
4807 * OK, so we don't know how big the cache is. So guess.
4808 */
b40da049 4809 batch = zone->managed_pages / 1024;
ba56e91c
SR
4810 if (batch * PAGE_SIZE > 512 * 1024)
4811 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4812 batch /= 4; /* We effectively *= 4 below */
4813 if (batch < 1)
4814 batch = 1;
4815
4816 /*
0ceaacc9
NP
4817 * Clamp the batch to a 2^n - 1 value. Having a power
4818 * of 2 value was found to be more likely to have
4819 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4820 *
0ceaacc9
NP
4821 * For example if 2 tasks are alternately allocating
4822 * batches of pages, one task can end up with a lot
4823 * of pages of one half of the possible page colors
4824 * and the other with pages of the other colors.
e7c8d5c9 4825 */
9155203a 4826 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4827
e7c8d5c9 4828 return batch;
3a6be87f
DH
4829
4830#else
4831 /* The deferral and batching of frees should be suppressed under NOMMU
4832 * conditions.
4833 *
4834 * The problem is that NOMMU needs to be able to allocate large chunks
4835 * of contiguous memory as there's no hardware page translation to
4836 * assemble apparent contiguous memory from discontiguous pages.
4837 *
4838 * Queueing large contiguous runs of pages for batching, however,
4839 * causes the pages to actually be freed in smaller chunks. As there
4840 * can be a significant delay between the individual batches being
4841 * recycled, this leads to the once large chunks of space being
4842 * fragmented and becoming unavailable for high-order allocations.
4843 */
4844 return 0;
4845#endif
e7c8d5c9
CL
4846}
4847
8d7a8fa9
CS
4848/*
4849 * pcp->high and pcp->batch values are related and dependent on one another:
4850 * ->batch must never be higher then ->high.
4851 * The following function updates them in a safe manner without read side
4852 * locking.
4853 *
4854 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4855 * those fields changing asynchronously (acording the the above rule).
4856 *
4857 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4858 * outside of boot time (or some other assurance that no concurrent updaters
4859 * exist).
4860 */
4861static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4862 unsigned long batch)
4863{
4864 /* start with a fail safe value for batch */
4865 pcp->batch = 1;
4866 smp_wmb();
4867
4868 /* Update high, then batch, in order */
4869 pcp->high = high;
4870 smp_wmb();
4871
4872 pcp->batch = batch;
4873}
4874
3664033c 4875/* a companion to pageset_set_high() */
4008bab7
CS
4876static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4877{
8d7a8fa9 4878 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4879}
4880
88c90dbc 4881static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4882{
4883 struct per_cpu_pages *pcp;
5f8dcc21 4884 int migratetype;
2caaad41 4885
1c6fe946
MD
4886 memset(p, 0, sizeof(*p));
4887
3dfa5721 4888 pcp = &p->pcp;
2caaad41 4889 pcp->count = 0;
5f8dcc21
MG
4890 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4891 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4892}
4893
88c90dbc
CS
4894static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4895{
4896 pageset_init(p);
4897 pageset_set_batch(p, batch);
4898}
4899
8ad4b1fb 4900/*
3664033c 4901 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4902 * to the value high for the pageset p.
4903 */
3664033c 4904static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4905 unsigned long high)
4906{
8d7a8fa9
CS
4907 unsigned long batch = max(1UL, high / 4);
4908 if ((high / 4) > (PAGE_SHIFT * 8))
4909 batch = PAGE_SHIFT * 8;
8ad4b1fb 4910
8d7a8fa9 4911 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4912}
4913
7cd2b0a3
DR
4914static void pageset_set_high_and_batch(struct zone *zone,
4915 struct per_cpu_pageset *pcp)
56cef2b8 4916{
56cef2b8 4917 if (percpu_pagelist_fraction)
3664033c 4918 pageset_set_high(pcp,
56cef2b8
CS
4919 (zone->managed_pages /
4920 percpu_pagelist_fraction));
4921 else
4922 pageset_set_batch(pcp, zone_batchsize(zone));
4923}
4924
169f6c19
CS
4925static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4926{
4927 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4928
4929 pageset_init(pcp);
4930 pageset_set_high_and_batch(zone, pcp);
4931}
4932
4ed7e022 4933static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4934{
4935 int cpu;
319774e2 4936 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4937 for_each_possible_cpu(cpu)
4938 zone_pageset_init(zone, cpu);
319774e2
WF
4939}
4940
2caaad41 4941/*
99dcc3e5
CL
4942 * Allocate per cpu pagesets and initialize them.
4943 * Before this call only boot pagesets were available.
e7c8d5c9 4944 */
99dcc3e5 4945void __init setup_per_cpu_pageset(void)
e7c8d5c9 4946{
99dcc3e5 4947 struct zone *zone;
e7c8d5c9 4948
319774e2
WF
4949 for_each_populated_zone(zone)
4950 setup_zone_pageset(zone);
e7c8d5c9
CL
4951}
4952
577a32f6 4953static noinline __init_refok
cca448fe 4954int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4955{
4956 int i;
cca448fe 4957 size_t alloc_size;
ed8ece2e
DH
4958
4959 /*
4960 * The per-page waitqueue mechanism uses hashed waitqueues
4961 * per zone.
4962 */
02b694de
YG
4963 zone->wait_table_hash_nr_entries =
4964 wait_table_hash_nr_entries(zone_size_pages);
4965 zone->wait_table_bits =
4966 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4967 alloc_size = zone->wait_table_hash_nr_entries
4968 * sizeof(wait_queue_head_t);
4969
cd94b9db 4970 if (!slab_is_available()) {
cca448fe 4971 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4972 memblock_virt_alloc_node_nopanic(
4973 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4974 } else {
4975 /*
4976 * This case means that a zone whose size was 0 gets new memory
4977 * via memory hot-add.
4978 * But it may be the case that a new node was hot-added. In
4979 * this case vmalloc() will not be able to use this new node's
4980 * memory - this wait_table must be initialized to use this new
4981 * node itself as well.
4982 * To use this new node's memory, further consideration will be
4983 * necessary.
4984 */
8691f3a7 4985 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4986 }
4987 if (!zone->wait_table)
4988 return -ENOMEM;
ed8ece2e 4989
b8af2941 4990 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4991 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4992
4993 return 0;
ed8ece2e
DH
4994}
4995
c09b4240 4996static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4997{
99dcc3e5
CL
4998 /*
4999 * per cpu subsystem is not up at this point. The following code
5000 * relies on the ability of the linker to provide the
5001 * offset of a (static) per cpu variable into the per cpu area.
5002 */
5003 zone->pageset = &boot_pageset;
ed8ece2e 5004
b38a8725 5005 if (populated_zone(zone))
99dcc3e5
CL
5006 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5007 zone->name, zone->present_pages,
5008 zone_batchsize(zone));
ed8ece2e
DH
5009}
5010
4ed7e022 5011int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5012 unsigned long zone_start_pfn,
b171e409 5013 unsigned long size)
ed8ece2e
DH
5014{
5015 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5016 int ret;
5017 ret = zone_wait_table_init(zone, size);
5018 if (ret)
5019 return ret;
ed8ece2e
DH
5020 pgdat->nr_zones = zone_idx(zone) + 1;
5021
ed8ece2e
DH
5022 zone->zone_start_pfn = zone_start_pfn;
5023
708614e6
MG
5024 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5025 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5026 pgdat->node_id,
5027 (unsigned long)zone_idx(zone),
5028 zone_start_pfn, (zone_start_pfn + size));
5029
1e548deb 5030 zone_init_free_lists(zone);
718127cc
YG
5031
5032 return 0;
ed8ece2e
DH
5033}
5034
0ee332c1 5035#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5036#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5037
c713216d
MG
5038/*
5039 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5040 */
8a942fde
MG
5041int __meminit __early_pfn_to_nid(unsigned long pfn,
5042 struct mminit_pfnnid_cache *state)
c713216d 5043{
c13291a5 5044 unsigned long start_pfn, end_pfn;
e76b63f8 5045 int nid;
7c243c71 5046
8a942fde
MG
5047 if (state->last_start <= pfn && pfn < state->last_end)
5048 return state->last_nid;
c713216d 5049
e76b63f8
YL
5050 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5051 if (nid != -1) {
8a942fde
MG
5052 state->last_start = start_pfn;
5053 state->last_end = end_pfn;
5054 state->last_nid = nid;
e76b63f8
YL
5055 }
5056
5057 return nid;
c713216d
MG
5058}
5059#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5060
c713216d 5061/**
6782832e 5062 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5063 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5064 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5065 *
7d018176
ZZ
5066 * If an architecture guarantees that all ranges registered contain no holes
5067 * and may be freed, this this function may be used instead of calling
5068 * memblock_free_early_nid() manually.
c713216d 5069 */
c13291a5 5070void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5071{
c13291a5
TH
5072 unsigned long start_pfn, end_pfn;
5073 int i, this_nid;
edbe7d23 5074
c13291a5
TH
5075 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5076 start_pfn = min(start_pfn, max_low_pfn);
5077 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5078
c13291a5 5079 if (start_pfn < end_pfn)
6782832e
SS
5080 memblock_free_early_nid(PFN_PHYS(start_pfn),
5081 (end_pfn - start_pfn) << PAGE_SHIFT,
5082 this_nid);
edbe7d23 5083 }
edbe7d23 5084}
edbe7d23 5085
c713216d
MG
5086/**
5087 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5088 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5089 *
7d018176
ZZ
5090 * If an architecture guarantees that all ranges registered contain no holes and may
5091 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5092 */
5093void __init sparse_memory_present_with_active_regions(int nid)
5094{
c13291a5
TH
5095 unsigned long start_pfn, end_pfn;
5096 int i, this_nid;
c713216d 5097
c13291a5
TH
5098 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5099 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5100}
5101
5102/**
5103 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5104 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5105 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5106 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5107 *
5108 * It returns the start and end page frame of a node based on information
7d018176 5109 * provided by memblock_set_node(). If called for a node
c713216d 5110 * with no available memory, a warning is printed and the start and end
88ca3b94 5111 * PFNs will be 0.
c713216d 5112 */
a3142c8e 5113void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5114 unsigned long *start_pfn, unsigned long *end_pfn)
5115{
c13291a5 5116 unsigned long this_start_pfn, this_end_pfn;
c713216d 5117 int i;
c13291a5 5118
c713216d
MG
5119 *start_pfn = -1UL;
5120 *end_pfn = 0;
5121
c13291a5
TH
5122 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5123 *start_pfn = min(*start_pfn, this_start_pfn);
5124 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5125 }
5126
633c0666 5127 if (*start_pfn == -1UL)
c713216d 5128 *start_pfn = 0;
c713216d
MG
5129}
5130
2a1e274a
MG
5131/*
5132 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5133 * assumption is made that zones within a node are ordered in monotonic
5134 * increasing memory addresses so that the "highest" populated zone is used
5135 */
b69a7288 5136static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5137{
5138 int zone_index;
5139 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5140 if (zone_index == ZONE_MOVABLE)
5141 continue;
5142
5143 if (arch_zone_highest_possible_pfn[zone_index] >
5144 arch_zone_lowest_possible_pfn[zone_index])
5145 break;
5146 }
5147
5148 VM_BUG_ON(zone_index == -1);
5149 movable_zone = zone_index;
5150}
5151
5152/*
5153 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5154 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5155 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5156 * in each node depending on the size of each node and how evenly kernelcore
5157 * is distributed. This helper function adjusts the zone ranges
5158 * provided by the architecture for a given node by using the end of the
5159 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5160 * zones within a node are in order of monotonic increases memory addresses
5161 */
b69a7288 5162static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5163 unsigned long zone_type,
5164 unsigned long node_start_pfn,
5165 unsigned long node_end_pfn,
5166 unsigned long *zone_start_pfn,
5167 unsigned long *zone_end_pfn)
5168{
5169 /* Only adjust if ZONE_MOVABLE is on this node */
5170 if (zone_movable_pfn[nid]) {
5171 /* Size ZONE_MOVABLE */
5172 if (zone_type == ZONE_MOVABLE) {
5173 *zone_start_pfn = zone_movable_pfn[nid];
5174 *zone_end_pfn = min(node_end_pfn,
5175 arch_zone_highest_possible_pfn[movable_zone]);
5176
2a1e274a
MG
5177 /* Check if this whole range is within ZONE_MOVABLE */
5178 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5179 *zone_start_pfn = *zone_end_pfn;
5180 }
5181}
5182
c713216d
MG
5183/*
5184 * Return the number of pages a zone spans in a node, including holes
5185 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5186 */
6ea6e688 5187static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5188 unsigned long zone_type,
7960aedd
ZY
5189 unsigned long node_start_pfn,
5190 unsigned long node_end_pfn,
d91749c1
TI
5191 unsigned long *zone_start_pfn,
5192 unsigned long *zone_end_pfn,
c713216d
MG
5193 unsigned long *ignored)
5194{
b5685e92 5195 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5196 if (!node_start_pfn && !node_end_pfn)
5197 return 0;
5198
7960aedd 5199 /* Get the start and end of the zone */
d91749c1
TI
5200 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5201 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5202 adjust_zone_range_for_zone_movable(nid, zone_type,
5203 node_start_pfn, node_end_pfn,
d91749c1 5204 zone_start_pfn, zone_end_pfn);
c713216d
MG
5205
5206 /* Check that this node has pages within the zone's required range */
d91749c1 5207 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5208 return 0;
5209
5210 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5211 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5212 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5213
5214 /* Return the spanned pages */
d91749c1 5215 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5216}
5217
5218/*
5219 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5220 * then all holes in the requested range will be accounted for.
c713216d 5221 */
32996250 5222unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5223 unsigned long range_start_pfn,
5224 unsigned long range_end_pfn)
5225{
96e907d1
TH
5226 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5227 unsigned long start_pfn, end_pfn;
5228 int i;
c713216d 5229
96e907d1
TH
5230 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5231 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5232 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5233 nr_absent -= end_pfn - start_pfn;
c713216d 5234 }
96e907d1 5235 return nr_absent;
c713216d
MG
5236}
5237
5238/**
5239 * absent_pages_in_range - Return number of page frames in holes within a range
5240 * @start_pfn: The start PFN to start searching for holes
5241 * @end_pfn: The end PFN to stop searching for holes
5242 *
88ca3b94 5243 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5244 */
5245unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5246 unsigned long end_pfn)
5247{
5248 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5249}
5250
5251/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5252static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5253 unsigned long zone_type,
7960aedd
ZY
5254 unsigned long node_start_pfn,
5255 unsigned long node_end_pfn,
c713216d
MG
5256 unsigned long *ignored)
5257{
96e907d1
TH
5258 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5259 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5260 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5261 unsigned long nr_absent;
9c7cd687 5262
b5685e92 5263 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5264 if (!node_start_pfn && !node_end_pfn)
5265 return 0;
5266
96e907d1
TH
5267 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5268 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5269
2a1e274a
MG
5270 adjust_zone_range_for_zone_movable(nid, zone_type,
5271 node_start_pfn, node_end_pfn,
5272 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5273 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5274
5275 /*
5276 * ZONE_MOVABLE handling.
5277 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5278 * and vice versa.
5279 */
5280 if (zone_movable_pfn[nid]) {
5281 if (mirrored_kernelcore) {
5282 unsigned long start_pfn, end_pfn;
5283 struct memblock_region *r;
5284
5285 for_each_memblock(memory, r) {
5286 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5287 zone_start_pfn, zone_end_pfn);
5288 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5289 zone_start_pfn, zone_end_pfn);
5290
5291 if (zone_type == ZONE_MOVABLE &&
5292 memblock_is_mirror(r))
5293 nr_absent += end_pfn - start_pfn;
5294
5295 if (zone_type == ZONE_NORMAL &&
5296 !memblock_is_mirror(r))
5297 nr_absent += end_pfn - start_pfn;
5298 }
5299 } else {
5300 if (zone_type == ZONE_NORMAL)
5301 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5302 }
5303 }
5304
5305 return nr_absent;
c713216d 5306}
0e0b864e 5307
0ee332c1 5308#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5309static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5310 unsigned long zone_type,
7960aedd
ZY
5311 unsigned long node_start_pfn,
5312 unsigned long node_end_pfn,
d91749c1
TI
5313 unsigned long *zone_start_pfn,
5314 unsigned long *zone_end_pfn,
c713216d
MG
5315 unsigned long *zones_size)
5316{
d91749c1
TI
5317 unsigned int zone;
5318
5319 *zone_start_pfn = node_start_pfn;
5320 for (zone = 0; zone < zone_type; zone++)
5321 *zone_start_pfn += zones_size[zone];
5322
5323 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5324
c713216d
MG
5325 return zones_size[zone_type];
5326}
5327
6ea6e688 5328static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5329 unsigned long zone_type,
7960aedd
ZY
5330 unsigned long node_start_pfn,
5331 unsigned long node_end_pfn,
c713216d
MG
5332 unsigned long *zholes_size)
5333{
5334 if (!zholes_size)
5335 return 0;
5336
5337 return zholes_size[zone_type];
5338}
20e6926d 5339
0ee332c1 5340#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5341
a3142c8e 5342static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5343 unsigned long node_start_pfn,
5344 unsigned long node_end_pfn,
5345 unsigned long *zones_size,
5346 unsigned long *zholes_size)
c713216d 5347{
febd5949 5348 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5349 enum zone_type i;
5350
febd5949
GZ
5351 for (i = 0; i < MAX_NR_ZONES; i++) {
5352 struct zone *zone = pgdat->node_zones + i;
d91749c1 5353 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5354 unsigned long size, real_size;
c713216d 5355
febd5949
GZ
5356 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5357 node_start_pfn,
5358 node_end_pfn,
d91749c1
TI
5359 &zone_start_pfn,
5360 &zone_end_pfn,
febd5949
GZ
5361 zones_size);
5362 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5363 node_start_pfn, node_end_pfn,
5364 zholes_size);
d91749c1
TI
5365 if (size)
5366 zone->zone_start_pfn = zone_start_pfn;
5367 else
5368 zone->zone_start_pfn = 0;
febd5949
GZ
5369 zone->spanned_pages = size;
5370 zone->present_pages = real_size;
5371
5372 totalpages += size;
5373 realtotalpages += real_size;
5374 }
5375
5376 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5377 pgdat->node_present_pages = realtotalpages;
5378 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5379 realtotalpages);
5380}
5381
835c134e
MG
5382#ifndef CONFIG_SPARSEMEM
5383/*
5384 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5385 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5386 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5387 * round what is now in bits to nearest long in bits, then return it in
5388 * bytes.
5389 */
7c45512d 5390static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5391{
5392 unsigned long usemapsize;
5393
7c45512d 5394 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5395 usemapsize = roundup(zonesize, pageblock_nr_pages);
5396 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5397 usemapsize *= NR_PAGEBLOCK_BITS;
5398 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5399
5400 return usemapsize / 8;
5401}
5402
5403static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5404 struct zone *zone,
5405 unsigned long zone_start_pfn,
5406 unsigned long zonesize)
835c134e 5407{
7c45512d 5408 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5409 zone->pageblock_flags = NULL;
58a01a45 5410 if (usemapsize)
6782832e
SS
5411 zone->pageblock_flags =
5412 memblock_virt_alloc_node_nopanic(usemapsize,
5413 pgdat->node_id);
835c134e
MG
5414}
5415#else
7c45512d
LT
5416static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5417 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5418#endif /* CONFIG_SPARSEMEM */
5419
d9c23400 5420#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5421
d9c23400 5422/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5423void __paginginit set_pageblock_order(void)
d9c23400 5424{
955c1cd7
AM
5425 unsigned int order;
5426
d9c23400
MG
5427 /* Check that pageblock_nr_pages has not already been setup */
5428 if (pageblock_order)
5429 return;
5430
955c1cd7
AM
5431 if (HPAGE_SHIFT > PAGE_SHIFT)
5432 order = HUGETLB_PAGE_ORDER;
5433 else
5434 order = MAX_ORDER - 1;
5435
d9c23400
MG
5436 /*
5437 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5438 * This value may be variable depending on boot parameters on IA64 and
5439 * powerpc.
d9c23400
MG
5440 */
5441 pageblock_order = order;
5442}
5443#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5444
ba72cb8c
MG
5445/*
5446 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5447 * is unused as pageblock_order is set at compile-time. See
5448 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5449 * the kernel config
ba72cb8c 5450 */
15ca220e 5451void __paginginit set_pageblock_order(void)
ba72cb8c 5452{
ba72cb8c 5453}
d9c23400
MG
5454
5455#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5456
01cefaef
JL
5457static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5458 unsigned long present_pages)
5459{
5460 unsigned long pages = spanned_pages;
5461
5462 /*
5463 * Provide a more accurate estimation if there are holes within
5464 * the zone and SPARSEMEM is in use. If there are holes within the
5465 * zone, each populated memory region may cost us one or two extra
5466 * memmap pages due to alignment because memmap pages for each
5467 * populated regions may not naturally algined on page boundary.
5468 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5469 */
5470 if (spanned_pages > present_pages + (present_pages >> 4) &&
5471 IS_ENABLED(CONFIG_SPARSEMEM))
5472 pages = present_pages;
5473
5474 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5475}
5476
1da177e4
LT
5477/*
5478 * Set up the zone data structures:
5479 * - mark all pages reserved
5480 * - mark all memory queues empty
5481 * - clear the memory bitmaps
6527af5d
MK
5482 *
5483 * NOTE: pgdat should get zeroed by caller.
1da177e4 5484 */
7f3eb55b 5485static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5486{
2f1b6248 5487 enum zone_type j;
ed8ece2e 5488 int nid = pgdat->node_id;
718127cc 5489 int ret;
1da177e4 5490
208d54e5 5491 pgdat_resize_init(pgdat);
8177a420
AA
5492#ifdef CONFIG_NUMA_BALANCING
5493 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5494 pgdat->numabalancing_migrate_nr_pages = 0;
5495 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5496#endif
5497#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5498 spin_lock_init(&pgdat->split_queue_lock);
5499 INIT_LIST_HEAD(&pgdat->split_queue);
5500 pgdat->split_queue_len = 0;
8177a420 5501#endif
1da177e4 5502 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5503 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5504#ifdef CONFIG_COMPACTION
5505 init_waitqueue_head(&pgdat->kcompactd_wait);
5506#endif
eefa864b 5507 pgdat_page_ext_init(pgdat);
5f63b720 5508
1da177e4
LT
5509 for (j = 0; j < MAX_NR_ZONES; j++) {
5510 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5511 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5512 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5513
febd5949
GZ
5514 size = zone->spanned_pages;
5515 realsize = freesize = zone->present_pages;
1da177e4 5516
0e0b864e 5517 /*
9feedc9d 5518 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5519 * is used by this zone for memmap. This affects the watermark
5520 * and per-cpu initialisations
5521 */
01cefaef 5522 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5523 if (!is_highmem_idx(j)) {
5524 if (freesize >= memmap_pages) {
5525 freesize -= memmap_pages;
5526 if (memmap_pages)
5527 printk(KERN_DEBUG
5528 " %s zone: %lu pages used for memmap\n",
5529 zone_names[j], memmap_pages);
5530 } else
1170532b 5531 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5532 zone_names[j], memmap_pages, freesize);
5533 }
0e0b864e 5534
6267276f 5535 /* Account for reserved pages */
9feedc9d
JL
5536 if (j == 0 && freesize > dma_reserve) {
5537 freesize -= dma_reserve;
d903ef9f 5538 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5539 zone_names[0], dma_reserve);
0e0b864e
MG
5540 }
5541
98d2b0eb 5542 if (!is_highmem_idx(j))
9feedc9d 5543 nr_kernel_pages += freesize;
01cefaef
JL
5544 /* Charge for highmem memmap if there are enough kernel pages */
5545 else if (nr_kernel_pages > memmap_pages * 2)
5546 nr_kernel_pages -= memmap_pages;
9feedc9d 5547 nr_all_pages += freesize;
1da177e4 5548
9feedc9d
JL
5549 /*
5550 * Set an approximate value for lowmem here, it will be adjusted
5551 * when the bootmem allocator frees pages into the buddy system.
5552 * And all highmem pages will be managed by the buddy system.
5553 */
5554 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5555#ifdef CONFIG_NUMA
d5f541ed 5556 zone->node = nid;
9feedc9d 5557 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5558 / 100;
9feedc9d 5559 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5560#endif
1da177e4
LT
5561 zone->name = zone_names[j];
5562 spin_lock_init(&zone->lock);
5563 spin_lock_init(&zone->lru_lock);
bdc8cb98 5564 zone_seqlock_init(zone);
1da177e4 5565 zone->zone_pgdat = pgdat;
ed8ece2e 5566 zone_pcp_init(zone);
81c0a2bb
JW
5567
5568 /* For bootup, initialized properly in watermark setup */
5569 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5570
bea8c150 5571 lruvec_init(&zone->lruvec);
1da177e4
LT
5572 if (!size)
5573 continue;
5574
955c1cd7 5575 set_pageblock_order();
7c45512d 5576 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5577 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5578 BUG_ON(ret);
76cdd58e 5579 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5580 }
5581}
5582
577a32f6 5583static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5584{
b0aeba74 5585 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5586 unsigned long __maybe_unused offset = 0;
5587
1da177e4
LT
5588 /* Skip empty nodes */
5589 if (!pgdat->node_spanned_pages)
5590 return;
5591
d41dee36 5592#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5593 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5594 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5595 /* ia64 gets its own node_mem_map, before this, without bootmem */
5596 if (!pgdat->node_mem_map) {
b0aeba74 5597 unsigned long size, end;
d41dee36
AW
5598 struct page *map;
5599
e984bb43
BP
5600 /*
5601 * The zone's endpoints aren't required to be MAX_ORDER
5602 * aligned but the node_mem_map endpoints must be in order
5603 * for the buddy allocator to function correctly.
5604 */
108bcc96 5605 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5606 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5607 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5608 map = alloc_remap(pgdat->node_id, size);
5609 if (!map)
6782832e
SS
5610 map = memblock_virt_alloc_node_nopanic(size,
5611 pgdat->node_id);
a1c34a3b 5612 pgdat->node_mem_map = map + offset;
1da177e4 5613 }
12d810c1 5614#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5615 /*
5616 * With no DISCONTIG, the global mem_map is just set as node 0's
5617 */
c713216d 5618 if (pgdat == NODE_DATA(0)) {
1da177e4 5619 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5620#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5621 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5622 mem_map -= offset;
0ee332c1 5623#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5624 }
1da177e4 5625#endif
d41dee36 5626#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5627}
5628
9109fb7b
JW
5629void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5630 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5631{
9109fb7b 5632 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5633 unsigned long start_pfn = 0;
5634 unsigned long end_pfn = 0;
9109fb7b 5635
88fdf75d 5636 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5637 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5638
3a80a7fa 5639 reset_deferred_meminit(pgdat);
1da177e4
LT
5640 pgdat->node_id = nid;
5641 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5642#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5643 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5644 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5645 (u64)start_pfn << PAGE_SHIFT,
5646 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5647#else
5648 start_pfn = node_start_pfn;
7960aedd
ZY
5649#endif
5650 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5651 zones_size, zholes_size);
1da177e4
LT
5652
5653 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5654#ifdef CONFIG_FLAT_NODE_MEM_MAP
5655 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5656 nid, (unsigned long)pgdat,
5657 (unsigned long)pgdat->node_mem_map);
5658#endif
1da177e4 5659
7f3eb55b 5660 free_area_init_core(pgdat);
1da177e4
LT
5661}
5662
0ee332c1 5663#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5664
5665#if MAX_NUMNODES > 1
5666/*
5667 * Figure out the number of possible node ids.
5668 */
f9872caf 5669void __init setup_nr_node_ids(void)
418508c1 5670{
904a9553 5671 unsigned int highest;
418508c1 5672
904a9553 5673 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5674 nr_node_ids = highest + 1;
5675}
418508c1
MS
5676#endif
5677
1e01979c
TH
5678/**
5679 * node_map_pfn_alignment - determine the maximum internode alignment
5680 *
5681 * This function should be called after node map is populated and sorted.
5682 * It calculates the maximum power of two alignment which can distinguish
5683 * all the nodes.
5684 *
5685 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5686 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5687 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5688 * shifted, 1GiB is enough and this function will indicate so.
5689 *
5690 * This is used to test whether pfn -> nid mapping of the chosen memory
5691 * model has fine enough granularity to avoid incorrect mapping for the
5692 * populated node map.
5693 *
5694 * Returns the determined alignment in pfn's. 0 if there is no alignment
5695 * requirement (single node).
5696 */
5697unsigned long __init node_map_pfn_alignment(void)
5698{
5699 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5700 unsigned long start, end, mask;
1e01979c 5701 int last_nid = -1;
c13291a5 5702 int i, nid;
1e01979c 5703
c13291a5 5704 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5705 if (!start || last_nid < 0 || last_nid == nid) {
5706 last_nid = nid;
5707 last_end = end;
5708 continue;
5709 }
5710
5711 /*
5712 * Start with a mask granular enough to pin-point to the
5713 * start pfn and tick off bits one-by-one until it becomes
5714 * too coarse to separate the current node from the last.
5715 */
5716 mask = ~((1 << __ffs(start)) - 1);
5717 while (mask && last_end <= (start & (mask << 1)))
5718 mask <<= 1;
5719
5720 /* accumulate all internode masks */
5721 accl_mask |= mask;
5722 }
5723
5724 /* convert mask to number of pages */
5725 return ~accl_mask + 1;
5726}
5727
a6af2bc3 5728/* Find the lowest pfn for a node */
b69a7288 5729static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5730{
a6af2bc3 5731 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5732 unsigned long start_pfn;
5733 int i;
1abbfb41 5734
c13291a5
TH
5735 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5736 min_pfn = min(min_pfn, start_pfn);
c713216d 5737
a6af2bc3 5738 if (min_pfn == ULONG_MAX) {
1170532b 5739 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5740 return 0;
5741 }
5742
5743 return min_pfn;
c713216d
MG
5744}
5745
5746/**
5747 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5748 *
5749 * It returns the minimum PFN based on information provided via
7d018176 5750 * memblock_set_node().
c713216d
MG
5751 */
5752unsigned long __init find_min_pfn_with_active_regions(void)
5753{
5754 return find_min_pfn_for_node(MAX_NUMNODES);
5755}
5756
37b07e41
LS
5757/*
5758 * early_calculate_totalpages()
5759 * Sum pages in active regions for movable zone.
4b0ef1fe 5760 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5761 */
484f51f8 5762static unsigned long __init early_calculate_totalpages(void)
7e63efef 5763{
7e63efef 5764 unsigned long totalpages = 0;
c13291a5
TH
5765 unsigned long start_pfn, end_pfn;
5766 int i, nid;
5767
5768 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5769 unsigned long pages = end_pfn - start_pfn;
7e63efef 5770
37b07e41
LS
5771 totalpages += pages;
5772 if (pages)
4b0ef1fe 5773 node_set_state(nid, N_MEMORY);
37b07e41 5774 }
b8af2941 5775 return totalpages;
7e63efef
MG
5776}
5777
2a1e274a
MG
5778/*
5779 * Find the PFN the Movable zone begins in each node. Kernel memory
5780 * is spread evenly between nodes as long as the nodes have enough
5781 * memory. When they don't, some nodes will have more kernelcore than
5782 * others
5783 */
b224ef85 5784static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5785{
5786 int i, nid;
5787 unsigned long usable_startpfn;
5788 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5789 /* save the state before borrow the nodemask */
4b0ef1fe 5790 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5791 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5792 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5793 struct memblock_region *r;
b2f3eebe
TC
5794
5795 /* Need to find movable_zone earlier when movable_node is specified. */
5796 find_usable_zone_for_movable();
5797
5798 /*
5799 * If movable_node is specified, ignore kernelcore and movablecore
5800 * options.
5801 */
5802 if (movable_node_is_enabled()) {
136199f0
EM
5803 for_each_memblock(memory, r) {
5804 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5805 continue;
5806
136199f0 5807 nid = r->nid;
b2f3eebe 5808
136199f0 5809 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5810 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5811 min(usable_startpfn, zone_movable_pfn[nid]) :
5812 usable_startpfn;
5813 }
5814
5815 goto out2;
5816 }
2a1e274a 5817
342332e6
TI
5818 /*
5819 * If kernelcore=mirror is specified, ignore movablecore option
5820 */
5821 if (mirrored_kernelcore) {
5822 bool mem_below_4gb_not_mirrored = false;
5823
5824 for_each_memblock(memory, r) {
5825 if (memblock_is_mirror(r))
5826 continue;
5827
5828 nid = r->nid;
5829
5830 usable_startpfn = memblock_region_memory_base_pfn(r);
5831
5832 if (usable_startpfn < 0x100000) {
5833 mem_below_4gb_not_mirrored = true;
5834 continue;
5835 }
5836
5837 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5838 min(usable_startpfn, zone_movable_pfn[nid]) :
5839 usable_startpfn;
5840 }
5841
5842 if (mem_below_4gb_not_mirrored)
5843 pr_warn("This configuration results in unmirrored kernel memory.");
5844
5845 goto out2;
5846 }
5847
7e63efef 5848 /*
b2f3eebe 5849 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5850 * kernelcore that corresponds so that memory usable for
5851 * any allocation type is evenly spread. If both kernelcore
5852 * and movablecore are specified, then the value of kernelcore
5853 * will be used for required_kernelcore if it's greater than
5854 * what movablecore would have allowed.
5855 */
5856 if (required_movablecore) {
7e63efef
MG
5857 unsigned long corepages;
5858
5859 /*
5860 * Round-up so that ZONE_MOVABLE is at least as large as what
5861 * was requested by the user
5862 */
5863 required_movablecore =
5864 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5865 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5866 corepages = totalpages - required_movablecore;
5867
5868 required_kernelcore = max(required_kernelcore, corepages);
5869 }
5870
bde304bd
XQ
5871 /*
5872 * If kernelcore was not specified or kernelcore size is larger
5873 * than totalpages, there is no ZONE_MOVABLE.
5874 */
5875 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5876 goto out;
2a1e274a
MG
5877
5878 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5879 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5880
5881restart:
5882 /* Spread kernelcore memory as evenly as possible throughout nodes */
5883 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5884 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5885 unsigned long start_pfn, end_pfn;
5886
2a1e274a
MG
5887 /*
5888 * Recalculate kernelcore_node if the division per node
5889 * now exceeds what is necessary to satisfy the requested
5890 * amount of memory for the kernel
5891 */
5892 if (required_kernelcore < kernelcore_node)
5893 kernelcore_node = required_kernelcore / usable_nodes;
5894
5895 /*
5896 * As the map is walked, we track how much memory is usable
5897 * by the kernel using kernelcore_remaining. When it is
5898 * 0, the rest of the node is usable by ZONE_MOVABLE
5899 */
5900 kernelcore_remaining = kernelcore_node;
5901
5902 /* Go through each range of PFNs within this node */
c13291a5 5903 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5904 unsigned long size_pages;
5905
c13291a5 5906 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5907 if (start_pfn >= end_pfn)
5908 continue;
5909
5910 /* Account for what is only usable for kernelcore */
5911 if (start_pfn < usable_startpfn) {
5912 unsigned long kernel_pages;
5913 kernel_pages = min(end_pfn, usable_startpfn)
5914 - start_pfn;
5915
5916 kernelcore_remaining -= min(kernel_pages,
5917 kernelcore_remaining);
5918 required_kernelcore -= min(kernel_pages,
5919 required_kernelcore);
5920
5921 /* Continue if range is now fully accounted */
5922 if (end_pfn <= usable_startpfn) {
5923
5924 /*
5925 * Push zone_movable_pfn to the end so
5926 * that if we have to rebalance
5927 * kernelcore across nodes, we will
5928 * not double account here
5929 */
5930 zone_movable_pfn[nid] = end_pfn;
5931 continue;
5932 }
5933 start_pfn = usable_startpfn;
5934 }
5935
5936 /*
5937 * The usable PFN range for ZONE_MOVABLE is from
5938 * start_pfn->end_pfn. Calculate size_pages as the
5939 * number of pages used as kernelcore
5940 */
5941 size_pages = end_pfn - start_pfn;
5942 if (size_pages > kernelcore_remaining)
5943 size_pages = kernelcore_remaining;
5944 zone_movable_pfn[nid] = start_pfn + size_pages;
5945
5946 /*
5947 * Some kernelcore has been met, update counts and
5948 * break if the kernelcore for this node has been
b8af2941 5949 * satisfied
2a1e274a
MG
5950 */
5951 required_kernelcore -= min(required_kernelcore,
5952 size_pages);
5953 kernelcore_remaining -= size_pages;
5954 if (!kernelcore_remaining)
5955 break;
5956 }
5957 }
5958
5959 /*
5960 * If there is still required_kernelcore, we do another pass with one
5961 * less node in the count. This will push zone_movable_pfn[nid] further
5962 * along on the nodes that still have memory until kernelcore is
b8af2941 5963 * satisfied
2a1e274a
MG
5964 */
5965 usable_nodes--;
5966 if (usable_nodes && required_kernelcore > usable_nodes)
5967 goto restart;
5968
b2f3eebe 5969out2:
2a1e274a
MG
5970 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5971 for (nid = 0; nid < MAX_NUMNODES; nid++)
5972 zone_movable_pfn[nid] =
5973 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5974
20e6926d 5975out:
66918dcd 5976 /* restore the node_state */
4b0ef1fe 5977 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5978}
5979
4b0ef1fe
LJ
5980/* Any regular or high memory on that node ? */
5981static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5982{
37b07e41
LS
5983 enum zone_type zone_type;
5984
4b0ef1fe
LJ
5985 if (N_MEMORY == N_NORMAL_MEMORY)
5986 return;
5987
5988 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5989 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5990 if (populated_zone(zone)) {
4b0ef1fe
LJ
5991 node_set_state(nid, N_HIGH_MEMORY);
5992 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5993 zone_type <= ZONE_NORMAL)
5994 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5995 break;
5996 }
37b07e41 5997 }
37b07e41
LS
5998}
5999
c713216d
MG
6000/**
6001 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6002 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6003 *
6004 * This will call free_area_init_node() for each active node in the system.
7d018176 6005 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6006 * zone in each node and their holes is calculated. If the maximum PFN
6007 * between two adjacent zones match, it is assumed that the zone is empty.
6008 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6009 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6010 * starts where the previous one ended. For example, ZONE_DMA32 starts
6011 * at arch_max_dma_pfn.
6012 */
6013void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6014{
c13291a5
TH
6015 unsigned long start_pfn, end_pfn;
6016 int i, nid;
a6af2bc3 6017
c713216d
MG
6018 /* Record where the zone boundaries are */
6019 memset(arch_zone_lowest_possible_pfn, 0,
6020 sizeof(arch_zone_lowest_possible_pfn));
6021 memset(arch_zone_highest_possible_pfn, 0,
6022 sizeof(arch_zone_highest_possible_pfn));
6023 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6024 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6025 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6026 if (i == ZONE_MOVABLE)
6027 continue;
c713216d
MG
6028 arch_zone_lowest_possible_pfn[i] =
6029 arch_zone_highest_possible_pfn[i-1];
6030 arch_zone_highest_possible_pfn[i] =
6031 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6032 }
2a1e274a
MG
6033 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6034 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6035
6036 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6037 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6038 find_zone_movable_pfns_for_nodes();
c713216d 6039
c713216d 6040 /* Print out the zone ranges */
f88dfff5 6041 pr_info("Zone ranges:\n");
2a1e274a
MG
6042 for (i = 0; i < MAX_NR_ZONES; i++) {
6043 if (i == ZONE_MOVABLE)
6044 continue;
f88dfff5 6045 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6046 if (arch_zone_lowest_possible_pfn[i] ==
6047 arch_zone_highest_possible_pfn[i])
f88dfff5 6048 pr_cont("empty\n");
72f0ba02 6049 else
8d29e18a
JG
6050 pr_cont("[mem %#018Lx-%#018Lx]\n",
6051 (u64)arch_zone_lowest_possible_pfn[i]
6052 << PAGE_SHIFT,
6053 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6054 << PAGE_SHIFT) - 1);
2a1e274a
MG
6055 }
6056
6057 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6058 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6059 for (i = 0; i < MAX_NUMNODES; i++) {
6060 if (zone_movable_pfn[i])
8d29e18a
JG
6061 pr_info(" Node %d: %#018Lx\n", i,
6062 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6063 }
c713216d 6064
f2d52fe5 6065 /* Print out the early node map */
f88dfff5 6066 pr_info("Early memory node ranges\n");
c13291a5 6067 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6068 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6069 (u64)start_pfn << PAGE_SHIFT,
6070 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6071
6072 /* Initialise every node */
708614e6 6073 mminit_verify_pageflags_layout();
8ef82866 6074 setup_nr_node_ids();
c713216d
MG
6075 for_each_online_node(nid) {
6076 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6077 free_area_init_node(nid, NULL,
c713216d 6078 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6079
6080 /* Any memory on that node */
6081 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6082 node_set_state(nid, N_MEMORY);
6083 check_for_memory(pgdat, nid);
c713216d
MG
6084 }
6085}
2a1e274a 6086
7e63efef 6087static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6088{
6089 unsigned long long coremem;
6090 if (!p)
6091 return -EINVAL;
6092
6093 coremem = memparse(p, &p);
7e63efef 6094 *core = coremem >> PAGE_SHIFT;
2a1e274a 6095
7e63efef 6096 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6097 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6098
6099 return 0;
6100}
ed7ed365 6101
7e63efef
MG
6102/*
6103 * kernelcore=size sets the amount of memory for use for allocations that
6104 * cannot be reclaimed or migrated.
6105 */
6106static int __init cmdline_parse_kernelcore(char *p)
6107{
342332e6
TI
6108 /* parse kernelcore=mirror */
6109 if (parse_option_str(p, "mirror")) {
6110 mirrored_kernelcore = true;
6111 return 0;
6112 }
6113
7e63efef
MG
6114 return cmdline_parse_core(p, &required_kernelcore);
6115}
6116
6117/*
6118 * movablecore=size sets the amount of memory for use for allocations that
6119 * can be reclaimed or migrated.
6120 */
6121static int __init cmdline_parse_movablecore(char *p)
6122{
6123 return cmdline_parse_core(p, &required_movablecore);
6124}
6125
ed7ed365 6126early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6127early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6128
0ee332c1 6129#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6130
c3d5f5f0
JL
6131void adjust_managed_page_count(struct page *page, long count)
6132{
6133 spin_lock(&managed_page_count_lock);
6134 page_zone(page)->managed_pages += count;
6135 totalram_pages += count;
3dcc0571
JL
6136#ifdef CONFIG_HIGHMEM
6137 if (PageHighMem(page))
6138 totalhigh_pages += count;
6139#endif
c3d5f5f0
JL
6140 spin_unlock(&managed_page_count_lock);
6141}
3dcc0571 6142EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6143
11199692 6144unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6145{
11199692
JL
6146 void *pos;
6147 unsigned long pages = 0;
69afade7 6148
11199692
JL
6149 start = (void *)PAGE_ALIGN((unsigned long)start);
6150 end = (void *)((unsigned long)end & PAGE_MASK);
6151 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6152 if ((unsigned int)poison <= 0xFF)
11199692
JL
6153 memset(pos, poison, PAGE_SIZE);
6154 free_reserved_page(virt_to_page(pos));
69afade7
JL
6155 }
6156
6157 if (pages && s)
11199692 6158 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6159 s, pages << (PAGE_SHIFT - 10), start, end);
6160
6161 return pages;
6162}
11199692 6163EXPORT_SYMBOL(free_reserved_area);
69afade7 6164
cfa11e08
JL
6165#ifdef CONFIG_HIGHMEM
6166void free_highmem_page(struct page *page)
6167{
6168 __free_reserved_page(page);
6169 totalram_pages++;
7b4b2a0d 6170 page_zone(page)->managed_pages++;
cfa11e08
JL
6171 totalhigh_pages++;
6172}
6173#endif
6174
7ee3d4e8
JL
6175
6176void __init mem_init_print_info(const char *str)
6177{
6178 unsigned long physpages, codesize, datasize, rosize, bss_size;
6179 unsigned long init_code_size, init_data_size;
6180
6181 physpages = get_num_physpages();
6182 codesize = _etext - _stext;
6183 datasize = _edata - _sdata;
6184 rosize = __end_rodata - __start_rodata;
6185 bss_size = __bss_stop - __bss_start;
6186 init_data_size = __init_end - __init_begin;
6187 init_code_size = _einittext - _sinittext;
6188
6189 /*
6190 * Detect special cases and adjust section sizes accordingly:
6191 * 1) .init.* may be embedded into .data sections
6192 * 2) .init.text.* may be out of [__init_begin, __init_end],
6193 * please refer to arch/tile/kernel/vmlinux.lds.S.
6194 * 3) .rodata.* may be embedded into .text or .data sections.
6195 */
6196#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6197 do { \
6198 if (start <= pos && pos < end && size > adj) \
6199 size -= adj; \
6200 } while (0)
7ee3d4e8
JL
6201
6202 adj_init_size(__init_begin, __init_end, init_data_size,
6203 _sinittext, init_code_size);
6204 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6205 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6206 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6207 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6208
6209#undef adj_init_size
6210
756a025f 6211 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6212#ifdef CONFIG_HIGHMEM
756a025f 6213 ", %luK highmem"
7ee3d4e8 6214#endif
756a025f
JP
6215 "%s%s)\n",
6216 nr_free_pages() << (PAGE_SHIFT - 10),
6217 physpages << (PAGE_SHIFT - 10),
6218 codesize >> 10, datasize >> 10, rosize >> 10,
6219 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6220 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6221 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6222#ifdef CONFIG_HIGHMEM
756a025f 6223 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6224#endif
756a025f 6225 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6226}
6227
0e0b864e 6228/**
88ca3b94
RD
6229 * set_dma_reserve - set the specified number of pages reserved in the first zone
6230 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6231 *
013110a7 6232 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6233 * In the DMA zone, a significant percentage may be consumed by kernel image
6234 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6235 * function may optionally be used to account for unfreeable pages in the
6236 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6237 * smaller per-cpu batchsize.
0e0b864e
MG
6238 */
6239void __init set_dma_reserve(unsigned long new_dma_reserve)
6240{
6241 dma_reserve = new_dma_reserve;
6242}
6243
1da177e4
LT
6244void __init free_area_init(unsigned long *zones_size)
6245{
9109fb7b 6246 free_area_init_node(0, zones_size,
1da177e4
LT
6247 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6248}
1da177e4 6249
1da177e4
LT
6250static int page_alloc_cpu_notify(struct notifier_block *self,
6251 unsigned long action, void *hcpu)
6252{
6253 int cpu = (unsigned long)hcpu;
1da177e4 6254
8bb78442 6255 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6256 lru_add_drain_cpu(cpu);
9f8f2172
CL
6257 drain_pages(cpu);
6258
6259 /*
6260 * Spill the event counters of the dead processor
6261 * into the current processors event counters.
6262 * This artificially elevates the count of the current
6263 * processor.
6264 */
f8891e5e 6265 vm_events_fold_cpu(cpu);
9f8f2172
CL
6266
6267 /*
6268 * Zero the differential counters of the dead processor
6269 * so that the vm statistics are consistent.
6270 *
6271 * This is only okay since the processor is dead and cannot
6272 * race with what we are doing.
6273 */
2bb921e5 6274 cpu_vm_stats_fold(cpu);
1da177e4
LT
6275 }
6276 return NOTIFY_OK;
6277}
1da177e4
LT
6278
6279void __init page_alloc_init(void)
6280{
6281 hotcpu_notifier(page_alloc_cpu_notify, 0);
6282}
6283
cb45b0e9 6284/*
34b10060 6285 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6286 * or min_free_kbytes changes.
6287 */
6288static void calculate_totalreserve_pages(void)
6289{
6290 struct pglist_data *pgdat;
6291 unsigned long reserve_pages = 0;
2f6726e5 6292 enum zone_type i, j;
cb45b0e9
HA
6293
6294 for_each_online_pgdat(pgdat) {
6295 for (i = 0; i < MAX_NR_ZONES; i++) {
6296 struct zone *zone = pgdat->node_zones + i;
3484b2de 6297 long max = 0;
cb45b0e9
HA
6298
6299 /* Find valid and maximum lowmem_reserve in the zone */
6300 for (j = i; j < MAX_NR_ZONES; j++) {
6301 if (zone->lowmem_reserve[j] > max)
6302 max = zone->lowmem_reserve[j];
6303 }
6304
41858966
MG
6305 /* we treat the high watermark as reserved pages. */
6306 max += high_wmark_pages(zone);
cb45b0e9 6307
b40da049
JL
6308 if (max > zone->managed_pages)
6309 max = zone->managed_pages;
a8d01437
JW
6310
6311 zone->totalreserve_pages = max;
6312
cb45b0e9
HA
6313 reserve_pages += max;
6314 }
6315 }
6316 totalreserve_pages = reserve_pages;
6317}
6318
1da177e4
LT
6319/*
6320 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6321 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6322 * has a correct pages reserved value, so an adequate number of
6323 * pages are left in the zone after a successful __alloc_pages().
6324 */
6325static void setup_per_zone_lowmem_reserve(void)
6326{
6327 struct pglist_data *pgdat;
2f6726e5 6328 enum zone_type j, idx;
1da177e4 6329
ec936fc5 6330 for_each_online_pgdat(pgdat) {
1da177e4
LT
6331 for (j = 0; j < MAX_NR_ZONES; j++) {
6332 struct zone *zone = pgdat->node_zones + j;
b40da049 6333 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6334
6335 zone->lowmem_reserve[j] = 0;
6336
2f6726e5
CL
6337 idx = j;
6338 while (idx) {
1da177e4
LT
6339 struct zone *lower_zone;
6340
2f6726e5
CL
6341 idx--;
6342
1da177e4
LT
6343 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6344 sysctl_lowmem_reserve_ratio[idx] = 1;
6345
6346 lower_zone = pgdat->node_zones + idx;
b40da049 6347 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6348 sysctl_lowmem_reserve_ratio[idx];
b40da049 6349 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6350 }
6351 }
6352 }
cb45b0e9
HA
6353
6354 /* update totalreserve_pages */
6355 calculate_totalreserve_pages();
1da177e4
LT
6356}
6357
cfd3da1e 6358static void __setup_per_zone_wmarks(void)
1da177e4
LT
6359{
6360 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6361 unsigned long lowmem_pages = 0;
6362 struct zone *zone;
6363 unsigned long flags;
6364
6365 /* Calculate total number of !ZONE_HIGHMEM pages */
6366 for_each_zone(zone) {
6367 if (!is_highmem(zone))
b40da049 6368 lowmem_pages += zone->managed_pages;
1da177e4
LT
6369 }
6370
6371 for_each_zone(zone) {
ac924c60
AM
6372 u64 tmp;
6373
1125b4e3 6374 spin_lock_irqsave(&zone->lock, flags);
b40da049 6375 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6376 do_div(tmp, lowmem_pages);
1da177e4
LT
6377 if (is_highmem(zone)) {
6378 /*
669ed175
NP
6379 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6380 * need highmem pages, so cap pages_min to a small
6381 * value here.
6382 *
41858966 6383 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6384 * deltas control asynch page reclaim, and so should
669ed175 6385 * not be capped for highmem.
1da177e4 6386 */
90ae8d67 6387 unsigned long min_pages;
1da177e4 6388
b40da049 6389 min_pages = zone->managed_pages / 1024;
90ae8d67 6390 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6391 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6392 } else {
669ed175
NP
6393 /*
6394 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6395 * proportionate to the zone's size.
6396 */
41858966 6397 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6398 }
6399
795ae7a0
JW
6400 /*
6401 * Set the kswapd watermarks distance according to the
6402 * scale factor in proportion to available memory, but
6403 * ensure a minimum size on small systems.
6404 */
6405 tmp = max_t(u64, tmp >> 2,
6406 mult_frac(zone->managed_pages,
6407 watermark_scale_factor, 10000));
6408
6409 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6410 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6411
81c0a2bb 6412 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6413 high_wmark_pages(zone) - low_wmark_pages(zone) -
6414 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6415
1125b4e3 6416 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6417 }
cb45b0e9
HA
6418
6419 /* update totalreserve_pages */
6420 calculate_totalreserve_pages();
1da177e4
LT
6421}
6422
cfd3da1e
MG
6423/**
6424 * setup_per_zone_wmarks - called when min_free_kbytes changes
6425 * or when memory is hot-{added|removed}
6426 *
6427 * Ensures that the watermark[min,low,high] values for each zone are set
6428 * correctly with respect to min_free_kbytes.
6429 */
6430void setup_per_zone_wmarks(void)
6431{
6432 mutex_lock(&zonelists_mutex);
6433 __setup_per_zone_wmarks();
6434 mutex_unlock(&zonelists_mutex);
6435}
6436
55a4462a 6437/*
556adecb
RR
6438 * The inactive anon list should be small enough that the VM never has to
6439 * do too much work, but large enough that each inactive page has a chance
6440 * to be referenced again before it is swapped out.
6441 *
6442 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6443 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6444 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6445 * the anonymous pages are kept on the inactive list.
6446 *
6447 * total target max
6448 * memory ratio inactive anon
6449 * -------------------------------------
6450 * 10MB 1 5MB
6451 * 100MB 1 50MB
6452 * 1GB 3 250MB
6453 * 10GB 10 0.9GB
6454 * 100GB 31 3GB
6455 * 1TB 101 10GB
6456 * 10TB 320 32GB
6457 */
1b79acc9 6458static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6459{
96cb4df5 6460 unsigned int gb, ratio;
556adecb 6461
96cb4df5 6462 /* Zone size in gigabytes */
b40da049 6463 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6464 if (gb)
556adecb 6465 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6466 else
6467 ratio = 1;
556adecb 6468
96cb4df5
MK
6469 zone->inactive_ratio = ratio;
6470}
556adecb 6471
839a4fcc 6472static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6473{
6474 struct zone *zone;
6475
6476 for_each_zone(zone)
6477 calculate_zone_inactive_ratio(zone);
556adecb
RR
6478}
6479
1da177e4
LT
6480/*
6481 * Initialise min_free_kbytes.
6482 *
6483 * For small machines we want it small (128k min). For large machines
6484 * we want it large (64MB max). But it is not linear, because network
6485 * bandwidth does not increase linearly with machine size. We use
6486 *
b8af2941 6487 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6488 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6489 *
6490 * which yields
6491 *
6492 * 16MB: 512k
6493 * 32MB: 724k
6494 * 64MB: 1024k
6495 * 128MB: 1448k
6496 * 256MB: 2048k
6497 * 512MB: 2896k
6498 * 1024MB: 4096k
6499 * 2048MB: 5792k
6500 * 4096MB: 8192k
6501 * 8192MB: 11584k
6502 * 16384MB: 16384k
6503 */
1b79acc9 6504int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6505{
6506 unsigned long lowmem_kbytes;
5f12733e 6507 int new_min_free_kbytes;
1da177e4
LT
6508
6509 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6510 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6511
6512 if (new_min_free_kbytes > user_min_free_kbytes) {
6513 min_free_kbytes = new_min_free_kbytes;
6514 if (min_free_kbytes < 128)
6515 min_free_kbytes = 128;
6516 if (min_free_kbytes > 65536)
6517 min_free_kbytes = 65536;
6518 } else {
6519 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6520 new_min_free_kbytes, user_min_free_kbytes);
6521 }
bc75d33f 6522 setup_per_zone_wmarks();
a6cccdc3 6523 refresh_zone_stat_thresholds();
1da177e4 6524 setup_per_zone_lowmem_reserve();
556adecb 6525 setup_per_zone_inactive_ratio();
1da177e4
LT
6526 return 0;
6527}
bc22af74 6528core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6529
6530/*
b8af2941 6531 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6532 * that we can call two helper functions whenever min_free_kbytes
6533 * changes.
6534 */
cccad5b9 6535int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6536 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6537{
da8c757b
HP
6538 int rc;
6539
6540 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6541 if (rc)
6542 return rc;
6543
5f12733e
MH
6544 if (write) {
6545 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6546 setup_per_zone_wmarks();
5f12733e 6547 }
1da177e4
LT
6548 return 0;
6549}
6550
795ae7a0
JW
6551int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6552 void __user *buffer, size_t *length, loff_t *ppos)
6553{
6554 int rc;
6555
6556 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6557 if (rc)
6558 return rc;
6559
6560 if (write)
6561 setup_per_zone_wmarks();
6562
6563 return 0;
6564}
6565
9614634f 6566#ifdef CONFIG_NUMA
cccad5b9 6567int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6568 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6569{
6570 struct zone *zone;
6571 int rc;
6572
8d65af78 6573 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6574 if (rc)
6575 return rc;
6576
6577 for_each_zone(zone)
b40da049 6578 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6579 sysctl_min_unmapped_ratio) / 100;
6580 return 0;
6581}
0ff38490 6582
cccad5b9 6583int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6584 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6585{
6586 struct zone *zone;
6587 int rc;
6588
8d65af78 6589 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6590 if (rc)
6591 return rc;
6592
6593 for_each_zone(zone)
b40da049 6594 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6595 sysctl_min_slab_ratio) / 100;
6596 return 0;
6597}
9614634f
CL
6598#endif
6599
1da177e4
LT
6600/*
6601 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6602 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6603 * whenever sysctl_lowmem_reserve_ratio changes.
6604 *
6605 * The reserve ratio obviously has absolutely no relation with the
41858966 6606 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6607 * if in function of the boot time zone sizes.
6608 */
cccad5b9 6609int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6610 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6611{
8d65af78 6612 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6613 setup_per_zone_lowmem_reserve();
6614 return 0;
6615}
6616
8ad4b1fb
RS
6617/*
6618 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6619 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6620 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6621 */
cccad5b9 6622int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6623 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6624{
6625 struct zone *zone;
7cd2b0a3 6626 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6627 int ret;
6628
7cd2b0a3
DR
6629 mutex_lock(&pcp_batch_high_lock);
6630 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6631
8d65af78 6632 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6633 if (!write || ret < 0)
6634 goto out;
6635
6636 /* Sanity checking to avoid pcp imbalance */
6637 if (percpu_pagelist_fraction &&
6638 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6639 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6640 ret = -EINVAL;
6641 goto out;
6642 }
6643
6644 /* No change? */
6645 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6646 goto out;
c8e251fa 6647
364df0eb 6648 for_each_populated_zone(zone) {
7cd2b0a3
DR
6649 unsigned int cpu;
6650
22a7f12b 6651 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6652 pageset_set_high_and_batch(zone,
6653 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6654 }
7cd2b0a3 6655out:
c8e251fa 6656 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6657 return ret;
8ad4b1fb
RS
6658}
6659
a9919c79 6660#ifdef CONFIG_NUMA
f034b5d4 6661int hashdist = HASHDIST_DEFAULT;
1da177e4 6662
1da177e4
LT
6663static int __init set_hashdist(char *str)
6664{
6665 if (!str)
6666 return 0;
6667 hashdist = simple_strtoul(str, &str, 0);
6668 return 1;
6669}
6670__setup("hashdist=", set_hashdist);
6671#endif
6672
6673/*
6674 * allocate a large system hash table from bootmem
6675 * - it is assumed that the hash table must contain an exact power-of-2
6676 * quantity of entries
6677 * - limit is the number of hash buckets, not the total allocation size
6678 */
6679void *__init alloc_large_system_hash(const char *tablename,
6680 unsigned long bucketsize,
6681 unsigned long numentries,
6682 int scale,
6683 int flags,
6684 unsigned int *_hash_shift,
6685 unsigned int *_hash_mask,
31fe62b9
TB
6686 unsigned long low_limit,
6687 unsigned long high_limit)
1da177e4 6688{
31fe62b9 6689 unsigned long long max = high_limit;
1da177e4
LT
6690 unsigned long log2qty, size;
6691 void *table = NULL;
6692
6693 /* allow the kernel cmdline to have a say */
6694 if (!numentries) {
6695 /* round applicable memory size up to nearest megabyte */
04903664 6696 numentries = nr_kernel_pages;
a7e83318
JZ
6697
6698 /* It isn't necessary when PAGE_SIZE >= 1MB */
6699 if (PAGE_SHIFT < 20)
6700 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6701
6702 /* limit to 1 bucket per 2^scale bytes of low memory */
6703 if (scale > PAGE_SHIFT)
6704 numentries >>= (scale - PAGE_SHIFT);
6705 else
6706 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6707
6708 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6709 if (unlikely(flags & HASH_SMALL)) {
6710 /* Makes no sense without HASH_EARLY */
6711 WARN_ON(!(flags & HASH_EARLY));
6712 if (!(numentries >> *_hash_shift)) {
6713 numentries = 1UL << *_hash_shift;
6714 BUG_ON(!numentries);
6715 }
6716 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6717 numentries = PAGE_SIZE / bucketsize;
1da177e4 6718 }
6e692ed3 6719 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6720
6721 /* limit allocation size to 1/16 total memory by default */
6722 if (max == 0) {
6723 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6724 do_div(max, bucketsize);
6725 }
074b8517 6726 max = min(max, 0x80000000ULL);
1da177e4 6727
31fe62b9
TB
6728 if (numentries < low_limit)
6729 numentries = low_limit;
1da177e4
LT
6730 if (numentries > max)
6731 numentries = max;
6732
f0d1b0b3 6733 log2qty = ilog2(numentries);
1da177e4
LT
6734
6735 do {
6736 size = bucketsize << log2qty;
6737 if (flags & HASH_EARLY)
6782832e 6738 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6739 else if (hashdist)
6740 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6741 else {
1037b83b
ED
6742 /*
6743 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6744 * some pages at the end of hash table which
6745 * alloc_pages_exact() automatically does
1037b83b 6746 */
264ef8a9 6747 if (get_order(size) < MAX_ORDER) {
a1dd268c 6748 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6749 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6750 }
1da177e4
LT
6751 }
6752 } while (!table && size > PAGE_SIZE && --log2qty);
6753
6754 if (!table)
6755 panic("Failed to allocate %s hash table\n", tablename);
6756
1170532b
JP
6757 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6758 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6759
6760 if (_hash_shift)
6761 *_hash_shift = log2qty;
6762 if (_hash_mask)
6763 *_hash_mask = (1 << log2qty) - 1;
6764
6765 return table;
6766}
a117e66e 6767
835c134e
MG
6768/* Return a pointer to the bitmap storing bits affecting a block of pages */
6769static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6770 unsigned long pfn)
6771{
6772#ifdef CONFIG_SPARSEMEM
6773 return __pfn_to_section(pfn)->pageblock_flags;
6774#else
6775 return zone->pageblock_flags;
6776#endif /* CONFIG_SPARSEMEM */
6777}
6778
6779static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6780{
6781#ifdef CONFIG_SPARSEMEM
6782 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6783 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6784#else
c060f943 6785 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6786 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6787#endif /* CONFIG_SPARSEMEM */
6788}
6789
6790/**
1aab4d77 6791 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6792 * @page: The page within the block of interest
1aab4d77
RD
6793 * @pfn: The target page frame number
6794 * @end_bitidx: The last bit of interest to retrieve
6795 * @mask: mask of bits that the caller is interested in
6796 *
6797 * Return: pageblock_bits flags
835c134e 6798 */
dc4b0caf 6799unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6800 unsigned long end_bitidx,
6801 unsigned long mask)
835c134e
MG
6802{
6803 struct zone *zone;
6804 unsigned long *bitmap;
dc4b0caf 6805 unsigned long bitidx, word_bitidx;
e58469ba 6806 unsigned long word;
835c134e
MG
6807
6808 zone = page_zone(page);
835c134e
MG
6809 bitmap = get_pageblock_bitmap(zone, pfn);
6810 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6811 word_bitidx = bitidx / BITS_PER_LONG;
6812 bitidx &= (BITS_PER_LONG-1);
835c134e 6813
e58469ba
MG
6814 word = bitmap[word_bitidx];
6815 bitidx += end_bitidx;
6816 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6817}
6818
6819/**
dc4b0caf 6820 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6821 * @page: The page within the block of interest
835c134e 6822 * @flags: The flags to set
1aab4d77
RD
6823 * @pfn: The target page frame number
6824 * @end_bitidx: The last bit of interest
6825 * @mask: mask of bits that the caller is interested in
835c134e 6826 */
dc4b0caf
MG
6827void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6828 unsigned long pfn,
e58469ba
MG
6829 unsigned long end_bitidx,
6830 unsigned long mask)
835c134e
MG
6831{
6832 struct zone *zone;
6833 unsigned long *bitmap;
dc4b0caf 6834 unsigned long bitidx, word_bitidx;
e58469ba
MG
6835 unsigned long old_word, word;
6836
6837 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6838
6839 zone = page_zone(page);
835c134e
MG
6840 bitmap = get_pageblock_bitmap(zone, pfn);
6841 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6842 word_bitidx = bitidx / BITS_PER_LONG;
6843 bitidx &= (BITS_PER_LONG-1);
6844
309381fe 6845 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6846
e58469ba
MG
6847 bitidx += end_bitidx;
6848 mask <<= (BITS_PER_LONG - bitidx - 1);
6849 flags <<= (BITS_PER_LONG - bitidx - 1);
6850
4db0c3c2 6851 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6852 for (;;) {
6853 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6854 if (word == old_word)
6855 break;
6856 word = old_word;
6857 }
835c134e 6858}
a5d76b54
KH
6859
6860/*
80934513
MK
6861 * This function checks whether pageblock includes unmovable pages or not.
6862 * If @count is not zero, it is okay to include less @count unmovable pages
6863 *
b8af2941 6864 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6865 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6866 * expect this function should be exact.
a5d76b54 6867 */
b023f468
WC
6868bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6869 bool skip_hwpoisoned_pages)
49ac8255
KH
6870{
6871 unsigned long pfn, iter, found;
47118af0
MN
6872 int mt;
6873
49ac8255
KH
6874 /*
6875 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6876 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6877 */
6878 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6879 return false;
47118af0
MN
6880 mt = get_pageblock_migratetype(page);
6881 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6882 return false;
49ac8255
KH
6883
6884 pfn = page_to_pfn(page);
6885 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6886 unsigned long check = pfn + iter;
6887
29723fcc 6888 if (!pfn_valid_within(check))
49ac8255 6889 continue;
29723fcc 6890
49ac8255 6891 page = pfn_to_page(check);
c8721bbb
NH
6892
6893 /*
6894 * Hugepages are not in LRU lists, but they're movable.
6895 * We need not scan over tail pages bacause we don't
6896 * handle each tail page individually in migration.
6897 */
6898 if (PageHuge(page)) {
6899 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6900 continue;
6901 }
6902
97d255c8
MK
6903 /*
6904 * We can't use page_count without pin a page
6905 * because another CPU can free compound page.
6906 * This check already skips compound tails of THP
0139aa7b 6907 * because their page->_refcount is zero at all time.
97d255c8 6908 */
fe896d18 6909 if (!page_ref_count(page)) {
49ac8255
KH
6910 if (PageBuddy(page))
6911 iter += (1 << page_order(page)) - 1;
6912 continue;
6913 }
97d255c8 6914
b023f468
WC
6915 /*
6916 * The HWPoisoned page may be not in buddy system, and
6917 * page_count() is not 0.
6918 */
6919 if (skip_hwpoisoned_pages && PageHWPoison(page))
6920 continue;
6921
49ac8255
KH
6922 if (!PageLRU(page))
6923 found++;
6924 /*
6b4f7799
JW
6925 * If there are RECLAIMABLE pages, we need to check
6926 * it. But now, memory offline itself doesn't call
6927 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6928 */
6929 /*
6930 * If the page is not RAM, page_count()should be 0.
6931 * we don't need more check. This is an _used_ not-movable page.
6932 *
6933 * The problematic thing here is PG_reserved pages. PG_reserved
6934 * is set to both of a memory hole page and a _used_ kernel
6935 * page at boot.
6936 */
6937 if (found > count)
80934513 6938 return true;
49ac8255 6939 }
80934513 6940 return false;
49ac8255
KH
6941}
6942
6943bool is_pageblock_removable_nolock(struct page *page)
6944{
656a0706
MH
6945 struct zone *zone;
6946 unsigned long pfn;
687875fb
MH
6947
6948 /*
6949 * We have to be careful here because we are iterating over memory
6950 * sections which are not zone aware so we might end up outside of
6951 * the zone but still within the section.
656a0706
MH
6952 * We have to take care about the node as well. If the node is offline
6953 * its NODE_DATA will be NULL - see page_zone.
687875fb 6954 */
656a0706
MH
6955 if (!node_online(page_to_nid(page)))
6956 return false;
6957
6958 zone = page_zone(page);
6959 pfn = page_to_pfn(page);
108bcc96 6960 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6961 return false;
6962
b023f468 6963 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6964}
0c0e6195 6965
080fe206 6966#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6967
6968static unsigned long pfn_max_align_down(unsigned long pfn)
6969{
6970 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6971 pageblock_nr_pages) - 1);
6972}
6973
6974static unsigned long pfn_max_align_up(unsigned long pfn)
6975{
6976 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6977 pageblock_nr_pages));
6978}
6979
041d3a8c 6980/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6981static int __alloc_contig_migrate_range(struct compact_control *cc,
6982 unsigned long start, unsigned long end)
041d3a8c
MN
6983{
6984 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6985 unsigned long nr_reclaimed;
041d3a8c
MN
6986 unsigned long pfn = start;
6987 unsigned int tries = 0;
6988 int ret = 0;
6989
be49a6e1 6990 migrate_prep();
041d3a8c 6991
bb13ffeb 6992 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6993 if (fatal_signal_pending(current)) {
6994 ret = -EINTR;
6995 break;
6996 }
6997
bb13ffeb
MG
6998 if (list_empty(&cc->migratepages)) {
6999 cc->nr_migratepages = 0;
edc2ca61 7000 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7001 if (!pfn) {
7002 ret = -EINTR;
7003 break;
7004 }
7005 tries = 0;
7006 } else if (++tries == 5) {
7007 ret = ret < 0 ? ret : -EBUSY;
7008 break;
7009 }
7010
beb51eaa
MK
7011 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7012 &cc->migratepages);
7013 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7014
9c620e2b 7015 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7016 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7017 }
2a6f5124
SP
7018 if (ret < 0) {
7019 putback_movable_pages(&cc->migratepages);
7020 return ret;
7021 }
7022 return 0;
041d3a8c
MN
7023}
7024
7025/**
7026 * alloc_contig_range() -- tries to allocate given range of pages
7027 * @start: start PFN to allocate
7028 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7029 * @migratetype: migratetype of the underlaying pageblocks (either
7030 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7031 * in range must have the same migratetype and it must
7032 * be either of the two.
041d3a8c
MN
7033 *
7034 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7035 * aligned, however it's the caller's responsibility to guarantee that
7036 * we are the only thread that changes migrate type of pageblocks the
7037 * pages fall in.
7038 *
7039 * The PFN range must belong to a single zone.
7040 *
7041 * Returns zero on success or negative error code. On success all
7042 * pages which PFN is in [start, end) are allocated for the caller and
7043 * need to be freed with free_contig_range().
7044 */
0815f3d8
MN
7045int alloc_contig_range(unsigned long start, unsigned long end,
7046 unsigned migratetype)
041d3a8c 7047{
041d3a8c 7048 unsigned long outer_start, outer_end;
d00181b9
KS
7049 unsigned int order;
7050 int ret = 0;
041d3a8c 7051
bb13ffeb
MG
7052 struct compact_control cc = {
7053 .nr_migratepages = 0,
7054 .order = -1,
7055 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7056 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7057 .ignore_skip_hint = true,
7058 };
7059 INIT_LIST_HEAD(&cc.migratepages);
7060
041d3a8c
MN
7061 /*
7062 * What we do here is we mark all pageblocks in range as
7063 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7064 * have different sizes, and due to the way page allocator
7065 * work, we align the range to biggest of the two pages so
7066 * that page allocator won't try to merge buddies from
7067 * different pageblocks and change MIGRATE_ISOLATE to some
7068 * other migration type.
7069 *
7070 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7071 * migrate the pages from an unaligned range (ie. pages that
7072 * we are interested in). This will put all the pages in
7073 * range back to page allocator as MIGRATE_ISOLATE.
7074 *
7075 * When this is done, we take the pages in range from page
7076 * allocator removing them from the buddy system. This way
7077 * page allocator will never consider using them.
7078 *
7079 * This lets us mark the pageblocks back as
7080 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7081 * aligned range but not in the unaligned, original range are
7082 * put back to page allocator so that buddy can use them.
7083 */
7084
7085 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7086 pfn_max_align_up(end), migratetype,
7087 false);
041d3a8c 7088 if (ret)
86a595f9 7089 return ret;
041d3a8c 7090
8ef5849f
JK
7091 /*
7092 * In case of -EBUSY, we'd like to know which page causes problem.
7093 * So, just fall through. We will check it in test_pages_isolated().
7094 */
bb13ffeb 7095 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7096 if (ret && ret != -EBUSY)
041d3a8c
MN
7097 goto done;
7098
7099 /*
7100 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7101 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7102 * more, all pages in [start, end) are free in page allocator.
7103 * What we are going to do is to allocate all pages from
7104 * [start, end) (that is remove them from page allocator).
7105 *
7106 * The only problem is that pages at the beginning and at the
7107 * end of interesting range may be not aligned with pages that
7108 * page allocator holds, ie. they can be part of higher order
7109 * pages. Because of this, we reserve the bigger range and
7110 * once this is done free the pages we are not interested in.
7111 *
7112 * We don't have to hold zone->lock here because the pages are
7113 * isolated thus they won't get removed from buddy.
7114 */
7115
7116 lru_add_drain_all();
510f5507 7117 drain_all_pages(cc.zone);
041d3a8c
MN
7118
7119 order = 0;
7120 outer_start = start;
7121 while (!PageBuddy(pfn_to_page(outer_start))) {
7122 if (++order >= MAX_ORDER) {
8ef5849f
JK
7123 outer_start = start;
7124 break;
041d3a8c
MN
7125 }
7126 outer_start &= ~0UL << order;
7127 }
7128
8ef5849f
JK
7129 if (outer_start != start) {
7130 order = page_order(pfn_to_page(outer_start));
7131
7132 /*
7133 * outer_start page could be small order buddy page and
7134 * it doesn't include start page. Adjust outer_start
7135 * in this case to report failed page properly
7136 * on tracepoint in test_pages_isolated()
7137 */
7138 if (outer_start + (1UL << order) <= start)
7139 outer_start = start;
7140 }
7141
041d3a8c 7142 /* Make sure the range is really isolated. */
b023f468 7143 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7144 pr_info("%s: [%lx, %lx) PFNs busy\n",
7145 __func__, outer_start, end);
041d3a8c
MN
7146 ret = -EBUSY;
7147 goto done;
7148 }
7149
49f223a9 7150 /* Grab isolated pages from freelists. */
bb13ffeb 7151 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7152 if (!outer_end) {
7153 ret = -EBUSY;
7154 goto done;
7155 }
7156
7157 /* Free head and tail (if any) */
7158 if (start != outer_start)
7159 free_contig_range(outer_start, start - outer_start);
7160 if (end != outer_end)
7161 free_contig_range(end, outer_end - end);
7162
7163done:
7164 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7165 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7166 return ret;
7167}
7168
7169void free_contig_range(unsigned long pfn, unsigned nr_pages)
7170{
bcc2b02f
MS
7171 unsigned int count = 0;
7172
7173 for (; nr_pages--; pfn++) {
7174 struct page *page = pfn_to_page(pfn);
7175
7176 count += page_count(page) != 1;
7177 __free_page(page);
7178 }
7179 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7180}
7181#endif
7182
4ed7e022 7183#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7184/*
7185 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7186 * page high values need to be recalulated.
7187 */
4ed7e022
JL
7188void __meminit zone_pcp_update(struct zone *zone)
7189{
0a647f38 7190 unsigned cpu;
c8e251fa 7191 mutex_lock(&pcp_batch_high_lock);
0a647f38 7192 for_each_possible_cpu(cpu)
169f6c19
CS
7193 pageset_set_high_and_batch(zone,
7194 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7195 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7196}
7197#endif
7198
340175b7
JL
7199void zone_pcp_reset(struct zone *zone)
7200{
7201 unsigned long flags;
5a883813
MK
7202 int cpu;
7203 struct per_cpu_pageset *pset;
340175b7
JL
7204
7205 /* avoid races with drain_pages() */
7206 local_irq_save(flags);
7207 if (zone->pageset != &boot_pageset) {
5a883813
MK
7208 for_each_online_cpu(cpu) {
7209 pset = per_cpu_ptr(zone->pageset, cpu);
7210 drain_zonestat(zone, pset);
7211 }
340175b7
JL
7212 free_percpu(zone->pageset);
7213 zone->pageset = &boot_pageset;
7214 }
7215 local_irq_restore(flags);
7216}
7217
6dcd73d7 7218#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7219/*
b9eb6319
JK
7220 * All pages in the range must be in a single zone and isolated
7221 * before calling this.
0c0e6195
KH
7222 */
7223void
7224__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7225{
7226 struct page *page;
7227 struct zone *zone;
7aeb09f9 7228 unsigned int order, i;
0c0e6195
KH
7229 unsigned long pfn;
7230 unsigned long flags;
7231 /* find the first valid pfn */
7232 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7233 if (pfn_valid(pfn))
7234 break;
7235 if (pfn == end_pfn)
7236 return;
7237 zone = page_zone(pfn_to_page(pfn));
7238 spin_lock_irqsave(&zone->lock, flags);
7239 pfn = start_pfn;
7240 while (pfn < end_pfn) {
7241 if (!pfn_valid(pfn)) {
7242 pfn++;
7243 continue;
7244 }
7245 page = pfn_to_page(pfn);
b023f468
WC
7246 /*
7247 * The HWPoisoned page may be not in buddy system, and
7248 * page_count() is not 0.
7249 */
7250 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7251 pfn++;
7252 SetPageReserved(page);
7253 continue;
7254 }
7255
0c0e6195
KH
7256 BUG_ON(page_count(page));
7257 BUG_ON(!PageBuddy(page));
7258 order = page_order(page);
7259#ifdef CONFIG_DEBUG_VM
1170532b
JP
7260 pr_info("remove from free list %lx %d %lx\n",
7261 pfn, 1 << order, end_pfn);
0c0e6195
KH
7262#endif
7263 list_del(&page->lru);
7264 rmv_page_order(page);
7265 zone->free_area[order].nr_free--;
0c0e6195
KH
7266 for (i = 0; i < (1 << order); i++)
7267 SetPageReserved((page+i));
7268 pfn += (1 << order);
7269 }
7270 spin_unlock_irqrestore(&zone->lock, flags);
7271}
7272#endif
8d22ba1b 7273
8d22ba1b
WF
7274bool is_free_buddy_page(struct page *page)
7275{
7276 struct zone *zone = page_zone(page);
7277 unsigned long pfn = page_to_pfn(page);
7278 unsigned long flags;
7aeb09f9 7279 unsigned int order;
8d22ba1b
WF
7280
7281 spin_lock_irqsave(&zone->lock, flags);
7282 for (order = 0; order < MAX_ORDER; order++) {
7283 struct page *page_head = page - (pfn & ((1 << order) - 1));
7284
7285 if (PageBuddy(page_head) && page_order(page_head) >= order)
7286 break;
7287 }
7288 spin_unlock_irqrestore(&zone->lock, flags);
7289
7290 return order < MAX_ORDER;
7291}